1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 auto *Regs = STI.getSpecialRegisters(); 86 87 // Set up the register classes. 88 if (Subtarget.hasHighWord()) 89 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 90 else 91 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 92 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 93 if (!useSoftFloat()) { 94 if (Subtarget.hasVector()) { 95 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 97 } else { 98 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 99 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 100 } 101 if (Subtarget.hasVectorEnhancements1()) 102 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 103 else 104 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 105 106 if (Subtarget.hasVector()) { 107 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 113 } 114 } 115 116 // Compute derived properties from the register classes 117 computeRegisterProperties(Subtarget.getRegisterInfo()); 118 119 // Set up special registers. 120 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 121 122 // TODO: It may be better to default to latency-oriented scheduling, however 123 // LLVM's current latency-oriented scheduler can't handle physreg definitions 124 // such as SystemZ has with CC, so set this to the register-pressure 125 // scheduler, because it can. 126 setSchedulingPreference(Sched::RegPressure); 127 128 setBooleanContents(ZeroOrOneBooleanContent); 129 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 130 131 // Instructions are strings of 2-byte aligned 2-byte values. 132 setMinFunctionAlignment(Align(2)); 133 // For performance reasons we prefer 16-byte alignment. 134 setPrefFunctionAlignment(Align(16)); 135 136 // Handle operations that are handled in a similar way for all types. 137 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 138 I <= MVT::LAST_FP_VALUETYPE; 139 ++I) { 140 MVT VT = MVT::SimpleValueType(I); 141 if (isTypeLegal(VT)) { 142 // Lower SET_CC into an IPM-based sequence. 143 setOperationAction(ISD::SETCC, VT, Custom); 144 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 145 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 146 147 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 148 setOperationAction(ISD::SELECT, VT, Expand); 149 150 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 151 setOperationAction(ISD::SELECT_CC, VT, Custom); 152 setOperationAction(ISD::BR_CC, VT, Custom); 153 } 154 } 155 156 // Expand jump table branches as address arithmetic followed by an 157 // indirect jump. 158 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 159 160 // Expand BRCOND into a BR_CC (see above). 161 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 162 163 // Handle integer types. 164 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 165 I <= MVT::LAST_INTEGER_VALUETYPE; 166 ++I) { 167 MVT VT = MVT::SimpleValueType(I); 168 if (isTypeLegal(VT)) { 169 setOperationAction(ISD::ABS, VT, Legal); 170 171 // Expand individual DIV and REMs into DIVREMs. 172 setOperationAction(ISD::SDIV, VT, Expand); 173 setOperationAction(ISD::UDIV, VT, Expand); 174 setOperationAction(ISD::SREM, VT, Expand); 175 setOperationAction(ISD::UREM, VT, Expand); 176 setOperationAction(ISD::SDIVREM, VT, Custom); 177 setOperationAction(ISD::UDIVREM, VT, Custom); 178 179 // Support addition/subtraction with overflow. 180 setOperationAction(ISD::SADDO, VT, Custom); 181 setOperationAction(ISD::SSUBO, VT, Custom); 182 183 // Support addition/subtraction with carry. 184 setOperationAction(ISD::UADDO, VT, Custom); 185 setOperationAction(ISD::USUBO, VT, Custom); 186 187 // Support carry in as value rather than glue. 188 setOperationAction(ISD::ADDCARRY, VT, Custom); 189 setOperationAction(ISD::SUBCARRY, VT, Custom); 190 191 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 192 // stores, putting a serialization instruction after the stores. 193 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 194 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 195 196 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 197 // available, or if the operand is constant. 198 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 199 200 // Use POPCNT on z196 and above. 201 if (Subtarget.hasPopulationCount()) 202 setOperationAction(ISD::CTPOP, VT, Custom); 203 else 204 setOperationAction(ISD::CTPOP, VT, Expand); 205 206 // No special instructions for these. 207 setOperationAction(ISD::CTTZ, VT, Expand); 208 setOperationAction(ISD::ROTR, VT, Expand); 209 210 // Use *MUL_LOHI where possible instead of MULH*. 211 setOperationAction(ISD::MULHS, VT, Expand); 212 setOperationAction(ISD::MULHU, VT, Expand); 213 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 214 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 215 216 // Only z196 and above have native support for conversions to unsigned. 217 // On z10, promoting to i64 doesn't generate an inexact condition for 218 // values that are outside the i32 range but in the i64 range, so use 219 // the default expansion. 220 if (!Subtarget.hasFPExtension()) 221 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 222 223 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 224 // default to Expand, so need to be modified to Legal where appropriate. 225 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 226 if (Subtarget.hasFPExtension()) 227 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 228 229 // And similarly for STRICT_[SU]INT_TO_FP. 230 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 231 if (Subtarget.hasFPExtension()) 232 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 233 } 234 } 235 236 // Type legalization will convert 8- and 16-bit atomic operations into 237 // forms that operate on i32s (but still keeping the original memory VT). 238 // Lower them into full i32 operations. 239 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 249 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 250 251 // Even though i128 is not a legal type, we still need to custom lower 252 // the atomic operations in order to exploit SystemZ instructions. 253 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 254 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 255 256 // We can use the CC result of compare-and-swap to implement 257 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 259 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 260 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 261 262 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 263 264 // Traps are legal, as we will convert them to "j .+2". 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 267 // z10 has instructions for signed but not unsigned FP conversion. 268 // Handle unsigned 32-bit types as signed 64-bit types. 269 if (!Subtarget.hasFPExtension()) { 270 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 271 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 272 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 273 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 274 } 275 276 // We have native support for a 64-bit CTLZ, via FLOGR. 277 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 278 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 279 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 280 281 // On z15 we have native support for a 64-bit CTPOP. 282 if (Subtarget.hasMiscellaneousExtensions3()) { 283 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 284 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 285 } 286 287 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 288 setOperationAction(ISD::OR, MVT::i64, Custom); 289 290 // Expand 128 bit shifts without using a libcall. 291 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 292 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 293 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 294 setLibcallName(RTLIB::SRL_I128, nullptr); 295 setLibcallName(RTLIB::SHL_I128, nullptr); 296 setLibcallName(RTLIB::SRA_I128, nullptr); 297 298 // Handle bitcast from fp128 to i128. 299 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 300 301 // We have native instructions for i8, i16 and i32 extensions, but not i1. 302 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 303 for (MVT VT : MVT::integer_valuetypes()) { 304 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 305 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 306 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 307 } 308 309 // Handle the various types of symbolic address. 310 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 311 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 312 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 313 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 314 setOperationAction(ISD::JumpTable, PtrVT, Custom); 315 316 // We need to handle dynamic allocations specially because of the 317 // 160-byte area at the bottom of the stack. 318 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 319 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 320 321 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 322 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 323 324 // Handle prefetches with PFD or PFDRL. 325 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 326 327 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 328 // Assume by default that all vector operations need to be expanded. 329 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 330 if (getOperationAction(Opcode, VT) == Legal) 331 setOperationAction(Opcode, VT, Expand); 332 333 // Likewise all truncating stores and extending loads. 334 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 335 setTruncStoreAction(VT, InnerVT, Expand); 336 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 337 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 338 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 339 } 340 341 if (isTypeLegal(VT)) { 342 // These operations are legal for anything that can be stored in a 343 // vector register, even if there is no native support for the format 344 // as such. In particular, we can do these for v4f32 even though there 345 // are no specific instructions for that format. 346 setOperationAction(ISD::LOAD, VT, Legal); 347 setOperationAction(ISD::STORE, VT, Legal); 348 setOperationAction(ISD::VSELECT, VT, Legal); 349 setOperationAction(ISD::BITCAST, VT, Legal); 350 setOperationAction(ISD::UNDEF, VT, Legal); 351 352 // Likewise, except that we need to replace the nodes with something 353 // more specific. 354 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 355 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 356 } 357 } 358 359 // Handle integer vector types. 360 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 361 if (isTypeLegal(VT)) { 362 // These operations have direct equivalents. 363 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 364 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 365 setOperationAction(ISD::ADD, VT, Legal); 366 setOperationAction(ISD::SUB, VT, Legal); 367 if (VT != MVT::v2i64) 368 setOperationAction(ISD::MUL, VT, Legal); 369 setOperationAction(ISD::ABS, VT, Legal); 370 setOperationAction(ISD::AND, VT, Legal); 371 setOperationAction(ISD::OR, VT, Legal); 372 setOperationAction(ISD::XOR, VT, Legal); 373 if (Subtarget.hasVectorEnhancements1()) 374 setOperationAction(ISD::CTPOP, VT, Legal); 375 else 376 setOperationAction(ISD::CTPOP, VT, Custom); 377 setOperationAction(ISD::CTTZ, VT, Legal); 378 setOperationAction(ISD::CTLZ, VT, Legal); 379 380 // Convert a GPR scalar to a vector by inserting it into element 0. 381 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 382 383 // Use a series of unpacks for extensions. 384 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 385 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 386 387 // Detect shifts by a scalar amount and convert them into 388 // V*_BY_SCALAR. 389 setOperationAction(ISD::SHL, VT, Custom); 390 setOperationAction(ISD::SRA, VT, Custom); 391 setOperationAction(ISD::SRL, VT, Custom); 392 393 // At present ROTL isn't matched by DAGCombiner. ROTR should be 394 // converted into ROTL. 395 setOperationAction(ISD::ROTL, VT, Expand); 396 setOperationAction(ISD::ROTR, VT, Expand); 397 398 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 399 // and inverting the result as necessary. 400 setOperationAction(ISD::SETCC, VT, Custom); 401 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 402 if (Subtarget.hasVectorEnhancements1()) 403 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 404 } 405 } 406 407 if (Subtarget.hasVector()) { 408 // There should be no need to check for float types other than v2f64 409 // since <2 x f32> isn't a legal type. 410 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 418 419 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 420 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 421 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 422 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 423 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 424 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 425 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 426 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 427 } 428 429 if (Subtarget.hasVectorEnhancements2()) { 430 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 438 439 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 440 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 441 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 442 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 443 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 444 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 445 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 446 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 447 } 448 449 // Handle floating-point types. 450 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 451 I <= MVT::LAST_FP_VALUETYPE; 452 ++I) { 453 MVT VT = MVT::SimpleValueType(I); 454 if (isTypeLegal(VT)) { 455 // We can use FI for FRINT. 456 setOperationAction(ISD::FRINT, VT, Legal); 457 458 // We can use the extended form of FI for other rounding operations. 459 if (Subtarget.hasFPExtension()) { 460 setOperationAction(ISD::FNEARBYINT, VT, Legal); 461 setOperationAction(ISD::FFLOOR, VT, Legal); 462 setOperationAction(ISD::FCEIL, VT, Legal); 463 setOperationAction(ISD::FTRUNC, VT, Legal); 464 setOperationAction(ISD::FROUND, VT, Legal); 465 } 466 467 // No special instructions for these. 468 setOperationAction(ISD::FSIN, VT, Expand); 469 setOperationAction(ISD::FCOS, VT, Expand); 470 setOperationAction(ISD::FSINCOS, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FPOW, VT, Expand); 473 474 // Handle constrained floating-point operations. 475 setOperationAction(ISD::STRICT_FADD, VT, Legal); 476 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 477 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 478 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 479 setOperationAction(ISD::STRICT_FMA, VT, Legal); 480 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 481 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 482 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 483 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 484 if (Subtarget.hasFPExtension()) { 485 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 486 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 487 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 488 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 489 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 490 } 491 } 492 } 493 494 // Handle floating-point vector types. 495 if (Subtarget.hasVector()) { 496 // Scalar-to-vector conversion is just a subreg. 497 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 498 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 499 500 // Some insertions and extractions can be done directly but others 501 // need to go via integers. 502 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 503 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 504 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 506 507 // These operations have direct equivalents. 508 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 509 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 510 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 511 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 512 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 513 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 514 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 515 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 516 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 517 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 518 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 519 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 520 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 521 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 522 523 // Handle constrained floating-point operations. 524 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 527 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 528 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 533 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 534 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 535 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 536 } 537 538 // The vector enhancements facility 1 has instructions for these. 539 if (Subtarget.hasVectorEnhancements1()) { 540 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 541 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 542 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 543 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 544 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 545 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 546 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 547 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 548 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 549 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 550 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 551 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 552 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 553 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 554 555 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 556 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 557 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 558 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 559 560 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 561 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 562 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 563 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 564 565 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 566 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 567 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 568 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 569 570 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 571 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 572 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 573 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 574 575 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 576 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 577 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 578 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 579 580 // Handle constrained floating-point operations. 581 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 584 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 585 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 590 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 591 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 592 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 593 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 594 MVT::v4f32, MVT::v2f64 }) { 595 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 596 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 597 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 598 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 599 } 600 } 601 602 // We only have fused f128 multiply-addition on vector registers. 603 if (!Subtarget.hasVectorEnhancements1()) { 604 setOperationAction(ISD::FMA, MVT::f128, Expand); 605 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 606 } 607 608 // We don't have a copysign instruction on vector registers. 609 if (Subtarget.hasVectorEnhancements1()) 610 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 611 612 // Needed so that we don't try to implement f128 constant loads using 613 // a load-and-extend of a f80 constant (in cases where the constant 614 // would fit in an f80). 615 for (MVT VT : MVT::fp_valuetypes()) 616 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 617 618 // We don't have extending load instruction on vector registers. 619 if (Subtarget.hasVectorEnhancements1()) { 620 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 621 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 622 } 623 624 // Floating-point truncation and stores need to be done separately. 625 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 626 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 627 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 628 629 // We have 64-bit FPR<->GPR moves, but need special handling for 630 // 32-bit forms. 631 if (!Subtarget.hasVector()) { 632 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 633 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 634 } 635 636 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 637 // structure, but VAEND is a no-op. 638 setOperationAction(ISD::VASTART, MVT::Other, Custom); 639 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 640 setOperationAction(ISD::VAEND, MVT::Other, Expand); 641 642 // Codes for which we want to perform some z-specific combinations. 643 setTargetDAGCombine(ISD::ZERO_EXTEND); 644 setTargetDAGCombine(ISD::SIGN_EXTEND); 645 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 646 setTargetDAGCombine(ISD::LOAD); 647 setTargetDAGCombine(ISD::STORE); 648 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 649 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 650 setTargetDAGCombine(ISD::FP_ROUND); 651 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 652 setTargetDAGCombine(ISD::FP_EXTEND); 653 setTargetDAGCombine(ISD::SINT_TO_FP); 654 setTargetDAGCombine(ISD::UINT_TO_FP); 655 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 656 setTargetDAGCombine(ISD::BSWAP); 657 setTargetDAGCombine(ISD::SDIV); 658 setTargetDAGCombine(ISD::UDIV); 659 setTargetDAGCombine(ISD::SREM); 660 setTargetDAGCombine(ISD::UREM); 661 setTargetDAGCombine(ISD::INTRINSIC_VOID); 662 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 663 664 // Handle intrinsics. 665 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 666 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 667 668 // We want to use MVC in preference to even a single load/store pair. 669 MaxStoresPerMemcpy = 0; 670 MaxStoresPerMemcpyOptSize = 0; 671 672 // The main memset sequence is a byte store followed by an MVC. 673 // Two STC or MV..I stores win over that, but the kind of fused stores 674 // generated by target-independent code don't when the byte value is 675 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 676 // than "STC;MVC". Handle the choice in target-specific code instead. 677 MaxStoresPerMemset = 0; 678 MaxStoresPerMemsetOptSize = 0; 679 680 // Default to having -disable-strictnode-mutation on 681 IsStrictFPEnabled = true; 682 } 683 684 bool SystemZTargetLowering::useSoftFloat() const { 685 return Subtarget.hasSoftFloat(); 686 } 687 688 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 689 LLVMContext &, EVT VT) const { 690 if (!VT.isVector()) 691 return MVT::i32; 692 return VT.changeVectorElementTypeToInteger(); 693 } 694 695 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 696 const MachineFunction &MF, EVT VT) const { 697 VT = VT.getScalarType(); 698 699 if (!VT.isSimple()) 700 return false; 701 702 switch (VT.getSimpleVT().SimpleTy) { 703 case MVT::f32: 704 case MVT::f64: 705 return true; 706 case MVT::f128: 707 return Subtarget.hasVectorEnhancements1(); 708 default: 709 break; 710 } 711 712 return false; 713 } 714 715 // Return true if the constant can be generated with a vector instruction, 716 // such as VGM, VGMB or VREPI. 717 bool SystemZVectorConstantInfo::isVectorConstantLegal( 718 const SystemZSubtarget &Subtarget) { 719 const SystemZInstrInfo *TII = 720 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 721 if (!Subtarget.hasVector() || 722 (isFP128 && !Subtarget.hasVectorEnhancements1())) 723 return false; 724 725 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 726 // preferred way of creating all-zero and all-one vectors so give it 727 // priority over other methods below. 