1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents information about a comparison. 34 struct Comparison { 35 Comparison(SDValue Op0In, SDValue Op1In) 36 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 37 38 // The operands to the comparison. 39 SDValue Op0, Op1; 40 41 // The opcode that should be used to compare Op0 and Op1. 42 unsigned Opcode; 43 44 // A SystemZICMP value. Only used for integer comparisons. 45 unsigned ICmpType; 46 47 // The mask of CC values that Opcode can produce. 48 unsigned CCValid; 49 50 // The mask of CC values for which the original condition is true. 51 unsigned CCMask; 52 }; 53 } // end anonymous namespace 54 55 // Classify VT as either 32 or 64 bit. 56 static bool is32Bit(EVT VT) { 57 switch (VT.getSimpleVT().SimpleTy) { 58 case MVT::i32: 59 return true; 60 case MVT::i64: 61 return false; 62 default: 63 llvm_unreachable("Unsupported type"); 64 } 65 } 66 67 // Return a version of MachineOperand that can be safely used before the 68 // final use. 69 static MachineOperand earlyUseOperand(MachineOperand Op) { 70 if (Op.isReg()) 71 Op.setIsKill(false); 72 return Op; 73 } 74 75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 76 const SystemZSubtarget &STI) 77 : TargetLowering(TM), Subtarget(STI) { 78 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 79 80 // Set up the register classes. 81 if (Subtarget.hasHighWord()) 82 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 83 else 84 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 85 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 86 if (Subtarget.hasVector()) { 87 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 88 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 89 } else { 90 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 91 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 92 } 93 if (Subtarget.hasVectorEnhancements1()) 94 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 95 else 96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 97 98 if (Subtarget.hasVector()) { 99 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 100 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 105 } 106 107 // Compute derived properties from the register classes 108 computeRegisterProperties(Subtarget.getRegisterInfo()); 109 110 // Set up special registers. 111 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 112 113 // TODO: It may be better to default to latency-oriented scheduling, however 114 // LLVM's current latency-oriented scheduler can't handle physreg definitions 115 // such as SystemZ has with CC, so set this to the register-pressure 116 // scheduler, because it can. 117 setSchedulingPreference(Sched::RegPressure); 118 119 setBooleanContents(ZeroOrOneBooleanContent); 120 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 121 122 // Instructions are strings of 2-byte aligned 2-byte values. 123 setMinFunctionAlignment(2); 124 // For performance reasons we prefer 16-byte alignment. 125 setPrefFunctionAlignment(4); 126 127 // Handle operations that are handled in a similar way for all types. 128 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 129 I <= MVT::LAST_FP_VALUETYPE; 130 ++I) { 131 MVT VT = MVT::SimpleValueType(I); 132 if (isTypeLegal(VT)) { 133 // Lower SET_CC into an IPM-based sequence. 134 setOperationAction(ISD::SETCC, VT, Custom); 135 136 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 137 setOperationAction(ISD::SELECT, VT, Expand); 138 139 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 140 setOperationAction(ISD::SELECT_CC, VT, Custom); 141 setOperationAction(ISD::BR_CC, VT, Custom); 142 } 143 } 144 145 // Expand jump table branches as address arithmetic followed by an 146 // indirect jump. 147 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 148 149 // Expand BRCOND into a BR_CC (see above). 150 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 151 152 // Handle integer types. 153 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 154 I <= MVT::LAST_INTEGER_VALUETYPE; 155 ++I) { 156 MVT VT = MVT::SimpleValueType(I); 157 if (isTypeLegal(VT)) { 158 // Expand individual DIV and REMs into DIVREMs. 159 setOperationAction(ISD::SDIV, VT, Expand); 160 setOperationAction(ISD::UDIV, VT, Expand); 161 setOperationAction(ISD::SREM, VT, Expand); 162 setOperationAction(ISD::UREM, VT, Expand); 163 setOperationAction(ISD::SDIVREM, VT, Custom); 164 setOperationAction(ISD::UDIVREM, VT, Custom); 165 166 // Support addition/subtraction with overflow. 167 setOperationAction(ISD::SADDO, VT, Custom); 168 setOperationAction(ISD::SSUBO, VT, Custom); 169 170 // Support addition/subtraction with carry. 171 setOperationAction(ISD::UADDO, VT, Custom); 172 setOperationAction(ISD::USUBO, VT, Custom); 173 174 // Support carry in as value rather than glue. 175 setOperationAction(ISD::ADDCARRY, VT, Custom); 176 setOperationAction(ISD::SUBCARRY, VT, Custom); 177 178 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 179 // stores, putting a serialization instruction after the stores. 180 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 181 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 182 183 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 184 // available, or if the operand is constant. 185 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 186 187 // Use POPCNT on z196 and above. 188 if (Subtarget.hasPopulationCount()) 189 setOperationAction(ISD::CTPOP, VT, Custom); 190 else 191 setOperationAction(ISD::CTPOP, VT, Expand); 192 193 // No special instructions for these. 194 setOperationAction(ISD::CTTZ, VT, Expand); 195 setOperationAction(ISD::ROTR, VT, Expand); 196 197 // Use *MUL_LOHI where possible instead of MULH*. 198 setOperationAction(ISD::MULHS, VT, Expand); 199 setOperationAction(ISD::MULHU, VT, Expand); 200 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 201 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 202 203 // Only z196 and above have native support for conversions to unsigned. 204 // On z10, promoting to i64 doesn't generate an inexact condition for 205 // values that are outside the i32 range but in the i64 range, so use 206 // the default expansion. 207 if (!Subtarget.hasFPExtension()) 208 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 209 } 210 } 211 212 // Type legalization will convert 8- and 16-bit atomic operations into 213 // forms that operate on i32s (but still keeping the original memory VT). 214 // Lower them into full i32 operations. 215 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 226 227 // Even though i128 is not a legal type, we still need to custom lower 228 // the atomic operations in order to exploit SystemZ instructions. 229 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 230 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 231 232 // We can use the CC result of compare-and-swap to implement 233 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 234 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 237 238 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 239 240 // Traps are legal, as we will convert them to "j .+2". 241 setOperationAction(ISD::TRAP, MVT::Other, Legal); 242 243 // z10 has instructions for signed but not unsigned FP conversion. 244 // Handle unsigned 32-bit types as signed 64-bit types. 245 if (!Subtarget.hasFPExtension()) { 246 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 247 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 248 } 249 250 // We have native support for a 64-bit CTLZ, via FLOGR. 251 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 252 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 253 254 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 255 setOperationAction(ISD::OR, MVT::i64, Custom); 256 257 // FIXME: Can we support these natively? 258 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 259 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 260 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 261 262 // We have native instructions for i8, i16 and i32 extensions, but not i1. 263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 264 for (MVT VT : MVT::integer_valuetypes()) { 265 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 266 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 267 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 268 } 269 270 // Handle the various types of symbolic address. 271 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 272 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 273 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 274 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 275 setOperationAction(ISD::JumpTable, PtrVT, Custom); 276 277 // We need to handle dynamic allocations specially because of the 278 // 160-byte area at the bottom of the stack. 279 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 280 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 281 282 // Use custom expanders so that we can force the function to use 283 // a frame pointer. 284 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 285 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 286 287 // Handle prefetches with PFD or PFDRL. 288 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 289 290 for (MVT VT : MVT::vector_valuetypes()) { 291 // Assume by default that all vector operations need to be expanded. 292 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 293 if (getOperationAction(Opcode, VT) == Legal) 294 setOperationAction(Opcode, VT, Expand); 295 296 // Likewise all truncating stores and extending loads. 297 for (MVT InnerVT : MVT::vector_valuetypes()) { 298 setTruncStoreAction(VT, InnerVT, Expand); 299 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 300 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 301 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 302 } 303 304 if (isTypeLegal(VT)) { 305 // These operations are legal for anything that can be stored in a 306 // vector register, even if there is no native support for the format 307 // as such. In particular, we can do these for v4f32 even though there 308 // are no specific instructions for that format. 309 setOperationAction(ISD::LOAD, VT, Legal); 310 setOperationAction(ISD::STORE, VT, Legal); 311 setOperationAction(ISD::VSELECT, VT, Legal); 312 setOperationAction(ISD::BITCAST, VT, Legal); 313 setOperationAction(ISD::UNDEF, VT, Legal); 314 315 // Likewise, except that we need to replace the nodes with something 316 // more specific. 317 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 318 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 319 } 320 } 321 322 // Handle integer vector types. 323 for (MVT VT : MVT::integer_vector_valuetypes()) { 324 if (isTypeLegal(VT)) { 325 // These operations have direct equivalents. 326 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 327 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 328 setOperationAction(ISD::ADD, VT, Legal); 329 setOperationAction(ISD::SUB, VT, Legal); 330 if (VT != MVT::v2i64) 331 setOperationAction(ISD::MUL, VT, Legal); 332 setOperationAction(ISD::AND, VT, Legal); 333 setOperationAction(ISD::OR, VT, Legal); 334 setOperationAction(ISD::XOR, VT, Legal); 335 if (Subtarget.hasVectorEnhancements1()) 336 setOperationAction(ISD::CTPOP, VT, Legal); 337 else 338 setOperationAction(ISD::CTPOP, VT, Custom); 339 setOperationAction(ISD::CTTZ, VT, Legal); 340 setOperationAction(ISD::CTLZ, VT, Legal); 341 342 // Convert a GPR scalar to a vector by inserting it into element 0. 343 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 344 345 // Use a series of unpacks for extensions. 346 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 347 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 348 349 // Detect shifts by a scalar amount and convert them into 350 // V*_BY_SCALAR. 351 setOperationAction(ISD::SHL, VT, Custom); 352 setOperationAction(ISD::SRA, VT, Custom); 353 setOperationAction(ISD::SRL, VT, Custom); 354 355 // At present ROTL isn't matched by DAGCombiner. ROTR should be 356 // converted into ROTL. 357 setOperationAction(ISD::ROTL, VT, Expand); 358 setOperationAction(ISD::ROTR, VT, Expand); 359 360 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 361 // and inverting the result as necessary. 362 setOperationAction(ISD::SETCC, VT, Custom); 363 } 364 } 365 366 if (Subtarget.hasVector()) { 367 // There should be no need to check for float types other than v2f64 368 // since <2 x f32> isn't a legal type. 369 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 370 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 371 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 372 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 373 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 374 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 375 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 376 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 377 } 378 379 // Handle floating-point types. 380 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 381 I <= MVT::LAST_FP_VALUETYPE; 382 ++I) { 383 MVT VT = MVT::SimpleValueType(I); 384 if (isTypeLegal(VT)) { 385 // We can use FI for FRINT. 386 setOperationAction(ISD::FRINT, VT, Legal); 387 388 // We can use the extended form of FI for other rounding operations. 389 if (Subtarget.hasFPExtension()) { 390 setOperationAction(ISD::FNEARBYINT, VT, Legal); 391 setOperationAction(ISD::FFLOOR, VT, Legal); 392 setOperationAction(ISD::FCEIL, VT, Legal); 393 setOperationAction(ISD::FTRUNC, VT, Legal); 394 setOperationAction(ISD::FROUND, VT, Legal); 395 } 396 397 // No special instructions for these. 398 setOperationAction(ISD::FSIN, VT, Expand); 399 setOperationAction(ISD::FCOS, VT, Expand); 400 setOperationAction(ISD::FSINCOS, VT, Expand); 401 setOperationAction(ISD::FREM, VT, Expand); 402 setOperationAction(ISD::FPOW, VT, Expand); 403 } 404 } 405 406 // Handle floating-point vector types. 407 if (Subtarget.hasVector()) { 408 // Scalar-to-vector conversion is just a subreg. 409 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 411 412 // Some insertions and extractions can be done directly but others 413 // need to go via integers. 414 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 416 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 418 419 // These operations have direct equivalents. 420 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 421 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 422 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 423 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 424 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 425 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 426 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 427 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 428 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 429 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 430 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 431 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 432 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 433 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 434 } 435 436 // The vector enhancements facility 1 has instructions for these. 437 if (Subtarget.hasVectorEnhancements1()) { 438 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 439 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 440 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 441 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 442 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 443 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 444 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 445 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 446 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 447 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 448 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 449 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 450 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 451 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 452 453 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 454 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 455 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 456 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 457 458 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 459 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 460 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 461 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 462 463 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 464 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 465 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 466 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 467 468 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 469 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 470 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 471 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 472 473 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 474 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 475 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 476 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 477 } 478 479 // We have fused multiply-addition for f32 and f64 but not f128. 480 setOperationAction(ISD::FMA, MVT::f32, Legal); 481 setOperationAction(ISD::FMA, MVT::f64, Legal); 482 if (Subtarget.hasVectorEnhancements1()) 483 setOperationAction(ISD::FMA, MVT::f128, Legal); 484 else 485 setOperationAction(ISD::FMA, MVT::f128, Expand); 486 487 // We don't have a copysign instruction on vector registers. 488 if (Subtarget.hasVectorEnhancements1()) 489 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 490 491 // Needed so that we don't try to implement f128 constant loads using 492 // a load-and-extend of a f80 constant (in cases where the constant 493 // would fit in an f80). 494 for (MVT VT : MVT::fp_valuetypes()) 495 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 496 497 // We don't have extending load instruction on vector registers. 498 if (Subtarget.hasVectorEnhancements1()) { 499 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 501 } 502 503 // Floating-point truncation and stores need to be done separately. 504 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 505 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 506 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 507 508 // We have 64-bit FPR<->GPR moves, but need special handling for 509 // 32-bit forms. 510 if (!Subtarget.hasVector()) { 511 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 512 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 513 } 514 515 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 516 // structure, but VAEND is a no-op. 517 setOperationAction(ISD::VASTART, MVT::Other, Custom); 518 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 519 setOperationAction(ISD::VAEND, MVT::Other, Expand); 520 521 // Codes for which we want to perform some z-specific combinations. 522 setTargetDAGCombine(ISD::ZERO_EXTEND); 523 setTargetDAGCombine(ISD::SIGN_EXTEND); 524 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 525 setTargetDAGCombine(ISD::LOAD); 526 setTargetDAGCombine(ISD::STORE); 527 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 528 setTargetDAGCombine(ISD::FP_ROUND); 529 setTargetDAGCombine(ISD::FP_EXTEND); 530 setTargetDAGCombine(ISD::BSWAP); 531 setTargetDAGCombine(ISD::SDIV); 532 setTargetDAGCombine(ISD::UDIV); 533 setTargetDAGCombine(ISD::SREM); 534 setTargetDAGCombine(ISD::UREM); 535 536 // Handle intrinsics. 537 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 538 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 539 540 // We want to use MVC in preference to even a single load/store pair. 541 MaxStoresPerMemcpy = 0; 542 MaxStoresPerMemcpyOptSize = 0; 543 544 // The main memset sequence is a byte store followed by an MVC. 545 // Two STC or MV..I stores win over that, but the kind of fused stores 546 // generated by target-independent code don't when the byte value is 547 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 548 // than "STC;MVC". Handle the choice in target-specific code instead. 549 MaxStoresPerMemset = 0; 550 MaxStoresPerMemsetOptSize = 0; 551 } 552 553 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 554 LLVMContext &, EVT VT) const { 555 if (!VT.isVector()) 556 return MVT::i32; 557 return VT.changeVectorElementTypeToInteger(); 558 } 559 560 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 561 VT = VT.getScalarType(); 562 563 if (!VT.isSimple()) 564 return false; 565 566 switch (VT.getSimpleVT().SimpleTy) { 567 case MVT::f32: 568 case MVT::f64: 569 return true; 570 case MVT::f128: 571 return Subtarget.hasVectorEnhancements1(); 572 default: 573 break; 574 } 575 576 return false; 577 } 578 579 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 580 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 581 return Imm.isZero() || Imm.isNegZero(); 582 } 583 584 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 585 // We can use CGFI or CLGFI. 586 return isInt<32>(Imm) || isUInt<32>(Imm); 587 } 588 589 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 590 // We can use ALGFI or SLGFI. 591 return isUInt<32>(Imm) || isUInt<32>(-Imm); 592 } 593 594 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 595 unsigned, 596 unsigned, 597 bool *Fast) const { 598 // Unaligned accesses should never be slower than the expanded version. 599 // We check specifically for aligned accesses in the few cases where 600 // they are required. 601 if (Fast) 602 *Fast = true; 603 return true; 604 } 605 606 // Information about the addressing mode for a memory access. 607 struct AddressingMode { 608 // True if a long displacement is supported. 609 bool LongDisplacement; 610 611 // True if use of index register is supported. 612 bool IndexReg; 613 614 AddressingMode(bool LongDispl, bool IdxReg) : 615 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 616 }; 617 618 // Return the desired addressing mode for a Load which has only one use (in 619 // the same block) which is a Store. 620 static AddressingMode getLoadStoreAddrMode(bool HasVector, 621 Type *Ty) { 622 // With vector support a Load->Store combination may be combined to either 623 // an MVC or vector operations and it seems to work best to allow the 624 // vector addressing mode. 625 if (HasVector) 626 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 627 628 // Otherwise only the MVC case is special. 629 bool MVC = Ty->isIntegerTy(8); 630 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 631 } 632 633 // Return the addressing mode which seems most desirable given an LLVM 634 // Instruction pointer. 635 static AddressingMode 636 supportedAddressingMode(Instruction *I, bool HasVector) { 637 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 638 switch (II->getIntrinsicID()) { 639 default: break; 640 case Intrinsic::memset: 641 case Intrinsic::memmove: 642 case Intrinsic::memcpy: 643 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 644 } 645 } 646 647 if (isa<LoadInst>(I) && I->hasOneUse()) { 648 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 649 if (SingleUser->getParent() == I->getParent()) { 650 if (isa<ICmpInst>(SingleUser)) { 651 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 652 if (C->getBitWidth() <= 64 && 653 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 654 // Comparison of memory with 16 bit signed / unsigned immediate 655 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 656 } else if (isa<StoreInst>(SingleUser)) 657 // Load->Store 658 return getLoadStoreAddrMode(HasVector, I->getType()); 659 } 660 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 661 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 662 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 663 // Load->Store 664 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 665 } 666 667 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 668 669 // * Use LDE instead of LE/LEY for z13 to avoid partial register 670 // dependencies (LDE only supports small offsets). 671 // * Utilize the vector registers to hold floating point 672 // values (vector load / store instructions only support small 673 // offsets). 674 675 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 676 I->getOperand(0)->getType()); 677 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 678 bool IsVectorAccess = MemAccessTy->isVectorTy(); 679 680 // A store of an extracted vector element will be combined into a VSTE type 681 // instruction. 682 if (!IsVectorAccess && isa<StoreInst>(I)) { 683 Value *DataOp = I->getOperand(0); 684 if (isa<ExtractElementInst>(DataOp)) 685 IsVectorAccess = true; 686 } 687 688 // A load which gets inserted into a vector element will be combined into a 689 // VLE type instruction. 690 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 691 User *LoadUser = *I->user_begin(); 692 if (isa<InsertElementInst>(LoadUser)) 693 IsVectorAccess = true; 694 } 695 696 if (IsFPAccess || IsVectorAccess) 697 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 698 } 699 700 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 701 } 702 703 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 704 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 705 // Punt on globals for now, although they can be used in limited 706 // RELATIVE LONG cases. 707 if (AM.BaseGV) 708 return false; 709 710 // Require a 20-bit signed offset. 711 if (!isInt<20>(AM.BaseOffs)) 712 return false; 713 714 AddressingMode SupportedAM(true, true); 715 if (I != nullptr) 716 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 717 718 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 719 return false; 720 721 if (!SupportedAM.IndexReg) 722 // No indexing allowed. 723 return AM.Scale == 0; 724 else 725 // Indexing is OK but no scale factor can be applied. 726 return AM.Scale == 0 || AM.Scale == 1; 727 } 728 729 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 730 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 731 return false; 732 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 733 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 734 return FromBits > ToBits; 735 } 736 737 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 738 if (!FromVT.isInteger() || !ToVT.isInteger()) 739 return false; 740 unsigned FromBits = FromVT.getSizeInBits(); 741 unsigned ToBits = ToVT.getSizeInBits(); 742 return FromBits > ToBits; 743 } 744 745 //===----------------------------------------------------------------------===// 746 // Inline asm support 747 //===----------------------------------------------------------------------===// 748 749 TargetLowering::ConstraintType 750 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 751 if (Constraint.size() == 1) { 752 switch (Constraint[0]) { 753 case 'a': // Address register 754 case 'd': // Data register (equivalent to 'r') 755 case 'f': // Floating-point register 756 case 'h': // High-part register 757 case 'r': // General-purpose register 758 case 'v': // Vector register 759 return C_RegisterClass; 760 761 case 'Q': // Memory with base and unsigned 12-bit displacement 762 case 'R': // Likewise, plus an index 763 case 'S': // Memory with base and signed 20-bit displacement 764 case 'T': // Likewise, plus an index 765 case 'm': // Equivalent to 'T'. 766 return C_Memory; 767 768 case 'I': // Unsigned 8-bit constant 769 case 'J': // Unsigned 12-bit constant 770 case 'K': // Signed 16-bit constant 771 case 'L': // Signed 20-bit displacement (on all targets we support) 772 case 'M': // 0x7fffffff 773 return C_Other; 774 775 default: 776 break; 777 } 778 } 779 return TargetLowering::getConstraintType(Constraint); 780 } 781 782 TargetLowering::ConstraintWeight SystemZTargetLowering:: 783 getSingleConstraintMatchWeight(AsmOperandInfo &info, 784 const char *constraint) const { 785 ConstraintWeight weight = CW_Invalid; 786 Value *CallOperandVal = info.CallOperandVal; 787 // If we don't have a value, we can't do a match, 788 // but allow it at the lowest weight. 789 if (!CallOperandVal) 790 return CW_Default; 791 Type *type = CallOperandVal->getType(); 792 // Look at the constraint type. 793 switch (*constraint) { 794 default: 795 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 796 break; 797 798 case 'a': // Address register 799 case 'd': // Data register (equivalent to 'r') 800 case 'h': // High-part register 801 case 'r': // General-purpose register 802 if (CallOperandVal->getType()->isIntegerTy()) 803 weight = CW_Register; 804 break; 805 806 case 'f': // Floating-point register 807 if (type->isFloatingPointTy()) 808 weight = CW_Register; 809 break; 810 811 case 'v': // Vector register 812 if ((type->isVectorTy() || type->isFloatingPointTy()) && 813 Subtarget.hasVector()) 814 weight = CW_Register; 815 break; 816 817 case 'I': // Unsigned 8-bit constant 818 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 819 if (isUInt<8>(C->getZExtValue())) 820 weight = CW_Constant; 821 break; 822 823 case 'J': // Unsigned 12-bit constant 824 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 825 if (isUInt<12>(C->getZExtValue())) 826 weight = CW_Constant; 827 break; 828 829 case 'K': // Signed 16-bit constant 830 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 831 if (isInt<16>(C->getSExtValue())) 832 weight = CW_Constant; 833 break; 834 835 case 'L': // Signed 20-bit displacement (on all targets we support) 836 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 837 if (isInt<20>(C->getSExtValue())) 838 weight = CW_Constant; 839 break; 840 841 case 'M': // 0x7fffffff 842 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 843 if (C->getZExtValue() == 0x7fffffff) 844 weight = CW_Constant; 845 break; 846 } 847 return weight; 848 } 849 850 // Parse a "{tNNN}" register constraint for which the register type "t" 851 // has already been verified. MC is the class associated with "t" and 852 // Map maps 0-based register numbers to LLVM register numbers. 853 static std::pair<unsigned, const TargetRegisterClass *> 854 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 855 const unsigned *Map, unsigned Size) { 856 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 857 if (isdigit(Constraint[2])) { 858 unsigned Index; 859 bool Failed = 860 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 861 if (!Failed && Index < Size && Map[Index]) 862 return std::make_pair(Map[Index], RC); 863 } 864 return std::make_pair(0U, nullptr); 865 } 866 867 std::pair<unsigned, const TargetRegisterClass *> 868 SystemZTargetLowering::getRegForInlineAsmConstraint( 869 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 870 if (Constraint.size() == 1) { 871 // GCC Constraint Letters 872 switch (Constraint[0]) { 873 default: break; 874 case 'd': // Data register (equivalent to 'r') 875 case 'r': // General-purpose register 876 if (VT == MVT::i64) 877 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 878 else if (VT == MVT::i128) 879 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 880 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 881 882 case 'a': // Address register 883 if (VT == MVT::i64) 884 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 885 else if (VT == MVT::i128) 886 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 887 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 888 889 case 'h': // High-part register (an LLVM extension) 890 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 891 892 case 'f': // Floating-point register 893 if (VT == MVT::f64) 894 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 895 else if (VT == MVT::f128) 896 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 897 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 898 899 case 'v': // Vector register 900 if (Subtarget.hasVector()) { 901 if (VT == MVT::f32) 902 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 903 if (VT == MVT::f64) 904 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 905 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 906 } 907 break; 908 } 909 } 910 if (Constraint.size() > 0 && Constraint[0] == '{') { 911 // We need to override the default register parsing for GPRs and FPRs 912 // because the interpretation depends on VT. The internal names of 913 // the registers are also different from the external names 914 // (F0D and F0S instead of F0, etc.). 