1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include <cctype>
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "systemz-lower"
31 
32 namespace {
33 // Represents information about a comparison.
34 struct Comparison {
35   Comparison(SDValue Op0In, SDValue Op1In)
36     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
37 
38   // The operands to the comparison.
39   SDValue Op0, Op1;
40 
41   // The opcode that should be used to compare Op0 and Op1.
42   unsigned Opcode;
43 
44   // A SystemZICMP value.  Only used for integer comparisons.
45   unsigned ICmpType;
46 
47   // The mask of CC values that Opcode can produce.
48   unsigned CCValid;
49 
50   // The mask of CC values for which the original condition is true.
51   unsigned CCMask;
52 };
53 } // end anonymous namespace
54 
55 // Classify VT as either 32 or 64 bit.
56 static bool is32Bit(EVT VT) {
57   switch (VT.getSimpleVT().SimpleTy) {
58   case MVT::i32:
59     return true;
60   case MVT::i64:
61     return false;
62   default:
63     llvm_unreachable("Unsupported type");
64   }
65 }
66 
67 // Return a version of MachineOperand that can be safely used before the
68 // final use.
69 static MachineOperand earlyUseOperand(MachineOperand Op) {
70   if (Op.isReg())
71     Op.setIsKill(false);
72   return Op;
73 }
74 
75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
76                                              const SystemZSubtarget &STI)
77     : TargetLowering(TM), Subtarget(STI) {
78   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
79 
80   // Set up the register classes.
81   if (Subtarget.hasHighWord())
82     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
83   else
84     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
85   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
86   if (Subtarget.hasVector()) {
87     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
88     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
89   } else {
90     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
91     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
92   }
93   if (Subtarget.hasVectorEnhancements1())
94     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
95   else
96     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97 
98   if (Subtarget.hasVector()) {
99     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
100     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
105   }
106 
107   // Compute derived properties from the register classes
108   computeRegisterProperties(Subtarget.getRegisterInfo());
109 
110   // Set up special registers.
111   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
112 
113   // TODO: It may be better to default to latency-oriented scheduling, however
114   // LLVM's current latency-oriented scheduler can't handle physreg definitions
115   // such as SystemZ has with CC, so set this to the register-pressure
116   // scheduler, because it can.
117   setSchedulingPreference(Sched::RegPressure);
118 
119   setBooleanContents(ZeroOrOneBooleanContent);
120   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
121 
122   // Instructions are strings of 2-byte aligned 2-byte values.
123   setMinFunctionAlignment(llvm::Align(2));
124   // For performance reasons we prefer 16-byte alignment.
125   setPrefFunctionAlignment(llvm::Align(16));
126 
127   // Handle operations that are handled in a similar way for all types.
128   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
129        I <= MVT::LAST_FP_VALUETYPE;
130        ++I) {
131     MVT VT = MVT::SimpleValueType(I);
132     if (isTypeLegal(VT)) {
133       // Lower SET_CC into an IPM-based sequence.
134       setOperationAction(ISD::SETCC, VT, Custom);
135 
136       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
137       setOperationAction(ISD::SELECT, VT, Expand);
138 
139       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
140       setOperationAction(ISD::SELECT_CC, VT, Custom);
141       setOperationAction(ISD::BR_CC,     VT, Custom);
142     }
143   }
144 
145   // Expand jump table branches as address arithmetic followed by an
146   // indirect jump.
147   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
148 
149   // Expand BRCOND into a BR_CC (see above).
150   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
151 
152   // Handle integer types.
153   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
154        I <= MVT::LAST_INTEGER_VALUETYPE;
155        ++I) {
156     MVT VT = MVT::SimpleValueType(I);
157     if (isTypeLegal(VT)) {
158       // Expand individual DIV and REMs into DIVREMs.
159       setOperationAction(ISD::SDIV, VT, Expand);
160       setOperationAction(ISD::UDIV, VT, Expand);
161       setOperationAction(ISD::SREM, VT, Expand);
162       setOperationAction(ISD::UREM, VT, Expand);
163       setOperationAction(ISD::SDIVREM, VT, Custom);
164       setOperationAction(ISD::UDIVREM, VT, Custom);
165 
166       // Support addition/subtraction with overflow.
167       setOperationAction(ISD::SADDO, VT, Custom);
168       setOperationAction(ISD::SSUBO, VT, Custom);
169 
170       // Support addition/subtraction with carry.
171       setOperationAction(ISD::UADDO, VT, Custom);
172       setOperationAction(ISD::USUBO, VT, Custom);
173 
174       // Support carry in as value rather than glue.
175       setOperationAction(ISD::ADDCARRY, VT, Custom);
176       setOperationAction(ISD::SUBCARRY, VT, Custom);
177 
178       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
179       // stores, putting a serialization instruction after the stores.
180       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
181       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
182 
183       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
184       // available, or if the operand is constant.
185       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
186 
187       // Use POPCNT on z196 and above.
188       if (Subtarget.hasPopulationCount())
189         setOperationAction(ISD::CTPOP, VT, Custom);
190       else
191         setOperationAction(ISD::CTPOP, VT, Expand);
192 
193       // No special instructions for these.
194       setOperationAction(ISD::CTTZ,            VT, Expand);
195       setOperationAction(ISD::ROTR,            VT, Expand);
196 
197       // Use *MUL_LOHI where possible instead of MULH*.
198       setOperationAction(ISD::MULHS, VT, Expand);
199       setOperationAction(ISD::MULHU, VT, Expand);
200       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
201       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
202 
203       // Only z196 and above have native support for conversions to unsigned.
204       // On z10, promoting to i64 doesn't generate an inexact condition for
205       // values that are outside the i32 range but in the i64 range, so use
206       // the default expansion.
207       if (!Subtarget.hasFPExtension())
208         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
209 
210       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
211       // default to Expand, so need to be modified to Legal where appropriate.
212       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
213       if (Subtarget.hasFPExtension())
214         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
215     }
216   }
217 
218   // Type legalization will convert 8- and 16-bit atomic operations into
219   // forms that operate on i32s (but still keeping the original memory VT).
220   // Lower them into full i32 operations.
221   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
224   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
225   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
226   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
227   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
228   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
229   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
230   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
231   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
232 
233   // Even though i128 is not a legal type, we still need to custom lower
234   // the atomic operations in order to exploit SystemZ instructions.
235   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
236   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
237 
238   // We can use the CC result of compare-and-swap to implement
239   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
240   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
242   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
243 
244   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
245 
246   // Traps are legal, as we will convert them to "j .+2".
247   setOperationAction(ISD::TRAP, MVT::Other, Legal);
248 
249   // z10 has instructions for signed but not unsigned FP conversion.
250   // Handle unsigned 32-bit types as signed 64-bit types.
251   if (!Subtarget.hasFPExtension()) {
252     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
253     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
254   }
255 
256   // We have native support for a 64-bit CTLZ, via FLOGR.
257   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
258   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
259   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
260 
261   // On arch13 we have native support for a 64-bit CTPOP.
262   if (Subtarget.hasMiscellaneousExtensions3()) {
263     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
264     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
265   }
266 
267   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
268   setOperationAction(ISD::OR, MVT::i64, Custom);
269 
270   // FIXME: Can we support these natively?
271   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
272   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
273   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
274 
275   // We have native instructions for i8, i16 and i32 extensions, but not i1.
276   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
277   for (MVT VT : MVT::integer_valuetypes()) {
278     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
279     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
280     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
281   }
282 
283   // Handle the various types of symbolic address.
284   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
285   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
286   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
287   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
288   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
289 
290   // We need to handle dynamic allocations specially because of the
291   // 160-byte area at the bottom of the stack.
292   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
293   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
294 
295   // Use custom expanders so that we can force the function to use
296   // a frame pointer.
297   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
298   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
299 
300   // Handle prefetches with PFD or PFDRL.
301   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
302 
303   for (MVT VT : MVT::vector_valuetypes()) {
304     // Assume by default that all vector operations need to be expanded.
305     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
306       if (getOperationAction(Opcode, VT) == Legal)
307         setOperationAction(Opcode, VT, Expand);
308 
309     // Likewise all truncating stores and extending loads.
310     for (MVT InnerVT : MVT::vector_valuetypes()) {
311       setTruncStoreAction(VT, InnerVT, Expand);
312       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
313       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
314       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
315     }
316 
317     if (isTypeLegal(VT)) {
318       // These operations are legal for anything that can be stored in a
319       // vector register, even if there is no native support for the format
320       // as such.  In particular, we can do these for v4f32 even though there
321       // are no specific instructions for that format.
322       setOperationAction(ISD::LOAD, VT, Legal);
323       setOperationAction(ISD::STORE, VT, Legal);
324       setOperationAction(ISD::VSELECT, VT, Legal);
325       setOperationAction(ISD::BITCAST, VT, Legal);
326       setOperationAction(ISD::UNDEF, VT, Legal);
327 
328       // Likewise, except that we need to replace the nodes with something
329       // more specific.
330       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
331       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
332     }
333   }
334 
335   // Handle integer vector types.
336   for (MVT VT : MVT::integer_vector_valuetypes()) {
337     if (isTypeLegal(VT)) {
338       // These operations have direct equivalents.
339       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
340       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
341       setOperationAction(ISD::ADD, VT, Legal);
342       setOperationAction(ISD::SUB, VT, Legal);
343       if (VT != MVT::v2i64)
344         setOperationAction(ISD::MUL, VT, Legal);
345       setOperationAction(ISD::AND, VT, Legal);
346       setOperationAction(ISD::OR, VT, Legal);
347       setOperationAction(ISD::XOR, VT, Legal);
348       if (Subtarget.hasVectorEnhancements1())
349         setOperationAction(ISD::CTPOP, VT, Legal);
350       else
351         setOperationAction(ISD::CTPOP, VT, Custom);
352       setOperationAction(ISD::CTTZ, VT, Legal);
353       setOperationAction(ISD::CTLZ, VT, Legal);
354 
355       // Convert a GPR scalar to a vector by inserting it into element 0.
356       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
357 
358       // Use a series of unpacks for extensions.
359       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
360       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
361 
362       // Detect shifts by a scalar amount and convert them into
363       // V*_BY_SCALAR.
364       setOperationAction(ISD::SHL, VT, Custom);
365       setOperationAction(ISD::SRA, VT, Custom);
366       setOperationAction(ISD::SRL, VT, Custom);
367 
368       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
369       // converted into ROTL.
370       setOperationAction(ISD::ROTL, VT, Expand);
371       setOperationAction(ISD::ROTR, VT, Expand);
372 
373       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
374       // and inverting the result as necessary.
375       setOperationAction(ISD::SETCC, VT, Custom);
376     }
377   }
378 
379   if (Subtarget.hasVector()) {
380     // There should be no need to check for float types other than v2f64
381     // since <2 x f32> isn't a legal type.
382     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
383     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
384     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
385     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
386     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
387     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
388     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
389     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
390 
391     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
392     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
393     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
394     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
395   }
396 
397   if (Subtarget.hasVectorEnhancements2()) {
398     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
399     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
400     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
401     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
402     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
403     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
404     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
405     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
406 
407     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
408     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
409     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
410     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
411   }
412 
413   // Handle floating-point types.
414   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
415        I <= MVT::LAST_FP_VALUETYPE;
416        ++I) {
417     MVT VT = MVT::SimpleValueType(I);
418     if (isTypeLegal(VT)) {
419       // We can use FI for FRINT.
420       setOperationAction(ISD::FRINT, VT, Legal);
421 
422       // We can use the extended form of FI for other rounding operations.
423       if (Subtarget.hasFPExtension()) {
424         setOperationAction(ISD::FNEARBYINT, VT, Legal);
425         setOperationAction(ISD::FFLOOR, VT, Legal);
426         setOperationAction(ISD::FCEIL, VT, Legal);
427         setOperationAction(ISD::FTRUNC, VT, Legal);
428         setOperationAction(ISD::FROUND, VT, Legal);
429       }
430 
431       // No special instructions for these.
432       setOperationAction(ISD::FSIN, VT, Expand);
433       setOperationAction(ISD::FCOS, VT, Expand);
434       setOperationAction(ISD::FSINCOS, VT, Expand);
435       setOperationAction(ISD::FREM, VT, Expand);
436       setOperationAction(ISD::FPOW, VT, Expand);
437 
438       // Handle constrained floating-point operations.
439       setOperationAction(ISD::STRICT_FADD, VT, Legal);
440       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
441       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
442       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
443       setOperationAction(ISD::STRICT_FMA, VT, Legal);
444       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
445       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
446       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
447       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
448       if (Subtarget.hasFPExtension()) {
449         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
450         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
451         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
452         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
453         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
454       }
455     }
456   }
457 
458   // Handle floating-point vector types.
459   if (Subtarget.hasVector()) {
460     // Scalar-to-vector conversion is just a subreg.
461     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
462     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
463 
464     // Some insertions and extractions can be done directly but others
465     // need to go via integers.
466     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
467     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
468     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
469     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
470 
471     // These operations have direct equivalents.
472     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
473     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
474     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
475     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
476     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
477     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
478     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
479     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
480     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
481     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
482     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
483     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
484     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
485     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
486 
487     // Handle constrained floating-point operations.
488     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
489     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
490     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
491     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
492     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
493     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
494     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
495     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
496     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
497     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
498     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
499     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
500   }
501 
502   // The vector enhancements facility 1 has instructions for these.
503   if (Subtarget.hasVectorEnhancements1()) {
504     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
505     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
506     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
507     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
508     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
509     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
510     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
511     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
512     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
513     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
514     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
515     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
516     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
517     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
518 
519     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
520     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
521     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
522     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
523 
524     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
525     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
526     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
527     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
528 
529     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
530     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
531     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
532     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
533 
534     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
536     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
537     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
538 
539     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
540     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
541     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
542     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
543 
544     // Handle constrained floating-point operations.
545     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
546     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
547     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
548     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
549     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
550     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
551     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
553     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
554     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
555     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
556     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
557     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
558                      MVT::v4f32, MVT::v2f64 }) {
559       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
560       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
561     }
562   }
563 
564   // We have fused multiply-addition for f32 and f64 but not f128.
565   setOperationAction(ISD::FMA, MVT::f32,  Legal);
566   setOperationAction(ISD::FMA, MVT::f64,  Legal);
567   if (Subtarget.hasVectorEnhancements1())
568     setOperationAction(ISD::FMA, MVT::f128, Legal);
569   else
570     setOperationAction(ISD::FMA, MVT::f128, Expand);
571 
572   // We don't have a copysign instruction on vector registers.
573   if (Subtarget.hasVectorEnhancements1())
574     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
575 
576   // Needed so that we don't try to implement f128 constant loads using
577   // a load-and-extend of a f80 constant (in cases where the constant
578   // would fit in an f80).
579   for (MVT VT : MVT::fp_valuetypes())
580     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
581 
582   // We don't have extending load instruction on vector registers.
583   if (Subtarget.hasVectorEnhancements1()) {
584     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
585     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
586   }
587 
588   // Floating-point truncation and stores need to be done separately.
589   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
590   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
591   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
592 
593   // We have 64-bit FPR<->GPR moves, but need special handling for
594   // 32-bit forms.
595   if (!Subtarget.hasVector()) {
596     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
597     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
598   }
599 
600   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
601   // structure, but VAEND is a no-op.
602   setOperationAction(ISD::VASTART, MVT::Other, Custom);
603   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
604   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
605 
606   // Codes for which we want to perform some z-specific combinations.
607   setTargetDAGCombine(ISD::ZERO_EXTEND);
608   setTargetDAGCombine(ISD::SIGN_EXTEND);
609   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
610   setTargetDAGCombine(ISD::LOAD);
611   setTargetDAGCombine(ISD::STORE);
612   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
613   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
614   setTargetDAGCombine(ISD::FP_ROUND);
615   setTargetDAGCombine(ISD::FP_EXTEND);
616   setTargetDAGCombine(ISD::BSWAP);
617   setTargetDAGCombine(ISD::SDIV);
618   setTargetDAGCombine(ISD::UDIV);
619   setTargetDAGCombine(ISD::SREM);
620   setTargetDAGCombine(ISD::UREM);
621 
622   // Handle intrinsics.
623   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
624   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
625 
626   // We want to use MVC in preference to even a single load/store pair.
627   MaxStoresPerMemcpy = 0;
628   MaxStoresPerMemcpyOptSize = 0;
629 
630   // The main memset sequence is a byte store followed by an MVC.
631   // Two STC or MV..I stores win over that, but the kind of fused stores
632   // generated by target-independent code don't when the byte value is
633   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
634   // than "STC;MVC".  Handle the choice in target-specific code instead.
635   MaxStoresPerMemset = 0;
636   MaxStoresPerMemsetOptSize = 0;
637 }
638 
639 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
640                                               LLVMContext &, EVT VT) const {
641   if (!VT.isVector())
642     return MVT::i32;
643   return VT.changeVectorElementTypeToInteger();
644 }
645 
646 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
647   VT = VT.getScalarType();
648 
649   if (!VT.isSimple())
650     return false;
651 
652   switch (VT.getSimpleVT().SimpleTy) {
653   case MVT::f32:
654   case MVT::f64:
655     return true;
656   case MVT::f128:
657     return Subtarget.hasVectorEnhancements1();
658   default:
659     break;
660   }
661 
662   return false;
663 }
664 
665 // Return true if the constant can be generated with a vector instruction,
666 // such as VGM, VGMB or VREPI.
667 bool SystemZVectorConstantInfo::isVectorConstantLegal(
668     const SystemZSubtarget &Subtarget) {
669   const SystemZInstrInfo *TII =
670       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
671   if (!Subtarget.hasVector() ||
672       (isFP128 && !Subtarget.hasVectorEnhancements1()))
673     return false;
674 
675   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
676   // preferred way of creating all-zero and all-one vectors so give it
677   // priority over other methods below.
678   unsigned Mask = 0;
679   unsigned I = 0;
680   for (; I < SystemZ::VectorBytes; ++I) {
681     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
682     if (Byte == 0xff)
683       Mask |= 1ULL << I;
684     else if (Byte != 0)
685       break;
686   }
687   if (I == SystemZ::VectorBytes) {
688     Opcode = SystemZISD::BYTE_MASK;
689     OpVals.push_back(Mask);
690     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
691     return true;
692   }
693 
694   if (SplatBitSize > 64)
695     return false;
696 
697   auto tryValue = [&](uint64_t Value) -> bool {
698     // Try VECTOR REPLICATE IMMEDIATE
699     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
700     if (isInt<16>(SignedValue)) {
701       OpVals.push_back(((unsigned) SignedValue));
702       Opcode = SystemZISD::REPLICATE;
703       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
704                                SystemZ::VectorBits / SplatBitSize);
705       return true;
706     }
707     // Try VECTOR GENERATE MASK
708     unsigned Start, End;
709     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
710       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
711       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
712       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
713       OpVals.push_back(Start - (64 - SplatBitSize));
714       OpVals.push_back(End - (64 - SplatBitSize));
715       Opcode = SystemZISD::ROTATE_MASK;
716       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
717                                SystemZ::VectorBits / SplatBitSize);
718       return true;
719     }
720     return false;
721   };
722 
723   // First try assuming that any undefined bits above the highest set bit
724   // and below the lowest set bit are 1s.  This increases the likelihood of
725   // being able to use a sign-extended element value in VECTOR REPLICATE
726   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
727   uint64_t SplatBitsZ = SplatBits.getZExtValue();
728   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
729   uint64_t Lower =
730       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
731   uint64_t Upper =
732       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
733   if (tryValue(SplatBitsZ | Upper | Lower))
734     return true;
735 
736   // Now try assuming that any undefined bits between the first and
737   // last defined set bits are set.  This increases the chances of
738   // using a non-wraparound mask.
739   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
740   return tryValue(SplatBitsZ | Middle);
741 }
742 
743 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
744   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
745   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
746 
747   // Find the smallest splat.
748   SplatBits = FPImm.bitcastToAPInt();
749   unsigned Width = SplatBits.getBitWidth();
750   while (Width > 8) {
751     unsigned HalfSize = Width / 2;
752     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
753     APInt LowValue = SplatBits.trunc(HalfSize);
754 
755     // If the two halves do not match, stop here.
756     if (HighValue != LowValue || 8 > HalfSize)
757       break;
758 
759     SplatBits = HighValue;
760     Width = HalfSize;
761   }
762   SplatUndef = 0;
763   SplatBitSize = Width;
764 }
765 
766 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
767   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
768   bool HasAnyUndefs;
769 
770   // Get IntBits by finding the 128 bit splat.
771   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
772                        true);
773 
774   // Get SplatBits by finding the 8 bit or greater splat.
775   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
776                        true);
777 }
778 
779 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
780                                          bool ForCodeSize) const {
781   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
782   if (Imm.isZero() || Imm.isNegZero())
783     return true;
784 
785   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
786 }
787 
788 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
789   // We can use CGFI or CLGFI.
790   return isInt<32>(Imm) || isUInt<32>(Imm);
791 }
792 
793 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
794   // We can use ALGFI or SLGFI.
795   return isUInt<32>(Imm) || isUInt<32>(-Imm);
796 }
797 
798 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
799     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
800   // Unaligned accesses should never be slower than the expanded version.
801   // We check specifically for aligned accesses in the few cases where
802   // they are required.
803   if (Fast)
804     *Fast = true;
805   return true;
806 }
807 
808 // Information about the addressing mode for a memory access.
809 struct AddressingMode {
810   // True if a long displacement is supported.
811   bool LongDisplacement;
812 
813   // True if use of index register is supported.
814   bool IndexReg;
815 
816   AddressingMode(bool LongDispl, bool IdxReg) :
817     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
818 };
819 
820 // Return the desired addressing mode for a Load which has only one use (in
821 // the same block) which is a Store.
822 static AddressingMode getLoadStoreAddrMode(bool HasVector,
823                                           Type *Ty) {
824   // With vector support a Load->Store combination may be combined to either
825   // an MVC or vector operations and it seems to work best to allow the
826   // vector addressing mode.
827   if (HasVector)
828     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
829 
830   // Otherwise only the MVC case is special.
831   bool MVC = Ty->isIntegerTy(8);
832   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
833 }
834 
835 // Return the addressing mode which seems most desirable given an LLVM
836 // Instruction pointer.
837 static AddressingMode
838 supportedAddressingMode(Instruction *I, bool HasVector) {
839   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
840     switch (II->getIntrinsicID()) {
841     default: break;
842     case Intrinsic::memset:
843     case Intrinsic::memmove:
844     case Intrinsic::memcpy:
845       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
846     }
847   }
848 
849   if (isa<LoadInst>(I) && I->hasOneUse()) {
850     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
851     if (SingleUser->getParent() == I->getParent()) {
852       if (isa<ICmpInst>(SingleUser)) {
853         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
854           if (C->getBitWidth() <= 64 &&
855               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
856             // Comparison of memory with 16 bit signed / unsigned immediate
857             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
858       } else if (isa<StoreInst>(SingleUser))
859         // Load->Store
860         return getLoadStoreAddrMode(HasVector, I->getType());
861     }
862   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
863     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
864       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
865         // Load->Store
866         return getLoadStoreAddrMode(HasVector, LoadI->getType());
867   }
868 
869   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
870 
871     // * Use LDE instead of LE/LEY for z13 to avoid partial register
872     //   dependencies (LDE only supports small offsets).
873     // * Utilize the vector registers to hold floating point
874     //   values (vector load / store instructions only support small
875     //   offsets).
876 
877     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
878                          I->getOperand(0)->getType());
879     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
880     bool IsVectorAccess = MemAccessTy->isVectorTy();
881 
882     // A store of an extracted vector element will be combined into a VSTE type
883     // instruction.
884     if (!IsVectorAccess && isa<StoreInst>(I)) {
885       Value *DataOp = I->getOperand(0);
886       if (isa<ExtractElementInst>(DataOp))
887         IsVectorAccess = true;
888     }
889 
890     // A load which gets inserted into a vector element will be combined into a
891     // VLE type instruction.
892     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
893       User *LoadUser = *I->user_begin();
894       if (isa<InsertElementInst>(LoadUser))
895         IsVectorAccess = true;
896     }
897 
898     if (IsFPAccess || IsVectorAccess)
899       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
900   }
901 
902   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
903 }
904 
905 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
906        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
907   // Punt on globals for now, although they can be used in limited
908   // RELATIVE LONG cases.
909   if (AM.BaseGV)
910     return false;
911 
912   // Require a 20-bit signed offset.
913   if (!isInt<20>(AM.BaseOffs))
914     return false;
915 
916   AddressingMode SupportedAM(true, true);
917   if (I != nullptr)
918     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
919 
920   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
921     return false;
922 
923   if (!SupportedAM.IndexReg)
924     // No indexing allowed.
925     return AM.Scale == 0;
926   else
927     // Indexing is OK but no scale factor can be applied.
928     return AM.Scale == 0 || AM.Scale == 1;
929 }
930 
931 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
932   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
933     return false;
934   unsigned FromBits = FromType->getPrimitiveSizeInBits();
935   unsigned ToBits = ToType->getPrimitiveSizeInBits();
936   return FromBits > ToBits;
937 }
938 
939 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
940   if (!FromVT.isInteger() || !ToVT.isInteger())
941     return false;
942   unsigned FromBits = FromVT.getSizeInBits();
943   unsigned ToBits = ToVT.getSizeInBits();
944   return FromBits > ToBits;
945 }
946 
947 //===----------------------------------------------------------------------===//
948 // Inline asm support
949 //===----------------------------------------------------------------------===//
950 
951 TargetLowering::ConstraintType
952 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
953   if (Constraint.size() == 1) {
954     switch (Constraint[0]) {
955     case 'a': // Address register
956     case 'd': // Data register (equivalent to 'r')
957     case 'f': // Floating-point register
958     case 'h': // High-part register
959     case 'r': // General-purpose register
960     case 'v': // Vector register
961       return C_RegisterClass;
962 
963     case 'Q': // Memory with base and unsigned 12-bit displacement
964     case 'R': // Likewise, plus an index
965     case 'S': // Memory with base and signed 20-bit displacement
966     case 'T': // Likewise, plus an index
967     case 'm': // Equivalent to 'T'.
968       return C_Memory;
969 
970     case 'I': // Unsigned 8-bit constant
971     case 'J': // Unsigned 12-bit constant
972     case 'K': // Signed 16-bit constant
973     case 'L': // Signed 20-bit displacement (on all targets we support)
974     case 'M': // 0x7fffffff
975       return C_Immediate;
976 
977     default:
978       break;
979     }
980   }
981   return TargetLowering::getConstraintType(Constraint);
982 }
983 
984 TargetLowering::ConstraintWeight SystemZTargetLowering::
985 getSingleConstraintMatchWeight(AsmOperandInfo &info,
986                                const char *constraint) const {
987   ConstraintWeight weight = CW_Invalid;
988   Value *CallOperandVal = info.CallOperandVal;
989   // If we don't have a value, we can't do a match,
990   // but allow it at the lowest weight.
991   if (!CallOperandVal)
992     return CW_Default;
993   Type *type = CallOperandVal->getType();
994   // Look at the constraint type.
995   switch (*constraint) {
996   default:
997     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
998     break;
999 
1000   case 'a': // Address register
1001   case 'd': // Data register (equivalent to 'r')
1002   case 'h': // High-part register
1003   case 'r': // General-purpose register
1004     if (CallOperandVal->getType()->isIntegerTy())
1005       weight = CW_Register;
1006     break;
1007 
1008   case 'f': // Floating-point register
1009     if (type->isFloatingPointTy())
1010       weight = CW_Register;
1011     break;
1012 
1013   case 'v': // Vector register
1014     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1015         Subtarget.hasVector())
1016       weight = CW_Register;
1017     break;
1018 
1019   case 'I': // Unsigned 8-bit constant
1020     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1021       if (isUInt<8>(C->getZExtValue()))
1022         weight = CW_Constant;
1023     break;
1024 
1025   case 'J': // Unsigned 12-bit constant
1026     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1027       if (isUInt<12>(C->getZExtValue()))
1028         weight = CW_Constant;
1029     break;
1030 
1031   case 'K': // Signed 16-bit constant
1032     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1033       if (isInt<16>(C->getSExtValue()))
1034         weight = CW_Constant;
1035     break;
1036 
1037   case 'L': // Signed 20-bit displacement (on all targets we support)
1038     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1039       if (isInt<20>(C->getSExtValue()))
1040         weight = CW_Constant;
1041     break;
1042 
1043   case 'M': // 0x7fffffff
1044     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1045       if (C->getZExtValue() == 0x7fffffff)
1046         weight = CW_Constant;
1047     break;
1048   }
1049   return weight;
1050 }
1051 
1052 // Parse a "{tNNN}" register constraint for which the register type "t"
1053 // has already been verified.  MC is the class associated with "t" and
1054 // Map maps 0-based register numbers to LLVM register numbers.
1055 static std::pair<unsigned, const TargetRegisterClass *>
1056 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1057                     const unsigned *Map, unsigned Size) {
1058   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1059   if (isdigit(Constraint[2])) {
1060     unsigned Index;
1061     bool Failed =
1062         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1063     if (!Failed && Index < Size && Map[Index])
1064       return std::make_pair(Map[Index], RC);
1065   }
1066   return std::make_pair(0U, nullptr);
1067 }
1068 
1069 std::pair<unsigned, const TargetRegisterClass *>
1070 SystemZTargetLowering::getRegForInlineAsmConstraint(
1071     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1072   if (Constraint.size() == 1) {
1073     // GCC Constraint Letters
1074     switch (Constraint[0]) {
1075     default: break;
1076     case 'd': // Data register (equivalent to 'r')
1077     case 'r': // General-purpose register
1078       if (VT == MVT::i64)
1079         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1080       else if (VT == MVT::i128)
1081         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1082       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1083 
1084     case 'a': // Address register
1085       if (VT == MVT::i64)
1086         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1087       else if (VT == MVT::i128)
1088         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1089       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1090 
1091     case 'h': // High-part register (an LLVM extension)
1092       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1093 
1094     case 'f': // Floating-point register
1095       if (VT == MVT::f64)
1096         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1097       else if (VT == MVT::f128)
1098         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1099       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1100 
1101     case 'v': // Vector register
1102       if (Subtarget.hasVector()) {
1103         if (VT == MVT::f32)
1104           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1105         if (VT == MVT::f64)
1106           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1107         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1108       }
1109       break;
1110     }
1111   }
1112   if (Constraint.size() > 0 && Constraint[0] == '{') {
1113     // We need to override the default register parsing for GPRs and FPRs
1114     // because the interpretation depends on VT.  The internal names of
1115     // the registers are also different from the external names
1116     // (F0D and F0S instead of F0, etc.).