728 unsigned Mask = 0; 729 unsigned I = 0; 730 for (; I < SystemZ::VectorBytes; ++I) { 731 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 732 if (Byte == 0xff) 733 Mask |= 1ULL << I; 734 else if (Byte != 0) 735 break; 736 } 737 if (I == SystemZ::VectorBytes) { 738 Opcode = SystemZISD::BYTE_MASK; 739 OpVals.push_back(Mask); 740 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 741 return true; 742 } 743 744 if (SplatBitSize > 64) 745 return false; 746 747 auto tryValue = [&](uint64_t Value) -> bool { 748 // Try VECTOR REPLICATE IMMEDIATE 749 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 750 if (isInt<16>(SignedValue)) { 751 OpVals.push_back(((unsigned) SignedValue)); 752 Opcode = SystemZISD::REPLICATE; 753 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 754 SystemZ::VectorBits / SplatBitSize); 755 return true; 756 } 757 // Try VECTOR GENERATE MASK 758 unsigned Start, End; 759 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 760 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 761 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 762 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 763 OpVals.push_back(Start - (64 - SplatBitSize)); 764 OpVals.push_back(End - (64 - SplatBitSize)); 765 Opcode = SystemZISD::ROTATE_MASK; 766 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 767 SystemZ::VectorBits / SplatBitSize); 768 return true; 769 } 770 return false; 771 }; 772 773 // First try assuming that any undefined bits above the highest set bit 774 // and below the lowest set bit are 1s. This increases the likelihood of 775 // being able to use a sign-extended element value in VECTOR REPLICATE 776 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 777 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 778 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 779 uint64_t Lower = 780 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 781 uint64_t Upper = 782 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 783 if (tryValue(SplatBitsZ | Upper | Lower)) 784 return true; 785 786 // Now try assuming that any undefined bits between the first and 787 // last defined set bits are set. This increases the chances of 788 // using a non-wraparound mask. 789 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 790 return tryValue(SplatBitsZ | Middle); 791 } 792 793 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 794 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 795 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 796 SplatBits = FPImm.bitcastToAPInt(); 797 unsigned Width = SplatBits.getBitWidth(); 798 IntBits <<= (SystemZ::VectorBits - Width); 799 800 // Find the smallest splat. 801 while (Width > 8) { 802 unsigned HalfSize = Width / 2; 803 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 804 APInt LowValue = SplatBits.trunc(HalfSize); 805 806 // If the two halves do not match, stop here. 807 if (HighValue != LowValue || 8 > HalfSize) 808 break; 809 810 SplatBits = HighValue; 811 Width = HalfSize; 812 } 813 SplatUndef = 0; 814 SplatBitSize = Width; 815 } 816 817 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 818 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 819 bool HasAnyUndefs; 820 821 // Get IntBits by finding the 128 bit splat. 822 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 823 true); 824 825 // Get SplatBits by finding the 8 bit or greater splat. 826 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 827 true); 828 } 829 830 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 831 bool ForCodeSize) const { 832 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 833 if (Imm.isZero() || Imm.isNegZero()) 834 return true; 835 836 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 837 } 838 839 /// Returns true if stack probing through inline assembly is requested. 840 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 841 // If the function specifically requests inline stack probes, emit them. 842 if (MF.getFunction().hasFnAttribute("probe-stack")) 843 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 844 "inline-asm"; 845 return false; 846 } 847 848 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 849 // We can use CGFI or CLGFI. 850 return isInt<32>(Imm) || isUInt<32>(Imm); 851 } 852 853 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 854 // We can use ALGFI or SLGFI. 855 return isUInt<32>(Imm) || isUInt<32>(-Imm); 856 } 857 858 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 859 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 860 // Unaligned accesses should never be slower than the expanded version. 861 // We check specifically for aligned accesses in the few cases where 862 // they are required. 863 if (Fast) 864 *Fast = true; 865 return true; 866 } 867 868 // Information about the addressing mode for a memory access. 869 struct AddressingMode { 870 // True if a long displacement is supported. 871 bool LongDisplacement; 872 873 // True if use of index register is supported. 874 bool IndexReg; 875 876 AddressingMode(bool LongDispl, bool IdxReg) : 877 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 878 }; 879 880 // Return the desired addressing mode for a Load which has only one use (in 881 // the same block) which is a Store. 882 static AddressingMode getLoadStoreAddrMode(bool HasVector, 883 Type *Ty) { 884 // With vector support a Load->Store combination may be combined to either 885 // an MVC or vector operations and it seems to work best to allow the 886 // vector addressing mode. 887 if (HasVector) 888 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 889 890 // Otherwise only the MVC case is special. 891 bool MVC = Ty->isIntegerTy(8); 892 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 893 } 894 895 // Return the addressing mode which seems most desirable given an LLVM 896 // Instruction pointer. 897 static AddressingMode 898 supportedAddressingMode(Instruction *I, bool HasVector) { 899 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 900 switch (II->getIntrinsicID()) { 901 default: break; 902 case Intrinsic::memset: 903 case Intrinsic::memmove: 904 case Intrinsic::memcpy: 905 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 906 } 907 } 908 909 if (isa<LoadInst>(I) && I->hasOneUse()) { 910 auto *SingleUser = cast<Instruction>(*I->user_begin()); 911 if (SingleUser->getParent() == I->getParent()) { 912 if (isa<ICmpInst>(SingleUser)) { 913 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 914 if (C->getBitWidth() <= 64 && 915 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 916 // Comparison of memory with 16 bit signed / unsigned immediate 917 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 918 } else if (isa<StoreInst>(SingleUser)) 919 // Load->Store 920 return getLoadStoreAddrMode(HasVector, I->getType()); 921 } 922 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 923 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 924 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 925 // Load->Store 926 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 927 } 928 929 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 930 931 // * Use LDE instead of LE/LEY for z13 to avoid partial register 932 // dependencies (LDE only supports small offsets). 933 // * Utilize the vector registers to hold floating point 934 // values (vector load / store instructions only support small 935 // offsets). 936 937 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 938 I->getOperand(0)->getType()); 939 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 940 bool IsVectorAccess = MemAccessTy->isVectorTy(); 941 942 // A store of an extracted vector element will be combined into a VSTE type 943 // instruction. 944 if (!IsVectorAccess && isa<StoreInst>(I)) { 945 Value *DataOp = I->getOperand(0); 946 if (isa<ExtractElementInst>(DataOp)) 947 IsVectorAccess = true; 948 } 949 950 // A load which gets inserted into a vector element will be combined into a 951 // VLE type instruction. 952 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 953 User *LoadUser = *I->user_begin(); 954 if (isa<InsertElementInst>(LoadUser)) 955 IsVectorAccess = true; 956 } 957 958 if (IsFPAccess || IsVectorAccess) 959 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 960 } 961 962 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 963 } 964 965 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 966 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 967 // Punt on globals for now, although they can be used in limited 968 // RELATIVE LONG cases. 969 if (AM.BaseGV) 970 return false; 971 972 // Require a 20-bit signed offset. 973 if (!isInt<20>(AM.BaseOffs)) 974 return false; 975 976 AddressingMode SupportedAM(true, true); 977 if (I != nullptr) 978 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 979 980 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 981 return false; 982 983 if (!SupportedAM.IndexReg) 984 // No indexing allowed. 985 return AM.Scale == 0; 986 else 987 // Indexing is OK but no scale factor can be applied. 988 return AM.Scale == 0 || AM.Scale == 1; 989 } 990 991 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 992 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 993 return false; 994 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 995 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 996 return FromBits > ToBits; 997 } 998 999 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1000 if (!FromVT.isInteger() || !ToVT.isInteger()) 1001 return false; 1002 unsigned FromBits = FromVT.getFixedSizeInBits(); 1003 unsigned ToBits = ToVT.getFixedSizeInBits(); 1004 return FromBits > ToBits; 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Inline asm support 1009 //===----------------------------------------------------------------------===// 1010 1011 TargetLowering::ConstraintType 1012 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1013 if (Constraint.size() == 1) { 1014 switch (Constraint[0]) { 1015 case 'a': // Address register 1016 case 'd': // Data register (equivalent to 'r') 1017 case 'f': // Floating-point register 1018 case 'h': // High-part register 1019 case 'r': // General-purpose register 1020 case 'v': // Vector register 1021 return C_RegisterClass; 1022 1023 case 'Q': // Memory with base and unsigned 12-bit displacement 1024 case 'R': // Likewise, plus an index 1025 case 'S': // Memory with base and signed 20-bit displacement 1026 case 'T': // Likewise, plus an index 1027 case 'm': // Equivalent to 'T'. 1028 return C_Memory; 1029 1030 case 'I': // Unsigned 8-bit constant 1031 case 'J': // Unsigned 12-bit constant 1032 case 'K': // Signed 16-bit constant 1033 case 'L': // Signed 20-bit displacement (on all targets we support) 1034 case 'M': // 0x7fffffff 1035 return C_Immediate; 1036 1037 default: 1038 break; 1039 } 1040 } 1041 return TargetLowering::getConstraintType(Constraint); 1042 } 1043 1044 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1045 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1046 const char *constraint) const { 1047 ConstraintWeight weight = CW_Invalid; 1048 Value *CallOperandVal = info.CallOperandVal; 1049 // If we don't have a value, we can't do a match, 1050 // but allow it at the lowest weight. 1051 if (!CallOperandVal) 1052 return CW_Default; 1053 Type *type = CallOperandVal->getType(); 1054 // Look at the constraint type. 1055 switch (*constraint) { 1056 default: 1057 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1058 break; 1059 1060 case 'a': // Address register 1061 case 'd': // Data register (equivalent to 'r') 1062 case 'h': // High-part register 1063 case 'r': // General-purpose register 1064 if (CallOperandVal->getType()->isIntegerTy()) 1065 weight = CW_Register; 1066 break; 1067 1068 case 'f': // Floating-point register 1069 if (type->isFloatingPointTy()) 1070 weight = CW_Register; 1071 break; 1072 1073 case 'v': // Vector register 1074 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1075 Subtarget.hasVector()) 1076 weight = CW_Register; 1077 break; 1078 1079 case 'I': // Unsigned 8-bit constant 1080 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1081 if (isUInt<8>(C->getZExtValue())) 1082 weight = CW_Constant; 1083 break; 1084 1085 case 'J': // Unsigned 12-bit constant 1086 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1087 if (isUInt<12>(C->getZExtValue())) 1088 weight = CW_Constant; 1089 break; 1090 1091 case 'K': // Signed 16-bit constant 1092 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1093 if (isInt<16>(C->getSExtValue())) 1094 weight = CW_Constant; 1095 break; 1096 1097 case 'L': // Signed 20-bit displacement (on all targets we support) 1098 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1099 if (isInt<20>(C->getSExtValue())) 1100 weight = CW_Constant; 1101 break; 1102 1103 case 'M': // 0x7fffffff 1104 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1105 if (C->getZExtValue() == 0x7fffffff) 1106 weight = CW_Constant; 1107 break; 1108 } 1109 return weight; 1110 } 1111 1112 // Parse a "{tNNN}" register constraint for which the register type "t" 1113 // has already been verified. MC is the class associated with "t" and 1114 // Map maps 0-based register numbers to LLVM register numbers. 1115 static std::pair<unsigned, const TargetRegisterClass *> 1116 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1117 const unsigned *Map, unsigned Size) { 1118 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1119 if (isdigit(Constraint[2])) { 1120 unsigned Index; 1121 bool Failed = 1122 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1123 if (!Failed && Index < Size && Map[Index]) 1124 return std::make_pair(Map[Index], RC); 1125 } 1126 return std::make_pair(0U, nullptr); 1127 } 1128 1129 std::pair<unsigned, const TargetRegisterClass *> 1130 SystemZTargetLowering::getRegForInlineAsmConstraint( 1131 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1132 if (Constraint.size() == 1) { 1133 // GCC Constraint Letters 1134 switch (Constraint[0]) { 1135 default: break; 1136 case 'd': // Data register (equivalent to 'r') 1137 case 'r': // General-purpose register 1138 if (VT == MVT::i64) 1139 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1140 else if (VT == MVT::i128) 1141 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1142 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1143 1144 case 'a': // Address register 1145 if (VT == MVT::i64) 1146 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1147 else if (VT == MVT::i128) 1148 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1149 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1150 1151 case 'h': // High-part register (an LLVM extension) 1152 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1153 1154 case 'f': // Floating-point register 1155 if (!useSoftFloat()) { 1156 if (VT == MVT::f64) 1157 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1158 else if (VT == MVT::f128) 1159 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1160 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1161 } 1162 break; 1163 case 'v': // Vector register 1164 if (Subtarget.hasVector()) { 1165 if (VT == MVT::f32) 1166 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1167 if (VT == MVT::f64) 1168 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1169 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1170 } 1171 break; 1172 } 1173 } 1174 if (Constraint.size() > 0 && Constraint[0] == '{') { 1175 // We need to override the default register parsing for GPRs and FPRs 1176 // because the interpretation depends on VT. The internal names of 1177 // the registers are also different from the external names 1178 // (F0D and F0S instead of F0, etc.). 1179 if (Constraint[1] == 'r') { 1180 if (VT == MVT::i32) 1181 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1182 SystemZMC::GR32Regs, 16); 1183 if (VT == MVT::i128) 1184 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1185 SystemZMC::GR128Regs, 16); 1186 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1187 SystemZMC::GR64Regs, 16); 1188 } 1189 if (Constraint[1] == 'f') { 1190 if (useSoftFloat()) 1191 return std::make_pair( 1192 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1193 if (VT == MVT::f32) 1194 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1195 SystemZMC::FP32Regs, 16); 1196 if (VT == MVT::f128) 1197 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1198 SystemZMC::FP128Regs, 16); 1199 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1200 SystemZMC::FP64Regs, 16); 1201 } 1202 if (Constraint[1] == 'v') { 1203 if (!Subtarget.hasVector()) 1204 return std::make_pair( 1205 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1206 if (VT == MVT::f32) 1207 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1208 SystemZMC::VR32Regs, 32); 1209 if (VT == MVT::f64) 1210 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1211 SystemZMC::VR64Regs, 32); 1212 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1213 SystemZMC::VR128Regs, 32); 1214 } 1215 } 1216 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1217 } 1218 1219 // FIXME? Maybe this could be a TableGen attribute on some registers and 1220 // this table could be generated automatically from RegInfo. 1221 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1222 const MachineFunction &MF) const { 1223 1224 Register Reg = StringSwitch<Register>(RegName) 1225 .Case("r15", SystemZ::R15D) 1226 .Default(0); 1227 if (Reg) 1228 return Reg; 1229 report_fatal_error("Invalid register name global variable"); 1230 } 1231 1232 void SystemZTargetLowering:: 1233 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1234 std::vector<SDValue> &Ops, 1235 SelectionDAG &DAG) const { 1236 // Only support length 1 constraints for now. 1237 if (Constraint.length() == 1) { 1238 switch (Constraint[0]) { 1239 case 'I': // Unsigned 8-bit constant 1240 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1241 if (isUInt<8>(C->getZExtValue())) 1242 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1243 Op.getValueType())); 1244 return; 1245 1246 case 'J': // Unsigned 12-bit constant 1247 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1248 if (isUInt<12>(C->getZExtValue())) 1249 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1250 Op.getValueType())); 1251 return; 1252 1253 case 'K': // Signed 16-bit constant 1254 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1255 if (isInt<16>(C->getSExtValue())) 1256 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1257 Op.getValueType())); 1258 return; 1259 1260 case 'L': // Signed 20-bit displacement (on all targets we support) 1261 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1262 if (isInt<20>(C->getSExtValue())) 1263 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1264 Op.getValueType())); 1265 return; 1266 1267 case 'M': // 0x7fffffff 1268 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1269 if (C->getZExtValue() == 0x7fffffff) 1270 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1271 Op.getValueType())); 1272 return; 1273 } 1274 } 1275 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1276 } 1277 1278 //===----------------------------------------------------------------------===// 1279 // Calling conventions 1280 //===----------------------------------------------------------------------===// 1281 1282 #include "SystemZGenCallingConv.inc" 1283 1284 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1285 CallingConv::ID) const { 1286 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1287 SystemZ::R14D, 0 }; 1288 return ScratchRegs; 1289 } 1290 1291 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1292 Type *ToType) const { 1293 return isTruncateFree(FromType, ToType); 1294 } 1295 1296 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1297 return CI->isTailCall(); 1298 } 1299 1300 // We do not yet support 128-bit single-element vector types. If the user 1301 // attempts to use such types as function argument or return type, prefer 1302 // to error out instead of emitting code violating the ABI. 1303 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1304 if (ArgVT.isVector() && !VT.isVector()) 1305 report_fatal_error("Unsupported vector argument or return type"); 1306 } 1307 1308 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1309 for (unsigned i = 0; i < Ins.size(); ++i) 1310 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1311 } 1312 1313 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1314 for (unsigned i = 0; i < Outs.size(); ++i) 1315 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1316 } 1317 1318 // Value is a value that has been passed to us in the location described by VA 1319 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1320 // any loads onto Chain. 1321 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1322 CCValAssign &VA, SDValue Chain, 1323 SDValue Value) { 1324 // If the argument has been promoted from a smaller type, insert an 1325 // assertion to capture this. 1326 if (VA.getLocInfo() == CCValAssign::SExt) 1327 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1328 DAG.getValueType(VA.getValVT())); 1329 else if (VA.getLocInfo() == CCValAssign::ZExt) 1330 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1331 DAG.getValueType(VA.getValVT())); 1332 1333 if (VA.isExtInLoc()) 1334 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1335 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1336 // If this is a short vector argument loaded from the stack, 1337 // extend from i64 to full vector size and then bitcast. 1338 assert(VA.getLocVT() == MVT::i64); 1339 assert(VA.getValVT().isVector()); 1340 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1341 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1342 } else 1343 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1344 return Value; 1345 } 1346 1347 // Value is a value of type VA.getValVT() that we need to copy into 1348 // the location described by VA. Return a copy of Value converted to 1349 // VA.getValVT(). The caller is responsible for handling indirect values. 1350 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1351 CCValAssign &VA, SDValue Value) { 1352 switch (VA.getLocInfo()) { 1353 case CCValAssign::SExt: 1354 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1355 case CCValAssign::ZExt: 1356 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1357 case CCValAssign::AExt: 1358 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1359 case CCValAssign::BCvt: { 1360 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1361 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 || 1362 VA.getValVT() == MVT::f128); 1363 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1364 ? MVT::v2i64 1365 : VA.getLocVT(); 1366 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1367 // For ELF, this is a short vector argument to be stored to the stack, 1368 // bitcast to v2i64 and then extract first element. 1369 if (BitCastToType == MVT::v2i64) 1370 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1371 DAG.getConstant(0, DL, MVT::i32)); 1372 return Value; 1373 } 1374 case CCValAssign::Full: 1375 return Value; 1376 default: 1377 llvm_unreachable("Unhandled getLocInfo()"); 1378 } 1379 } 1380 1381 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1382 SDLoc DL(In); 1383 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1384 DAG.getIntPtrConstant(0, DL)); 1385 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1386 DAG.getIntPtrConstant(1, DL)); 1387 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1388 MVT::Untyped, Hi, Lo); 1389 return SDValue(Pair, 0); 1390 } 1391 1392 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1393 SDLoc DL(In); 1394 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1395 DL, MVT::i64, In); 1396 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1397 DL, MVT::i64, In); 1398 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1399 } 1400 1401 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1402 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1403 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 1404 EVT ValueVT = Val.getValueType(); 1405 assert((ValueVT != MVT::i128 || 1406 ((NumParts == 1 && PartVT == MVT::Untyped) || 1407 (NumParts == 2 && PartVT == MVT::i64))) && 1408 "Unknown handling of i128 value."); 1409 if (ValueVT == MVT::i128 && NumParts == 1) { 1410 // Inline assembly operand. 1411 Parts[0] = lowerI128ToGR128(DAG, Val); 1412 return true; 1413 } 1414 return false; 1415 } 1416 1417 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1418 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1419 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 1420 assert((ValueVT != MVT::i128 || 1421 ((NumParts == 1 && PartVT == MVT::Untyped) || 1422 (NumParts == 2 && PartVT == MVT::i64))) && 1423 "Unknown handling of i128 value."); 1424 if (ValueVT == MVT::i128 && NumParts == 1) 1425 // Inline assembly operand. 1426 return lowerGR128ToI128(DAG, Parts[0]); 1427 return SDValue(); 1428 } 1429 1430 SDValue SystemZTargetLowering::LowerFormalArguments( 1431 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1432 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1433 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1434 MachineFunction &MF = DAG.getMachineFunction(); 1435 MachineFrameInfo &MFI = MF.getFrameInfo(); 1436 MachineRegisterInfo &MRI = MF.getRegInfo(); 1437 SystemZMachineFunctionInfo *FuncInfo = 1438 MF.getInfo<SystemZMachineFunctionInfo>(); 1439 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1440 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1441 1442 // Detect unsupported vector argument types. 1443 if (Subtarget.hasVector()) 1444 VerifyVectorTypes(Ins); 1445 1446 // Assign locations to all of the incoming arguments. 1447 SmallVector<CCValAssign, 16> ArgLocs; 1448 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1449 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1450 1451 unsigned NumFixedGPRs = 0; 1452 unsigned NumFixedFPRs = 0; 1453 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1454 SDValue ArgValue; 1455 CCValAssign &VA = ArgLocs[I]; 1456 EVT LocVT = VA.getLocVT(); 1457 if (VA.isRegLoc()) { 1458 // Arguments passed in registers 1459 const TargetRegisterClass *RC; 1460 switch (LocVT.getSimpleVT().SimpleTy) { 1461 default: 1462 // Integers smaller than i64 should be promoted to i64. 1463 llvm_unreachable("Unexpected argument type"); 1464 case MVT::i32: 1465 NumFixedGPRs += 1; 1466 RC = &SystemZ::GR32BitRegClass; 1467 break; 1468 case MVT::i64: 1469 NumFixedGPRs += 1; 1470 RC = &SystemZ::GR64BitRegClass; 1471 break; 1472 case MVT::f32: 1473 NumFixedFPRs += 1; 1474 RC = &SystemZ::FP32BitRegClass; 1475 break; 1476 case MVT::f64: 1477 NumFixedFPRs += 1; 1478 RC = &SystemZ::FP64BitRegClass; 1479 break; 1480 case MVT::f128: 1481 NumFixedFPRs += 2; 1482 RC = &SystemZ::FP128BitRegClass; 1483 break; 1484 case MVT::v16i8: 1485 case MVT::v8i16: 1486 case MVT::v4i32: 1487 case MVT::v2i64: 1488 case MVT::v4f32: 1489 case MVT::v2f64: 1490 RC = &SystemZ::VR128BitRegClass; 1491 break; 1492 } 1493 1494 Register VReg = MRI.createVirtualRegister(RC); 1495 MRI.addLiveIn(VA.getLocReg(), VReg); 1496 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1497 } else { 1498 assert(VA.isMemLoc() && "Argument not register or memory"); 1499 1500 // Create the frame index object for this incoming parameter. 