915 if (Constraint[1] == 'r') { 916 if (VT == MVT::i32) 917 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 918 SystemZMC::GR32Regs, 16); 919 if (VT == MVT::i128) 920 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 921 SystemZMC::GR128Regs, 16); 922 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 923 SystemZMC::GR64Regs, 16); 924 } 925 if (Constraint[1] == 'f') { 926 if (VT == MVT::f32) 927 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 928 SystemZMC::FP32Regs, 16); 929 if (VT == MVT::f128) 930 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 931 SystemZMC::FP128Regs, 16); 932 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 933 SystemZMC::FP64Regs, 16); 934 } 935 if (Constraint[1] == 'v') { 936 if (VT == MVT::f32) 937 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 938 SystemZMC::VR32Regs, 32); 939 if (VT == MVT::f64) 940 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 941 SystemZMC::VR64Regs, 32); 942 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 943 SystemZMC::VR128Regs, 32); 944 } 945 } 946 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 947 } 948 949 void SystemZTargetLowering:: 950 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 951 std::vector<SDValue> &Ops, 952 SelectionDAG &DAG) const { 953 // Only support length 1 constraints for now. 954 if (Constraint.length() == 1) { 955 switch (Constraint[0]) { 956 case 'I': // Unsigned 8-bit constant 957 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 958 if (isUInt<8>(C->getZExtValue())) 959 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 960 Op.getValueType())); 961 return; 962 963 case 'J': // Unsigned 12-bit constant 964 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 965 if (isUInt<12>(C->getZExtValue())) 966 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 967 Op.getValueType())); 968 return; 969 970 case 'K': // Signed 16-bit constant 971 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 972 if (isInt<16>(C->getSExtValue())) 973 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 974 Op.getValueType())); 975 return; 976 977 case 'L': // Signed 20-bit displacement (on all targets we support) 978 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 979 if (isInt<20>(C->getSExtValue())) 980 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 981 Op.getValueType())); 982 return; 983 984 case 'M': // 0x7fffffff 985 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 986 if (C->getZExtValue() == 0x7fffffff) 987 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 988 Op.getValueType())); 989 return; 990 } 991 } 992 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 993 } 994 995 //===----------------------------------------------------------------------===// 996 // Calling conventions 997 //===----------------------------------------------------------------------===// 998 999 #include "SystemZGenCallingConv.inc" 1000 1001 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1002 CallingConv::ID) const { 1003 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1004 SystemZ::R14D, 0 }; 1005 return ScratchRegs; 1006 } 1007 1008 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1009 Type *ToType) const { 1010 return isTruncateFree(FromType, ToType); 1011 } 1012 1013 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1014 return CI->isTailCall(); 1015 } 1016 1017 // We do not yet support 128-bit single-element vector types. If the user 1018 // attempts to use such types as function argument or return type, prefer 1019 // to error out instead of emitting code violating the ABI. 1020 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1021 if (ArgVT.isVector() && !VT.isVector()) 1022 report_fatal_error("Unsupported vector argument or return type"); 1023 } 1024 1025 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1026 for (unsigned i = 0; i < Ins.size(); ++i) 1027 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1028 } 1029 1030 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1031 for (unsigned i = 0; i < Outs.size(); ++i) 1032 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1033 } 1034 1035 // Value is a value that has been passed to us in the location described by VA 1036 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1037 // any loads onto Chain. 1038 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1039 CCValAssign &VA, SDValue Chain, 1040 SDValue Value) { 1041 // If the argument has been promoted from a smaller type, insert an 1042 // assertion to capture this. 1043 if (VA.getLocInfo() == CCValAssign::SExt) 1044 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1045 DAG.getValueType(VA.getValVT())); 1046 else if (VA.getLocInfo() == CCValAssign::ZExt) 1047 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1048 DAG.getValueType(VA.getValVT())); 1049 1050 if (VA.isExtInLoc()) 1051 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1052 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1053 // If this is a short vector argument loaded from the stack, 1054 // extend from i64 to full vector size and then bitcast. 1055 assert(VA.getLocVT() == MVT::i64); 1056 assert(VA.getValVT().isVector()); 1057 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1058 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1059 } else 1060 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1061 return Value; 1062 } 1063 1064 // Value is a value of type VA.getValVT() that we need to copy into 1065 // the location described by VA. Return a copy of Value converted to 1066 // VA.getValVT(). The caller is responsible for handling indirect values. 1067 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1068 CCValAssign &VA, SDValue Value) { 1069 switch (VA.getLocInfo()) { 1070 case CCValAssign::SExt: 1071 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1072 case CCValAssign::ZExt: 1073 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1074 case CCValAssign::AExt: 1075 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1076 case CCValAssign::BCvt: 1077 // If this is a short vector argument to be stored to the stack, 1078 // bitcast to v2i64 and then extract first element. 1079 assert(VA.getLocVT() == MVT::i64); 1080 assert(VA.getValVT().isVector()); 1081 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1082 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1083 DAG.getConstant(0, DL, MVT::i32)); 1084 case CCValAssign::Full: 1085 return Value; 1086 default: 1087 llvm_unreachable("Unhandled getLocInfo()"); 1088 } 1089 } 1090 1091 SDValue SystemZTargetLowering::LowerFormalArguments( 1092 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1093 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1094 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1095 MachineFunction &MF = DAG.getMachineFunction(); 1096 MachineFrameInfo &MFI = MF.getFrameInfo(); 1097 MachineRegisterInfo &MRI = MF.getRegInfo(); 1098 SystemZMachineFunctionInfo *FuncInfo = 1099 MF.getInfo<SystemZMachineFunctionInfo>(); 1100 auto *TFL = 1101 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1102 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1103 1104 // Detect unsupported vector argument types. 1105 if (Subtarget.hasVector()) 1106 VerifyVectorTypes(Ins); 1107 1108 // Assign locations to all of the incoming arguments. 1109 SmallVector<CCValAssign, 16> ArgLocs; 1110 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1111 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1112 1113 unsigned NumFixedGPRs = 0; 1114 unsigned NumFixedFPRs = 0; 1115 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1116 SDValue ArgValue; 1117 CCValAssign &VA = ArgLocs[I]; 1118 EVT LocVT = VA.getLocVT(); 1119 if (VA.isRegLoc()) { 1120 // Arguments passed in registers 1121 const TargetRegisterClass *RC; 1122 switch (LocVT.getSimpleVT().SimpleTy) { 1123 default: 1124 // Integers smaller than i64 should be promoted to i64. 1125 llvm_unreachable("Unexpected argument type"); 1126 case MVT::i32: 1127 NumFixedGPRs += 1; 1128 RC = &SystemZ::GR32BitRegClass; 1129 break; 1130 case MVT::i64: 1131 NumFixedGPRs += 1; 1132 RC = &SystemZ::GR64BitRegClass; 1133 break; 1134 case MVT::f32: 1135 NumFixedFPRs += 1; 1136 RC = &SystemZ::FP32BitRegClass; 1137 break; 1138 case MVT::f64: 1139 NumFixedFPRs += 1; 1140 RC = &SystemZ::FP64BitRegClass; 1141 break; 1142 case MVT::v16i8: 1143 case MVT::v8i16: 1144 case MVT::v4i32: 1145 case MVT::v2i64: 1146 case MVT::v4f32: 1147 case MVT::v2f64: 1148 RC = &SystemZ::VR128BitRegClass; 1149 break; 1150 } 1151 1152 unsigned VReg = MRI.createVirtualRegister(RC); 1153 MRI.addLiveIn(VA.getLocReg(), VReg); 1154 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1155 } else { 1156 assert(VA.isMemLoc() && "Argument not register or memory"); 1157 1158 // Create the frame index object for this incoming parameter. 1159 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1160 VA.getLocMemOffset(), true); 1161 1162 // Create the SelectionDAG nodes corresponding to a load 1163 // from this parameter. Unpromoted ints and floats are 1164 // passed as right-justified 8-byte values. 1165 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1166 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1167 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1168 DAG.getIntPtrConstant(4, DL)); 1169 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1170 MachinePointerInfo::getFixedStack(MF, FI)); 1171 } 1172 1173 // Convert the value of the argument register into the value that's 1174 // being passed. 1175 if (VA.getLocInfo() == CCValAssign::Indirect) { 1176 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1177 MachinePointerInfo())); 1178 // If the original argument was split (e.g. i128), we need 1179 // to load all parts of it here (using the same address). 1180 unsigned ArgIndex = Ins[I].OrigArgIndex; 1181 assert (Ins[I].PartOffset == 0); 1182 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1183 CCValAssign &PartVA = ArgLocs[I + 1]; 1184 unsigned PartOffset = Ins[I + 1].PartOffset; 1185 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1186 DAG.getIntPtrConstant(PartOffset, DL)); 1187 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1188 MachinePointerInfo())); 1189 ++I; 1190 } 1191 } else 1192 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1193 } 1194 1195 if (IsVarArg) { 1196 // Save the number of non-varargs registers for later use by va_start, etc. 1197 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1198 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1199 1200 // Likewise the address (in the form of a frame index) of where the 1201 // first stack vararg would be. The 1-byte size here is arbitrary. 1202 int64_t StackSize = CCInfo.getNextStackOffset(); 1203 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1204 1205 // ...and a similar frame index for the caller-allocated save area 1206 // that will be used to store the incoming registers. 1207 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1208 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1209 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1210 1211 // Store the FPR varargs in the reserved frame slots. (We store the 1212 // GPRs as part of the prologue.) 1213 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1214 SDValue MemOps[SystemZ::NumArgFPRs]; 1215 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1216 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1217 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1218 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1219 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1220 &SystemZ::FP64BitRegClass); 1221 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1222 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1223 MachinePointerInfo::getFixedStack(MF, FI)); 1224 } 1225 // Join the stores, which are independent of one another. 1226 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1227 makeArrayRef(&MemOps[NumFixedFPRs], 1228 SystemZ::NumArgFPRs-NumFixedFPRs)); 1229 } 1230 } 1231 1232 return Chain; 1233 } 1234 1235 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1236 SmallVectorImpl<CCValAssign> &ArgLocs, 1237 SmallVectorImpl<ISD::OutputArg> &Outs) { 1238 // Punt if there are any indirect or stack arguments, or if the call 1239 // needs the callee-saved argument register R6, or if the call uses 1240 // the callee-saved register arguments SwiftSelf and SwiftError. 1241 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1242 CCValAssign &VA = ArgLocs[I]; 1243 if (VA.getLocInfo() == CCValAssign::Indirect) 1244 return false; 1245 if (!VA.isRegLoc()) 1246 return false; 1247 unsigned Reg = VA.getLocReg(); 1248 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1249 return false; 1250 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1251 return false; 1252 } 1253 return true; 1254 } 1255 1256 SDValue 1257 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1258 SmallVectorImpl<SDValue> &InVals) const { 1259 SelectionDAG &DAG = CLI.DAG; 1260 SDLoc &DL = CLI.DL; 1261 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1262 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1263 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1264 SDValue Chain = CLI.Chain; 1265 SDValue Callee = CLI.Callee; 1266 bool &IsTailCall = CLI.IsTailCall; 1267 CallingConv::ID CallConv = CLI.CallConv; 1268 bool IsVarArg = CLI.IsVarArg; 1269 MachineFunction &MF = DAG.getMachineFunction(); 1270 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1271 1272 // Detect unsupported vector argument and return types. 1273 if (Subtarget.hasVector()) { 1274 VerifyVectorTypes(Outs); 1275 VerifyVectorTypes(Ins); 1276 } 1277 1278 // Analyze the operands of the call, assigning locations to each operand. 1279 SmallVector<CCValAssign, 16> ArgLocs; 1280 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1281 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1282 1283 // We don't support GuaranteedTailCallOpt, only automatically-detected 1284 // sibling calls. 1285 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1286 IsTailCall = false; 1287 1288 // Get a count of how many bytes are to be pushed on the stack. 1289 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1290 1291 // Mark the start of the call. 1292 if (!IsTailCall) 1293 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1294 1295 // Copy argument values to their designated locations. 1296 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1297 SmallVector<SDValue, 8> MemOpChains; 1298 SDValue StackPtr; 1299 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1300 CCValAssign &VA = ArgLocs[I]; 1301 SDValue ArgValue = OutVals[I]; 1302 1303 if (VA.getLocInfo() == CCValAssign::Indirect) { 1304 // Store the argument in a stack slot and pass its address. 1305 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1306 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1307 MemOpChains.push_back( 1308 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1309 MachinePointerInfo::getFixedStack(MF, FI))); 1310 // If the original argument was split (e.g. i128), we need 1311 // to store all parts of it here (and pass just one address). 1312 unsigned ArgIndex = Outs[I].OrigArgIndex; 1313 assert (Outs[I].PartOffset == 0); 1314 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1315 SDValue PartValue = OutVals[I + 1]; 1316 unsigned PartOffset = Outs[I + 1].PartOffset; 1317 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1318 DAG.getIntPtrConstant(PartOffset, DL)); 1319 MemOpChains.push_back( 1320 DAG.getStore(Chain, DL, PartValue, Address, 1321 MachinePointerInfo::getFixedStack(MF, FI))); 1322 ++I; 1323 } 1324 ArgValue = SpillSlot; 1325 } else 1326 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1327 1328 if (VA.isRegLoc()) 1329 // Queue up the argument copies and emit them at the end. 1330 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1331 else { 1332 assert(VA.isMemLoc() && "Argument not register or memory"); 1333 1334 // Work out the address of the stack slot. Unpromoted ints and 1335 // floats are passed as right-justified 8-byte values. 1336 if (!StackPtr.getNode()) 1337 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1338 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1339 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1340 Offset += 4; 1341 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1342 DAG.getIntPtrConstant(Offset, DL)); 1343 1344 // Emit the store. 1345 MemOpChains.push_back( 1346 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1347 } 1348 } 1349 1350 // Join the stores, which are independent of one another. 1351 if (!MemOpChains.empty()) 1352 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1353 1354 // Accept direct calls by converting symbolic call addresses to the 1355 // associated Target* opcodes. Force %r1 to be used for indirect 1356 // tail calls. 1357 SDValue Glue; 1358 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1359 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1360 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1361 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1362 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1363 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1364 } else if (IsTailCall) { 1365 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1366 Glue = Chain.getValue(1); 1367 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1368 } 1369 1370 // Build a sequence of copy-to-reg nodes, chained and glued together. 1371 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1372 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1373 RegsToPass[I].second, Glue); 1374 Glue = Chain.getValue(1); 1375 } 1376 1377 // The first call operand is the chain and the second is the target address. 1378 SmallVector<SDValue, 8> Ops; 1379 Ops.push_back(Chain); 1380 Ops.push_back(Callee); 1381 1382 // Add argument registers to the end of the list so that they are 1383 // known live into the call. 1384 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1385 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1386 RegsToPass[I].second.getValueType())); 1387 1388 // Add a register mask operand representing the call-preserved registers. 1389 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1390 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1391 assert(Mask && "Missing call preserved mask for calling convention"); 1392 Ops.push_back(DAG.getRegisterMask(Mask)); 1393 1394 // Glue the call to the argument copies, if any. 1395 if (Glue.getNode()) 1396 Ops.push_back(Glue); 1397 1398 // Emit the call. 1399 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1400 if (IsTailCall) 1401 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1402 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1403 Glue = Chain.getValue(1); 1404 1405 // Mark the end of the call, which is glued to the call itself. 1406 Chain = DAG.getCALLSEQ_END(Chain, 1407 DAG.getConstant(NumBytes, DL, PtrVT, true), 1408 DAG.getConstant(0, DL, PtrVT, true), 1409 Glue, DL); 1410 Glue = Chain.getValue(1); 1411 1412 // Assign locations to each value returned by this call. 1413 SmallVector<CCValAssign, 16> RetLocs; 1414 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1415 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1416 1417 // Copy all of the result registers out of their specified physreg. 1418 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1419 CCValAssign &VA = RetLocs[I]; 1420 1421 // Copy the value out, gluing the copy to the end of the call sequence. 1422 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1423 VA.getLocVT(), Glue); 1424 Chain = RetValue.getValue(1); 1425 Glue = RetValue.getValue(2); 1426 1427 // Convert the value of the return register into the value that's 1428 // being returned. 1429 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1430 } 1431 1432 return Chain; 1433 } 1434 1435 bool SystemZTargetLowering:: 1436 CanLowerReturn(CallingConv::ID CallConv, 1437 MachineFunction &MF, bool isVarArg, 1438 const SmallVectorImpl<ISD::OutputArg> &Outs, 1439 LLVMContext &Context) const { 1440 // Detect unsupported vector return types. 1441 if (Subtarget.hasVector()) 1442 VerifyVectorTypes(Outs); 1443 1444 // Special case that we cannot easily detect in RetCC_SystemZ since 1445 // i128 is not a legal type. 1446 for (auto &Out : Outs) 1447 if (Out.ArgVT == MVT::i128) 1448 return false; 1449 1450 SmallVector<CCValAssign, 16> RetLocs; 1451 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1452 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1453 } 1454 1455 SDValue 1456 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1457 bool IsVarArg, 1458 const SmallVectorImpl<ISD::OutputArg> &Outs, 1459 const SmallVectorImpl<SDValue> &OutVals, 1460 const SDLoc &DL, SelectionDAG &DAG) const { 1461 MachineFunction &MF = DAG.getMachineFunction(); 1462 1463 // Detect unsupported vector return types. 1464 if (Subtarget.hasVector()) 1465 VerifyVectorTypes(Outs); 1466 1467 // Assign locations to each returned value. 1468 SmallVector<CCValAssign, 16> RetLocs; 1469 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1470 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1471 1472 // Quick exit for void returns 1473 if (RetLocs.empty()) 1474 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1475 1476 // Copy the result values into the output registers. 1477 SDValue Glue; 1478 SmallVector<SDValue, 4> RetOps; 1479 RetOps.push_back(Chain); 1480 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1481 CCValAssign &VA = RetLocs[I]; 1482 SDValue RetValue = OutVals[I]; 1483 1484 // Make the return register live on exit. 1485 assert(VA.isRegLoc() && "Can only return in registers!"); 1486 1487 // Promote the value as required. 1488 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1489 1490 // Chain and glue the copies together. 1491 unsigned Reg = VA.getLocReg(); 1492 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1493 Glue = Chain.getValue(1); 1494 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1495 } 1496 1497 // Update chain and glue. 1498 RetOps[0] = Chain; 1499 if (Glue.getNode()) 1500 RetOps.push_back(Glue); 1501 1502 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1503 } 1504 1505 // Return true if Op is an intrinsic node with chain that returns the CC value 1506 // as its only (other) argument. Provide the associated SystemZISD opcode and 1507 // the mask of valid CC values if so. 1508 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1509 unsigned &CCValid) { 1510 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1511 switch (Id) { 1512 case Intrinsic::s390_tbegin: 1513 Opcode = SystemZISD::TBEGIN; 1514 CCValid = SystemZ::CCMASK_TBEGIN; 1515 return true; 1516 1517 case Intrinsic::s390_tbegin_nofloat: 1518 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1519 CCValid = SystemZ::CCMASK_TBEGIN; 1520 return true; 1521 1522 case Intrinsic::s390_tend: 1523 Opcode = SystemZISD::TEND; 1524 CCValid = SystemZ::CCMASK_TEND; 1525 return true; 1526 1527 default: 1528 return false; 1529 } 1530 } 1531 1532 // Return true if Op is an intrinsic node without chain that returns the 1533 // CC value as its final argument. Provide the associated SystemZISD 1534 // opcode and the mask of valid CC values if so. 1535 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1536 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1537 switch (Id) { 1538 case Intrinsic::s390_vpkshs: 1539 case Intrinsic::s390_vpksfs: 1540 case Intrinsic::s390_vpksgs: 1541 Opcode = SystemZISD::PACKS_CC; 1542 CCValid = SystemZ::CCMASK_VCMP; 1543 return true; 1544 1545 case Intrinsic::s390_vpklshs: 1546 case Intrinsic::s390_vpklsfs: 1547 case Intrinsic::s390_vpklsgs: 1548 Opcode = SystemZISD::PACKLS_CC; 1549 CCValid = SystemZ::CCMASK_VCMP; 1550 return true; 1551 1552 case Intrinsic::s390_vceqbs: 1553 case Intrinsic::s390_vceqhs: 1554 case Intrinsic::s390_vceqfs: 1555 case Intrinsic::s390_vceqgs: 1556 Opcode = SystemZISD::VICMPES; 1557 CCValid = SystemZ::CCMASK_VCMP; 1558 return true; 1559 1560 case Intrinsic::s390_vchbs: 1561 case Intrinsic::s390_vchhs: 1562 case Intrinsic::s390_vchfs: 1563 case Intrinsic::s390_vchgs: 1564 Opcode = SystemZISD::VICMPHS; 1565 CCValid = SystemZ::CCMASK_VCMP; 1566 return true; 1567 1568 case Intrinsic::s390_vchlbs: 1569 case Intrinsic::s390_vchlhs: 1570 case Intrinsic::s390_vchlfs: 1571 case Intrinsic::s390_vchlgs: 1572 Opcode = SystemZISD::VICMPHLS; 1573 CCValid = SystemZ::CCMASK_VCMP; 1574 return true; 1575 1576 case Intrinsic::s390_vtm: 1577 Opcode = SystemZISD::VTM; 1578 CCValid = SystemZ::CCMASK_VCMP; 1579 return true; 1580 1581 case Intrinsic::s390_vfaebs: 1582 case Intrinsic::s390_vfaehs: 1583 case Intrinsic::s390_vfaefs: 1584 Opcode = SystemZISD::VFAE_CC; 1585 CCValid = SystemZ::CCMASK_ANY; 1586 return true; 1587 1588 case Intrinsic::s390_vfaezbs: 1589 case Intrinsic::s390_vfaezhs: 1590 case Intrinsic::s390_vfaezfs: 1591 Opcode = SystemZISD::VFAEZ_CC; 1592 CCValid = SystemZ::CCMASK_ANY; 1593 return true; 1594 1595 case Intrinsic::s390_vfeebs: 1596 case Intrinsic::s390_vfeehs: 1597 case Intrinsic::s390_vfeefs: 1598 Opcode = SystemZISD::VFEE_CC; 1599 CCValid = SystemZ::CCMASK_ANY; 1600 return true; 1601 1602 case Intrinsic::s390_vfeezbs: 1603 case Intrinsic::s390_vfeezhs: 1604 case Intrinsic::s390_vfeezfs: 1605 Opcode = SystemZISD::VFEEZ_CC; 1606 CCValid = SystemZ::CCMASK_ANY; 1607 return true; 1608 1609 case Intrinsic::s390_vfenebs: 1610 case Intrinsic::s390_vfenehs: 1611 case Intrinsic::s390_vfenefs: 1612 Opcode = SystemZISD::VFENE_CC; 1613 CCValid = SystemZ::CCMASK_ANY; 1614 return true; 1615 1616 case Intrinsic::s390_vfenezbs: 1617 case Intrinsic::s390_vfenezhs: 1618 case Intrinsic::s390_vfenezfs: 1619 Opcode = SystemZISD::VFENEZ_CC; 1620 CCValid = SystemZ::CCMASK_ANY; 1621 return true; 1622 1623 case Intrinsic::s390_vistrbs: 1624 case Intrinsic::s390_vistrhs: 1625 case Intrinsic::s390_vistrfs: 1626 Opcode = SystemZISD::VISTR_CC; 1627 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1628 return true; 1629 1630 case Intrinsic::s390_vstrcbs: 1631 case Intrinsic::s390_vstrchs: 1632 case Intrinsic::s390_vstrcfs: 1633 Opcode = SystemZISD::VSTRC_CC; 1634 CCValid = SystemZ::CCMASK_ANY; 1635 return true; 1636 1637 case Intrinsic::s390_vstrczbs: 1638 case Intrinsic::s390_vstrczhs: 1639 case Intrinsic::s390_vstrczfs: 1640 Opcode = SystemZISD::VSTRCZ_CC; 1641 CCValid = SystemZ::CCMASK_ANY; 1642 return true; 1643 1644 case Intrinsic::s390_vfcedbs: 1645 case Intrinsic::s390_vfcesbs: 1646 Opcode = SystemZISD::VFCMPES; 1647 CCValid = SystemZ::CCMASK_VCMP; 1648 return true; 1649 1650 case Intrinsic::s390_vfchdbs: 1651 case Intrinsic::s390_vfchsbs: 1652 Opcode = SystemZISD::VFCMPHS; 1653 CCValid = SystemZ::CCMASK_VCMP; 1654 return true; 1655 1656 case Intrinsic::s390_vfchedbs: 1657 case Intrinsic::s390_vfchesbs: 1658 Opcode = SystemZISD::VFCMPHES; 1659 CCValid = SystemZ::CCMASK_VCMP; 1660 return true; 1661 1662 case Intrinsic::s390_vftcidb: 1663 case Intrinsic::s390_vftcisb: 1664 Opcode = SystemZISD::VFTCI; 1665 CCValid = SystemZ::CCMASK_VCMP; 1666 return true; 1667 1668 case Intrinsic::s390_tdc: 1669 Opcode = SystemZISD::TDC; 1670 CCValid = SystemZ::CCMASK_TDC; 1671 return true; 1672 1673 default: 1674 return false; 1675 } 1676 } 1677 1678 // Emit an intrinsic with chain and an explicit CC register result. 1679 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1680 unsigned Opcode) { 1681 // Copy all operands except the intrinsic ID. 1682 unsigned NumOps = Op.getNumOperands(); 1683 SmallVector<SDValue, 6> Ops; 1684 Ops.reserve(NumOps - 1); 1685 Ops.push_back(Op.getOperand(0)); 1686 for (unsigned I = 2; I < NumOps; ++I) 1687 Ops.push_back(Op.getOperand(I)); 1688 1689 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1690 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1691 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1692 SDValue OldChain = SDValue(Op.getNode(), 1); 1693 SDValue NewChain = SDValue(Intr.getNode(), 1); 1694 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1695 return Intr.getNode(); 1696 } 1697 1698 // Emit an intrinsic with an explicit CC register result. 1699 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1700 unsigned Opcode) { 1701 // Copy all operands except the intrinsic ID. 1702 unsigned NumOps = Op.getNumOperands(); 1703 SmallVector<SDValue, 6> Ops; 1704 Ops.reserve(NumOps - 1); 1705 for (unsigned I = 1; I < NumOps; ++I) 1706 Ops.push_back(Op.getOperand(I)); 1707 1708 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1709 return Intr.getNode(); 1710 } 1711 1712 // CC is a comparison that will be implemented using an integer or 1713 // floating-point comparison. Return the condition code mask for 1714 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1715 // unsigned comparisons and clear for signed ones. In the floating-point 1716 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1717 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1718 #define CONV(X) \ 1719 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1720 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1721 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1722 1723 switch (CC) { 1724 default: 1725 llvm_unreachable("Invalid integer condition!"); 1726 1727 CONV(EQ); 1728 CONV(NE); 1729 CONV(GT); 1730 CONV(GE); 1731 CONV(LT); 1732 CONV(LE); 1733 1734 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1735 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1736 } 1737 #undef CONV 1738 } 1739 1740 // If C can be converted to a comparison against zero, adjust the operands 1741 // as necessary. 1742 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1743 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1744 return; 1745 1746 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1747 if (!ConstOp1) 1748 return; 1749 1750 int64_t Value = ConstOp1->getSExtValue(); 1751 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1752 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1753 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1754 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1755 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1756 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1757 } 1758 } 1759 1760 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1761 // adjust the operands as necessary. 1762 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1763 Comparison &C) { 1764 // For us to make any changes, it must a comparison between a single-use 1765 // load and a constant. 1766 if (!C.Op0.hasOneUse() || 1767 C.Op0.getOpcode() != ISD::LOAD || 1768 C.Op1.getOpcode() != ISD::Constant) 1769 return; 1770 1771 // We must have an 8- or 16-bit load. 1772 auto *Load = cast<LoadSDNode>(C.Op0); 1773 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1774 if (NumBits != 8 && NumBits != 16) 1775 return; 1776 1777 // The load must be an extending one and the constant must be within the 1778 // range of the unextended value. 1779 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1780 uint64_t Value = ConstOp1->getZExtValue(); 1781 uint64_t Mask = (1 << NumBits) - 1; 1782 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1783 // Make sure that ConstOp1 is in range of C.Op0. 1784 int64_t SignedValue = ConstOp1->getSExtValue(); 1785 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1786 return; 1787 if (C.ICmpType != SystemZICMP::SignedOnly) { 1788 // Unsigned comparison between two sign-extended values is equivalent 1789 // to unsigned comparison between two zero-extended values. 1790 Value &= Mask; 1791 } else if (NumBits == 8) { 1792 // Try to treat the comparison as unsigned, so that we can use CLI. 1793 // Adjust CCMask and Value as necessary. 1794 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1795 // Test whether the high bit of the byte is set. 1796 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1797 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1798 // Test whether the high bit of the byte is clear. 1799 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1800 else 1801 // No instruction exists for this combination. 1802 return; 1803 C.ICmpType = SystemZICMP::UnsignedOnly; 1804 } 1805 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1806 if (Value > Mask) 1807 return; 1808 // If the constant is in range, we can use any comparison. 1809 C.ICmpType = SystemZICMP::Any; 1810 } else 1811 return; 1812 1813 // Make sure that the first operand is an i32 of the right extension type. 1814 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1815 ISD::SEXTLOAD : 1816 ISD::ZEXTLOAD); 1817 if (C.Op0.getValueType() != MVT::i32 || 1818 Load->getExtensionType() != ExtType) { 1819 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1820 Load->getBasePtr(), Load->getPointerInfo(), 1821 Load->getMemoryVT(), Load->getAlignment(), 1822 Load->getMemOperand()->getFlags()); 1823 // Update the chain uses. 1824 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 1825 } 1826 1827 // Make sure that the second operand is an i32 with the right value. 1828 if (C.Op1.getValueType() != MVT::i32 || 1829 Value != ConstOp1->getZExtValue()) 1830 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1831 } 1832 1833 // Return true if Op is either an unextended load, or a load suitable 1834 // for integer register-memory comparisons of type ICmpType. 1835 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1836 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1837 if (Load) { 1838 // There are no instructions to compare a register with a memory byte. 1839 if (Load->getMemoryVT() == MVT::i8) 1840 return false; 1841 // Otherwise decide on extension type. 1842 switch (Load->getExtensionType()) { 1843 case ISD::NON_EXTLOAD: 1844 return true; 1845 case ISD::SEXTLOAD: 1846 return ICmpType != SystemZICMP::UnsignedOnly; 1847 case ISD::ZEXTLOAD: 1848 return ICmpType != SystemZICMP::SignedOnly; 1849 default: 1850 break; 1851 } 1852 } 1853 return false; 1854 } 1855 1856 // Return true if it is better to swap the operands of C. 1857 static bool shouldSwapCmpOperands(const Comparison &C) { 1858 // Leave f128 comparisons alone, since they have no memory forms. 1859 if (C.Op0.getValueType() == MVT::f128) 1860 return false; 1861 1862 // Always keep a floating-point constant second, since comparisons with 1863 // zero can use LOAD TEST and comparisons with other constants make a 1864 // natural memory operand. 1865 if (isa<ConstantFPSDNode>(C.Op1)) 1866 return false; 1867 1868 // Never swap comparisons with zero since there are many ways to optimize 1869 // those later. 1870 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1871 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1872 return false; 1873 1874 // Also keep natural memory operands second if the loaded value is 1875 // only used here. Several comparisons have memory forms. 1876 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1877 return false; 1878 1879 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1880 // In that case we generally prefer the memory to be second. 1881 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1882 // The only exceptions are when the second operand is a constant and 1883 // we can use things like CHHSI. 1884 if (!ConstOp1) 1885 return true; 1886 // The unsigned memory-immediate instructions can handle 16-bit 1887 // unsigned integers. 1888 if (C.ICmpType != SystemZICMP::SignedOnly && 1889 isUInt<16>(ConstOp1->getZExtValue())) 1890 return false; 1891 // The signed memory-immediate instructions can handle 16-bit 1892 // signed integers. 1893 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1894 isInt<16>(ConstOp1->getSExtValue())) 1895 return false; 1896 return true; 1897 } 1898 1899 // Try to promote the use of CGFR and CLGFR. 1900 unsigned Opcode0 = C.Op0.getOpcode(); 1901 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1902 return true; 1903 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1904 return true; 1905 if (C.ICmpType != SystemZICMP::SignedOnly && 1906 Opcode0 == ISD::AND && 1907 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1908 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1909 return true; 1910 1911 return false; 1912 } 1913 1914 // Return a version of comparison CC mask CCMask in which the LT and GT 1915 // actions are swapped. 