1117     if (Constraint[1] == 'r') {
1118       if (VT == MVT::i32)
1119         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1120                                    SystemZMC::GR32Regs, 16);
1121       if (VT == MVT::i128)
1122         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1123                                    SystemZMC::GR128Regs, 16);
1124       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1125                                  SystemZMC::GR64Regs, 16);
1126     }
1127     if (Constraint[1] == 'f') {
1128       if (VT == MVT::f32)
1129         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1130                                    SystemZMC::FP32Regs, 16);
1131       if (VT == MVT::f128)
1132         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1133                                    SystemZMC::FP128Regs, 16);
1134       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1135                                  SystemZMC::FP64Regs, 16);
1136     }
1137     if (Constraint[1] == 'v') {
1138       if (VT == MVT::f32)
1139         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1140                                    SystemZMC::VR32Regs, 32);
1141       if (VT == MVT::f64)
1142         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1143                                    SystemZMC::VR64Regs, 32);
1144       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1145                                  SystemZMC::VR128Regs, 32);
1146     }
1147   }
1148   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1149 }
1150 
1151 void SystemZTargetLowering::
1152 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1153                              std::vector<SDValue> &Ops,
1154                              SelectionDAG &DAG) const {
1155   // Only support length 1 constraints for now.
1156   if (Constraint.length() == 1) {
1157     switch (Constraint[0]) {
1158     case 'I': // Unsigned 8-bit constant
1159       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1160         if (isUInt<8>(C->getZExtValue()))
1161           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1162                                               Op.getValueType()));
1163       return;
1164 
1165     case 'J': // Unsigned 12-bit constant
1166       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1167         if (isUInt<12>(C->getZExtValue()))
1168           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1169                                               Op.getValueType()));
1170       return;
1171 
1172     case 'K': // Signed 16-bit constant
1173       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1174         if (isInt<16>(C->getSExtValue()))
1175           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1176                                               Op.getValueType()));
1177       return;
1178 
1179     case 'L': // Signed 20-bit displacement (on all targets we support)
1180       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1181         if (isInt<20>(C->getSExtValue()))
1182           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1183                                               Op.getValueType()));
1184       return;
1185 
1186     case 'M': // 0x7fffffff
1187       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1188         if (C->getZExtValue() == 0x7fffffff)
1189           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1190                                               Op.getValueType()));
1191       return;
1192     }
1193   }
1194   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1195 }
1196 
1197 //===----------------------------------------------------------------------===//
1198 // Calling conventions
1199 //===----------------------------------------------------------------------===//
1200 
1201 #include "SystemZGenCallingConv.inc"
1202 
1203 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1204   CallingConv::ID) const {
1205   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1206                                            SystemZ::R14D, 0 };
1207   return ScratchRegs;
1208 }
1209 
1210 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1211                                                      Type *ToType) const {
1212   return isTruncateFree(FromType, ToType);
1213 }
1214 
1215 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1216   return CI->isTailCall();
1217 }
1218 
1219 // We do not yet support 128-bit single-element vector types.  If the user
1220 // attempts to use such types as function argument or return type, prefer
1221 // to error out instead of emitting code violating the ABI.
1222 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1223   if (ArgVT.isVector() && !VT.isVector())
1224     report_fatal_error("Unsupported vector argument or return type");
1225 }
1226 
1227 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1228   for (unsigned i = 0; i < Ins.size(); ++i)
1229     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1230 }
1231 
1232 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1233   for (unsigned i = 0; i < Outs.size(); ++i)
1234     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1235 }
1236 
1237 // Value is a value that has been passed to us in the location described by VA
1238 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1239 // any loads onto Chain.
1240 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1241                                    CCValAssign &VA, SDValue Chain,
1242                                    SDValue Value) {
1243   // If the argument has been promoted from a smaller type, insert an
1244   // assertion to capture this.
1245   if (VA.getLocInfo() == CCValAssign::SExt)
1246     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1247                         DAG.getValueType(VA.getValVT()));
1248   else if (VA.getLocInfo() == CCValAssign::ZExt)
1249     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1250                         DAG.getValueType(VA.getValVT()));
1251 
1252   if (VA.isExtInLoc())
1253     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1254   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1255     // If this is a short vector argument loaded from the stack,
1256     // extend from i64 to full vector size and then bitcast.
1257     assert(VA.getLocVT() == MVT::i64);
1258     assert(VA.getValVT().isVector());
1259     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1260     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1261   } else
1262     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1263   return Value;
1264 }
1265 
1266 // Value is a value of type VA.getValVT() that we need to copy into
1267 // the location described by VA.  Return a copy of Value converted to
1268 // VA.getValVT().  The caller is responsible for handling indirect values.
1269 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1270                                    CCValAssign &VA, SDValue Value) {
1271   switch (VA.getLocInfo()) {
1272   case CCValAssign::SExt:
1273     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1274   case CCValAssign::ZExt:
1275     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1276   case CCValAssign::AExt:
1277     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1278   case CCValAssign::BCvt:
1279     // If this is a short vector argument to be stored to the stack,
1280     // bitcast to v2i64 and then extract first element.
1281     assert(VA.getLocVT() == MVT::i64);
1282     assert(VA.getValVT().isVector());
1283     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1284     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1285                        DAG.getConstant(0, DL, MVT::i32));
1286   case CCValAssign::Full:
1287     return Value;
1288   default:
1289     llvm_unreachable("Unhandled getLocInfo()");
1290   }
1291 }
1292 
1293 SDValue SystemZTargetLowering::LowerFormalArguments(
1294     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1295     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1296     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1297   MachineFunction &MF = DAG.getMachineFunction();
1298   MachineFrameInfo &MFI = MF.getFrameInfo();
1299   MachineRegisterInfo &MRI = MF.getRegInfo();
1300   SystemZMachineFunctionInfo *FuncInfo =
1301       MF.getInfo<SystemZMachineFunctionInfo>();
1302   auto *TFL =
1303       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1304   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1305 
1306   // Detect unsupported vector argument types.
1307   if (Subtarget.hasVector())
1308     VerifyVectorTypes(Ins);
1309 
1310   // Assign locations to all of the incoming arguments.
1311   SmallVector<CCValAssign, 16> ArgLocs;
1312   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1313   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1314 
1315   unsigned NumFixedGPRs = 0;
1316   unsigned NumFixedFPRs = 0;
1317   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1318     SDValue ArgValue;
1319     CCValAssign &VA = ArgLocs[I];
1320     EVT LocVT = VA.getLocVT();
1321     if (VA.isRegLoc()) {
1322       // Arguments passed in registers
1323       const TargetRegisterClass *RC;
1324       switch (LocVT.getSimpleVT().SimpleTy) {
1325       default:
1326         // Integers smaller than i64 should be promoted to i64.
1327         llvm_unreachable("Unexpected argument type");
1328       case MVT::i32:
1329         NumFixedGPRs += 1;
1330         RC = &SystemZ::GR32BitRegClass;
1331         break;
1332       case MVT::i64:
1333         NumFixedGPRs += 1;
1334         RC = &SystemZ::GR64BitRegClass;
1335         break;
1336       case MVT::f32:
1337         NumFixedFPRs += 1;
1338         RC = &SystemZ::FP32BitRegClass;
1339         break;
1340       case MVT::f64:
1341         NumFixedFPRs += 1;
1342         RC = &SystemZ::FP64BitRegClass;
1343         break;
1344       case MVT::v16i8:
1345       case MVT::v8i16:
1346       case MVT::v4i32:
1347       case MVT::v2i64:
1348       case MVT::v4f32:
1349       case MVT::v2f64:
1350         RC = &SystemZ::VR128BitRegClass;
1351         break;
1352       }
1353 
1354       Register VReg = MRI.createVirtualRegister(RC);
1355       MRI.addLiveIn(VA.getLocReg(), VReg);
1356       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1357     } else {
1358       assert(VA.isMemLoc() && "Argument not register or memory");
1359 
1360       // Create the frame index object for this incoming parameter.
1361       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1362                                      VA.getLocMemOffset(), true);
1363 
1364       // Create the SelectionDAG nodes corresponding to a load
1365       // from this parameter.  Unpromoted ints and floats are
1366       // passed as right-justified 8-byte values.
1367       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1368       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1369         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1370                           DAG.getIntPtrConstant(4, DL));
1371       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1372                              MachinePointerInfo::getFixedStack(MF, FI));
1373     }
1374 
1375     // Convert the value of the argument register into the value that's
1376     // being passed.
1377     if (VA.getLocInfo() == CCValAssign::Indirect) {
1378       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1379                                    MachinePointerInfo()));
1380       // If the original argument was split (e.g. i128), we need
1381       // to load all parts of it here (using the same address).
1382       unsigned ArgIndex = Ins[I].OrigArgIndex;
1383       assert (Ins[I].PartOffset == 0);
1384       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1385         CCValAssign &PartVA = ArgLocs[I + 1];
1386         unsigned PartOffset = Ins[I + 1].PartOffset;
1387         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1388                                       DAG.getIntPtrConstant(PartOffset, DL));
1389         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1390                                      MachinePointerInfo()));
1391         ++I;
1392       }
1393     } else
1394       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1395   }
1396 
1397   if (IsVarArg) {
1398     // Save the number of non-varargs registers for later use by va_start, etc.
1399     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1400     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1401 
1402     // Likewise the address (in the form of a frame index) of where the
1403     // first stack vararg would be.  The 1-byte size here is arbitrary.
1404     int64_t StackSize = CCInfo.getNextStackOffset();
1405     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1406 
1407     // ...and a similar frame index for the caller-allocated save area
1408     // that will be used to store the incoming registers.
1409     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1410     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1411     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1412 
1413     // Store the FPR varargs in the reserved frame slots.  (We store the
1414     // GPRs as part of the prologue.)
1415     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1416       SDValue MemOps[SystemZ::NumArgFPRs];
1417       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1418         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1419         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1420         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1421         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1422                                      &SystemZ::FP64BitRegClass);
1423         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1424         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1425                                  MachinePointerInfo::getFixedStack(MF, FI));
1426       }
1427       // Join the stores, which are independent of one another.
1428       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1429                           makeArrayRef(&MemOps[NumFixedFPRs],
1430                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1431     }
1432   }
1433 
1434   return Chain;
1435 }
1436 
1437 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1438                               SmallVectorImpl<CCValAssign> &ArgLocs,
1439                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1440   // Punt if there are any indirect or stack arguments, or if the call
1441   // needs the callee-saved argument register R6, or if the call uses
1442   // the callee-saved register arguments SwiftSelf and SwiftError.
1443   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1444     CCValAssign &VA = ArgLocs[I];
1445     if (VA.getLocInfo() == CCValAssign::Indirect)
1446       return false;
1447     if (!VA.isRegLoc())
1448       return false;
1449     Register Reg = VA.getLocReg();
1450     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1451       return false;
1452     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1453       return false;
1454   }
1455   return true;
1456 }
1457 
1458 SDValue
1459 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1460                                  SmallVectorImpl<SDValue> &InVals) const {
1461   SelectionDAG &DAG = CLI.DAG;
1462   SDLoc &DL = CLI.DL;
1463   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1464   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1465   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1466   SDValue Chain = CLI.Chain;
1467   SDValue Callee = CLI.Callee;
1468   bool &IsTailCall = CLI.IsTailCall;
1469   CallingConv::ID CallConv = CLI.CallConv;
1470   bool IsVarArg = CLI.IsVarArg;
1471   MachineFunction &MF = DAG.getMachineFunction();
1472   EVT PtrVT = getPointerTy(MF.getDataLayout());
1473 
1474   // Detect unsupported vector argument and return types.
1475   if (Subtarget.hasVector()) {
1476     VerifyVectorTypes(Outs);
1477     VerifyVectorTypes(Ins);
1478   }
1479 
1480   // Analyze the operands of the call, assigning locations to each operand.
1481   SmallVector<CCValAssign, 16> ArgLocs;
1482   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1483   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1484 
1485   // We don't support GuaranteedTailCallOpt, only automatically-detected
1486   // sibling calls.
1487   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1488     IsTailCall = false;
1489 
1490   // Get a count of how many bytes are to be pushed on the stack.
1491   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1492 
1493   // Mark the start of the call.
1494   if (!IsTailCall)
1495     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1496 
1497   // Copy argument values to their designated locations.
1498   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1499   SmallVector<SDValue, 8> MemOpChains;
1500   SDValue StackPtr;
1501   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1502     CCValAssign &VA = ArgLocs[I];
1503     SDValue ArgValue = OutVals[I];
1504 
1505     if (VA.getLocInfo() == CCValAssign::Indirect) {
1506       // Store the argument in a stack slot and pass its address.
1507       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1508       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1509       MemOpChains.push_back(
1510           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1511                        MachinePointerInfo::getFixedStack(MF, FI)));
1512       // If the original argument was split (e.g. i128), we need
1513       // to store all parts of it here (and pass just one address).
1514       unsigned ArgIndex = Outs[I].OrigArgIndex;
1515       assert (Outs[I].PartOffset == 0);
1516       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1517         SDValue PartValue = OutVals[I + 1];
1518         unsigned PartOffset = Outs[I + 1].PartOffset;
1519         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1520                                       DAG.getIntPtrConstant(PartOffset, DL));
1521         MemOpChains.push_back(
1522             DAG.getStore(Chain, DL, PartValue, Address,
1523                          MachinePointerInfo::getFixedStack(MF, FI)));
1524         ++I;
1525       }
1526       ArgValue = SpillSlot;
1527     } else
1528       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1529 
1530     if (VA.isRegLoc())
1531       // Queue up the argument copies and emit them at the end.
1532       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1533     else {
1534       assert(VA.isMemLoc() && "Argument not register or memory");
1535 
1536       // Work out the address of the stack slot.  Unpromoted ints and
1537       // floats are passed as right-justified 8-byte values.
1538       if (!StackPtr.getNode())
1539         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1540       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1541       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1542         Offset += 4;
1543       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1544                                     DAG.getIntPtrConstant(Offset, DL));
1545 
1546       // Emit the store.
1547       MemOpChains.push_back(
1548           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1549     }
1550   }
1551 
1552   // Join the stores, which are independent of one another.
1553   if (!MemOpChains.empty())
1554     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1555 
1556   // Accept direct calls by converting symbolic call addresses to the
1557   // associated Target* opcodes.  Force %r1 to be used for indirect
1558   // tail calls.
1559   SDValue Glue;
1560   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1561     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1562     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1563   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1564     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1565     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1566   } else if (IsTailCall) {
1567     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1568     Glue = Chain.getValue(1);
1569     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1570   }
1571 
1572   // Build a sequence of copy-to-reg nodes, chained and glued together.
1573   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1574     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1575                              RegsToPass[I].second, Glue);
1576     Glue = Chain.getValue(1);
1577   }
1578 
1579   // The first call operand is the chain and the second is the target address.
1580   SmallVector<SDValue, 8> Ops;
1581   Ops.push_back(Chain);
1582   Ops.push_back(Callee);
1583 
1584   // Add argument registers to the end of the list so that they are
1585   // known live into the call.
1586   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1587     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1588                                   RegsToPass[I].second.getValueType()));
1589 
1590   // Add a register mask operand representing the call-preserved registers.
1591   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1592   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1593   assert(Mask && "Missing call preserved mask for calling convention");
1594   Ops.push_back(DAG.getRegisterMask(Mask));
1595 
1596   // Glue the call to the argument copies, if any.
1597   if (Glue.getNode())
1598     Ops.push_back(Glue);
1599 
1600   // Emit the call.
1601   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1602   if (IsTailCall)
1603     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1604   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1605   Glue = Chain.getValue(1);
1606 
1607   // Mark the end of the call, which is glued to the call itself.
1608   Chain = DAG.getCALLSEQ_END(Chain,
1609                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1610                              DAG.getConstant(0, DL, PtrVT, true),
1611                              Glue, DL);
1612   Glue = Chain.getValue(1);
1613 
1614   // Assign locations to each value returned by this call.
1615   SmallVector<CCValAssign, 16> RetLocs;
1616   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1617   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1618 
1619   // Copy all of the result registers out of their specified physreg.
1620   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1621     CCValAssign &VA = RetLocs[I];
1622 
1623     // Copy the value out, gluing the copy to the end of the call sequence.
1624     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1625                                           VA.getLocVT(), Glue);
1626     Chain = RetValue.getValue(1);
1627     Glue = RetValue.getValue(2);
1628 
1629     // Convert the value of the return register into the value that's
1630     // being returned.
1631     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1632   }
1633 
1634   return Chain;
1635 }
1636 
1637 bool SystemZTargetLowering::
1638 CanLowerReturn(CallingConv::ID CallConv,
1639                MachineFunction &MF, bool isVarArg,
1640                const SmallVectorImpl<ISD::OutputArg> &Outs,
1641                LLVMContext &Context) const {
1642   // Detect unsupported vector return types.
1643   if (Subtarget.hasVector())
1644     VerifyVectorTypes(Outs);
1645 
1646   // Special case that we cannot easily detect in RetCC_SystemZ since
1647   // i128 is not a legal type.
1648   for (auto &Out : Outs)
1649     if (Out.ArgVT == MVT::i128)
1650       return false;
1651 
1652   SmallVector<CCValAssign, 16> RetLocs;
1653   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1654   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1655 }
1656 
1657 SDValue
1658 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1659                                    bool IsVarArg,
1660                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1661                                    const SmallVectorImpl<SDValue> &OutVals,
1662                                    const SDLoc &DL, SelectionDAG &DAG) const {
1663   MachineFunction &MF = DAG.getMachineFunction();
1664 
1665   // Detect unsupported vector return types.
1666   if (Subtarget.hasVector())
1667     VerifyVectorTypes(Outs);
1668 
1669   // Assign locations to each returned value.
1670   SmallVector<CCValAssign, 16> RetLocs;
1671   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1672   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1673 
1674   // Quick exit for void returns
1675   if (RetLocs.empty())
1676     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1677 
1678   // Copy the result values into the output registers.
1679   SDValue Glue;
1680   SmallVector<SDValue, 4> RetOps;
1681   RetOps.push_back(Chain);
1682   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1683     CCValAssign &VA = RetLocs[I];
1684     SDValue RetValue = OutVals[I];
1685 
1686     // Make the return register live on exit.
1687     assert(VA.isRegLoc() && "Can only return in registers!");
1688 
1689     // Promote the value as required.
1690     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1691 
1692     // Chain and glue the copies together.
1693     Register Reg = VA.getLocReg();
1694     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1695     Glue = Chain.getValue(1);
1696     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1697   }
1698 
1699   // Update chain and glue.
1700   RetOps[0] = Chain;
1701   if (Glue.getNode())
1702     RetOps.push_back(Glue);
1703 
1704   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1705 }
1706 
1707 // Return true if Op is an intrinsic node with chain that returns the CC value
1708 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1709 // the mask of valid CC values if so.
1710 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1711                                       unsigned &CCValid) {
1712   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1713   switch (Id) {
1714   case Intrinsic::s390_tbegin:
1715     Opcode = SystemZISD::TBEGIN;
1716     CCValid = SystemZ::CCMASK_TBEGIN;
1717     return true;
1718 
1719   case Intrinsic::s390_tbegin_nofloat:
1720     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1721     CCValid = SystemZ::CCMASK_TBEGIN;
1722     return true;
1723 
1724   case Intrinsic::s390_tend:
1725     Opcode = SystemZISD::TEND;
1726     CCValid = SystemZ::CCMASK_TEND;
1727     return true;
1728 
1729   default:
1730     return false;
1731   }
1732 }
1733 
1734 // Return true if Op is an intrinsic node without chain that returns the
1735 // CC value as its final argument.  Provide the associated SystemZISD
1736 // opcode and the mask of valid CC values if so.
1737 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1738   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1739   switch (Id) {
1740   case Intrinsic::s390_vpkshs:
1741   case Intrinsic::s390_vpksfs:
1742   case Intrinsic::s390_vpksgs:
1743     Opcode = SystemZISD::PACKS_CC;
1744     CCValid = SystemZ::CCMASK_VCMP;
1745     return true;
1746 
1747   case Intrinsic::s390_vpklshs:
1748   case Intrinsic::s390_vpklsfs:
1749   case Intrinsic::s390_vpklsgs:
1750     Opcode = SystemZISD::PACKLS_CC;
1751     CCValid = SystemZ::CCMASK_VCMP;
1752     return true;
1753 
1754   case Intrinsic::s390_vceqbs:
1755   case Intrinsic::s390_vceqhs:
1756   case Intrinsic::s390_vceqfs:
1757   case Intrinsic::s390_vceqgs:
1758     Opcode = SystemZISD::VICMPES;
1759     CCValid = SystemZ::CCMASK_VCMP;
1760     return true;
1761 
1762   case Intrinsic::s390_vchbs:
1763   case Intrinsic::s390_vchhs:
1764   case Intrinsic::s390_vchfs:
1765   case Intrinsic::s390_vchgs:
1766     Opcode = SystemZISD::VICMPHS;
1767     CCValid = SystemZ::CCMASK_VCMP;
1768     return true;
1769 
1770   case Intrinsic::s390_vchlbs:
1771   case Intrinsic::s390_vchlhs:
1772   case Intrinsic::s390_vchlfs:
1773   case Intrinsic::s390_vchlgs:
1774     Opcode = SystemZISD::VICMPHLS;
1775     CCValid = SystemZ::CCMASK_VCMP;
1776     return true;
1777 
1778   case Intrinsic::s390_vtm:
1779     Opcode = SystemZISD::VTM;
1780     CCValid = SystemZ::CCMASK_VCMP;
1781     return true;
1782 
1783   case Intrinsic::s390_vfaebs:
1784   case Intrinsic::s390_vfaehs:
1785   case Intrinsic::s390_vfaefs:
1786     Opcode = SystemZISD::VFAE_CC;
1787     CCValid = SystemZ::CCMASK_ANY;
1788     return true;
1789 
1790   case Intrinsic::s390_vfaezbs:
1791   case Intrinsic::s390_vfaezhs:
1792   case Intrinsic::s390_vfaezfs:
1793     Opcode = SystemZISD::VFAEZ_CC;
1794     CCValid = SystemZ::CCMASK_ANY;
1795     return true;
1796 
1797   case Intrinsic::s390_vfeebs:
1798   case Intrinsic::s390_vfeehs:
1799   case Intrinsic::s390_vfeefs:
1800     Opcode = SystemZISD::VFEE_CC;
1801     CCValid = SystemZ::CCMASK_ANY;
1802     return true;
1803 
1804   case Intrinsic::s390_vfeezbs:
1805   case Intrinsic::s390_vfeezhs:
1806   case Intrinsic::s390_vfeezfs:
1807     Opcode = SystemZISD::VFEEZ_CC;
1808     CCValid = SystemZ::CCMASK_ANY;
1809     return true;
1810 
1811   case Intrinsic::s390_vfenebs:
1812   case Intrinsic::s390_vfenehs:
1813   case Intrinsic::s390_vfenefs:
1814     Opcode = SystemZISD::VFENE_CC;
1815     CCValid = SystemZ::CCMASK_ANY;
1816     return true;
1817 
1818   case Intrinsic::s390_vfenezbs:
1819   case Intrinsic::s390_vfenezhs:
1820   case Intrinsic::s390_vfenezfs:
1821     Opcode = SystemZISD::VFENEZ_CC;
1822     CCValid = SystemZ::CCMASK_ANY;
1823     return true;
1824 
1825   case Intrinsic::s390_vistrbs:
1826   case Intrinsic::s390_vistrhs:
1827   case Intrinsic::s390_vistrfs:
1828     Opcode = SystemZISD::VISTR_CC;
1829     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1830     return true;
1831 
1832   case Intrinsic::s390_vstrcbs:
1833   case Intrinsic::s390_vstrchs:
1834   case Intrinsic::s390_vstrcfs:
1835     Opcode = SystemZISD::VSTRC_CC;
1836     CCValid = SystemZ::CCMASK_ANY;
1837     return true;
1838 
1839   case Intrinsic::s390_vstrczbs:
1840   case Intrinsic::s390_vstrczhs:
1841   case Intrinsic::s390_vstrczfs:
1842     Opcode = SystemZISD::VSTRCZ_CC;
1843     CCValid = SystemZ::CCMASK_ANY;
1844     return true;
1845 
1846   case Intrinsic::s390_vstrsb:
1847   case Intrinsic::s390_vstrsh:
1848   case Intrinsic::s390_vstrsf:
1849     Opcode = SystemZISD::VSTRS_CC;
1850     CCValid = SystemZ::CCMASK_ANY;
1851     return true;
1852 
1853   case Intrinsic::s390_vstrszb:
1854   case Intrinsic::s390_vstrszh:
1855   case Intrinsic::s390_vstrszf:
1856     Opcode = SystemZISD::VSTRSZ_CC;
1857     CCValid = SystemZ::CCMASK_ANY;
1858     return true;
1859 
1860   case Intrinsic::s390_vfcedbs:
1861   case Intrinsic::s390_vfcesbs:
1862     Opcode = SystemZISD::VFCMPES;
1863     CCValid = SystemZ::CCMASK_VCMP;
1864     return true;
1865 
1866   case Intrinsic::s390_vfchdbs:
1867   case Intrinsic::s390_vfchsbs:
1868     Opcode = SystemZISD::VFCMPHS;
1869     CCValid = SystemZ::CCMASK_VCMP;
1870     return true;
1871 
1872   case Intrinsic::s390_vfchedbs:
1873   case Intrinsic::s390_vfchesbs:
1874     Opcode = SystemZISD::VFCMPHES;
1875     CCValid = SystemZ::CCMASK_VCMP;
1876     return true;
1877 
1878   case Intrinsic::s390_vftcidb:
1879   case Intrinsic::s390_vftcisb:
1880     Opcode = SystemZISD::VFTCI;
1881     CCValid = SystemZ::CCMASK_VCMP;
1882     return true;
1883 
1884   case Intrinsic::s390_tdc:
1885     Opcode = SystemZISD::TDC;
1886     CCValid = SystemZ::CCMASK_TDC;
1887     return true;
1888 
1889   default:
1890     return false;
1891   }
1892 }
1893 
1894 // Emit an intrinsic with chain and an explicit CC register result.
1895 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1896                                            unsigned Opcode) {
1897   // Copy all operands except the intrinsic ID.
1898   unsigned NumOps = Op.getNumOperands();
1899   SmallVector<SDValue, 6> Ops;
1900   Ops.reserve(NumOps - 1);
1901   Ops.push_back(Op.getOperand(0));
1902   for (unsigned I = 2; I < NumOps; ++I)
1903     Ops.push_back(Op.getOperand(I));
1904 
1905   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1906   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1907   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1908   SDValue OldChain = SDValue(Op.getNode(), 1);
1909   SDValue NewChain = SDValue(Intr.getNode(), 1);
1910   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1911   return Intr.getNode();
1912 }
1913 
1914 // Emit an intrinsic with an explicit CC register result.
1915 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1916                                    unsigned Opcode) {
1917   // Copy all operands except the intrinsic ID.
1918   unsigned NumOps = Op.getNumOperands();
1919   SmallVector<SDValue, 6> Ops;
1920   Ops.reserve(NumOps - 1);
1921   for (unsigned I = 1; I < NumOps; ++I)
1922     Ops.push_back(Op.getOperand(I));
1923 
1924   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1925   return Intr.getNode();
1926 }
1927 
1928 // CC is a comparison that will be implemented using an integer or
1929 // floating-point comparison.  Return the condition code mask for
1930 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1931 // unsigned comparisons and clear for signed ones.  In the floating-point
1932 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1933 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1934 #define CONV(X) \
1935   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1936   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1937   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1938 
1939   switch (CC) {
1940   default:
1941     llvm_unreachable("Invalid integer condition!");
1942 
1943   CONV(EQ);
1944   CONV(NE);
1945   CONV(GT);
1946   CONV(GE);
1947   CONV(LT);
1948   CONV(LE);
1949 
1950   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1951   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1952   }
1953 #undef CONV
1954 }
1955 
1956 // If C can be converted to a comparison against zero, adjust the operands
1957 // as necessary.
1958 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1959   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1960     return;
1961 
1962   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1963   if (!ConstOp1)
1964     return;
1965 
1966   int64_t Value = ConstOp1->getSExtValue();
1967   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1968       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1969       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1970       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1971     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1972     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1973   }
1974 }
1975 
1976 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1977 // adjust the operands as necessary.
1978 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1979                              Comparison &C) {
1980   // For us to make any changes, it must a comparison between a single-use
1981   // load and a constant.
1982   if (!C.Op0.hasOneUse() ||
1983       C.Op0.getOpcode() != ISD::LOAD ||
1984       C.Op1.getOpcode() != ISD::Constant)
1985     return;
1986 
1987   // We must have an 8- or 16-bit load.
1988   auto *Load = cast<LoadSDNode>(C.Op0);
1989   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1990   if (NumBits != 8 && NumBits != 16)
1991     return;
1992 
1993   // The load must be an extending one and the constant must be within the
1994   // range of the unextended value.
1995   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1996   uint64_t Value = ConstOp1->getZExtValue();
1997   uint64_t Mask = (1 << NumBits) - 1;
1998   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1999     // Make sure that ConstOp1 is in range of C.Op0.
2000     int64_t SignedValue = ConstOp1->getSExtValue();
2001     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2002       return;
2003     if (C.ICmpType != SystemZICMP::SignedOnly) {
2004       // Unsigned comparison between two sign-extended values is equivalent
2005       // to unsigned comparison between two zero-extended values.
2006       Value &= Mask;
2007     } else if (NumBits == 8) {
2008       // Try to treat the comparison as unsigned, so that we can use CLI.
2009       // Adjust CCMask and Value as necessary.
2010       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2011         // Test whether the high bit of the byte is set.
2012         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2013       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2014         // Test whether the high bit of the byte is clear.
2015         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2016       else
2017         // No instruction exists for this combination.
2018         return;
2019       C.ICmpType = SystemZICMP::UnsignedOnly;
2020     }
2021   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2022     if (Value > Mask)
2023       return;
2024     // If the constant is in range, we can use any comparison.
2025     C.ICmpType = SystemZICMP::Any;
2026   } else
2027     return;
2028 
2029   // Make sure that the first operand is an i32 of the right extension type.