1501 // FIXME: Pre-include call frame size in the offset, should not 1502 // need to manually add it here. 1503 int64_t ArgSPOffset = VA.getLocMemOffset(); 1504 if (Subtarget.isTargetXPLINK64()) { 1505 auto &XPRegs = 1506 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1507 ArgSPOffset += XPRegs.getCallFrameSize(); 1508 } 1509 int FI = 1510 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1511 1512 // Create the SelectionDAG nodes corresponding to a load 1513 // from this parameter. Unpromoted ints and floats are 1514 // passed as right-justified 8-byte values. 1515 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1516 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1517 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1518 DAG.getIntPtrConstant(4, DL)); 1519 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1520 MachinePointerInfo::getFixedStack(MF, FI)); 1521 } 1522 1523 // Convert the value of the argument register into the value that's 1524 // being passed. 1525 if (VA.getLocInfo() == CCValAssign::Indirect) { 1526 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1527 MachinePointerInfo())); 1528 // If the original argument was split (e.g. i128), we need 1529 // to load all parts of it here (using the same address). 1530 unsigned ArgIndex = Ins[I].OrigArgIndex; 1531 assert (Ins[I].PartOffset == 0); 1532 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1533 CCValAssign &PartVA = ArgLocs[I + 1]; 1534 unsigned PartOffset = Ins[I + 1].PartOffset; 1535 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1536 DAG.getIntPtrConstant(PartOffset, DL)); 1537 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1538 MachinePointerInfo())); 1539 ++I; 1540 } 1541 } else 1542 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1543 } 1544 1545 // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. 1546 if (IsVarArg && Subtarget.isTargetELF()) { 1547 // Save the number of non-varargs registers for later use by va_start, etc. 1548 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1549 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1550 1551 // Likewise the address (in the form of a frame index) of where the 1552 // first stack vararg would be. The 1-byte size here is arbitrary. 1553 int64_t StackSize = CCInfo.getNextStackOffset(); 1554 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1555 1556 // ...and a similar frame index for the caller-allocated save area 1557 // that will be used to store the incoming registers. 1558 int64_t RegSaveOffset = 1559 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1560 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1561 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1562 1563 // Store the FPR varargs in the reserved frame slots. (We store the 1564 // GPRs as part of the prologue.) 1565 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1566 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1567 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1568 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1569 int FI = 1570 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1571 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1572 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1573 &SystemZ::FP64BitRegClass); 1574 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1575 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1576 MachinePointerInfo::getFixedStack(MF, FI)); 1577 } 1578 // Join the stores, which are independent of one another. 1579 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1580 makeArrayRef(&MemOps[NumFixedFPRs], 1581 SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 1582 } 1583 } 1584 1585 // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special 1586 // register (R5) 1587 return Chain; 1588 } 1589 1590 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1591 SmallVectorImpl<CCValAssign> &ArgLocs, 1592 SmallVectorImpl<ISD::OutputArg> &Outs) { 1593 // Punt if there are any indirect or stack arguments, or if the call 1594 // needs the callee-saved argument register R6, or if the call uses 1595 // the callee-saved register arguments SwiftSelf and SwiftError. 1596 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1597 CCValAssign &VA = ArgLocs[I]; 1598 if (VA.getLocInfo() == CCValAssign::Indirect) 1599 return false; 1600 if (!VA.isRegLoc()) 1601 return false; 1602 Register Reg = VA.getLocReg(); 1603 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1604 return false; 1605 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1606 return false; 1607 } 1608 return true; 1609 } 1610 1611 SDValue 1612 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1613 SmallVectorImpl<SDValue> &InVals) const { 1614 SelectionDAG &DAG = CLI.DAG; 1615 SDLoc &DL = CLI.DL; 1616 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1617 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1618 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1619 SDValue Chain = CLI.Chain; 1620 SDValue Callee = CLI.Callee; 1621 bool &IsTailCall = CLI.IsTailCall; 1622 CallingConv::ID CallConv = CLI.CallConv; 1623 bool IsVarArg = CLI.IsVarArg; 1624 MachineFunction &MF = DAG.getMachineFunction(); 1625 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1626 LLVMContext &Ctx = *DAG.getContext(); 1627 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1628 1629 // FIXME: z/OS support to be added in later. 1630 if (Subtarget.isTargetXPLINK64()) 1631 IsTailCall = false; 1632 1633 // Detect unsupported vector argument and return types. 1634 if (Subtarget.hasVector()) { 1635 VerifyVectorTypes(Outs); 1636 VerifyVectorTypes(Ins); 1637 } 1638 1639 // Analyze the operands of the call, assigning locations to each operand. 1640 SmallVector<CCValAssign, 16> ArgLocs; 1641 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1642 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1643 1644 // We don't support GuaranteedTailCallOpt, only automatically-detected 1645 // sibling calls. 1646 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1647 IsTailCall = false; 1648 1649 // Get a count of how many bytes are to be pushed on the stack. 1650 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1651 1652 if (Subtarget.isTargetXPLINK64()) 1653 // Although the XPLINK specifications for AMODE64 state that minimum size 1654 // of the param area is minimum 32 bytes and no rounding is otherwise 1655 // specified, we round this area in 64 bytes increments to be compatible 1656 // with existing compilers. 1657 NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); 1658 1659 // Mark the start of the call. 1660 if (!IsTailCall) 1661 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1662 1663 // Copy argument values to their designated locations. 1664 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1665 SmallVector<SDValue, 8> MemOpChains; 1666 SDValue StackPtr; 1667 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1668 CCValAssign &VA = ArgLocs[I]; 1669 SDValue ArgValue = OutVals[I]; 1670 1671 if (VA.getLocInfo() == CCValAssign::Indirect) { 1672 // Store the argument in a stack slot and pass its address. 1673 unsigned ArgIndex = Outs[I].OrigArgIndex; 1674 EVT SlotVT; 1675 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1676 // Allocate the full stack space for a promoted (and split) argument. 1677 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1678 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1679 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1680 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1681 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1682 } else { 1683 SlotVT = Outs[I].ArgVT; 1684 } 1685 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1686 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1687 MemOpChains.push_back( 1688 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1689 MachinePointerInfo::getFixedStack(MF, FI))); 1690 // If the original argument was split (e.g. i128), we need 1691 // to store all parts of it here (and pass just one address). 1692 assert (Outs[I].PartOffset == 0); 1693 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1694 SDValue PartValue = OutVals[I + 1]; 1695 unsigned PartOffset = Outs[I + 1].PartOffset; 1696 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1697 DAG.getIntPtrConstant(PartOffset, DL)); 1698 MemOpChains.push_back( 1699 DAG.getStore(Chain, DL, PartValue, Address, 1700 MachinePointerInfo::getFixedStack(MF, FI))); 1701 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1702 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1703 ++I; 1704 } 1705 ArgValue = SpillSlot; 1706 } else 1707 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1708 1709 if (VA.isRegLoc()) { 1710 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1711 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1712 // and low values. 1713 if (VA.getLocVT() == MVT::i128) 1714 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1715 // Queue up the argument copies and emit them at the end. 1716 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1717 } else { 1718 assert(VA.isMemLoc() && "Argument not register or memory"); 1719 1720 // Work out the address of the stack slot. Unpromoted ints and 1721 // floats are passed as right-justified 8-byte values. 1722 if (!StackPtr.getNode()) 1723 StackPtr = DAG.getCopyFromReg(Chain, DL, 1724 Regs->getStackPointerRegister(), PtrVT); 1725 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1726 VA.getLocMemOffset(); 1727 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1728 Offset += 4; 1729 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1730 DAG.getIntPtrConstant(Offset, DL)); 1731 1732 // Emit the store. 1733 MemOpChains.push_back( 1734 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1735 1736 // Although long doubles or vectors are passed through the stack when 1737 // they are vararg (non-fixed arguments), if a long double or vector 1738 // occupies the third and fourth slot of the argument list GPR3 should 1739 // still shadow the third slot of the argument list. 1740 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1741 SDValue ShadowArgValue = 1742 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1743 DAG.getIntPtrConstant(1, DL)); 1744 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1745 } 1746 } 1747 } 1748 1749 // Join the stores, which are independent of one another. 1750 if (!MemOpChains.empty()) 1751 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1752 1753 // Accept direct calls by converting symbolic call addresses to the 1754 // associated Target* opcodes. Force %r1 to be used for indirect 1755 // tail calls. 1756 SDValue Glue; 1757 // FIXME: Add support for XPLINK using the ADA register. 1758 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1759 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1760 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1761 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1762 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1763 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1764 } else if (IsTailCall) { 1765 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1766 Glue = Chain.getValue(1); 1767 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1768 } 1769 1770 // Build a sequence of copy-to-reg nodes, chained and glued together. 1771 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1772 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1773 RegsToPass[I].second, Glue); 1774 Glue = Chain.getValue(1); 1775 } 1776 1777 // The first call operand is the chain and the second is the target address. 1778 SmallVector<SDValue, 8> Ops; 1779 Ops.push_back(Chain); 1780 Ops.push_back(Callee); 1781 1782 // Add argument registers to the end of the list so that they are 1783 // known live into the call. 1784 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1785 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1786 RegsToPass[I].second.getValueType())); 1787 1788 // Add a register mask operand representing the call-preserved registers. 1789 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1790 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1791 assert(Mask && "Missing call preserved mask for calling convention"); 1792 Ops.push_back(DAG.getRegisterMask(Mask)); 1793 1794 // Glue the call to the argument copies, if any. 1795 if (Glue.getNode()) 1796 Ops.push_back(Glue); 1797 1798 // Emit the call. 1799 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1800 if (IsTailCall) 1801 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1802 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1803 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1804 Glue = Chain.getValue(1); 1805 1806 // Mark the end of the call, which is glued to the call itself. 1807 Chain = DAG.getCALLSEQ_END(Chain, 1808 DAG.getConstant(NumBytes, DL, PtrVT, true), 1809 DAG.getConstant(0, DL, PtrVT, true), 1810 Glue, DL); 1811 Glue = Chain.getValue(1); 1812 1813 // Assign locations to each value returned by this call. 1814 SmallVector<CCValAssign, 16> RetLocs; 1815 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1816 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1817 1818 // Copy all of the result registers out of their specified physreg. 1819 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1820 CCValAssign &VA = RetLocs[I]; 1821 1822 // Copy the value out, gluing the copy to the end of the call sequence. 1823 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1824 VA.getLocVT(), Glue); 1825 Chain = RetValue.getValue(1); 1826 Glue = RetValue.getValue(2); 1827 1828 // Convert the value of the return register into the value that's 1829 // being returned. 1830 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1831 } 1832 1833 return Chain; 1834 } 1835 1836 // Generate a call taking the given operands as arguments and returning a 1837 // result of type RetVT. 1838 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 1839 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 1840 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 1841 bool DoesNotReturn, bool IsReturnValueUsed) const { 1842 TargetLowering::ArgListTy Args; 1843 Args.reserve(Ops.size()); 1844 1845 TargetLowering::ArgListEntry Entry; 1846 for (SDValue Op : Ops) { 1847 Entry.Node = Op; 1848 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1849 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1850 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1851 Args.push_back(Entry); 1852 } 1853 1854 SDValue Callee = 1855 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 1856 1857 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1858 TargetLowering::CallLoweringInfo CLI(DAG); 1859 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 1860 CLI.setDebugLoc(DL) 1861 .setChain(Chain) 1862 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 1863 .setNoReturn(DoesNotReturn) 1864 .setDiscardResult(!IsReturnValueUsed) 1865 .setSExtResult(SignExtend) 1866 .setZExtResult(!SignExtend); 1867 return LowerCallTo(CLI); 1868 } 1869 1870 bool SystemZTargetLowering:: 1871 CanLowerReturn(CallingConv::ID CallConv, 1872 MachineFunction &MF, bool isVarArg, 1873 const SmallVectorImpl<ISD::OutputArg> &Outs, 1874 LLVMContext &Context) const { 1875 // Detect unsupported vector return types. 1876 if (Subtarget.hasVector()) 1877 VerifyVectorTypes(Outs); 1878 1879 // Special case that we cannot easily detect in RetCC_SystemZ since 1880 // i128 is not a legal type. 1881 for (auto &Out : Outs) 1882 if (Out.ArgVT == MVT::i128) 1883 return false; 1884 1885 SmallVector<CCValAssign, 16> RetLocs; 1886 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1887 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1888 } 1889 1890 SDValue 1891 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1892 bool IsVarArg, 1893 const SmallVectorImpl<ISD::OutputArg> &Outs, 1894 const SmallVectorImpl<SDValue> &OutVals, 1895 const SDLoc &DL, SelectionDAG &DAG) const { 1896 MachineFunction &MF = DAG.getMachineFunction(); 1897 1898 // Detect unsupported vector return types. 1899 if (Subtarget.hasVector()) 1900 VerifyVectorTypes(Outs); 1901 1902 // Assign locations to each returned value. 1903 SmallVector<CCValAssign, 16> RetLocs; 1904 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1905 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1906 1907 // Quick exit for void returns 1908 if (RetLocs.empty()) 1909 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1910 1911 if (CallConv == CallingConv::GHC) 1912 report_fatal_error("GHC functions return void only"); 1913 1914 // Copy the result values into the output registers. 1915 SDValue Glue; 1916 SmallVector<SDValue, 4> RetOps; 1917 RetOps.push_back(Chain); 1918 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1919 CCValAssign &VA = RetLocs[I]; 1920 SDValue RetValue = OutVals[I]; 1921 1922 // Make the return register live on exit. 1923 assert(VA.isRegLoc() && "Can only return in registers!"); 1924 1925 // Promote the value as required. 1926 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1927 1928 // Chain and glue the copies together. 1929 Register Reg = VA.getLocReg(); 1930 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1931 Glue = Chain.getValue(1); 1932 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1933 } 1934 1935 // Update chain and glue. 1936 RetOps[0] = Chain; 1937 if (Glue.getNode()) 1938 RetOps.push_back(Glue); 1939 1940 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1941 } 1942 1943 // Return true if Op is an intrinsic node with chain that returns the CC value 1944 // as its only (other) argument. Provide the associated SystemZISD opcode and 1945 // the mask of valid CC values if so. 1946 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1947 unsigned &CCValid) { 1948 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1949 switch (Id) { 1950 case Intrinsic::s390_tbegin: 1951 Opcode = SystemZISD::TBEGIN; 1952 CCValid = SystemZ::CCMASK_TBEGIN; 1953 return true; 1954 1955 case Intrinsic::s390_tbegin_nofloat: 1956 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1957 CCValid = SystemZ::CCMASK_TBEGIN; 1958 return true; 1959 1960 case Intrinsic::s390_tend: 1961 Opcode = SystemZISD::TEND; 1962 CCValid = SystemZ::CCMASK_TEND; 1963 return true; 1964 1965 default: 1966 return false; 1967 } 1968 } 1969 1970 // Return true if Op is an intrinsic node without chain that returns the 1971 // CC value as its final argument. Provide the associated SystemZISD 1972 // opcode and the mask of valid CC values if so. 1973 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1974 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1975 switch (Id) { 1976 case Intrinsic::s390_vpkshs: 1977 case Intrinsic::s390_vpksfs: 1978 case Intrinsic::s390_vpksgs: 1979 Opcode = SystemZISD::PACKS_CC; 1980 CCValid = SystemZ::CCMASK_VCMP; 1981 return true; 1982 1983 case Intrinsic::s390_vpklshs: 1984 case Intrinsic::s390_vpklsfs: 1985 case Intrinsic::s390_vpklsgs: 1986 Opcode = SystemZISD::PACKLS_CC; 1987 CCValid = SystemZ::CCMASK_VCMP; 1988 return true; 1989 1990 case Intrinsic::s390_vceqbs: 1991 case Intrinsic::s390_vceqhs: 1992 case Intrinsic::s390_vceqfs: 1993 case Intrinsic::s390_vceqgs: 1994 Opcode = SystemZISD::VICMPES; 1995 CCValid = SystemZ::CCMASK_VCMP; 1996 return true; 1997 1998 case Intrinsic::s390_vchbs: 1999 case Intrinsic::s390_vchhs: 2000 case Intrinsic::s390_vchfs: 2001 case Intrinsic::s390_vchgs: 2002 Opcode = SystemZISD::VICMPHS; 2003 CCValid = SystemZ::CCMASK_VCMP; 2004 return true; 2005 2006 case Intrinsic::s390_vchlbs: 2007 case Intrinsic::s390_vchlhs: 2008 case Intrinsic::s390_vchlfs: 2009 case Intrinsic::s390_vchlgs: 2010 Opcode = SystemZISD::VICMPHLS; 2011 CCValid = SystemZ::CCMASK_VCMP; 2012 return true; 2013 2014 case Intrinsic::s390_vtm: 2015 Opcode = SystemZISD::VTM; 2016 CCValid = SystemZ::CCMASK_VCMP; 2017 return true; 2018 2019 case Intrinsic::s390_vfaebs: 2020 case Intrinsic::s390_vfaehs: 2021 case Intrinsic::s390_vfaefs: 2022 Opcode = SystemZISD::VFAE_CC; 2023 CCValid = SystemZ::CCMASK_ANY; 2024 return true; 2025 2026 case Intrinsic::s390_vfaezbs: 2027 case Intrinsic::s390_vfaezhs: 2028 case Intrinsic::s390_vfaezfs: 2029 Opcode = SystemZISD::VFAEZ_CC; 2030 CCValid = SystemZ::CCMASK_ANY; 2031 return true; 2032 2033 case Intrinsic::s390_vfeebs: 2034 case Intrinsic::s390_vfeehs: 2035 case Intrinsic::s390_vfeefs: 2036 Opcode = SystemZISD::VFEE_CC; 2037 CCValid = SystemZ::CCMASK_ANY; 2038 return true; 2039 2040 case Intrinsic::s390_vfeezbs: 2041 case Intrinsic::s390_vfeezhs: 2042 case Intrinsic::s390_vfeezfs: 2043 Opcode = SystemZISD::VFEEZ_CC; 2044 CCValid = SystemZ::CCMASK_ANY; 2045 return true; 2046 2047 case Intrinsic::s390_vfenebs: 2048 case Intrinsic::s390_vfenehs: 2049 case Intrinsic::s390_vfenefs: 2050 Opcode = SystemZISD::VFENE_CC; 2051 CCValid = SystemZ::CCMASK_ANY; 2052 return true; 2053 2054 case Intrinsic::s390_vfenezbs: 2055 case Intrinsic::s390_vfenezhs: 2056 case Intrinsic::s390_vfenezfs: 2057 Opcode = SystemZISD::VFENEZ_CC; 2058 CCValid = SystemZ::CCMASK_ANY; 2059 return true; 2060 2061 case Intrinsic::s390_vistrbs: 2062 case Intrinsic::s390_vistrhs: 2063 case Intrinsic::s390_vistrfs: 2064 Opcode = SystemZISD::VISTR_CC; 2065 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2066 return true; 2067 2068 case Intrinsic::s390_vstrcbs: 2069 case Intrinsic::s390_vstrchs: 2070 case Intrinsic::s390_vstrcfs: 2071 Opcode = SystemZISD::VSTRC_CC; 2072 CCValid = SystemZ::CCMASK_ANY; 2073 return true; 2074 2075 case Intrinsic::s390_vstrczbs: 2076 case Intrinsic::s390_vstrczhs: 2077 case Intrinsic::s390_vstrczfs: 2078 Opcode = SystemZISD::VSTRCZ_CC; 2079 CCValid = SystemZ::CCMASK_ANY; 2080 return true; 2081 2082 case Intrinsic::s390_vstrsb: 2083 case Intrinsic::s390_vstrsh: 2084 case Intrinsic::s390_vstrsf: 2085 Opcode = SystemZISD::VSTRS_CC; 2086 CCValid = SystemZ::CCMASK_ANY; 2087 return true; 2088 2089 case Intrinsic::s390_vstrszb: 2090 case Intrinsic::s390_vstrszh: 2091 case Intrinsic::s390_vstrszf: 2092 Opcode = SystemZISD::VSTRSZ_CC; 2093 CCValid = SystemZ::CCMASK_ANY; 2094 return true; 2095 2096 case Intrinsic::s390_vfcedbs: 2097 case Intrinsic::s390_vfcesbs: 2098 Opcode = SystemZISD::VFCMPES; 2099 CCValid = SystemZ::CCMASK_VCMP; 2100 return true; 2101 2102 case Intrinsic::s390_vfchdbs: 2103 case Intrinsic::s390_vfchsbs: 2104 Opcode = SystemZISD::VFCMPHS; 2105 CCValid = SystemZ::CCMASK_VCMP; 2106 return true; 2107 2108 case Intrinsic::s390_vfchedbs: 2109 case Intrinsic::s390_vfchesbs: 2110 Opcode = SystemZISD::VFCMPHES; 2111 CCValid = SystemZ::CCMASK_VCMP; 2112 return true; 2113 2114 case Intrinsic::s390_vftcidb: 2115 case Intrinsic::s390_vftcisb: 2116 Opcode = SystemZISD::VFTCI; 2117 CCValid = SystemZ::CCMASK_VCMP; 2118 return true; 2119 2120 case Intrinsic::s390_tdc: 2121 Opcode = SystemZISD::TDC; 2122 CCValid = SystemZ::CCMASK_TDC; 2123 return true; 2124 2125 default: 2126 return false; 2127 } 2128 } 2129 2130 // Emit an intrinsic with chain and an explicit CC register result. 2131 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2132 unsigned Opcode) { 2133 // Copy all operands except the intrinsic ID. 2134 unsigned NumOps = Op.getNumOperands(); 2135 SmallVector<SDValue, 6> Ops; 2136 Ops.reserve(NumOps - 1); 2137 Ops.push_back(Op.getOperand(0)); 2138 for (unsigned I = 2; I < NumOps; ++I) 2139 Ops.push_back(Op.getOperand(I)); 2140 2141 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2142 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2143 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2144 SDValue OldChain = SDValue(Op.getNode(), 1); 2145 SDValue NewChain = SDValue(Intr.getNode(), 1); 2146 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2147 return Intr.getNode(); 2148 } 2149 2150 // Emit an intrinsic with an explicit CC register result. 2151 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2152 unsigned Opcode) { 2153 // Copy all operands except the intrinsic ID. 2154 unsigned NumOps = Op.getNumOperands(); 2155 SmallVector<SDValue, 6> Ops; 2156 Ops.reserve(NumOps - 1); 2157 for (unsigned I = 1; I < NumOps; ++I) 2158 Ops.push_back(Op.getOperand(I)); 2159 2160 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2161 return Intr.getNode(); 2162 } 2163 2164 // CC is a comparison that will be implemented using an integer or 2165 // floating-point comparison. Return the condition code mask for 2166 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2167 // unsigned comparisons and clear for signed ones. In the floating-point 2168 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2169 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2170 #define CONV(X) \ 2171 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2172 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2173 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2174 2175 switch (CC) { 2176 default: 2177 llvm_unreachable("Invalid integer condition!"); 2178 2179 CONV(EQ); 2180 CONV(NE); 2181 CONV(GT); 2182 CONV(GE); 2183 CONV(LT); 2184 CONV(LE); 2185 2186 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2187 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2188 } 2189 #undef CONV 2190 } 2191 2192 // If C can be converted to a comparison against zero, adjust the operands 2193 // as necessary. 2194 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2195 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2196 return; 2197 2198 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2199 if (!ConstOp1) 2200 return; 2201 2202 int64_t Value = ConstOp1->getSExtValue(); 2203 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2204 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2205 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2206 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2207 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2208 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2209 } 2210 } 2211 2212 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2213 // adjust the operands as necessary. 