1916 static unsigned reverseCCMask(unsigned CCMask) { 1917 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1918 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1919 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1920 (CCMask & SystemZ::CCMASK_CMP_UO)); 1921 } 1922 1923 // Check whether C tests for equality between X and Y and whether X - Y 1924 // or Y - X is also computed. In that case it's better to compare the 1925 // result of the subtraction against zero. 1926 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1927 Comparison &C) { 1928 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1929 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1930 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1931 SDNode *N = *I; 1932 if (N->getOpcode() == ISD::SUB && 1933 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1934 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1935 C.Op0 = SDValue(N, 0); 1936 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1937 return; 1938 } 1939 } 1940 } 1941 } 1942 1943 // Check whether C compares a floating-point value with zero and if that 1944 // floating-point value is also negated. In this case we can use the 1945 // negation to set CC, so avoiding separate LOAD AND TEST and 1946 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1947 static void adjustForFNeg(Comparison &C) { 1948 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1949 if (C1 && C1->isZero()) { 1950 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1951 SDNode *N = *I; 1952 if (N->getOpcode() == ISD::FNEG) { 1953 C.Op0 = SDValue(N, 0); 1954 C.CCMask = reverseCCMask(C.CCMask); 1955 return; 1956 } 1957 } 1958 } 1959 } 1960 1961 // Check whether C compares (shl X, 32) with 0 and whether X is 1962 // also sign-extended. In that case it is better to test the result 1963 // of the sign extension using LTGFR. 1964 // 1965 // This case is important because InstCombine transforms a comparison 1966 // with (sext (trunc X)) into a comparison with (shl X, 32). 1967 static void adjustForLTGFR(Comparison &C) { 1968 // Check for a comparison between (shl X, 32) and 0. 1969 if (C.Op0.getOpcode() == ISD::SHL && 1970 C.Op0.getValueType() == MVT::i64 && 1971 C.Op1.getOpcode() == ISD::Constant && 1972 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1973 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1974 if (C1 && C1->getZExtValue() == 32) { 1975 SDValue ShlOp0 = C.Op0.getOperand(0); 1976 // See whether X has any SIGN_EXTEND_INREG uses. 1977 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1978 SDNode *N = *I; 1979 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1980 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1981 C.Op0 = SDValue(N, 0); 1982 return; 1983 } 1984 } 1985 } 1986 } 1987 } 1988 1989 // If C compares the truncation of an extending load, try to compare 1990 // the untruncated value instead. This exposes more opportunities to 1991 // reuse CC. 1992 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1993 Comparison &C) { 1994 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1995 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1996 C.Op1.getOpcode() == ISD::Constant && 1997 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1998 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1999 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2000 unsigned Type = L->getExtensionType(); 2001 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2002 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2003 C.Op0 = C.Op0.getOperand(0); 2004 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2005 } 2006 } 2007 } 2008 } 2009 2010 // Return true if shift operation N has an in-range constant shift value. 2011 // Store it in ShiftVal if so. 2012 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2013 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2014 if (!Shift) 2015 return false; 2016 2017 uint64_t Amount = Shift->getZExtValue(); 2018 if (Amount >= N.getValueSizeInBits()) 2019 return false; 2020 2021 ShiftVal = Amount; 2022 return true; 2023 } 2024 2025 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2026 // instruction and whether the CC value is descriptive enough to handle 2027 // a comparison of type Opcode between the AND result and CmpVal. 2028 // CCMask says which comparison result is being tested and BitSize is 2029 // the number of bits in the operands. If TEST UNDER MASK can be used, 2030 // return the corresponding CC mask, otherwise return 0. 2031 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2032 uint64_t Mask, uint64_t CmpVal, 2033 unsigned ICmpType) { 2034 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2035 2036 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2037 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2038 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2039 return 0; 2040 2041 // Work out the masks for the lowest and highest bits. 2042 unsigned HighShift = 63 - countLeadingZeros(Mask); 2043 uint64_t High = uint64_t(1) << HighShift; 2044 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2045 2046 // Signed ordered comparisons are effectively unsigned if the sign 2047 // bit is dropped. 2048 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2049 2050 // Check for equality comparisons with 0, or the equivalent. 2051 if (CmpVal == 0) { 2052 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2053 return SystemZ::CCMASK_TM_ALL_0; 2054 if (CCMask == SystemZ::CCMASK_CMP_NE) 2055 return SystemZ::CCMASK_TM_SOME_1; 2056 } 2057 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2058 if (CCMask == SystemZ::CCMASK_CMP_LT) 2059 return SystemZ::CCMASK_TM_ALL_0; 2060 if (CCMask == SystemZ::CCMASK_CMP_GE) 2061 return SystemZ::CCMASK_TM_SOME_1; 2062 } 2063 if (EffectivelyUnsigned && CmpVal < Low) { 2064 if (CCMask == SystemZ::CCMASK_CMP_LE) 2065 return SystemZ::CCMASK_TM_ALL_0; 2066 if (CCMask == SystemZ::CCMASK_CMP_GT) 2067 return SystemZ::CCMASK_TM_SOME_1; 2068 } 2069 2070 // Check for equality comparisons with the mask, or the equivalent. 2071 if (CmpVal == Mask) { 2072 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2073 return SystemZ::CCMASK_TM_ALL_1; 2074 if (CCMask == SystemZ::CCMASK_CMP_NE) 2075 return SystemZ::CCMASK_TM_SOME_0; 2076 } 2077 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2078 if (CCMask == SystemZ::CCMASK_CMP_GT) 2079 return SystemZ::CCMASK_TM_ALL_1; 2080 if (CCMask == SystemZ::CCMASK_CMP_LE) 2081 return SystemZ::CCMASK_TM_SOME_0; 2082 } 2083 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2084 if (CCMask == SystemZ::CCMASK_CMP_GE) 2085 return SystemZ::CCMASK_TM_ALL_1; 2086 if (CCMask == SystemZ::CCMASK_CMP_LT) 2087 return SystemZ::CCMASK_TM_SOME_0; 2088 } 2089 2090 // Check for ordered comparisons with the top bit. 2091 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2092 if (CCMask == SystemZ::CCMASK_CMP_LE) 2093 return SystemZ::CCMASK_TM_MSB_0; 2094 if (CCMask == SystemZ::CCMASK_CMP_GT) 2095 return SystemZ::CCMASK_TM_MSB_1; 2096 } 2097 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2098 if (CCMask == SystemZ::CCMASK_CMP_LT) 2099 return SystemZ::CCMASK_TM_MSB_0; 2100 if (CCMask == SystemZ::CCMASK_CMP_GE) 2101 return SystemZ::CCMASK_TM_MSB_1; 2102 } 2103 2104 // If there are just two bits, we can do equality checks for Low and High 2105 // as well. 2106 if (Mask == Low + High) { 2107 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2108 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2109 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2110 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2111 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2112 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2113 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2114 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2115 } 2116 2117 // Looks like we've exhausted our options. 2118 return 0; 2119 } 2120 2121 // See whether C can be implemented as a TEST UNDER MASK instruction. 2122 // Update the arguments with the TM version if so. 2123 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2124 Comparison &C) { 2125 // Check that we have a comparison with a constant. 2126 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2127 if (!ConstOp1) 2128 return; 2129 uint64_t CmpVal = ConstOp1->getZExtValue(); 2130 2131 // Check whether the nonconstant input is an AND with a constant mask. 2132 Comparison NewC(C); 2133 uint64_t MaskVal; 2134 ConstantSDNode *Mask = nullptr; 2135 if (C.Op0.getOpcode() == ISD::AND) { 2136 NewC.Op0 = C.Op0.getOperand(0); 2137 NewC.Op1 = C.Op0.getOperand(1); 2138 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2139 if (!Mask) 2140 return; 2141 MaskVal = Mask->getZExtValue(); 2142 } else { 2143 // There is no instruction to compare with a 64-bit immediate 2144 // so use TMHH instead if possible. We need an unsigned ordered 2145 // comparison with an i64 immediate. 2146 if (NewC.Op0.getValueType() != MVT::i64 || 2147 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2148 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2149 NewC.ICmpType == SystemZICMP::SignedOnly) 2150 return; 2151 // Convert LE and GT comparisons into LT and GE. 2152 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2153 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2154 if (CmpVal == uint64_t(-1)) 2155 return; 2156 CmpVal += 1; 2157 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2158 } 2159 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2160 // be masked off without changing the result. 2161 MaskVal = -(CmpVal & -CmpVal); 2162 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2163 } 2164 if (!MaskVal) 2165 return; 2166 2167 // Check whether the combination of mask, comparison value and comparison 2168 // type are suitable. 2169 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2170 unsigned NewCCMask, ShiftVal; 2171 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2172 NewC.Op0.getOpcode() == ISD::SHL && 2173 isSimpleShift(NewC.Op0, ShiftVal) && 2174 (MaskVal >> ShiftVal != 0) && 2175 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2176 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2177 MaskVal >> ShiftVal, 2178 CmpVal >> ShiftVal, 2179 SystemZICMP::Any))) { 2180 NewC.Op0 = NewC.Op0.getOperand(0); 2181 MaskVal >>= ShiftVal; 2182 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2183 NewC.Op0.getOpcode() == ISD::SRL && 2184 isSimpleShift(NewC.Op0, ShiftVal) && 2185 (MaskVal << ShiftVal != 0) && 2186 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2187 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2188 MaskVal << ShiftVal, 2189 CmpVal << ShiftVal, 2190 SystemZICMP::UnsignedOnly))) { 2191 NewC.Op0 = NewC.Op0.getOperand(0); 2192 MaskVal <<= ShiftVal; 2193 } else { 2194 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2195 NewC.ICmpType); 2196 if (!NewCCMask) 2197 return; 2198 } 2199 2200 // Go ahead and make the change. 2201 C.Opcode = SystemZISD::TM; 2202 C.Op0 = NewC.Op0; 2203 if (Mask && Mask->getZExtValue() == MaskVal) 2204 C.Op1 = SDValue(Mask, 0); 2205 else 2206 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2207 C.CCValid = SystemZ::CCMASK_TM; 2208 C.CCMask = NewCCMask; 2209 } 2210 2211 // See whether the comparison argument contains a redundant AND 2212 // and remove it if so. This sometimes happens due to the generic 2213 // BRCOND expansion. 2214 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2215 Comparison &C) { 2216 if (C.Op0.getOpcode() != ISD::AND) 2217 return; 2218 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2219 if (!Mask) 2220 return; 2221 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2222 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2223 return; 2224 2225 C.Op0 = C.Op0.getOperand(0); 2226 } 2227 2228 // Return a Comparison that tests the condition-code result of intrinsic 2229 // node Call against constant integer CC using comparison code Cond. 2230 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2231 // and CCValid is the set of possible condition-code results. 2232 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2233 SDValue Call, unsigned CCValid, uint64_t CC, 2234 ISD::CondCode Cond) { 2235 Comparison C(Call, SDValue()); 2236 C.Opcode = Opcode; 2237 C.CCValid = CCValid; 2238 if (Cond == ISD::SETEQ) 2239 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2240 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2241 else if (Cond == ISD::SETNE) 2242 // ...and the inverse of that. 2243 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2244 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2245 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2246 // always true for CC>3. 2247 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2248 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2249 // ...and the inverse of that. 2250 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2251 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2252 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2253 // always true for CC>3. 2254 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2255 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2256 // ...and the inverse of that. 2257 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2258 else 2259 llvm_unreachable("Unexpected integer comparison type"); 2260 C.CCMask &= CCValid; 2261 return C; 2262 } 2263 2264 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2265 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2266 ISD::CondCode Cond, const SDLoc &DL) { 2267 if (CmpOp1.getOpcode() == ISD::Constant) { 2268 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2269 unsigned Opcode, CCValid; 2270 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2271 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2272 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2273 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2274 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2275 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2276 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2277 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2278 } 2279 Comparison C(CmpOp0, CmpOp1); 2280 C.CCMask = CCMaskForCondCode(Cond); 2281 if (C.Op0.getValueType().isFloatingPoint()) { 2282 C.CCValid = SystemZ::CCMASK_FCMP; 2283 C.Opcode = SystemZISD::FCMP; 2284 adjustForFNeg(C); 2285 } else { 2286 C.CCValid = SystemZ::CCMASK_ICMP; 2287 C.Opcode = SystemZISD::ICMP; 2288 // Choose the type of comparison. Equality and inequality tests can 2289 // use either signed or unsigned comparisons. The choice also doesn't 2290 // matter if both sign bits are known to be clear. In those cases we 2291 // want to give the main isel code the freedom to choose whichever 2292 // form fits best. 2293 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2294 C.CCMask == SystemZ::CCMASK_CMP_NE || 2295 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2296 C.ICmpType = SystemZICMP::Any; 2297 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2298 C.ICmpType = SystemZICMP::UnsignedOnly; 2299 else 2300 C.ICmpType = SystemZICMP::SignedOnly; 2301 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2302 adjustForRedundantAnd(DAG, DL, C); 2303 adjustZeroCmp(DAG, DL, C); 2304 adjustSubwordCmp(DAG, DL, C); 2305 adjustForSubtraction(DAG, DL, C); 2306 adjustForLTGFR(C); 2307 adjustICmpTruncate(DAG, DL, C); 2308 } 2309 2310 if (shouldSwapCmpOperands(C)) { 2311 std::swap(C.Op0, C.Op1); 2312 C.CCMask = reverseCCMask(C.CCMask); 2313 } 2314 2315 adjustForTestUnderMask(DAG, DL, C); 2316 return C; 2317 } 2318 2319 // Emit the comparison instruction described by C. 2320 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2321 if (!C.Op1.getNode()) { 2322 SDNode *Node; 2323 switch (C.Op0.getOpcode()) { 2324 case ISD::INTRINSIC_W_CHAIN: 2325 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2326 return SDValue(Node, 0); 2327 case ISD::INTRINSIC_WO_CHAIN: 2328 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2329 return SDValue(Node, Node->getNumValues() - 1); 2330 default: 2331 llvm_unreachable("Invalid comparison operands"); 2332 } 2333 } 2334 if (C.Opcode == SystemZISD::ICMP) 2335 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2336 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2337 if (C.Opcode == SystemZISD::TM) { 2338 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2339 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2340 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2341 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2342 } 2343 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2344 } 2345 2346 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2347 // 64 bits. Extend is the extension type to use. Store the high part 2348 // in Hi and the low part in Lo. 2349 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2350 SDValue Op0, SDValue Op1, SDValue &Hi, 2351 SDValue &Lo) { 2352 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2353 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2354 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2355 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2356 DAG.getConstant(32, DL, MVT::i64)); 2357 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2358 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2359 } 2360 2361 // Lower a binary operation that produces two VT results, one in each 2362 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2363 // and Opcode performs the GR128 operation. Store the even register result 2364 // in Even and the odd register result in Odd. 2365 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2366 unsigned Opcode, SDValue Op0, SDValue Op1, 2367 SDValue &Even, SDValue &Odd) { 2368 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2369 bool Is32Bit = is32Bit(VT); 2370 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2371 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2372 } 2373 2374 // Return an i32 value that is 1 if the CC value produced by CCReg is 2375 // in the mask CCMask and 0 otherwise. CC is known to have a value 2376 // in CCValid, so other values can be ignored. 2377 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2378 unsigned CCValid, unsigned CCMask) { 2379 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32), 2380 DAG.getConstant(0, DL, MVT::i32), 2381 DAG.getConstant(CCValid, DL, MVT::i32), 2382 DAG.getConstant(CCMask, DL, MVT::i32), CCReg }; 2383 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2384 } 2385 2386 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2387 // be done directly. IsFP is true if CC is for a floating-point rather than 2388 // integer comparison. 2389 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2390 switch (CC) { 2391 case ISD::SETOEQ: 2392 case ISD::SETEQ: 2393 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2394 2395 case ISD::SETOGE: 2396 case ISD::SETGE: 2397 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2398 2399 case ISD::SETOGT: 2400 case ISD::SETGT: 2401 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2402 2403 case ISD::SETUGT: 2404 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2405 2406 default: 2407 return 0; 2408 } 2409 } 2410 2411 // Return the SystemZISD vector comparison operation for CC or its inverse, 2412 // or 0 if neither can be done directly. Indicate in Invert whether the 2413 // result is for the inverse of CC. IsFP is true if CC is for a 2414 // floating-point rather than integer comparison. 2415 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2416 bool &Invert) { 2417 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2418 Invert = false; 2419 return Opcode; 2420 } 2421 2422 CC = ISD::getSetCCInverse(CC, !IsFP); 2423 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2424 Invert = true; 2425 return Opcode; 2426 } 2427 2428 return 0; 2429 } 2430 2431 // Return a v2f64 that contains the extended form of elements Start and Start+1 2432 // of v4f32 value Op. 2433 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2434 SDValue Op) { 2435 int Mask[] = { Start, -1, Start + 1, -1 }; 2436 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2437 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2438 } 2439 2440 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2441 // producing a result of type VT. 2442 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2443 const SDLoc &DL, EVT VT, 2444 SDValue CmpOp0, 2445 SDValue CmpOp1) const { 2446 // There is no hardware support for v4f32 (unless we have the vector 2447 // enhancements facility 1), so extend the vector into two v2f64s 2448 // and compare those. 2449 if (CmpOp0.getValueType() == MVT::v4f32 && 2450 !Subtarget.hasVectorEnhancements1()) { 2451 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2452 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2453 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2454 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2455 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2456 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2457 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2458 } 2459 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2460 } 2461 2462 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2463 // an integer mask of type VT. 2464 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2465 const SDLoc &DL, EVT VT, 2466 ISD::CondCode CC, 2467 SDValue CmpOp0, 2468 SDValue CmpOp1) const { 2469 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2470 bool Invert = false; 2471 SDValue Cmp; 2472 switch (CC) { 2473 // Handle tests for order using (or (ogt y x) (oge x y)). 2474 case ISD::SETUO: 2475 Invert = true; 2476 LLVM_FALLTHROUGH; 2477 case ISD::SETO: { 2478 assert(IsFP && "Unexpected integer comparison"); 2479 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2480 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2481 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2482 break; 2483 } 2484 2485 // Handle <> tests using (or (ogt y x) (ogt x y)). 2486 case ISD::SETUEQ: 2487 Invert = true; 2488 LLVM_FALLTHROUGH; 2489 case ISD::SETONE: { 2490 assert(IsFP && "Unexpected integer comparison"); 2491 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2492 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2493 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2494 break; 2495 } 2496 2497 // Otherwise a single comparison is enough. It doesn't really 2498 // matter whether we try the inversion or the swap first, since 2499 // there are no cases where both work. 2500 default: 2501 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2502 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2503 else { 2504 CC = ISD::getSetCCSwappedOperands(CC); 2505 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2506 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2507 else 2508 llvm_unreachable("Unhandled comparison"); 2509 } 2510 break; 2511 } 2512 if (Invert) { 2513 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2514 DAG.getConstant(65535, DL, MVT::i32)); 2515 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2516 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2517 } 2518 return Cmp; 2519 } 2520 2521 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2522 SelectionDAG &DAG) const { 2523 SDValue CmpOp0 = Op.getOperand(0); 2524 SDValue CmpOp1 = Op.getOperand(1); 2525 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2526 SDLoc DL(Op); 2527 EVT VT = Op.getValueType(); 2528 if (VT.isVector()) 2529 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2530 2531 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2532 SDValue CCReg = emitCmp(DAG, DL, C); 2533 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2534 } 2535 2536 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2537 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2538 SDValue CmpOp0 = Op.getOperand(2); 2539 SDValue CmpOp1 = Op.getOperand(3); 2540 SDValue Dest = Op.getOperand(4); 2541 SDLoc DL(Op); 2542 2543 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2544 SDValue CCReg = emitCmp(DAG, DL, C); 2545 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2546 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2547 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2548 } 2549 2550 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2551 // allowing Pos and Neg to be wider than CmpOp. 2552 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2553 return (Neg.getOpcode() == ISD::SUB && 2554 Neg.getOperand(0).getOpcode() == ISD::Constant && 2555 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2556 Neg.getOperand(1) == Pos && 2557 (Pos == CmpOp || 2558 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2559 Pos.getOperand(0) == CmpOp))); 2560 } 2561 2562 // Return the absolute or negative absolute of Op; IsNegative decides which. 2563 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2564 bool IsNegative) { 2565 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2566 if (IsNegative) 2567 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2568 DAG.getConstant(0, DL, Op.getValueType()), Op); 2569 return Op; 2570 } 2571 2572 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2573 SelectionDAG &DAG) const { 2574 SDValue CmpOp0 = Op.getOperand(0); 2575 SDValue CmpOp1 = Op.getOperand(1); 2576 SDValue TrueOp = Op.getOperand(2); 2577 SDValue FalseOp = Op.getOperand(3); 2578 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2579 SDLoc DL(Op); 2580 2581 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2582 2583 // Check for absolute and negative-absolute selections, including those 2584 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2585 // This check supplements the one in DAGCombiner. 2586 if (C.Opcode == SystemZISD::ICMP && 2587 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2588 C.CCMask != SystemZ::CCMASK_CMP_NE && 2589 C.Op1.getOpcode() == ISD::Constant && 2590 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2591 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2592 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2593 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2594 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2595 } 2596 2597 SDValue CCReg = emitCmp(DAG, DL, C); 2598 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2599 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg}; 2600 2601 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2602 } 2603 2604 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2605 SelectionDAG &DAG) const { 2606 SDLoc DL(Node); 2607 const GlobalValue *GV = Node->getGlobal(); 2608 int64_t Offset = Node->getOffset(); 2609 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2610 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2611 2612 SDValue Result; 2613 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2614 // Assign anchors at 1<<12 byte boundaries. 2615 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2616 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2617 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2618 2619 // The offset can be folded into the address if it is aligned to a halfword. 2620 Offset -= Anchor; 2621 if (Offset != 0 && (Offset & 1) == 0) { 2622 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2623 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2624 Offset = 0; 2625 } 2626 } else { 2627 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2628 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2629 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2630 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2631 } 2632 2633 // If there was a non-zero offset that we didn't fold, create an explicit 2634 // addition for it. 2635 if (Offset != 0) 2636 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2637 DAG.getConstant(Offset, DL, PtrVT)); 2638 2639 return Result; 2640 } 2641 2642 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2643 SelectionDAG &DAG, 2644 unsigned Opcode, 2645 SDValue GOTOffset) const { 2646 SDLoc DL(Node); 2647 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2648 SDValue Chain = DAG.getEntryNode(); 2649 SDValue Glue; 2650 2651 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2652 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2653 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2654 Glue = Chain.getValue(1); 2655 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2656 Glue = Chain.getValue(1); 2657 2658 // The first call operand is the chain and the second is the TLS symbol. 2659 SmallVector<SDValue, 8> Ops; 2660 Ops.push_back(Chain); 2661 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2662 Node->getValueType(0), 2663 0, 0)); 2664 2665 // Add argument registers to the end of the list so that they are 2666 // known live into the call. 2667 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2668 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2669 2670 // Add a register mask operand representing the call-preserved registers. 2671 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2672 const uint32_t *Mask = 2673 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2674 assert(Mask && "Missing call preserved mask for calling convention"); 2675 Ops.push_back(DAG.getRegisterMask(Mask)); 2676 2677 // Glue the call to the argument copies. 2678 Ops.push_back(Glue); 2679 2680 // Emit the call. 2681 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2682 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2683 Glue = Chain.getValue(1); 2684 2685 // Copy the return value from %r2. 2686 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2687 } 2688 2689 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2690 SelectionDAG &DAG) const { 2691 SDValue Chain = DAG.getEntryNode(); 2692 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2693 2694 // The high part of the thread pointer is in access register 0. 2695 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2696 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2697 2698 // The low part of the thread pointer is in access register 1. 2699 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2700 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2701 2702 // Merge them into a single 64-bit address. 2703 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2704 DAG.getConstant(32, DL, PtrVT)); 2705 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2706 } 2707 2708 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2709 SelectionDAG &DAG) const { 2710 if (DAG.getTarget().useEmulatedTLS()) 2711 return LowerToTLSEmulatedModel(Node, DAG); 2712 SDLoc DL(Node); 2713 const GlobalValue *GV = Node->getGlobal(); 2714 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2715 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2716 2717 SDValue TP = lowerThreadPointer(DL, DAG); 2718 2719 // Get the offset of GA from the thread pointer, based on the TLS model. 2720 SDValue Offset; 2721 switch (model) { 2722 case TLSModel::GeneralDynamic: { 2723 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2724 SystemZConstantPoolValue *CPV = 2725 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2726 2727 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2728 Offset = DAG.getLoad( 2729 PtrVT, DL, DAG.getEntryNode(), Offset, 2730 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2731 2732 // Call __tls_get_offset to retrieve the offset. 2733 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2734 break; 2735 } 2736 2737 case TLSModel::LocalDynamic: { 2738 // Load the GOT offset of the module ID. 2739 SystemZConstantPoolValue *CPV = 2740 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2741 2742 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2743 Offset = DAG.getLoad( 2744 PtrVT, DL, DAG.getEntryNode(), Offset, 2745 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2746 2747 // Call __tls_get_offset to retrieve the module base offset. 2748 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2749 2750 // Note: The SystemZLDCleanupPass will remove redundant computations 2751 // of the module base offset. Count total number of local-dynamic 2752 // accesses to trigger execution of that pass. 2753 SystemZMachineFunctionInfo* MFI = 2754 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2755 MFI->incNumLocalDynamicTLSAccesses(); 2756 2757 // Add the per-symbol offset. 2758 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2759 2760 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2761 DTPOffset = DAG.getLoad( 2762 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2763 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2764 2765 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2766 break; 2767 } 2768 2769 case TLSModel::InitialExec: { 2770 // Load the offset from the GOT. 2771 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2772 SystemZII::MO_INDNTPOFF); 2773 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2774 Offset = 2775 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2776 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2777 break; 2778 } 2779 2780 case TLSModel::LocalExec: { 2781 // Force the offset into the constant pool and load it from there. 2782 SystemZConstantPoolValue *CPV = 2783 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2784 2785 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2786 Offset = DAG.getLoad( 2787 PtrVT, DL, DAG.getEntryNode(), Offset, 2788 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2789 break; 2790 } 2791 } 2792 2793 // Add the base and offset together. 2794 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2795 } 2796 2797 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2798 SelectionDAG &DAG) const { 2799 SDLoc DL(Node); 2800 const BlockAddress *BA = Node->getBlockAddress(); 2801 int64_t Offset = Node->getOffset(); 2802 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2803 2804 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2805 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2806 return Result; 2807 } 2808 2809 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2810 SelectionDAG &DAG) const { 2811 SDLoc DL(JT); 2812 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2813 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2814 2815 // Use LARL to load the address of the table. 2816 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2817 } 2818 2819 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2820 SelectionDAG &DAG) const { 2821 SDLoc DL(CP); 2822 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2823 2824 SDValue Result; 2825 if (CP->isMachineConstantPoolEntry()) 2826 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2827 CP->getAlignment()); 2828 else 2829 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2830 CP->getAlignment(), CP->getOffset()); 2831 2832 // Use LARL to load the address of the constant pool entry. 