2030   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2031                               ISD::SEXTLOAD :
2032                               ISD::ZEXTLOAD);
2033   if (C.Op0.getValueType() != MVT::i32 ||
2034       Load->getExtensionType() != ExtType) {
2035     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2036                            Load->getBasePtr(), Load->getPointerInfo(),
2037                            Load->getMemoryVT(), Load->getAlignment(),
2038                            Load->getMemOperand()->getFlags());
2039     // Update the chain uses.
2040     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2041   }
2042 
2043   // Make sure that the second operand is an i32 with the right value.
2044   if (C.Op1.getValueType() != MVT::i32 ||
2045       Value != ConstOp1->getZExtValue())
2046     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2047 }
2048 
2049 // Return true if Op is either an unextended load, or a load suitable
2050 // for integer register-memory comparisons of type ICmpType.
2051 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2052   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2053   if (Load) {
2054     // There are no instructions to compare a register with a memory byte.
2055     if (Load->getMemoryVT() == MVT::i8)
2056       return false;
2057     // Otherwise decide on extension type.
2058     switch (Load->getExtensionType()) {
2059     case ISD::NON_EXTLOAD:
2060       return true;
2061     case ISD::SEXTLOAD:
2062       return ICmpType != SystemZICMP::UnsignedOnly;
2063     case ISD::ZEXTLOAD:
2064       return ICmpType != SystemZICMP::SignedOnly;
2065     default:
2066       break;
2067     }
2068   }
2069   return false;
2070 }
2071 
2072 // Return true if it is better to swap the operands of C.
2073 static bool shouldSwapCmpOperands(const Comparison &C) {
2074   // Leave f128 comparisons alone, since they have no memory forms.
2075   if (C.Op0.getValueType() == MVT::f128)
2076     return false;
2077 
2078   // Always keep a floating-point constant second, since comparisons with
2079   // zero can use LOAD TEST and comparisons with other constants make a
2080   // natural memory operand.
2081   if (isa<ConstantFPSDNode>(C.Op1))
2082     return false;
2083 
2084   // Never swap comparisons with zero since there are many ways to optimize
2085   // those later.
2086   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2087   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2088     return false;
2089 
2090   // Also keep natural memory operands second if the loaded value is
2091   // only used here.  Several comparisons have memory forms.
2092   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2093     return false;
2094 
2095   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2096   // In that case we generally prefer the memory to be second.
2097   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2098     // The only exceptions are when the second operand is a constant and
2099     // we can use things like CHHSI.
2100     if (!ConstOp1)
2101       return true;
2102     // The unsigned memory-immediate instructions can handle 16-bit
2103     // unsigned integers.
2104     if (C.ICmpType != SystemZICMP::SignedOnly &&
2105         isUInt<16>(ConstOp1->getZExtValue()))
2106       return false;
2107     // The signed memory-immediate instructions can handle 16-bit
2108     // signed integers.
2109     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2110         isInt<16>(ConstOp1->getSExtValue()))
2111       return false;
2112     return true;
2113   }
2114 
2115   // Try to promote the use of CGFR and CLGFR.
2116   unsigned Opcode0 = C.Op0.getOpcode();
2117   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2118     return true;
2119   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2120     return true;
2121   if (C.ICmpType != SystemZICMP::SignedOnly &&
2122       Opcode0 == ISD::AND &&
2123       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2124       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2125     return true;
2126 
2127   return false;
2128 }
2129 
2130 // Return a version of comparison CC mask CCMask in which the LT and GT
2131 // actions are swapped.
2132 static unsigned reverseCCMask(unsigned CCMask) {
2133   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2134           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2135           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2136           (CCMask & SystemZ::CCMASK_CMP_UO));
2137 }
2138 
2139 // Check whether C tests for equality between X and Y and whether X - Y
2140 // or Y - X is also computed.  In that case it's better to compare the
2141 // result of the subtraction against zero.
2142 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2143                                  Comparison &C) {
2144   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2145       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2146     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2147       SDNode *N = *I;
2148       if (N->getOpcode() == ISD::SUB &&
2149           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2150            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2151         C.Op0 = SDValue(N, 0);
2152         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2153         return;
2154       }
2155     }
2156   }
2157 }
2158 
2159 // Check whether C compares a floating-point value with zero and if that
2160 // floating-point value is also negated.  In this case we can use the
2161 // negation to set CC, so avoiding separate LOAD AND TEST and
2162 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2163 static void adjustForFNeg(Comparison &C) {
2164   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2165   if (C1 && C1->isZero()) {
2166     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2167       SDNode *N = *I;
2168       if (N->getOpcode() == ISD::FNEG) {
2169         C.Op0 = SDValue(N, 0);
2170         C.CCMask = reverseCCMask(C.CCMask);
2171         return;
2172       }
2173     }
2174   }
2175 }
2176 
2177 // Check whether C compares (shl X, 32) with 0 and whether X is
2178 // also sign-extended.  In that case it is better to test the result
2179 // of the sign extension using LTGFR.
2180 //
2181 // This case is important because InstCombine transforms a comparison
2182 // with (sext (trunc X)) into a comparison with (shl X, 32).
2183 static void adjustForLTGFR(Comparison &C) {
2184   // Check for a comparison between (shl X, 32) and 0.
2185   if (C.Op0.getOpcode() == ISD::SHL &&
2186       C.Op0.getValueType() == MVT::i64 &&
2187       C.Op1.getOpcode() == ISD::Constant &&
2188       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2189     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2190     if (C1 && C1->getZExtValue() == 32) {
2191       SDValue ShlOp0 = C.Op0.getOperand(0);
2192       // See whether X has any SIGN_EXTEND_INREG uses.
2193       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2194         SDNode *N = *I;
2195         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2196             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2197           C.Op0 = SDValue(N, 0);
2198           return;
2199         }
2200       }
2201     }
2202   }
2203 }
2204 
2205 // If C compares the truncation of an extending load, try to compare
2206 // the untruncated value instead.  This exposes more opportunities to
2207 // reuse CC.
2208 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2209                                Comparison &C) {
2210   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2211       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2212       C.Op1.getOpcode() == ISD::Constant &&
2213       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2214     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2215     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2216       unsigned Type = L->getExtensionType();
2217       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2218           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2219         C.Op0 = C.Op0.getOperand(0);
2220         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2221       }
2222     }
2223   }
2224 }
2225 
2226 // Return true if shift operation N has an in-range constant shift value.
2227 // Store it in ShiftVal if so.
2228 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2229   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2230   if (!Shift)
2231     return false;
2232 
2233   uint64_t Amount = Shift->getZExtValue();
2234   if (Amount >= N.getValueSizeInBits())
2235     return false;
2236 
2237   ShiftVal = Amount;
2238   return true;
2239 }
2240 
2241 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2242 // instruction and whether the CC value is descriptive enough to handle
2243 // a comparison of type Opcode between the AND result and CmpVal.
2244 // CCMask says which comparison result is being tested and BitSize is
2245 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2246 // return the corresponding CC mask, otherwise return 0.
2247 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2248                                      uint64_t Mask, uint64_t CmpVal,
2249                                      unsigned ICmpType) {
2250   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2251 
2252   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2253   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2254       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2255     return 0;
2256 
2257   // Work out the masks for the lowest and highest bits.
2258   unsigned HighShift = 63 - countLeadingZeros(Mask);
2259   uint64_t High = uint64_t(1) << HighShift;
2260   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2261 
2262   // Signed ordered comparisons are effectively unsigned if the sign
2263   // bit is dropped.
2264   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2265 
2266   // Check for equality comparisons with 0, or the equivalent.
2267   if (CmpVal == 0) {
2268     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2269       return SystemZ::CCMASK_TM_ALL_0;
2270     if (CCMask == SystemZ::CCMASK_CMP_NE)
2271       return SystemZ::CCMASK_TM_SOME_1;
2272   }
2273   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2274     if (CCMask == SystemZ::CCMASK_CMP_LT)
2275       return SystemZ::CCMASK_TM_ALL_0;
2276     if (CCMask == SystemZ::CCMASK_CMP_GE)
2277       return SystemZ::CCMASK_TM_SOME_1;
2278   }
2279   if (EffectivelyUnsigned && CmpVal < Low) {
2280     if (CCMask == SystemZ::CCMASK_CMP_LE)
2281       return SystemZ::CCMASK_TM_ALL_0;
2282     if (CCMask == SystemZ::CCMASK_CMP_GT)
2283       return SystemZ::CCMASK_TM_SOME_1;
2284   }
2285 
2286   // Check for equality comparisons with the mask, or the equivalent.
2287   if (CmpVal == Mask) {
2288     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2289       return SystemZ::CCMASK_TM_ALL_1;
2290     if (CCMask == SystemZ::CCMASK_CMP_NE)
2291       return SystemZ::CCMASK_TM_SOME_0;
2292   }
2293   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2294     if (CCMask == SystemZ::CCMASK_CMP_GT)
2295       return SystemZ::CCMASK_TM_ALL_1;
2296     if (CCMask == SystemZ::CCMASK_CMP_LE)
2297       return SystemZ::CCMASK_TM_SOME_0;
2298   }
2299   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2300     if (CCMask == SystemZ::CCMASK_CMP_GE)
2301       return SystemZ::CCMASK_TM_ALL_1;
2302     if (CCMask == SystemZ::CCMASK_CMP_LT)
2303       return SystemZ::CCMASK_TM_SOME_0;
2304   }
2305 
2306   // Check for ordered comparisons with the top bit.
2307   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2308     if (CCMask == SystemZ::CCMASK_CMP_LE)
2309       return SystemZ::CCMASK_TM_MSB_0;
2310     if (CCMask == SystemZ::CCMASK_CMP_GT)
2311       return SystemZ::CCMASK_TM_MSB_1;
2312   }
2313   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2314     if (CCMask == SystemZ::CCMASK_CMP_LT)
2315       return SystemZ::CCMASK_TM_MSB_0;
2316     if (CCMask == SystemZ::CCMASK_CMP_GE)
2317       return SystemZ::CCMASK_TM_MSB_1;
2318   }
2319 
2320   // If there are just two bits, we can do equality checks for Low and High
2321   // as well.
2322   if (Mask == Low + High) {
2323     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2324       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2325     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2326       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2327     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2328       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2329     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2330       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2331   }
2332 
2333   // Looks like we've exhausted our options.
2334   return 0;
2335 }
2336 
2337 // See whether C can be implemented as a TEST UNDER MASK instruction.
2338 // Update the arguments with the TM version if so.
2339 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2340                                    Comparison &C) {
2341   // Check that we have a comparison with a constant.
2342   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2343   if (!ConstOp1)
2344     return;
2345   uint64_t CmpVal = ConstOp1->getZExtValue();
2346 
2347   // Check whether the nonconstant input is an AND with a constant mask.
2348   Comparison NewC(C);
2349   uint64_t MaskVal;
2350   ConstantSDNode *Mask = nullptr;
2351   if (C.Op0.getOpcode() == ISD::AND) {
2352     NewC.Op0 = C.Op0.getOperand(0);
2353     NewC.Op1 = C.Op0.getOperand(1);
2354     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2355     if (!Mask)
2356       return;
2357     MaskVal = Mask->getZExtValue();
2358   } else {
2359     // There is no instruction to compare with a 64-bit immediate
2360     // so use TMHH instead if possible.  We need an unsigned ordered
2361     // comparison with an i64 immediate.
2362     if (NewC.Op0.getValueType() != MVT::i64 ||
2363         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2364         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2365         NewC.ICmpType == SystemZICMP::SignedOnly)
2366       return;
2367     // Convert LE and GT comparisons into LT and GE.
2368     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2369         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2370       if (CmpVal == uint64_t(-1))
2371         return;
2372       CmpVal += 1;
2373       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2374     }
2375     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2376     // be masked off without changing the result.
2377     MaskVal = -(CmpVal & -CmpVal);
2378     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2379   }
2380   if (!MaskVal)
2381     return;
2382 
2383   // Check whether the combination of mask, comparison value and comparison
2384   // type are suitable.
2385   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2386   unsigned NewCCMask, ShiftVal;
2387   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2388       NewC.Op0.getOpcode() == ISD::SHL &&
2389       isSimpleShift(NewC.Op0, ShiftVal) &&
2390       (MaskVal >> ShiftVal != 0) &&
2391       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2392       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2393                                         MaskVal >> ShiftVal,
2394                                         CmpVal >> ShiftVal,
2395                                         SystemZICMP::Any))) {
2396     NewC.Op0 = NewC.Op0.getOperand(0);
2397     MaskVal >>= ShiftVal;
2398   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2399              NewC.Op0.getOpcode() == ISD::SRL &&
2400              isSimpleShift(NewC.Op0, ShiftVal) &&
2401              (MaskVal << ShiftVal != 0) &&
2402              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2403              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2404                                                MaskVal << ShiftVal,
2405                                                CmpVal << ShiftVal,
2406                                                SystemZICMP::UnsignedOnly))) {
2407     NewC.Op0 = NewC.Op0.getOperand(0);
2408     MaskVal <<= ShiftVal;
2409   } else {
2410     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2411                                      NewC.ICmpType);
2412     if (!NewCCMask)
2413       return;
2414   }
2415 
2416   // Go ahead and make the change.
2417   C.Opcode = SystemZISD::TM;
2418   C.Op0 = NewC.Op0;
2419   if (Mask && Mask->getZExtValue() == MaskVal)
2420     C.Op1 = SDValue(Mask, 0);
2421   else
2422     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2423   C.CCValid = SystemZ::CCMASK_TM;
2424   C.CCMask = NewCCMask;
2425 }
2426 
2427 // See whether the comparison argument contains a redundant AND
2428 // and remove it if so.  This sometimes happens due to the generic
2429 // BRCOND expansion.
2430 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2431                                   Comparison &C) {
2432   if (C.Op0.getOpcode() != ISD::AND)
2433     return;
2434   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2435   if (!Mask)
2436     return;
2437   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2438   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2439     return;
2440 
2441   C.Op0 = C.Op0.getOperand(0);
2442 }
2443 
2444 // Return a Comparison that tests the condition-code result of intrinsic
2445 // node Call against constant integer CC using comparison code Cond.
2446 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2447 // and CCValid is the set of possible condition-code results.
2448 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2449                                   SDValue Call, unsigned CCValid, uint64_t CC,
2450                                   ISD::CondCode Cond) {
2451   Comparison C(Call, SDValue());
2452   C.Opcode = Opcode;
2453   C.CCValid = CCValid;
2454   if (Cond == ISD::SETEQ)
2455     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2456     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2457   else if (Cond == ISD::SETNE)
2458     // ...and the inverse of that.
2459     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2460   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2461     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2462     // always true for CC>3.
2463     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2464   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2465     // ...and the inverse of that.
2466     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2467   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2468     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2469     // always true for CC>3.
2470     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2471   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2472     // ...and the inverse of that.
2473     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2474   else
2475     llvm_unreachable("Unexpected integer comparison type");
2476   C.CCMask &= CCValid;
2477   return C;
2478 }
2479 
2480 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2481 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2482                          ISD::CondCode Cond, const SDLoc &DL) {
2483   if (CmpOp1.getOpcode() == ISD::Constant) {
2484     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2485     unsigned Opcode, CCValid;
2486     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2487         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2488         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2489       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2490     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2491         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2492         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2493       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2494   }
2495   Comparison C(CmpOp0, CmpOp1);
2496   C.CCMask = CCMaskForCondCode(Cond);
2497   if (C.Op0.getValueType().isFloatingPoint()) {
2498     C.CCValid = SystemZ::CCMASK_FCMP;
2499     C.Opcode = SystemZISD::FCMP;
2500     adjustForFNeg(C);
2501   } else {
2502     C.CCValid = SystemZ::CCMASK_ICMP;
2503     C.Opcode = SystemZISD::ICMP;
2504     // Choose the type of comparison.  Equality and inequality tests can
2505     // use either signed or unsigned comparisons.  The choice also doesn't
2506     // matter if both sign bits are known to be clear.  In those cases we
2507     // want to give the main isel code the freedom to choose whichever
2508     // form fits best.
2509     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2510         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2511         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2512       C.ICmpType = SystemZICMP::Any;
2513     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2514       C.ICmpType = SystemZICMP::UnsignedOnly;
2515     else
2516       C.ICmpType = SystemZICMP::SignedOnly;
2517     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2518     adjustForRedundantAnd(DAG, DL, C);
2519     adjustZeroCmp(DAG, DL, C);
2520     adjustSubwordCmp(DAG, DL, C);
2521     adjustForSubtraction(DAG, DL, C);
2522     adjustForLTGFR(C);
2523     adjustICmpTruncate(DAG, DL, C);
2524   }
2525 
2526   if (shouldSwapCmpOperands(C)) {
2527     std::swap(C.Op0, C.Op1);
2528     C.CCMask = reverseCCMask(C.CCMask);
2529   }
2530 
2531   adjustForTestUnderMask(DAG, DL, C);
2532   return C;
2533 }
2534 
2535 // Emit the comparison instruction described by C.
2536 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2537   if (!C.Op1.getNode()) {
2538     SDNode *Node;
2539     switch (C.Op0.getOpcode()) {
2540     case ISD::INTRINSIC_W_CHAIN:
2541       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2542       return SDValue(Node, 0);
2543     case ISD::INTRINSIC_WO_CHAIN:
2544       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2545       return SDValue(Node, Node->getNumValues() - 1);
2546     default:
2547       llvm_unreachable("Invalid comparison operands");
2548     }
2549   }
2550   if (C.Opcode == SystemZISD::ICMP)
2551     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2552                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2553   if (C.Opcode == SystemZISD::TM) {
2554     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2555                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2556     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2557                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2558   }
2559   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2560 }
2561 
2562 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2563 // 64 bits.  Extend is the extension type to use.  Store the high part
2564 // in Hi and the low part in Lo.
2565 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2566                             SDValue Op0, SDValue Op1, SDValue &Hi,
2567                             SDValue &Lo) {
2568   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2569   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2570   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2571   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2572                    DAG.getConstant(32, DL, MVT::i64));
2573   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2574   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2575 }
2576 
2577 // Lower a binary operation that produces two VT results, one in each
2578 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2579 // and Opcode performs the GR128 operation.  Store the even register result
2580 // in Even and the odd register result in Odd.
2581 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2582                              unsigned Opcode, SDValue Op0, SDValue Op1,
2583                              SDValue &Even, SDValue &Odd) {
2584   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2585   bool Is32Bit = is32Bit(VT);
2586   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2587   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2588 }
2589 
2590 // Return an i32 value that is 1 if the CC value produced by CCReg is
2591 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2592 // in CCValid, so other values can be ignored.
2593 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2594                          unsigned CCValid, unsigned CCMask) {
2595   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2596                     DAG.getConstant(0, DL, MVT::i32),
2597                     DAG.getConstant(CCValid, DL, MVT::i32),
2598                     DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2599   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2600 }
2601 
2602 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2603 // be done directly.  IsFP is true if CC is for a floating-point rather than
2604 // integer comparison.
2605 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2606   switch (CC) {
2607   case ISD::SETOEQ:
2608   case ISD::SETEQ:
2609     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2610 
2611   case ISD::SETOGE:
2612   case ISD::SETGE:
2613     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2614 
2615   case ISD::SETOGT:
2616   case ISD::SETGT:
2617     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2618 
2619   case ISD::SETUGT:
2620     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2621 
2622   default:
2623     return 0;
2624   }
2625 }
2626 
2627 // Return the SystemZISD vector comparison operation for CC or its inverse,
2628 // or 0 if neither can be done directly.  Indicate in Invert whether the
2629 // result is for the inverse of CC.  IsFP is true if CC is for a
2630 // floating-point rather than integer comparison.
2631 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2632                                             bool &Invert) {
2633   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2634     Invert = false;
2635     return Opcode;
2636   }
2637 
2638   CC = ISD::getSetCCInverse(CC, !IsFP);
2639   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2640     Invert = true;
2641     return Opcode;
2642   }
2643 
2644   return 0;
2645 }
2646 
2647 // Return a v2f64 that contains the extended form of elements Start and Start+1
2648 // of v4f32 value Op.
2649 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2650                                   SDValue Op) {
2651   int Mask[] = { Start, -1, Start + 1, -1 };
2652   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2653   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2654 }
2655 
2656 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2657 // producing a result of type VT.
2658 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2659                                             const SDLoc &DL, EVT VT,
2660                                             SDValue CmpOp0,
2661                                             SDValue CmpOp1) const {
2662   // There is no hardware support for v4f32 (unless we have the vector
2663   // enhancements facility 1), so extend the vector into two v2f64s
2664   // and compare those.
2665   if (CmpOp0.getValueType() == MVT::v4f32 &&
2666       !Subtarget.hasVectorEnhancements1()) {
2667     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2668     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2669     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2670     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2671     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2672     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2673     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2674   }
2675   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2676 }
2677 
2678 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2679 // an integer mask of type VT.
2680 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2681                                                 const SDLoc &DL, EVT VT,
2682                                                 ISD::CondCode CC,
2683                                                 SDValue CmpOp0,
2684                                                 SDValue CmpOp1) const {
2685   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2686   bool Invert = false;
2687   SDValue Cmp;
2688   switch (CC) {
2689     // Handle tests for order using (or (ogt y x) (oge x y)).
2690   case ISD::SETUO:
2691     Invert = true;
2692     LLVM_FALLTHROUGH;
2693   case ISD::SETO: {
2694     assert(IsFP && "Unexpected integer comparison");
2695     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2696     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2697     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2698     break;
2699   }
2700 
2701     // Handle <> tests using (or (ogt y x) (ogt x y)).
2702   case ISD::SETUEQ:
2703     Invert = true;
2704     LLVM_FALLTHROUGH;
2705   case ISD::SETONE: {
2706     assert(IsFP && "Unexpected integer comparison");
2707     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2708     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2709     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2710     break;
2711   }
2712 
2713     // Otherwise a single comparison is enough.  It doesn't really
2714     // matter whether we try the inversion or the swap first, since
2715     // there are no cases where both work.
2716   default:
2717     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2718       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2719     else {
2720       CC = ISD::getSetCCSwappedOperands(CC);
2721       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2722         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2723       else
2724         llvm_unreachable("Unhandled comparison");
2725     }
2726     break;
2727   }
2728   if (Invert) {
2729     SDValue Mask =
2730       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2731     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2732   }
2733   return Cmp;
2734 }
2735 
2736 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2737                                           SelectionDAG &DAG) const {
2738   SDValue CmpOp0   = Op.getOperand(0);
2739   SDValue CmpOp1   = Op.getOperand(1);
2740   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2741   SDLoc DL(Op);
2742   EVT VT = Op.getValueType();
2743   if (VT.isVector())
2744     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2745 
2746   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2747   SDValue CCReg = emitCmp(DAG, DL, C);
2748   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2749 }
2750 
2751 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2752   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2753   SDValue CmpOp0   = Op.getOperand(2);
2754   SDValue CmpOp1   = Op.getOperand(3);
2755   SDValue Dest     = Op.getOperand(4);
2756   SDLoc DL(Op);
2757 
2758   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2759   SDValue CCReg = emitCmp(DAG, DL, C);
2760   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2761                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2762                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2763 }
2764 
2765 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2766 // allowing Pos and Neg to be wider than CmpOp.
2767 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2768   return (Neg.getOpcode() == ISD::SUB &&
2769           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2770           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2771           Neg.getOperand(1) == Pos &&
2772           (Pos == CmpOp ||
2773            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2774             Pos.getOperand(0) == CmpOp)));
2775 }
2776 
2777 // Return the absolute or negative absolute of Op; IsNegative decides which.
2778 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2779                            bool IsNegative) {
2780   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2781   if (IsNegative)
2782     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2783                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2784   return Op;
2785 }
2786 
2787 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2788                                               SelectionDAG &DAG) const {
2789   SDValue CmpOp0   = Op.getOperand(0);
2790   SDValue CmpOp1   = Op.getOperand(1);
2791   SDValue TrueOp   = Op.getOperand(2);
2792   SDValue FalseOp  = Op.getOperand(3);
2793   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2794   SDLoc DL(Op);
2795 
2796   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2797 
2798   // Check for absolute and negative-absolute selections, including those
2799   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2800   // This check supplements the one in DAGCombiner.
2801   if (C.Opcode == SystemZISD::ICMP &&
2802       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2803       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2804       C.Op1.getOpcode() == ISD::Constant &&
2805       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2806     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2807       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2808     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2809       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2810   }
2811 
2812   SDValue CCReg = emitCmp(DAG, DL, C);
2813   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2814                    DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2815 
2816   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2817 }
2818 
2819 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2820                                                   SelectionDAG &DAG) const {
2821   SDLoc DL(Node);
2822   const GlobalValue *GV = Node->getGlobal();
2823   int64_t Offset = Node->getOffset();
2824   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2825   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2826 
2827   SDValue Result;
2828   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2829     // Assign anchors at 1<<12 byte boundaries.
2830     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2831     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2832     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2833 
2834     // The offset can be folded into the address if it is aligned to a halfword.
2835     Offset -= Anchor;
2836     if (Offset != 0 && (Offset & 1) == 0) {
2837       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2838       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2839       Offset = 0;
2840     }
2841   } else {
2842     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2843     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2844     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2845                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2846   }
2847 
2848   // If there was a non-zero offset that we didn't fold, create an explicit
2849   // addition for it.
2850   if (Offset != 0)
2851     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2852                          DAG.getConstant(Offset, DL, PtrVT));
2853 
2854   return Result;
2855 }
2856 
2857 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2858                                                  SelectionDAG &DAG,
2859                                                  unsigned Opcode,
2860                                                  SDValue GOTOffset) const {
2861   SDLoc DL(Node);
2862   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2863   SDValue Chain = DAG.getEntryNode();
2864   SDValue Glue;
2865 
2866   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2867   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2868   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2869   Glue = Chain.getValue(1);
2870   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2871   Glue = Chain.getValue(1);
2872 
2873   // The first call operand is the chain and the second is the TLS symbol.
2874   SmallVector<SDValue, 8> Ops;
2875   Ops.push_back(Chain);
2876   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2877                                            Node->getValueType(0),
2878                                            0, 0));
2879 
2880   // Add argument registers to the end of the list so that they are
2881   // known live into the call.
2882   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2883   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2884 
2885   // Add a register mask operand representing the call-preserved registers.
2886   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2887   const uint32_t *Mask =
2888       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2889   assert(Mask && "Missing call preserved mask for calling convention");
2890   Ops.push_back(DAG.getRegisterMask(Mask));
2891 
2892   // Glue the call to the argument copies.
2893   Ops.push_back(Glue);
2894 
2895   // Emit the call.
2896   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2897   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2898   Glue = Chain.getValue(1);
2899 
2900   // Copy the return value from %r2.
2901   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2902 }
2903 
2904 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2905                                                   SelectionDAG &DAG) const {
2906   SDValue Chain = DAG.getEntryNode();
2907   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2908 
2909   // The high part of the thread pointer is in access register 0.
2910   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2911   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2912 
2913   // The low part of the thread pointer is in access register 1.
2914   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2915   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2916 
2917   // Merge them into a single 64-bit address.
2918   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2919                                     DAG.getConstant(32, DL, PtrVT));
2920   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2921 }
2922 
2923 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2924                                                      SelectionDAG &DAG) const {
2925   if (DAG.getTarget().useEmulatedTLS())
2926     return LowerToTLSEmulatedModel(Node, DAG);
2927   SDLoc DL(Node);
2928   const GlobalValue *GV = Node->getGlobal();
2929   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2930   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2931 
2932   SDValue TP = lowerThreadPointer(DL, DAG);
2933 
2934   // Get the offset of GA from the thread pointer, based on the TLS model.
2935   SDValue Offset;
2936   switch (model) {
2937     case TLSModel::GeneralDynamic: {
2938       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2939       SystemZConstantPoolValue *CPV =
2940         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2941 
2942       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2943       Offset = DAG.getLoad(
2944           PtrVT, DL, DAG.getEntryNode(), Offset,
2945           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2946 
2947       // Call __tls_get_offset to retrieve the offset.
2948       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2949       break;
2950     }
2951 
2952     case TLSModel::LocalDynamic: {
2953       // Load the GOT offset of the module ID.
2954       SystemZConstantPoolValue *CPV =
2955         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2956 
2957       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2958       Offset = DAG.getLoad(
2959           PtrVT, DL, DAG.getEntryNode(), Offset,
2960           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2961 
2962       // Call __tls_get_offset to retrieve the module base offset.
2963       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2964 
2965       // Note: The SystemZLDCleanupPass will remove redundant computations
2966       // of the module base offset.  Count total number of local-dynamic
2967       // accesses to trigger execution of that pass.
2968       SystemZMachineFunctionInfo* MFI =
2969         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2970       MFI->incNumLocalDynamicTLSAccesses();
2971 
2972       // Add the per-symbol offset.
2973       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2974 
2975       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2976       DTPOffset = DAG.getLoad(
2977           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2978           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2979 
2980       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2981       break;
2982     }
2983 
2984     case TLSModel::InitialExec: {
2985       // Load the offset from the GOT.
2986       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2987                                           SystemZII::MO_INDNTPOFF);
2988       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2989       Offset =
2990           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2991                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2992       break;
2993     }
2994 
2995     case TLSModel::LocalExec: {
2996       // Force the offset into the constant pool and load it from there.
2997       SystemZConstantPoolValue *CPV =
2998         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2999 
3000       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3001       Offset = DAG.getLoad(
3002           PtrVT, DL, DAG.getEntryNode(), Offset,
3003           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3004       break;
3005     }
3006   }
3007 
3008   // Add the base and offset together.
3009   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3010 }
3011 
3012 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3013                                                  SelectionDAG &DAG) const {
3014   SDLoc DL(Node);
3015   const BlockAddress *BA = Node->getBlockAddress();
3016   int64_t Offset = Node->getOffset();
3017   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3018 
3019   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3020   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3021   return Result;
3022 }
3023 
3024 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3025                                               SelectionDAG &DAG) const {
3026   SDLoc DL(JT);
3027   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3028   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3029 
3030   // Use LARL to load the address of the table.
3031   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3032 }
3033 
3034 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3035                                                  SelectionDAG &DAG) const {
3036   SDLoc DL(CP);
3037   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3038 
3039   SDValue Result;
3040   if (CP->isMachineConstantPoolEntry())
3041     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3042                                        CP->getAlignment());
3043   else
3044     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3045                                        CP->getAlignment(), CP->getOffset());
3046 
3047   // Use LARL to load the address of the constant pool entry.