2214 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2215 Comparison &C) { 2216 // For us to make any changes, it must a comparison between a single-use 2217 // load and a constant. 2218 if (!C.Op0.hasOneUse() || 2219 C.Op0.getOpcode() != ISD::LOAD || 2220 C.Op1.getOpcode() != ISD::Constant) 2221 return; 2222 2223 // We must have an 8- or 16-bit load. 2224 auto *Load = cast<LoadSDNode>(C.Op0); 2225 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2226 if ((NumBits != 8 && NumBits != 16) || 2227 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2228 return; 2229 2230 // The load must be an extending one and the constant must be within the 2231 // range of the unextended value. 2232 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2233 uint64_t Value = ConstOp1->getZExtValue(); 2234 uint64_t Mask = (1 << NumBits) - 1; 2235 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2236 // Make sure that ConstOp1 is in range of C.Op0. 2237 int64_t SignedValue = ConstOp1->getSExtValue(); 2238 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2239 return; 2240 if (C.ICmpType != SystemZICMP::SignedOnly) { 2241 // Unsigned comparison between two sign-extended values is equivalent 2242 // to unsigned comparison between two zero-extended values. 2243 Value &= Mask; 2244 } else if (NumBits == 8) { 2245 // Try to treat the comparison as unsigned, so that we can use CLI. 2246 // Adjust CCMask and Value as necessary. 2247 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2248 // Test whether the high bit of the byte is set. 2249 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2250 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2251 // Test whether the high bit of the byte is clear. 2252 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2253 else 2254 // No instruction exists for this combination. 2255 return; 2256 C.ICmpType = SystemZICMP::UnsignedOnly; 2257 } 2258 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2259 if (Value > Mask) 2260 return; 2261 // If the constant is in range, we can use any comparison. 2262 C.ICmpType = SystemZICMP::Any; 2263 } else 2264 return; 2265 2266 // Make sure that the first operand is an i32 of the right extension type. 2267 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2268 ISD::SEXTLOAD : 2269 ISD::ZEXTLOAD); 2270 if (C.Op0.getValueType() != MVT::i32 || 2271 Load->getExtensionType() != ExtType) { 2272 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2273 Load->getBasePtr(), Load->getPointerInfo(), 2274 Load->getMemoryVT(), Load->getAlignment(), 2275 Load->getMemOperand()->getFlags()); 2276 // Update the chain uses. 2277 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2278 } 2279 2280 // Make sure that the second operand is an i32 with the right value. 2281 if (C.Op1.getValueType() != MVT::i32 || 2282 Value != ConstOp1->getZExtValue()) 2283 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2284 } 2285 2286 // Return true if Op is either an unextended load, or a load suitable 2287 // for integer register-memory comparisons of type ICmpType. 2288 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2289 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2290 if (Load) { 2291 // There are no instructions to compare a register with a memory byte. 2292 if (Load->getMemoryVT() == MVT::i8) 2293 return false; 2294 // Otherwise decide on extension type. 2295 switch (Load->getExtensionType()) { 2296 case ISD::NON_EXTLOAD: 2297 return true; 2298 case ISD::SEXTLOAD: 2299 return ICmpType != SystemZICMP::UnsignedOnly; 2300 case ISD::ZEXTLOAD: 2301 return ICmpType != SystemZICMP::SignedOnly; 2302 default: 2303 break; 2304 } 2305 } 2306 return false; 2307 } 2308 2309 // Return true if it is better to swap the operands of C. 2310 static bool shouldSwapCmpOperands(const Comparison &C) { 2311 // Leave f128 comparisons alone, since they have no memory forms. 2312 if (C.Op0.getValueType() == MVT::f128) 2313 return false; 2314 2315 // Always keep a floating-point constant second, since comparisons with 2316 // zero can use LOAD TEST and comparisons with other constants make a 2317 // natural memory operand. 2318 if (isa<ConstantFPSDNode>(C.Op1)) 2319 return false; 2320 2321 // Never swap comparisons with zero since there are many ways to optimize 2322 // those later. 2323 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2324 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2325 return false; 2326 2327 // Also keep natural memory operands second if the loaded value is 2328 // only used here. Several comparisons have memory forms. 2329 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2330 return false; 2331 2332 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2333 // In that case we generally prefer the memory to be second. 2334 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2335 // The only exceptions are when the second operand is a constant and 2336 // we can use things like CHHSI. 2337 if (!ConstOp1) 2338 return true; 2339 // The unsigned memory-immediate instructions can handle 16-bit 2340 // unsigned integers. 2341 if (C.ICmpType != SystemZICMP::SignedOnly && 2342 isUInt<16>(ConstOp1->getZExtValue())) 2343 return false; 2344 // The signed memory-immediate instructions can handle 16-bit 2345 // signed integers. 2346 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2347 isInt<16>(ConstOp1->getSExtValue())) 2348 return false; 2349 return true; 2350 } 2351 2352 // Try to promote the use of CGFR and CLGFR. 2353 unsigned Opcode0 = C.Op0.getOpcode(); 2354 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2355 return true; 2356 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2357 return true; 2358 if (C.ICmpType != SystemZICMP::SignedOnly && 2359 Opcode0 == ISD::AND && 2360 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2361 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2362 return true; 2363 2364 return false; 2365 } 2366 2367 // Check whether C tests for equality between X and Y and whether X - Y 2368 // or Y - X is also computed. In that case it's better to compare the 2369 // result of the subtraction against zero. 2370 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2371 Comparison &C) { 2372 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2373 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2374 for (SDNode *N : C.Op0->uses()) { 2375 if (N->getOpcode() == ISD::SUB && 2376 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2377 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2378 C.Op0 = SDValue(N, 0); 2379 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2380 return; 2381 } 2382 } 2383 } 2384 } 2385 2386 // Check whether C compares a floating-point value with zero and if that 2387 // floating-point value is also negated. In this case we can use the 2388 // negation to set CC, so avoiding separate LOAD AND TEST and 2389 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2390 static void adjustForFNeg(Comparison &C) { 2391 // This optimization is invalid for strict comparisons, since FNEG 2392 // does not raise any exceptions. 2393 if (C.Chain) 2394 return; 2395 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2396 if (C1 && C1->isZero()) { 2397 for (SDNode *N : C.Op0->uses()) { 2398 if (N->getOpcode() == ISD::FNEG) { 2399 C.Op0 = SDValue(N, 0); 2400 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2401 return; 2402 } 2403 } 2404 } 2405 } 2406 2407 // Check whether C compares (shl X, 32) with 0 and whether X is 2408 // also sign-extended. In that case it is better to test the result 2409 // of the sign extension using LTGFR. 2410 // 2411 // This case is important because InstCombine transforms a comparison 2412 // with (sext (trunc X)) into a comparison with (shl X, 32). 2413 static void adjustForLTGFR(Comparison &C) { 2414 // Check for a comparison between (shl X, 32) and 0. 2415 if (C.Op0.getOpcode() == ISD::SHL && 2416 C.Op0.getValueType() == MVT::i64 && 2417 C.Op1.getOpcode() == ISD::Constant && 2418 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2419 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2420 if (C1 && C1->getZExtValue() == 32) { 2421 SDValue ShlOp0 = C.Op0.getOperand(0); 2422 // See whether X has any SIGN_EXTEND_INREG uses. 2423 for (SDNode *N : ShlOp0->uses()) { 2424 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2425 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2426 C.Op0 = SDValue(N, 0); 2427 return; 2428 } 2429 } 2430 } 2431 } 2432 } 2433 2434 // If C compares the truncation of an extending load, try to compare 2435 // the untruncated value instead. This exposes more opportunities to 2436 // reuse CC. 2437 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2438 Comparison &C) { 2439 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2440 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2441 C.Op1.getOpcode() == ISD::Constant && 2442 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2443 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2444 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2445 C.Op0.getValueSizeInBits().getFixedSize()) { 2446 unsigned Type = L->getExtensionType(); 2447 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2448 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2449 C.Op0 = C.Op0.getOperand(0); 2450 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2451 } 2452 } 2453 } 2454 } 2455 2456 // Return true if shift operation N has an in-range constant shift value. 2457 // Store it in ShiftVal if so. 2458 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2459 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2460 if (!Shift) 2461 return false; 2462 2463 uint64_t Amount = Shift->getZExtValue(); 2464 if (Amount >= N.getValueSizeInBits()) 2465 return false; 2466 2467 ShiftVal = Amount; 2468 return true; 2469 } 2470 2471 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2472 // instruction and whether the CC value is descriptive enough to handle 2473 // a comparison of type Opcode between the AND result and CmpVal. 2474 // CCMask says which comparison result is being tested and BitSize is 2475 // the number of bits in the operands. If TEST UNDER MASK can be used, 2476 // return the corresponding CC mask, otherwise return 0. 2477 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2478 uint64_t Mask, uint64_t CmpVal, 2479 unsigned ICmpType) { 2480 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2481 2482 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2483 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2484 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2485 return 0; 2486 2487 // Work out the masks for the lowest and highest bits. 2488 unsigned HighShift = 63 - countLeadingZeros(Mask); 2489 uint64_t High = uint64_t(1) << HighShift; 2490 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2491 2492 // Signed ordered comparisons are effectively unsigned if the sign 2493 // bit is dropped. 2494 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2495 2496 // Check for equality comparisons with 0, or the equivalent. 2497 if (CmpVal == 0) { 2498 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2499 return SystemZ::CCMASK_TM_ALL_0; 2500 if (CCMask == SystemZ::CCMASK_CMP_NE) 2501 return SystemZ::CCMASK_TM_SOME_1; 2502 } 2503 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2504 if (CCMask == SystemZ::CCMASK_CMP_LT) 2505 return SystemZ::CCMASK_TM_ALL_0; 2506 if (CCMask == SystemZ::CCMASK_CMP_GE) 2507 return SystemZ::CCMASK_TM_SOME_1; 2508 } 2509 if (EffectivelyUnsigned && CmpVal < Low) { 2510 if (CCMask == SystemZ::CCMASK_CMP_LE) 2511 return SystemZ::CCMASK_TM_ALL_0; 2512 if (CCMask == SystemZ::CCMASK_CMP_GT) 2513 return SystemZ::CCMASK_TM_SOME_1; 2514 } 2515 2516 // Check for equality comparisons with the mask, or the equivalent. 2517 if (CmpVal == Mask) { 2518 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2519 return SystemZ::CCMASK_TM_ALL_1; 2520 if (CCMask == SystemZ::CCMASK_CMP_NE) 2521 return SystemZ::CCMASK_TM_SOME_0; 2522 } 2523 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2524 if (CCMask == SystemZ::CCMASK_CMP_GT) 2525 return SystemZ::CCMASK_TM_ALL_1; 2526 if (CCMask == SystemZ::CCMASK_CMP_LE) 2527 return SystemZ::CCMASK_TM_SOME_0; 2528 } 2529 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2530 if (CCMask == SystemZ::CCMASK_CMP_GE) 2531 return SystemZ::CCMASK_TM_ALL_1; 2532 if (CCMask == SystemZ::CCMASK_CMP_LT) 2533 return SystemZ::CCMASK_TM_SOME_0; 2534 } 2535 2536 // Check for ordered comparisons with the top bit. 2537 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2538 if (CCMask == SystemZ::CCMASK_CMP_LE) 2539 return SystemZ::CCMASK_TM_MSB_0; 2540 if (CCMask == SystemZ::CCMASK_CMP_GT) 2541 return SystemZ::CCMASK_TM_MSB_1; 2542 } 2543 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2544 if (CCMask == SystemZ::CCMASK_CMP_LT) 2545 return SystemZ::CCMASK_TM_MSB_0; 2546 if (CCMask == SystemZ::CCMASK_CMP_GE) 2547 return SystemZ::CCMASK_TM_MSB_1; 2548 } 2549 2550 // If there are just two bits, we can do equality checks for Low and High 2551 // as well. 2552 if (Mask == Low + High) { 2553 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2554 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2555 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2556 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2557 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2558 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2559 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2560 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2561 } 2562 2563 // Looks like we've exhausted our options. 2564 return 0; 2565 } 2566 2567 // See whether C can be implemented as a TEST UNDER MASK instruction. 2568 // Update the arguments with the TM version if so. 2569 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2570 Comparison &C) { 2571 // Check that we have a comparison with a constant. 2572 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2573 if (!ConstOp1) 2574 return; 2575 uint64_t CmpVal = ConstOp1->getZExtValue(); 2576 2577 // Check whether the nonconstant input is an AND with a constant mask. 2578 Comparison NewC(C); 2579 uint64_t MaskVal; 2580 ConstantSDNode *Mask = nullptr; 2581 if (C.Op0.getOpcode() == ISD::AND) { 2582 NewC.Op0 = C.Op0.getOperand(0); 2583 NewC.Op1 = C.Op0.getOperand(1); 2584 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2585 if (!Mask) 2586 return; 2587 MaskVal = Mask->getZExtValue(); 2588 } else { 2589 // There is no instruction to compare with a 64-bit immediate 2590 // so use TMHH instead if possible. We need an unsigned ordered 2591 // comparison with an i64 immediate. 2592 if (NewC.Op0.getValueType() != MVT::i64 || 2593 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2594 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2595 NewC.ICmpType == SystemZICMP::SignedOnly) 2596 return; 2597 // Convert LE and GT comparisons into LT and GE. 2598 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2599 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2600 if (CmpVal == uint64_t(-1)) 2601 return; 2602 CmpVal += 1; 2603 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2604 } 2605 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2606 // be masked off without changing the result. 2607 MaskVal = -(CmpVal & -CmpVal); 2608 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2609 } 2610 if (!MaskVal) 2611 return; 2612 2613 // Check whether the combination of mask, comparison value and comparison 2614 // type are suitable. 2615 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2616 unsigned NewCCMask, ShiftVal; 2617 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2618 NewC.Op0.getOpcode() == ISD::SHL && 2619 isSimpleShift(NewC.Op0, ShiftVal) && 2620 (MaskVal >> ShiftVal != 0) && 2621 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2622 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2623 MaskVal >> ShiftVal, 2624 CmpVal >> ShiftVal, 2625 SystemZICMP::Any))) { 2626 NewC.Op0 = NewC.Op0.getOperand(0); 2627 MaskVal >>= ShiftVal; 2628 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2629 NewC.Op0.getOpcode() == ISD::SRL && 2630 isSimpleShift(NewC.Op0, ShiftVal) && 2631 (MaskVal << ShiftVal != 0) && 2632 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2633 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2634 MaskVal << ShiftVal, 2635 CmpVal << ShiftVal, 2636 SystemZICMP::UnsignedOnly))) { 2637 NewC.Op0 = NewC.Op0.getOperand(0); 2638 MaskVal <<= ShiftVal; 2639 } else { 2640 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2641 NewC.ICmpType); 2642 if (!NewCCMask) 2643 return; 2644 } 2645 2646 // Go ahead and make the change. 2647 C.Opcode = SystemZISD::TM; 2648 C.Op0 = NewC.Op0; 2649 if (Mask && Mask->getZExtValue() == MaskVal) 2650 C.Op1 = SDValue(Mask, 0); 2651 else 2652 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2653 C.CCValid = SystemZ::CCMASK_TM; 2654 C.CCMask = NewCCMask; 2655 } 2656 2657 // See whether the comparison argument contains a redundant AND 2658 // and remove it if so. This sometimes happens due to the generic 2659 // BRCOND expansion. 2660 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2661 Comparison &C) { 2662 if (C.Op0.getOpcode() != ISD::AND) 2663 return; 2664 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2665 if (!Mask) 2666 return; 2667 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2668 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2669 return; 2670 2671 C.Op0 = C.Op0.getOperand(0); 2672 } 2673 2674 // Return a Comparison that tests the condition-code result of intrinsic 2675 // node Call against constant integer CC using comparison code Cond. 2676 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2677 // and CCValid is the set of possible condition-code results. 2678 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2679 SDValue Call, unsigned CCValid, uint64_t CC, 2680 ISD::CondCode Cond) { 2681 Comparison C(Call, SDValue(), SDValue()); 2682 C.Opcode = Opcode; 2683 C.CCValid = CCValid; 2684 if (Cond == ISD::SETEQ) 2685 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2686 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2687 else if (Cond == ISD::SETNE) 2688 // ...and the inverse of that. 2689 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2690 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2691 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2692 // always true for CC>3. 2693 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2694 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2695 // ...and the inverse of that. 2696 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2697 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2698 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2699 // always true for CC>3. 2700 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2701 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2702 // ...and the inverse of that. 2703 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2704 else 2705 llvm_unreachable("Unexpected integer comparison type"); 2706 C.CCMask &= CCValid; 2707 return C; 2708 } 2709 2710 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2711 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2712 ISD::CondCode Cond, const SDLoc &DL, 2713 SDValue Chain = SDValue(), 2714 bool IsSignaling = false) { 2715 if (CmpOp1.getOpcode() == ISD::Constant) { 2716 assert(!Chain); 2717 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2718 unsigned Opcode, CCValid; 2719 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2720 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2721 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2722 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2723 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2724 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2725 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2726 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2727 } 2728 Comparison C(CmpOp0, CmpOp1, Chain); 2729 C.CCMask = CCMaskForCondCode(Cond); 2730 if (C.Op0.getValueType().isFloatingPoint()) { 2731 C.CCValid = SystemZ::CCMASK_FCMP; 2732 if (!C.Chain) 2733 C.Opcode = SystemZISD::FCMP; 2734 else if (!IsSignaling) 2735 C.Opcode = SystemZISD::STRICT_FCMP; 2736 else 2737 C.Opcode = SystemZISD::STRICT_FCMPS; 2738 adjustForFNeg(C); 2739 } else { 2740 assert(!C.Chain); 2741 C.CCValid = SystemZ::CCMASK_ICMP; 2742 C.Opcode = SystemZISD::ICMP; 2743 // Choose the type of comparison. Equality and inequality tests can 2744 // use either signed or unsigned comparisons. The choice also doesn't 2745 // matter if both sign bits are known to be clear. In those cases we 2746 // want to give the main isel code the freedom to choose whichever 2747 // form fits best. 2748 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2749 C.CCMask == SystemZ::CCMASK_CMP_NE || 2750 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2751 C.ICmpType = SystemZICMP::Any; 2752 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2753 C.ICmpType = SystemZICMP::UnsignedOnly; 2754 else 2755 C.ICmpType = SystemZICMP::SignedOnly; 2756 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2757 adjustForRedundantAnd(DAG, DL, C); 2758 adjustZeroCmp(DAG, DL, C); 2759 adjustSubwordCmp(DAG, DL, C); 2760 adjustForSubtraction(DAG, DL, C); 2761 adjustForLTGFR(C); 2762 adjustICmpTruncate(DAG, DL, C); 2763 } 2764 2765 if (shouldSwapCmpOperands(C)) { 2766 std::swap(C.Op0, C.Op1); 2767 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2768 } 2769 2770 adjustForTestUnderMask(DAG, DL, C); 2771 return C; 2772 } 2773 2774 // Emit the comparison instruction described by C. 2775 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2776 if (!C.Op1.getNode()) { 2777 SDNode *Node; 2778 switch (C.Op0.getOpcode()) { 2779 case ISD::INTRINSIC_W_CHAIN: 2780 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2781 return SDValue(Node, 0); 2782 case ISD::INTRINSIC_WO_CHAIN: 2783 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2784 return SDValue(Node, Node->getNumValues() - 1); 2785 default: 2786 llvm_unreachable("Invalid comparison operands"); 2787 } 2788 } 2789 if (C.Opcode == SystemZISD::ICMP) 2790 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2791 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2792 if (C.Opcode == SystemZISD::TM) { 2793 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2794 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2795 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2796 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2797 } 2798 if (C.Chain) { 2799 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2800 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2801 } 2802 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2803 } 2804 2805 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2806 // 64 bits. Extend is the extension type to use. Store the high part 2807 // in Hi and the low part in Lo. 2808 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2809 SDValue Op0, SDValue Op1, SDValue &Hi, 2810 SDValue &Lo) { 2811 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2812 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2813 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2814 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2815 DAG.getConstant(32, DL, MVT::i64)); 2816 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2817 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2818 } 2819 2820 // Lower a binary operation that produces two VT results, one in each 2821 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2822 // and Opcode performs the GR128 operation. Store the even register result 2823 // in Even and the odd register result in Odd. 2824 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2825 unsigned Opcode, SDValue Op0, SDValue Op1, 2826 SDValue &Even, SDValue &Odd) { 2827 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2828 bool Is32Bit = is32Bit(VT); 2829 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2830 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2831 } 2832 2833 // Return an i32 value that is 1 if the CC value produced by CCReg is 2834 // in the mask CCMask and 0 otherwise. CC is known to have a value 2835 // in CCValid, so other values can be ignored. 2836 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2837 unsigned CCValid, unsigned CCMask) { 2838 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2839 DAG.getConstant(0, DL, MVT::i32), 2840 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2841 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2842 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2843 } 2844 2845 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2846 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2847 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2848 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2849 // floating-point comparisons. 2850 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2851 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2852 switch (CC) { 2853 case ISD::SETOEQ: 2854 case ISD::SETEQ: 2855 switch (Mode) { 2856 case CmpMode::Int: return SystemZISD::VICMPE; 2857 case CmpMode::FP: return SystemZISD::VFCMPE; 2858 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2859 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2860 } 2861 llvm_unreachable("Bad mode"); 2862 2863 case ISD::SETOGE: 2864 case ISD::SETGE: 2865 switch (Mode) { 2866 case CmpMode::Int: return 0; 2867 case CmpMode::FP: return SystemZISD::VFCMPHE; 2868 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2869 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2870 } 2871 llvm_unreachable("Bad mode"); 2872 2873 case ISD::SETOGT: 2874 case ISD::SETGT: 2875 switch (Mode) { 2876 case CmpMode::Int: return SystemZISD::VICMPH; 2877 case CmpMode::FP: return SystemZISD::VFCMPH; 2878 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2879 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2880 } 2881 llvm_unreachable("Bad mode"); 2882 2883 case ISD::SETUGT: 2884 switch (Mode) { 2885 case CmpMode::Int: return SystemZISD::VICMPHL; 2886 case CmpMode::FP: return 0; 2887 case CmpMode::StrictFP: return 0; 2888 case CmpMode::SignalingFP: return 0; 2889 } 2890 llvm_unreachable("Bad mode"); 2891 2892 default: 2893 return 0; 2894 } 2895 } 2896 2897 // Return the SystemZISD vector comparison operation for CC or its inverse, 2898 // or 0 if neither can be done directly. Indicate in Invert whether the 2899 // result is for the inverse of CC. Mode is as above. 