2833 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2834 } 2835 2836 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2837 SelectionDAG &DAG) const { 2838 MachineFunction &MF = DAG.getMachineFunction(); 2839 MachineFrameInfo &MFI = MF.getFrameInfo(); 2840 MFI.setFrameAddressIsTaken(true); 2841 2842 SDLoc DL(Op); 2843 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2844 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2845 2846 // If the back chain frame index has not been allocated yet, do so. 2847 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2848 int BackChainIdx = FI->getFramePointerSaveIndex(); 2849 if (!BackChainIdx) { 2850 // By definition, the frame address is the address of the back chain. 2851 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2852 FI->setFramePointerSaveIndex(BackChainIdx); 2853 } 2854 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2855 2856 // FIXME The frontend should detect this case. 2857 if (Depth > 0) { 2858 report_fatal_error("Unsupported stack frame traversal count"); 2859 } 2860 2861 return BackChain; 2862 } 2863 2864 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2865 SelectionDAG &DAG) const { 2866 MachineFunction &MF = DAG.getMachineFunction(); 2867 MachineFrameInfo &MFI = MF.getFrameInfo(); 2868 MFI.setReturnAddressIsTaken(true); 2869 2870 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2871 return SDValue(); 2872 2873 SDLoc DL(Op); 2874 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2875 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2876 2877 // FIXME The frontend should detect this case. 2878 if (Depth > 0) { 2879 report_fatal_error("Unsupported stack frame traversal count"); 2880 } 2881 2882 // Return R14D, which has the return address. Mark it an implicit live-in. 2883 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2884 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2885 } 2886 2887 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2888 SelectionDAG &DAG) const { 2889 SDLoc DL(Op); 2890 SDValue In = Op.getOperand(0); 2891 EVT InVT = In.getValueType(); 2892 EVT ResVT = Op.getValueType(); 2893 2894 // Convert loads directly. This is normally done by DAGCombiner, 2895 // but we need this case for bitcasts that are created during lowering 2896 // and which are then lowered themselves. 2897 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2898 if (ISD::isNormalLoad(LoadN)) { 2899 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 2900 LoadN->getBasePtr(), LoadN->getMemOperand()); 2901 // Update the chain uses. 2902 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 2903 return NewLoad; 2904 } 2905 2906 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2907 SDValue In64; 2908 if (Subtarget.hasHighWord()) { 2909 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2910 MVT::i64); 2911 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2912 MVT::i64, SDValue(U64, 0), In); 2913 } else { 2914 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2915 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2916 DAG.getConstant(32, DL, MVT::i64)); 2917 } 2918 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2919 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 2920 DL, MVT::f32, Out64); 2921 } 2922 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2923 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2924 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2925 MVT::f64, SDValue(U64, 0), In); 2926 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2927 if (Subtarget.hasHighWord()) 2928 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2929 MVT::i32, Out64); 2930 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2931 DAG.getConstant(32, DL, MVT::i64)); 2932 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2933 } 2934 llvm_unreachable("Unexpected bitcast combination"); 2935 } 2936 2937 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2938 SelectionDAG &DAG) const { 2939 MachineFunction &MF = DAG.getMachineFunction(); 2940 SystemZMachineFunctionInfo *FuncInfo = 2941 MF.getInfo<SystemZMachineFunctionInfo>(); 2942 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2943 2944 SDValue Chain = Op.getOperand(0); 2945 SDValue Addr = Op.getOperand(1); 2946 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2947 SDLoc DL(Op); 2948 2949 // The initial values of each field. 2950 const unsigned NumFields = 4; 2951 SDValue Fields[NumFields] = { 2952 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2953 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2954 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2955 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2956 }; 2957 2958 // Store each field into its respective slot. 2959 SDValue MemOps[NumFields]; 2960 unsigned Offset = 0; 2961 for (unsigned I = 0; I < NumFields; ++I) { 2962 SDValue FieldAddr = Addr; 2963 if (Offset != 0) 2964 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2965 DAG.getIntPtrConstant(Offset, DL)); 2966 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2967 MachinePointerInfo(SV, Offset)); 2968 Offset += 8; 2969 } 2970 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2971 } 2972 2973 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2974 SelectionDAG &DAG) const { 2975 SDValue Chain = Op.getOperand(0); 2976 SDValue DstPtr = Op.getOperand(1); 2977 SDValue SrcPtr = Op.getOperand(2); 2978 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2979 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2980 SDLoc DL(Op); 2981 2982 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2983 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2984 /*isTailCall*/false, 2985 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2986 } 2987 2988 SDValue SystemZTargetLowering:: 2989 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2990 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2991 MachineFunction &MF = DAG.getMachineFunction(); 2992 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 2993 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 2994 2995 SDValue Chain = Op.getOperand(0); 2996 SDValue Size = Op.getOperand(1); 2997 SDValue Align = Op.getOperand(2); 2998 SDLoc DL(Op); 2999 3000 // If user has set the no alignment function attribute, ignore 3001 // alloca alignments. 3002 uint64_t AlignVal = (RealignOpt ? 3003 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3004 3005 uint64_t StackAlign = TFI->getStackAlignment(); 3006 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3007 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3008 3009 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3010 SDValue NeededSpace = Size; 3011 3012 // Get a reference to the stack pointer. 3013 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3014 3015 // If we need a backchain, save it now. 3016 SDValue Backchain; 3017 if (StoreBackchain) 3018 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3019 3020 // Add extra space for alignment if needed. 3021 if (ExtraAlignSpace) 3022 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3023 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3024 3025 // Get the new stack pointer value. 3026 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3027 3028 // Copy the new stack pointer back. 3029 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3030 3031 // The allocated data lives above the 160 bytes allocated for the standard 3032 // frame, plus any outgoing stack arguments. We don't know how much that 3033 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3034 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3035 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3036 3037 // Dynamically realign if needed. 3038 if (RequiredAlign > StackAlign) { 3039 Result = 3040 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3041 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3042 Result = 3043 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3044 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3045 } 3046 3047 if (StoreBackchain) 3048 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3049 3050 SDValue Ops[2] = { Result, Chain }; 3051 return DAG.getMergeValues(Ops, DL); 3052 } 3053 3054 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3055 SDValue Op, SelectionDAG &DAG) const { 3056 SDLoc DL(Op); 3057 3058 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3059 } 3060 3061 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3062 SelectionDAG &DAG) const { 3063 EVT VT = Op.getValueType(); 3064 SDLoc DL(Op); 3065 SDValue Ops[2]; 3066 if (is32Bit(VT)) 3067 // Just do a normal 64-bit multiplication and extract the results. 3068 // We define this so that it can be used for constant division. 3069 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3070 Op.getOperand(1), Ops[1], Ops[0]); 3071 else if (Subtarget.hasMiscellaneousExtensions2()) 3072 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3073 // the high result in the even register. ISD::SMUL_LOHI is defined to 3074 // return the low half first, so the results are in reverse order. 3075 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3076 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3077 else { 3078 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3079 // 3080 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3081 // 3082 // but using the fact that the upper halves are either all zeros 3083 // or all ones: 3084 // 3085 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3086 // 3087 // and grouping the right terms together since they are quicker than the 3088 // multiplication: 3089 // 3090 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3091 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3092 SDValue LL = Op.getOperand(0); 3093 SDValue RL = Op.getOperand(1); 3094 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3095 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3096 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3097 // the high result in the even register. ISD::SMUL_LOHI is defined to 3098 // return the low half first, so the results are in reverse order. 3099 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3100 LL, RL, Ops[1], Ops[0]); 3101 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3102 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3103 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3104 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3105 } 3106 return DAG.getMergeValues(Ops, DL); 3107 } 3108 3109 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3110 SelectionDAG &DAG) const { 3111 EVT VT = Op.getValueType(); 3112 SDLoc DL(Op); 3113 SDValue Ops[2]; 3114 if (is32Bit(VT)) 3115 // Just do a normal 64-bit multiplication and extract the results. 3116 // We define this so that it can be used for constant division. 3117 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3118 Op.getOperand(1), Ops[1], Ops[0]); 3119 else 3120 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3121 // the high result in the even register. ISD::UMUL_LOHI is defined to 3122 // return the low half first, so the results are in reverse order. 3123 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3124 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3125 return DAG.getMergeValues(Ops, DL); 3126 } 3127 3128 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3129 SelectionDAG &DAG) const { 3130 SDValue Op0 = Op.getOperand(0); 3131 SDValue Op1 = Op.getOperand(1); 3132 EVT VT = Op.getValueType(); 3133 SDLoc DL(Op); 3134 3135 // We use DSGF for 32-bit division. This means the first operand must 3136 // always be 64-bit, and the second operand should be 32-bit whenever 3137 // that is possible, to improve performance. 3138 if (is32Bit(VT)) 3139 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3140 else if (DAG.ComputeNumSignBits(Op1) > 32) 3141 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3142 3143 // DSG(F) returns the remainder in the even register and the 3144 // quotient in the odd register. 3145 SDValue Ops[2]; 3146 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3147 return DAG.getMergeValues(Ops, DL); 3148 } 3149 3150 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3151 SelectionDAG &DAG) const { 3152 EVT VT = Op.getValueType(); 3153 SDLoc DL(Op); 3154 3155 // DL(G) returns the remainder in the even register and the 3156 // quotient in the odd register. 3157 SDValue Ops[2]; 3158 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3159 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3160 return DAG.getMergeValues(Ops, DL); 3161 } 3162 3163 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3164 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3165 3166 // Get the known-zero masks for each operand. 3167 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3168 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3169 DAG.computeKnownBits(Ops[1])}; 3170 3171 // See if the upper 32 bits of one operand and the lower 32 bits of the 3172 // other are known zero. They are the low and high operands respectively. 3173 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3174 Known[1].Zero.getZExtValue() }; 3175 unsigned High, Low; 3176 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3177 High = 1, Low = 0; 3178 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3179 High = 0, Low = 1; 3180 else 3181 return Op; 3182 3183 SDValue LowOp = Ops[Low]; 3184 SDValue HighOp = Ops[High]; 3185 3186 // If the high part is a constant, we're better off using IILH. 3187 if (HighOp.getOpcode() == ISD::Constant) 3188 return Op; 3189 3190 // If the low part is a constant that is outside the range of LHI, 3191 // then we're better off using IILF. 3192 if (LowOp.getOpcode() == ISD::Constant) { 3193 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3194 if (!isInt<16>(Value)) 3195 return Op; 3196 } 3197 3198 // Check whether the high part is an AND that doesn't change the 3199 // high 32 bits and just masks out low bits. We can skip it if so. 3200 if (HighOp.getOpcode() == ISD::AND && 3201 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3202 SDValue HighOp0 = HighOp.getOperand(0); 3203 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3204 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3205 HighOp = HighOp0; 3206 } 3207 3208 // Take advantage of the fact that all GR32 operations only change the 3209 // low 32 bits by truncating Low to an i32 and inserting it directly 3210 // using a subreg. The interesting cases are those where the truncation 3211 // can be folded. 3212 SDLoc DL(Op); 3213 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3214 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3215 MVT::i64, HighOp, Low32); 3216 } 3217 3218 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3219 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3220 SelectionDAG &DAG) const { 3221 SDNode *N = Op.getNode(); 3222 SDValue LHS = N->getOperand(0); 3223 SDValue RHS = N->getOperand(1); 3224 SDLoc DL(N); 3225 unsigned BaseOp = 0; 3226 unsigned CCValid = 0; 3227 unsigned CCMask = 0; 3228 3229 switch (Op.getOpcode()) { 3230 default: llvm_unreachable("Unknown instruction!"); 3231 case ISD::SADDO: 3232 BaseOp = SystemZISD::SADDO; 3233 CCValid = SystemZ::CCMASK_ARITH; 3234 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3235 break; 3236 case ISD::SSUBO: 3237 BaseOp = SystemZISD::SSUBO; 3238 CCValid = SystemZ::CCMASK_ARITH; 3239 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3240 break; 3241 case ISD::UADDO: 3242 BaseOp = SystemZISD::UADDO; 3243 CCValid = SystemZ::CCMASK_LOGICAL; 3244 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3245 break; 3246 case ISD::USUBO: 3247 BaseOp = SystemZISD::USUBO; 3248 CCValid = SystemZ::CCMASK_LOGICAL; 3249 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3250 break; 3251 } 3252 3253 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3254 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3255 3256 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3257 if (N->getValueType(1) == MVT::i1) 3258 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3259 3260 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3261 } 3262 3263 // Lower ADDCARRY/SUBCARRY nodes. 3264 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3265 SelectionDAG &DAG) const { 3266 3267 SDNode *N = Op.getNode(); 3268 MVT VT = N->getSimpleValueType(0); 3269 3270 // Let legalize expand this if it isn't a legal type yet. 3271 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3272 return SDValue(); 3273 3274 SDValue LHS = N->getOperand(0); 3275 SDValue RHS = N->getOperand(1); 3276 SDValue Carry = Op.getOperand(2); 3277 SDLoc DL(N); 3278 unsigned BaseOp = 0; 3279 unsigned CCValid = 0; 3280 unsigned CCMask = 0; 3281 3282 switch (Op.getOpcode()) { 3283 default: llvm_unreachable("Unknown instruction!"); 3284 case ISD::ADDCARRY: 3285 BaseOp = SystemZISD::ADDCARRY; 3286 CCValid = SystemZ::CCMASK_LOGICAL; 3287 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3288 break; 3289 case ISD::SUBCARRY: 3290 BaseOp = SystemZISD::SUBCARRY; 3291 CCValid = SystemZ::CCMASK_LOGICAL; 3292 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3293 break; 3294 } 3295 3296 // Set the condition code from the carry flag. 3297 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3298 DAG.getConstant(CCValid, DL, MVT::i32), 3299 DAG.getConstant(CCMask, DL, MVT::i32)); 3300 3301 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3302 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3303 3304 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3305 if (N->getValueType(1) == MVT::i1) 3306 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3307 3308 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3309 } 3310 3311 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3312 SelectionDAG &DAG) const { 3313 EVT VT = Op.getValueType(); 3314 SDLoc DL(Op); 3315 Op = Op.getOperand(0); 3316 3317 // Handle vector types via VPOPCT. 3318 if (VT.isVector()) { 3319 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3320 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3321 switch (VT.getScalarSizeInBits()) { 3322 case 8: 3323 break; 3324 case 16: { 3325 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3326 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3327 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3328 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3329 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3330 break; 3331 } 3332 case 32: { 3333 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3334 DAG.getConstant(0, DL, MVT::i32)); 3335 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3336 break; 3337 } 3338 case 64: { 3339 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3340 DAG.getConstant(0, DL, MVT::i32)); 3341 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3342 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3343 break; 3344 } 3345 default: 3346 llvm_unreachable("Unexpected type"); 3347 } 3348 return Op; 3349 } 3350 3351 // Get the known-zero mask for the operand. 3352 KnownBits Known = DAG.computeKnownBits(Op); 3353 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3354 if (NumSignificantBits == 0) 3355 return DAG.getConstant(0, DL, VT); 3356 3357 // Skip known-zero high parts of the operand. 3358 int64_t OrigBitSize = VT.getSizeInBits(); 3359 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3360 BitSize = std::min(BitSize, OrigBitSize); 3361 3362 // The POPCNT instruction counts the number of bits in each byte. 3363 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3364 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3365 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3366 3367 // Add up per-byte counts in a binary tree. All bits of Op at 3368 // position larger than BitSize remain zero throughout. 3369 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3370 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3371 if (BitSize != OrigBitSize) 3372 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3373 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3374 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3375 } 3376 3377 // Extract overall result from high byte. 3378 if (BitSize > 8) 3379 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3380 DAG.getConstant(BitSize - 8, DL, VT)); 3381 3382 return Op; 3383 } 3384 3385 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3386 SelectionDAG &DAG) const { 3387 SDLoc DL(Op); 3388 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3389 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3390 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3391 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3392 3393 // The only fence that needs an instruction is a sequentially-consistent 3394 // cross-thread fence. 3395 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3396 FenceSSID == SyncScope::System) { 3397 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3398 Op.getOperand(0)), 3399 0); 3400 } 3401 3402 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3403 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3404 } 3405 3406 // Op is an atomic load. Lower it into a normal volatile load. 3407 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3408 SelectionDAG &DAG) const { 3409 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3410 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3411 Node->getChain(), Node->getBasePtr(), 3412 Node->getMemoryVT(), Node->getMemOperand()); 3413 } 3414 3415 // Op is an atomic store. Lower it into a normal volatile store. 3416 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3417 SelectionDAG &DAG) const { 3418 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3419 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3420 Node->getBasePtr(), Node->getMemoryVT(), 3421 Node->getMemOperand()); 3422 // We have to enforce sequential consistency by performing a 3423 // serialization operation after the store. 3424 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3425 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3426 MVT::Other, Chain), 0); 3427 return Chain; 3428 } 3429 3430 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3431 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3432 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3433 SelectionDAG &DAG, 3434 unsigned Opcode) const { 3435 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3436 3437 // 32-bit operations need no code outside the main loop. 3438 EVT NarrowVT = Node->getMemoryVT(); 3439 EVT WideVT = MVT::i32; 3440 if (NarrowVT == WideVT) 3441 return Op; 3442 3443 int64_t BitSize = NarrowVT.getSizeInBits(); 3444 SDValue ChainIn = Node->getChain(); 3445 SDValue Addr = Node->getBasePtr(); 3446 SDValue Src2 = Node->getVal(); 3447 MachineMemOperand *MMO = Node->getMemOperand(); 3448 SDLoc DL(Node); 3449 EVT PtrVT = Addr.getValueType(); 3450 3451 // Convert atomic subtracts of constants into additions. 3452 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3453 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3454 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3455 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3456 } 3457 3458 // Get the address of the containing word. 3459 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3460 DAG.getConstant(-4, DL, PtrVT)); 3461 3462 // Get the number of bits that the word must be rotated left in order 3463 // to bring the field to the top bits of a GR32. 3464 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3465 DAG.getConstant(3, DL, PtrVT)); 3466 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3467 3468 // Get the complementing shift amount, for rotating a field in the top 3469 // bits back to its proper position. 3470 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3471 DAG.getConstant(0, DL, WideVT), BitShift); 3472 3473 // Extend the source operand to 32 bits and prepare it for the inner loop. 3474 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3475 // operations require the source to be shifted in advance. (This shift 3476 // can be folded if the source is constant.) For AND and NAND, the lower 3477 // bits must be set, while for other opcodes they should be left clear. 3478 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3479 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3480 DAG.getConstant(32 - BitSize, DL, WideVT)); 3481 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3482 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3483 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3484 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3485 3486 // Construct the ATOMIC_LOADW_* node. 3487 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3488 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3489 DAG.getConstant(BitSize, DL, WideVT) }; 3490 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3491 NarrowVT, MMO); 3492 3493 // Rotate the result of the final CS so that the field is in the lower 3494 // bits of a GR32, then truncate it. 3495 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3496 DAG.getConstant(BitSize, DL, WideVT)); 3497 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3498 3499 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3500 return DAG.getMergeValues(RetOps, DL); 3501 } 3502 3503 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3504 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3505 // operations into additions. 3506 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3507 SelectionDAG &DAG) const { 3508 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3509 EVT MemVT = Node->getMemoryVT(); 3510 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3511 // A full-width operation. 3512 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3513 SDValue Src2 = Node->getVal(); 3514 SDValue NegSrc2; 3515 SDLoc DL(Src2); 3516 3517 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3518 // Use an addition if the operand is constant and either LAA(G) is 3519 // available or the negative value is in the range of A(G)FHI. 3520 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3521 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3522 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3523 } else if (Subtarget.hasInterlockedAccess1()) 3524 // Use LAA(G) if available. 3525 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3526 Src2); 3527 3528 if (NegSrc2.getNode()) 3529 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3530 Node->getChain(), Node->getBasePtr(), NegSrc2, 3531 Node->getMemOperand()); 3532 3533 // Use the node as-is. 3534 return Op; 3535 } 3536 3537 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3538 } 3539 3540 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3541 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3542 SelectionDAG &DAG) const { 3543 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3544 SDValue ChainIn = Node->getOperand(0); 3545 SDValue Addr = Node->getOperand(1); 3546 SDValue CmpVal = Node->getOperand(2); 3547 SDValue SwapVal = Node->getOperand(3); 3548 MachineMemOperand *MMO = Node->getMemOperand(); 3549 SDLoc DL(Node); 3550 3551 // We have native support for 32-bit and 64-bit compare and swap, but we 3552 // still need to expand extracting the "success" result from the CC. 3553 EVT NarrowVT = Node->getMemoryVT(); 3554 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3555 if (NarrowVT == WideVT) { 3556 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3557 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3558 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3559 DL, Tys, Ops, NarrowVT, MMO); 3560 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3561 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3562 3563 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3564 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3565 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3566 return SDValue(); 3567 } 3568 3569 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3570 // via a fullword ATOMIC_CMP_SWAPW operation. 3571 int64_t BitSize = NarrowVT.getSizeInBits(); 3572 EVT PtrVT = Addr.getValueType(); 3573 3574 // Get the address of the containing word. 3575 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3576 DAG.getConstant(-4, DL, PtrVT)); 3577 3578 // Get the number of bits that the word must be rotated left in order 3579 // to bring the field to the top bits of a GR32. 3580 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3581 DAG.getConstant(3, DL, PtrVT)); 3582 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3583 3584 // Get the complementing shift amount, for rotating a field in the top 3585 // bits back to its proper position. 3586 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3587 DAG.getConstant(0, DL, WideVT), BitShift); 3588 3589 // Construct the ATOMIC_CMP_SWAPW node. 3590 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3591 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3592 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3593 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3594 VTList, Ops, NarrowVT, MMO); 3595 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3596 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3597 3598 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3599 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3600 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3601 return SDValue(); 3602 } 3603 3604 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3605 SelectionDAG &DAG) const { 3606 MachineFunction &MF = DAG.getMachineFunction(); 3607 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3608 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3609 SystemZ::R15D, Op.getValueType()); 3610 } 3611 3612 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3613 SelectionDAG &DAG) const { 3614 MachineFunction &MF = DAG.getMachineFunction(); 3615 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3616 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3617 3618 SDValue Chain = Op.getOperand(0); 3619 SDValue NewSP = Op.getOperand(1); 3620 SDValue Backchain; 3621 SDLoc DL(Op); 3622 3623 if (StoreBackchain) { 3624 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3625 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3626 } 3627 3628 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3629 3630 if (StoreBackchain) 3631 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3632 3633 return Chain; 3634 } 3635 3636 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3637 SelectionDAG &DAG) const { 3638 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3639 if (!IsData) 3640 // Just preserve the chain. 3641 return Op.getOperand(0); 3642 3643 SDLoc DL(Op); 3644 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3645 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3646 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3647 SDValue Ops[] = { 3648 Op.getOperand(0), 3649 DAG.getConstant(Code, DL, MVT::i32), 3650 Op.getOperand(1) 3651 }; 3652 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3653 Node->getVTList(), Ops, 3654 Node->getMemoryVT(), Node->getMemOperand()); 3655 } 3656 3657 // Convert condition code in CCReg to an i32 value. 3658 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3659 SDLoc DL(CCReg); 3660 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3661 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3662 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3663 } 3664 3665 SDValue 3666 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3667 SelectionDAG &DAG) const { 3668 unsigned Opcode, CCValid; 3669 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3670 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3671 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3672 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3673 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3674 return SDValue(); 3675 } 3676 3677 return SDValue(); 3678 } 3679 3680 SDValue 3681 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3682 SelectionDAG &DAG) const { 3683 unsigned Opcode, CCValid; 3684 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3685 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3686 if (Op->getNumValues() == 1) 3687 return getCCResult(DAG, SDValue(Node, 0)); 3688 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3689 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3690 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3691 } 3692 3693 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3694 switch (Id) { 3695 case Intrinsic::thread_pointer: 3696 return lowerThreadPointer(SDLoc(Op), DAG); 3697 3698 case Intrinsic::s390_vpdi: 3699 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3700 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3701 3702 case Intrinsic::s390_vperm: 3703 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3704 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3705 3706 case Intrinsic::s390_vuphb: 3707 case Intrinsic::s390_vuphh: 3708 case Intrinsic::s390_vuphf: 3709 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3710 Op.getOperand(1)); 3711 3712 case Intrinsic::s390_vuplhb: 3713 case Intrinsic::s390_vuplhh: 3714 case Intrinsic::s390_vuplhf: 3715 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3716 Op.getOperand(1)); 3717 3718 case Intrinsic::s390_vuplb: 3719 case Intrinsic::s390_vuplhw: 3720 case Intrinsic::s390_vuplf: 3721 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3722 Op.getOperand(1)); 3723 3724 case Intrinsic::s390_vupllb: 3725 case Intrinsic::s390_vupllh: 3726 case Intrinsic::s390_vupllf: 3727 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3728 Op.getOperand(1)); 3729 3730 case Intrinsic::s390_vsumb: 3731 case Intrinsic::s390_vsumh: 3732 case Intrinsic::s390_vsumgh: 3733 case Intrinsic::s390_vsumgf: 3734 case Intrinsic::s390_vsumqf: 3735 case Intrinsic::s390_vsumqg: 3736 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3737 Op.getOperand(1), Op.getOperand(2)); 3738 } 3739 3740 return SDValue(); 3741 } 3742 3743 namespace { 3744 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3745 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3746 // Operand is the constant third operand, otherwise it is the number of 3747 // bytes in each element of the result. 