3048   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3049 }
3050 
3051 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3052                                               SelectionDAG &DAG) const {
3053   MachineFunction &MF = DAG.getMachineFunction();
3054   MachineFrameInfo &MFI = MF.getFrameInfo();
3055   MFI.setFrameAddressIsTaken(true);
3056 
3057   SDLoc DL(Op);
3058   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3059   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3060 
3061   // If the back chain frame index has not been allocated yet, do so.
3062   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
3063   int BackChainIdx = FI->getFramePointerSaveIndex();
3064   if (!BackChainIdx) {
3065     // By definition, the frame address is the address of the back chain.
3066     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
3067     FI->setFramePointerSaveIndex(BackChainIdx);
3068   }
3069   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3070 
3071   // FIXME The frontend should detect this case.
3072   if (Depth > 0) {
3073     report_fatal_error("Unsupported stack frame traversal count");
3074   }
3075 
3076   return BackChain;
3077 }
3078 
3079 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3080                                                SelectionDAG &DAG) const {
3081   MachineFunction &MF = DAG.getMachineFunction();
3082   MachineFrameInfo &MFI = MF.getFrameInfo();
3083   MFI.setReturnAddressIsTaken(true);
3084 
3085   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3086     return SDValue();
3087 
3088   SDLoc DL(Op);
3089   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3090   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3091 
3092   // FIXME The frontend should detect this case.
3093   if (Depth > 0) {
3094     report_fatal_error("Unsupported stack frame traversal count");
3095   }
3096 
3097   // Return R14D, which has the return address. Mark it an implicit live-in.
3098   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3099   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3100 }
3101 
3102 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3103                                             SelectionDAG &DAG) const {
3104   SDLoc DL(Op);
3105   SDValue In = Op.getOperand(0);
3106   EVT InVT = In.getValueType();
3107   EVT ResVT = Op.getValueType();
3108 
3109   // Convert loads directly.  This is normally done by DAGCombiner,
3110   // but we need this case for bitcasts that are created during lowering
3111   // and which are then lowered themselves.
3112   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3113     if (ISD::isNormalLoad(LoadN)) {
3114       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3115                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3116       // Update the chain uses.
3117       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3118       return NewLoad;
3119     }
3120 
3121   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3122     SDValue In64;
3123     if (Subtarget.hasHighWord()) {
3124       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3125                                        MVT::i64);
3126       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3127                                        MVT::i64, SDValue(U64, 0), In);
3128     } else {
3129       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3130       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3131                          DAG.getConstant(32, DL, MVT::i64));
3132     }
3133     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3134     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3135                                       DL, MVT::f32, Out64);
3136   }
3137   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3138     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3139     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3140                                              MVT::f64, SDValue(U64, 0), In);
3141     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3142     if (Subtarget.hasHighWord())
3143       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3144                                         MVT::i32, Out64);
3145     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3146                                 DAG.getConstant(32, DL, MVT::i64));
3147     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3148   }
3149   llvm_unreachable("Unexpected bitcast combination");
3150 }
3151 
3152 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3153                                             SelectionDAG &DAG) const {
3154   MachineFunction &MF = DAG.getMachineFunction();
3155   SystemZMachineFunctionInfo *FuncInfo =
3156     MF.getInfo<SystemZMachineFunctionInfo>();
3157   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3158 
3159   SDValue Chain   = Op.getOperand(0);
3160   SDValue Addr    = Op.getOperand(1);
3161   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3162   SDLoc DL(Op);
3163 
3164   // The initial values of each field.
3165   const unsigned NumFields = 4;
3166   SDValue Fields[NumFields] = {
3167     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3168     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3169     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3170     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3171   };
3172 
3173   // Store each field into its respective slot.
3174   SDValue MemOps[NumFields];
3175   unsigned Offset = 0;
3176   for (unsigned I = 0; I < NumFields; ++I) {
3177     SDValue FieldAddr = Addr;
3178     if (Offset != 0)
3179       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3180                               DAG.getIntPtrConstant(Offset, DL));
3181     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3182                              MachinePointerInfo(SV, Offset));
3183     Offset += 8;
3184   }
3185   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3186 }
3187 
3188 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3189                                            SelectionDAG &DAG) const {
3190   SDValue Chain      = Op.getOperand(0);
3191   SDValue DstPtr     = Op.getOperand(1);
3192   SDValue SrcPtr     = Op.getOperand(2);
3193   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3194   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3195   SDLoc DL(Op);
3196 
3197   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3198                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3199                        /*isTailCall*/false,
3200                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3201 }
3202 
3203 SDValue SystemZTargetLowering::
3204 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3205   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3206   MachineFunction &MF = DAG.getMachineFunction();
3207   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3208   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3209 
3210   SDValue Chain = Op.getOperand(0);
3211   SDValue Size  = Op.getOperand(1);
3212   SDValue Align = Op.getOperand(2);
3213   SDLoc DL(Op);
3214 
3215   // If user has set the no alignment function attribute, ignore
3216   // alloca alignments.
3217   uint64_t AlignVal = (RealignOpt ?
3218                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3219 
3220   uint64_t StackAlign = TFI->getStackAlignment();
3221   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3222   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3223 
3224   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3225   SDValue NeededSpace = Size;
3226 
3227   // Get a reference to the stack pointer.
3228   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3229 
3230   // If we need a backchain, save it now.
3231   SDValue Backchain;
3232   if (StoreBackchain)
3233     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3234 
3235   // Add extra space for alignment if needed.
3236   if (ExtraAlignSpace)
3237     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3238                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3239 
3240   // Get the new stack pointer value.
3241   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3242 
3243   // Copy the new stack pointer back.
3244   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3245 
3246   // The allocated data lives above the 160 bytes allocated for the standard
3247   // frame, plus any outgoing stack arguments.  We don't know how much that
3248   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3249   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3250   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3251 
3252   // Dynamically realign if needed.
3253   if (RequiredAlign > StackAlign) {
3254     Result =
3255       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3256                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3257     Result =
3258       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3259                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3260   }
3261 
3262   if (StoreBackchain)
3263     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3264 
3265   SDValue Ops[2] = { Result, Chain };
3266   return DAG.getMergeValues(Ops, DL);
3267 }
3268 
3269 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3270     SDValue Op, SelectionDAG &DAG) const {
3271   SDLoc DL(Op);
3272 
3273   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3274 }
3275 
3276 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3277                                               SelectionDAG &DAG) const {
3278   EVT VT = Op.getValueType();
3279   SDLoc DL(Op);
3280   SDValue Ops[2];
3281   if (is32Bit(VT))
3282     // Just do a normal 64-bit multiplication and extract the results.
3283     // We define this so that it can be used for constant division.
3284     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3285                     Op.getOperand(1), Ops[1], Ops[0]);
3286   else if (Subtarget.hasMiscellaneousExtensions2())
3287     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3288     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3289     // return the low half first, so the results are in reverse order.
3290     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3291                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3292   else {
3293     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3294     //
3295     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3296     //
3297     // but using the fact that the upper halves are either all zeros
3298     // or all ones:
3299     //
3300     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3301     //
3302     // and grouping the right terms together since they are quicker than the
3303     // multiplication:
3304     //
3305     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3306     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3307     SDValue LL = Op.getOperand(0);
3308     SDValue RL = Op.getOperand(1);
3309     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3310     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3311     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3312     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3313     // return the low half first, so the results are in reverse order.
3314     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3315                      LL, RL, Ops[1], Ops[0]);
3316     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3317     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3318     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3319     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3320   }
3321   return DAG.getMergeValues(Ops, DL);
3322 }
3323 
3324 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3325                                               SelectionDAG &DAG) const {
3326   EVT VT = Op.getValueType();
3327   SDLoc DL(Op);
3328   SDValue Ops[2];
3329   if (is32Bit(VT))
3330     // Just do a normal 64-bit multiplication and extract the results.
3331     // We define this so that it can be used for constant division.
3332     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3333                     Op.getOperand(1), Ops[1], Ops[0]);
3334   else
3335     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3336     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3337     // return the low half first, so the results are in reverse order.
3338     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3339                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3340   return DAG.getMergeValues(Ops, DL);
3341 }
3342 
3343 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3344                                             SelectionDAG &DAG) const {
3345   SDValue Op0 = Op.getOperand(0);
3346   SDValue Op1 = Op.getOperand(1);
3347   EVT VT = Op.getValueType();
3348   SDLoc DL(Op);
3349 
3350   // We use DSGF for 32-bit division.  This means the first operand must
3351   // always be 64-bit, and the second operand should be 32-bit whenever
3352   // that is possible, to improve performance.
3353   if (is32Bit(VT))
3354     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3355   else if (DAG.ComputeNumSignBits(Op1) > 32)
3356     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3357 
3358   // DSG(F) returns the remainder in the even register and the
3359   // quotient in the odd register.
3360   SDValue Ops[2];
3361   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3362   return DAG.getMergeValues(Ops, DL);
3363 }
3364 
3365 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3366                                             SelectionDAG &DAG) const {
3367   EVT VT = Op.getValueType();
3368   SDLoc DL(Op);
3369 
3370   // DL(G) returns the remainder in the even register and the
3371   // quotient in the odd register.
3372   SDValue Ops[2];
3373   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3374                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3375   return DAG.getMergeValues(Ops, DL);
3376 }
3377 
3378 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3379   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3380 
3381   // Get the known-zero masks for each operand.
3382   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3383   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3384                         DAG.computeKnownBits(Ops[1])};
3385 
3386   // See if the upper 32 bits of one operand and the lower 32 bits of the
3387   // other are known zero.  They are the low and high operands respectively.
3388   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3389                        Known[1].Zero.getZExtValue() };
3390   unsigned High, Low;
3391   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3392     High = 1, Low = 0;
3393   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3394     High = 0, Low = 1;
3395   else
3396     return Op;
3397 
3398   SDValue LowOp = Ops[Low];
3399   SDValue HighOp = Ops[High];
3400 
3401   // If the high part is a constant, we're better off using IILH.
3402   if (HighOp.getOpcode() == ISD::Constant)
3403     return Op;
3404 
3405   // If the low part is a constant that is outside the range of LHI,
3406   // then we're better off using IILF.
3407   if (LowOp.getOpcode() == ISD::Constant) {
3408     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3409     if (!isInt<16>(Value))
3410       return Op;
3411   }
3412 
3413   // Check whether the high part is an AND that doesn't change the
3414   // high 32 bits and just masks out low bits.  We can skip it if so.
3415   if (HighOp.getOpcode() == ISD::AND &&
3416       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3417     SDValue HighOp0 = HighOp.getOperand(0);
3418     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3419     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3420       HighOp = HighOp0;
3421   }
3422 
3423   // Take advantage of the fact that all GR32 operations only change the
3424   // low 32 bits by truncating Low to an i32 and inserting it directly
3425   // using a subreg.  The interesting cases are those where the truncation
3426   // can be folded.
3427   SDLoc DL(Op);
3428   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3429   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3430                                    MVT::i64, HighOp, Low32);
3431 }
3432 
3433 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3434 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3435                                           SelectionDAG &DAG) const {
3436   SDNode *N = Op.getNode();
3437   SDValue LHS = N->getOperand(0);
3438   SDValue RHS = N->getOperand(1);
3439   SDLoc DL(N);
3440   unsigned BaseOp = 0;
3441   unsigned CCValid = 0;
3442   unsigned CCMask = 0;
3443 
3444   switch (Op.getOpcode()) {
3445   default: llvm_unreachable("Unknown instruction!");
3446   case ISD::SADDO:
3447     BaseOp = SystemZISD::SADDO;
3448     CCValid = SystemZ::CCMASK_ARITH;
3449     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3450     break;
3451   case ISD::SSUBO:
3452     BaseOp = SystemZISD::SSUBO;
3453     CCValid = SystemZ::CCMASK_ARITH;
3454     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3455     break;
3456   case ISD::UADDO:
3457     BaseOp = SystemZISD::UADDO;
3458     CCValid = SystemZ::CCMASK_LOGICAL;
3459     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3460     break;
3461   case ISD::USUBO:
3462     BaseOp = SystemZISD::USUBO;
3463     CCValid = SystemZ::CCMASK_LOGICAL;
3464     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3465     break;
3466   }
3467 
3468   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3469   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3470 
3471   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3472   if (N->getValueType(1) == MVT::i1)
3473     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3474 
3475   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3476 }
3477 
3478 static bool isAddCarryChain(SDValue Carry) {
3479   while (Carry.getOpcode() == ISD::ADDCARRY)
3480     Carry = Carry.getOperand(2);
3481   return Carry.getOpcode() == ISD::UADDO;
3482 }
3483 
3484 static bool isSubBorrowChain(SDValue Carry) {
3485   while (Carry.getOpcode() == ISD::SUBCARRY)
3486     Carry = Carry.getOperand(2);
3487   return Carry.getOpcode() == ISD::USUBO;
3488 }
3489 
3490 // Lower ADDCARRY/SUBCARRY nodes.
3491 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3492                                                 SelectionDAG &DAG) const {
3493 
3494   SDNode *N = Op.getNode();
3495   MVT VT = N->getSimpleValueType(0);
3496 
3497   // Let legalize expand this if it isn't a legal type yet.
3498   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3499     return SDValue();
3500 
3501   SDValue LHS = N->getOperand(0);
3502   SDValue RHS = N->getOperand(1);
3503   SDValue Carry = Op.getOperand(2);
3504   SDLoc DL(N);
3505   unsigned BaseOp = 0;
3506   unsigned CCValid = 0;
3507   unsigned CCMask = 0;
3508 
3509   switch (Op.getOpcode()) {
3510   default: llvm_unreachable("Unknown instruction!");
3511   case ISD::ADDCARRY:
3512     if (!isAddCarryChain(Carry))
3513       return SDValue();
3514 
3515     BaseOp = SystemZISD::ADDCARRY;
3516     CCValid = SystemZ::CCMASK_LOGICAL;
3517     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3518     break;
3519   case ISD::SUBCARRY:
3520     if (!isSubBorrowChain(Carry))
3521       return SDValue();
3522 
3523     BaseOp = SystemZISD::SUBCARRY;
3524     CCValid = SystemZ::CCMASK_LOGICAL;
3525     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3526     break;
3527   }
3528 
3529   // Set the condition code from the carry flag.
3530   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3531                       DAG.getConstant(CCValid, DL, MVT::i32),
3532                       DAG.getConstant(CCMask, DL, MVT::i32));
3533 
3534   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3535   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3536 
3537   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3538   if (N->getValueType(1) == MVT::i1)
3539     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3540 
3541   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3542 }
3543 
3544 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3545                                           SelectionDAG &DAG) const {
3546   EVT VT = Op.getValueType();
3547   SDLoc DL(Op);
3548   Op = Op.getOperand(0);
3549 
3550   // Handle vector types via VPOPCT.
3551   if (VT.isVector()) {
3552     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3553     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3554     switch (VT.getScalarSizeInBits()) {
3555     case 8:
3556       break;
3557     case 16: {
3558       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3559       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3560       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3561       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3562       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3563       break;
3564     }
3565     case 32: {
3566       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3567                                             DAG.getConstant(0, DL, MVT::i32));
3568       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3569       break;
3570     }
3571     case 64: {
3572       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3573                                             DAG.getConstant(0, DL, MVT::i32));
3574       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3575       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3576       break;
3577     }
3578     default:
3579       llvm_unreachable("Unexpected type");
3580     }
3581     return Op;
3582   }
3583 
3584   // Get the known-zero mask for the operand.
3585   KnownBits Known = DAG.computeKnownBits(Op);
3586   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3587   if (NumSignificantBits == 0)
3588     return DAG.getConstant(0, DL, VT);
3589 
3590   // Skip known-zero high parts of the operand.
3591   int64_t OrigBitSize = VT.getSizeInBits();
3592   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3593   BitSize = std::min(BitSize, OrigBitSize);
3594 
3595   // The POPCNT instruction counts the number of bits in each byte.
3596   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3597   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3598   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3599 
3600   // Add up per-byte counts in a binary tree.  All bits of Op at
3601   // position larger than BitSize remain zero throughout.
3602   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3603     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3604     if (BitSize != OrigBitSize)
3605       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3606                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3607     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3608   }
3609 
3610   // Extract overall result from high byte.
3611   if (BitSize > 8)
3612     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3613                      DAG.getConstant(BitSize - 8, DL, VT));
3614 
3615   return Op;
3616 }
3617 
3618 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3619                                                  SelectionDAG &DAG) const {
3620   SDLoc DL(Op);
3621   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3622     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3623   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3624     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3625 
3626   // The only fence that needs an instruction is a sequentially-consistent
3627   // cross-thread fence.
3628   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3629       FenceSSID == SyncScope::System) {
3630     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3631                                       Op.getOperand(0)),
3632                    0);
3633   }
3634 
3635   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3636   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3637 }
3638 
3639 // Op is an atomic load.  Lower it into a normal volatile load.
3640 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3641                                                 SelectionDAG &DAG) const {
3642   auto *Node = cast<AtomicSDNode>(Op.getNode());
3643   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3644                         Node->getChain(), Node->getBasePtr(),
3645                         Node->getMemoryVT(), Node->getMemOperand());
3646 }
3647 
3648 // Op is an atomic store.  Lower it into a normal volatile store.
3649 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3650                                                  SelectionDAG &DAG) const {
3651   auto *Node = cast<AtomicSDNode>(Op.getNode());
3652   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3653                                     Node->getBasePtr(), Node->getMemoryVT(),
3654                                     Node->getMemOperand());
3655   // We have to enforce sequential consistency by performing a
3656   // serialization operation after the store.
3657   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3658     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3659                                        MVT::Other, Chain), 0);
3660   return Chain;
3661 }
3662 
3663 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3664 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3665 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3666                                                    SelectionDAG &DAG,
3667                                                    unsigned Opcode) const {
3668   auto *Node = cast<AtomicSDNode>(Op.getNode());
3669 
3670   // 32-bit operations need no code outside the main loop.
3671   EVT NarrowVT = Node->getMemoryVT();
3672   EVT WideVT = MVT::i32;
3673   if (NarrowVT == WideVT)
3674     return Op;
3675 
3676   int64_t BitSize = NarrowVT.getSizeInBits();
3677   SDValue ChainIn = Node->getChain();
3678   SDValue Addr = Node->getBasePtr();
3679   SDValue Src2 = Node->getVal();
3680   MachineMemOperand *MMO = Node->getMemOperand();
3681   SDLoc DL(Node);
3682   EVT PtrVT = Addr.getValueType();
3683 
3684   // Convert atomic subtracts of constants into additions.
3685   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3686     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3687       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3688       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3689     }
3690 
3691   // Get the address of the containing word.
3692   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3693                                     DAG.getConstant(-4, DL, PtrVT));
3694 
3695   // Get the number of bits that the word must be rotated left in order
3696   // to bring the field to the top bits of a GR32.
3697   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3698                                  DAG.getConstant(3, DL, PtrVT));
3699   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3700 
3701   // Get the complementing shift amount, for rotating a field in the top
3702   // bits back to its proper position.
3703   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3704                                     DAG.getConstant(0, DL, WideVT), BitShift);
3705 
3706   // Extend the source operand to 32 bits and prepare it for the inner loop.
3707   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3708   // operations require the source to be shifted in advance.  (This shift
3709   // can be folded if the source is constant.)  For AND and NAND, the lower
3710   // bits must be set, while for other opcodes they should be left clear.
3711   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3712     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3713                        DAG.getConstant(32 - BitSize, DL, WideVT));
3714   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3715       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3716     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3717                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3718 
3719   // Construct the ATOMIC_LOADW_* node.
3720   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3721   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3722                     DAG.getConstant(BitSize, DL, WideVT) };
3723   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3724                                              NarrowVT, MMO);
3725 
3726   // Rotate the result of the final CS so that the field is in the lower
3727   // bits of a GR32, then truncate it.
3728   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3729                                     DAG.getConstant(BitSize, DL, WideVT));
3730   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3731 
3732   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3733   return DAG.getMergeValues(RetOps, DL);
3734 }
3735 
3736 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3737 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3738 // operations into additions.
3739 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3740                                                     SelectionDAG &DAG) const {
3741   auto *Node = cast<AtomicSDNode>(Op.getNode());
3742   EVT MemVT = Node->getMemoryVT();
3743   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3744     // A full-width operation.
3745     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3746     SDValue Src2 = Node->getVal();
3747     SDValue NegSrc2;
3748     SDLoc DL(Src2);
3749 
3750     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3751       // Use an addition if the operand is constant and either LAA(G) is
3752       // available or the negative value is in the range of A(G)FHI.
3753       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3754       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3755         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3756     } else if (Subtarget.hasInterlockedAccess1())
3757       // Use LAA(G) if available.
3758       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3759                             Src2);
3760 
3761     if (NegSrc2.getNode())
3762       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3763                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3764                            Node->getMemOperand());
3765 
3766     // Use the node as-is.
3767     return Op;
3768   }
3769 
3770   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3771 }
3772 
3773 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3774 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3775                                                     SelectionDAG &DAG) const {
3776   auto *Node = cast<AtomicSDNode>(Op.getNode());
3777   SDValue ChainIn = Node->getOperand(0);
3778   SDValue Addr = Node->getOperand(1);
3779   SDValue CmpVal = Node->getOperand(2);
3780   SDValue SwapVal = Node->getOperand(3);
3781   MachineMemOperand *MMO = Node->getMemOperand();
3782   SDLoc DL(Node);
3783 
3784   // We have native support for 32-bit and 64-bit compare and swap, but we
3785   // still need to expand extracting the "success" result from the CC.
3786   EVT NarrowVT = Node->getMemoryVT();
3787   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3788   if (NarrowVT == WideVT) {
3789     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3790     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3791     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3792                                                DL, Tys, Ops, NarrowVT, MMO);
3793     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3794                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3795 
3796     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3797     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3798     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3799     return SDValue();
3800   }
3801 
3802   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3803   // via a fullword ATOMIC_CMP_SWAPW operation.
3804   int64_t BitSize = NarrowVT.getSizeInBits();
3805   EVT PtrVT = Addr.getValueType();
3806 
3807   // Get the address of the containing word.
3808   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3809                                     DAG.getConstant(-4, DL, PtrVT));
3810 
3811   // Get the number of bits that the word must be rotated left in order
3812   // to bring the field to the top bits of a GR32.
3813   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3814                                  DAG.getConstant(3, DL, PtrVT));
3815   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3816 
3817   // Get the complementing shift amount, for rotating a field in the top
3818   // bits back to its proper position.
3819   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3820                                     DAG.getConstant(0, DL, WideVT), BitShift);
3821 
3822   // Construct the ATOMIC_CMP_SWAPW node.
3823   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3824   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3825                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3826   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3827                                              VTList, Ops, NarrowVT, MMO);
3828   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3829                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3830 
3831   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3832   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3833   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3834   return SDValue();
3835 }
3836 
3837 MachineMemOperand::Flags
3838 SystemZTargetLowering::getMMOFlags(const Instruction &I) const {
3839   // Because of how we convert atomic_load and atomic_store to normal loads and
3840   // stores in the DAG, we need to ensure that the MMOs are marked volatile
3841   // since DAGCombine hasn't been updated to account for atomic, but non
3842   // volatile loads.  (See D57601)
3843   if (auto *SI = dyn_cast<StoreInst>(&I))
3844     if (SI->isAtomic())
3845       return MachineMemOperand::MOVolatile;
3846   if (auto *LI = dyn_cast<LoadInst>(&I))
3847     if (LI->isAtomic())
3848       return MachineMemOperand::MOVolatile;
3849   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
3850     if (AI->isAtomic())
3851       return MachineMemOperand::MOVolatile;
3852   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
3853     if (AI->isAtomic())
3854       return MachineMemOperand::MOVolatile;
3855   return MachineMemOperand::MONone;
3856 }
3857 
3858 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3859                                               SelectionDAG &DAG) const {
3860   MachineFunction &MF = DAG.getMachineFunction();
3861   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3862   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3863                             SystemZ::R15D, Op.getValueType());
3864 }
3865 
3866 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3867                                                  SelectionDAG &DAG) const {
3868   MachineFunction &MF = DAG.getMachineFunction();
3869   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3870   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3871 
3872   SDValue Chain = Op.getOperand(0);
3873   SDValue NewSP = Op.getOperand(1);
3874   SDValue Backchain;
3875   SDLoc DL(Op);
3876 
3877   if (StoreBackchain) {
3878     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3879     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3880   }
3881 
3882   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3883 
3884   if (StoreBackchain)
3885     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3886 
3887   return Chain;
3888 }
3889 
3890 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3891                                              SelectionDAG &DAG) const {
3892   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3893   if (!IsData)
3894     // Just preserve the chain.
3895     return Op.getOperand(0);
3896 
3897   SDLoc DL(Op);
3898   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3899   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3900   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3901   SDValue Ops[] = {
3902     Op.getOperand(0),
3903     DAG.getConstant(Code, DL, MVT::i32),
3904     Op.getOperand(1)
3905   };
3906   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3907                                  Node->getVTList(), Ops,
3908                                  Node->getMemoryVT(), Node->getMemOperand());
3909 }
3910 
3911 // Convert condition code in CCReg to an i32 value.
3912 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3913   SDLoc DL(CCReg);
3914   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3915   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3916                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3917 }
3918 
3919 SDValue
3920 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3921                                               SelectionDAG &DAG) const {
3922   unsigned Opcode, CCValid;
3923   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3924     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3925     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3926     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3927     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3928     return SDValue();
3929   }
3930 
3931   return SDValue();
3932 }
3933 
3934 SDValue
3935 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3936                                                SelectionDAG &DAG) const {
3937   unsigned Opcode, CCValid;
3938   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3939     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3940     if (Op->getNumValues() == 1)
3941       return getCCResult(DAG, SDValue(Node, 0));
3942     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3943     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3944                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3945   }
3946 
3947   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3948   switch (Id) {
3949   case Intrinsic::thread_pointer:
3950     return lowerThreadPointer(SDLoc(Op), DAG);
3951 
3952   case Intrinsic::s390_vpdi:
3953     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3954                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3955 
3956   case Intrinsic::s390_vperm:
3957     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3958                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3959 
3960   case Intrinsic::s390_vuphb:
3961   case Intrinsic::s390_vuphh:
3962   case Intrinsic::s390_vuphf:
3963     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3964                        Op.getOperand(1));
3965 
3966   case Intrinsic::s390_vuplhb:
3967   case Intrinsic::s390_vuplhh:
3968   case Intrinsic::s390_vuplhf:
3969     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3970                        Op.getOperand(1));
3971 
3972   case Intrinsic::s390_vuplb:
3973   case Intrinsic::s390_vuplhw:
3974   case Intrinsic::s390_vuplf:
3975     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3976                        Op.getOperand(1));
3977 
3978   case Intrinsic::s390_vupllb:
3979   case Intrinsic::s390_vupllh:
3980   case Intrinsic::s390_vupllf:
3981     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3982                        Op.getOperand(1));
3983 
3984   case Intrinsic::s390_vsumb:
3985   case Intrinsic::s390_vsumh:
3986   case Intrinsic::s390_vsumgh:
3987   case Intrinsic::s390_vsumgf:
3988   case Intrinsic::s390_vsumqf:
3989   case Intrinsic::s390_vsumqg:
3990     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3991                        Op.getOperand(1), Op.getOperand(2));
3992   }
3993 
3994   return SDValue();
3995 }
3996 
3997 namespace {
3998 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3999 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4000 // Operand is the constant third operand, otherwise it is the number of
4001 // bytes in each element of the result.
4002 struct Permute {
4003   unsigned Opcode;
4004   unsigned Operand;
4005   unsigned char Bytes[SystemZ::VectorBytes];
4006 };
4007 }
4008 
4009 static const Permute PermuteForms[] = {
4010   // VMRHG
4011   { SystemZISD::MERGE_HIGH, 8,
4012     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4013   // VMRHF
4014   { SystemZISD::MERGE_HIGH, 4,
4015     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4016   // VMRHH
4017   { SystemZISD::MERGE_HIGH, 2,
4018     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4019   // VMRHB
4020   { SystemZISD::MERGE_HIGH, 1,
4021     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4022   // VMRLG
4023   { SystemZISD::MERGE_LOW, 8,
4024     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4025   // VMRLF
4026   { SystemZISD::MERGE_LOW, 4,
4027     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4028   // VMRLH
4029   { SystemZISD::MERGE_LOW, 2,
4030     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4031   // VMRLB
4032   { SystemZISD::MERGE_LOW, 1,
4033     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4034   // VPKG
4035   { SystemZISD::PACK, 4,
4036     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4037   // VPKF
4038   { SystemZISD::PACK, 2,
4039     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4040   // VPKH
4041   { SystemZISD::PACK, 1,
4042     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4043   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4044   { SystemZISD::PERMUTE_DWORDS, 4,
4045     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4046   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4047   { SystemZISD::PERMUTE_DWORDS, 1,
4048     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4049 };
4050 
4051 // Called after matching a vector shuffle against a particular pattern.
4052 // Both the original shuffle and the pattern have two vector operands.
4053 // OpNos[0] is the operand of the original shuffle that should be used for
4054 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4055 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4056 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4057 // for operands 0 and 1 of the pattern.
4058 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4059   if (OpNos[0] < 0) {
4060     if (OpNos[1] < 0)
4061       return false;
4062     OpNo0 = OpNo1 = OpNos[1];
4063   } else if (OpNos[1] < 0) {
4064     OpNo0 = OpNo1 = OpNos[0];
4065   } else {
4066     OpNo0 = OpNos[0];
4067     OpNo1 = OpNos[1];
4068   }
4069   return true;
4070 }
4071 
4072 // Bytes is a VPERM-like permute vector, except that -1 is used for
4073 // undefined bytes.  Return true if the VPERM can be implemented using P.
4074 // When returning true set OpNo0 to the VPERM operand that should be
4075 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4076 //
4077 // For example, if swapping the VPERM operands allows P to match, OpNo0
4078 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4079 // operand, but rewriting it to use two duplicated operands allows it to
4080 // match P, then OpNo0 and OpNo1 will be the same.
4081 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4082                          unsigned &OpNo0, unsigned &OpNo1) {
4083   int OpNos[] = { -1, -1 };
4084   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4085     int Elt = Bytes[I];
4086     if (Elt >= 0) {
4087       // Make sure that the two permute vectors use the same suboperand
4088       // byte number.  Only the operand numbers (the high bits) are
4089       // allowed to differ.
4090       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4091         return false;
4092       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4093       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4094       // Make sure that the operand mappings are consistent with previous
4095       // elements.