2900 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2901 bool &Invert) { 2902 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2903 Invert = false; 2904 return Opcode; 2905 } 2906 2907 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2908 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2909 Invert = true; 2910 return Opcode; 2911 } 2912 2913 return 0; 2914 } 2915 2916 // Return a v2f64 that contains the extended form of elements Start and Start+1 2917 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2918 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2919 SDValue Op, SDValue Chain) { 2920 int Mask[] = { Start, -1, Start + 1, -1 }; 2921 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2922 if (Chain) { 2923 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2924 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2925 } 2926 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2927 } 2928 2929 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2930 // producing a result of type VT. If Chain is nonnull, return the strict form. 2931 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2932 const SDLoc &DL, EVT VT, 2933 SDValue CmpOp0, 2934 SDValue CmpOp1, 2935 SDValue Chain) const { 2936 // There is no hardware support for v4f32 (unless we have the vector 2937 // enhancements facility 1), so extend the vector into two v2f64s 2938 // and compare those. 2939 if (CmpOp0.getValueType() == MVT::v4f32 && 2940 !Subtarget.hasVectorEnhancements1()) { 2941 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2942 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2943 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2944 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2945 if (Chain) { 2946 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2947 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2948 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2949 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2950 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2951 H1.getValue(1), L1.getValue(1), 2952 HRes.getValue(1), LRes.getValue(1) }; 2953 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2954 SDValue Ops[2] = { Res, NewChain }; 2955 return DAG.getMergeValues(Ops, DL); 2956 } 2957 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2958 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2959 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2960 } 2961 if (Chain) { 2962 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2963 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2964 } 2965 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2966 } 2967 2968 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2969 // an integer mask of type VT. If Chain is nonnull, we have a strict 2970 // floating-point comparison. If in addition IsSignaling is true, we have 2971 // a strict signaling floating-point comparison. 2972 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2973 const SDLoc &DL, EVT VT, 2974 ISD::CondCode CC, 2975 SDValue CmpOp0, 2976 SDValue CmpOp1, 2977 SDValue Chain, 2978 bool IsSignaling) const { 2979 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2980 assert (!Chain || IsFP); 2981 assert (!IsSignaling || Chain); 2982 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2983 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2984 bool Invert = false; 2985 SDValue Cmp; 2986 switch (CC) { 2987 // Handle tests for order using (or (ogt y x) (oge x y)). 2988 case ISD::SETUO: 2989 Invert = true; 2990 LLVM_FALLTHROUGH; 2991 case ISD::SETO: { 2992 assert(IsFP && "Unexpected integer comparison"); 2993 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2994 DL, VT, CmpOp1, CmpOp0, Chain); 2995 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2996 DL, VT, CmpOp0, CmpOp1, Chain); 2997 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2998 if (Chain) 2999 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3000 LT.getValue(1), GE.getValue(1)); 3001 break; 3002 } 3003 3004 // Handle <> tests using (or (ogt y x) (ogt x y)). 3005 case ISD::SETUEQ: 3006 Invert = true; 3007 LLVM_FALLTHROUGH; 3008 case ISD::SETONE: { 3009 assert(IsFP && "Unexpected integer comparison"); 3010 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3011 DL, VT, CmpOp1, CmpOp0, Chain); 3012 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3013 DL, VT, CmpOp0, CmpOp1, Chain); 3014 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3015 if (Chain) 3016 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3017 LT.getValue(1), GT.getValue(1)); 3018 break; 3019 } 3020 3021 // Otherwise a single comparison is enough. It doesn't really 3022 // matter whether we try the inversion or the swap first, since 3023 // there are no cases where both work. 3024 default: 3025 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3026 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3027 else { 3028 CC = ISD::getSetCCSwappedOperands(CC); 3029 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3030 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3031 else 3032 llvm_unreachable("Unhandled comparison"); 3033 } 3034 if (Chain) 3035 Chain = Cmp.getValue(1); 3036 break; 3037 } 3038 if (Invert) { 3039 SDValue Mask = 3040 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3041 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3042 } 3043 if (Chain && Chain.getNode() != Cmp.getNode()) { 3044 SDValue Ops[2] = { Cmp, Chain }; 3045 Cmp = DAG.getMergeValues(Ops, DL); 3046 } 3047 return Cmp; 3048 } 3049 3050 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3051 SelectionDAG &DAG) const { 3052 SDValue CmpOp0 = Op.getOperand(0); 3053 SDValue CmpOp1 = Op.getOperand(1); 3054 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3055 SDLoc DL(Op); 3056 EVT VT = Op.getValueType(); 3057 if (VT.isVector()) 3058 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3059 3060 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3061 SDValue CCReg = emitCmp(DAG, DL, C); 3062 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3063 } 3064 3065 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3066 SelectionDAG &DAG, 3067 bool IsSignaling) const { 3068 SDValue Chain = Op.getOperand(0); 3069 SDValue CmpOp0 = Op.getOperand(1); 3070 SDValue CmpOp1 = Op.getOperand(2); 3071 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3072 SDLoc DL(Op); 3073 EVT VT = Op.getNode()->getValueType(0); 3074 if (VT.isVector()) { 3075 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3076 Chain, IsSignaling); 3077 return Res.getValue(Op.getResNo()); 3078 } 3079 3080 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3081 SDValue CCReg = emitCmp(DAG, DL, C); 3082 CCReg->setFlags(Op->getFlags()); 3083 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3084 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3085 return DAG.getMergeValues(Ops, DL); 3086 } 3087 3088 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3089 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3090 SDValue CmpOp0 = Op.getOperand(2); 3091 SDValue CmpOp1 = Op.getOperand(3); 3092 SDValue Dest = Op.getOperand(4); 3093 SDLoc DL(Op); 3094 3095 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3096 SDValue CCReg = emitCmp(DAG, DL, C); 3097 return DAG.getNode( 3098 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3099 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3100 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3101 } 3102 3103 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3104 // allowing Pos and Neg to be wider than CmpOp. 3105 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3106 return (Neg.getOpcode() == ISD::SUB && 3107 Neg.getOperand(0).getOpcode() == ISD::Constant && 3108 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3109 Neg.getOperand(1) == Pos && 3110 (Pos == CmpOp || 3111 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3112 Pos.getOperand(0) == CmpOp))); 3113 } 3114 3115 // Return the absolute or negative absolute of Op; IsNegative decides which. 3116 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3117 bool IsNegative) { 3118 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3119 if (IsNegative) 3120 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3121 DAG.getConstant(0, DL, Op.getValueType()), Op); 3122 return Op; 3123 } 3124 3125 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3126 SelectionDAG &DAG) const { 3127 SDValue CmpOp0 = Op.getOperand(0); 3128 SDValue CmpOp1 = Op.getOperand(1); 3129 SDValue TrueOp = Op.getOperand(2); 3130 SDValue FalseOp = Op.getOperand(3); 3131 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3132 SDLoc DL(Op); 3133 3134 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3135 3136 // Check for absolute and negative-absolute selections, including those 3137 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3138 // This check supplements the one in DAGCombiner. 3139 if (C.Opcode == SystemZISD::ICMP && 3140 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3141 C.CCMask != SystemZ::CCMASK_CMP_NE && 3142 C.Op1.getOpcode() == ISD::Constant && 3143 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3144 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3145 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3146 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3147 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3148 } 3149 3150 SDValue CCReg = emitCmp(DAG, DL, C); 3151 SDValue Ops[] = {TrueOp, FalseOp, 3152 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3153 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3154 3155 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3156 } 3157 3158 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3159 SelectionDAG &DAG) const { 3160 SDLoc DL(Node); 3161 const GlobalValue *GV = Node->getGlobal(); 3162 int64_t Offset = Node->getOffset(); 3163 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3164 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3165 3166 SDValue Result; 3167 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3168 if (isInt<32>(Offset)) { 3169 // Assign anchors at 1<<12 byte boundaries. 3170 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3171 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3172 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3173 3174 // The offset can be folded into the address if it is aligned to a 3175 // halfword. 3176 Offset -= Anchor; 3177 if (Offset != 0 && (Offset & 1) == 0) { 3178 SDValue Full = 3179 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3180 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3181 Offset = 0; 3182 } 3183 } else { 3184 // Conservatively load a constant offset greater than 32 bits into a 3185 // register below. 3186 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3187 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3188 } 3189 } else { 3190 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3191 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3192 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3193 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3194 } 3195 3196 // If there was a non-zero offset that we didn't fold, create an explicit 3197 // addition for it. 3198 if (Offset != 0) 3199 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3200 DAG.getConstant(Offset, DL, PtrVT)); 3201 3202 return Result; 3203 } 3204 3205 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3206 SelectionDAG &DAG, 3207 unsigned Opcode, 3208 SDValue GOTOffset) const { 3209 SDLoc DL(Node); 3210 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3211 SDValue Chain = DAG.getEntryNode(); 3212 SDValue Glue; 3213 3214 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3215 CallingConv::GHC) 3216 report_fatal_error("In GHC calling convention TLS is not supported"); 3217 3218 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3219 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3220 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3221 Glue = Chain.getValue(1); 3222 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3223 Glue = Chain.getValue(1); 3224 3225 // The first call operand is the chain and the second is the TLS symbol. 3226 SmallVector<SDValue, 8> Ops; 3227 Ops.push_back(Chain); 3228 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3229 Node->getValueType(0), 3230 0, 0)); 3231 3232 // Add argument registers to the end of the list so that they are 3233 // known live into the call. 3234 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3235 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3236 3237 // Add a register mask operand representing the call-preserved registers. 3238 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3239 const uint32_t *Mask = 3240 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3241 assert(Mask && "Missing call preserved mask for calling convention"); 3242 Ops.push_back(DAG.getRegisterMask(Mask)); 3243 3244 // Glue the call to the argument copies. 3245 Ops.push_back(Glue); 3246 3247 // Emit the call. 3248 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3249 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3250 Glue = Chain.getValue(1); 3251 3252 // Copy the return value from %r2. 3253 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3254 } 3255 3256 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3257 SelectionDAG &DAG) const { 3258 SDValue Chain = DAG.getEntryNode(); 3259 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3260 3261 // The high part of the thread pointer is in access register 0. 3262 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3263 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3264 3265 // The low part of the thread pointer is in access register 1. 3266 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3267 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3268 3269 // Merge them into a single 64-bit address. 3270 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3271 DAG.getConstant(32, DL, PtrVT)); 3272 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3273 } 3274 3275 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3276 SelectionDAG &DAG) const { 3277 if (DAG.getTarget().useEmulatedTLS()) 3278 return LowerToTLSEmulatedModel(Node, DAG); 3279 SDLoc DL(Node); 3280 const GlobalValue *GV = Node->getGlobal(); 3281 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3282 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3283 3284 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3285 CallingConv::GHC) 3286 report_fatal_error("In GHC calling convention TLS is not supported"); 3287 3288 SDValue TP = lowerThreadPointer(DL, DAG); 3289 3290 // Get the offset of GA from the thread pointer, based on the TLS model. 3291 SDValue Offset; 3292 switch (model) { 3293 case TLSModel::GeneralDynamic: { 3294 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3295 SystemZConstantPoolValue *CPV = 3296 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3297 3298 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3299 Offset = DAG.getLoad( 3300 PtrVT, DL, DAG.getEntryNode(), Offset, 3301 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3302 3303 // Call __tls_get_offset to retrieve the offset. 3304 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3305 break; 3306 } 3307 3308 case TLSModel::LocalDynamic: { 3309 // Load the GOT offset of the module ID. 3310 SystemZConstantPoolValue *CPV = 3311 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3312 3313 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3314 Offset = DAG.getLoad( 3315 PtrVT, DL, DAG.getEntryNode(), Offset, 3316 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3317 3318 // Call __tls_get_offset to retrieve the module base offset. 3319 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3320 3321 // Note: The SystemZLDCleanupPass will remove redundant computations 3322 // of the module base offset. Count total number of local-dynamic 3323 // accesses to trigger execution of that pass. 3324 SystemZMachineFunctionInfo* MFI = 3325 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3326 MFI->incNumLocalDynamicTLSAccesses(); 3327 3328 // Add the per-symbol offset. 3329 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3330 3331 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3332 DTPOffset = DAG.getLoad( 3333 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3335 3336 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3337 break; 3338 } 3339 3340 case TLSModel::InitialExec: { 3341 // Load the offset from the GOT. 3342 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3343 SystemZII::MO_INDNTPOFF); 3344 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3345 Offset = 3346 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3347 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3348 break; 3349 } 3350 3351 case TLSModel::LocalExec: { 3352 // Force the offset into the constant pool and load it from there. 3353 SystemZConstantPoolValue *CPV = 3354 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3355 3356 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3357 Offset = DAG.getLoad( 3358 PtrVT, DL, DAG.getEntryNode(), Offset, 3359 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3360 break; 3361 } 3362 } 3363 3364 // Add the base and offset together. 3365 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3366 } 3367 3368 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3369 SelectionDAG &DAG) const { 3370 SDLoc DL(Node); 3371 const BlockAddress *BA = Node->getBlockAddress(); 3372 int64_t Offset = Node->getOffset(); 3373 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3374 3375 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3376 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3377 return Result; 3378 } 3379 3380 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3381 SelectionDAG &DAG) const { 3382 SDLoc DL(JT); 3383 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3384 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3385 3386 // Use LARL to load the address of the table. 3387 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3388 } 3389 3390 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3391 SelectionDAG &DAG) const { 3392 SDLoc DL(CP); 3393 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3394 3395 SDValue Result; 3396 if (CP->isMachineConstantPoolEntry()) 3397 Result = 3398 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3399 else 3400 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3401 CP->getOffset()); 3402 3403 // Use LARL to load the address of the constant pool entry. 3404 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3405 } 3406 3407 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3408 SelectionDAG &DAG) const { 3409 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3410 MachineFunction &MF = DAG.getMachineFunction(); 3411 MachineFrameInfo &MFI = MF.getFrameInfo(); 3412 MFI.setFrameAddressIsTaken(true); 3413 3414 SDLoc DL(Op); 3415 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3416 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3417 3418 // By definition, the frame address is the address of the back chain. (In 3419 // the case of packed stack without backchain, return the address where the 3420 // backchain would have been stored. This will either be an unused space or 3421 // contain a saved register). 3422 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3423 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3424 3425 // FIXME The frontend should detect this case. 3426 if (Depth > 0) { 3427 report_fatal_error("Unsupported stack frame traversal count"); 3428 } 3429 3430 return BackChain; 3431 } 3432 3433 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3434 SelectionDAG &DAG) const { 3435 MachineFunction &MF = DAG.getMachineFunction(); 3436 MachineFrameInfo &MFI = MF.getFrameInfo(); 3437 MFI.setReturnAddressIsTaken(true); 3438 3439 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3440 return SDValue(); 3441 3442 SDLoc DL(Op); 3443 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3444 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3445 3446 // FIXME The frontend should detect this case. 3447 if (Depth > 0) { 3448 report_fatal_error("Unsupported stack frame traversal count"); 3449 } 3450 3451 // Return R14D, which has the return address. Mark it an implicit live-in. 3452 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3453 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3454 } 3455 3456 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3457 SelectionDAG &DAG) const { 3458 SDLoc DL(Op); 3459 SDValue In = Op.getOperand(0); 3460 EVT InVT = In.getValueType(); 3461 EVT ResVT = Op.getValueType(); 3462 3463 // Convert loads directly. This is normally done by DAGCombiner, 3464 // but we need this case for bitcasts that are created during lowering 3465 // and which are then lowered themselves. 3466 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3467 if (ISD::isNormalLoad(LoadN)) { 3468 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3469 LoadN->getBasePtr(), LoadN->getMemOperand()); 3470 // Update the chain uses. 3471 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3472 return NewLoad; 3473 } 3474 3475 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3476 SDValue In64; 3477 if (Subtarget.hasHighWord()) { 3478 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3479 MVT::i64); 3480 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3481 MVT::i64, SDValue(U64, 0), In); 3482 } else { 3483 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3484 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3485 DAG.getConstant(32, DL, MVT::i64)); 3486 } 3487 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3488 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3489 DL, MVT::f32, Out64); 3490 } 3491 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3492 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3493 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3494 MVT::f64, SDValue(U64, 0), In); 3495 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3496 if (Subtarget.hasHighWord()) 3497 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3498 MVT::i32, Out64); 3499 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3500 DAG.getConstant(32, DL, MVT::i64)); 3501 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3502 } 3503 llvm_unreachable("Unexpected bitcast combination"); 3504 } 3505 3506 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3507 SelectionDAG &DAG) const { 3508 MachineFunction &MF = DAG.getMachineFunction(); 3509 SystemZMachineFunctionInfo *FuncInfo = 3510 MF.getInfo<SystemZMachineFunctionInfo>(); 3511 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3512 3513 SDValue Chain = Op.getOperand(0); 3514 SDValue Addr = Op.getOperand(1); 3515 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3516 SDLoc DL(Op); 3517 3518 // The initial values of each field. 3519 const unsigned NumFields = 4; 3520 SDValue Fields[NumFields] = { 3521 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3522 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3523 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3524 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3525 }; 3526 3527 // Store each field into its respective slot. 3528 SDValue MemOps[NumFields]; 3529 unsigned Offset = 0; 3530 for (unsigned I = 0; I < NumFields; ++I) { 3531 SDValue FieldAddr = Addr; 3532 if (Offset != 0) 3533 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3534 DAG.getIntPtrConstant(Offset, DL)); 3535 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3536 MachinePointerInfo(SV, Offset)); 3537 Offset += 8; 3538 } 3539 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3540 } 3541 3542 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3543 SelectionDAG &DAG) const { 3544 SDValue Chain = Op.getOperand(0); 3545 SDValue DstPtr = Op.getOperand(1); 3546 SDValue SrcPtr = Op.getOperand(2); 3547 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3548 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3549 SDLoc DL(Op); 3550 3551 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3552 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3553 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3554 MachinePointerInfo(SrcSV)); 3555 } 3556 3557 SDValue 3558 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3559 SelectionDAG &DAG) const { 3560 if (Subtarget.isTargetXPLINK64()) 3561 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3562 else 3563 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3564 } 3565 3566 SDValue 3567 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3568 SelectionDAG &DAG) const { 3569 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3570 MachineFunction &MF = DAG.getMachineFunction(); 3571 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3572 SDValue Chain = Op.getOperand(0); 3573 SDValue Size = Op.getOperand(1); 3574 SDValue Align = Op.getOperand(2); 3575 SDLoc DL(Op); 3576 3577 // If user has set the no alignment function attribute, ignore 3578 // alloca alignments. 3579 uint64_t AlignVal = 3580 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3581 3582 uint64_t StackAlign = TFI->getStackAlignment(); 3583 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3584 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3585 3586 SDValue NeededSpace = Size; 3587 3588 // Add extra space for alignment if needed. 