3748 struct Permute { 3749 unsigned Opcode; 3750 unsigned Operand; 3751 unsigned char Bytes[SystemZ::VectorBytes]; 3752 }; 3753 } 3754 3755 static const Permute PermuteForms[] = { 3756 // VMRHG 3757 { SystemZISD::MERGE_HIGH, 8, 3758 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3759 // VMRHF 3760 { SystemZISD::MERGE_HIGH, 4, 3761 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3762 // VMRHH 3763 { SystemZISD::MERGE_HIGH, 2, 3764 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3765 // VMRHB 3766 { SystemZISD::MERGE_HIGH, 1, 3767 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3768 // VMRLG 3769 { SystemZISD::MERGE_LOW, 8, 3770 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3771 // VMRLF 3772 { SystemZISD::MERGE_LOW, 4, 3773 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3774 // VMRLH 3775 { SystemZISD::MERGE_LOW, 2, 3776 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3777 // VMRLB 3778 { SystemZISD::MERGE_LOW, 1, 3779 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3780 // VPKG 3781 { SystemZISD::PACK, 4, 3782 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3783 // VPKF 3784 { SystemZISD::PACK, 2, 3785 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3786 // VPKH 3787 { SystemZISD::PACK, 1, 3788 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3789 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3790 { SystemZISD::PERMUTE_DWORDS, 4, 3791 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3792 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3793 { SystemZISD::PERMUTE_DWORDS, 1, 3794 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3795 }; 3796 3797 // Called after matching a vector shuffle against a particular pattern. 3798 // Both the original shuffle and the pattern have two vector operands. 3799 // OpNos[0] is the operand of the original shuffle that should be used for 3800 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3801 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3802 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3803 // for operands 0 and 1 of the pattern. 3804 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3805 if (OpNos[0] < 0) { 3806 if (OpNos[1] < 0) 3807 return false; 3808 OpNo0 = OpNo1 = OpNos[1]; 3809 } else if (OpNos[1] < 0) { 3810 OpNo0 = OpNo1 = OpNos[0]; 3811 } else { 3812 OpNo0 = OpNos[0]; 3813 OpNo1 = OpNos[1]; 3814 } 3815 return true; 3816 } 3817 3818 // Bytes is a VPERM-like permute vector, except that -1 is used for 3819 // undefined bytes. Return true if the VPERM can be implemented using P. 3820 // When returning true set OpNo0 to the VPERM operand that should be 3821 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3822 // 3823 // For example, if swapping the VPERM operands allows P to match, OpNo0 3824 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3825 // operand, but rewriting it to use two duplicated operands allows it to 3826 // match P, then OpNo0 and OpNo1 will be the same. 3827 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3828 unsigned &OpNo0, unsigned &OpNo1) { 3829 int OpNos[] = { -1, -1 }; 3830 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3831 int Elt = Bytes[I]; 3832 if (Elt >= 0) { 3833 // Make sure that the two permute vectors use the same suboperand 3834 // byte number. Only the operand numbers (the high bits) are 3835 // allowed to differ. 3836 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3837 return false; 3838 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3839 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3840 // Make sure that the operand mappings are consistent with previous 3841 // elements. 3842 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3843 return false; 3844 OpNos[ModelOpNo] = RealOpNo; 3845 } 3846 } 3847 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3848 } 3849 3850 // As above, but search for a matching permute. 3851 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3852 unsigned &OpNo0, unsigned &OpNo1) { 3853 for (auto &P : PermuteForms) 3854 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3855 return &P; 3856 return nullptr; 3857 } 3858 3859 // Bytes is a VPERM-like permute vector, except that -1 is used for 3860 // undefined bytes. This permute is an operand of an outer permute. 3861 // See whether redistributing the -1 bytes gives a shuffle that can be 3862 // implemented using P. If so, set Transform to a VPERM-like permute vector 3863 // that, when applied to the result of P, gives the original permute in Bytes. 3864 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3865 const Permute &P, 3866 SmallVectorImpl<int> &Transform) { 3867 unsigned To = 0; 3868 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3869 int Elt = Bytes[From]; 3870 if (Elt < 0) 3871 // Byte number From of the result is undefined. 3872 Transform[From] = -1; 3873 else { 3874 while (P.Bytes[To] != Elt) { 3875 To += 1; 3876 if (To == SystemZ::VectorBytes) 3877 return false; 3878 } 3879 Transform[From] = To; 3880 } 3881 } 3882 return true; 3883 } 3884 3885 // As above, but search for a matching permute. 3886 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3887 SmallVectorImpl<int> &Transform) { 3888 for (auto &P : PermuteForms) 3889 if (matchDoublePermute(Bytes, P, Transform)) 3890 return &P; 3891 return nullptr; 3892 } 3893 3894 // Convert the mask of the given shuffle op into a byte-level mask, 3895 // as if it had type vNi8. 3896 static bool getVPermMask(SDValue ShuffleOp, 3897 SmallVectorImpl<int> &Bytes) { 3898 EVT VT = ShuffleOp.getValueType(); 3899 unsigned NumElements = VT.getVectorNumElements(); 3900 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3901 3902 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 3903 Bytes.resize(NumElements * BytesPerElement, -1); 3904 for (unsigned I = 0; I < NumElements; ++I) { 3905 int Index = VSN->getMaskElt(I); 3906 if (Index >= 0) 3907 for (unsigned J = 0; J < BytesPerElement; ++J) 3908 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3909 } 3910 return true; 3911 } 3912 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 3913 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 3914 unsigned Index = ShuffleOp.getConstantOperandVal(1); 3915 Bytes.resize(NumElements * BytesPerElement, -1); 3916 for (unsigned I = 0; I < NumElements; ++I) 3917 for (unsigned J = 0; J < BytesPerElement; ++J) 3918 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3919 return true; 3920 } 3921 return false; 3922 } 3923 3924 // Bytes is a VPERM-like permute vector, except that -1 is used for 3925 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3926 // the result come from a contiguous sequence of bytes from one input. 3927 // Set Base to the selector for the first byte if so. 3928 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3929 unsigned BytesPerElement, int &Base) { 3930 Base = -1; 3931 for (unsigned I = 0; I < BytesPerElement; ++I) { 3932 if (Bytes[Start + I] >= 0) { 3933 unsigned Elem = Bytes[Start + I]; 3934 if (Base < 0) { 3935 Base = Elem - I; 3936 // Make sure the bytes would come from one input operand. 3937 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3938 return false; 3939 } else if (unsigned(Base) != Elem - I) 3940 return false; 3941 } 3942 } 3943 return true; 3944 } 3945 3946 // Bytes is a VPERM-like permute vector, except that -1 is used for 3947 // undefined bytes. Return true if it can be performed using VSLDI. 3948 // When returning true, set StartIndex to the shift amount and OpNo0 3949 // and OpNo1 to the VPERM operands that should be used as the first 3950 // and second shift operand respectively. 3951 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3952 unsigned &StartIndex, unsigned &OpNo0, 3953 unsigned &OpNo1) { 3954 int OpNos[] = { -1, -1 }; 3955 int Shift = -1; 3956 for (unsigned I = 0; I < 16; ++I) { 3957 int Index = Bytes[I]; 3958 if (Index >= 0) { 3959 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3960 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3961 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3962 if (Shift < 0) 3963 Shift = ExpectedShift; 3964 else if (Shift != ExpectedShift) 3965 return false; 3966 // Make sure that the operand mappings are consistent with previous 3967 // elements. 3968 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3969 return false; 3970 OpNos[ModelOpNo] = RealOpNo; 3971 } 3972 } 3973 StartIndex = Shift; 3974 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3975 } 3976 3977 // Create a node that performs P on operands Op0 and Op1, casting the 3978 // operands to the appropriate type. The type of the result is determined by P. 3979 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3980 const Permute &P, SDValue Op0, SDValue Op1) { 3981 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3982 // elements of a PACK are twice as wide as the outputs. 3983 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3984 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3985 P.Operand); 3986 // Cast both operands to the appropriate type. 3987 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3988 SystemZ::VectorBytes / InBytes); 3989 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3990 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3991 SDValue Op; 3992 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3993 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3994 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3995 } else if (P.Opcode == SystemZISD::PACK) { 3996 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3997 SystemZ::VectorBytes / P.Operand); 3998 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3999 } else { 4000 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4001 } 4002 return Op; 4003 } 4004 4005 // Bytes is a VPERM-like permute vector, except that -1 is used for 4006 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4007 // VSLDI or VPERM. 4008 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4009 SDValue *Ops, 4010 const SmallVectorImpl<int> &Bytes) { 4011 for (unsigned I = 0; I < 2; ++I) 4012 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4013 4014 // First see whether VSLDI can be used. 4015 unsigned StartIndex, OpNo0, OpNo1; 4016 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4017 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4018 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 4019 4020 // Fall back on VPERM. Construct an SDNode for the permute vector. 4021 SDValue IndexNodes[SystemZ::VectorBytes]; 4022 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4023 if (Bytes[I] >= 0) 4024 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4025 else 4026 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4027 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4028 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4029 } 4030 4031 namespace { 4032 // Describes a general N-operand vector shuffle. 4033 struct GeneralShuffle { 4034 GeneralShuffle(EVT vt) : VT(vt) {} 4035 void addUndef(); 4036 bool add(SDValue, unsigned); 4037 SDValue getNode(SelectionDAG &, const SDLoc &); 4038 4039 // The operands of the shuffle. 4040 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4041 4042 // Index I is -1 if byte I of the result is undefined. Otherwise the 4043 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4044 // Bytes[I] / SystemZ::VectorBytes. 4045 SmallVector<int, SystemZ::VectorBytes> Bytes; 4046 4047 // The type of the shuffle result. 4048 EVT VT; 4049 }; 4050 } 4051 4052 // Add an extra undefined element to the shuffle. 4053 void GeneralShuffle::addUndef() { 4054 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4055 for (unsigned I = 0; I < BytesPerElement; ++I) 4056 Bytes.push_back(-1); 4057 } 4058 4059 // Add an extra element to the shuffle, taking it from element Elem of Op. 4060 // A null Op indicates a vector input whose value will be calculated later; 4061 // there is at most one such input per shuffle and it always has the same 4062 // type as the result. Aborts and returns false if the source vector elements 4063 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4064 // LLVM they become implicitly extended, but this is rare and not optimized. 4065 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4066 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4067 4068 // The source vector can have wider elements than the result, 4069 // either through an explicit TRUNCATE or because of type legalization. 4070 // We want the least significant part. 4071 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4072 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4073 4074 // Return false if the source elements are smaller than their destination 4075 // elements. 4076 if (FromBytesPerElement < BytesPerElement) 4077 return false; 4078 4079 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4080 (FromBytesPerElement - BytesPerElement)); 4081 4082 // Look through things like shuffles and bitcasts. 4083 while (Op.getNode()) { 4084 if (Op.getOpcode() == ISD::BITCAST) 4085 Op = Op.getOperand(0); 4086 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4087 // See whether the bytes we need come from a contiguous part of one 4088 // operand. 4089 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4090 if (!getVPermMask(Op, OpBytes)) 4091 break; 4092 int NewByte; 4093 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4094 break; 4095 if (NewByte < 0) { 4096 addUndef(); 4097 return true; 4098 } 4099 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4100 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4101 } else if (Op.isUndef()) { 4102 addUndef(); 4103 return true; 4104 } else 4105 break; 4106 } 4107 4108 // Make sure that the source of the extraction is in Ops. 4109 unsigned OpNo = 0; 4110 for (; OpNo < Ops.size(); ++OpNo) 4111 if (Ops[OpNo] == Op) 4112 break; 4113 if (OpNo == Ops.size()) 4114 Ops.push_back(Op); 4115 4116 // Add the element to Bytes. 4117 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4118 for (unsigned I = 0; I < BytesPerElement; ++I) 4119 Bytes.push_back(Base + I); 4120 4121 return true; 4122 } 4123 4124 // Return SDNodes for the completed shuffle. 4125 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4126 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4127 4128 if (Ops.size() == 0) 4129 return DAG.getUNDEF(VT); 4130 4131 // Make sure that there are at least two shuffle operands. 4132 if (Ops.size() == 1) 4133 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4134 4135 // Create a tree of shuffles, deferring root node until after the loop. 4136 // Try to redistribute the undefined elements of non-root nodes so that 4137 // the non-root shuffles match something like a pack or merge, then adjust 4138 // the parent node's permute vector to compensate for the new order. 4139 // Among other things, this copes with vectors like <2 x i16> that were 4140 // padded with undefined elements during type legalization. 4141 // 4142 // In the best case this redistribution will lead to the whole tree 4143 // using packs and merges. It should rarely be a loss in other cases. 4144 unsigned Stride = 1; 4145 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4146 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4147 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4148 4149 // Create a mask for just these two operands. 4150 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4151 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4152 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4153 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4154 if (OpNo == I) 4155 NewBytes[J] = Byte; 4156 else if (OpNo == I + Stride) 4157 NewBytes[J] = SystemZ::VectorBytes + Byte; 4158 else 4159 NewBytes[J] = -1; 4160 } 4161 // See if it would be better to reorganize NewMask to avoid using VPERM. 4162 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4163 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4164 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4165 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4166 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4167 if (NewBytes[J] >= 0) { 4168 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4169 "Invalid double permute"); 4170 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4171 } else 4172 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4173 } 4174 } else { 4175 // Just use NewBytes on the operands. 4176 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4177 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4178 if (NewBytes[J] >= 0) 4179 Bytes[J] = I * SystemZ::VectorBytes + J; 4180 } 4181 } 4182 } 4183 4184 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4185 if (Stride > 1) { 4186 Ops[1] = Ops[Stride]; 4187 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4188 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4189 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4190 } 4191 4192 // Look for an instruction that can do the permute without resorting 4193 // to VPERM. 4194 unsigned OpNo0, OpNo1; 4195 SDValue Op; 4196 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4197 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4198 else 4199 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4200 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4201 } 4202 4203 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4204 static bool isScalarToVector(SDValue Op) { 4205 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4206 if (!Op.getOperand(I).isUndef()) 4207 return false; 4208 return true; 4209 } 4210 4211 // Return a vector of type VT that contains Value in the first element. 4212 // The other elements don't matter. 4213 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4214 SDValue Value) { 4215 // If we have a constant, replicate it to all elements and let the 4216 // BUILD_VECTOR lowering take care of it. 4217 if (Value.getOpcode() == ISD::Constant || 4218 Value.getOpcode() == ISD::ConstantFP) { 4219 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4220 return DAG.getBuildVector(VT, DL, Ops); 4221 } 4222 if (Value.isUndef()) 4223 return DAG.getUNDEF(VT); 4224 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4225 } 4226 4227 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4228 // element 1. Used for cases in which replication is cheap. 4229 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4230 SDValue Op0, SDValue Op1) { 4231 if (Op0.isUndef()) { 4232 if (Op1.isUndef()) 4233 return DAG.getUNDEF(VT); 4234 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4235 } 4236 if (Op1.isUndef()) 4237 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4238 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4239 buildScalarToVector(DAG, DL, VT, Op0), 4240 buildScalarToVector(DAG, DL, VT, Op1)); 4241 } 4242 4243 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4244 // vector for them. 4245 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4246 SDValue Op1) { 4247 if (Op0.isUndef() && Op1.isUndef()) 4248 return DAG.getUNDEF(MVT::v2i64); 4249 // If one of the two inputs is undefined then replicate the other one, 4250 // in order to avoid using another register unnecessarily. 4251 if (Op0.isUndef()) 4252 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4253 else if (Op1.isUndef()) 4254 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4255 else { 4256 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4257 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4258 } 4259 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4260 } 4261 4262 // Try to represent constant BUILD_VECTOR node BVN using a 4263 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4264 // on success. 4265 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4266 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4267 unsigned BytesPerElement = ElemVT.getStoreSize(); 4268 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4269 SDValue Op = BVN->getOperand(I); 4270 if (!Op.isUndef()) { 4271 uint64_t Value; 4272 if (Op.getOpcode() == ISD::Constant) 4273 Value = cast<ConstantSDNode>(Op)->getZExtValue(); 4274 else if (Op.getOpcode() == ISD::ConstantFP) 4275 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4276 .getZExtValue()); 4277 else 4278 return false; 4279 for (unsigned J = 0; J < BytesPerElement; ++J) { 4280 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4281 if (Byte == 0xff) 4282 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4283 else if (Byte != 0) 4284 return false; 4285 } 4286 } 4287 } 4288 return true; 4289 } 4290 4291 // Try to load a vector constant in which BitsPerElement-bit value Value 4292 // is replicated to fill the vector. VT is the type of the resulting 4293 // constant, which may have elements of a different size from BitsPerElement. 4294 // Return the SDValue of the constant on success, otherwise return 4295 // an empty value. 4296 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4297 const SystemZInstrInfo *TII, 4298 const SDLoc &DL, EVT VT, uint64_t Value, 4299 unsigned BitsPerElement) { 4300 // Signed 16-bit values can be replicated using VREPI. 4301 // Mark the constants as opaque or DAGCombiner will convert back to 4302 // BUILD_VECTOR. 4303 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4304 if (isInt<16>(SignedValue)) { 4305 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4306 SystemZ::VectorBits / BitsPerElement); 4307 SDValue Op = DAG.getNode( 4308 SystemZISD::REPLICATE, DL, VecVT, 4309 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/)); 4310 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4311 } 4312 // See whether rotating the constant left some N places gives a value that 4313 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4314 // If so we can use VGM. 4315 unsigned Start, End; 4316 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4317 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4318 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4319 // bit numbers for an BitsPerElement value, so that 0 denotes 4320 // 1 << (BitsPerElement-1). 4321 Start -= 64 - BitsPerElement; 4322 End -= 64 - BitsPerElement; 4323 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4324 SystemZ::VectorBits / BitsPerElement); 4325 SDValue Op = DAG.getNode( 4326 SystemZISD::ROTATE_MASK, DL, VecVT, 4327 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/), 4328 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/)); 4329 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4330 } 4331 return SDValue(); 4332 } 4333 4334 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4335 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4336 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4337 // would benefit from this representation and return it if so. 4338 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4339 BuildVectorSDNode *BVN) { 4340 EVT VT = BVN->getValueType(0); 4341 unsigned NumElements = VT.getVectorNumElements(); 4342 4343 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4344 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4345 // need a BUILD_VECTOR, add an additional placeholder operand for that 4346 // BUILD_VECTOR and store its operands in ResidueOps. 4347 GeneralShuffle GS(VT); 4348 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4349 bool FoundOne = false; 4350 for (unsigned I = 0; I < NumElements; ++I) { 4351 SDValue Op = BVN->getOperand(I); 4352 if (Op.getOpcode() == ISD::TRUNCATE) 4353 Op = Op.getOperand(0); 4354 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4355 Op.getOperand(1).getOpcode() == ISD::Constant) { 4356 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4357 if (!GS.add(Op.getOperand(0), Elem)) 4358 return SDValue(); 4359 FoundOne = true; 4360 } else if (Op.isUndef()) { 4361 GS.addUndef(); 4362 } else { 4363 if (!GS.add(SDValue(), ResidueOps.size())) 4364 return SDValue(); 4365 ResidueOps.push_back(BVN->getOperand(I)); 4366 } 4367 } 4368 4369 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4370 if (!FoundOne) 4371 return SDValue(); 4372 4373 // Create the BUILD_VECTOR for the remaining elements, if any. 4374 if (!ResidueOps.empty()) { 4375 while (ResidueOps.size() < NumElements) 4376 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4377 for (auto &Op : GS.Ops) { 4378 if (!Op.getNode()) { 4379 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4380 break; 4381 } 4382 } 4383 } 4384 return GS.getNode(DAG, SDLoc(BVN)); 4385 } 4386 4387 // Combine GPR scalar values Elems into a vector of type VT. 4388 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4389 SmallVectorImpl<SDValue> &Elems) { 4390 // See whether there is a single replicated value. 4391 SDValue Single; 4392 unsigned int NumElements = Elems.size(); 4393 unsigned int Count = 0; 4394 for (auto Elem : Elems) { 4395 if (!Elem.isUndef()) { 4396 if (!Single.getNode()) 4397 Single = Elem; 4398 else if (Elem != Single) { 4399 Single = SDValue(); 4400 break; 4401 } 4402 Count += 1; 4403 } 4404 } 4405 // There are three cases here: 4406 // 4407 // - if the only defined element is a loaded one, the best sequence 4408 // is a replicating load. 4409 // 4410 // - otherwise, if the only defined element is an i64 value, we will 4411 // end up with the same VLVGP sequence regardless of whether we short-cut 4412 // for replication or fall through to the later code. 4413 // 4414 // - otherwise, if the only defined element is an i32 or smaller value, 4415 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4416 // This is only a win if the single defined element is used more than once. 4417 // In other cases we're better off using a single VLVGx. 4418 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4419 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4420 4421 // If all elements are loads, use VLREP/VLEs (below). 4422 bool AllLoads = true; 4423 for (auto Elem : Elems) 4424 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4425 AllLoads = false; 4426 break; 4427 } 4428 4429 // The best way of building a v2i64 from two i64s is to use VLVGP. 4430 if (VT == MVT::v2i64 && !AllLoads) 4431 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4432 4433 // Use a 64-bit merge high to combine two doubles. 4434 if (VT == MVT::v2f64 && !AllLoads) 4435 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4436 4437 // Build v4f32 values directly from the FPRs: 4438 // 4439 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4440 // V V VMRHF 4441 // <ABxx> <CDxx> 4442 // V VMRHG 4443 // <ABCD> 4444 if (VT == MVT::v4f32 && !AllLoads) { 4445 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4446 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4447 // Avoid unnecessary undefs by reusing the other operand. 4448 if (Op01.isUndef()) 4449 Op01 = Op23; 4450 else if (Op23.isUndef()) 4451 Op23 = Op01; 4452 // Merging identical replications is a no-op. 4453 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4454 return Op01; 4455 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4456 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4457 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4458 DL, MVT::v2i64, Op01, Op23); 4459 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4460 } 4461 4462 // Collect the constant terms. 4463 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4464 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4465 4466 unsigned NumConstants = 0; 4467 for (unsigned I = 0; I < NumElements; ++I) { 4468 SDValue Elem = Elems[I]; 4469 if (Elem.getOpcode() == ISD::Constant || 4470 Elem.getOpcode() == ISD::ConstantFP) { 4471 NumConstants += 1; 4472 Constants[I] = Elem; 4473 Done[I] = true; 4474 } 4475 } 4476 // If there was at least one constant, fill in the other elements of 4477 // Constants with undefs to get a full vector constant and use that 4478 // as the starting point. 4479 SDValue Result; 4480 SDValue ReplicatedVal; 4481 if (NumConstants > 0) { 4482 for (unsigned I = 0; I < NumElements; ++I) 4483 if (!Constants[I].getNode()) 4484 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4485 Result = DAG.getBuildVector(VT, DL, Constants); 4486 } else { 4487 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4488 // avoid a false dependency on any previous contents of the vector 4489 // register. 4490 4491 // Use a VLREP if at least one element is a load. Make sure to replicate 4492 // the load with the most elements having its value. 4493 std::map<const SDNode*, unsigned> UseCounts; 4494 SDNode *LoadMaxUses = nullptr; 4495 for (unsigned I = 0; I < NumElements; ++I) 4496 if (Elems[I].getOpcode() == ISD::LOAD && 4497 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4498 SDNode *Ld = Elems[I].getNode(); 4499 UseCounts[Ld]++; 4500 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4501 LoadMaxUses = Ld; 4502 } 4503 if (LoadMaxUses != nullptr) { 4504 ReplicatedVal = SDValue(LoadMaxUses, 0); 4505 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4506 } else { 4507 // Try to use VLVGP. 4508 unsigned I1 = NumElements / 2 - 1; 4509 unsigned I2 = NumElements - 1; 4510 bool Def1 = !Elems[I1].isUndef(); 4511 bool Def2 = !Elems[I2].isUndef(); 4512 if (Def1 || Def2) { 4513 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4514 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4515 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4516 joinDwords(DAG, DL, Elem1, Elem2)); 4517 Done[I1] = true; 4518 Done[I2] = true; 4519 } else 4520 Result = DAG.getUNDEF(VT); 4521 } 4522 } 4523 4524 // Use VLVGx to insert the other elements. 4525 for (unsigned I = 0; I < NumElements; ++I) 4526 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4527 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4528 DAG.getConstant(I, DL, MVT::i32)); 4529 return Result; 4530 } 4531 4532 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4533 SelectionDAG &DAG) const { 4534 const SystemZInstrInfo *TII = 4535 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4536 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4537 SDLoc DL(Op); 4538 EVT VT = Op.getValueType(); 4539 4540 if (BVN->isConstant()) { 4541 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4542 // preferred way of creating all-zero and all-one vectors so give it 4543 // priority over other methods below. 4544 uint64_t Mask = 0; 4545 if (tryBuildVectorByteMask(BVN, Mask)) { 4546 SDValue Op = DAG.getNode( 4547 SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4548 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/)); 4549 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4550 } 4551 4552 // Try using some form of replication. 4553 APInt SplatBits, SplatUndef; 4554 unsigned SplatBitSize; 4555 bool HasAnyUndefs; 4556 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4557 8, true) && 4558 SplatBitSize <= 64) { 4559 // First try assuming that any undefined bits above the highest set bit 4560 // and below the lowest set bit are 1s. This increases the likelihood of 4561 // being able to use a sign-extended element value in VECTOR REPLICATE 4562 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4563 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4564 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4565 uint64_t Lower = (SplatUndefZ 4566 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4567 uint64_t Upper = (SplatUndefZ 4568 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4569 uint64_t Value = SplatBitsZ | Upper | Lower; 4570 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4571 SplatBitSize); 4572 if (Op.getNode()) 4573 return Op; 4574 4575 // Now try assuming that any undefined bits between the first and 4576 // last defined set bits are set. This increases the chances of 4577 // using a non-wraparound mask. 4578 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4579 Value = SplatBitsZ | Middle; 4580 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4581 if (Op.getNode()) 4582 return Op; 4583 } 4584 4585 // Fall back to loading it from memory. 4586 return SDValue(); 4587 } 4588 4589 // See if we should use shuffles to construct the vector from other vectors. 4590 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4591 return Res; 4592 4593 // Detect SCALAR_TO_VECTOR conversions. 4594 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4595 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4596 4597 // Otherwise use buildVector to build the vector up from GPRs. 4598 unsigned NumElements = Op.getNumOperands(); 4599 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4600 for (unsigned I = 0; I < NumElements; ++I) 4601 Ops[I] = Op.getOperand(I); 4602 return buildVector(DAG, DL, VT, Ops); 4603 } 4604 4605 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4606 SelectionDAG &DAG) const { 4607 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4608 SDLoc DL(Op); 4609 EVT VT = Op.getValueType(); 4610 unsigned NumElements = VT.getVectorNumElements(); 4611 4612 if (VSN->isSplat()) { 4613 SDValue Op0 = Op.getOperand(0); 4614 unsigned Index = VSN->getSplatIndex(); 4615 assert(Index < VT.getVectorNumElements() && 4616 "Splat index should be defined and in first operand"); 4617 // See whether the value we're splatting is directly available as a scalar. 4618 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4619 Op0.getOpcode() == ISD::BUILD_VECTOR) 4620 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4621 // Otherwise keep it as a vector-to-vector operation. 4622 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4623 DAG.getConstant(Index, DL, MVT::i32)); 4624 } 4625 4626 GeneralShuffle GS(VT); 4627 for (unsigned I = 0; I < NumElements; ++I) { 4628 int Elt = VSN->getMaskElt(I); 4629 if (Elt < 0) 4630 GS.addUndef(); 4631 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4632 unsigned(Elt) % NumElements)) 4633 return SDValue(); 4634 } 4635 return GS.getNode(DAG, SDLoc(VSN)); 4636 } 4637 4638 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4639 SelectionDAG &DAG) const { 4640 SDLoc DL(Op); 4641 // Just insert the scalar into element 0 of an undefined vector. 4642 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4643 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4644 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4645 } 4646 4647 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4648 SelectionDAG &DAG) const { 4649 // Handle insertions of floating-point values. 4650 SDLoc DL(Op); 4651 SDValue Op0 = Op.getOperand(0); 4652 SDValue Op1 = Op.getOperand(1); 4653 SDValue Op2 = Op.getOperand(2); 4654 EVT VT = Op.getValueType(); 4655 4656 // Insertions into constant indices of a v2f64 can be done using VPDI. 4657 // However, if the inserted value is a bitcast or a constant then it's 4658 // better to use GPRs, as below. 