4096       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4097         return false;
4098       OpNos[ModelOpNo] = RealOpNo;
4099     }
4100   }
4101   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4102 }
4103 
4104 // As above, but search for a matching permute.
4105 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4106                                    unsigned &OpNo0, unsigned &OpNo1) {
4107   for (auto &P : PermuteForms)
4108     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4109       return &P;
4110   return nullptr;
4111 }
4112 
4113 // Bytes is a VPERM-like permute vector, except that -1 is used for
4114 // undefined bytes.  This permute is an operand of an outer permute.
4115 // See whether redistributing the -1 bytes gives a shuffle that can be
4116 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4117 // that, when applied to the result of P, gives the original permute in Bytes.
4118 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4119                                const Permute &P,
4120                                SmallVectorImpl<int> &Transform) {
4121   unsigned To = 0;
4122   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4123     int Elt = Bytes[From];
4124     if (Elt < 0)
4125       // Byte number From of the result is undefined.
4126       Transform[From] = -1;
4127     else {
4128       while (P.Bytes[To] != Elt) {
4129         To += 1;
4130         if (To == SystemZ::VectorBytes)
4131           return false;
4132       }
4133       Transform[From] = To;
4134     }
4135   }
4136   return true;
4137 }
4138 
4139 // As above, but search for a matching permute.
4140 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4141                                          SmallVectorImpl<int> &Transform) {
4142   for (auto &P : PermuteForms)
4143     if (matchDoublePermute(Bytes, P, Transform))
4144       return &P;
4145   return nullptr;
4146 }
4147 
4148 // Convert the mask of the given shuffle op into a byte-level mask,
4149 // as if it had type vNi8.
4150 static bool getVPermMask(SDValue ShuffleOp,
4151                          SmallVectorImpl<int> &Bytes) {
4152   EVT VT = ShuffleOp.getValueType();
4153   unsigned NumElements = VT.getVectorNumElements();
4154   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4155 
4156   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4157     Bytes.resize(NumElements * BytesPerElement, -1);
4158     for (unsigned I = 0; I < NumElements; ++I) {
4159       int Index = VSN->getMaskElt(I);
4160       if (Index >= 0)
4161         for (unsigned J = 0; J < BytesPerElement; ++J)
4162           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4163     }
4164     return true;
4165   }
4166   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4167       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4168     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4169     Bytes.resize(NumElements * BytesPerElement, -1);
4170     for (unsigned I = 0; I < NumElements; ++I)
4171       for (unsigned J = 0; J < BytesPerElement; ++J)
4172         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4173     return true;
4174   }
4175   return false;
4176 }
4177 
4178 // Bytes is a VPERM-like permute vector, except that -1 is used for
4179 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4180 // the result come from a contiguous sequence of bytes from one input.
4181 // Set Base to the selector for the first byte if so.
4182 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4183                             unsigned BytesPerElement, int &Base) {
4184   Base = -1;
4185   for (unsigned I = 0; I < BytesPerElement; ++I) {
4186     if (Bytes[Start + I] >= 0) {
4187       unsigned Elem = Bytes[Start + I];
4188       if (Base < 0) {
4189         Base = Elem - I;
4190         // Make sure the bytes would come from one input operand.
4191         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4192           return false;
4193       } else if (unsigned(Base) != Elem - I)
4194         return false;
4195     }
4196   }
4197   return true;
4198 }
4199 
4200 // Bytes is a VPERM-like permute vector, except that -1 is used for
4201 // undefined bytes.  Return true if it can be performed using VSLDI.
4202 // When returning true, set StartIndex to the shift amount and OpNo0
4203 // and OpNo1 to the VPERM operands that should be used as the first
4204 // and second shift operand respectively.
4205 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4206                                unsigned &StartIndex, unsigned &OpNo0,
4207                                unsigned &OpNo1) {
4208   int OpNos[] = { -1, -1 };
4209   int Shift = -1;
4210   for (unsigned I = 0; I < 16; ++I) {
4211     int Index = Bytes[I];
4212     if (Index >= 0) {
4213       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4214       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4215       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4216       if (Shift < 0)
4217         Shift = ExpectedShift;
4218       else if (Shift != ExpectedShift)
4219         return false;
4220       // Make sure that the operand mappings are consistent with previous
4221       // elements.
4222       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4223         return false;
4224       OpNos[ModelOpNo] = RealOpNo;
4225     }
4226   }
4227   StartIndex = Shift;
4228   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4229 }
4230 
4231 // Create a node that performs P on operands Op0 and Op1, casting the
4232 // operands to the appropriate type.  The type of the result is determined by P.
4233 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4234                               const Permute &P, SDValue Op0, SDValue Op1) {
4235   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4236   // elements of a PACK are twice as wide as the outputs.
4237   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4238                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4239                       P.Operand);
4240   // Cast both operands to the appropriate type.
4241   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4242                               SystemZ::VectorBytes / InBytes);
4243   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4244   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4245   SDValue Op;
4246   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4247     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
4248     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4249   } else if (P.Opcode == SystemZISD::PACK) {
4250     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4251                                  SystemZ::VectorBytes / P.Operand);
4252     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4253   } else {
4254     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4255   }
4256   return Op;
4257 }
4258 
4259 // Bytes is a VPERM-like permute vector, except that -1 is used for
4260 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4261 // VSLDI or VPERM.
4262 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4263                                      SDValue *Ops,
4264                                      const SmallVectorImpl<int> &Bytes) {
4265   for (unsigned I = 0; I < 2; ++I)
4266     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4267 
4268   // First see whether VSLDI can be used.
4269   unsigned StartIndex, OpNo0, OpNo1;
4270   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4271     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4272                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4273 
4274   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4275   SDValue IndexNodes[SystemZ::VectorBytes];
4276   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4277     if (Bytes[I] >= 0)
4278       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4279     else
4280       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4281   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4282   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4283 }
4284 
4285 namespace {
4286 // Describes a general N-operand vector shuffle.
4287 struct GeneralShuffle {
4288   GeneralShuffle(EVT vt) : VT(vt) {}
4289   void addUndef();
4290   bool add(SDValue, unsigned);
4291   SDValue getNode(SelectionDAG &, const SDLoc &);
4292 
4293   // The operands of the shuffle.
4294   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4295 
4296   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4297   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4298   // Bytes[I] / SystemZ::VectorBytes.
4299   SmallVector<int, SystemZ::VectorBytes> Bytes;
4300 
4301   // The type of the shuffle result.
4302   EVT VT;
4303 };
4304 }
4305 
4306 // Add an extra undefined element to the shuffle.
4307 void GeneralShuffle::addUndef() {
4308   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4309   for (unsigned I = 0; I < BytesPerElement; ++I)
4310     Bytes.push_back(-1);
4311 }
4312 
4313 // Add an extra element to the shuffle, taking it from element Elem of Op.
4314 // A null Op indicates a vector input whose value will be calculated later;
4315 // there is at most one such input per shuffle and it always has the same
4316 // type as the result. Aborts and returns false if the source vector elements
4317 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4318 // LLVM they become implicitly extended, but this is rare and not optimized.
4319 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4320   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4321 
4322   // The source vector can have wider elements than the result,
4323   // either through an explicit TRUNCATE or because of type legalization.
4324   // We want the least significant part.
4325   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4326   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4327 
4328   // Return false if the source elements are smaller than their destination
4329   // elements.
4330   if (FromBytesPerElement < BytesPerElement)
4331     return false;
4332 
4333   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4334                    (FromBytesPerElement - BytesPerElement));
4335 
4336   // Look through things like shuffles and bitcasts.
4337   while (Op.getNode()) {
4338     if (Op.getOpcode() == ISD::BITCAST)
4339       Op = Op.getOperand(0);
4340     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4341       // See whether the bytes we need come from a contiguous part of one
4342       // operand.
4343       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4344       if (!getVPermMask(Op, OpBytes))
4345         break;
4346       int NewByte;
4347       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4348         break;
4349       if (NewByte < 0) {
4350         addUndef();
4351         return true;
4352       }
4353       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4354       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4355     } else if (Op.isUndef()) {
4356       addUndef();
4357       return true;
4358     } else
4359       break;
4360   }
4361 
4362   // Make sure that the source of the extraction is in Ops.
4363   unsigned OpNo = 0;
4364   for (; OpNo < Ops.size(); ++OpNo)
4365     if (Ops[OpNo] == Op)
4366       break;
4367   if (OpNo == Ops.size())
4368     Ops.push_back(Op);
4369 
4370   // Add the element to Bytes.
4371   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4372   for (unsigned I = 0; I < BytesPerElement; ++I)
4373     Bytes.push_back(Base + I);
4374 
4375   return true;
4376 }
4377 
4378 // Return SDNodes for the completed shuffle.
4379 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4380   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4381 
4382   if (Ops.size() == 0)
4383     return DAG.getUNDEF(VT);
4384 
4385   // Make sure that there are at least two shuffle operands.
4386   if (Ops.size() == 1)
4387     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4388 
4389   // Create a tree of shuffles, deferring root node until after the loop.
4390   // Try to redistribute the undefined elements of non-root nodes so that
4391   // the non-root shuffles match something like a pack or merge, then adjust
4392   // the parent node's permute vector to compensate for the new order.
4393   // Among other things, this copes with vectors like <2 x i16> that were
4394   // padded with undefined elements during type legalization.
4395   //
4396   // In the best case this redistribution will lead to the whole tree
4397   // using packs and merges.  It should rarely be a loss in other cases.
4398   unsigned Stride = 1;
4399   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4400     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4401       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4402 
4403       // Create a mask for just these two operands.
4404       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4405       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4406         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4407         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4408         if (OpNo == I)
4409           NewBytes[J] = Byte;
4410         else if (OpNo == I + Stride)
4411           NewBytes[J] = SystemZ::VectorBytes + Byte;
4412         else
4413           NewBytes[J] = -1;
4414       }
4415       // See if it would be better to reorganize NewMask to avoid using VPERM.
4416       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4417       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4418         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4419         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4420         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4421           if (NewBytes[J] >= 0) {
4422             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4423                    "Invalid double permute");
4424             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4425           } else
4426             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4427         }
4428       } else {
4429         // Just use NewBytes on the operands.
4430         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4431         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4432           if (NewBytes[J] >= 0)
4433             Bytes[J] = I * SystemZ::VectorBytes + J;
4434       }
4435     }
4436   }
4437 
4438   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4439   if (Stride > 1) {
4440     Ops[1] = Ops[Stride];
4441     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4442       if (Bytes[I] >= int(SystemZ::VectorBytes))
4443         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4444   }
4445 
4446   // Look for an instruction that can do the permute without resorting
4447   // to VPERM.
4448   unsigned OpNo0, OpNo1;
4449   SDValue Op;
4450   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4451     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4452   else
4453     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4454   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4455 }
4456 
4457 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4458 static bool isScalarToVector(SDValue Op) {
4459   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4460     if (!Op.getOperand(I).isUndef())
4461       return false;
4462   return true;
4463 }
4464 
4465 // Return a vector of type VT that contains Value in the first element.
4466 // The other elements don't matter.
4467 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4468                                    SDValue Value) {
4469   // If we have a constant, replicate it to all elements and let the
4470   // BUILD_VECTOR lowering take care of it.
4471   if (Value.getOpcode() == ISD::Constant ||
4472       Value.getOpcode() == ISD::ConstantFP) {
4473     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4474     return DAG.getBuildVector(VT, DL, Ops);
4475   }
4476   if (Value.isUndef())
4477     return DAG.getUNDEF(VT);
4478   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4479 }
4480 
4481 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4482 // element 1.  Used for cases in which replication is cheap.
4483 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4484                                  SDValue Op0, SDValue Op1) {
4485   if (Op0.isUndef()) {
4486     if (Op1.isUndef())
4487       return DAG.getUNDEF(VT);
4488     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4489   }
4490   if (Op1.isUndef())
4491     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4492   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4493                      buildScalarToVector(DAG, DL, VT, Op0),
4494                      buildScalarToVector(DAG, DL, VT, Op1));
4495 }
4496 
4497 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4498 // vector for them.
4499 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4500                           SDValue Op1) {
4501   if (Op0.isUndef() && Op1.isUndef())
4502     return DAG.getUNDEF(MVT::v2i64);
4503   // If one of the two inputs is undefined then replicate the other one,
4504   // in order to avoid using another register unnecessarily.
4505   if (Op0.isUndef())
4506     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4507   else if (Op1.isUndef())
4508     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4509   else {
4510     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4511     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4512   }
4513   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4514 }
4515 
4516 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4517 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4518 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4519 // would benefit from this representation and return it if so.
4520 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4521                                      BuildVectorSDNode *BVN) {
4522   EVT VT = BVN->getValueType(0);
4523   unsigned NumElements = VT.getVectorNumElements();
4524 
4525   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4526   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4527   // need a BUILD_VECTOR, add an additional placeholder operand for that
4528   // BUILD_VECTOR and store its operands in ResidueOps.
4529   GeneralShuffle GS(VT);
4530   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4531   bool FoundOne = false;
4532   for (unsigned I = 0; I < NumElements; ++I) {
4533     SDValue Op = BVN->getOperand(I);
4534     if (Op.getOpcode() == ISD::TRUNCATE)
4535       Op = Op.getOperand(0);
4536     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4537         Op.getOperand(1).getOpcode() == ISD::Constant) {
4538       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4539       if (!GS.add(Op.getOperand(0), Elem))
4540         return SDValue();
4541       FoundOne = true;
4542     } else if (Op.isUndef()) {
4543       GS.addUndef();
4544     } else {
4545       if (!GS.add(SDValue(), ResidueOps.size()))
4546         return SDValue();
4547       ResidueOps.push_back(BVN->getOperand(I));
4548     }
4549   }
4550 
4551   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4552   if (!FoundOne)
4553     return SDValue();
4554 
4555   // Create the BUILD_VECTOR for the remaining elements, if any.
4556   if (!ResidueOps.empty()) {
4557     while (ResidueOps.size() < NumElements)
4558       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4559     for (auto &Op : GS.Ops) {
4560       if (!Op.getNode()) {
4561         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4562         break;
4563       }
4564     }
4565   }
4566   return GS.getNode(DAG, SDLoc(BVN));
4567 }
4568 
4569 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4570   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4571     return true;
4572   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4573     return true;
4574   return false;
4575 }
4576 
4577 // Combine GPR scalar values Elems into a vector of type VT.
4578 SDValue
4579 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4580                                    SmallVectorImpl<SDValue> &Elems) const {
4581   // See whether there is a single replicated value.
4582   SDValue Single;
4583   unsigned int NumElements = Elems.size();
4584   unsigned int Count = 0;
4585   for (auto Elem : Elems) {
4586     if (!Elem.isUndef()) {
4587       if (!Single.getNode())
4588         Single = Elem;
4589       else if (Elem != Single) {
4590         Single = SDValue();
4591         break;
4592       }
4593       Count += 1;
4594     }
4595   }
4596   // There are three cases here:
4597   //
4598   // - if the only defined element is a loaded one, the best sequence
4599   //   is a replicating load.
4600   //
4601   // - otherwise, if the only defined element is an i64 value, we will
4602   //   end up with the same VLVGP sequence regardless of whether we short-cut
4603   //   for replication or fall through to the later code.
4604   //
4605   // - otherwise, if the only defined element is an i32 or smaller value,
4606   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4607   //   This is only a win if the single defined element is used more than once.
4608   //   In other cases we're better off using a single VLVGx.
4609   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4610     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4611 
4612   // If all elements are loads, use VLREP/VLEs (below).
4613   bool AllLoads = true;
4614   for (auto Elem : Elems)
4615     if (!isVectorElementLoad(Elem)) {
4616       AllLoads = false;
4617       break;
4618     }
4619 
4620   // The best way of building a v2i64 from two i64s is to use VLVGP.
4621   if (VT == MVT::v2i64 && !AllLoads)
4622     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4623 
4624   // Use a 64-bit merge high to combine two doubles.
4625   if (VT == MVT::v2f64 && !AllLoads)
4626     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4627 
4628   // Build v4f32 values directly from the FPRs:
4629   //
4630   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4631   //         V              V         VMRHF
4632   //      <ABxx>         <CDxx>
4633   //                V                 VMRHG
4634   //              <ABCD>
4635   if (VT == MVT::v4f32 && !AllLoads) {
4636     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4637     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4638     // Avoid unnecessary undefs by reusing the other operand.
4639     if (Op01.isUndef())
4640       Op01 = Op23;
4641     else if (Op23.isUndef())
4642       Op23 = Op01;
4643     // Merging identical replications is a no-op.
4644     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4645       return Op01;
4646     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4647     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4648     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4649                              DL, MVT::v2i64, Op01, Op23);
4650     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4651   }
4652 
4653   // Collect the constant terms.
4654   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4655   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4656 
4657   unsigned NumConstants = 0;
4658   for (unsigned I = 0; I < NumElements; ++I) {
4659     SDValue Elem = Elems[I];
4660     if (Elem.getOpcode() == ISD::Constant ||
4661         Elem.getOpcode() == ISD::ConstantFP) {
4662       NumConstants += 1;
4663       Constants[I] = Elem;
4664       Done[I] = true;
4665     }
4666   }
4667   // If there was at least one constant, fill in the other elements of
4668   // Constants with undefs to get a full vector constant and use that
4669   // as the starting point.
4670   SDValue Result;
4671   SDValue ReplicatedVal;
4672   if (NumConstants > 0) {
4673     for (unsigned I = 0; I < NumElements; ++I)
4674       if (!Constants[I].getNode())
4675         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4676     Result = DAG.getBuildVector(VT, DL, Constants);
4677   } else {
4678     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4679     // avoid a false dependency on any previous contents of the vector
4680     // register.
4681 
4682     // Use a VLREP if at least one element is a load. Make sure to replicate
4683     // the load with the most elements having its value.
4684     std::map<const SDNode*, unsigned> UseCounts;
4685     SDNode *LoadMaxUses = nullptr;
4686     for (unsigned I = 0; I < NumElements; ++I)
4687       if (isVectorElementLoad(Elems[I])) {
4688         SDNode *Ld = Elems[I].getNode();
4689         UseCounts[Ld]++;
4690         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4691           LoadMaxUses = Ld;
4692       }
4693     if (LoadMaxUses != nullptr) {
4694       ReplicatedVal = SDValue(LoadMaxUses, 0);
4695       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4696     } else {
4697       // Try to use VLVGP.
4698       unsigned I1 = NumElements / 2 - 1;
4699       unsigned I2 = NumElements - 1;
4700       bool Def1 = !Elems[I1].isUndef();
4701       bool Def2 = !Elems[I2].isUndef();
4702       if (Def1 || Def2) {
4703         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4704         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4705         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4706                              joinDwords(DAG, DL, Elem1, Elem2));
4707         Done[I1] = true;
4708         Done[I2] = true;
4709       } else
4710         Result = DAG.getUNDEF(VT);
4711     }
4712   }
4713 
4714   // Use VLVGx to insert the other elements.
4715   for (unsigned I = 0; I < NumElements; ++I)
4716     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4717       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4718                            DAG.getConstant(I, DL, MVT::i32));
4719   return Result;
4720 }
4721 
4722 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4723                                                  SelectionDAG &DAG) const {
4724   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4725   SDLoc DL(Op);
4726   EVT VT = Op.getValueType();
4727 
4728   if (BVN->isConstant()) {
4729     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4730       return Op;
4731 
4732     // Fall back to loading it from memory.
4733     return SDValue();
4734   }
4735 
4736   // See if we should use shuffles to construct the vector from other vectors.
4737   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4738     return Res;
4739 
4740   // Detect SCALAR_TO_VECTOR conversions.
4741   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4742     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4743 
4744   // Otherwise use buildVector to build the vector up from GPRs.
4745   unsigned NumElements = Op.getNumOperands();
4746   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4747   for (unsigned I = 0; I < NumElements; ++I)
4748     Ops[I] = Op.getOperand(I);
4749   return buildVector(DAG, DL, VT, Ops);
4750 }
4751 
4752 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4753                                                    SelectionDAG &DAG) const {
4754   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4755   SDLoc DL(Op);
4756   EVT VT = Op.getValueType();
4757   unsigned NumElements = VT.getVectorNumElements();
4758 
4759   if (VSN->isSplat()) {
4760     SDValue Op0 = Op.getOperand(0);
4761     unsigned Index = VSN->getSplatIndex();
4762     assert(Index < VT.getVectorNumElements() &&
4763            "Splat index should be defined and in first operand");
4764     // See whether the value we're splatting is directly available as a scalar.
4765     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4766         Op0.getOpcode() == ISD::BUILD_VECTOR)
4767       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4768     // Otherwise keep it as a vector-to-vector operation.
4769     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4770                        DAG.getConstant(Index, DL, MVT::i32));
4771   }
4772 
4773   GeneralShuffle GS(VT);
4774   for (unsigned I = 0; I < NumElements; ++I) {
4775     int Elt = VSN->getMaskElt(I);
4776     if (Elt < 0)
4777       GS.addUndef();
4778     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4779                      unsigned(Elt) % NumElements))
4780       return SDValue();
4781   }
4782   return GS.getNode(DAG, SDLoc(VSN));
4783 }
4784 
4785 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4786                                                      SelectionDAG &DAG) const {
4787   SDLoc DL(Op);
4788   // Just insert the scalar into element 0 of an undefined vector.
4789   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4790                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4791                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4792 }
4793 
4794 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4795                                                       SelectionDAG &DAG) const {
4796   // Handle insertions of floating-point values.
4797   SDLoc DL(Op);
4798   SDValue Op0 = Op.getOperand(0);
4799   SDValue Op1 = Op.getOperand(1);
4800   SDValue Op2 = Op.getOperand(2);
4801   EVT VT = Op.getValueType();
4802 
4803   // Insertions into constant indices of a v2f64 can be done using VPDI.
4804   // However, if the inserted value is a bitcast or a constant then it's
4805   // better to use GPRs, as below.
4806   if (VT == MVT::v2f64 &&
4807       Op1.getOpcode() != ISD::BITCAST &&
4808       Op1.getOpcode() != ISD::ConstantFP &&
4809       Op2.getOpcode() == ISD::Constant) {
4810     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4811     unsigned Mask = VT.getVectorNumElements() - 1;
4812     if (Index <= Mask)
4813       return Op;
4814   }
4815 
4816   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4817   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4818   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4819   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4820                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4821                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4822   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4823 }
4824 
4825 SDValue
4826 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4827                                                SelectionDAG &DAG) const {
4828   // Handle extractions of floating-point values.
4829   SDLoc DL(Op);
4830   SDValue Op0 = Op.getOperand(0);
4831   SDValue Op1 = Op.getOperand(1);
4832   EVT VT = Op.getValueType();
4833   EVT VecVT = Op0.getValueType();
4834 
4835   // Extractions of constant indices can be done directly.
4836   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4837     uint64_t Index = CIndexN->getZExtValue();
4838     unsigned Mask = VecVT.getVectorNumElements() - 1;
4839     if (Index <= Mask)
4840       return Op;
4841   }
4842 
4843   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4844   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4845   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4846   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4847                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4848   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4849 }
4850 
4851 SDValue
4852 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4853                                               unsigned UnpackHigh) const {
4854   SDValue PackedOp = Op.getOperand(0);
4855   EVT OutVT = Op.getValueType();
4856   EVT InVT = PackedOp.getValueType();
4857   unsigned ToBits = OutVT.getScalarSizeInBits();
4858   unsigned FromBits = InVT.getScalarSizeInBits();
4859   do {
4860     FromBits *= 2;
4861     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4862                                  SystemZ::VectorBits / FromBits);
4863     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4864   } while (FromBits != ToBits);
4865   return PackedOp;
4866 }
4867 
4868 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4869                                           unsigned ByScalar) const {
4870   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4871   SDValue Op0 = Op.getOperand(0);
4872   SDValue Op1 = Op.getOperand(1);
4873   SDLoc DL(Op);
4874   EVT VT = Op.getValueType();
4875   unsigned ElemBitSize = VT.getScalarSizeInBits();
4876 
4877   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4878   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4879     APInt SplatBits, SplatUndef;
4880     unsigned SplatBitSize;
4881     bool HasAnyUndefs;
4882     // Check for constant splats.  Use ElemBitSize as the minimum element
4883     // width and reject splats that need wider elements.
4884     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4885                              ElemBitSize, true) &&
4886         SplatBitSize == ElemBitSize) {
4887       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4888                                       DL, MVT::i32);
4889       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4890     }
4891     // Check for variable splats.
4892     BitVector UndefElements;
4893     SDValue Splat = BVN->getSplatValue(&UndefElements);
4894     if (Splat) {
4895       // Since i32 is the smallest legal type, we either need a no-op
4896       // or a truncation.
4897       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4898       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4899     }
4900   }
4901 
4902   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4903   // and the shift amount is directly available in a GPR.
4904   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4905     if (VSN->isSplat()) {
4906       SDValue VSNOp0 = VSN->getOperand(0);
4907       unsigned Index = VSN->getSplatIndex();
4908       assert(Index < VT.getVectorNumElements() &&
4909              "Splat index should be defined and in first operand");
4910       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4911           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4912         // Since i32 is the smallest legal type, we either need a no-op
4913         // or a truncation.
4914         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4915                                     VSNOp0.getOperand(Index));
4916         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4917       }
4918     }
4919   }
4920 
4921   // Otherwise just treat the current form as legal.
4922   return Op;
4923 }
4924 
4925 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4926                                               SelectionDAG &DAG) const {
4927   switch (Op.getOpcode()) {
4928   case ISD::FRAMEADDR:
4929     return lowerFRAMEADDR(Op, DAG);
4930   case ISD::RETURNADDR:
4931     return lowerRETURNADDR(Op, DAG);
4932   case ISD::BR_CC:
4933     return lowerBR_CC(Op, DAG);
4934   case ISD::SELECT_CC:
4935     return lowerSELECT_CC(Op, DAG);
4936   case ISD::SETCC:
4937     return lowerSETCC(Op, DAG);
4938   case ISD::GlobalAddress:
4939     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4940   case ISD::GlobalTLSAddress:
4941     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4942   case ISD::BlockAddress:
4943     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4944   case ISD::JumpTable:
4945     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4946   case ISD::ConstantPool:
4947     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4948   case ISD::BITCAST:
4949     return lowerBITCAST(Op, DAG);
4950   case ISD::VASTART:
4951     return lowerVASTART(Op, DAG);
4952   case ISD::VACOPY:
4953     return lowerVACOPY(Op, DAG);
4954   case ISD::DYNAMIC_STACKALLOC:
4955     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4956   case ISD::GET_DYNAMIC_AREA_OFFSET:
4957     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4958   case ISD::SMUL_LOHI:
4959     return lowerSMUL_LOHI(Op, DAG);
4960   case ISD::UMUL_LOHI:
4961     return lowerUMUL_LOHI(Op, DAG);
4962   case ISD::SDIVREM:
4963     return lowerSDIVREM(Op, DAG);
4964   case ISD::UDIVREM:
4965     return lowerUDIVREM(Op, DAG);
4966   case ISD::SADDO:
4967   case ISD::SSUBO:
4968   case ISD::UADDO:
4969   case ISD::USUBO:
4970     return lowerXALUO(Op, DAG);
4971   case ISD::ADDCARRY:
4972   case ISD::SUBCARRY:
4973     return lowerADDSUBCARRY(Op, DAG);
4974   case ISD::OR:
4975     return lowerOR(Op, DAG);
4976   case ISD::CTPOP:
4977     return lowerCTPOP(Op, DAG);
4978   case ISD::ATOMIC_FENCE:
4979     return lowerATOMIC_FENCE(Op, DAG);
4980   case ISD::ATOMIC_SWAP:
4981     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4982   case ISD::ATOMIC_STORE:
4983     return lowerATOMIC_STORE(Op, DAG);
4984   case ISD::ATOMIC_LOAD:
4985     return lowerATOMIC_LOAD(Op, DAG);
4986   case ISD::ATOMIC_LOAD_ADD:
4987     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4988   case ISD::ATOMIC_LOAD_SUB:
4989     return lowerATOMIC_LOAD_SUB(Op, DAG);
4990   case ISD::ATOMIC_LOAD_AND:
4991     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4992   case ISD::ATOMIC_LOAD_OR:
4993     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4994   case ISD::ATOMIC_LOAD_XOR:
4995     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4996   case ISD::ATOMIC_LOAD_NAND:
4997     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4998   case ISD::ATOMIC_LOAD_MIN:
4999     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5000   case ISD::ATOMIC_LOAD_MAX:
5001     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5002   case ISD::ATOMIC_LOAD_UMIN:
5003     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5004   case ISD::ATOMIC_LOAD_UMAX:
5005     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5006   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5007     return lowerATOMIC_CMP_SWAP(Op, DAG);
5008   case ISD::STACKSAVE:
5009     return lowerSTACKSAVE(Op, DAG);
5010   case ISD::STACKRESTORE:
5011     return lowerSTACKRESTORE(Op, DAG);
5012   case ISD::PREFETCH:
5013     return lowerPREFETCH(Op, DAG);
5014   case ISD::INTRINSIC_W_CHAIN:
5015     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5016   case ISD::INTRINSIC_WO_CHAIN:
5017     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5018   case ISD::BUILD_VECTOR:
5019     return lowerBUILD_VECTOR(Op, DAG);
5020   case ISD::VECTOR_SHUFFLE:
5021     return lowerVECTOR_SHUFFLE(Op, DAG);
5022   case ISD::SCALAR_TO_VECTOR:
5023     return lowerSCALAR_TO_VECTOR(Op, DAG);
5024   case ISD::INSERT_VECTOR_ELT:
5025     return lowerINSERT_VECTOR_ELT(Op, DAG);
5026   case ISD::EXTRACT_VECTOR_ELT:
5027     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5028   case ISD::SIGN_EXTEND_VECTOR_INREG:
5029     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5030   case ISD::ZERO_EXTEND_VECTOR_INREG:
5031     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5032   case ISD::SHL:
5033     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5034   case ISD::SRL:
5035     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5036   case ISD::SRA:
5037     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5038   default:
5039     llvm_unreachable("Unexpected node to lower");
5040   }
5041 }
5042 
5043 // Lower operations with invalid operand or result types (currently used
5044 // only for 128-bit integer types).