3589 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3590 if (ExtraAlignSpace) 3591 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3592 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3593 3594 bool IsSigned = false; 3595 bool DoesNotReturn = false; 3596 bool IsReturnValueUsed = false; 3597 EVT VT = Op.getValueType(); 3598 SDValue AllocaCall = 3599 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace), 3600 CallingConv::C, IsSigned, DL, DoesNotReturn, 3601 IsReturnValueUsed) 3602 .first; 3603 3604 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3605 // to end of call in order to ensure it isn't broken up from the call 3606 // sequence. 3607 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3608 Register SPReg = Regs.getStackPointerRegister(); 3609 Chain = AllocaCall.getValue(1); 3610 SDValue Glue = AllocaCall.getValue(2); 3611 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3612 Chain = NewSPRegNode.getValue(1); 3613 3614 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3615 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3616 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3617 3618 // Dynamically realign if needed. 3619 if (ExtraAlignSpace) { 3620 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3621 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3622 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3623 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3624 } 3625 3626 SDValue Ops[2] = {Result, Chain}; 3627 return DAG.getMergeValues(Ops, DL); 3628 } 3629 3630 SDValue 3631 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 3632 SelectionDAG &DAG) const { 3633 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3634 MachineFunction &MF = DAG.getMachineFunction(); 3635 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3636 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3637 3638 SDValue Chain = Op.getOperand(0); 3639 SDValue Size = Op.getOperand(1); 3640 SDValue Align = Op.getOperand(2); 3641 SDLoc DL(Op); 3642 3643 // If user has set the no alignment function attribute, ignore 3644 // alloca alignments. 3645 uint64_t AlignVal = 3646 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3647 3648 uint64_t StackAlign = TFI->getStackAlignment(); 3649 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3650 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3651 3652 Register SPReg = getStackPointerRegisterToSaveRestore(); 3653 SDValue NeededSpace = Size; 3654 3655 // Get a reference to the stack pointer. 3656 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3657 3658 // If we need a backchain, save it now. 3659 SDValue Backchain; 3660 if (StoreBackchain) 3661 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3662 MachinePointerInfo()); 3663 3664 // Add extra space for alignment if needed. 3665 if (ExtraAlignSpace) 3666 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3667 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3668 3669 // Get the new stack pointer value. 3670 SDValue NewSP; 3671 if (hasInlineStackProbe(MF)) { 3672 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3673 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3674 Chain = NewSP.getValue(1); 3675 } 3676 else { 3677 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3678 // Copy the new stack pointer back. 3679 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3680 } 3681 3682 // The allocated data lives above the 160 bytes allocated for the standard 3683 // frame, plus any outgoing stack arguments. We don't know how much that 3684 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3685 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3686 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3687 3688 // Dynamically realign if needed. 3689 if (RequiredAlign > StackAlign) { 3690 Result = 3691 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3692 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3693 Result = 3694 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3695 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3696 } 3697 3698 if (StoreBackchain) 3699 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3700 MachinePointerInfo()); 3701 3702 SDValue Ops[2] = { Result, Chain }; 3703 return DAG.getMergeValues(Ops, DL); 3704 } 3705 3706 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3707 SDValue Op, SelectionDAG &DAG) const { 3708 SDLoc DL(Op); 3709 3710 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3711 } 3712 3713 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3714 SelectionDAG &DAG) const { 3715 EVT VT = Op.getValueType(); 3716 SDLoc DL(Op); 3717 SDValue Ops[2]; 3718 if (is32Bit(VT)) 3719 // Just do a normal 64-bit multiplication and extract the results. 3720 // We define this so that it can be used for constant division. 3721 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3722 Op.getOperand(1), Ops[1], Ops[0]); 3723 else if (Subtarget.hasMiscellaneousExtensions2()) 3724 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3725 // the high result in the even register. ISD::SMUL_LOHI is defined to 3726 // return the low half first, so the results are in reverse order. 3727 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3728 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3729 else { 3730 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3731 // 3732 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3733 // 3734 // but using the fact that the upper halves are either all zeros 3735 // or all ones: 3736 // 3737 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3738 // 3739 // and grouping the right terms together since they are quicker than the 3740 // multiplication: 3741 // 3742 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3743 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3744 SDValue LL = Op.getOperand(0); 3745 SDValue RL = Op.getOperand(1); 3746 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3747 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3748 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3749 // the high result in the even register. ISD::SMUL_LOHI is defined to 3750 // return the low half first, so the results are in reverse order. 3751 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3752 LL, RL, Ops[1], Ops[0]); 3753 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3754 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3755 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3756 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3757 } 3758 return DAG.getMergeValues(Ops, DL); 3759 } 3760 3761 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3762 SelectionDAG &DAG) const { 3763 EVT VT = Op.getValueType(); 3764 SDLoc DL(Op); 3765 SDValue Ops[2]; 3766 if (is32Bit(VT)) 3767 // Just do a normal 64-bit multiplication and extract the results. 3768 // We define this so that it can be used for constant division. 3769 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3770 Op.getOperand(1), Ops[1], Ops[0]); 3771 else 3772 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3773 // the high result in the even register. ISD::UMUL_LOHI is defined to 3774 // return the low half first, so the results are in reverse order. 3775 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3776 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3777 return DAG.getMergeValues(Ops, DL); 3778 } 3779 3780 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3781 SelectionDAG &DAG) const { 3782 SDValue Op0 = Op.getOperand(0); 3783 SDValue Op1 = Op.getOperand(1); 3784 EVT VT = Op.getValueType(); 3785 SDLoc DL(Op); 3786 3787 // We use DSGF for 32-bit division. This means the first operand must 3788 // always be 64-bit, and the second operand should be 32-bit whenever 3789 // that is possible, to improve performance. 3790 if (is32Bit(VT)) 3791 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3792 else if (DAG.ComputeNumSignBits(Op1) > 32) 3793 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3794 3795 // DSG(F) returns the remainder in the even register and the 3796 // quotient in the odd register. 3797 SDValue Ops[2]; 3798 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3799 return DAG.getMergeValues(Ops, DL); 3800 } 3801 3802 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3803 SelectionDAG &DAG) const { 3804 EVT VT = Op.getValueType(); 3805 SDLoc DL(Op); 3806 3807 // DL(G) returns the remainder in the even register and the 3808 // quotient in the odd register. 3809 SDValue Ops[2]; 3810 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3811 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3812 return DAG.getMergeValues(Ops, DL); 3813 } 3814 3815 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3816 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3817 3818 // Get the known-zero masks for each operand. 3819 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3820 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3821 DAG.computeKnownBits(Ops[1])}; 3822 3823 // See if the upper 32 bits of one operand and the lower 32 bits of the 3824 // other are known zero. They are the low and high operands respectively. 3825 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3826 Known[1].Zero.getZExtValue() }; 3827 unsigned High, Low; 3828 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3829 High = 1, Low = 0; 3830 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3831 High = 0, Low = 1; 3832 else 3833 return Op; 3834 3835 SDValue LowOp = Ops[Low]; 3836 SDValue HighOp = Ops[High]; 3837 3838 // If the high part is a constant, we're better off using IILH. 3839 if (HighOp.getOpcode() == ISD::Constant) 3840 return Op; 3841 3842 // If the low part is a constant that is outside the range of LHI, 3843 // then we're better off using IILF. 3844 if (LowOp.getOpcode() == ISD::Constant) { 3845 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3846 if (!isInt<16>(Value)) 3847 return Op; 3848 } 3849 3850 // Check whether the high part is an AND that doesn't change the 3851 // high 32 bits and just masks out low bits. We can skip it if so. 3852 if (HighOp.getOpcode() == ISD::AND && 3853 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3854 SDValue HighOp0 = HighOp.getOperand(0); 3855 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3856 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3857 HighOp = HighOp0; 3858 } 3859 3860 // Take advantage of the fact that all GR32 operations only change the 3861 // low 32 bits by truncating Low to an i32 and inserting it directly 3862 // using a subreg. The interesting cases are those where the truncation 3863 // can be folded. 3864 SDLoc DL(Op); 3865 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3866 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3867 MVT::i64, HighOp, Low32); 3868 } 3869 3870 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3871 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3872 SelectionDAG &DAG) const { 3873 SDNode *N = Op.getNode(); 3874 SDValue LHS = N->getOperand(0); 3875 SDValue RHS = N->getOperand(1); 3876 SDLoc DL(N); 3877 unsigned BaseOp = 0; 3878 unsigned CCValid = 0; 3879 unsigned CCMask = 0; 3880 3881 switch (Op.getOpcode()) { 3882 default: llvm_unreachable("Unknown instruction!"); 3883 case ISD::SADDO: 3884 BaseOp = SystemZISD::SADDO; 3885 CCValid = SystemZ::CCMASK_ARITH; 3886 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3887 break; 3888 case ISD::SSUBO: 3889 BaseOp = SystemZISD::SSUBO; 3890 CCValid = SystemZ::CCMASK_ARITH; 3891 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3892 break; 3893 case ISD::UADDO: 3894 BaseOp = SystemZISD::UADDO; 3895 CCValid = SystemZ::CCMASK_LOGICAL; 3896 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3897 break; 3898 case ISD::USUBO: 3899 BaseOp = SystemZISD::USUBO; 3900 CCValid = SystemZ::CCMASK_LOGICAL; 3901 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3902 break; 3903 } 3904 3905 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3906 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3907 3908 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3909 if (N->getValueType(1) == MVT::i1) 3910 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3911 3912 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3913 } 3914 3915 static bool isAddCarryChain(SDValue Carry) { 3916 while (Carry.getOpcode() == ISD::ADDCARRY) 3917 Carry = Carry.getOperand(2); 3918 return Carry.getOpcode() == ISD::UADDO; 3919 } 3920 3921 static bool isSubBorrowChain(SDValue Carry) { 3922 while (Carry.getOpcode() == ISD::SUBCARRY) 3923 Carry = Carry.getOperand(2); 3924 return Carry.getOpcode() == ISD::USUBO; 3925 } 3926 3927 // Lower ADDCARRY/SUBCARRY nodes. 3928 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3929 SelectionDAG &DAG) const { 3930 3931 SDNode *N = Op.getNode(); 3932 MVT VT = N->getSimpleValueType(0); 3933 3934 // Let legalize expand this if it isn't a legal type yet. 3935 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3936 return SDValue(); 3937 3938 SDValue LHS = N->getOperand(0); 3939 SDValue RHS = N->getOperand(1); 3940 SDValue Carry = Op.getOperand(2); 3941 SDLoc DL(N); 3942 unsigned BaseOp = 0; 3943 unsigned CCValid = 0; 3944 unsigned CCMask = 0; 3945 3946 switch (Op.getOpcode()) { 3947 default: llvm_unreachable("Unknown instruction!"); 3948 case ISD::ADDCARRY: 3949 if (!isAddCarryChain(Carry)) 3950 return SDValue(); 3951 3952 BaseOp = SystemZISD::ADDCARRY; 3953 CCValid = SystemZ::CCMASK_LOGICAL; 3954 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3955 break; 3956 case ISD::SUBCARRY: 3957 if (!isSubBorrowChain(Carry)) 3958 return SDValue(); 3959 3960 BaseOp = SystemZISD::SUBCARRY; 3961 CCValid = SystemZ::CCMASK_LOGICAL; 3962 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3963 break; 3964 } 3965 3966 // Set the condition code from the carry flag. 3967 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3968 DAG.getConstant(CCValid, DL, MVT::i32), 3969 DAG.getConstant(CCMask, DL, MVT::i32)); 3970 3971 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3972 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3973 3974 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3975 if (N->getValueType(1) == MVT::i1) 3976 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3977 3978 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3979 } 3980 3981 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3982 SelectionDAG &DAG) const { 3983 EVT VT = Op.getValueType(); 3984 SDLoc DL(Op); 3985 Op = Op.getOperand(0); 3986 3987 // Handle vector types via VPOPCT. 3988 if (VT.isVector()) { 3989 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3990 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3991 switch (VT.getScalarSizeInBits()) { 3992 case 8: 3993 break; 3994 case 16: { 3995 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3996 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3997 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3998 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3999 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4000 break; 4001 } 4002 case 32: { 4003 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4004 DAG.getConstant(0, DL, MVT::i32)); 4005 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4006 break; 4007 } 4008 case 64: { 4009 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4010 DAG.getConstant(0, DL, MVT::i32)); 4011 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4012 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4013 break; 4014 } 4015 default: 4016 llvm_unreachable("Unexpected type"); 4017 } 4018 return Op; 4019 } 4020 4021 // Get the known-zero mask for the operand. 4022 KnownBits Known = DAG.computeKnownBits(Op); 4023 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4024 if (NumSignificantBits == 0) 4025 return DAG.getConstant(0, DL, VT); 4026 4027 // Skip known-zero high parts of the operand. 4028 int64_t OrigBitSize = VT.getSizeInBits(); 4029 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 4030 BitSize = std::min(BitSize, OrigBitSize); 4031 4032 // The POPCNT instruction counts the number of bits in each byte. 4033 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4034 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4035 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4036 4037 // Add up per-byte counts in a binary tree. All bits of Op at 4038 // position larger than BitSize remain zero throughout. 4039 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4040 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4041 if (BitSize != OrigBitSize) 4042 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4043 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4044 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4045 } 4046 4047 // Extract overall result from high byte. 4048 if (BitSize > 8) 4049 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4050 DAG.getConstant(BitSize - 8, DL, VT)); 4051 4052 return Op; 4053 } 4054 4055 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4056 SelectionDAG &DAG) const { 4057 SDLoc DL(Op); 4058 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 4059 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 4060 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 4061 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 4062 4063 // The only fence that needs an instruction is a sequentially-consistent 4064 // cross-thread fence. 4065 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4066 FenceSSID == SyncScope::System) { 4067 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4068 Op.getOperand(0)), 4069 0); 4070 } 4071 4072 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4073 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4074 } 4075 4076 // Op is an atomic load. Lower it into a normal volatile load. 4077 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4078 SelectionDAG &DAG) const { 4079 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4080 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4081 Node->getChain(), Node->getBasePtr(), 4082 Node->getMemoryVT(), Node->getMemOperand()); 4083 } 4084 4085 // Op is an atomic store. Lower it into a normal volatile store. 4086 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4087 SelectionDAG &DAG) const { 4088 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4089 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4090 Node->getBasePtr(), Node->getMemoryVT(), 4091 Node->getMemOperand()); 4092 // We have to enforce sequential consistency by performing a 4093 // serialization operation after the store. 4094 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4095 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4096 MVT::Other, Chain), 0); 4097 return Chain; 4098 } 4099 4100 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4101 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4102 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4103 SelectionDAG &DAG, 4104 unsigned Opcode) const { 4105 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4106 4107 // 32-bit operations need no code outside the main loop. 4108 EVT NarrowVT = Node->getMemoryVT(); 4109 EVT WideVT = MVT::i32; 4110 if (NarrowVT == WideVT) 4111 return Op; 4112 4113 int64_t BitSize = NarrowVT.getSizeInBits(); 4114 SDValue ChainIn = Node->getChain(); 4115 SDValue Addr = Node->getBasePtr(); 4116 SDValue Src2 = Node->getVal(); 4117 MachineMemOperand *MMO = Node->getMemOperand(); 4118 SDLoc DL(Node); 4119 EVT PtrVT = Addr.getValueType(); 4120 4121 // Convert atomic subtracts of constants into additions. 4122 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4123 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4124 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4125 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4126 } 4127 4128 // Get the address of the containing word. 4129 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4130 DAG.getConstant(-4, DL, PtrVT)); 4131 4132 // Get the number of bits that the word must be rotated left in order 4133 // to bring the field to the top bits of a GR32. 4134 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4135 DAG.getConstant(3, DL, PtrVT)); 4136 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4137 4138 // Get the complementing shift amount, for rotating a field in the top 4139 // bits back to its proper position. 4140 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4141 DAG.getConstant(0, DL, WideVT), BitShift); 4142 4143 // Extend the source operand to 32 bits and prepare it for the inner loop. 4144 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4145 // operations require the source to be shifted in advance. (This shift 4146 // can be folded if the source is constant.) For AND and NAND, the lower 4147 // bits must be set, while for other opcodes they should be left clear. 4148 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4149 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4150 DAG.getConstant(32 - BitSize, DL, WideVT)); 4151 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4152 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4153 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4154 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4155 4156 // Construct the ATOMIC_LOADW_* node. 4157 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4158 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4159 DAG.getConstant(BitSize, DL, WideVT) }; 4160 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4161 NarrowVT, MMO); 4162 4163 // Rotate the result of the final CS so that the field is in the lower 4164 // bits of a GR32, then truncate it. 4165 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4166 DAG.getConstant(BitSize, DL, WideVT)); 4167 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4168 4169 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4170 return DAG.getMergeValues(RetOps, DL); 4171 } 4172 4173 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 4174 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 4175 // operations into additions. 4176 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4177 SelectionDAG &DAG) const { 4178 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4179 EVT MemVT = Node->getMemoryVT(); 4180 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4181 // A full-width operation. 4182 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4183 SDValue Src2 = Node->getVal(); 4184 SDValue NegSrc2; 4185 SDLoc DL(Src2); 4186 4187 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 4188 // Use an addition if the operand is constant and either LAA(G) is 4189 // available or the negative value is in the range of A(G)FHI. 4190 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 4191 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 4192 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 4193 } else if (Subtarget.hasInterlockedAccess1()) 4194 // Use LAA(G) if available. 4195 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 4196 Src2); 4197 4198 if (NegSrc2.getNode()) 4199 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4200 Node->getChain(), Node->getBasePtr(), NegSrc2, 4201 Node->getMemOperand()); 4202 4203 // Use the node as-is. 4204 return Op; 4205 } 4206 4207 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4208 } 4209 4210 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4211 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4212 SelectionDAG &DAG) const { 4213 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4214 SDValue ChainIn = Node->getOperand(0); 4215 SDValue Addr = Node->getOperand(1); 4216 SDValue CmpVal = Node->getOperand(2); 4217 SDValue SwapVal = Node->getOperand(3); 4218 MachineMemOperand *MMO = Node->getMemOperand(); 4219 SDLoc DL(Node); 4220 4221 // We have native support for 32-bit and 64-bit compare and swap, but we 4222 // still need to expand extracting the "success" result from the CC. 4223 EVT NarrowVT = Node->getMemoryVT(); 4224 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4225 if (NarrowVT == WideVT) { 4226 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4227 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4228 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4229 DL, Tys, Ops, NarrowVT, MMO); 4230 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4231 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4232 4233 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4234 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4235 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4236 return SDValue(); 4237 } 4238 4239 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4240 // via a fullword ATOMIC_CMP_SWAPW operation. 4241 int64_t BitSize = NarrowVT.getSizeInBits(); 4242 EVT PtrVT = Addr.getValueType(); 4243 4244 // Get the address of the containing word. 4245 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4246 DAG.getConstant(-4, DL, PtrVT)); 4247 4248 // Get the number of bits that the word must be rotated left in order 4249 // to bring the field to the top bits of a GR32. 4250 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4251 DAG.getConstant(3, DL, PtrVT)); 4252 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4253 4254 // Get the complementing shift amount, for rotating a field in the top 4255 // bits back to its proper position. 4256 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4257 DAG.getConstant(0, DL, WideVT), BitShift); 4258 4259 // Construct the ATOMIC_CMP_SWAPW node. 4260 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4261 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4262 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4263 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4264 VTList, Ops, NarrowVT, MMO); 4265 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4266 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4267 4268 // emitAtomicCmpSwapW() will zero extend the result (original value). 