4659 if (VT == MVT::v2f64 && 4660 Op1.getOpcode() != ISD::BITCAST && 4661 Op1.getOpcode() != ISD::ConstantFP && 4662 Op2.getOpcode() == ISD::Constant) { 4663 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4664 unsigned Mask = VT.getVectorNumElements() - 1; 4665 if (Index <= Mask) 4666 return Op; 4667 } 4668 4669 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4670 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4671 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4672 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4673 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4674 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4675 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4676 } 4677 4678 SDValue 4679 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4680 SelectionDAG &DAG) const { 4681 // Handle extractions of floating-point values. 4682 SDLoc DL(Op); 4683 SDValue Op0 = Op.getOperand(0); 4684 SDValue Op1 = Op.getOperand(1); 4685 EVT VT = Op.getValueType(); 4686 EVT VecVT = Op0.getValueType(); 4687 4688 // Extractions of constant indices can be done directly. 4689 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4690 uint64_t Index = CIndexN->getZExtValue(); 4691 unsigned Mask = VecVT.getVectorNumElements() - 1; 4692 if (Index <= Mask) 4693 return Op; 4694 } 4695 4696 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4697 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4698 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4699 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4700 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4701 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4702 } 4703 4704 SDValue 4705 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4706 unsigned UnpackHigh) const { 4707 SDValue PackedOp = Op.getOperand(0); 4708 EVT OutVT = Op.getValueType(); 4709 EVT InVT = PackedOp.getValueType(); 4710 unsigned ToBits = OutVT.getScalarSizeInBits(); 4711 unsigned FromBits = InVT.getScalarSizeInBits(); 4712 do { 4713 FromBits *= 2; 4714 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4715 SystemZ::VectorBits / FromBits); 4716 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4717 } while (FromBits != ToBits); 4718 return PackedOp; 4719 } 4720 4721 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4722 unsigned ByScalar) const { 4723 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4724 SDValue Op0 = Op.getOperand(0); 4725 SDValue Op1 = Op.getOperand(1); 4726 SDLoc DL(Op); 4727 EVT VT = Op.getValueType(); 4728 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4729 4730 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4731 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4732 APInt SplatBits, SplatUndef; 4733 unsigned SplatBitSize; 4734 bool HasAnyUndefs; 4735 // Check for constant splats. Use ElemBitSize as the minimum element 4736 // width and reject splats that need wider elements. 4737 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4738 ElemBitSize, true) && 4739 SplatBitSize == ElemBitSize) { 4740 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4741 DL, MVT::i32); 4742 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4743 } 4744 // Check for variable splats. 4745 BitVector UndefElements; 4746 SDValue Splat = BVN->getSplatValue(&UndefElements); 4747 if (Splat) { 4748 // Since i32 is the smallest legal type, we either need a no-op 4749 // or a truncation. 4750 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4751 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4752 } 4753 } 4754 4755 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4756 // and the shift amount is directly available in a GPR. 4757 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4758 if (VSN->isSplat()) { 4759 SDValue VSNOp0 = VSN->getOperand(0); 4760 unsigned Index = VSN->getSplatIndex(); 4761 assert(Index < VT.getVectorNumElements() && 4762 "Splat index should be defined and in first operand"); 4763 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4764 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4765 // Since i32 is the smallest legal type, we either need a no-op 4766 // or a truncation. 4767 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4768 VSNOp0.getOperand(Index)); 4769 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4770 } 4771 } 4772 } 4773 4774 // Otherwise just treat the current form as legal. 4775 return Op; 4776 } 4777 4778 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4779 SelectionDAG &DAG) const { 4780 switch (Op.getOpcode()) { 4781 case ISD::FRAMEADDR: 4782 return lowerFRAMEADDR(Op, DAG); 4783 case ISD::RETURNADDR: 4784 return lowerRETURNADDR(Op, DAG); 4785 case ISD::BR_CC: 4786 return lowerBR_CC(Op, DAG); 4787 case ISD::SELECT_CC: 4788 return lowerSELECT_CC(Op, DAG); 4789 case ISD::SETCC: 4790 return lowerSETCC(Op, DAG); 4791 case ISD::GlobalAddress: 4792 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4793 case ISD::GlobalTLSAddress: 4794 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4795 case ISD::BlockAddress: 4796 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4797 case ISD::JumpTable: 4798 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4799 case ISD::ConstantPool: 4800 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4801 case ISD::BITCAST: 4802 return lowerBITCAST(Op, DAG); 4803 case ISD::VASTART: 4804 return lowerVASTART(Op, DAG); 4805 case ISD::VACOPY: 4806 return lowerVACOPY(Op, DAG); 4807 case ISD::DYNAMIC_STACKALLOC: 4808 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4809 case ISD::GET_DYNAMIC_AREA_OFFSET: 4810 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4811 case ISD::SMUL_LOHI: 4812 return lowerSMUL_LOHI(Op, DAG); 4813 case ISD::UMUL_LOHI: 4814 return lowerUMUL_LOHI(Op, DAG); 4815 case ISD::SDIVREM: 4816 return lowerSDIVREM(Op, DAG); 4817 case ISD::UDIVREM: 4818 return lowerUDIVREM(Op, DAG); 4819 case ISD::SADDO: 4820 case ISD::SSUBO: 4821 case ISD::UADDO: 4822 case ISD::USUBO: 4823 return lowerXALUO(Op, DAG); 4824 case ISD::ADDCARRY: 4825 case ISD::SUBCARRY: 4826 return lowerADDSUBCARRY(Op, DAG); 4827 case ISD::OR: 4828 return lowerOR(Op, DAG); 4829 case ISD::CTPOP: 4830 return lowerCTPOP(Op, DAG); 4831 case ISD::ATOMIC_FENCE: 4832 return lowerATOMIC_FENCE(Op, DAG); 4833 case ISD::ATOMIC_SWAP: 4834 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4835 case ISD::ATOMIC_STORE: 4836 return lowerATOMIC_STORE(Op, DAG); 4837 case ISD::ATOMIC_LOAD: 4838 return lowerATOMIC_LOAD(Op, DAG); 4839 case ISD::ATOMIC_LOAD_ADD: 4840 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4841 case ISD::ATOMIC_LOAD_SUB: 4842 return lowerATOMIC_LOAD_SUB(Op, DAG); 4843 case ISD::ATOMIC_LOAD_AND: 4844 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4845 case ISD::ATOMIC_LOAD_OR: 4846 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4847 case ISD::ATOMIC_LOAD_XOR: 4848 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4849 case ISD::ATOMIC_LOAD_NAND: 4850 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4851 case ISD::ATOMIC_LOAD_MIN: 4852 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4853 case ISD::ATOMIC_LOAD_MAX: 4854 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4855 case ISD::ATOMIC_LOAD_UMIN: 4856 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4857 case ISD::ATOMIC_LOAD_UMAX: 4858 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4859 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4860 return lowerATOMIC_CMP_SWAP(Op, DAG); 4861 case ISD::STACKSAVE: 4862 return lowerSTACKSAVE(Op, DAG); 4863 case ISD::STACKRESTORE: 4864 return lowerSTACKRESTORE(Op, DAG); 4865 case ISD::PREFETCH: 4866 return lowerPREFETCH(Op, DAG); 4867 case ISD::INTRINSIC_W_CHAIN: 4868 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4869 case ISD::INTRINSIC_WO_CHAIN: 4870 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4871 case ISD::BUILD_VECTOR: 4872 return lowerBUILD_VECTOR(Op, DAG); 4873 case ISD::VECTOR_SHUFFLE: 4874 return lowerVECTOR_SHUFFLE(Op, DAG); 4875 case ISD::SCALAR_TO_VECTOR: 4876 return lowerSCALAR_TO_VECTOR(Op, DAG); 4877 case ISD::INSERT_VECTOR_ELT: 4878 return lowerINSERT_VECTOR_ELT(Op, DAG); 4879 case ISD::EXTRACT_VECTOR_ELT: 4880 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4881 case ISD::SIGN_EXTEND_VECTOR_INREG: 4882 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4883 case ISD::ZERO_EXTEND_VECTOR_INREG: 4884 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4885 case ISD::SHL: 4886 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4887 case ISD::SRL: 4888 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4889 case ISD::SRA: 4890 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4891 default: 4892 llvm_unreachable("Unexpected node to lower"); 4893 } 4894 } 4895 4896 // Lower operations with invalid operand or result types (currently used 4897 // only for 128-bit integer types). 4898 4899 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4900 SDLoc DL(In); 4901 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4902 DAG.getIntPtrConstant(0, DL)); 4903 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4904 DAG.getIntPtrConstant(1, DL)); 4905 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4906 MVT::Untyped, Hi, Lo); 4907 return SDValue(Pair, 0); 4908 } 4909 4910 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4911 SDLoc DL(In); 4912 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4913 DL, MVT::i64, In); 4914 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4915 DL, MVT::i64, In); 4916 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4917 } 4918 4919 void 4920 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4921 SmallVectorImpl<SDValue> &Results, 4922 SelectionDAG &DAG) const { 4923 switch (N->getOpcode()) { 4924 case ISD::ATOMIC_LOAD: { 4925 SDLoc DL(N); 4926 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4927 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4928 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4929 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4930 DL, Tys, Ops, MVT::i128, MMO); 4931 Results.push_back(lowerGR128ToI128(DAG, Res)); 4932 Results.push_back(Res.getValue(1)); 4933 break; 4934 } 4935 case ISD::ATOMIC_STORE: { 4936 SDLoc DL(N); 4937 SDVTList Tys = DAG.getVTList(MVT::Other); 4938 SDValue Ops[] = { N->getOperand(0), 4939 lowerI128ToGR128(DAG, N->getOperand(2)), 4940 N->getOperand(1) }; 4941 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4942 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4943 DL, Tys, Ops, MVT::i128, MMO); 4944 // We have to enforce sequential consistency by performing a 4945 // serialization operation after the store. 4946 if (cast<AtomicSDNode>(N)->getOrdering() == 4947 AtomicOrdering::SequentiallyConsistent) 4948 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4949 MVT::Other, Res), 0); 4950 Results.push_back(Res); 4951 break; 4952 } 4953 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 4954 SDLoc DL(N); 4955 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 4956 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4957 lowerI128ToGR128(DAG, N->getOperand(2)), 4958 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4959 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4960 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4961 DL, Tys, Ops, MVT::i128, MMO); 4962 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 4963 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4964 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 4965 Results.push_back(lowerGR128ToI128(DAG, Res)); 4966 Results.push_back(Success); 4967 Results.push_back(Res.getValue(2)); 4968 break; 4969 } 4970 default: 4971 llvm_unreachable("Unexpected node to lower"); 4972 } 4973 } 4974 4975 void 4976 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 4977 SmallVectorImpl<SDValue> &Results, 4978 SelectionDAG &DAG) const { 4979 return LowerOperationWrapper(N, Results, DAG); 4980 } 4981 4982 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4983 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4984 switch ((SystemZISD::NodeType)Opcode) { 4985 case SystemZISD::FIRST_NUMBER: break; 4986 OPCODE(RET_FLAG); 4987 OPCODE(CALL); 4988 OPCODE(SIBCALL); 4989 OPCODE(TLS_GDCALL); 4990 OPCODE(TLS_LDCALL); 4991 OPCODE(PCREL_WRAPPER); 4992 OPCODE(PCREL_OFFSET); 4993 OPCODE(IABS); 4994 OPCODE(ICMP); 4995 OPCODE(FCMP); 4996 OPCODE(TM); 4997 OPCODE(BR_CCMASK); 4998 OPCODE(SELECT_CCMASK); 4999 OPCODE(ADJDYNALLOC); 5000 OPCODE(POPCNT); 5001 OPCODE(SMUL_LOHI); 5002 OPCODE(UMUL_LOHI); 5003 OPCODE(SDIVREM); 5004 OPCODE(UDIVREM); 5005 OPCODE(SADDO); 5006 OPCODE(SSUBO); 5007 OPCODE(UADDO); 5008 OPCODE(USUBO); 5009 OPCODE(ADDCARRY); 5010 OPCODE(SUBCARRY); 5011 OPCODE(GET_CCMASK); 5012 OPCODE(MVC); 5013 OPCODE(MVC_LOOP); 5014 OPCODE(NC); 5015 OPCODE(NC_LOOP); 5016 OPCODE(OC); 5017 OPCODE(OC_LOOP); 5018 OPCODE(XC); 5019 OPCODE(XC_LOOP); 5020 OPCODE(CLC); 5021 OPCODE(CLC_LOOP); 5022 OPCODE(STPCPY); 5023 OPCODE(STRCMP); 5024 OPCODE(SEARCH_STRING); 5025 OPCODE(IPM); 5026 OPCODE(MEMBARRIER); 5027 OPCODE(TBEGIN); 5028 OPCODE(TBEGIN_NOFLOAT); 5029 OPCODE(TEND); 5030 OPCODE(BYTE_MASK); 5031 OPCODE(ROTATE_MASK); 5032 OPCODE(REPLICATE); 5033 OPCODE(JOIN_DWORDS); 5034 OPCODE(SPLAT); 5035 OPCODE(MERGE_HIGH); 5036 OPCODE(MERGE_LOW); 5037 OPCODE(SHL_DOUBLE); 5038 OPCODE(PERMUTE_DWORDS); 5039 OPCODE(PERMUTE); 5040 OPCODE(PACK); 5041 OPCODE(PACKS_CC); 5042 OPCODE(PACKLS_CC); 5043 OPCODE(UNPACK_HIGH); 5044 OPCODE(UNPACKL_HIGH); 5045 OPCODE(UNPACK_LOW); 5046 OPCODE(UNPACKL_LOW); 5047 OPCODE(VSHL_BY_SCALAR); 5048 OPCODE(VSRL_BY_SCALAR); 5049 OPCODE(VSRA_BY_SCALAR); 5050 OPCODE(VSUM); 5051 OPCODE(VICMPE); 5052 OPCODE(VICMPH); 5053 OPCODE(VICMPHL); 5054 OPCODE(VICMPES); 5055 OPCODE(VICMPHS); 5056 OPCODE(VICMPHLS); 5057 OPCODE(VFCMPE); 5058 OPCODE(VFCMPH); 5059 OPCODE(VFCMPHE); 5060 OPCODE(VFCMPES); 5061 OPCODE(VFCMPHS); 5062 OPCODE(VFCMPHES); 5063 OPCODE(VFTCI); 5064 OPCODE(VEXTEND); 5065 OPCODE(VROUND); 5066 OPCODE(VTM); 5067 OPCODE(VFAE_CC); 5068 OPCODE(VFAEZ_CC); 5069 OPCODE(VFEE_CC); 5070 OPCODE(VFEEZ_CC); 5071 OPCODE(VFENE_CC); 5072 OPCODE(VFENEZ_CC); 5073 OPCODE(VISTR_CC); 5074 OPCODE(VSTRC_CC); 5075 OPCODE(VSTRCZ_CC); 5076 OPCODE(TDC); 5077 OPCODE(ATOMIC_SWAPW); 5078 OPCODE(ATOMIC_LOADW_ADD); 5079 OPCODE(ATOMIC_LOADW_SUB); 5080 OPCODE(ATOMIC_LOADW_AND); 5081 OPCODE(ATOMIC_LOADW_OR); 5082 OPCODE(ATOMIC_LOADW_XOR); 5083 OPCODE(ATOMIC_LOADW_NAND); 5084 OPCODE(ATOMIC_LOADW_MIN); 5085 OPCODE(ATOMIC_LOADW_MAX); 5086 OPCODE(ATOMIC_LOADW_UMIN); 5087 OPCODE(ATOMIC_LOADW_UMAX); 5088 OPCODE(ATOMIC_CMP_SWAPW); 5089 OPCODE(ATOMIC_CMP_SWAP); 5090 OPCODE(ATOMIC_LOAD_128); 5091 OPCODE(ATOMIC_STORE_128); 5092 OPCODE(ATOMIC_CMP_SWAP_128); 5093 OPCODE(LRV); 5094 OPCODE(STRV); 5095 OPCODE(PREFETCH); 5096 } 5097 return nullptr; 5098 #undef OPCODE 5099 } 5100 5101 // Return true if VT is a vector whose elements are a whole number of bytes 5102 // in width. Also check for presence of vector support. 5103 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5104 if (!Subtarget.hasVector()) 5105 return false; 5106 5107 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5108 } 5109 5110 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5111 // producing a result of type ResVT. Op is a possibly bitcast version 5112 // of the input vector and Index is the index (based on type VecVT) that 5113 // should be extracted. Return the new extraction if a simplification 5114 // was possible or if Force is true. 5115 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5116 EVT VecVT, SDValue Op, 5117 unsigned Index, 5118 DAGCombinerInfo &DCI, 5119 bool Force) const { 5120 SelectionDAG &DAG = DCI.DAG; 5121 5122 // The number of bytes being extracted. 5123 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5124 5125 for (;;) { 5126 unsigned Opcode = Op.getOpcode(); 5127 if (Opcode == ISD::BITCAST) 5128 // Look through bitcasts. 5129 Op = Op.getOperand(0); 5130 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5131 canTreatAsByteVector(Op.getValueType())) { 5132 // Get a VPERM-like permute mask and see whether the bytes covered 5133 // by the extracted element are a contiguous sequence from one 5134 // source operand. 5135 SmallVector<int, SystemZ::VectorBytes> Bytes; 5136 if (!getVPermMask(Op, Bytes)) 5137 break; 5138 int First; 5139 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5140 BytesPerElement, First)) 5141 break; 5142 if (First < 0) 5143 return DAG.getUNDEF(ResVT); 5144 // Make sure the contiguous sequence starts at a multiple of the 5145 // original element size. 5146 unsigned Byte = unsigned(First) % Bytes.size(); 5147 if (Byte % BytesPerElement != 0) 5148 break; 5149 // We can get the extracted value directly from an input. 5150 Index = Byte / BytesPerElement; 5151 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5152 Force = true; 5153 } else if (Opcode == ISD::BUILD_VECTOR && 5154 canTreatAsByteVector(Op.getValueType())) { 5155 // We can only optimize this case if the BUILD_VECTOR elements are 5156 // at least as wide as the extracted value. 5157 EVT OpVT = Op.getValueType(); 5158 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5159 if (OpBytesPerElement < BytesPerElement) 5160 break; 5161 // Make sure that the least-significant bit of the extracted value 5162 // is the least significant bit of an input. 5163 unsigned End = (Index + 1) * BytesPerElement; 5164 if (End % OpBytesPerElement != 0) 5165 break; 5166 // We're extracting the low part of one operand of the BUILD_VECTOR. 5167 Op = Op.getOperand(End / OpBytesPerElement - 1); 5168 if (!Op.getValueType().isInteger()) { 5169 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5170 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5171 DCI.AddToWorklist(Op.getNode()); 5172 } 5173 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5174 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5175 if (VT != ResVT) { 5176 DCI.AddToWorklist(Op.getNode()); 5177 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5178 } 5179 return Op; 5180 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5181 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5182 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5183 canTreatAsByteVector(Op.getValueType()) && 5184 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5185 // Make sure that only the unextended bits are significant. 5186 EVT ExtVT = Op.getValueType(); 5187 EVT OpVT = Op.getOperand(0).getValueType(); 5188 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5189 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5190 unsigned Byte = Index * BytesPerElement; 5191 unsigned SubByte = Byte % ExtBytesPerElement; 5192 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5193 if (SubByte < MinSubByte || 5194 SubByte + BytesPerElement > ExtBytesPerElement) 5195 break; 5196 // Get the byte offset of the unextended element 5197 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5198 // ...then add the byte offset relative to that element. 5199 Byte += SubByte - MinSubByte; 5200 if (Byte % BytesPerElement != 0) 5201 break; 5202 Op = Op.getOperand(0); 5203 Index = Byte / BytesPerElement; 5204 Force = true; 5205 } else 5206 break; 5207 } 5208 if (Force) { 5209 if (Op.getValueType() != VecVT) { 5210 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5211 DCI.AddToWorklist(Op.getNode()); 5212 } 5213 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5214 DAG.getConstant(Index, DL, MVT::i32)); 5215 } 5216 return SDValue(); 5217 } 5218 5219 // Optimize vector operations in scalar value Op on the basis that Op 5220 // is truncated to TruncVT. 5221 SDValue SystemZTargetLowering::combineTruncateExtract( 5222 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5223 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5224 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5225 // of type TruncVT. 5226 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5227 TruncVT.getSizeInBits() % 8 == 0) { 5228 SDValue Vec = Op.getOperand(0); 5229 EVT VecVT = Vec.getValueType(); 5230 if (canTreatAsByteVector(VecVT)) { 5231 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5232 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5233 unsigned TruncBytes = TruncVT.getStoreSize(); 5234 if (BytesPerElement % TruncBytes == 0) { 5235 // Calculate the value of Y' in the above description. We are 5236 // splitting the original elements into Scale equal-sized pieces 5237 // and for truncation purposes want the last (least-significant) 5238 // of these pieces for IndexN. This is easiest to do by calculating 5239 // the start index of the following element and then subtracting 1. 5240 unsigned Scale = BytesPerElement / TruncBytes; 5241 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5242 5243 // Defer the creation of the bitcast from X to combineExtract, 5244 // which might be able to optimize the extraction. 5245 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5246 VecVT.getStoreSize() / TruncBytes); 5247 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5248 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5249 } 5250 } 5251 } 5252 } 5253 return SDValue(); 5254 } 5255 5256 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5257 SDNode *N, DAGCombinerInfo &DCI) const { 5258 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5259 SelectionDAG &DAG = DCI.DAG; 5260 SDValue N0 = N->getOperand(0); 5261 EVT VT = N->getValueType(0); 5262 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5263 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5264 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5265 if (TrueOp && FalseOp) { 5266 SDLoc DL(N0); 5267 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5268 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5269 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5270 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5271 // If N0 has multiple uses, change other uses as well. 5272 if (!N0.hasOneUse()) { 5273 SDValue TruncSelect = 5274 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5275 DCI.CombineTo(N0.getNode(), TruncSelect); 5276 } 5277 return NewSelect; 5278 } 5279 } 5280 return SDValue(); 5281 } 5282 5283 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5284 SDNode *N, DAGCombinerInfo &DCI) const { 5285 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5286 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5287 // into (select_cc LHS, RHS, -1, 0, COND) 5288 SelectionDAG &DAG = DCI.DAG; 5289 SDValue N0 = N->getOperand(0); 5290 EVT VT = N->getValueType(0); 5291 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5292 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5293 N0 = N0.getOperand(0); 5294 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5295 SDLoc DL(N0); 5296 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5297 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5298 N0.getOperand(2) }; 5299 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5300 } 5301 return SDValue(); 5302 } 5303 5304 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5305 SDNode *N, DAGCombinerInfo &DCI) const { 5306 // Convert (sext (ashr (shl X, C1), C2)) to 5307 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5308 // cheap as narrower ones. 5309 SelectionDAG &DAG = DCI.DAG; 5310 SDValue N0 = N->getOperand(0); 5311 EVT VT = N->getValueType(0); 5312 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5313 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5314 SDValue Inner = N0.getOperand(0); 5315 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5316 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5317 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5318 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5319 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5320 EVT ShiftVT = N0.getOperand(1).getValueType(); 5321 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5322 Inner.getOperand(0)); 5323 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5324 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5325 ShiftVT)); 5326 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5327 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5328 } 5329 } 5330 } 5331 return SDValue(); 5332 } 5333 5334 SDValue SystemZTargetLowering::combineMERGE( 5335 SDNode *N, DAGCombinerInfo &DCI) const { 5336 SelectionDAG &DAG = DCI.DAG; 5337 unsigned Opcode = N->getOpcode(); 5338 SDValue Op0 = N->getOperand(0); 5339 SDValue Op1 = N->getOperand(1); 5340 if (Op0.getOpcode() == ISD::BITCAST) 5341 Op0 = Op0.getOperand(0); 5342 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 5343 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 5344 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5345 // for v4f32. 5346 if (Op1 == N->getOperand(0)) 5347 return Op1; 5348 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5349 EVT VT = Op1.getValueType(); 5350 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5351 if (ElemBytes <= 4) { 5352 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5353 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5354 EVT InVT = VT.changeVectorElementTypeToInteger(); 5355 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5356 SystemZ::VectorBytes / ElemBytes / 2); 5357 if (VT != InVT) { 5358 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5359 DCI.AddToWorklist(Op1.getNode()); 5360 } 5361 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5362 DCI.AddToWorklist(Op.getNode()); 5363 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5364 } 5365 } 5366 return SDValue(); 5367 } 5368 5369 SDValue SystemZTargetLowering::combineLOAD( 5370 SDNode *N, DAGCombinerInfo &DCI) const { 5371 SelectionDAG &DAG = DCI.DAG; 5372 EVT LdVT = N->getValueType(0); 5373 if (LdVT.isVector() || LdVT.isInteger()) 5374 return SDValue(); 5375 // Transform a scalar load that is REPLICATEd as well as having other 5376 // use(s) to the form where the other use(s) use the first element of the 5377 // REPLICATE instead of the load. Otherwise instruction selection will not 5378 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5379 // point loads. 5380 5381 SDValue Replicate; 5382 SmallVector<SDNode*, 8> OtherUses; 5383 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5384 UI != UE; ++UI) { 5385 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5386 if (Replicate) 5387 return SDValue(); // Should never happen 5388 Replicate = SDValue(*UI, 0); 5389 } 5390 else if (UI.getUse().getResNo() == 0) 5391 OtherUses.push_back(*UI); 5392 } 5393 if (!Replicate || OtherUses.empty()) 5394 return SDValue(); 5395 5396 SDLoc DL(N); 5397 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5398 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5399 // Update uses of the loaded Value while preserving old chains. 5400 for (SDNode *U : OtherUses) { 5401 SmallVector<SDValue, 8> Ops; 5402 for (SDValue Op : U->ops()) 5403 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5404 DAG.UpdateNodeOperands(U, Ops); 5405 } 5406 return SDValue(N, 0); 5407 } 5408 5409 SDValue SystemZTargetLowering::combineSTORE( 5410 SDNode *N, DAGCombinerInfo &DCI) const { 5411 SelectionDAG &DAG = DCI.DAG; 5412 auto *SN = cast<StoreSDNode>(N); 5413 auto &Op1 = N->getOperand(1); 5414 EVT MemVT = SN->getMemoryVT(); 5415 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5416 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5417 // If X has wider elements then convert it to: 5418 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5419 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5420 if (SDValue Value = 5421 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5422 DCI.AddToWorklist(Value.getNode()); 5423 5424 // Rewrite the store with the new form of stored value. 5425 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5426 SN->getBasePtr(), SN->getMemoryVT(), 5427 SN->getMemOperand()); 5428 } 5429 } 5430 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5431 if (!SN->isTruncatingStore() && 5432 Op1.getOpcode() == ISD::BSWAP && 5433 Op1.getNode()->hasOneUse() && 5434 (Op1.getValueType() == MVT::i16 || 5435 Op1.getValueType() == MVT::i32 || 5436 Op1.getValueType() == MVT::i64)) { 5437 5438 SDValue BSwapOp = Op1.getOperand(0); 5439 5440 if (BSwapOp.getValueType() == MVT::i16) 5441 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5442 5443 SDValue Ops[] = { 5444 N->getOperand(0), BSwapOp, N->getOperand(2) 5445 }; 5446 5447 return 5448 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5449 Ops, MemVT, SN->getMemOperand()); 5450 } 5451 return SDValue(); 5452 } 5453 5454 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5455 SDNode *N, DAGCombinerInfo &DCI) const { 5456 5457 if (!Subtarget.hasVector()) 5458 return SDValue(); 5459 5460 // Try to simplify a vector extraction. 5461 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5462 SDValue Op0 = N->getOperand(0); 5463 EVT VecVT = Op0.getValueType(); 5464 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5465 IndexN->getZExtValue(), DCI, false); 5466 } 5467 return SDValue(); 5468 } 5469 5470 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5471 SDNode *N, DAGCombinerInfo &DCI) const { 5472 SelectionDAG &DAG = DCI.DAG; 5473 // (join_dwords X, X) == (replicate X) 5474 if (N->getOperand(0) == N->getOperand(1)) 5475 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5476 N->getOperand(0)); 5477 return SDValue(); 5478 } 5479 5480 SDValue SystemZTargetLowering::combineFP_ROUND( 5481 SDNode *N, DAGCombinerInfo &DCI) const { 5482 // (fpround (extract_vector_elt X 0)) 5483 // (fpround (extract_vector_elt X 1)) -> 5484 // (extract_vector_elt (VROUND X) 0) 5485 // (extract_vector_elt (VROUND X) 2) 5486 // 5487 // This is a special case since the target doesn't really support v2f32s. 5488 SelectionDAG &DAG = DCI.DAG; 5489 SDValue Op0 = N->getOperand(0); 5490 if (N->getValueType(0) == MVT::f32 && 5491 Op0.hasOneUse() && 5492 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5493 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5494 Op0.getOperand(1).getOpcode() == ISD::Constant && 5495 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5496 SDValue Vec = Op0.getOperand(0); 5497 for (auto *U : Vec->uses()) { 5498 if (U != Op0.getNode() && 5499 U->hasOneUse() && 5500 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5501 U->getOperand(0) == Vec && 5502 U->getOperand(1).getOpcode() == ISD::Constant && 5503 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5504 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5505 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5506 OtherRound.getOperand(0) == SDValue(U, 0) && 5507 OtherRound.getValueType() == MVT::f32) { 5508 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5509 MVT::v4f32, Vec); 5510 DCI.AddToWorklist(VRound.getNode()); 5511 SDValue Extract1 = 5512 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5513 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5514 DCI.AddToWorklist(Extract1.getNode()); 5515 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5516 SDValue Extract0 = 5517 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5518 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5519 return Extract0; 5520 } 5521 } 5522 } 5523 } 5524 return SDValue(); 5525 } 5526 5527 SDValue SystemZTargetLowering::combineFP_EXTEND( 5528 SDNode *N, DAGCombinerInfo &DCI) const { 5529 // (fpextend (extract_vector_elt X 0)) 5530 // (fpextend (extract_vector_elt X 2)) -> 5531 // (extract_vector_elt (VEXTEND X) 0) 5532 // (extract_vector_elt (VEXTEND X) 1) 5533 // 5534 // This is a special case since the target doesn't really support v2f32s. 5535 SelectionDAG &DAG = DCI.DAG; 5536 SDValue Op0 = N->getOperand(0); 5537 if (N->getValueType(0) == MVT::f64 && 5538 Op0.hasOneUse() && 5539 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5540 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5541 Op0.getOperand(1).getOpcode() == ISD::Constant && 5542 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5543 SDValue Vec = Op0.getOperand(0); 5544 for (auto *U : Vec->uses()) { 5545 if (U != Op0.getNode() && 5546 U->hasOneUse() && 5547 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5548 U->getOperand(0) == Vec && 5549 U->getOperand(1).getOpcode() == ISD::Constant && 5550 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5551 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5552 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5553 OtherExtend.getOperand(0) == SDValue(U, 0) && 5554 OtherExtend.getValueType() == MVT::f64) { 5555 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5556 MVT::v2f64, Vec); 5557 DCI.AddToWorklist(VExtend.getNode()); 5558 SDValue Extract1 = 5559 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5560 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5561 DCI.AddToWorklist(Extract1.getNode()); 5562 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5563 SDValue Extract0 = 5564 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5565 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5566 return Extract0; 5567 } 5568 } 5569 } 5570 } 5571 return SDValue(); 5572 } 5573 5574 SDValue SystemZTargetLowering::combineBSWAP( 5575 SDNode *N, DAGCombinerInfo &DCI) const { 5576 SelectionDAG &DAG = DCI.DAG; 5577 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5578 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5579 N->getOperand(0).hasOneUse() && 5580 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5581 N->getValueType(0) == MVT::i64)) { 5582 SDValue Load = N->getOperand(0); 5583 LoadSDNode *LD = cast<LoadSDNode>(Load); 5584 5585 // Create the byte-swapping load. 5586 SDValue Ops[] = { 5587 LD->getChain(), // Chain 5588 LD->getBasePtr() // Ptr 5589 }; 5590 EVT LoadVT = N->getValueType(0); 5591 if (LoadVT == MVT::i16) 5592 LoadVT = MVT::i32; 5593 SDValue BSLoad = 5594 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5595 DAG.getVTList(LoadVT, MVT::Other), 5596 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5597 5598 // If this is an i16 load, insert the truncate. 5599 SDValue ResVal = BSLoad; 5600 if (N->getValueType(0) == MVT::i16) 5601 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5602 5603 // First, combine the bswap away. This makes the value produced by the 5604 // load dead. 5605 DCI.CombineTo(N, ResVal); 5606 5607 // Next, combine the load away, we give it a bogus result value but a real 5608 // chain result. The result value is dead because the bswap is dead. 5609 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5610 5611 // Return N so it doesn't get rechecked! 