5045 
5046 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5047   SDLoc DL(In);
5048   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5049                            DAG.getIntPtrConstant(0, DL));
5050   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5051                            DAG.getIntPtrConstant(1, DL));
5052   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5053                                     MVT::Untyped, Hi, Lo);
5054   return SDValue(Pair, 0);
5055 }
5056 
5057 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5058   SDLoc DL(In);
5059   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5060                                           DL, MVT::i64, In);
5061   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5062                                           DL, MVT::i64, In);
5063   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5064 }
5065 
5066 void
5067 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5068                                              SmallVectorImpl<SDValue> &Results,
5069                                              SelectionDAG &DAG) const {
5070   switch (N->getOpcode()) {
5071   case ISD::ATOMIC_LOAD: {
5072     SDLoc DL(N);
5073     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5074     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5075     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5076     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5077                                           DL, Tys, Ops, MVT::i128, MMO);
5078     Results.push_back(lowerGR128ToI128(DAG, Res));
5079     Results.push_back(Res.getValue(1));
5080     break;
5081   }
5082   case ISD::ATOMIC_STORE: {
5083     SDLoc DL(N);
5084     SDVTList Tys = DAG.getVTList(MVT::Other);
5085     SDValue Ops[] = { N->getOperand(0),
5086                       lowerI128ToGR128(DAG, N->getOperand(2)),
5087                       N->getOperand(1) };
5088     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5089     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5090                                           DL, Tys, Ops, MVT::i128, MMO);
5091     // We have to enforce sequential consistency by performing a
5092     // serialization operation after the store.
5093     if (cast<AtomicSDNode>(N)->getOrdering() ==
5094         AtomicOrdering::SequentiallyConsistent)
5095       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5096                                        MVT::Other, Res), 0);
5097     Results.push_back(Res);
5098     break;
5099   }
5100   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5101     SDLoc DL(N);
5102     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5103     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5104                       lowerI128ToGR128(DAG, N->getOperand(2)),
5105                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5106     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5107     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5108                                           DL, Tys, Ops, MVT::i128, MMO);
5109     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5110                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5111     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5112     Results.push_back(lowerGR128ToI128(DAG, Res));
5113     Results.push_back(Success);
5114     Results.push_back(Res.getValue(2));
5115     break;
5116   }
5117   default:
5118     llvm_unreachable("Unexpected node to lower");
5119   }
5120 }
5121 
5122 void
5123 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5124                                           SmallVectorImpl<SDValue> &Results,
5125                                           SelectionDAG &DAG) const {
5126   return LowerOperationWrapper(N, Results, DAG);
5127 }
5128 
5129 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5130 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5131   switch ((SystemZISD::NodeType)Opcode) {
5132     case SystemZISD::FIRST_NUMBER: break;
5133     OPCODE(RET_FLAG);
5134     OPCODE(CALL);
5135     OPCODE(SIBCALL);
5136     OPCODE(TLS_GDCALL);
5137     OPCODE(TLS_LDCALL);
5138     OPCODE(PCREL_WRAPPER);
5139     OPCODE(PCREL_OFFSET);
5140     OPCODE(IABS);
5141     OPCODE(ICMP);
5142     OPCODE(FCMP);
5143     OPCODE(TM);
5144     OPCODE(BR_CCMASK);
5145     OPCODE(SELECT_CCMASK);
5146     OPCODE(ADJDYNALLOC);
5147     OPCODE(POPCNT);
5148     OPCODE(SMUL_LOHI);
5149     OPCODE(UMUL_LOHI);
5150     OPCODE(SDIVREM);
5151     OPCODE(UDIVREM);
5152     OPCODE(SADDO);
5153     OPCODE(SSUBO);
5154     OPCODE(UADDO);
5155     OPCODE(USUBO);
5156     OPCODE(ADDCARRY);
5157     OPCODE(SUBCARRY);
5158     OPCODE(GET_CCMASK);
5159     OPCODE(MVC);
5160     OPCODE(MVC_LOOP);
5161     OPCODE(NC);
5162     OPCODE(NC_LOOP);
5163     OPCODE(OC);
5164     OPCODE(OC_LOOP);
5165     OPCODE(XC);
5166     OPCODE(XC_LOOP);
5167     OPCODE(CLC);
5168     OPCODE(CLC_LOOP);
5169     OPCODE(STPCPY);
5170     OPCODE(STRCMP);
5171     OPCODE(SEARCH_STRING);
5172     OPCODE(IPM);
5173     OPCODE(MEMBARRIER);
5174     OPCODE(TBEGIN);
5175     OPCODE(TBEGIN_NOFLOAT);
5176     OPCODE(TEND);
5177     OPCODE(BYTE_MASK);
5178     OPCODE(ROTATE_MASK);
5179     OPCODE(REPLICATE);
5180     OPCODE(JOIN_DWORDS);
5181     OPCODE(SPLAT);
5182     OPCODE(MERGE_HIGH);
5183     OPCODE(MERGE_LOW);
5184     OPCODE(SHL_DOUBLE);
5185     OPCODE(PERMUTE_DWORDS);
5186     OPCODE(PERMUTE);
5187     OPCODE(PACK);
5188     OPCODE(PACKS_CC);
5189     OPCODE(PACKLS_CC);
5190     OPCODE(UNPACK_HIGH);
5191     OPCODE(UNPACKL_HIGH);
5192     OPCODE(UNPACK_LOW);
5193     OPCODE(UNPACKL_LOW);
5194     OPCODE(VSHL_BY_SCALAR);
5195     OPCODE(VSRL_BY_SCALAR);
5196     OPCODE(VSRA_BY_SCALAR);
5197     OPCODE(VSUM);
5198     OPCODE(VICMPE);
5199     OPCODE(VICMPH);
5200     OPCODE(VICMPHL);
5201     OPCODE(VICMPES);
5202     OPCODE(VICMPHS);
5203     OPCODE(VICMPHLS);
5204     OPCODE(VFCMPE);
5205     OPCODE(VFCMPH);
5206     OPCODE(VFCMPHE);
5207     OPCODE(VFCMPES);
5208     OPCODE(VFCMPHS);
5209     OPCODE(VFCMPHES);
5210     OPCODE(VFTCI);
5211     OPCODE(VEXTEND);
5212     OPCODE(VROUND);
5213     OPCODE(VTM);
5214     OPCODE(VFAE_CC);
5215     OPCODE(VFAEZ_CC);
5216     OPCODE(VFEE_CC);
5217     OPCODE(VFEEZ_CC);
5218     OPCODE(VFENE_CC);
5219     OPCODE(VFENEZ_CC);
5220     OPCODE(VISTR_CC);
5221     OPCODE(VSTRC_CC);
5222     OPCODE(VSTRCZ_CC);
5223     OPCODE(VSTRS_CC);
5224     OPCODE(VSTRSZ_CC);
5225     OPCODE(TDC);
5226     OPCODE(ATOMIC_SWAPW);
5227     OPCODE(ATOMIC_LOADW_ADD);
5228     OPCODE(ATOMIC_LOADW_SUB);
5229     OPCODE(ATOMIC_LOADW_AND);
5230     OPCODE(ATOMIC_LOADW_OR);
5231     OPCODE(ATOMIC_LOADW_XOR);
5232     OPCODE(ATOMIC_LOADW_NAND);
5233     OPCODE(ATOMIC_LOADW_MIN);
5234     OPCODE(ATOMIC_LOADW_MAX);
5235     OPCODE(ATOMIC_LOADW_UMIN);
5236     OPCODE(ATOMIC_LOADW_UMAX);
5237     OPCODE(ATOMIC_CMP_SWAPW);
5238     OPCODE(ATOMIC_CMP_SWAP);
5239     OPCODE(ATOMIC_LOAD_128);
5240     OPCODE(ATOMIC_STORE_128);
5241     OPCODE(ATOMIC_CMP_SWAP_128);
5242     OPCODE(LRV);
5243     OPCODE(STRV);
5244     OPCODE(VLER);
5245     OPCODE(VSTER);
5246     OPCODE(PREFETCH);
5247   }
5248   return nullptr;
5249 #undef OPCODE
5250 }
5251 
5252 // Return true if VT is a vector whose elements are a whole number of bytes
5253 // in width. Also check for presence of vector support.
5254 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5255   if (!Subtarget.hasVector())
5256     return false;
5257 
5258   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5259 }
5260 
5261 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5262 // producing a result of type ResVT.  Op is a possibly bitcast version
5263 // of the input vector and Index is the index (based on type VecVT) that
5264 // should be extracted.  Return the new extraction if a simplification
5265 // was possible or if Force is true.
5266 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5267                                               EVT VecVT, SDValue Op,
5268                                               unsigned Index,
5269                                               DAGCombinerInfo &DCI,
5270                                               bool Force) const {
5271   SelectionDAG &DAG = DCI.DAG;
5272 
5273   // The number of bytes being extracted.
5274   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5275 
5276   for (;;) {
5277     unsigned Opcode = Op.getOpcode();
5278     if (Opcode == ISD::BITCAST)
5279       // Look through bitcasts.
5280       Op = Op.getOperand(0);
5281     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5282              canTreatAsByteVector(Op.getValueType())) {
5283       // Get a VPERM-like permute mask and see whether the bytes covered
5284       // by the extracted element are a contiguous sequence from one
5285       // source operand.
5286       SmallVector<int, SystemZ::VectorBytes> Bytes;
5287       if (!getVPermMask(Op, Bytes))
5288         break;
5289       int First;
5290       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5291                            BytesPerElement, First))
5292         break;
5293       if (First < 0)
5294         return DAG.getUNDEF(ResVT);
5295       // Make sure the contiguous sequence starts at a multiple of the
5296       // original element size.
5297       unsigned Byte = unsigned(First) % Bytes.size();
5298       if (Byte % BytesPerElement != 0)
5299         break;
5300       // We can get the extracted value directly from an input.
5301       Index = Byte / BytesPerElement;
5302       Op = Op.getOperand(unsigned(First) / Bytes.size());
5303       Force = true;
5304     } else if (Opcode == ISD::BUILD_VECTOR &&
5305                canTreatAsByteVector(Op.getValueType())) {
5306       // We can only optimize this case if the BUILD_VECTOR elements are
5307       // at least as wide as the extracted value.
5308       EVT OpVT = Op.getValueType();
5309       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5310       if (OpBytesPerElement < BytesPerElement)
5311         break;
5312       // Make sure that the least-significant bit of the extracted value
5313       // is the least significant bit of an input.
5314       unsigned End = (Index + 1) * BytesPerElement;
5315       if (End % OpBytesPerElement != 0)
5316         break;
5317       // We're extracting the low part of one operand of the BUILD_VECTOR.
5318       Op = Op.getOperand(End / OpBytesPerElement - 1);
5319       if (!Op.getValueType().isInteger()) {
5320         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5321         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5322         DCI.AddToWorklist(Op.getNode());
5323       }
5324       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5325       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5326       if (VT != ResVT) {
5327         DCI.AddToWorklist(Op.getNode());
5328         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5329       }
5330       return Op;
5331     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5332                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5333                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5334                canTreatAsByteVector(Op.getValueType()) &&
5335                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5336       // Make sure that only the unextended bits are significant.
5337       EVT ExtVT = Op.getValueType();
5338       EVT OpVT = Op.getOperand(0).getValueType();
5339       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5340       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5341       unsigned Byte = Index * BytesPerElement;
5342       unsigned SubByte = Byte % ExtBytesPerElement;
5343       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5344       if (SubByte < MinSubByte ||
5345           SubByte + BytesPerElement > ExtBytesPerElement)
5346         break;
5347       // Get the byte offset of the unextended element
5348       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5349       // ...then add the byte offset relative to that element.
5350       Byte += SubByte - MinSubByte;
5351       if (Byte % BytesPerElement != 0)
5352         break;
5353       Op = Op.getOperand(0);
5354       Index = Byte / BytesPerElement;
5355       Force = true;
5356     } else
5357       break;
5358   }
5359   if (Force) {
5360     if (Op.getValueType() != VecVT) {
5361       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5362       DCI.AddToWorklist(Op.getNode());
5363     }
5364     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5365                        DAG.getConstant(Index, DL, MVT::i32));
5366   }
5367   return SDValue();
5368 }
5369 
5370 // Optimize vector operations in scalar value Op on the basis that Op
5371 // is truncated to TruncVT.
5372 SDValue SystemZTargetLowering::combineTruncateExtract(
5373     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5374   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5375   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5376   // of type TruncVT.
5377   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5378       TruncVT.getSizeInBits() % 8 == 0) {
5379     SDValue Vec = Op.getOperand(0);
5380     EVT VecVT = Vec.getValueType();
5381     if (canTreatAsByteVector(VecVT)) {
5382       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5383         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5384         unsigned TruncBytes = TruncVT.getStoreSize();
5385         if (BytesPerElement % TruncBytes == 0) {
5386           // Calculate the value of Y' in the above description.  We are
5387           // splitting the original elements into Scale equal-sized pieces
5388           // and for truncation purposes want the last (least-significant)
5389           // of these pieces for IndexN.  This is easiest to do by calculating
5390           // the start index of the following element and then subtracting 1.
5391           unsigned Scale = BytesPerElement / TruncBytes;
5392           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5393 
5394           // Defer the creation of the bitcast from X to combineExtract,
5395           // which might be able to optimize the extraction.
5396           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5397                                    VecVT.getStoreSize() / TruncBytes);
5398           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5399           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5400         }
5401       }
5402     }
5403   }
5404   return SDValue();
5405 }
5406 
5407 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5408     SDNode *N, DAGCombinerInfo &DCI) const {
5409   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5410   SelectionDAG &DAG = DCI.DAG;
5411   SDValue N0 = N->getOperand(0);
5412   EVT VT = N->getValueType(0);
5413   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5414     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5415     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5416     if (TrueOp && FalseOp) {
5417       SDLoc DL(N0);
5418       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5419                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5420                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5421       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5422       // If N0 has multiple uses, change other uses as well.
5423       if (!N0.hasOneUse()) {
5424         SDValue TruncSelect =
5425           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5426         DCI.CombineTo(N0.getNode(), TruncSelect);
5427       }
5428       return NewSelect;
5429     }
5430   }
5431   return SDValue();
5432 }
5433 
5434 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5435     SDNode *N, DAGCombinerInfo &DCI) const {
5436   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5437   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5438   // into (select_cc LHS, RHS, -1, 0, COND)
5439   SelectionDAG &DAG = DCI.DAG;
5440   SDValue N0 = N->getOperand(0);
5441   EVT VT = N->getValueType(0);
5442   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5443   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5444     N0 = N0.getOperand(0);
5445   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5446     SDLoc DL(N0);
5447     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5448                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5449                       N0.getOperand(2) };
5450     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5451   }
5452   return SDValue();
5453 }
5454 
5455 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5456     SDNode *N, DAGCombinerInfo &DCI) const {
5457   // Convert (sext (ashr (shl X, C1), C2)) to
5458   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5459   // cheap as narrower ones.
5460   SelectionDAG &DAG = DCI.DAG;
5461   SDValue N0 = N->getOperand(0);
5462   EVT VT = N->getValueType(0);
5463   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5464     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5465     SDValue Inner = N0.getOperand(0);
5466     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5467       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5468         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5469         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5470         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5471         EVT ShiftVT = N0.getOperand(1).getValueType();
5472         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5473                                   Inner.getOperand(0));
5474         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5475                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5476                                                   ShiftVT));
5477         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5478                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5479       }
5480     }
5481   }
5482   return SDValue();
5483 }
5484 
5485 SDValue SystemZTargetLowering::combineMERGE(
5486     SDNode *N, DAGCombinerInfo &DCI) const {
5487   SelectionDAG &DAG = DCI.DAG;
5488   unsigned Opcode = N->getOpcode();
5489   SDValue Op0 = N->getOperand(0);
5490   SDValue Op1 = N->getOperand(1);
5491   if (Op0.getOpcode() == ISD::BITCAST)
5492     Op0 = Op0.getOperand(0);
5493   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5494     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5495     // for v4f32.
5496     if (Op1 == N->getOperand(0))
5497       return Op1;
5498     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5499     EVT VT = Op1.getValueType();
5500     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5501     if (ElemBytes <= 4) {
5502       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5503                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5504       EVT InVT = VT.changeVectorElementTypeToInteger();
5505       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5506                                    SystemZ::VectorBytes / ElemBytes / 2);
5507       if (VT != InVT) {
5508         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5509         DCI.AddToWorklist(Op1.getNode());
5510       }
5511       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5512       DCI.AddToWorklist(Op.getNode());
5513       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5514     }
5515   }
5516   return SDValue();
5517 }
5518 
5519 SDValue SystemZTargetLowering::combineLOAD(
5520     SDNode *N, DAGCombinerInfo &DCI) const {
5521   SelectionDAG &DAG = DCI.DAG;
5522   EVT LdVT = N->getValueType(0);
5523   if (LdVT.isVector() || LdVT.isInteger())
5524     return SDValue();
5525   // Transform a scalar load that is REPLICATEd as well as having other
5526   // use(s) to the form where the other use(s) use the first element of the
5527   // REPLICATE instead of the load. Otherwise instruction selection will not
5528   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5529   // point loads.
5530 
5531   SDValue Replicate;
5532   SmallVector<SDNode*, 8> OtherUses;
5533   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5534        UI != UE; ++UI) {
5535     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5536       if (Replicate)
5537         return SDValue(); // Should never happen
5538       Replicate = SDValue(*UI, 0);
5539     }
5540     else if (UI.getUse().getResNo() == 0)
5541       OtherUses.push_back(*UI);
5542   }
5543   if (!Replicate || OtherUses.empty())
5544     return SDValue();
5545 
5546   SDLoc DL(N);
5547   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5548                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5549   // Update uses of the loaded Value while preserving old chains.
5550   for (SDNode *U : OtherUses) {
5551     SmallVector<SDValue, 8> Ops;
5552     for (SDValue Op : U->ops())
5553       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5554     DAG.UpdateNodeOperands(U, Ops);
5555   }
5556   return SDValue(N, 0);
5557 }
5558 
5559 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5560   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5561     return true;
5562   if (Subtarget.hasVectorEnhancements2())
5563     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5564       return true;
5565   return false;
5566 }
5567 
5568 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5569   if (!VT.isVector() || !VT.isSimple() ||
5570       VT.getSizeInBits() != 128 ||
5571       VT.getScalarSizeInBits() % 8 != 0)
5572     return false;
5573 
5574   unsigned NumElts = VT.getVectorNumElements();
5575   for (unsigned i = 0; i < NumElts; ++i) {
5576     if (M[i] < 0) continue; // ignore UNDEF indices
5577     if ((unsigned) M[i] != NumElts - 1 - i)
5578       return false;
5579   }
5580 
5581   return true;
5582 }
5583 
5584 SDValue SystemZTargetLowering::combineSTORE(
5585     SDNode *N, DAGCombinerInfo &DCI) const {
5586   SelectionDAG &DAG = DCI.DAG;
5587   auto *SN = cast<StoreSDNode>(N);
5588   auto &Op1 = N->getOperand(1);
5589   EVT MemVT = SN->getMemoryVT();
5590   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5591   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5592   // If X has wider elements then convert it to:
5593   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5594   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5595     if (SDValue Value =
5596             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5597       DCI.AddToWorklist(Value.getNode());
5598 
5599       // Rewrite the store with the new form of stored value.
5600       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5601                                SN->getBasePtr(), SN->getMemoryVT(),
5602                                SN->getMemOperand());
5603     }
5604   }
5605   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5606   if (!SN->isTruncatingStore() &&
5607       Op1.getOpcode() == ISD::BSWAP &&
5608       Op1.getNode()->hasOneUse() &&
5609       canLoadStoreByteSwapped(Op1.getValueType())) {
5610 
5611       SDValue BSwapOp = Op1.getOperand(0);
5612 
5613       if (BSwapOp.getValueType() == MVT::i16)
5614         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5615 
5616       SDValue Ops[] = {
5617         N->getOperand(0), BSwapOp, N->getOperand(2)
5618       };
5619 
5620       return
5621         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5622                                 Ops, MemVT, SN->getMemOperand());
5623     }
5624   // Combine STORE (element-swap) into VSTER
5625   if (!SN->isTruncatingStore() &&
5626       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5627       Op1.getNode()->hasOneUse() &&
5628       Subtarget.hasVectorEnhancements2()) {
5629     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5630     ArrayRef<int> ShuffleMask = SVN->getMask();
5631     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5632       SDValue Ops[] = {
5633         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5634       };
5635 
5636       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5637                                      DAG.getVTList(MVT::Other),
5638                                      Ops, MemVT, SN->getMemOperand());
5639     }
5640   }
5641 
5642   return SDValue();
5643 }
5644 
5645 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5646     SDNode *N, DAGCombinerInfo &DCI) const {
5647   SelectionDAG &DAG = DCI.DAG;
5648   // Combine element-swap (LOAD) into VLER
5649   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5650       N->getOperand(0).hasOneUse() &&
5651       Subtarget.hasVectorEnhancements2()) {
5652     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5653     ArrayRef<int> ShuffleMask = SVN->getMask();
5654     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5655       SDValue Load = N->getOperand(0);
5656       LoadSDNode *LD = cast<LoadSDNode>(Load);
5657 
5658       // Create the element-swapping load.
5659       SDValue Ops[] = {
5660         LD->getChain(),    // Chain
5661         LD->getBasePtr()   // Ptr
5662       };
5663       SDValue ESLoad =
5664         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5665                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5666                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5667 
5668       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5669       // by the load dead.
5670       DCI.CombineTo(N, ESLoad);
5671 
5672       // Next, combine the load away, we give it a bogus result value but a real
5673       // chain result.  The result value is dead because the shuffle is dead.
5674       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5675 
5676       // Return N so it doesn't get rechecked!
5677       return SDValue(N, 0);
5678     }
5679   }
5680 
5681   return SDValue();
5682 }
5683 
5684 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5685     SDNode *N, DAGCombinerInfo &DCI) const {
5686   SelectionDAG &DAG = DCI.DAG;
5687 
5688   if (!Subtarget.hasVector())
5689     return SDValue();
5690 
5691   // Look through bitcasts that retain the number of vector elements.
5692   SDValue Op = N->getOperand(0);
5693   if (Op.getOpcode() == ISD::BITCAST &&
5694       Op.getValueType().isVector() &&
5695       Op.getOperand(0).getValueType().isVector() &&
5696       Op.getValueType().getVectorNumElements() ==
5697       Op.getOperand(0).getValueType().getVectorNumElements())
5698     Op = Op.getOperand(0);
5699 
5700   // Pull BSWAP out of a vector extraction.
5701   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5702     EVT VecVT = Op.getValueType();
5703     EVT EltVT = VecVT.getVectorElementType();
5704     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5705                      Op.getOperand(0), N->getOperand(1));
5706     DCI.AddToWorklist(Op.getNode());
5707     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5708     if (EltVT != N->getValueType(0)) {
5709       DCI.AddToWorklist(Op.getNode());
5710       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5711     }
5712     return Op;
5713   }
5714 
5715   // Try to simplify a vector extraction.
5716   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5717     SDValue Op0 = N->getOperand(0);
5718     EVT VecVT = Op0.getValueType();
5719     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5720                           IndexN->getZExtValue(), DCI, false);
5721   }
5722   return SDValue();
5723 }
5724 
5725 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5726     SDNode *N, DAGCombinerInfo &DCI) const {
5727   SelectionDAG &DAG = DCI.DAG;
5728   // (join_dwords X, X) == (replicate X)
5729   if (N->getOperand(0) == N->getOperand(1))
5730     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5731                        N->getOperand(0));
5732   return SDValue();
5733 }
5734 
5735 SDValue SystemZTargetLowering::combineFP_ROUND(
5736     SDNode *N, DAGCombinerInfo &DCI) const {
5737 
5738   if (!Subtarget.hasVector())
5739     return SDValue();
5740 
5741   // (fpround (extract_vector_elt X 0))
5742   // (fpround (extract_vector_elt X 1)) ->
5743   // (extract_vector_elt (VROUND X) 0)
5744   // (extract_vector_elt (VROUND X) 2)
5745   //
5746   // This is a special case since the target doesn't really support v2f32s.
5747   SelectionDAG &DAG = DCI.DAG;
5748   SDValue Op0 = N->getOperand(0);
5749   if (N->getValueType(0) == MVT::f32 &&
5750       Op0.hasOneUse() &&
5751       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5752       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5753       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5754       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5755     SDValue Vec = Op0.getOperand(0);
5756     for (auto *U : Vec->uses()) {
5757       if (U != Op0.getNode() &&
5758           U->hasOneUse() &&
5759           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5760           U->getOperand(0) == Vec &&
5761           U->getOperand(1).getOpcode() == ISD::Constant &&
5762           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5763         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5764         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5765             OtherRound.getOperand(0) == SDValue(U, 0) &&
5766             OtherRound.getValueType() == MVT::f32) {
5767           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5768                                        MVT::v4f32, Vec);
5769           DCI.AddToWorklist(VRound.getNode());
5770           SDValue Extract1 =
5771             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5772                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5773           DCI.AddToWorklist(Extract1.getNode());
5774           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5775           SDValue Extract0 =
5776             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5777                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5778           return Extract0;
5779         }
5780       }
5781     }
5782   }
5783   return SDValue();
5784 }
5785 
5786 SDValue SystemZTargetLowering::combineFP_EXTEND(
5787     SDNode *N, DAGCombinerInfo &DCI) const {
5788 
5789   if (!Subtarget.hasVector())
5790     return SDValue();
5791 
5792   // (fpextend (extract_vector_elt X 0))
5793   // (fpextend (extract_vector_elt X 2)) ->
5794   // (extract_vector_elt (VEXTEND X) 0)
5795   // (extract_vector_elt (VEXTEND X) 1)
5796   //
5797   // This is a special case since the target doesn't really support v2f32s.
5798   SelectionDAG &DAG = DCI.DAG;
5799   SDValue Op0 = N->getOperand(0);
5800   if (N->getValueType(0) == MVT::f64 &&
5801       Op0.hasOneUse() &&
5802       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5803       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
5804       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5805       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5806     SDValue Vec = Op0.getOperand(0);
5807     for (auto *U : Vec->uses()) {
5808       if (U != Op0.getNode() &&
5809           U->hasOneUse() &&
5810           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5811           U->getOperand(0) == Vec &&
5812           U->getOperand(1).getOpcode() == ISD::Constant &&
5813           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
5814         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
5815         if (OtherExtend.getOpcode() == ISD::FP_EXTEND &&
5816             OtherExtend.getOperand(0) == SDValue(U, 0) &&
5817             OtherExtend.getValueType() == MVT::f64) {
5818           SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
5819                                         MVT::v2f64, Vec);
5820           DCI.AddToWorklist(VExtend.getNode());
5821           SDValue Extract1 =
5822             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
5823                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
5824           DCI.AddToWorklist(Extract1.getNode());
5825           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
5826           SDValue Extract0 =
5827             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
5828                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5829           return Extract0;
5830         }
5831       }
5832     }
5833   }
5834   return SDValue();
5835 }
5836 
5837 SDValue SystemZTargetLowering::combineBSWAP(
5838     SDNode *N, DAGCombinerInfo &DCI) const {
5839   SelectionDAG &DAG = DCI.DAG;
5840   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
5841   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5842       N->getOperand(0).hasOneUse() &&
5843       canLoadStoreByteSwapped(N->getValueType(0))) {
5844       SDValue Load = N->getOperand(0);
5845       LoadSDNode *LD = cast<LoadSDNode>(Load);
5846 
5847       // Create the byte-swapping load.
5848       SDValue Ops[] = {
5849         LD->getChain(),    // Chain
5850         LD->getBasePtr()   // Ptr
5851       };
5852       EVT LoadVT = N->getValueType(0);
5853       if (LoadVT == MVT::i16)
5854         LoadVT = MVT::i32;
5855       SDValue BSLoad =
5856         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5857                                 DAG.getVTList(LoadVT, MVT::Other),
5858                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5859 
5860       // If this is an i16 load, insert the truncate.
5861       SDValue ResVal = BSLoad;
5862       if (N->getValueType(0) == MVT::i16)
5863         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5864 
5865       // First, combine the bswap away.  This makes the value produced by the
5866       // load dead.
5867       DCI.CombineTo(N, ResVal);
5868 
5869       // Next, combine the load away, we give it a bogus result value but a real
5870       // chain result.  The result value is dead because the bswap is dead.
5871       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5872 
5873       // Return N so it doesn't get rechecked!
5874       return SDValue(N, 0);
5875     }
5876 
5877   // Look through bitcasts that retain the number of vector elements.
5878   SDValue Op = N->getOperand(0);
5879   if (Op.getOpcode() == ISD::BITCAST &&
5880       Op.getValueType().isVector() &&
5881       Op.getOperand(0).getValueType().isVector() &&
5882       Op.getValueType().getVectorNumElements() ==
5883       Op.getOperand(0).getValueType().getVectorNumElements())
5884     Op = Op.getOperand(0);
5885 
5886   // Push BSWAP into a vector insertion if at least one side then simplifies.
5887   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
5888     SDValue Vec = Op.getOperand(0);
5889     SDValue Elt = Op.getOperand(1);
5890     SDValue Idx = Op.getOperand(2);
5891 
5892     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
5893         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
5894         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
5895         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
5896         (canLoadStoreByteSwapped(N->getValueType(0)) &&
5897          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
5898       EVT VecVT = N->getValueType(0);
5899       EVT EltVT = N->getValueType(0).getVectorElementType();
5900       if (VecVT != Vec.getValueType()) {
5901         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
5902         DCI.AddToWorklist(Vec.getNode());
5903       }
5904       if (EltVT != Elt.getValueType()) {
5905         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
5906         DCI.AddToWorklist(Elt.getNode());
5907       }
5908       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
5909       DCI.AddToWorklist(Vec.getNode());
5910       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
5911       DCI.AddToWorklist(Elt.getNode());
5912       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
5913                          Vec, Elt, Idx);
5914     }
5915   }
5916 
5917   // Push BSWAP into a vector shuffle if at least one side then simplifies.
5918   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
5919   if (SV && Op.hasOneUse()) {
5920     SDValue Op0 = Op.getOperand(0);
5921     SDValue Op1 = Op.getOperand(1);
5922 
5923     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
5924         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
5925         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
5926         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
5927       EVT VecVT = N->getValueType(0);
5928       if (VecVT != Op0.getValueType()) {
5929         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
5930         DCI.AddToWorklist(Op0.getNode());
5931       }
5932       if (VecVT != Op1.getValueType()) {
5933         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
5934         DCI.AddToWorklist(Op1.getNode());
5935       }
5936       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
5937       DCI.AddToWorklist(Op0.getNode());
5938       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
5939       DCI.AddToWorklist(Op1.getNode());
5940       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
5941     }
5942   }
5943 
5944   return SDValue();
5945 }
5946 
5947 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5948   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5949   // set by the CCReg instruction using the CCValid / CCMask masks,
5950   // If the CCReg instruction is itself a ICMP testing the condition
5951   // code set by some other instruction, see whether we can directly
5952   // use that condition code.