4269 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4270 DAG.getValueType(NarrowVT)); 4271 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4272 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4273 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4274 return SDValue(); 4275 } 4276 4277 MachineMemOperand::Flags 4278 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4279 // Because of how we convert atomic_load and atomic_store to normal loads and 4280 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4281 // since DAGCombine hasn't been updated to account for atomic, but non 4282 // volatile loads. (See D57601) 4283 if (auto *SI = dyn_cast<StoreInst>(&I)) 4284 if (SI->isAtomic()) 4285 return MachineMemOperand::MOVolatile; 4286 if (auto *LI = dyn_cast<LoadInst>(&I)) 4287 if (LI->isAtomic()) 4288 return MachineMemOperand::MOVolatile; 4289 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4290 if (AI->isAtomic()) 4291 return MachineMemOperand::MOVolatile; 4292 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4293 if (AI->isAtomic()) 4294 return MachineMemOperand::MOVolatile; 4295 return MachineMemOperand::MONone; 4296 } 4297 4298 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4299 SelectionDAG &DAG) const { 4300 MachineFunction &MF = DAG.getMachineFunction(); 4301 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4302 auto *Regs = Subtarget->getSpecialRegisters(); 4303 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4304 report_fatal_error("Variable-sized stack allocations are not supported " 4305 "in GHC calling convention"); 4306 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4307 Regs->getStackPointerRegister(), Op.getValueType()); 4308 } 4309 4310 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4311 SelectionDAG &DAG) const { 4312 MachineFunction &MF = DAG.getMachineFunction(); 4313 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4314 auto *Regs = Subtarget->getSpecialRegisters(); 4315 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4316 4317 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4318 report_fatal_error("Variable-sized stack allocations are not supported " 4319 "in GHC calling convention"); 4320 4321 SDValue Chain = Op.getOperand(0); 4322 SDValue NewSP = Op.getOperand(1); 4323 SDValue Backchain; 4324 SDLoc DL(Op); 4325 4326 if (StoreBackchain) { 4327 SDValue OldSP = DAG.getCopyFromReg( 4328 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4329 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4330 MachinePointerInfo()); 4331 } 4332 4333 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4334 4335 if (StoreBackchain) 4336 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4337 MachinePointerInfo()); 4338 4339 return Chain; 4340 } 4341 4342 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4343 SelectionDAG &DAG) const { 4344 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4345 if (!IsData) 4346 // Just preserve the chain. 4347 return Op.getOperand(0); 4348 4349 SDLoc DL(Op); 4350 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4351 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4352 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4353 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4354 Op.getOperand(1)}; 4355 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4356 Node->getVTList(), Ops, 4357 Node->getMemoryVT(), Node->getMemOperand()); 4358 } 4359 4360 // Convert condition code in CCReg to an i32 value. 4361 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4362 SDLoc DL(CCReg); 4363 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4364 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4365 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4366 } 4367 4368 SDValue 4369 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4370 SelectionDAG &DAG) const { 4371 unsigned Opcode, CCValid; 4372 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4373 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4374 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4375 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4376 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4377 return SDValue(); 4378 } 4379 4380 return SDValue(); 4381 } 4382 4383 SDValue 4384 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4385 SelectionDAG &DAG) const { 4386 unsigned Opcode, CCValid; 4387 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4388 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4389 if (Op->getNumValues() == 1) 4390 return getCCResult(DAG, SDValue(Node, 0)); 4391 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4392 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4393 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4394 } 4395 4396 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4397 switch (Id) { 4398 case Intrinsic::thread_pointer: 4399 return lowerThreadPointer(SDLoc(Op), DAG); 4400 4401 case Intrinsic::s390_vpdi: 4402 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4403 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4404 4405 case Intrinsic::s390_vperm: 4406 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4407 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4408 4409 case Intrinsic::s390_vuphb: 4410 case Intrinsic::s390_vuphh: 4411 case Intrinsic::s390_vuphf: 4412 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4413 Op.getOperand(1)); 4414 4415 case Intrinsic::s390_vuplhb: 4416 case Intrinsic::s390_vuplhh: 4417 case Intrinsic::s390_vuplhf: 4418 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4419 Op.getOperand(1)); 4420 4421 case Intrinsic::s390_vuplb: 4422 case Intrinsic::s390_vuplhw: 4423 case Intrinsic::s390_vuplf: 4424 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4425 Op.getOperand(1)); 4426 4427 case Intrinsic::s390_vupllb: 4428 case Intrinsic::s390_vupllh: 4429 case Intrinsic::s390_vupllf: 4430 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4431 Op.getOperand(1)); 4432 4433 case Intrinsic::s390_vsumb: 4434 case Intrinsic::s390_vsumh: 4435 case Intrinsic::s390_vsumgh: 4436 case Intrinsic::s390_vsumgf: 4437 case Intrinsic::s390_vsumqf: 4438 case Intrinsic::s390_vsumqg: 4439 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4440 Op.getOperand(1), Op.getOperand(2)); 4441 } 4442 4443 return SDValue(); 4444 } 4445 4446 namespace { 4447 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4448 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4449 // Operand is the constant third operand, otherwise it is the number of 4450 // bytes in each element of the result. 4451 struct Permute { 4452 unsigned Opcode; 4453 unsigned Operand; 4454 unsigned char Bytes[SystemZ::VectorBytes]; 4455 }; 4456 } 4457 4458 static const Permute PermuteForms[] = { 4459 // VMRHG 4460 { SystemZISD::MERGE_HIGH, 8, 4461 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4462 // VMRHF 4463 { SystemZISD::MERGE_HIGH, 4, 4464 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4465 // VMRHH 4466 { SystemZISD::MERGE_HIGH, 2, 4467 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4468 // VMRHB 4469 { SystemZISD::MERGE_HIGH, 1, 4470 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4471 // VMRLG 4472 { SystemZISD::MERGE_LOW, 8, 4473 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4474 // VMRLF 4475 { SystemZISD::MERGE_LOW, 4, 4476 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4477 // VMRLH 4478 { SystemZISD::MERGE_LOW, 2, 4479 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4480 // VMRLB 4481 { SystemZISD::MERGE_LOW, 1, 4482 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4483 // VPKG 4484 { SystemZISD::PACK, 4, 4485 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4486 // VPKF 4487 { SystemZISD::PACK, 2, 4488 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4489 // VPKH 4490 { SystemZISD::PACK, 1, 4491 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4492 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4493 { SystemZISD::PERMUTE_DWORDS, 4, 4494 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4495 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4496 { SystemZISD::PERMUTE_DWORDS, 1, 4497 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4498 }; 4499 4500 // Called after matching a vector shuffle against a particular pattern. 4501 // Both the original shuffle and the pattern have two vector operands. 4502 // OpNos[0] is the operand of the original shuffle that should be used for 4503 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4504 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4505 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4506 // for operands 0 and 1 of the pattern. 4507 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4508 if (OpNos[0] < 0) { 4509 if (OpNos[1] < 0) 4510 return false; 4511 OpNo0 = OpNo1 = OpNos[1]; 4512 } else if (OpNos[1] < 0) { 4513 OpNo0 = OpNo1 = OpNos[0]; 4514 } else { 4515 OpNo0 = OpNos[0]; 4516 OpNo1 = OpNos[1]; 4517 } 4518 return true; 4519 } 4520 4521 // Bytes is a VPERM-like permute vector, except that -1 is used for 4522 // undefined bytes. Return true if the VPERM can be implemented using P. 4523 // When returning true set OpNo0 to the VPERM operand that should be 4524 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4525 // 4526 // For example, if swapping the VPERM operands allows P to match, OpNo0 4527 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4528 // operand, but rewriting it to use two duplicated operands allows it to 4529 // match P, then OpNo0 and OpNo1 will be the same. 4530 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4531 unsigned &OpNo0, unsigned &OpNo1) { 4532 int OpNos[] = { -1, -1 }; 4533 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4534 int Elt = Bytes[I]; 4535 if (Elt >= 0) { 4536 // Make sure that the two permute vectors use the same suboperand 4537 // byte number. Only the operand numbers (the high bits) are 4538 // allowed to differ. 4539 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4540 return false; 4541 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4542 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4543 // Make sure that the operand mappings are consistent with previous 4544 // elements. 4545 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4546 return false; 4547 OpNos[ModelOpNo] = RealOpNo; 4548 } 4549 } 4550 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4551 } 4552 4553 // As above, but search for a matching permute. 4554 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4555 unsigned &OpNo0, unsigned &OpNo1) { 4556 for (auto &P : PermuteForms) 4557 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4558 return &P; 4559 return nullptr; 4560 } 4561 4562 // Bytes is a VPERM-like permute vector, except that -1 is used for 4563 // undefined bytes. This permute is an operand of an outer permute. 4564 // See whether redistributing the -1 bytes gives a shuffle that can be 4565 // implemented using P. If so, set Transform to a VPERM-like permute vector 4566 // that, when applied to the result of P, gives the original permute in Bytes. 4567 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4568 const Permute &P, 4569 SmallVectorImpl<int> &Transform) { 4570 unsigned To = 0; 4571 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4572 int Elt = Bytes[From]; 4573 if (Elt < 0) 4574 // Byte number From of the result is undefined. 4575 Transform[From] = -1; 4576 else { 4577 while (P.Bytes[To] != Elt) { 4578 To += 1; 4579 if (To == SystemZ::VectorBytes) 4580 return false; 4581 } 4582 Transform[From] = To; 4583 } 4584 } 4585 return true; 4586 } 4587 4588 // As above, but search for a matching permute. 4589 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4590 SmallVectorImpl<int> &Transform) { 4591 for (auto &P : PermuteForms) 4592 if (matchDoublePermute(Bytes, P, Transform)) 4593 return &P; 4594 return nullptr; 4595 } 4596 4597 // Convert the mask of the given shuffle op into a byte-level mask, 4598 // as if it had type vNi8. 4599 static bool getVPermMask(SDValue ShuffleOp, 4600 SmallVectorImpl<int> &Bytes) { 4601 EVT VT = ShuffleOp.getValueType(); 4602 unsigned NumElements = VT.getVectorNumElements(); 4603 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4604 4605 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4606 Bytes.resize(NumElements * BytesPerElement, -1); 4607 for (unsigned I = 0; I < NumElements; ++I) { 4608 int Index = VSN->getMaskElt(I); 4609 if (Index >= 0) 4610 for (unsigned J = 0; J < BytesPerElement; ++J) 4611 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4612 } 4613 return true; 4614 } 4615 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4616 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4617 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4618 Bytes.resize(NumElements * BytesPerElement, -1); 4619 for (unsigned I = 0; I < NumElements; ++I) 4620 for (unsigned J = 0; J < BytesPerElement; ++J) 4621 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4622 return true; 4623 } 4624 return false; 4625 } 4626 4627 // Bytes is a VPERM-like permute vector, except that -1 is used for 4628 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4629 // the result come from a contiguous sequence of bytes from one input. 4630 // Set Base to the selector for the first byte if so. 4631 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4632 unsigned BytesPerElement, int &Base) { 4633 Base = -1; 4634 for (unsigned I = 0; I < BytesPerElement; ++I) { 4635 if (Bytes[Start + I] >= 0) { 4636 unsigned Elem = Bytes[Start + I]; 4637 if (Base < 0) { 4638 Base = Elem - I; 4639 // Make sure the bytes would come from one input operand. 4640 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4641 return false; 4642 } else if (unsigned(Base) != Elem - I) 4643 return false; 4644 } 4645 } 4646 return true; 4647 } 4648 4649 // Bytes is a VPERM-like permute vector, except that -1 is used for 4650 // undefined bytes. Return true if it can be performed using VSLDB. 4651 // When returning true, set StartIndex to the shift amount and OpNo0 4652 // and OpNo1 to the VPERM operands that should be used as the first 4653 // and second shift operand respectively. 4654 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4655 unsigned &StartIndex, unsigned &OpNo0, 4656 unsigned &OpNo1) { 4657 int OpNos[] = { -1, -1 }; 4658 int Shift = -1; 4659 for (unsigned I = 0; I < 16; ++I) { 4660 int Index = Bytes[I]; 4661 if (Index >= 0) { 4662 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4663 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4664 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4665 if (Shift < 0) 4666 Shift = ExpectedShift; 4667 else if (Shift != ExpectedShift) 4668 return false; 4669 // Make sure that the operand mappings are consistent with previous 4670 // elements. 4671 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4672 return false; 4673 OpNos[ModelOpNo] = RealOpNo; 4674 } 4675 } 4676 StartIndex = Shift; 4677 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4678 } 4679 4680 // Create a node that performs P on operands Op0 and Op1, casting the 4681 // operands to the appropriate type. The type of the result is determined by P. 4682 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4683 const Permute &P, SDValue Op0, SDValue Op1) { 4684 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4685 // elements of a PACK are twice as wide as the outputs. 4686 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4687 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4688 P.Operand); 4689 // Cast both operands to the appropriate type. 4690 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4691 SystemZ::VectorBytes / InBytes); 4692 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4693 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4694 SDValue Op; 4695 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4696 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4697 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4698 } else if (P.Opcode == SystemZISD::PACK) { 4699 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4700 SystemZ::VectorBytes / P.Operand); 4701 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4702 } else { 4703 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4704 } 4705 return Op; 4706 } 4707 4708 static bool isZeroVector(SDValue N) { 4709 if (N->getOpcode() == ISD::BITCAST) 4710 N = N->getOperand(0); 4711 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4712 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4713 return Op->getZExtValue() == 0; 4714 return ISD::isBuildVectorAllZeros(N.getNode()); 4715 } 4716 4717 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4718 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4719 for (unsigned I = 0; I < Num ; I++) 4720 if (isZeroVector(Ops[I])) 4721 return I; 4722 return UINT32_MAX; 4723 } 4724 4725 // Bytes is a VPERM-like permute vector, except that -1 is used for 4726 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4727 // VSLDB or VPERM. 4728 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4729 SDValue *Ops, 4730 const SmallVectorImpl<int> &Bytes) { 4731 for (unsigned I = 0; I < 2; ++I) 4732 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4733 4734 // First see whether VSLDB can be used. 4735 unsigned StartIndex, OpNo0, OpNo1; 4736 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4737 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4738 Ops[OpNo1], 4739 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4740 4741 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4742 // eliminate a zero vector by reusing any zero index in the permute vector. 4743 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4744 if (ZeroVecIdx != UINT32_MAX) { 4745 bool MaskFirst = true; 4746 int ZeroIdx = -1; 4747 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4748 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4749 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4750 if (OpNo == ZeroVecIdx && I == 0) { 4751 // If the first byte is zero, use mask as first operand. 4752 ZeroIdx = 0; 4753 break; 4754 } 4755 if (OpNo != ZeroVecIdx && Byte == 0) { 4756 // If mask contains a zero, use it by placing that vector first. 4757 ZeroIdx = I + SystemZ::VectorBytes; 4758 MaskFirst = false; 4759 break; 4760 } 4761 } 4762 if (ZeroIdx != -1) { 4763 SDValue IndexNodes[SystemZ::VectorBytes]; 4764 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4765 if (Bytes[I] >= 0) { 4766 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4767 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4768 if (OpNo == ZeroVecIdx) 4769 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4770 else { 4771 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4772 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4773 } 4774 } else 4775 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4776 } 4777 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4778 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4779 if (MaskFirst) 4780 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4781 Mask); 4782 else 4783 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4784 Mask); 4785 } 4786 } 4787 4788 SDValue IndexNodes[SystemZ::VectorBytes]; 4789 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4790 if (Bytes[I] >= 0) 4791 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4792 else 4793 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4794 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4795 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4796 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4797 } 4798 4799 namespace { 4800 // Describes a general N-operand vector shuffle. 4801 struct GeneralShuffle { 4802 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4803 void addUndef(); 4804 bool add(SDValue, unsigned); 4805 SDValue getNode(SelectionDAG &, const SDLoc &); 4806 void tryPrepareForUnpack(); 4807 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4808 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4809 4810 // The operands of the shuffle. 4811 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4812 4813 // Index I is -1 if byte I of the result is undefined. Otherwise the 4814 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4815 // Bytes[I] / SystemZ::VectorBytes. 4816 SmallVector<int, SystemZ::VectorBytes> Bytes; 4817 4818 // The type of the shuffle result. 4819 EVT VT; 4820 4821 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4822 unsigned UnpackFromEltSize; 4823 }; 4824 } 4825 4826 // Add an extra undefined element to the shuffle. 4827 void GeneralShuffle::addUndef() { 4828 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4829 for (unsigned I = 0; I < BytesPerElement; ++I) 4830 Bytes.push_back(-1); 4831 } 4832 4833 // Add an extra element to the shuffle, taking it from element Elem of Op. 4834 // A null Op indicates a vector input whose value will be calculated later; 4835 // there is at most one such input per shuffle and it always has the same 4836 // type as the result. Aborts and returns false if the source vector elements 4837 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4838 // LLVM they become implicitly extended, but this is rare and not optimized. 4839 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4840 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4841 4842 // The source vector can have wider elements than the result, 4843 // either through an explicit TRUNCATE or because of type legalization. 4844 // We want the least significant part. 4845 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4846 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4847 4848 // Return false if the source elements are smaller than their destination 4849 // elements. 4850 if (FromBytesPerElement < BytesPerElement) 4851 return false; 4852 4853 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4854 (FromBytesPerElement - BytesPerElement)); 4855 4856 // Look through things like shuffles and bitcasts. 4857 while (Op.getNode()) { 4858 if (Op.getOpcode() == ISD::BITCAST) 4859 Op = Op.getOperand(0); 4860 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4861 // See whether the bytes we need come from a contiguous part of one 4862 // operand. 4863 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4864 if (!getVPermMask(Op, OpBytes)) 4865 break; 4866 int NewByte; 4867 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4868 break; 4869 if (NewByte < 0) { 4870 addUndef(); 4871 return true; 4872 } 4873 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4874 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4875 } else if (Op.isUndef()) { 4876 addUndef(); 4877 return true; 4878 } else 4879 break; 4880 } 4881 4882 // Make sure that the source of the extraction is in Ops. 4883 unsigned OpNo = 0; 4884 for (; OpNo < Ops.size(); ++OpNo) 4885 if (Ops[OpNo] == Op) 4886 break; 4887 if (OpNo == Ops.size()) 4888 Ops.push_back(Op); 4889 4890 // Add the element to Bytes. 4891 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4892 for (unsigned I = 0; I < BytesPerElement; ++I) 4893 Bytes.push_back(Base + I); 4894 4895 return true; 4896 } 4897 4898 // Return SDNodes for the completed shuffle. 4899 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4900 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4901 4902 if (Ops.size() == 0) 4903 return DAG.getUNDEF(VT); 4904 4905 // Use a single unpack if possible as the last operation. 4906 tryPrepareForUnpack(); 4907 4908 // Make sure that there are at least two shuffle operands. 4909 if (Ops.size() == 1) 4910 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4911 4912 // Create a tree of shuffles, deferring root node until after the loop. 4913 // Try to redistribute the undefined elements of non-root nodes so that 4914 // the non-root shuffles match something like a pack or merge, then adjust 4915 // the parent node's permute vector to compensate for the new order. 4916 // Among other things, this copes with vectors like <2 x i16> that were 4917 // padded with undefined elements during type legalization. 4918 // 4919 // In the best case this redistribution will lead to the whole tree 4920 // using packs and merges. It should rarely be a loss in other cases. 4921 unsigned Stride = 1; 4922 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4923 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4924 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4925 4926 // Create a mask for just these two operands. 4927 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4928 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4929 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4930 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4931 if (OpNo == I) 4932 NewBytes[J] = Byte; 4933 else if (OpNo == I + Stride) 4934 NewBytes[J] = SystemZ::VectorBytes + Byte; 4935 else 4936 NewBytes[J] = -1; 4937 } 4938 // See if it would be better to reorganize NewMask to avoid using VPERM. 4939 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4940 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4941 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4942 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4943 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4944 if (NewBytes[J] >= 0) { 4945 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4946 "Invalid double permute"); 4947 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4948 } else 4949 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4950 } 4951 } else { 4952 // Just use NewBytes on the operands. 4953 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4954 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4955 if (NewBytes[J] >= 0) 4956 Bytes[J] = I * SystemZ::VectorBytes + J; 4957 } 4958 } 4959 } 4960 4961 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4962 if (Stride > 1) { 4963 Ops[1] = Ops[Stride]; 4964 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4965 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4966 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4967 } 4968 4969 // Look for an instruction that can do the permute without resorting 4970 // to VPERM. 