5612 return SDValue(N, 0); 5613 } 5614 return SDValue(); 5615 } 5616 5617 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5618 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5619 // set by the CCReg instruction using the CCValid / CCMask masks, 5620 // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing 5621 // the condition code set by some other instruction, see whether we 5622 // can directly use that condition code. 5623 bool Invert = false; 5624 5625 // Verify that we have an appropriate mask for a EQ or NE comparison. 5626 if (CCValid != SystemZ::CCMASK_ICMP) 5627 return false; 5628 if (CCMask == SystemZ::CCMASK_CMP_NE) 5629 Invert = !Invert; 5630 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5631 return false; 5632 5633 // Verify that we have an ICMP that is the user of a SELECT_CCMASK. 5634 SDNode *ICmp = CCReg.getNode(); 5635 if (ICmp->getOpcode() != SystemZISD::ICMP) 5636 return false; 5637 SDNode *Select = ICmp->getOperand(0).getNode(); 5638 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5639 return false; 5640 5641 // Verify that the ICMP compares against one of select values. 5642 auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5643 if (!CompareVal) 5644 return false; 5645 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5646 if (!TrueVal) 5647 return false; 5648 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5649 if (!FalseVal) 5650 return false; 5651 if (CompareVal->getZExtValue() == FalseVal->getZExtValue()) 5652 Invert = !Invert; 5653 else if (CompareVal->getZExtValue() != TrueVal->getZExtValue()) 5654 return false; 5655 5656 // Compute the effective CC mask for the new branch or select. 5657 auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5658 auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5659 if (!NewCCValid || !NewCCMask) 5660 return false; 5661 CCValid = NewCCValid->getZExtValue(); 5662 CCMask = NewCCMask->getZExtValue(); 5663 if (Invert) 5664 CCMask ^= CCValid; 5665 5666 // Return the updated CCReg link. 5667 CCReg = Select->getOperand(4); 5668 return true; 5669 } 5670 5671 SDValue SystemZTargetLowering::combineBR_CCMASK( 5672 SDNode *N, DAGCombinerInfo &DCI) const { 5673 SelectionDAG &DAG = DCI.DAG; 5674 5675 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 5676 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5677 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5678 if (!CCValid || !CCMask) 5679 return SDValue(); 5680 5681 int CCValidVal = CCValid->getZExtValue(); 5682 int CCMaskVal = CCMask->getZExtValue(); 5683 SDValue Chain = N->getOperand(0); 5684 SDValue CCReg = N->getOperand(4); 5685 5686 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5687 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 5688 Chain, 5689 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5690 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5691 N->getOperand(3), CCReg); 5692 return SDValue(); 5693 } 5694 5695 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 5696 SDNode *N, DAGCombinerInfo &DCI) const { 5697 SelectionDAG &DAG = DCI.DAG; 5698 5699 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 5700 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5701 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 5702 if (!CCValid || !CCMask) 5703 return SDValue(); 5704 5705 int CCValidVal = CCValid->getZExtValue(); 5706 int CCMaskVal = CCMask->getZExtValue(); 5707 SDValue CCReg = N->getOperand(4); 5708 5709 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5710 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 5711 N->getOperand(0), 5712 N->getOperand(1), 5713 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5714 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5715 CCReg); 5716 return SDValue(); 5717 } 5718 5719 5720 SDValue SystemZTargetLowering::combineGET_CCMASK( 5721 SDNode *N, DAGCombinerInfo &DCI) const { 5722 5723 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 5724 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5725 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5726 if (!CCValid || !CCMask) 5727 return SDValue(); 5728 int CCValidVal = CCValid->getZExtValue(); 5729 int CCMaskVal = CCMask->getZExtValue(); 5730 5731 SDValue Select = N->getOperand(0); 5732 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5733 return SDValue(); 5734 5735 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5736 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5737 if (!SelectCCValid || !SelectCCMask) 5738 return SDValue(); 5739 int SelectCCValidVal = SelectCCValid->getZExtValue(); 5740 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 5741 5742 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5743 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5744 if (!TrueVal || !FalseVal) 5745 return SDValue(); 5746 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 5747 ; 5748 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 5749 SelectCCMaskVal ^= SelectCCValidVal; 5750 else 5751 return SDValue(); 5752 5753 if (SelectCCValidVal & ~CCValidVal) 5754 return SDValue(); 5755 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 5756 return SDValue(); 5757 5758 return Select->getOperand(4); 5759 } 5760 5761 SDValue SystemZTargetLowering::combineIntDIVREM( 5762 SDNode *N, DAGCombinerInfo &DCI) const { 5763 SelectionDAG &DAG = DCI.DAG; 5764 EVT VT = N->getValueType(0); 5765 // In the case where the divisor is a vector of constants a cheaper 5766 // sequence of instructions can replace the divide. BuildSDIV is called to 5767 // do this during DAG combining, but it only succeeds when it can build a 5768 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 5769 // since it is not Legal but Custom it can only happen before 5770 // legalization. Therefore we must scalarize this early before Combine 5771 // 1. For widened vectors, this is already the result of type legalization. 5772 if (VT.isVector() && isTypeLegal(VT) && 5773 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 5774 return DAG.UnrollVectorOp(N); 5775 return SDValue(); 5776 } 5777 5778 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 5779 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 5780 return N->getOperand(0); 5781 return N; 5782 } 5783 5784 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5785 DAGCombinerInfo &DCI) const { 5786 switch(N->getOpcode()) { 5787 default: break; 5788 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 5789 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5790 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 5791 case SystemZISD::MERGE_HIGH: 5792 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5793 case ISD::LOAD: return combineLOAD(N, DCI); 5794 case ISD::STORE: return combineSTORE(N, DCI); 5795 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5796 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5797 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5798 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 5799 case ISD::BSWAP: return combineBSWAP(N, DCI); 5800 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 5801 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 5802 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 5803 case ISD::SDIV: 5804 case ISD::UDIV: 5805 case ISD::SREM: 5806 case ISD::UREM: return combineIntDIVREM(N, DCI); 5807 } 5808 5809 return SDValue(); 5810 } 5811 5812 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 5813 // are for Op. 5814 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 5815 unsigned OpNo) { 5816 EVT VT = Op.getValueType(); 5817 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 5818 APInt SrcDemE; 5819 unsigned Opcode = Op.getOpcode(); 5820 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5821 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5822 switch (Id) { 5823 case Intrinsic::s390_vpksh: // PACKS 5824 case Intrinsic::s390_vpksf: 5825 case Intrinsic::s390_vpksg: 5826 case Intrinsic::s390_vpkshs: // PACKS_CC 5827 case Intrinsic::s390_vpksfs: 5828 case Intrinsic::s390_vpksgs: 5829 case Intrinsic::s390_vpklsh: // PACKLS 5830 case Intrinsic::s390_vpklsf: 5831 case Intrinsic::s390_vpklsg: 5832 case Intrinsic::s390_vpklshs: // PACKLS_CC 5833 case Intrinsic::s390_vpklsfs: 5834 case Intrinsic::s390_vpklsgs: 5835 // VECTOR PACK truncates the elements of two source vectors into one. 5836 SrcDemE = DemandedElts; 5837 if (OpNo == 2) 5838 SrcDemE.lshrInPlace(NumElts / 2); 5839 SrcDemE = SrcDemE.trunc(NumElts / 2); 5840 break; 5841 // VECTOR UNPACK extends half the elements of the source vector. 5842 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5843 case Intrinsic::s390_vuphh: 5844 case Intrinsic::s390_vuphf: 5845 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5846 case Intrinsic::s390_vuplhh: 5847 case Intrinsic::s390_vuplhf: 5848 SrcDemE = APInt(NumElts * 2, 0); 5849 SrcDemE.insertBits(DemandedElts, 0); 5850 break; 5851 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5852 case Intrinsic::s390_vuplhw: 5853 case Intrinsic::s390_vuplf: 5854 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5855 case Intrinsic::s390_vupllh: 5856 case Intrinsic::s390_vupllf: 5857 SrcDemE = APInt(NumElts * 2, 0); 5858 SrcDemE.insertBits(DemandedElts, NumElts); 5859 break; 5860 case Intrinsic::s390_vpdi: { 5861 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 5862 SrcDemE = APInt(NumElts, 0); 5863 if (!DemandedElts[OpNo - 1]) 5864 break; 5865 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5866 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 5867 // Demand input element 0 or 1, given by the mask bit value. 5868 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 5869 break; 5870 } 5871 case Intrinsic::s390_vsldb: { 5872 // VECTOR SHIFT LEFT DOUBLE BY BYTE 5873 assert(VT == MVT::v16i8 && "Unexpected type."); 5874 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5875 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 5876 unsigned NumSrc0Els = 16 - FirstIdx; 5877 SrcDemE = APInt(NumElts, 0); 5878 if (OpNo == 1) { 5879 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 5880 SrcDemE.insertBits(DemEls, FirstIdx); 5881 } else { 5882 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 5883 SrcDemE.insertBits(DemEls, 0); 5884 } 5885 break; 5886 } 5887 case Intrinsic::s390_vperm: 5888 SrcDemE = APInt(NumElts, 1); 5889 break; 5890 default: 5891 llvm_unreachable("Unhandled intrinsic."); 5892 break; 5893 } 5894 } else { 5895 switch (Opcode) { 5896 case SystemZISD::JOIN_DWORDS: 5897 // Scalar operand. 5898 SrcDemE = APInt(1, 1); 5899 break; 5900 case SystemZISD::SELECT_CCMASK: 5901 SrcDemE = DemandedElts; 5902 break; 5903 default: 5904 llvm_unreachable("Unhandled opcode."); 5905 break; 5906 } 5907 } 5908 return SrcDemE; 5909 } 5910 5911 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 5912 const APInt &DemandedElts, 5913 const SelectionDAG &DAG, unsigned Depth, 5914 unsigned OpNo) { 5915 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5916 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5917 KnownBits LHSKnown = 5918 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 5919 KnownBits RHSKnown = 5920 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 5921 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 5922 Known.One = LHSKnown.One & RHSKnown.One; 5923 } 5924 5925 void 5926 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5927 KnownBits &Known, 5928 const APInt &DemandedElts, 5929 const SelectionDAG &DAG, 5930 unsigned Depth) const { 5931 Known.resetAll(); 5932 5933 // Intrinsic CC result is returned in the two low bits. 5934 unsigned tmp0, tmp1; // not used 5935 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 5936 Known.Zero.setBitsFrom(2); 5937 return; 5938 } 5939 EVT VT = Op.getValueType(); 5940 if (Op.getResNo() != 0 || VT == MVT::Untyped) 5941 return; 5942 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 5943 "KnownBits does not match VT in bitwidth"); 5944 assert ((!VT.isVector() || 5945 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 5946 "DemandedElts does not match VT number of elements"); 5947 unsigned BitWidth = Known.getBitWidth(); 5948 unsigned Opcode = Op.getOpcode(); 5949 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5950 bool IsLogical = false; 5951 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5952 switch (Id) { 5953 case Intrinsic::s390_vpksh: // PACKS 5954 case Intrinsic::s390_vpksf: 5955 case Intrinsic::s390_vpksg: 5956 case Intrinsic::s390_vpkshs: // PACKS_CC 5957 case Intrinsic::s390_vpksfs: 5958 case Intrinsic::s390_vpksgs: 5959 case Intrinsic::s390_vpklsh: // PACKLS 5960 case Intrinsic::s390_vpklsf: 5961 case Intrinsic::s390_vpklsg: 5962 case Intrinsic::s390_vpklshs: // PACKLS_CC 5963 case Intrinsic::s390_vpklsfs: 5964 case Intrinsic::s390_vpklsgs: 5965 case Intrinsic::s390_vpdi: 5966 case Intrinsic::s390_vsldb: 5967 case Intrinsic::s390_vperm: 5968 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 5969 break; 5970 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5971 case Intrinsic::s390_vuplhh: 5972 case Intrinsic::s390_vuplhf: 5973 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5974 case Intrinsic::s390_vupllh: 5975 case Intrinsic::s390_vupllf: 5976 IsLogical = true; 5977 LLVM_FALLTHROUGH; 5978 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5979 case Intrinsic::s390_vuphh: 5980 case Intrinsic::s390_vuphf: 5981 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5982 case Intrinsic::s390_vuplhw: 5983 case Intrinsic::s390_vuplf: { 5984 SDValue SrcOp = Op.getOperand(1); 5985 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits(); 5986 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 5987 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 5988 if (IsLogical) { 5989 Known = Known.zext(BitWidth); 5990 Known.Zero.setBitsFrom(SrcBitWidth); 5991 } else 5992 Known = Known.sext(BitWidth); 5993 break; 5994 } 5995 default: 5996 break; 5997 } 5998 } else { 5999 switch (Opcode) { 6000 case SystemZISD::JOIN_DWORDS: 6001 case SystemZISD::SELECT_CCMASK: 6002 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6003 break; 6004 case SystemZISD::REPLICATE: { 6005 SDValue SrcOp = Op.getOperand(0); 6006 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6007 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6008 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6009 break; 6010 } 6011 default: 6012 break; 6013 } 6014 } 6015 6016 // Known has the width of the source operand(s). Adjust if needed to match 6017 // the passed bitwidth. 6018 if (Known.getBitWidth() != BitWidth) 6019 Known = Known.zextOrTrunc(BitWidth); 6020 } 6021 6022 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6023 const SelectionDAG &DAG, unsigned Depth, 6024 unsigned OpNo) { 6025 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6026 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6027 if (LHS == 1) return 1; // Early out. 6028 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6029 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6030 if (RHS == 1) return 1; // Early out. 6031 unsigned Common = std::min(LHS, RHS); 6032 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6033 EVT VT = Op.getValueType(); 6034 unsigned VTBits = VT.getScalarSizeInBits(); 6035 if (SrcBitWidth > VTBits) { // PACK 6036 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6037 if (Common > SrcExtraBits) 6038 return (Common - SrcExtraBits); 6039 return 1; 6040 } 6041 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6042 return Common; 6043 } 6044 6045 unsigned 6046 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6047 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6048 unsigned Depth) const { 6049 if (Op.getResNo() != 0) 6050 return 1; 6051 unsigned Opcode = Op.getOpcode(); 6052 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6053 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6054 switch (Id) { 6055 case Intrinsic::s390_vpksh: // PACKS 6056 case Intrinsic::s390_vpksf: 6057 case Intrinsic::s390_vpksg: 6058 case Intrinsic::s390_vpkshs: // PACKS_CC 6059 case Intrinsic::s390_vpksfs: 6060 case Intrinsic::s390_vpksgs: 6061 case Intrinsic::s390_vpklsh: // PACKLS 6062 case Intrinsic::s390_vpklsf: 6063 case Intrinsic::s390_vpklsg: 6064 case Intrinsic::s390_vpklshs: // PACKLS_CC 6065 case Intrinsic::s390_vpklsfs: 6066 case Intrinsic::s390_vpklsgs: 6067 case Intrinsic::s390_vpdi: 6068 case Intrinsic::s390_vsldb: 6069 case Intrinsic::s390_vperm: 6070 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6071 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6072 case Intrinsic::s390_vuphh: 6073 case Intrinsic::s390_vuphf: 6074 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6075 case Intrinsic::s390_vuplhw: 6076 case Intrinsic::s390_vuplf: { 6077 SDValue PackedOp = Op.getOperand(1); 6078 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6079 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6080 EVT VT = Op.getValueType(); 6081 unsigned VTBits = VT.getScalarSizeInBits(); 6082 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6083 return Tmp; 6084 } 6085 default: 6086 break; 6087 } 6088 } else { 6089 switch (Opcode) { 6090 case SystemZISD::SELECT_CCMASK: 6091 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6092 default: 6093 break; 6094 } 6095 } 6096 6097 return 1; 6098 } 6099 6100 //===----------------------------------------------------------------------===// 6101 // Custom insertion 6102 //===----------------------------------------------------------------------===// 6103 6104 // Create a new basic block after MBB. 6105 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6106 MachineFunction &MF = *MBB->getParent(); 6107 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6108 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6109 return NewMBB; 6110 } 6111 6112 // Split MBB after MI and return the new block (the one that contains 6113 // instructions after MI). 6114 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6115 MachineBasicBlock *MBB) { 6116 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6117 NewMBB->splice(NewMBB->begin(), MBB, 6118 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6119 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6120 return NewMBB; 6121 } 6122 6123 // Split MBB before MI and return the new block (the one that contains MI). 6124 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6125 MachineBasicBlock *MBB) { 6126 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6127 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6128 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6129 return NewMBB; 6130 } 6131 6132 // Force base value Base into a register before MI. Return the register. 6133 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 6134 const SystemZInstrInfo *TII) { 6135 if (Base.isReg()) 6136 return Base.getReg(); 6137 6138 MachineBasicBlock *MBB = MI.getParent(); 6139 MachineFunction &MF = *MBB->getParent(); 6140 MachineRegisterInfo &MRI = MF.getRegInfo(); 6141 6142 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6143 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6144 .add(Base) 6145 .addImm(0) 6146 .addReg(0); 6147 return Reg; 6148 } 6149 6150 // The CC operand of MI might be missing a kill marker because there 6151 // were multiple uses of CC, and ISel didn't know which to mark. 6152 // Figure out whether MI should have had a kill marker. 6153 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6154 // Scan forward through BB for a use/def of CC. 6155 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6156 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6157 const MachineInstr& mi = *miI; 6158 if (mi.readsRegister(SystemZ::CC)) 6159 return false; 6160 if (mi.definesRegister(SystemZ::CC)) 6161 break; // Should have kill-flag - update below. 6162 } 6163 6164 // If we hit the end of the block, check whether CC is live into a 6165 // successor. 6166 if (miI == MBB->end()) { 6167 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6168 if ((*SI)->isLiveIn(SystemZ::CC)) 6169 return false; 6170 } 6171 6172 return true; 6173 } 6174 6175 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6176 // together with other Select pseudo-opcodes into a single basic-block with 6177 // a conditional jump around it. 6178 static bool isSelectPseudo(MachineInstr &MI) { 6179 switch (MI.getOpcode()) { 6180 case SystemZ::Select32: 6181 case SystemZ::Select64: 6182 case SystemZ::SelectF32: 6183 case SystemZ::SelectF64: 6184 case SystemZ::SelectF128: 6185 case SystemZ::SelectVR32: 6186 case SystemZ::SelectVR64: 6187 case SystemZ::SelectVR128: 6188 return true; 6189 6190 default: 6191 return false; 6192 } 6193 } 6194 6195 // Helper function, which inserts PHI functions into SinkMBB: 6196 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6197 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects 6198 // in [MIItBegin, MIItEnd) range. 6199 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin, 6200 MachineBasicBlock::iterator MIItEnd, 6201 MachineBasicBlock *TrueMBB, 6202 MachineBasicBlock *FalseMBB, 6203 MachineBasicBlock *SinkMBB) { 6204 MachineFunction *MF = TrueMBB->getParent(); 6205 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6206 6207 unsigned CCValid = MIItBegin->getOperand(3).getImm(); 6208 unsigned CCMask = MIItBegin->getOperand(4).getImm(); 6209 DebugLoc DL = MIItBegin->getDebugLoc(); 6210 6211 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6212 6213 // As we are creating the PHIs, we have to be careful if there is more than 6214 // one. Later Selects may reference the results of earlier Selects, but later 6215 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6216 // That also means that PHI construction must work forward from earlier to 6217 // later, and that the code must maintain a mapping from earlier PHI's 6218 // destination registers, and the registers that went into the PHI. 6219 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6220 6221 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; 6222 MIIt = skipDebugInstructionsForward(++MIIt, MIItEnd)) { 6223 unsigned DestReg = MIIt->getOperand(0).getReg(); 6224 unsigned TrueReg = MIIt->getOperand(1).getReg(); 6225 unsigned FalseReg = MIIt->getOperand(2).getReg(); 6226 6227 // If this Select we are generating is the opposite condition from 6228 // the jump we generated, then we have to swap the operands for the 6229 // PHI that is going to be generated. 6230 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) 6231 std::swap(TrueReg, FalseReg); 6232 6233 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6234 TrueReg = RegRewriteTable[TrueReg].first; 6235 6236 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6237 FalseReg = RegRewriteTable[FalseReg].second; 6238 6239 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6240 .addReg(TrueReg).addMBB(TrueMBB) 6241 .addReg(FalseReg).addMBB(FalseMBB); 6242 6243 // Add this PHI to the rewrite table. 6244 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6245 } 6246 6247 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6248 } 6249 6250 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6251 MachineBasicBlock * 6252 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6253 MachineBasicBlock *MBB) const { 6254 const SystemZInstrInfo *TII = 6255 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6256 6257 unsigned CCValid = MI.getOperand(3).getImm(); 6258 unsigned CCMask = MI.getOperand(4).getImm(); 6259 DebugLoc DL = MI.getDebugLoc(); 6260 6261 // If we have a sequence of Select* pseudo instructions using the 6262 // same condition code value, we want to expand all of them into 6263 // a single pair of basic blocks using the same condition. 6264 MachineInstr *LastMI = &MI; 6265 MachineBasicBlock::iterator NextMIIt = skipDebugInstructionsForward( 6266 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6267 6268 if (isSelectPseudo(MI)) 6269 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) && 6270 NextMIIt->getOperand(3).getImm() == CCValid && 6271 (NextMIIt->getOperand(4).getImm() == CCMask || 6272 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) { 6273 LastMI = &*NextMIIt; 6274 NextMIIt = skipDebugInstructionsForward(++NextMIIt, MBB->end()); 6275 } 6276 6277 MachineBasicBlock *StartMBB = MBB; 6278 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6279 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6280 6281 // Unless CC was killed in the last Select instruction, mark it as 6282 // live-in to both FalseMBB and JoinMBB. 6283 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) { 6284 FalseMBB->addLiveIn(SystemZ::CC); 6285 JoinMBB->addLiveIn(SystemZ::CC); 6286 } 6287 6288 // StartMBB: 6289 // BRC CCMask, JoinMBB 6290 // # fallthrough to FalseMBB 6291 MBB = StartMBB; 6292 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6293 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6294 MBB->addSuccessor(JoinMBB); 6295 MBB->addSuccessor(FalseMBB); 6296 6297 // FalseMBB: 6298 // # fallthrough to JoinMBB 6299 MBB = FalseMBB; 6300 MBB->addSuccessor(JoinMBB); 6301 6302 // JoinMBB: 6303 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6304 // ... 6305 MBB = JoinMBB; 6306 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 6307 MachineBasicBlock::iterator MIItEnd = skipDebugInstructionsForward( 6308 std::next(MachineBasicBlock::iterator(LastMI)), MBB->end()); 6309 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB); 6310 6311 StartMBB->erase(MIItBegin, MIItEnd); 6312 return JoinMBB; 6313 } 6314 6315 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6316 // StoreOpcode is the store to use and Invert says whether the store should 6317 // happen when the condition is false rather than true. If a STORE ON 6318 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6319 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6320 MachineBasicBlock *MBB, 6321 unsigned StoreOpcode, 6322 unsigned STOCOpcode, 6323 bool Invert) const { 6324 const SystemZInstrInfo *TII = 6325 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6326 6327 unsigned SrcReg = MI.getOperand(0).getReg(); 6328 MachineOperand Base = MI.getOperand(1); 6329 int64_t Disp = MI.getOperand(2).getImm(); 6330 unsigned IndexReg = MI.getOperand(3).getReg(); 6331 unsigned CCValid = MI.getOperand(4).getImm(); 6332 unsigned CCMask = MI.getOperand(5).getImm(); 6333 DebugLoc DL = MI.getDebugLoc(); 6334 6335 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6336 6337 // Use STOCOpcode if possible. We could use different store patterns in 6338 // order to avoid matching the index register, but the performance trade-offs 6339 // might be more complicated in that case. 6340 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6341 if (Invert) 6342 CCMask ^= CCValid; 6343 6344 // ISel pattern matching also adds a load memory operand of the same 6345 // address, so take special care to find the storing memory operand. 6346 MachineMemOperand *MMO = nullptr; 6347 for (auto *I : MI.memoperands()) 6348 if (I->isStore()) { 6349 MMO = I; 6350 break; 6351 } 6352 6353 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6354 .addReg(SrcReg) 6355 .add(Base) 6356 .addImm(Disp) 6357 .addImm(CCValid) 6358 .addImm(CCMask) 6359 .addMemOperand(MMO); 6360 6361 MI.eraseFromParent(); 6362 return MBB; 6363 } 6364 6365 // Get the condition needed to branch around the store. 6366 if (!Invert) 6367 CCMask ^= CCValid; 6368 6369 MachineBasicBlock *StartMBB = MBB; 6370 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6371 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6372 6373 // Unless CC was killed in the CondStore instruction, mark it as 6374 // live-in to both FalseMBB and JoinMBB. 6375 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6376 FalseMBB->addLiveIn(SystemZ::CC); 6377 JoinMBB->addLiveIn(SystemZ::CC); 6378 } 6379 6380 // StartMBB: 6381 // BRC CCMask, JoinMBB 6382 // # fallthrough to FalseMBB 6383 MBB = StartMBB; 6384 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6385 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6386 MBB->addSuccessor(JoinMBB); 6387 MBB->addSuccessor(FalseMBB); 6388 6389 // FalseMBB: 6390 // store %SrcReg, %Disp(%Index,%Base) 6391 // # fallthrough to JoinMBB 6392 MBB = FalseMBB; 6393 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6394 .addReg(SrcReg) 6395 .add(Base) 6396 .addImm(Disp) 6397 .addReg(IndexReg); 6398 MBB->addSuccessor(JoinMBB); 6399 6400 MI.eraseFromParent(); 6401 return JoinMBB; 6402 } 6403 6404 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6405 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6406 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6407 // BitSize is the width of the field in bits, or 0 if this is a partword 6408 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6409 // is one of the operands. Invert says whether the field should be 6410 // inverted after performing BinOpcode (e.g. for NAND). 6411 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6412 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6413 unsigned BitSize, bool Invert) const { 6414 MachineFunction &MF = *MBB->getParent(); 6415 const SystemZInstrInfo *TII = 6416 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6417 MachineRegisterInfo &MRI = MF.getRegInfo(); 6418 bool IsSubWord = (BitSize < 32); 6419 6420 // Extract the operands. Base can be a register or a frame index. 6421 // Src2 can be a register or immediate. 6422 unsigned Dest = MI.getOperand(0).getReg(); 6423 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6424 int64_t Disp = MI.getOperand(2).getImm(); 6425 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6426 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6427 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6428 DebugLoc DL = MI.getDebugLoc(); 6429 if (IsSubWord) 6430 BitSize = MI.getOperand(6).getImm(); 6431 6432 // Subword operations use 32-bit registers. 6433 const TargetRegisterClass *RC = (BitSize <= 32 ? 6434 &SystemZ::GR32BitRegClass : 6435 &SystemZ::GR64BitRegClass); 6436 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6437 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6438 6439 // Get the right opcodes for the displacement. 6440 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6441 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6442 assert(LOpcode && CSOpcode && "Displacement out of range"); 6443 6444 // Create virtual registers for temporary results. 6445 unsigned OrigVal = MRI.createVirtualRegister(RC); 6446 unsigned OldVal = MRI.createVirtualRegister(RC); 6447 unsigned NewVal = (BinOpcode || IsSubWord ? 6448 MRI.createVirtualRegister(RC) : Src2.getReg()); 6449 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6450 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6451 6452 // Insert a basic block for the main loop. 6453 MachineBasicBlock *StartMBB = MBB; 6454 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6455 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6456 6457 // StartMBB: 6458 // ... 6459 // %OrigVal = L Disp(%Base) 6460 // # fall through to LoopMMB 6461 MBB = StartMBB; 6462 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6463 MBB->addSuccessor(LoopMBB); 6464 6465 // LoopMBB: 6466 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6467 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6468 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6469 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6470 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6471 // JNE LoopMBB 6472 // # fall through to DoneMMB 6473 MBB = LoopMBB; 6474 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6475 .addReg(OrigVal).addMBB(StartMBB) 6476 .addReg(Dest).addMBB(LoopMBB); 6477 if (IsSubWord) 6478 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6479 .addReg(OldVal).addReg(BitShift).addImm(0); 6480 if (Invert) { 6481 // Perform the operation normally and then invert every bit of the field. 6482 unsigned Tmp = MRI.createVirtualRegister(RC); 6483 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6484 if (BitSize <= 32) 6485 // XILF with the upper BitSize bits set. 6486 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6487 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6488 else { 6489 // Use LCGR and add -1 to the result, which is more compact than 6490 // an XILF, XILH pair. 6491 unsigned Tmp2 = MRI.createVirtualRegister(RC); 6492 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6493 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6494 .addReg(Tmp2).addImm(-1); 6495 } 6496 } else if (BinOpcode) 6497 // A simply binary operation. 6498 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6499 .addReg(RotatedOldVal) 6500 .add(Src2); 6501 else if (IsSubWord) 6502 // Use RISBG to rotate Src2 into position and use it to replace the 6503 // field in RotatedOldVal. 6504 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6505 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6506 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6507 if (IsSubWord) 6508 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6509 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6510 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6511 .addReg(OldVal) 6512 .addReg(NewVal) 6513 .add(Base) 6514 .addImm(Disp); 6515 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6516 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6517 MBB->addSuccessor(LoopMBB); 6518 MBB->addSuccessor(DoneMBB); 6519 6520 MI.eraseFromParent(); 6521 return DoneMBB; 6522 } 6523 6524 // Implement EmitInstrWithCustomInserter for pseudo 6525 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6526 // instruction that should be used to compare the current field with the 6527 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6528 // for when the current field should be kept. BitSize is the width of 6529 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6530 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6531 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6532 unsigned KeepOldMask, unsigned BitSize) const { 6533 MachineFunction &MF = *MBB->getParent(); 6534 const SystemZInstrInfo *TII = 6535 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6536 MachineRegisterInfo &MRI = MF.getRegInfo(); 6537 bool IsSubWord = (BitSize < 32); 6538 6539 // Extract the operands. Base can be a register or a frame index. 