5953 
5954   // Verify that we have an ICMP against some constant.
5955   if (CCValid != SystemZ::CCMASK_ICMP)
5956     return false;
5957   auto *ICmp = CCReg.getNode();
5958   if (ICmp->getOpcode() != SystemZISD::ICMP)
5959     return false;
5960   auto *CompareLHS = ICmp->getOperand(0).getNode();
5961   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5962   if (!CompareRHS)
5963     return false;
5964 
5965   // Optimize the case where CompareLHS is a SELECT_CCMASK.
5966   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
5967     // Verify that we have an appropriate mask for a EQ or NE comparison.
5968     bool Invert = false;
5969     if (CCMask == SystemZ::CCMASK_CMP_NE)
5970       Invert = !Invert;
5971     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5972       return false;
5973 
5974     // Verify that the ICMP compares against one of select values.
5975     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
5976     if (!TrueVal)
5977       return false;
5978     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5979     if (!FalseVal)
5980       return false;
5981     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
5982       Invert = !Invert;
5983     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
5984       return false;
5985 
5986     // Compute the effective CC mask for the new branch or select.
5987     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
5988     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
5989     if (!NewCCValid || !NewCCMask)
5990       return false;
5991     CCValid = NewCCValid->getZExtValue();
5992     CCMask = NewCCMask->getZExtValue();
5993     if (Invert)
5994       CCMask ^= CCValid;
5995 
5996     // Return the updated CCReg link.
5997     CCReg = CompareLHS->getOperand(4);
5998     return true;
5999   }
6000 
6001   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6002   if (CompareLHS->getOpcode() == ISD::SRA) {
6003     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6004     if (!SRACount || SRACount->getZExtValue() != 30)
6005       return false;
6006     auto *SHL = CompareLHS->getOperand(0).getNode();
6007     if (SHL->getOpcode() != ISD::SHL)
6008       return false;
6009     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6010     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6011       return false;
6012     auto *IPM = SHL->getOperand(0).getNode();
6013     if (IPM->getOpcode() != SystemZISD::IPM)
6014       return false;
6015 
6016     // Avoid introducing CC spills (because SRA would clobber CC).
6017     if (!CompareLHS->hasOneUse())
6018       return false;
6019     // Verify that the ICMP compares against zero.
6020     if (CompareRHS->getZExtValue() != 0)
6021       return false;
6022 
6023     // Compute the effective CC mask for the new branch or select.
6024     switch (CCMask) {
6025     case SystemZ::CCMASK_CMP_EQ: break;
6026     case SystemZ::CCMASK_CMP_NE: break;
6027     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6028     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6029     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6030     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6031     default: return false;
6032     }
6033 
6034     // Return the updated CCReg link.
6035     CCReg = IPM->getOperand(0);
6036     return true;
6037   }
6038 
6039   return false;
6040 }
6041 
6042 SDValue SystemZTargetLowering::combineBR_CCMASK(
6043     SDNode *N, DAGCombinerInfo &DCI) const {
6044   SelectionDAG &DAG = DCI.DAG;
6045 
6046   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6047   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6048   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6049   if (!CCValid || !CCMask)
6050     return SDValue();
6051 
6052   int CCValidVal = CCValid->getZExtValue();
6053   int CCMaskVal = CCMask->getZExtValue();
6054   SDValue Chain = N->getOperand(0);
6055   SDValue CCReg = N->getOperand(4);
6056 
6057   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6058     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6059                        Chain,
6060                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
6061                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
6062                        N->getOperand(3), CCReg);
6063   return SDValue();
6064 }
6065 
6066 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6067     SDNode *N, DAGCombinerInfo &DCI) const {
6068   SelectionDAG &DAG = DCI.DAG;
6069 
6070   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6071   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6072   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6073   if (!CCValid || !CCMask)
6074     return SDValue();
6075 
6076   int CCValidVal = CCValid->getZExtValue();
6077   int CCMaskVal = CCMask->getZExtValue();
6078   SDValue CCReg = N->getOperand(4);
6079 
6080   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6081     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6082                        N->getOperand(0),
6083                        N->getOperand(1),
6084                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
6085                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
6086                        CCReg);
6087   return SDValue();
6088 }
6089 
6090 
6091 SDValue SystemZTargetLowering::combineGET_CCMASK(
6092     SDNode *N, DAGCombinerInfo &DCI) const {
6093 
6094   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6095   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6096   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6097   if (!CCValid || !CCMask)
6098     return SDValue();
6099   int CCValidVal = CCValid->getZExtValue();
6100   int CCMaskVal = CCMask->getZExtValue();
6101 
6102   SDValue Select = N->getOperand(0);
6103   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6104     return SDValue();
6105 
6106   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6107   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6108   if (!SelectCCValid || !SelectCCMask)
6109     return SDValue();
6110   int SelectCCValidVal = SelectCCValid->getZExtValue();
6111   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6112 
6113   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6114   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6115   if (!TrueVal || !FalseVal)
6116     return SDValue();
6117   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6118     ;
6119   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6120     SelectCCMaskVal ^= SelectCCValidVal;
6121   else
6122     return SDValue();
6123 
6124   if (SelectCCValidVal & ~CCValidVal)
6125     return SDValue();
6126   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6127     return SDValue();
6128 
6129   return Select->getOperand(4);
6130 }
6131 
6132 SDValue SystemZTargetLowering::combineIntDIVREM(
6133     SDNode *N, DAGCombinerInfo &DCI) const {
6134   SelectionDAG &DAG = DCI.DAG;
6135   EVT VT = N->getValueType(0);
6136   // In the case where the divisor is a vector of constants a cheaper
6137   // sequence of instructions can replace the divide. BuildSDIV is called to
6138   // do this during DAG combining, but it only succeeds when it can build a
6139   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6140   // since it is not Legal but Custom it can only happen before
6141   // legalization. Therefore we must scalarize this early before Combine
6142   // 1. For widened vectors, this is already the result of type legalization.
6143   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6144       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6145     return DAG.UnrollVectorOp(N);
6146   return SDValue();
6147 }
6148 
6149 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6150   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6151     return N->getOperand(0);
6152   return N;
6153 }
6154 
6155 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6156                                                  DAGCombinerInfo &DCI) const {
6157   switch(N->getOpcode()) {
6158   default: break;
6159   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6160   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6161   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6162   case SystemZISD::MERGE_HIGH:
6163   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6164   case ISD::LOAD:               return combineLOAD(N, DCI);
6165   case ISD::STORE:              return combineSTORE(N, DCI);
6166   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6167   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6168   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6169   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6170   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6171   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6172   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6173   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6174   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6175   case ISD::SDIV:
6176   case ISD::UDIV:
6177   case ISD::SREM:
6178   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6179   }
6180 
6181   return SDValue();
6182 }
6183 
6184 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6185 // are for Op.
6186 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6187                                     unsigned OpNo) {
6188   EVT VT = Op.getValueType();
6189   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6190   APInt SrcDemE;
6191   unsigned Opcode = Op.getOpcode();
6192   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6193     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6194     switch (Id) {
6195     case Intrinsic::s390_vpksh:   // PACKS
6196     case Intrinsic::s390_vpksf:
6197     case Intrinsic::s390_vpksg:
6198     case Intrinsic::s390_vpkshs:  // PACKS_CC
6199     case Intrinsic::s390_vpksfs:
6200     case Intrinsic::s390_vpksgs:
6201     case Intrinsic::s390_vpklsh:  // PACKLS
6202     case Intrinsic::s390_vpklsf:
6203     case Intrinsic::s390_vpklsg:
6204     case Intrinsic::s390_vpklshs: // PACKLS_CC
6205     case Intrinsic::s390_vpklsfs:
6206     case Intrinsic::s390_vpklsgs:
6207       // VECTOR PACK truncates the elements of two source vectors into one.
6208       SrcDemE = DemandedElts;
6209       if (OpNo == 2)
6210         SrcDemE.lshrInPlace(NumElts / 2);
6211       SrcDemE = SrcDemE.trunc(NumElts / 2);
6212       break;
6213       // VECTOR UNPACK extends half the elements of the source vector.
6214     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6215     case Intrinsic::s390_vuphh:
6216     case Intrinsic::s390_vuphf:
6217     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6218     case Intrinsic::s390_vuplhh:
6219     case Intrinsic::s390_vuplhf:
6220       SrcDemE = APInt(NumElts * 2, 0);
6221       SrcDemE.insertBits(DemandedElts, 0);
6222       break;
6223     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6224     case Intrinsic::s390_vuplhw:
6225     case Intrinsic::s390_vuplf:
6226     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6227     case Intrinsic::s390_vupllh:
6228     case Intrinsic::s390_vupllf:
6229       SrcDemE = APInt(NumElts * 2, 0);
6230       SrcDemE.insertBits(DemandedElts, NumElts);
6231       break;
6232     case Intrinsic::s390_vpdi: {
6233       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6234       SrcDemE = APInt(NumElts, 0);
6235       if (!DemandedElts[OpNo - 1])
6236         break;
6237       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6238       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6239       // Demand input element 0 or 1, given by the mask bit value.
6240       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6241       break;
6242     }
6243     case Intrinsic::s390_vsldb: {
6244       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6245       assert(VT == MVT::v16i8 && "Unexpected type.");
6246       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6247       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6248       unsigned NumSrc0Els = 16 - FirstIdx;
6249       SrcDemE = APInt(NumElts, 0);
6250       if (OpNo == 1) {
6251         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6252         SrcDemE.insertBits(DemEls, FirstIdx);
6253       } else {
6254         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6255         SrcDemE.insertBits(DemEls, 0);
6256       }
6257       break;
6258     }
6259     case Intrinsic::s390_vperm:
6260       SrcDemE = APInt(NumElts, 1);
6261       break;
6262     default:
6263       llvm_unreachable("Unhandled intrinsic.");
6264       break;
6265     }
6266   } else {
6267     switch (Opcode) {
6268     case SystemZISD::JOIN_DWORDS:
6269       // Scalar operand.
6270       SrcDemE = APInt(1, 1);
6271       break;
6272     case SystemZISD::SELECT_CCMASK:
6273       SrcDemE = DemandedElts;
6274       break;
6275     default:
6276       llvm_unreachable("Unhandled opcode.");
6277       break;
6278     }
6279   }
6280   return SrcDemE;
6281 }
6282 
6283 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6284                                   const APInt &DemandedElts,
6285                                   const SelectionDAG &DAG, unsigned Depth,
6286                                   unsigned OpNo) {
6287   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6288   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6289   KnownBits LHSKnown =
6290       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6291   KnownBits RHSKnown =
6292       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6293   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6294   Known.One = LHSKnown.One & RHSKnown.One;
6295 }
6296 
6297 void
6298 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6299                                                      KnownBits &Known,
6300                                                      const APInt &DemandedElts,
6301                                                      const SelectionDAG &DAG,
6302                                                      unsigned Depth) const {
6303   Known.resetAll();
6304 
6305   // Intrinsic CC result is returned in the two low bits.
6306   unsigned tmp0, tmp1; // not used
6307   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6308     Known.Zero.setBitsFrom(2);
6309     return;
6310   }
6311   EVT VT = Op.getValueType();
6312   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6313     return;
6314   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6315           "KnownBits does not match VT in bitwidth");
6316   assert ((!VT.isVector() ||
6317            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6318           "DemandedElts does not match VT number of elements");
6319   unsigned BitWidth = Known.getBitWidth();
6320   unsigned Opcode = Op.getOpcode();
6321   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6322     bool IsLogical = false;
6323     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6324     switch (Id) {
6325     case Intrinsic::s390_vpksh:   // PACKS
6326     case Intrinsic::s390_vpksf:
6327     case Intrinsic::s390_vpksg:
6328     case Intrinsic::s390_vpkshs:  // PACKS_CC
6329     case Intrinsic::s390_vpksfs:
6330     case Intrinsic::s390_vpksgs:
6331     case Intrinsic::s390_vpklsh:  // PACKLS
6332     case Intrinsic::s390_vpklsf:
6333     case Intrinsic::s390_vpklsg:
6334     case Intrinsic::s390_vpklshs: // PACKLS_CC
6335     case Intrinsic::s390_vpklsfs:
6336     case Intrinsic::s390_vpklsgs:
6337     case Intrinsic::s390_vpdi:
6338     case Intrinsic::s390_vsldb:
6339     case Intrinsic::s390_vperm:
6340       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6341       break;
6342     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6343     case Intrinsic::s390_vuplhh:
6344     case Intrinsic::s390_vuplhf:
6345     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6346     case Intrinsic::s390_vupllh:
6347     case Intrinsic::s390_vupllf:
6348       IsLogical = true;
6349       LLVM_FALLTHROUGH;
6350     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6351     case Intrinsic::s390_vuphh:
6352     case Intrinsic::s390_vuphf:
6353     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6354     case Intrinsic::s390_vuplhw:
6355     case Intrinsic::s390_vuplf: {
6356       SDValue SrcOp = Op.getOperand(1);
6357       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6358       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6359       if (IsLogical) {
6360         Known = Known.zext(BitWidth, true);
6361       } else
6362         Known = Known.sext(BitWidth);
6363       break;
6364     }
6365     default:
6366       break;
6367     }
6368   } else {
6369     switch (Opcode) {
6370     case SystemZISD::JOIN_DWORDS:
6371     case SystemZISD::SELECT_CCMASK:
6372       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6373       break;
6374     case SystemZISD::REPLICATE: {
6375       SDValue SrcOp = Op.getOperand(0);
6376       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6377       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6378         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6379       break;
6380     }
6381     default:
6382       break;
6383     }
6384   }
6385 
6386   // Known has the width of the source operand(s). Adjust if needed to match
6387   // the passed bitwidth.
6388   if (Known.getBitWidth() != BitWidth)
6389     Known = Known.zextOrTrunc(BitWidth, false);
6390 }
6391 
6392 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6393                                         const SelectionDAG &DAG, unsigned Depth,
6394                                         unsigned OpNo) {
6395   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6396   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6397   if (LHS == 1) return 1; // Early out.
6398   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6399   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6400   if (RHS == 1) return 1; // Early out.
6401   unsigned Common = std::min(LHS, RHS);
6402   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6403   EVT VT = Op.getValueType();
6404   unsigned VTBits = VT.getScalarSizeInBits();
6405   if (SrcBitWidth > VTBits) { // PACK
6406     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6407     if (Common > SrcExtraBits)
6408       return (Common - SrcExtraBits);
6409     return 1;
6410   }
6411   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6412   return Common;
6413 }
6414 
6415 unsigned
6416 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6417     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6418     unsigned Depth) const {
6419   if (Op.getResNo() != 0)
6420     return 1;
6421   unsigned Opcode = Op.getOpcode();
6422   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6423     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6424     switch (Id) {
6425     case Intrinsic::s390_vpksh:   // PACKS
6426     case Intrinsic::s390_vpksf:
6427     case Intrinsic::s390_vpksg:
6428     case Intrinsic::s390_vpkshs:  // PACKS_CC
6429     case Intrinsic::s390_vpksfs:
6430     case Intrinsic::s390_vpksgs:
6431     case Intrinsic::s390_vpklsh:  // PACKLS
6432     case Intrinsic::s390_vpklsf:
6433     case Intrinsic::s390_vpklsg:
6434     case Intrinsic::s390_vpklshs: // PACKLS_CC
6435     case Intrinsic::s390_vpklsfs:
6436     case Intrinsic::s390_vpklsgs:
6437     case Intrinsic::s390_vpdi:
6438     case Intrinsic::s390_vsldb:
6439     case Intrinsic::s390_vperm:
6440       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6441     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6442     case Intrinsic::s390_vuphh:
6443     case Intrinsic::s390_vuphf:
6444     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6445     case Intrinsic::s390_vuplhw:
6446     case Intrinsic::s390_vuplf: {
6447       SDValue PackedOp = Op.getOperand(1);
6448       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6449       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6450       EVT VT = Op.getValueType();
6451       unsigned VTBits = VT.getScalarSizeInBits();
6452       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6453       return Tmp;
6454     }
6455     default:
6456       break;
6457     }
6458   } else {
6459     switch (Opcode) {
6460     case SystemZISD::SELECT_CCMASK:
6461       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6462     default:
6463       break;
6464     }
6465   }
6466 
6467   return 1;
6468 }
6469 
6470 //===----------------------------------------------------------------------===//
6471 // Custom insertion
6472 //===----------------------------------------------------------------------===//
6473 
6474 // Create a new basic block after MBB.
6475 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6476   MachineFunction &MF = *MBB->getParent();
6477   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6478   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6479   return NewMBB;
6480 }
6481 
6482 // Split MBB after MI and return the new block (the one that contains
6483 // instructions after MI).
6484 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6485                                           MachineBasicBlock *MBB) {
6486   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6487   NewMBB->splice(NewMBB->begin(), MBB,
6488                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6489   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6490   return NewMBB;
6491 }
6492 
6493 // Split MBB before MI and return the new block (the one that contains MI).
6494 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6495                                            MachineBasicBlock *MBB) {
6496   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6497   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6498   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6499   return NewMBB;
6500 }
6501 
6502 // Force base value Base into a register before MI.  Return the register.
6503 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6504                          const SystemZInstrInfo *TII) {
6505   if (Base.isReg())
6506     return Base.getReg();
6507 
6508   MachineBasicBlock *MBB = MI.getParent();
6509   MachineFunction &MF = *MBB->getParent();
6510   MachineRegisterInfo &MRI = MF.getRegInfo();
6511 
6512   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6513   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6514       .add(Base)
6515       .addImm(0)
6516       .addReg(0);
6517   return Reg;
6518 }
6519 
6520 // The CC operand of MI might be missing a kill marker because there
6521 // were multiple uses of CC, and ISel didn't know which to mark.
6522 // Figure out whether MI should have had a kill marker.
6523 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6524   // Scan forward through BB for a use/def of CC.
6525   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6526   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6527     const MachineInstr& mi = *miI;
6528     if (mi.readsRegister(SystemZ::CC))
6529       return false;
6530     if (mi.definesRegister(SystemZ::CC))
6531       break; // Should have kill-flag - update below.
6532   }
6533 
6534   // If we hit the end of the block, check whether CC is live into a
6535   // successor.
6536   if (miI == MBB->end()) {
6537     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6538       if ((*SI)->isLiveIn(SystemZ::CC))
6539         return false;
6540   }
6541 
6542   return true;
6543 }
6544 
6545 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6546 // together with other Select pseudo-opcodes into a single basic-block with
6547 // a conditional jump around it.
6548 static bool isSelectPseudo(MachineInstr &MI) {
6549   switch (MI.getOpcode()) {
6550   case SystemZ::Select32:
6551   case SystemZ::Select64:
6552   case SystemZ::SelectF32:
6553   case SystemZ::SelectF64:
6554   case SystemZ::SelectF128:
6555   case SystemZ::SelectVR32:
6556   case SystemZ::SelectVR64:
6557   case SystemZ::SelectVR128:
6558     return true;
6559 
6560   default:
6561     return false;
6562   }
6563 }
6564 
6565 // Helper function, which inserts PHI functions into SinkMBB:
6566 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6567 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6568 // in [MIItBegin, MIItEnd) range.
6569 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6570                                  MachineBasicBlock::iterator MIItEnd,
6571                                  MachineBasicBlock *TrueMBB,
6572                                  MachineBasicBlock *FalseMBB,
6573                                  MachineBasicBlock *SinkMBB) {
6574   MachineFunction *MF = TrueMBB->getParent();
6575   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6576 
6577   unsigned CCValid = MIItBegin->getOperand(3).getImm();
6578   unsigned CCMask = MIItBegin->getOperand(4).getImm();
6579   DebugLoc DL = MIItBegin->getDebugLoc();
6580 
6581   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6582 
6583   // As we are creating the PHIs, we have to be careful if there is more than
6584   // one.  Later Selects may reference the results of earlier Selects, but later
6585   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6586   // That also means that PHI construction must work forward from earlier to
6587   // later, and that the code must maintain a mapping from earlier PHI's
6588   // destination registers, and the registers that went into the PHI.
6589   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6590 
6591   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;
6592        MIIt = skipDebugInstructionsForward(++MIIt, MIItEnd)) {
6593     Register DestReg = MIIt->getOperand(0).getReg();
6594     Register TrueReg = MIIt->getOperand(1).getReg();
6595     Register FalseReg = MIIt->getOperand(2).getReg();
6596 
6597     // If this Select we are generating is the opposite condition from
6598     // the jump we generated, then we have to swap the operands for the
6599     // PHI that is going to be generated.
6600     if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6601       std::swap(TrueReg, FalseReg);
6602 
6603     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6604       TrueReg = RegRewriteTable[TrueReg].first;
6605 
6606     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6607       FalseReg = RegRewriteTable[FalseReg].second;
6608 
6609     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6610       .addReg(TrueReg).addMBB(TrueMBB)
6611       .addReg(FalseReg).addMBB(FalseMBB);
6612 
6613     // Add this PHI to the rewrite table.
6614     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6615   }
6616 
6617   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6618 }
6619 
6620 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6621 MachineBasicBlock *
6622 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6623                                   MachineBasicBlock *MBB) const {
6624   const SystemZInstrInfo *TII =
6625       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6626 
6627   unsigned CCValid = MI.getOperand(3).getImm();
6628   unsigned CCMask = MI.getOperand(4).getImm();
6629   DebugLoc DL = MI.getDebugLoc();
6630 
6631   // If we have a sequence of Select* pseudo instructions using the
6632   // same condition code value, we want to expand all of them into
6633   // a single pair of basic blocks using the same condition.
6634   MachineInstr *LastMI = &MI;
6635   MachineBasicBlock::iterator NextMIIt = skipDebugInstructionsForward(
6636       std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6637 
6638   if (isSelectPseudo(MI))
6639     while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6640            NextMIIt->getOperand(3).getImm() == CCValid &&
6641            (NextMIIt->getOperand(4).getImm() == CCMask ||
6642             NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6643       LastMI = &*NextMIIt;
6644       NextMIIt = skipDebugInstructionsForward(++NextMIIt, MBB->end());
6645     }
6646 
6647   MachineBasicBlock *StartMBB = MBB;
6648   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6649   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6650 
6651   // Unless CC was killed in the last Select instruction, mark it as
6652   // live-in to both FalseMBB and JoinMBB.
6653   if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6654     FalseMBB->addLiveIn(SystemZ::CC);
6655     JoinMBB->addLiveIn(SystemZ::CC);
6656   }
6657 
6658   //  StartMBB:
6659   //   BRC CCMask, JoinMBB
6660   //   # fallthrough to FalseMBB
6661   MBB = StartMBB;
6662   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6663     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6664   MBB->addSuccessor(JoinMBB);
6665   MBB->addSuccessor(FalseMBB);
6666 
6667   //  FalseMBB:
6668   //   # fallthrough to JoinMBB
6669   MBB = FalseMBB;
6670   MBB->addSuccessor(JoinMBB);
6671 
6672   //  JoinMBB:
6673   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6674   //  ...
6675   MBB = JoinMBB;
6676   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6677   MachineBasicBlock::iterator MIItEnd = skipDebugInstructionsForward(
6678       std::next(MachineBasicBlock::iterator(LastMI)), MBB->end());
6679   createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6680 
6681   StartMBB->erase(MIItBegin, MIItEnd);
6682   return JoinMBB;
6683 }
6684 
6685 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6686 // StoreOpcode is the store to use and Invert says whether the store should
6687 // happen when the condition is false rather than true.  If a STORE ON
6688 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6689 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6690                                                         MachineBasicBlock *MBB,
6691                                                         unsigned StoreOpcode,
6692                                                         unsigned STOCOpcode,
6693                                                         bool Invert) const {
6694   const SystemZInstrInfo *TII =
6695       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6696 
6697   Register SrcReg = MI.getOperand(0).getReg();
6698   MachineOperand Base = MI.getOperand(1);
6699   int64_t Disp = MI.getOperand(2).getImm();
6700   Register IndexReg = MI.getOperand(3).getReg();
6701   unsigned CCValid = MI.getOperand(4).getImm();
6702   unsigned CCMask = MI.getOperand(5).getImm();
6703   DebugLoc DL = MI.getDebugLoc();
6704 
6705   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6706 
6707   // Use STOCOpcode if possible.  We could use different store patterns in
6708   // order to avoid matching the index register, but the performance trade-offs
6709   // might be more complicated in that case.
6710   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6711     if (Invert)
6712       CCMask ^= CCValid;
6713 
6714     // ISel pattern matching also adds a load memory operand of the same
6715     // address, so take special care to find the storing memory operand.
6716     MachineMemOperand *MMO = nullptr;
6717     for (auto *I : MI.memoperands())
6718       if (I->isStore()) {
6719           MMO = I;
6720           break;
6721         }
6722 
6723     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6724       .addReg(SrcReg)
6725       .add(Base)
6726       .addImm(Disp)
6727       .addImm(CCValid)
6728       .addImm(CCMask)
6729       .addMemOperand(MMO);
6730 
6731     MI.eraseFromParent();
6732     return MBB;
6733   }
6734 
6735   // Get the condition needed to branch around the store.
6736   if (!Invert)
6737     CCMask ^= CCValid;
6738 
6739   MachineBasicBlock *StartMBB = MBB;
6740   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6741   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6742 
6743   // Unless CC was killed in the CondStore instruction, mark it as
6744   // live-in to both FalseMBB and JoinMBB.
6745   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6746     FalseMBB->addLiveIn(SystemZ::CC);
6747     JoinMBB->addLiveIn(SystemZ::CC);
6748   }
6749 
6750   //  StartMBB:
6751   //   BRC CCMask, JoinMBB
6752   //   # fallthrough to FalseMBB
6753   MBB = StartMBB;
6754   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6755     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6756   MBB->addSuccessor(JoinMBB);
6757   MBB->addSuccessor(FalseMBB);
6758 
6759   //  FalseMBB:
6760   //   store %SrcReg, %Disp(%Index,%Base)
6761   //   # fallthrough to JoinMBB
6762   MBB = FalseMBB;
6763   BuildMI(MBB, DL, TII->get(StoreOpcode))
6764       .addReg(SrcReg)
6765       .add(Base)
6766       .addImm(Disp)
6767       .addReg(IndexReg);
6768   MBB->addSuccessor(JoinMBB);
6769 
6770   MI.eraseFromParent();
6771   return JoinMBB;
6772 }
6773 
6774 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6775 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
6776 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6777 // BitSize is the width of the field in bits, or 0 if this is a partword
6778 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6779 // is one of the operands.  Invert says whether the field should be
6780 // inverted after performing BinOpcode (e.g. for NAND).
6781 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6782     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6783     unsigned BitSize, bool Invert) const {
6784   MachineFunction &MF = *MBB->getParent();
6785   const SystemZInstrInfo *TII =
6786       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6787   MachineRegisterInfo &MRI = MF.getRegInfo();
6788   bool IsSubWord = (BitSize < 32);
6789 
6790   // Extract the operands.  Base can be a register or a frame index.
6791   // Src2 can be a register or immediate.
6792   Register Dest = MI.getOperand(0).getReg();
6793   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6794   int64_t Disp = MI.getOperand(2).getImm();
6795   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6796   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
6797   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
6798   DebugLoc DL = MI.getDebugLoc();
6799   if (IsSubWord)
6800     BitSize = MI.getOperand(6).getImm();
6801 
6802   // Subword operations use 32-bit registers.
6803   const TargetRegisterClass *RC = (BitSize <= 32 ?
6804                                    &SystemZ::GR32BitRegClass :
6805                                    &SystemZ::GR64BitRegClass);
6806   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6807   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6808 
6809   // Get the right opcodes for the displacement.
6810   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6811   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6812   assert(LOpcode && CSOpcode && "Displacement out of range");
6813 
6814   // Create virtual registers for temporary results.
6815   Register OrigVal       = MRI.createVirtualRegister(RC);
6816   Register OldVal        = MRI.createVirtualRegister(RC);
6817   Register NewVal        = (BinOpcode || IsSubWord ?
6818                             MRI.createVirtualRegister(RC) : Src2.getReg());
6819   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6820   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6821 
6822   // Insert a basic block for the main loop.
6823   MachineBasicBlock *StartMBB = MBB;
6824   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6825   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6826 
6827   //  StartMBB:
6828   //   ...
6829   //   %OrigVal = L Disp(%Base)
6830   //   # fall through to LoopMMB
6831   MBB = StartMBB;
6832   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6833   MBB->addSuccessor(LoopMBB);
6834 
6835   //  LoopMBB:
6836   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6837   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6838   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
6839   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6840   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6841   //   JNE LoopMBB
6842   //   # fall through to DoneMMB
6843   MBB = LoopMBB;
6844   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6845     .addReg(OrigVal).addMBB(StartMBB)
6846     .addReg(Dest).addMBB(LoopMBB);
6847   if (IsSubWord)
6848     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6849       .addReg(OldVal).addReg(BitShift).addImm(0);
6850   if (Invert) {
6851     // Perform the operation normally and then invert every bit of the field.
6852     Register Tmp = MRI.createVirtualRegister(RC);
6853     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6854     if (BitSize <= 32)
6855       // XILF with the upper BitSize bits set.
6856       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6857         .addReg(Tmp).addImm(-1U << (32 - BitSize));
6858     else {
6859       // Use LCGR and add -1 to the result, which is more compact than
6860       // an XILF, XILH pair.
6861       Register Tmp2 = MRI.createVirtualRegister(RC);
6862       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6863       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6864         .addReg(Tmp2).addImm(-1);
6865     }
6866   } else if (BinOpcode)
6867     // A simply binary operation.
6868     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6869         .addReg(RotatedOldVal)
6870         .add(Src2);
6871   else if (IsSubWord)
6872     // Use RISBG to rotate Src2 into position and use it to replace the
6873     // field in RotatedOldVal.
6874     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6875       .addReg(RotatedOldVal).addReg(Src2.getReg())
6876       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6877   if (IsSubWord)
6878     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6879       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6880   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6881       .addReg(OldVal)
6882       .addReg(NewVal)
6883       .add(Base)
6884       .addImm(Disp);
6885   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6886     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6887   MBB->addSuccessor(LoopMBB);
6888   MBB->addSuccessor(DoneMBB);
6889 
6890   MI.eraseFromParent();
6891   return DoneMBB;
6892 }
6893 
6894 // Implement EmitInstrWithCustomInserter for pseudo
6895 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
6896 // instruction that should be used to compare the current field with the
6897 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
6898 // for when the current field should be kept.  BitSize is the width of
6899 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6900 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6901     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6902     unsigned KeepOldMask, unsigned BitSize) const {
6903   MachineFunction &MF = *MBB->getParent();
6904   const SystemZInstrInfo *TII =
6905       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6906   MachineRegisterInfo &MRI = MF.getRegInfo();
6907   bool IsSubWord = (BitSize < 32);
6908 
6909   // Extract the operands.  Base can be a register or a frame index.
6910   Register Dest = MI.getOperand(0).getReg();
6911   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6912   int64_t Disp = MI.getOperand(2).getImm();
6913   Register Src2 = MI.getOperand(3).getReg();
6914   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
6915   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
6916   DebugLoc DL = MI.getDebugLoc();
6917   if (IsSubWord)
6918     BitSize = MI.getOperand(6).getImm();
6919 
6920   // Subword operations use 32-bit registers.
6921   const TargetRegisterClass *RC = (BitSize <= 32 ?
6922                                    &SystemZ::GR32BitRegClass :
6923                                    &SystemZ::GR64BitRegClass);
6924   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6925   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6926 
6927   // Get the right opcodes for the displacement.
6928   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6929   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6930   assert(LOpcode && CSOpcode && "Displacement out of range");
6931 
6932   // Create virtual registers for temporary results.
6933   Register OrigVal       = MRI.createVirtualRegister(RC);
6934   Register OldVal        = MRI.createVirtualRegister(RC);
6935   Register NewVal        = MRI.createVirtualRegister(RC);
6936   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6937   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6938   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6939 
6940   // Insert 3 basic blocks for the loop.
6941   MachineBasicBlock *StartMBB  = MBB;
6942   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
6943   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
6944   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6945   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6946 
6947   //  StartMBB:
6948   //   ...
6949   //   %OrigVal     = L Disp(%Base)
6950   //   # fall through to LoopMMB
6951   MBB = StartMBB;
6952   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6953   MBB->addSuccessor(LoopMBB);
6954 
6955   //  LoopMBB:
6956   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6957   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6958   //   CompareOpcode %RotatedOldVal, %Src2
6959   //   BRC KeepOldMask, UpdateMBB
6960   MBB = LoopMBB;
6961   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6962     .addReg(OrigVal).addMBB(StartMBB)
6963     .addReg(Dest).addMBB(UpdateMBB);
6964   if (IsSubWord)
6965     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6966       .addReg(OldVal).addReg(BitShift).addImm(0);
6967   BuildMI(MBB, DL, TII->get(CompareOpcode))
6968     .addReg(RotatedOldVal).addReg(Src2);
6969   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6970     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6971   MBB->addSuccessor(UpdateMBB);
6972   MBB->addSuccessor(UseAltMBB);
6973 
6974   //  UseAltMBB:
6975   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6976   //   # fall through to UpdateMMB
6977   MBB = UseAltMBB;
6978   if (IsSubWord)
6979     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6980       .addReg(RotatedOldVal).addReg(Src2)
6981       .addImm(32).addImm(31 + BitSize).addImm(0);
6982   MBB->addSuccessor(UpdateMBB);
6983 
6984   //  UpdateMBB:
6985   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6986   //                        [ %RotatedAltVal, UseAltMBB ]
6987   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6988   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6989   //   JNE LoopMBB
6990   //   # fall through to DoneMMB
6991   MBB = UpdateMBB;
6992   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6993     .addReg(RotatedOldVal).addMBB(LoopMBB)
6994     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6995   if (IsSubWord)
6996     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6997       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6998   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6999       .addReg(OldVal)
7000       .addReg(NewVal)
7001       .add(Base)
7002       .addImm(Disp);
7003   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7004     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7005   MBB->addSuccessor(LoopMBB);
7006   MBB->addSuccessor(DoneMBB);
7007 
7008   MI.eraseFromParent();
7009   return DoneMBB;
7010 }
7011 
7012 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7013 // instruction MI.
7014 MachineBasicBlock *
7015 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7016                                           MachineBasicBlock *MBB) const {
7017 
7018   MachineFunction &MF = *MBB->getParent();
7019   const SystemZInstrInfo *TII =
7020       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7021   MachineRegisterInfo &MRI = MF.getRegInfo();
7022 
7023   // Extract the operands.  Base can be a register or a frame index.
7024   Register Dest = MI.getOperand(0).getReg();
7025   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7026   int64_t Disp = MI.getOperand(2).getImm();
7027   Register OrigCmpVal = MI.getOperand(3).getReg();
7028   Register OrigSwapVal = MI.getOperand(4).getReg();
7029   Register BitShift = MI.getOperand(5).getReg();
7030   Register NegBitShift = MI.getOperand(6).getReg();
7031   int64_t BitSize = MI.getOperand(7).getImm();
7032   DebugLoc DL = MI.getDebugLoc();
7033 
7034   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7035 
7036   // Get the right opcodes for the displacement.
7037   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7038   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7039   assert(LOpcode && CSOpcode && "Displacement out of range");
7040 
7041   // Create virtual registers for temporary results.
7042   Register OrigOldVal = MRI.createVirtualRegister(RC);
7043   Register OldVal = MRI.createVirtualRegister(RC);
7044   Register CmpVal = MRI.createVirtualRegister(RC);
7045   Register SwapVal = MRI.createVirtualRegister(RC);
7046   Register StoreVal = MRI.createVirtualRegister(RC);
7047   Register RetryOldVal = MRI.createVirtualRegister(RC);
7048   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7049   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7050 
7051   // Insert 2 basic blocks for the loop.
7052   MachineBasicBlock *StartMBB = MBB;
7053   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7054   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7055   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7056 
7057   //  StartMBB:
7058   //   ...
7059   //   %OrigOldVal     = L Disp(%Base)
7060   //   # fall through to LoopMMB
7061   MBB = StartMBB;
7062   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7063       .add(Base)
7064       .addImm(Disp)
7065       .addReg(0);
7066   MBB->addSuccessor(LoopMBB);
7067 
7068   //  LoopMBB:
7069   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7070   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7071   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7072   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7073   //                      ^^ The low BitSize bits contain the field
7074   //                         of interest.
7075   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7076   //                      ^^ Replace the upper 32-BitSize bits of the
7077   //                         comparison value with those that we loaded,
7078   //                         so that we can use a full word comparison.
7079   //   CR %Dest, %RetryCmpVal
7080   //   JNE DoneMBB
7081   //   # Fall through to SetMBB
7082   MBB = LoopMBB;
7083   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7084     .addReg(OrigOldVal).addMBB(StartMBB)
7085     .addReg(RetryOldVal).addMBB(SetMBB);
7086   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7087     .addReg(OrigCmpVal).addMBB(StartMBB)
7088     .addReg(RetryCmpVal).addMBB(SetMBB);
7089   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7090     .addReg(OrigSwapVal).addMBB(StartMBB)
7091     .addReg(RetrySwapVal).addMBB(SetMBB);
7092   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7093     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7094   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7095     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7096   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7097     .addReg(Dest).addReg(RetryCmpVal);
7098   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7099     .addImm(SystemZ::CCMASK_ICMP)
7100     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7101   MBB->addSuccessor(DoneMBB);
7102   MBB->addSuccessor(SetMBB);
7103 
7104   //  SetMBB:
7105   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7106   //                      ^^ Replace the upper 32-BitSize bits of the new
7107   //                         value with those that we loaded.
7108   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7109   //                      ^^ Rotate the new field to its proper position.
7110   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7111   //   JNE LoopMBB
7112   //   # fall through to ExitMMB
7113   MBB = SetMBB;
7114   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7115     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7116   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7117     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7118   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7119       .addReg(OldVal)
7120       .addReg(StoreVal)
7121       .add(Base)
7122       .addImm(Disp);
7123   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7124     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7125   MBB->addSuccessor(LoopMBB);
7126   MBB->addSuccessor(DoneMBB);
7127 
7128   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7129   // to the block after the loop.  At this point, CC may have been defined
7130   // either by the CR in LoopMBB or by the CS in SetMBB.
7131   if (!MI.registerDefIsDead(SystemZ::CC))
7132     DoneMBB->addLiveIn(SystemZ::CC);
7133 
7134   MI.eraseFromParent();
7135   return DoneMBB;
7136 }
7137 
7138 // Emit a move from two GR64s to a GR128.
7139 MachineBasicBlock *
7140 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7141                                    MachineBasicBlock *MBB) const {
7142   MachineFunction &MF = *MBB->getParent();
7143   const SystemZInstrInfo *TII =
7144       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7145   MachineRegisterInfo &MRI = MF.getRegInfo();
7146   DebugLoc DL = MI.getDebugLoc();
7147 
7148   Register Dest = MI.getOperand(0).getReg();
7149   Register Hi = MI.getOperand(1).getReg();
7150   Register Lo = MI.getOperand(2).getReg();
7151   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7152   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7153 
7154   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7155   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7156     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7157   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7158     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7159 
7160   MI.eraseFromParent();
7161   return MBB;
7162 }
7163 
7164 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7165 // if the high register of the GR128 value must be cleared or false if
7166 // it's "don't care".
7167 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7168                                                      MachineBasicBlock *MBB,
7169                                                      bool ClearEven) const {
7170   MachineFunction &MF = *MBB->getParent();
7171   const SystemZInstrInfo *TII =
7172       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7173   MachineRegisterInfo &MRI = MF.getRegInfo();
7174   DebugLoc DL = MI.getDebugLoc();
7175 
7176   Register Dest = MI.getOperand(0).getReg();
7177   Register Src = MI.getOperand(1).getReg();
7178   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7179 
7180   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7181   if (ClearEven) {
7182     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7183     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7184 
7185     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7186       .addImm(0);
7187     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7188       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7189     In128 = NewIn128;
7190   }
7191   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7192     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7193 
7194   MI.eraseFromParent();
7195   return MBB;
7196 }
7197 
7198 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7199     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7200   MachineFunction &MF = *MBB->getParent();
7201   const SystemZInstrInfo *TII =
7202       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7203   MachineRegisterInfo &MRI = MF.getRegInfo();
7204   DebugLoc DL = MI.getDebugLoc();
7205 
7206   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7207   uint64_t DestDisp = MI.getOperand(1).getImm();
7208   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7209   uint64_t SrcDisp = MI.getOperand(3).getImm();
7210   uint64_t Length = MI.getOperand(4).getImm();
7211 
7212   // When generating more than one CLC, all but the last will need to
7213   // branch to the end when a difference is found.
7214   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7215                                splitBlockAfter(MI, MBB) : nullptr);
7216 
7217   // Check for the loop form, in which operand 5 is the trip count.
7218   if (MI.getNumExplicitOperands() > 5) {
7219     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7220 
7221     Register StartCountReg = MI.getOperand(5).getReg();
7222     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7223     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7224                               forceReg(MI, DestBase, TII));
7225 
7226     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7227     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7228     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7229                             MRI.createVirtualRegister(RC));
7230     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7231     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7232                             MRI.createVirtualRegister(RC));
7233 
7234     RC = &SystemZ::GR64BitRegClass;
7235     Register ThisCountReg = MRI.createVirtualRegister(RC);
7236     Register NextCountReg = MRI.createVirtualRegister(RC);
7237 
7238     MachineBasicBlock *StartMBB = MBB;
7239     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7240     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7241     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7242 
7243     //  StartMBB:
7244     //   # fall through to LoopMMB
7245     MBB->addSuccessor(LoopMBB);
7246 
7247     //  LoopMBB:
7248     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7249     //                      [ %NextDestReg, NextMBB ]
7250     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7251     //                     [ %NextSrcReg, NextMBB ]
7252     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7253     //                       [ %NextCountReg, NextMBB ]
7254     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7255     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7256     //   ( JLH EndMBB )
7257     //
7258     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7259     MBB = LoopMBB;
7260 
7261     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7262       .addReg(StartDestReg).addMBB(StartMBB)
7263       .addReg(NextDestReg).addMBB(NextMBB);
7264     if (!HaveSingleBase)
7265       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7266         .addReg(StartSrcReg).addMBB(StartMBB)
7267         .addReg(NextSrcReg).addMBB(NextMBB);
7268     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7269       .addReg(StartCountReg).addMBB(StartMBB)
7270       .addReg(NextCountReg).addMBB(NextMBB);
7271     if (Opcode == SystemZ::MVC)
7272       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7273         .addImm(SystemZ::PFD_WRITE)
7274         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7275     BuildMI(MBB, DL, TII->get(Opcode))
7276       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7277       .addReg(ThisSrcReg).addImm(SrcDisp);
7278     if (EndMBB) {
7279       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7280         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7281         .addMBB(EndMBB);
7282       MBB->addSuccessor(EndMBB);
7283       MBB->addSuccessor(NextMBB);
7284     }
7285 
7286     // NextMBB:
7287     //   %NextDestReg = LA 256(%ThisDestReg)
7288     //   %NextSrcReg = LA 256(%ThisSrcReg)
7289     //   %NextCountReg = AGHI %ThisCountReg, -1
7290     //   CGHI %NextCountReg, 0
7291     //   JLH LoopMBB
7292     //   # fall through to DoneMMB
7293     //
7294     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7295     MBB = NextMBB;
7296 
7297     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7298       .addReg(ThisDestReg).addImm(256).addReg(0);
7299     if (!HaveSingleBase)
7300       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7301         .addReg(ThisSrcReg).addImm(256).addReg(0);
7302     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7303       .addReg(ThisCountReg).addImm(-1);
7304     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7305       .addReg(NextCountReg).addImm(0);
7306     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7307       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7308       .addMBB(LoopMBB);
7309     MBB->addSuccessor(LoopMBB);
7310     MBB->addSuccessor(DoneMBB);
7311 
7312     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7313     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7314     Length &= 255;
7315     if (EndMBB && !Length)
7316       // If the loop handled the whole CLC range, DoneMBB will be empty with
7317       // CC live-through into EndMBB, so add it as live-in.
7318       DoneMBB->addLiveIn(SystemZ::CC);
7319     MBB = DoneMBB;
7320   }
7321   // Handle any remaining bytes with straight-line code.
7322   while (Length > 0) {
7323     uint64_t ThisLength = std::min(Length, uint64_t(256));
7324     // The previous iteration might have created out-of-range displacements.
7325     // Apply them using LAY if so.
7326     if (!isUInt<12>(DestDisp)) {
7327       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7328       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7329           .add(DestBase)
7330           .addImm(DestDisp)
7331           .addReg(0);
7332       DestBase = MachineOperand::CreateReg(Reg, false);
7333       DestDisp = 0;
7334     }
7335     if (!isUInt<12>(SrcDisp)) {
7336       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7337       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7338           .add(SrcBase)
7339           .addImm(SrcDisp)
7340           .addReg(0);
7341       SrcBase = MachineOperand::CreateReg(Reg, false);
7342       SrcDisp = 0;
7343     }
7344     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7345         .add(DestBase)
7346         .addImm(DestDisp)
7347         .addImm(ThisLength)
7348         .add(SrcBase)
7349         .addImm(SrcDisp)
7350         .setMemRefs(MI.memoperands());
7351     DestDisp += ThisLength;
7352     SrcDisp += ThisLength;
7353     Length -= ThisLength;
7354     // If there's another CLC to go, branch to the end if a difference
7355     // was found.
7356     if (EndMBB && Length > 0) {
7357       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7358       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7359         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7360         .addMBB(EndMBB);
7361       MBB->addSuccessor(EndMBB);
7362       MBB->addSuccessor(NextMBB);
7363       MBB = NextMBB;
7364     }
7365   }
7366   if (EndMBB) {
7367     MBB->addSuccessor(EndMBB);
7368     MBB = EndMBB;
7369     MBB->addLiveIn(SystemZ::CC);
7370   }
7371 
7372   MI.eraseFromParent();
7373   return MBB;
7374 }
7375 
7376 // Decompose string pseudo-instruction MI into a loop that continually performs
7377 // Opcode until CC != 3.
7378 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7379     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7380   MachineFunction &MF = *MBB->getParent();
7381   const SystemZInstrInfo *TII =
7382       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7383   MachineRegisterInfo &MRI = MF.getRegInfo();
7384   DebugLoc DL = MI.getDebugLoc();
7385 
7386   uint64_t End1Reg = MI.getOperand(0).getReg();
7387   uint64_t Start1Reg = MI.getOperand(1).getReg();
7388   uint64_t Start2Reg = MI.getOperand(2).getReg();
7389   uint64_t CharReg = MI.getOperand(3).getReg();
7390 
7391   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7392   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7393   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7394   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7395 
7396   MachineBasicBlock *StartMBB = MBB;
7397   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7398   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7399 
7400   //  StartMBB:
7401   //   # fall through to LoopMMB
7402   MBB->addSuccessor(LoopMBB);
7403 
7404   //  LoopMBB:
7405   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7406   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7407   //   R0L = %CharReg
7408   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7409   //   JO LoopMBB
7410   //   # fall through to DoneMMB
7411   //
7412   // The load of R0L can be hoisted by post-RA LICM.
7413   MBB = LoopMBB;
7414 
7415   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7416     .addReg(Start1Reg).addMBB(StartMBB)
7417     .addReg(End1Reg).addMBB(LoopMBB);
7418   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7419     .addReg(Start2Reg).addMBB(StartMBB)
7420     .addReg(End2Reg).addMBB(LoopMBB);
7421   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7422   BuildMI(MBB, DL, TII->get(Opcode))
7423     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7424     .addReg(This1Reg).addReg(This2Reg);
7425   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7426     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7427   MBB->addSuccessor(LoopMBB);
7428   MBB->addSuccessor(DoneMBB);
7429 
7430   DoneMBB->addLiveIn(SystemZ::CC);
7431 
7432   MI.eraseFromParent();
7433   return DoneMBB;
7434 }
7435 
7436 // Update TBEGIN instruction with final opcode and register clobbers.
7437 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7438     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7439     bool NoFloat) const {
7440   MachineFunction &MF = *MBB->getParent();
7441   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7442   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7443 
7444   // Update opcode.
7445   MI.setDesc(TII->get(Opcode));
7446 
7447   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7448   // Make sure to add the corresponding GRSM bits if they are missing.
7449   uint64_t Control = MI.getOperand(2).getImm();
7450   static const unsigned GPRControlBit[16] = {
7451     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7452     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7453   };
7454   Control |= GPRControlBit[15];
7455   if (TFI->hasFP(MF))
7456     Control |= GPRControlBit[11];
7457   MI.getOperand(2).setImm(Control);
7458 
7459   // Add GPR clobbers.
7460   for (int I = 0; I < 16; I++) {
7461     if ((Control & GPRControlBit[I]) == 0) {
7462       unsigned Reg = SystemZMC::GR64Regs[I];
7463       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7464     }
7465   }
7466 
7467   // Add FPR/VR clobbers.
7468   if (!NoFloat && (Control & 4) != 0) {
7469     if (Subtarget.hasVector()) {
7470       for (int I = 0; I < 32; I++) {
7471         unsigned Reg = SystemZMC::VR128Regs[I];
7472         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7473       }
7474     } else {
7475       for (int I = 0; I < 16; I++) {
7476         unsigned Reg = SystemZMC::FP64Regs[I];
7477         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7478       }
7479     }
7480   }
7481 
7482   return MBB;
7483 }
7484 
7485 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7486     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7487   MachineFunction &MF = *MBB->getParent();
7488   MachineRegisterInfo *MRI = &MF.getRegInfo();
7489   const SystemZInstrInfo *TII =
7490       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7491   DebugLoc DL = MI.getDebugLoc();
7492 
7493   Register SrcReg = MI.getOperand(0).getReg();
7494 
7495   // Create new virtual register of the same class as source.
7496   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7497   Register DstReg = MRI->createVirtualRegister(RC);
7498 
7499   // Replace pseudo with a normal load-and-test that models the def as
7500   // well.
7501   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7502     .addReg(SrcReg);
7503   MI.eraseFromParent();
7504 
7505   return MBB;
7506 }
7507 
7508 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7509     MachineInstr &MI, MachineBasicBlock *MBB) const {
7510   switch (MI.getOpcode()) {
7511   case SystemZ::Select32:
7512   case SystemZ::Select64:
7513   case SystemZ::SelectF32:
7514   case SystemZ::SelectF64:
7515   case SystemZ::SelectF128:
7516   case SystemZ::SelectVR32:
7517   case SystemZ::SelectVR64:
7518   case SystemZ::SelectVR128:
7519     return emitSelect(MI, MBB);
7520 
7521   case SystemZ::CondStore8Mux:
7522     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7523   case SystemZ::CondStore8MuxInv:
7524     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7525   case SystemZ::CondStore16Mux:
7526     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7527   case SystemZ::CondStore16MuxInv:
7528     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7529   case SystemZ::CondStore32Mux:
7530     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7531   case SystemZ::CondStore32MuxInv:
7532     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7533   case SystemZ::CondStore8:
7534     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7535   case SystemZ::CondStore8Inv:
7536     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7537   case SystemZ::CondStore16:
7538     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7539   case SystemZ::CondStore16Inv:
7540     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7541   case SystemZ::CondStore32:
7542     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7543   case SystemZ::CondStore32Inv:
7544     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7545   case SystemZ::CondStore64:
7546     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7547   case SystemZ::CondStore64Inv:
7548     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7549   case SystemZ::CondStoreF32:
7550     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7551   case SystemZ::CondStoreF32Inv:
7552     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7553   case SystemZ::CondStoreF64:
7554     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7555   case SystemZ::CondStoreF64Inv:
7556     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7557 
7558   case SystemZ::PAIR128:
7559     return emitPair128(MI, MBB);
7560   case SystemZ::AEXT128:
7561     return emitExt128(MI, MBB, false);
7562   case SystemZ::ZEXT128:
7563     return emitExt128(MI, MBB, true);
7564 
7565   case SystemZ::ATOMIC_SWAPW:
7566     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7567   case SystemZ::ATOMIC_SWAP_32:
7568     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7569   case SystemZ::ATOMIC_SWAP_64:
7570     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7571 
7572   case SystemZ::ATOMIC_LOADW_AR:
7573     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7574   case SystemZ::ATOMIC_LOADW_AFI:
7575     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7576   case SystemZ::ATOMIC_LOAD_AR:
7577     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7578   case SystemZ::ATOMIC_LOAD_AHI:
7579     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7580   case SystemZ::ATOMIC_LOAD_AFI:
7581     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7582   case SystemZ::ATOMIC_LOAD_AGR:
7583     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7584   case SystemZ::ATOMIC_LOAD_AGHI:
7585     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7586   case SystemZ::ATOMIC_LOAD_AGFI:
7587     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7588 
7589   case SystemZ::ATOMIC_LOADW_SR:
7590     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7591   case SystemZ::ATOMIC_LOAD_SR:
7592     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7593   case SystemZ::ATOMIC_LOAD_SGR:
7594     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7595 
7596   case SystemZ::ATOMIC_LOADW_NR:
7597     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7598   case SystemZ::ATOMIC_LOADW_NILH:
7599     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7600   case SystemZ::ATOMIC_LOAD_NR:
7601     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7602   case SystemZ::ATOMIC_LOAD_NILL:
7603     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7604   case SystemZ::ATOMIC_LOAD_NILH:
7605     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7606   case SystemZ::ATOMIC_LOAD_NILF:
7607     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7608   case SystemZ::ATOMIC_LOAD_NGR:
7609     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7610   case SystemZ::ATOMIC_LOAD_NILL64:
7611     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7612   case SystemZ::ATOMIC_LOAD_NILH64:
7613     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7614   case SystemZ::ATOMIC_LOAD_NIHL64:
7615     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7616   case SystemZ::ATOMIC_LOAD_NIHH64:
7617     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7618   case SystemZ::ATOMIC_LOAD_NILF64:
7619     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7620   case SystemZ::ATOMIC_LOAD_NIHF64:
7621     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7622 
7623   case SystemZ::ATOMIC_LOADW_OR:
7624     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7625   case SystemZ::ATOMIC_LOADW_OILH:
7626     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7627   case SystemZ::ATOMIC_LOAD_OR:
7628     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7629   case SystemZ::ATOMIC_LOAD_OILL:
7630     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7631   case SystemZ::ATOMIC_LOAD_OILH:
7632     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7633   case SystemZ::ATOMIC_LOAD_OILF:
7634     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7635   case SystemZ::ATOMIC_LOAD_OGR:
7636     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7637   case SystemZ::ATOMIC_LOAD_OILL64:
7638     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7639   case SystemZ::ATOMIC_LOAD_OILH64:
7640     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7641   case SystemZ::ATOMIC_LOAD_OIHL64:
7642     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7643   case SystemZ::ATOMIC_LOAD_OIHH64:
7644     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7645   case SystemZ::ATOMIC_LOAD_OILF64:
7646     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7647   case SystemZ::ATOMIC_LOAD_OIHF64:
7648     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7649 
7650   case SystemZ::ATOMIC_LOADW_XR:
7651     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7652   case SystemZ::ATOMIC_LOADW_XILF:
7653     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7654   case SystemZ::ATOMIC_LOAD_XR:
7655     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7656   case SystemZ::ATOMIC_LOAD_XILF:
7657     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7658   case SystemZ::ATOMIC_LOAD_XGR:
7659     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7660   case SystemZ::ATOMIC_LOAD_XILF64:
7661     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7662   case SystemZ::ATOMIC_LOAD_XIHF64:
7663     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7664 
7665   case SystemZ::ATOMIC_LOADW_NRi:
7666     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7667   case SystemZ::ATOMIC_LOADW_NILHi:
7668     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7669   case SystemZ::ATOMIC_LOAD_NRi:
7670     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7671   case SystemZ::ATOMIC_LOAD_NILLi:
7672     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7673   case SystemZ::ATOMIC_LOAD_NILHi:
7674     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7675   case SystemZ::ATOMIC_LOAD_NILFi:
7676     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7677   case SystemZ::ATOMIC_LOAD_NGRi:
7678     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7679   case SystemZ::ATOMIC_LOAD_NILL64i:
7680     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7681   case SystemZ::ATOMIC_LOAD_NILH64i:
7682     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7683   case SystemZ::ATOMIC_LOAD_NIHL64i:
7684     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7685   case SystemZ::ATOMIC_LOAD_NIHH64i:
7686     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7687   case SystemZ::ATOMIC_LOAD_NILF64i:
7688     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7689   case SystemZ::ATOMIC_LOAD_NIHF64i:
7690     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7691 
7692   case SystemZ::ATOMIC_LOADW_MIN:
7693     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7694                                 SystemZ::CCMASK_CMP_LE, 0);
7695   case SystemZ::ATOMIC_LOAD_MIN_32:
7696     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7697                                 SystemZ::CCMASK_CMP_LE, 32);
7698   case SystemZ::ATOMIC_LOAD_MIN_64:
7699     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7700                                 SystemZ::CCMASK_CMP_LE, 64);
7701 
7702   case SystemZ::ATOMIC_LOADW_MAX:
7703     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7704                                 SystemZ::CCMASK_CMP_GE, 0);
7705   case SystemZ::ATOMIC_LOAD_MAX_32:
7706     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7707                                 SystemZ::CCMASK_CMP_GE, 32);
7708   case SystemZ::ATOMIC_LOAD_MAX_64:
7709     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7710                                 SystemZ::CCMASK_CMP_GE, 64);
7711 
7712   case SystemZ::ATOMIC_LOADW_UMIN:
7713     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7714                                 SystemZ::CCMASK_CMP_LE, 0);
7715   case SystemZ::ATOMIC_LOAD_UMIN_32:
7716     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7717                                 SystemZ::CCMASK_CMP_LE, 32);
7718   case SystemZ::ATOMIC_LOAD_UMIN_64:
7719     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7720                                 SystemZ::CCMASK_CMP_LE, 64);
7721 
7722   case SystemZ::ATOMIC_LOADW_UMAX:
7723     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7724                                 SystemZ::CCMASK_CMP_GE, 0);
7725   case SystemZ::ATOMIC_LOAD_UMAX_32:
7726     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7727                                 SystemZ::CCMASK_CMP_GE, 32);
7728   case SystemZ::ATOMIC_LOAD_UMAX_64:
7729     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7730                                 SystemZ::CCMASK_CMP_GE, 64);
7731 
7732   case SystemZ::ATOMIC_CMP_SWAPW:
7733     return emitAtomicCmpSwapW(MI, MBB);
7734   case SystemZ::MVCSequence:
7735   case SystemZ::MVCLoop:
7736     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7737   case SystemZ::NCSequence:
7738   case SystemZ::NCLoop:
7739     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7740   case SystemZ::OCSequence:
7741   case SystemZ::OCLoop:
7742     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7743   case SystemZ::XCSequence:
7744   case SystemZ::XCLoop:
7745     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7746   case SystemZ::CLCSequence:
7747   case SystemZ::CLCLoop:
7748     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7749   case SystemZ::CLSTLoop:
7750     return emitStringWrapper(MI, MBB, SystemZ::CLST);
7751   case SystemZ::MVSTLoop:
7752     return emitStringWrapper(MI, MBB, SystemZ::MVST);
7753   case SystemZ::SRSTLoop:
7754     return emitStringWrapper(MI, MBB, SystemZ::SRST);
7755   case SystemZ::TBEGIN:
7756     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7757   case SystemZ::TBEGIN_nofloat:
7758     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7759   case SystemZ::TBEGINC:
7760     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7761   case SystemZ::LTEBRCompare_VecPseudo:
7762     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7763   case SystemZ::LTDBRCompare_VecPseudo:
7764     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7765   case SystemZ::LTXBRCompare_VecPseudo:
7766     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7767 
7768   case TargetOpcode::STACKMAP:
7769   case TargetOpcode::PATCHPOINT:
7770     return emitPatchPoint(MI, MBB);
7771 
7772   default:
7773     llvm_unreachable("Unexpected instr type to insert");
7774   }
7775 }
7776 
7777 // This is only used by the isel schedulers, and is needed only to prevent
7778 // compiler from crashing when list-ilp is used.
7779 const TargetRegisterClass *
7780 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7781   if (VT == MVT::Untyped)
7782     return &SystemZ::ADDR128BitRegClass;
7783   return TargetLowering::getRepRegClassFor(VT);
7784 }
7785