6540 unsigned Dest = MI.getOperand(0).getReg(); 6541 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6542 int64_t Disp = MI.getOperand(2).getImm(); 6543 unsigned Src2 = MI.getOperand(3).getReg(); 6544 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6545 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6546 DebugLoc DL = MI.getDebugLoc(); 6547 if (IsSubWord) 6548 BitSize = MI.getOperand(6).getImm(); 6549 6550 // Subword operations use 32-bit registers. 6551 const TargetRegisterClass *RC = (BitSize <= 32 ? 6552 &SystemZ::GR32BitRegClass : 6553 &SystemZ::GR64BitRegClass); 6554 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6555 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6556 6557 // Get the right opcodes for the displacement. 6558 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6559 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6560 assert(LOpcode && CSOpcode && "Displacement out of range"); 6561 6562 // Create virtual registers for temporary results. 6563 unsigned OrigVal = MRI.createVirtualRegister(RC); 6564 unsigned OldVal = MRI.createVirtualRegister(RC); 6565 unsigned NewVal = MRI.createVirtualRegister(RC); 6566 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6567 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6568 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6569 6570 // Insert 3 basic blocks for the loop. 6571 MachineBasicBlock *StartMBB = MBB; 6572 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6573 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6574 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6575 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6576 6577 // StartMBB: 6578 // ... 6579 // %OrigVal = L Disp(%Base) 6580 // # fall through to LoopMMB 6581 MBB = StartMBB; 6582 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6583 MBB->addSuccessor(LoopMBB); 6584 6585 // LoopMBB: 6586 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 6587 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6588 // CompareOpcode %RotatedOldVal, %Src2 6589 // BRC KeepOldMask, UpdateMBB 6590 MBB = LoopMBB; 6591 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6592 .addReg(OrigVal).addMBB(StartMBB) 6593 .addReg(Dest).addMBB(UpdateMBB); 6594 if (IsSubWord) 6595 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6596 .addReg(OldVal).addReg(BitShift).addImm(0); 6597 BuildMI(MBB, DL, TII->get(CompareOpcode)) 6598 .addReg(RotatedOldVal).addReg(Src2); 6599 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6600 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 6601 MBB->addSuccessor(UpdateMBB); 6602 MBB->addSuccessor(UseAltMBB); 6603 6604 // UseAltMBB: 6605 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 6606 // # fall through to UpdateMMB 6607 MBB = UseAltMBB; 6608 if (IsSubWord) 6609 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 6610 .addReg(RotatedOldVal).addReg(Src2) 6611 .addImm(32).addImm(31 + BitSize).addImm(0); 6612 MBB->addSuccessor(UpdateMBB); 6613 6614 // UpdateMBB: 6615 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 6616 // [ %RotatedAltVal, UseAltMBB ] 6617 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6618 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6619 // JNE LoopMBB 6620 // # fall through to DoneMMB 6621 MBB = UpdateMBB; 6622 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 6623 .addReg(RotatedOldVal).addMBB(LoopMBB) 6624 .addReg(RotatedAltVal).addMBB(UseAltMBB); 6625 if (IsSubWord) 6626 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6627 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6628 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6629 .addReg(OldVal) 6630 .addReg(NewVal) 6631 .add(Base) 6632 .addImm(Disp); 6633 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6634 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6635 MBB->addSuccessor(LoopMBB); 6636 MBB->addSuccessor(DoneMBB); 6637 6638 MI.eraseFromParent(); 6639 return DoneMBB; 6640 } 6641 6642 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 6643 // instruction MI. 6644 MachineBasicBlock * 6645 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 6646 MachineBasicBlock *MBB) const { 6647 6648 MachineFunction &MF = *MBB->getParent(); 6649 const SystemZInstrInfo *TII = 6650 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6651 MachineRegisterInfo &MRI = MF.getRegInfo(); 6652 6653 // Extract the operands. Base can be a register or a frame index. 6654 unsigned Dest = MI.getOperand(0).getReg(); 6655 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6656 int64_t Disp = MI.getOperand(2).getImm(); 6657 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 6658 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 6659 unsigned BitShift = MI.getOperand(5).getReg(); 6660 unsigned NegBitShift = MI.getOperand(6).getReg(); 6661 int64_t BitSize = MI.getOperand(7).getImm(); 6662 DebugLoc DL = MI.getDebugLoc(); 6663 6664 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 6665 6666 // Get the right opcodes for the displacement. 6667 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 6668 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 6669 assert(LOpcode && CSOpcode && "Displacement out of range"); 6670 6671 // Create virtual registers for temporary results. 6672 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 6673 unsigned OldVal = MRI.createVirtualRegister(RC); 6674 unsigned CmpVal = MRI.createVirtualRegister(RC); 6675 unsigned SwapVal = MRI.createVirtualRegister(RC); 6676 unsigned StoreVal = MRI.createVirtualRegister(RC); 6677 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 6678 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 6679 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 6680 6681 // Insert 2 basic blocks for the loop. 6682 MachineBasicBlock *StartMBB = MBB; 6683 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6684 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6685 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 6686 6687 // StartMBB: 6688 // ... 6689 // %OrigOldVal = L Disp(%Base) 6690 // # fall through to LoopMMB 6691 MBB = StartMBB; 6692 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 6693 .add(Base) 6694 .addImm(Disp) 6695 .addReg(0); 6696 MBB->addSuccessor(LoopMBB); 6697 6698 // LoopMBB: 6699 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 6700 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 6701 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 6702 // %Dest = RLL %OldVal, BitSize(%BitShift) 6703 // ^^ The low BitSize bits contain the field 6704 // of interest. 6705 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 6706 // ^^ Replace the upper 32-BitSize bits of the 6707 // comparison value with those that we loaded, 6708 // so that we can use a full word comparison. 6709 // CR %Dest, %RetryCmpVal 6710 // JNE DoneMBB 6711 // # Fall through to SetMBB 6712 MBB = LoopMBB; 6713 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6714 .addReg(OrigOldVal).addMBB(StartMBB) 6715 .addReg(RetryOldVal).addMBB(SetMBB); 6716 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 6717 .addReg(OrigCmpVal).addMBB(StartMBB) 6718 .addReg(RetryCmpVal).addMBB(SetMBB); 6719 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 6720 .addReg(OrigSwapVal).addMBB(StartMBB) 6721 .addReg(RetrySwapVal).addMBB(SetMBB); 6722 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 6723 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 6724 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 6725 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6726 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 6727 .addReg(Dest).addReg(RetryCmpVal); 6728 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6729 .addImm(SystemZ::CCMASK_ICMP) 6730 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 6731 MBB->addSuccessor(DoneMBB); 6732 MBB->addSuccessor(SetMBB); 6733 6734 // SetMBB: 6735 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 6736 // ^^ Replace the upper 32-BitSize bits of the new 6737 // value with those that we loaded. 6738 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 6739 // ^^ Rotate the new field to its proper position. 6740 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 6741 // JNE LoopMBB 6742 // # fall through to ExitMMB 6743 MBB = SetMBB; 6744 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 6745 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6746 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 6747 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 6748 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 6749 .addReg(OldVal) 6750 .addReg(StoreVal) 6751 .add(Base) 6752 .addImm(Disp); 6753 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6754 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6755 MBB->addSuccessor(LoopMBB); 6756 MBB->addSuccessor(DoneMBB); 6757 6758 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 6759 // to the block after the loop. At this point, CC may have been defined 6760 // either by the CR in LoopMBB or by the CS in SetMBB. 6761 if (!MI.registerDefIsDead(SystemZ::CC)) 6762 DoneMBB->addLiveIn(SystemZ::CC); 6763 6764 MI.eraseFromParent(); 6765 return DoneMBB; 6766 } 6767 6768 // Emit a move from two GR64s to a GR128. 6769 MachineBasicBlock * 6770 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6771 MachineBasicBlock *MBB) const { 6772 MachineFunction &MF = *MBB->getParent(); 6773 const SystemZInstrInfo *TII = 6774 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6775 MachineRegisterInfo &MRI = MF.getRegInfo(); 6776 DebugLoc DL = MI.getDebugLoc(); 6777 6778 unsigned Dest = MI.getOperand(0).getReg(); 6779 unsigned Hi = MI.getOperand(1).getReg(); 6780 unsigned Lo = MI.getOperand(2).getReg(); 6781 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6782 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6783 6784 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6785 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6786 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6787 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6788 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6789 6790 MI.eraseFromParent(); 6791 return MBB; 6792 } 6793 6794 // Emit an extension from a GR64 to a GR128. ClearEven is true 6795 // if the high register of the GR128 value must be cleared or false if 6796 // it's "don't care". 6797 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6798 MachineBasicBlock *MBB, 6799 bool ClearEven) const { 6800 MachineFunction &MF = *MBB->getParent(); 6801 const SystemZInstrInfo *TII = 6802 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6803 MachineRegisterInfo &MRI = MF.getRegInfo(); 6804 DebugLoc DL = MI.getDebugLoc(); 6805 6806 unsigned Dest = MI.getOperand(0).getReg(); 6807 unsigned Src = MI.getOperand(1).getReg(); 6808 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6809 6810 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6811 if (ClearEven) { 6812 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6813 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6814 6815 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6816 .addImm(0); 6817 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6818 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6819 In128 = NewIn128; 6820 } 6821 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6822 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6823 6824 MI.eraseFromParent(); 6825 return MBB; 6826 } 6827 6828 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6829 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6830 MachineFunction &MF = *MBB->getParent(); 6831 const SystemZInstrInfo *TII = 6832 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6833 MachineRegisterInfo &MRI = MF.getRegInfo(); 6834 DebugLoc DL = MI.getDebugLoc(); 6835 6836 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6837 uint64_t DestDisp = MI.getOperand(1).getImm(); 6838 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6839 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6840 uint64_t Length = MI.getOperand(4).getImm(); 6841 6842 // When generating more than one CLC, all but the last will need to 6843 // branch to the end when a difference is found. 6844 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6845 splitBlockAfter(MI, MBB) : nullptr); 6846 6847 // Check for the loop form, in which operand 5 is the trip count. 6848 if (MI.getNumExplicitOperands() > 5) { 6849 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6850 6851 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6852 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6853 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6854 forceReg(MI, DestBase, TII)); 6855 6856 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6857 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6858 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6859 MRI.createVirtualRegister(RC)); 6860 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6861 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6862 MRI.createVirtualRegister(RC)); 6863 6864 RC = &SystemZ::GR64BitRegClass; 6865 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6866 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6867 6868 MachineBasicBlock *StartMBB = MBB; 6869 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6870 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6871 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6872 6873 // StartMBB: 6874 // # fall through to LoopMMB 6875 MBB->addSuccessor(LoopMBB); 6876 6877 // LoopMBB: 6878 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6879 // [ %NextDestReg, NextMBB ] 6880 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6881 // [ %NextSrcReg, NextMBB ] 6882 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6883 // [ %NextCountReg, NextMBB ] 6884 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6885 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6886 // ( JLH EndMBB ) 6887 // 6888 // The prefetch is used only for MVC. The JLH is used only for CLC. 6889 MBB = LoopMBB; 6890 6891 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6892 .addReg(StartDestReg).addMBB(StartMBB) 6893 .addReg(NextDestReg).addMBB(NextMBB); 6894 if (!HaveSingleBase) 6895 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6896 .addReg(StartSrcReg).addMBB(StartMBB) 6897 .addReg(NextSrcReg).addMBB(NextMBB); 6898 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6899 .addReg(StartCountReg).addMBB(StartMBB) 6900 .addReg(NextCountReg).addMBB(NextMBB); 6901 if (Opcode == SystemZ::MVC) 6902 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6903 .addImm(SystemZ::PFD_WRITE) 6904 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6905 BuildMI(MBB, DL, TII->get(Opcode)) 6906 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6907 .addReg(ThisSrcReg).addImm(SrcDisp); 6908 if (EndMBB) { 6909 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6910 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6911 .addMBB(EndMBB); 6912 MBB->addSuccessor(EndMBB); 6913 MBB->addSuccessor(NextMBB); 6914 } 6915 6916 // NextMBB: 6917 // %NextDestReg = LA 256(%ThisDestReg) 6918 // %NextSrcReg = LA 256(%ThisSrcReg) 6919 // %NextCountReg = AGHI %ThisCountReg, -1 6920 // CGHI %NextCountReg, 0 6921 // JLH LoopMBB 6922 // # fall through to DoneMMB 6923 // 6924 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6925 MBB = NextMBB; 6926 6927 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6928 .addReg(ThisDestReg).addImm(256).addReg(0); 6929 if (!HaveSingleBase) 6930 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6931 .addReg(ThisSrcReg).addImm(256).addReg(0); 6932 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 6933 .addReg(ThisCountReg).addImm(-1); 6934 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 6935 .addReg(NextCountReg).addImm(0); 6936 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6937 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6938 .addMBB(LoopMBB); 6939 MBB->addSuccessor(LoopMBB); 6940 MBB->addSuccessor(DoneMBB); 6941 6942 DestBase = MachineOperand::CreateReg(NextDestReg, false); 6943 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 6944 Length &= 255; 6945 if (EndMBB && !Length) 6946 // If the loop handled the whole CLC range, DoneMBB will be empty with 6947 // CC live-through into EndMBB, so add it as live-in. 6948 DoneMBB->addLiveIn(SystemZ::CC); 6949 MBB = DoneMBB; 6950 } 6951 // Handle any remaining bytes with straight-line code. 6952 while (Length > 0) { 6953 uint64_t ThisLength = std::min(Length, uint64_t(256)); 6954 // The previous iteration might have created out-of-range displacements. 6955 // Apply them using LAY if so. 6956 if (!isUInt<12>(DestDisp)) { 6957 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6958 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6959 .add(DestBase) 6960 .addImm(DestDisp) 6961 .addReg(0); 6962 DestBase = MachineOperand::CreateReg(Reg, false); 6963 DestDisp = 0; 6964 } 6965 if (!isUInt<12>(SrcDisp)) { 6966 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6967 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6968 .add(SrcBase) 6969 .addImm(SrcDisp) 6970 .addReg(0); 6971 SrcBase = MachineOperand::CreateReg(Reg, false); 6972 SrcDisp = 0; 6973 } 6974 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 6975 .add(DestBase) 6976 .addImm(DestDisp) 6977 .addImm(ThisLength) 6978 .add(SrcBase) 6979 .addImm(SrcDisp) 6980 .setMemRefs(MI.memoperands()); 6981 DestDisp += ThisLength; 6982 SrcDisp += ThisLength; 6983 Length -= ThisLength; 6984 // If there's another CLC to go, branch to the end if a difference 6985 // was found. 6986 if (EndMBB && Length > 0) { 6987 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 6988 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6989 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6990 .addMBB(EndMBB); 6991 MBB->addSuccessor(EndMBB); 6992 MBB->addSuccessor(NextMBB); 6993 MBB = NextMBB; 6994 } 6995 } 6996 if (EndMBB) { 6997 MBB->addSuccessor(EndMBB); 6998 MBB = EndMBB; 6999 MBB->addLiveIn(SystemZ::CC); 7000 } 7001 7002 MI.eraseFromParent(); 7003 return MBB; 7004 } 7005 7006 // Decompose string pseudo-instruction MI into a loop that continually performs 7007 // Opcode until CC != 3. 7008 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7009 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7010 MachineFunction &MF = *MBB->getParent(); 7011 const SystemZInstrInfo *TII = 7012 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7013 MachineRegisterInfo &MRI = MF.getRegInfo(); 7014 DebugLoc DL = MI.getDebugLoc(); 7015 7016 uint64_t End1Reg = MI.getOperand(0).getReg(); 7017 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7018 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7019 uint64_t CharReg = MI.getOperand(3).getReg(); 7020 7021 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7022 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7023 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7024 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7025 7026 MachineBasicBlock *StartMBB = MBB; 7027 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7028 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7029 7030 // StartMBB: 7031 // # fall through to LoopMMB 7032 MBB->addSuccessor(LoopMBB); 7033 7034 // LoopMBB: 7035 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7036 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7037 // R0L = %CharReg 7038 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7039 // JO LoopMBB 7040 // # fall through to DoneMMB 7041 // 7042 // The load of R0L can be hoisted by post-RA LICM. 7043 MBB = LoopMBB; 7044 7045 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7046 .addReg(Start1Reg).addMBB(StartMBB) 7047 .addReg(End1Reg).addMBB(LoopMBB); 7048 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7049 .addReg(Start2Reg).addMBB(StartMBB) 7050 .addReg(End2Reg).addMBB(LoopMBB); 7051 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7052 BuildMI(MBB, DL, TII->get(Opcode)) 7053 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7054 .addReg(This1Reg).addReg(This2Reg); 7055 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7056 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7057 MBB->addSuccessor(LoopMBB); 7058 MBB->addSuccessor(DoneMBB); 7059 7060 DoneMBB->addLiveIn(SystemZ::CC); 7061 7062 MI.eraseFromParent(); 7063 return DoneMBB; 7064 } 7065 7066 // Update TBEGIN instruction with final opcode and register clobbers. 7067 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7068 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7069 bool NoFloat) const { 7070 MachineFunction &MF = *MBB->getParent(); 7071 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7072 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7073 7074 // Update opcode. 7075 MI.setDesc(TII->get(Opcode)); 7076 7077 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7078 // Make sure to add the corresponding GRSM bits if they are missing. 7079 uint64_t Control = MI.getOperand(2).getImm(); 7080 static const unsigned GPRControlBit[16] = { 7081 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7082 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7083 }; 7084 Control |= GPRControlBit[15]; 7085 if (TFI->hasFP(MF)) 7086 Control |= GPRControlBit[11]; 7087 MI.getOperand(2).setImm(Control); 7088 7089 // Add GPR clobbers. 7090 for (int I = 0; I < 16; I++) { 7091 if ((Control & GPRControlBit[I]) == 0) { 7092 unsigned Reg = SystemZMC::GR64Regs[I]; 7093 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7094 } 7095 } 7096 7097 // Add FPR/VR clobbers. 7098 if (!NoFloat && (Control & 4) != 0) { 7099 if (Subtarget.hasVector()) { 7100 for (int I = 0; I < 32; I++) { 7101 unsigned Reg = SystemZMC::VR128Regs[I]; 7102 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7103 } 7104 } else { 7105 for (int I = 0; I < 16; I++) { 7106 unsigned Reg = SystemZMC::FP64Regs[I]; 7107 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7108 } 7109 } 7110 } 7111 7112 return MBB; 7113 } 7114 7115 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7116 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7117 MachineFunction &MF = *MBB->getParent(); 7118 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7119 const SystemZInstrInfo *TII = 7120 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7121 DebugLoc DL = MI.getDebugLoc(); 7122 7123 unsigned SrcReg = MI.getOperand(0).getReg(); 7124 7125 // Create new virtual register of the same class as source. 7126 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7127 unsigned DstReg = MRI->createVirtualRegister(RC); 7128 7129 // Replace pseudo with a normal load-and-test that models the def as 7130 // well. 7131 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7132 .addReg(SrcReg); 7133 MI.eraseFromParent(); 7134 7135 return MBB; 7136 } 7137 7138 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7139 MachineInstr &MI, MachineBasicBlock *MBB) const { 7140 switch (MI.getOpcode()) { 7141 case SystemZ::Select32: 7142 case SystemZ::Select64: 7143 case SystemZ::SelectF32: 7144 case SystemZ::SelectF64: 7145 case SystemZ::SelectF128: 7146 case SystemZ::SelectVR32: 7147 case SystemZ::SelectVR64: 7148 case SystemZ::SelectVR128: 7149 return emitSelect(MI, MBB); 7150 7151 case SystemZ::CondStore8Mux: 7152 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7153 case SystemZ::CondStore8MuxInv: 7154 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7155 case SystemZ::CondStore16Mux: 7156 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7157 case SystemZ::CondStore16MuxInv: 7158 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7159 case SystemZ::CondStore32Mux: 7160 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7161 case SystemZ::CondStore32MuxInv: 7162 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7163 case SystemZ::CondStore8: 7164 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7165 case SystemZ::CondStore8Inv: 7166 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7167 case SystemZ::CondStore16: 7168 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7169 case SystemZ::CondStore16Inv: 7170 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7171 case SystemZ::CondStore32: 7172 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7173 case SystemZ::CondStore32Inv: 7174 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7175 case SystemZ::CondStore64: 7176 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7177 case SystemZ::CondStore64Inv: 7178 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7179 case SystemZ::CondStoreF32: 7180 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7181 case SystemZ::CondStoreF32Inv: 7182 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7183 case SystemZ::CondStoreF64: 7184 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7185 case SystemZ::CondStoreF64Inv: 7186 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7187 7188 case SystemZ::PAIR128: 7189 return emitPair128(MI, MBB); 7190 case SystemZ::AEXT128: 7191 return emitExt128(MI, MBB, false); 7192 case SystemZ::ZEXT128: 7193 return emitExt128(MI, MBB, true); 7194 7195 case SystemZ::ATOMIC_SWAPW: 7196 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7197 case SystemZ::ATOMIC_SWAP_32: 7198 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7199 case SystemZ::ATOMIC_SWAP_64: 7200 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7201 7202 case SystemZ::ATOMIC_LOADW_AR: 7203 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7204 case SystemZ::ATOMIC_LOADW_AFI: 7205 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7206 case SystemZ::ATOMIC_LOAD_AR: 7207 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7208 case SystemZ::ATOMIC_LOAD_AHI: 7209 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7210 case SystemZ::ATOMIC_LOAD_AFI: 7211 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7212 case SystemZ::ATOMIC_LOAD_AGR: 7213 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7214 case SystemZ::ATOMIC_LOAD_AGHI: 7215 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7216 case SystemZ::ATOMIC_LOAD_AGFI: 7217 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7218 7219 case SystemZ::ATOMIC_LOADW_SR: 7220 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7221 case SystemZ::ATOMIC_LOAD_SR: 7222 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7223 case SystemZ::ATOMIC_LOAD_SGR: 7224 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7225 7226 case SystemZ::ATOMIC_LOADW_NR: 7227 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7228 case SystemZ::ATOMIC_LOADW_NILH: 7229 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7230 case SystemZ::ATOMIC_LOAD_NR: 7231 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7232 case SystemZ::ATOMIC_LOAD_NILL: 7233 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7234 case SystemZ::ATOMIC_LOAD_NILH: 7235 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7236 case SystemZ::ATOMIC_LOAD_NILF: 7237 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7238 case SystemZ::ATOMIC_LOAD_NGR: 7239 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7240 case SystemZ::ATOMIC_LOAD_NILL64: 7241 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7242 case SystemZ::ATOMIC_LOAD_NILH64: 7243 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7244 case SystemZ::ATOMIC_LOAD_NIHL64: 7245 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7246 case SystemZ::ATOMIC_LOAD_NIHH64: 7247 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7248 case SystemZ::ATOMIC_LOAD_NILF64: 7249 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7250 case SystemZ::ATOMIC_LOAD_NIHF64: 7251 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7252 7253 case SystemZ::ATOMIC_LOADW_OR: 7254 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7255 case SystemZ::ATOMIC_LOADW_OILH: 7256 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7257 case SystemZ::ATOMIC_LOAD_OR: 7258 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7259 case SystemZ::ATOMIC_LOAD_OILL: 7260 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7261 case SystemZ::ATOMIC_LOAD_OILH: 7262 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7263 case SystemZ::ATOMIC_LOAD_OILF: 7264 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7265 case SystemZ::ATOMIC_LOAD_OGR: 7266 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7267 case SystemZ::ATOMIC_LOAD_OILL64: 7268 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7269 case SystemZ::ATOMIC_LOAD_OILH64: 7270 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7271 case SystemZ::ATOMIC_LOAD_OIHL64: 7272 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7273 case SystemZ::ATOMIC_LOAD_OIHH64: 7274 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7275 case SystemZ::ATOMIC_LOAD_OILF64: 7276 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7277 case SystemZ::ATOMIC_LOAD_OIHF64: 7278 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7279 7280 case SystemZ::ATOMIC_LOADW_XR: 7281 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7282 case SystemZ::ATOMIC_LOADW_XILF: 7283 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7284 case SystemZ::ATOMIC_LOAD_XR: 7285 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7286 case SystemZ::ATOMIC_LOAD_XILF: 7287 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7288 case SystemZ::ATOMIC_LOAD_XGR: 7289 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7290 case SystemZ::ATOMIC_LOAD_XILF64: 7291 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7292 case SystemZ::ATOMIC_LOAD_XIHF64: 7293 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7294 7295 case SystemZ::ATOMIC_LOADW_NRi: 7296 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7297 case SystemZ::ATOMIC_LOADW_NILHi: 7298 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7299 case SystemZ::ATOMIC_LOAD_NRi: 7300 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7301 case SystemZ::ATOMIC_LOAD_NILLi: 7302 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7303 case SystemZ::ATOMIC_LOAD_NILHi: 7304 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7305 case SystemZ::ATOMIC_LOAD_NILFi: 7306 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7307 case SystemZ::ATOMIC_LOAD_NGRi: 7308 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7309 case SystemZ::ATOMIC_LOAD_NILL64i: 7310 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7311 case SystemZ::ATOMIC_LOAD_NILH64i: 7312 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7313 case SystemZ::ATOMIC_LOAD_NIHL64i: 7314 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7315 case SystemZ::ATOMIC_LOAD_NIHH64i: 7316 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7317 case SystemZ::ATOMIC_LOAD_NILF64i: 7318 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7319 case SystemZ::ATOMIC_LOAD_NIHF64i: 7320 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7321 7322 case SystemZ::ATOMIC_LOADW_MIN: 7323 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7324 SystemZ::CCMASK_CMP_LE, 0); 7325 case SystemZ::ATOMIC_LOAD_MIN_32: 7326 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7327 SystemZ::CCMASK_CMP_LE, 32); 7328 case SystemZ::ATOMIC_LOAD_MIN_64: 7329 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7330 SystemZ::CCMASK_CMP_LE, 64); 7331 7332 case SystemZ::ATOMIC_LOADW_MAX: 7333 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7334 SystemZ::CCMASK_CMP_GE, 0); 7335 case SystemZ::ATOMIC_LOAD_MAX_32: 7336 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7337 SystemZ::CCMASK_CMP_GE, 32); 7338 case SystemZ::ATOMIC_LOAD_MAX_64: 7339 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7340 SystemZ::CCMASK_CMP_GE, 64); 7341 7342 case SystemZ::ATOMIC_LOADW_UMIN: 7343 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7344 SystemZ::CCMASK_CMP_LE, 0); 7345 case SystemZ::ATOMIC_LOAD_UMIN_32: 7346 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7347 SystemZ::CCMASK_CMP_LE, 32); 7348 case SystemZ::ATOMIC_LOAD_UMIN_64: 7349 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7350 SystemZ::CCMASK_CMP_LE, 64); 7351 7352 case SystemZ::ATOMIC_LOADW_UMAX: 7353 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7354 SystemZ::CCMASK_CMP_GE, 0); 7355 case SystemZ::ATOMIC_LOAD_UMAX_32: 7356 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7357 SystemZ::CCMASK_CMP_GE, 32); 7358 case SystemZ::ATOMIC_LOAD_UMAX_64: 7359 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7360 SystemZ::CCMASK_CMP_GE, 64); 7361 7362 case SystemZ::ATOMIC_CMP_SWAPW: 7363 return emitAtomicCmpSwapW(MI, MBB); 7364 case SystemZ::MVCSequence: 7365 case SystemZ::MVCLoop: 7366 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7367 case SystemZ::NCSequence: 7368 case SystemZ::NCLoop: 7369 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7370 case SystemZ::OCSequence: 7371 case SystemZ::OCLoop: 7372 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7373 case SystemZ::XCSequence: 7374 case SystemZ::XCLoop: 7375 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7376 case SystemZ::CLCSequence: 7377 case SystemZ::CLCLoop: 7378 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7379 case SystemZ::CLSTLoop: 7380 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7381 case SystemZ::MVSTLoop: 7382 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7383 case SystemZ::SRSTLoop: 7384 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7385 case SystemZ::TBEGIN: 7386 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7387 case SystemZ::TBEGIN_nofloat: 7388 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7389 case SystemZ::TBEGINC: 7390 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7391 case SystemZ::LTEBRCompare_VecPseudo: 7392 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7393 case SystemZ::LTDBRCompare_VecPseudo: 7394 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7395 case SystemZ::LTXBRCompare_VecPseudo: 7396 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7397 7398 case TargetOpcode::STACKMAP: 7399 case TargetOpcode::PATCHPOINT: 7400 return emitPatchPoint(MI, MBB); 7401 7402 default: 7403 llvm_unreachable("Unexpected instr type to insert"); 7404 } 7405 } 7406 7407 // This is only used by the isel schedulers, and is needed only to prevent 7408 // compiler from crashing when list-ilp is used. 7409 const TargetRegisterClass * 7410 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7411 if (VT == MVT::Untyped) 7412 return &SystemZ::ADDR128BitRegClass; 7413 return TargetLowering::getRepRegClassFor(VT); 7414 } 7415