4971 unsigned OpNo0, OpNo1; 4972 SDValue Op; 4973 if (unpackWasPrepared() && Ops[1].isUndef()) 4974 Op = Ops[0]; 4975 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4976 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4977 else 4978 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4979 4980 Op = insertUnpackIfPrepared(DAG, DL, Op); 4981 4982 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4983 } 4984 4985 #ifndef NDEBUG 4986 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4987 dbgs() << Msg.c_str() << " { "; 4988 for (unsigned i = 0; i < Bytes.size(); i++) 4989 dbgs() << Bytes[i] << " "; 4990 dbgs() << "}\n"; 4991 } 4992 #endif 4993 4994 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4995 // after all else by removing the zero vector and the effect of the unpack on 4996 // Bytes. 4997 void GeneralShuffle::tryPrepareForUnpack() { 4998 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 4999 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5000 return; 5001 5002 // Only do this if removing the zero vector reduces the depth, otherwise 5003 // the critical path will increase with the final unpack. 5004 if (Ops.size() > 2 && 5005 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5006 return; 5007 5008 // Find an unpack that would allow removing the zero vector from Ops. 5009 UnpackFromEltSize = 1; 5010 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5011 bool MatchUnpack = true; 5012 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5013 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5014 unsigned ToEltSize = UnpackFromEltSize * 2; 5015 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5016 if (!IsZextByte) 5017 SrcBytes.push_back(Bytes[Elt]); 5018 if (Bytes[Elt] != -1) { 5019 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5020 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5021 MatchUnpack = false; 5022 break; 5023 } 5024 } 5025 } 5026 if (MatchUnpack) { 5027 if (Ops.size() == 2) { 5028 // Don't use unpack if a single source operand needs rearrangement. 5029 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5030 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5031 UnpackFromEltSize = UINT_MAX; 5032 return; 5033 } 5034 } 5035 break; 5036 } 5037 } 5038 if (UnpackFromEltSize > 4) 5039 return; 5040 5041 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5042 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5043 << ".\n"; 5044 dumpBytes(Bytes, "Original Bytes vector:");); 5045 5046 // Apply the unpack in reverse to the Bytes array. 5047 unsigned B = 0; 5048 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5049 Elt += UnpackFromEltSize; 5050 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5051 Bytes[B] = Bytes[Elt]; 5052 } 5053 while (B < SystemZ::VectorBytes) 5054 Bytes[B++] = -1; 5055 5056 // Remove the zero vector from Ops 5057 Ops.erase(&Ops[ZeroVecOpNo]); 5058 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5059 if (Bytes[I] >= 0) { 5060 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5061 if (OpNo > ZeroVecOpNo) 5062 Bytes[I] -= SystemZ::VectorBytes; 5063 } 5064 5065 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5066 dbgs() << "\n";); 5067 } 5068 5069 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5070 const SDLoc &DL, 5071 SDValue Op) { 5072 if (!unpackWasPrepared()) 5073 return Op; 5074 unsigned InBits = UnpackFromEltSize * 8; 5075 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5076 SystemZ::VectorBits / InBits); 5077 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5078 unsigned OutBits = InBits * 2; 5079 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5080 SystemZ::VectorBits / OutBits); 5081 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5082 } 5083 5084 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5085 static bool isScalarToVector(SDValue Op) { 5086 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5087 if (!Op.getOperand(I).isUndef()) 5088 return false; 5089 return true; 5090 } 5091 5092 // Return a vector of type VT that contains Value in the first element. 5093 // The other elements don't matter. 5094 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5095 SDValue Value) { 5096 // If we have a constant, replicate it to all elements and let the 5097 // BUILD_VECTOR lowering take care of it. 5098 if (Value.getOpcode() == ISD::Constant || 5099 Value.getOpcode() == ISD::ConstantFP) { 5100 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5101 return DAG.getBuildVector(VT, DL, Ops); 5102 } 5103 if (Value.isUndef()) 5104 return DAG.getUNDEF(VT); 5105 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5106 } 5107 5108 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5109 // element 1. Used for cases in which replication is cheap. 5110 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5111 SDValue Op0, SDValue Op1) { 5112 if (Op0.isUndef()) { 5113 if (Op1.isUndef()) 5114 return DAG.getUNDEF(VT); 5115 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5116 } 5117 if (Op1.isUndef()) 5118 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5119 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5120 buildScalarToVector(DAG, DL, VT, Op0), 5121 buildScalarToVector(DAG, DL, VT, Op1)); 5122 } 5123 5124 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5125 // vector for them. 5126 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5127 SDValue Op1) { 5128 if (Op0.isUndef() && Op1.isUndef()) 5129 return DAG.getUNDEF(MVT::v2i64); 5130 // If one of the two inputs is undefined then replicate the other one, 5131 // in order to avoid using another register unnecessarily. 5132 if (Op0.isUndef()) 5133 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5134 else if (Op1.isUndef()) 5135 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5136 else { 5137 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5138 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5139 } 5140 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5141 } 5142 5143 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5144 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5145 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5146 // would benefit from this representation and return it if so. 5147 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5148 BuildVectorSDNode *BVN) { 5149 EVT VT = BVN->getValueType(0); 5150 unsigned NumElements = VT.getVectorNumElements(); 5151 5152 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5153 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5154 // need a BUILD_VECTOR, add an additional placeholder operand for that 5155 // BUILD_VECTOR and store its operands in ResidueOps. 5156 GeneralShuffle GS(VT); 5157 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5158 bool FoundOne = false; 5159 for (unsigned I = 0; I < NumElements; ++I) { 5160 SDValue Op = BVN->getOperand(I); 5161 if (Op.getOpcode() == ISD::TRUNCATE) 5162 Op = Op.getOperand(0); 5163 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5164 Op.getOperand(1).getOpcode() == ISD::Constant) { 5165 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5166 if (!GS.add(Op.getOperand(0), Elem)) 5167 return SDValue(); 5168 FoundOne = true; 5169 } else if (Op.isUndef()) { 5170 GS.addUndef(); 5171 } else { 5172 if (!GS.add(SDValue(), ResidueOps.size())) 5173 return SDValue(); 5174 ResidueOps.push_back(BVN->getOperand(I)); 5175 } 5176 } 5177 5178 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5179 if (!FoundOne) 5180 return SDValue(); 5181 5182 // Create the BUILD_VECTOR for the remaining elements, if any. 5183 if (!ResidueOps.empty()) { 5184 while (ResidueOps.size() < NumElements) 5185 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5186 for (auto &Op : GS.Ops) { 5187 if (!Op.getNode()) { 5188 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5189 break; 5190 } 5191 } 5192 } 5193 return GS.getNode(DAG, SDLoc(BVN)); 5194 } 5195 5196 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5197 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5198 return true; 5199 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5200 return true; 5201 return false; 5202 } 5203 5204 // Combine GPR scalar values Elems into a vector of type VT. 5205 SDValue 5206 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5207 SmallVectorImpl<SDValue> &Elems) const { 5208 // See whether there is a single replicated value. 5209 SDValue Single; 5210 unsigned int NumElements = Elems.size(); 5211 unsigned int Count = 0; 5212 for (auto Elem : Elems) { 5213 if (!Elem.isUndef()) { 5214 if (!Single.getNode()) 5215 Single = Elem; 5216 else if (Elem != Single) { 5217 Single = SDValue(); 5218 break; 5219 } 5220 Count += 1; 5221 } 5222 } 5223 // There are three cases here: 5224 // 5225 // - if the only defined element is a loaded one, the best sequence 5226 // is a replicating load. 5227 // 5228 // - otherwise, if the only defined element is an i64 value, we will 5229 // end up with the same VLVGP sequence regardless of whether we short-cut 5230 // for replication or fall through to the later code. 5231 // 5232 // - otherwise, if the only defined element is an i32 or smaller value, 5233 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5234 // This is only a win if the single defined element is used more than once. 5235 // In other cases we're better off using a single VLVGx. 5236 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5237 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5238 5239 // If all elements are loads, use VLREP/VLEs (below). 5240 bool AllLoads = true; 5241 for (auto Elem : Elems) 5242 if (!isVectorElementLoad(Elem)) { 5243 AllLoads = false; 5244 break; 5245 } 5246 5247 // The best way of building a v2i64 from two i64s is to use VLVGP. 5248 if (VT == MVT::v2i64 && !AllLoads) 5249 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5250 5251 // Use a 64-bit merge high to combine two doubles. 5252 if (VT == MVT::v2f64 && !AllLoads) 5253 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5254 5255 // Build v4f32 values directly from the FPRs: 5256 // 5257 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5258 // V V VMRHF 5259 // <ABxx> <CDxx> 5260 // V VMRHG 5261 // <ABCD> 5262 if (VT == MVT::v4f32 && !AllLoads) { 5263 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5264 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5265 // Avoid unnecessary undefs by reusing the other operand. 5266 if (Op01.isUndef()) 5267 Op01 = Op23; 5268 else if (Op23.isUndef()) 5269 Op23 = Op01; 5270 // Merging identical replications is a no-op. 5271 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5272 return Op01; 5273 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5274 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5275 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5276 DL, MVT::v2i64, Op01, Op23); 5277 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5278 } 5279 5280 // Collect the constant terms. 5281 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5282 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5283 5284 unsigned NumConstants = 0; 5285 for (unsigned I = 0; I < NumElements; ++I) { 5286 SDValue Elem = Elems[I]; 5287 if (Elem.getOpcode() == ISD::Constant || 5288 Elem.getOpcode() == ISD::ConstantFP) { 5289 NumConstants += 1; 5290 Constants[I] = Elem; 5291 Done[I] = true; 5292 } 5293 } 5294 // If there was at least one constant, fill in the other elements of 5295 // Constants with undefs to get a full vector constant and use that 5296 // as the starting point. 5297 SDValue Result; 5298 SDValue ReplicatedVal; 5299 if (NumConstants > 0) { 5300 for (unsigned I = 0; I < NumElements; ++I) 5301 if (!Constants[I].getNode()) 5302 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5303 Result = DAG.getBuildVector(VT, DL, Constants); 5304 } else { 5305 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5306 // avoid a false dependency on any previous contents of the vector 5307 // register. 5308 5309 // Use a VLREP if at least one element is a load. Make sure to replicate 5310 // the load with the most elements having its value. 5311 std::map<const SDNode*, unsigned> UseCounts; 5312 SDNode *LoadMaxUses = nullptr; 5313 for (unsigned I = 0; I < NumElements; ++I) 5314 if (isVectorElementLoad(Elems[I])) { 5315 SDNode *Ld = Elems[I].getNode(); 5316 UseCounts[Ld]++; 5317 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5318 LoadMaxUses = Ld; 5319 } 5320 if (LoadMaxUses != nullptr) { 5321 ReplicatedVal = SDValue(LoadMaxUses, 0); 5322 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5323 } else { 5324 // Try to use VLVGP. 5325 unsigned I1 = NumElements / 2 - 1; 5326 unsigned I2 = NumElements - 1; 5327 bool Def1 = !Elems[I1].isUndef(); 5328 bool Def2 = !Elems[I2].isUndef(); 5329 if (Def1 || Def2) { 5330 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5331 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5332 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5333 joinDwords(DAG, DL, Elem1, Elem2)); 5334 Done[I1] = true; 5335 Done[I2] = true; 5336 } else 5337 Result = DAG.getUNDEF(VT); 5338 } 5339 } 5340 5341 // Use VLVGx to insert the other elements. 5342 for (unsigned I = 0; I < NumElements; ++I) 5343 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5344 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5345 DAG.getConstant(I, DL, MVT::i32)); 5346 return Result; 5347 } 5348 5349 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5350 SelectionDAG &DAG) const { 5351 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5352 SDLoc DL(Op); 5353 EVT VT = Op.getValueType(); 5354 5355 if (BVN->isConstant()) { 5356 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5357 return Op; 5358 5359 // Fall back to loading it from memory. 5360 return SDValue(); 5361 } 5362 5363 // See if we should use shuffles to construct the vector from other vectors. 5364 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5365 return Res; 5366 5367 // Detect SCALAR_TO_VECTOR conversions. 5368 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5369 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5370 5371 // Otherwise use buildVector to build the vector up from GPRs. 5372 unsigned NumElements = Op.getNumOperands(); 5373 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5374 for (unsigned I = 0; I < NumElements; ++I) 5375 Ops[I] = Op.getOperand(I); 5376 return buildVector(DAG, DL, VT, Ops); 5377 } 5378 5379 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5380 SelectionDAG &DAG) const { 5381 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5382 SDLoc DL(Op); 5383 EVT VT = Op.getValueType(); 5384 unsigned NumElements = VT.getVectorNumElements(); 5385 5386 if (VSN->isSplat()) { 5387 SDValue Op0 = Op.getOperand(0); 5388 unsigned Index = VSN->getSplatIndex(); 5389 assert(Index < VT.getVectorNumElements() && 5390 "Splat index should be defined and in first operand"); 5391 // See whether the value we're splatting is directly available as a scalar. 5392 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5393 Op0.getOpcode() == ISD::BUILD_VECTOR) 5394 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5395 // Otherwise keep it as a vector-to-vector operation. 5396 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5397 DAG.getTargetConstant(Index, DL, MVT::i32)); 5398 } 5399 5400 GeneralShuffle GS(VT); 5401 for (unsigned I = 0; I < NumElements; ++I) { 5402 int Elt = VSN->getMaskElt(I); 5403 if (Elt < 0) 5404 GS.addUndef(); 5405 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5406 unsigned(Elt) % NumElements)) 5407 return SDValue(); 5408 } 5409 return GS.getNode(DAG, SDLoc(VSN)); 5410 } 5411 5412 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5413 SelectionDAG &DAG) const { 5414 SDLoc DL(Op); 5415 // Just insert the scalar into element 0 of an undefined vector. 5416 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5417 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5418 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5419 } 5420 5421 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5422 SelectionDAG &DAG) const { 5423 // Handle insertions of floating-point values. 5424 SDLoc DL(Op); 5425 SDValue Op0 = Op.getOperand(0); 5426 SDValue Op1 = Op.getOperand(1); 5427 SDValue Op2 = Op.getOperand(2); 5428 EVT VT = Op.getValueType(); 5429 5430 // Insertions into constant indices of a v2f64 can be done using VPDI. 5431 // However, if the inserted value is a bitcast or a constant then it's 5432 // better to use GPRs, as below. 5433 if (VT == MVT::v2f64 && 5434 Op1.getOpcode() != ISD::BITCAST && 5435 Op1.getOpcode() != ISD::ConstantFP && 5436 Op2.getOpcode() == ISD::Constant) { 5437 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5438 unsigned Mask = VT.getVectorNumElements() - 1; 5439 if (Index <= Mask) 5440 return Op; 5441 } 5442 5443 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5444 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5445 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5446 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5447 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5448 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5449 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5450 } 5451 5452 SDValue 5453 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5454 SelectionDAG &DAG) const { 5455 // Handle extractions of floating-point values. 5456 SDLoc DL(Op); 5457 SDValue Op0 = Op.getOperand(0); 5458 SDValue Op1 = Op.getOperand(1); 5459 EVT VT = Op.getValueType(); 5460 EVT VecVT = Op0.getValueType(); 5461 5462 // Extractions of constant indices can be done directly. 5463 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5464 uint64_t Index = CIndexN->getZExtValue(); 5465 unsigned Mask = VecVT.getVectorNumElements() - 1; 5466 if (Index <= Mask) 5467 return Op; 5468 } 5469 5470 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5471 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5472 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5473 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5474 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5475 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5476 } 5477 5478 SDValue SystemZTargetLowering:: 5479 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5480 SDValue PackedOp = Op.getOperand(0); 5481 EVT OutVT = Op.getValueType(); 5482 EVT InVT = PackedOp.getValueType(); 5483 unsigned ToBits = OutVT.getScalarSizeInBits(); 5484 unsigned FromBits = InVT.getScalarSizeInBits(); 5485 do { 5486 FromBits *= 2; 5487 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5488 SystemZ::VectorBits / FromBits); 5489 PackedOp = 5490 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5491 } while (FromBits != ToBits); 5492 return PackedOp; 5493 } 5494 5495 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5496 SDValue SystemZTargetLowering:: 5497 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5498 SDValue PackedOp = Op.getOperand(0); 5499 SDLoc DL(Op); 5500 EVT OutVT = Op.getValueType(); 5501 EVT InVT = PackedOp.getValueType(); 5502 unsigned InNumElts = InVT.getVectorNumElements(); 5503 unsigned OutNumElts = OutVT.getVectorNumElements(); 5504 unsigned NumInPerOut = InNumElts / OutNumElts; 5505 5506 SDValue ZeroVec = 5507 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5508 5509 SmallVector<int, 16> Mask(InNumElts); 5510 unsigned ZeroVecElt = InNumElts; 5511 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5512 unsigned MaskElt = PackedElt * NumInPerOut; 5513 unsigned End = MaskElt + NumInPerOut - 1; 5514 for (; MaskElt < End; MaskElt++) 5515 Mask[MaskElt] = ZeroVecElt++; 5516 Mask[MaskElt] = PackedElt; 5517 } 5518 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5519 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5520 } 5521 5522 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5523 unsigned ByScalar) const { 5524 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5525 SDValue Op0 = Op.getOperand(0); 5526 SDValue Op1 = Op.getOperand(1); 5527 SDLoc DL(Op); 5528 EVT VT = Op.getValueType(); 5529 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5530 5531 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5532 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5533 APInt SplatBits, SplatUndef; 5534 unsigned SplatBitSize; 5535 bool HasAnyUndefs; 5536 // Check for constant splats. Use ElemBitSize as the minimum element 5537 // width and reject splats that need wider elements. 5538 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5539 ElemBitSize, true) && 5540 SplatBitSize == ElemBitSize) { 5541 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5542 DL, MVT::i32); 5543 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5544 } 5545 // Check for variable splats. 5546 BitVector UndefElements; 5547 SDValue Splat = BVN->getSplatValue(&UndefElements); 5548 if (Splat) { 5549 // Since i32 is the smallest legal type, we either need a no-op 5550 // or a truncation. 5551 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5552 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5553 } 5554 } 5555 5556 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5557 // and the shift amount is directly available in a GPR. 5558 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5559 if (VSN->isSplat()) { 5560 SDValue VSNOp0 = VSN->getOperand(0); 5561 unsigned Index = VSN->getSplatIndex(); 5562 assert(Index < VT.getVectorNumElements() && 5563 "Splat index should be defined and in first operand"); 5564 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5565 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5566 // Since i32 is the smallest legal type, we either need a no-op 5567 // or a truncation. 5568 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5569 VSNOp0.getOperand(Index)); 5570 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5571 } 5572 } 5573 } 5574 5575 // Otherwise just treat the current form as legal. 5576 return Op; 5577 } 5578 5579 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5580 SelectionDAG &DAG) const { 5581 switch (Op.getOpcode()) { 5582 case ISD::FRAMEADDR: 5583 return lowerFRAMEADDR(Op, DAG); 5584 case ISD::RETURNADDR: 5585 return lowerRETURNADDR(Op, DAG); 5586 case ISD::BR_CC: 5587 return lowerBR_CC(Op, DAG); 5588 case ISD::SELECT_CC: 5589 return lowerSELECT_CC(Op, DAG); 5590 case ISD::SETCC: 5591 return lowerSETCC(Op, DAG); 5592 case ISD::STRICT_FSETCC: 5593 return lowerSTRICT_FSETCC(Op, DAG, false); 5594 case ISD::STRICT_FSETCCS: 5595 return lowerSTRICT_FSETCC(Op, DAG, true); 5596 case ISD::GlobalAddress: 5597 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5598 case ISD::GlobalTLSAddress: 5599 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5600 case ISD::BlockAddress: 5601 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5602 case ISD::JumpTable: 5603 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5604 case ISD::ConstantPool: 5605 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5606 case ISD::BITCAST: 5607 return lowerBITCAST(Op, DAG); 5608 case ISD::VASTART: 5609 return lowerVASTART(Op, DAG); 5610 case ISD::VACOPY: 5611 return lowerVACOPY(Op, DAG); 5612 case ISD::DYNAMIC_STACKALLOC: 5613 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5614 case ISD::GET_DYNAMIC_AREA_OFFSET: 5615 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5616 case ISD::SMUL_LOHI: 5617 return lowerSMUL_LOHI(Op, DAG); 5618 case ISD::UMUL_LOHI: 5619 return lowerUMUL_LOHI(Op, DAG); 5620 case ISD::SDIVREM: 5621 return lowerSDIVREM(Op, DAG); 5622 case ISD::UDIVREM: 5623 return lowerUDIVREM(Op, DAG); 5624 case ISD::SADDO: 5625 case ISD::SSUBO: 5626 case ISD::UADDO: 5627 case ISD::USUBO: 5628 return lowerXALUO(Op, DAG); 5629 case ISD::ADDCARRY: 5630 case ISD::SUBCARRY: 5631 return lowerADDSUBCARRY(Op, DAG); 5632 case ISD::OR: 5633 return lowerOR(Op, DAG); 5634 case ISD::CTPOP: 5635 return lowerCTPOP(Op, DAG); 5636 case ISD::ATOMIC_FENCE: 5637 return lowerATOMIC_FENCE(Op, DAG); 5638 case ISD::ATOMIC_SWAP: 5639 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5640 case ISD::ATOMIC_STORE: 5641 return lowerATOMIC_STORE(Op, DAG); 5642 case ISD::ATOMIC_LOAD: 5643 return lowerATOMIC_LOAD(Op, DAG); 5644 case ISD::ATOMIC_LOAD_ADD: 5645 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5646 case ISD::ATOMIC_LOAD_SUB: 5647 return lowerATOMIC_LOAD_SUB(Op, DAG); 5648 case ISD::ATOMIC_LOAD_AND: 5649 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5650 case ISD::ATOMIC_LOAD_OR: 5651 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5652 case ISD::ATOMIC_LOAD_XOR: 5653 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5654 case ISD::ATOMIC_LOAD_NAND: 5655 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5656 case ISD::ATOMIC_LOAD_MIN: 5657 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5658 case ISD::ATOMIC_LOAD_MAX: 5659 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5660 case ISD::ATOMIC_LOAD_UMIN: 5661 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5662 case ISD::ATOMIC_LOAD_UMAX: 5663 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5664 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5665 return lowerATOMIC_CMP_SWAP(Op, DAG); 5666 case ISD::STACKSAVE: 5667 return lowerSTACKSAVE(Op, DAG); 5668 case ISD::STACKRESTORE: 5669 return lowerSTACKRESTORE(Op, DAG); 5670 case ISD::PREFETCH: 5671 return lowerPREFETCH(Op, DAG); 5672 case ISD::INTRINSIC_W_CHAIN: 5673 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5674 case ISD::INTRINSIC_WO_CHAIN: 5675 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5676 case ISD::BUILD_VECTOR: 5677 return lowerBUILD_VECTOR(Op, DAG); 5678 case ISD::VECTOR_SHUFFLE: 5679 return lowerVECTOR_SHUFFLE(Op, DAG); 5680 case ISD::SCALAR_TO_VECTOR: 5681 return lowerSCALAR_TO_VECTOR(Op, DAG); 5682 case ISD::INSERT_VECTOR_ELT: 5683 return lowerINSERT_VECTOR_ELT(Op, DAG); 5684 case ISD::EXTRACT_VECTOR_ELT: 5685 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5686 case ISD::SIGN_EXTEND_VECTOR_INREG: 5687 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5688 case ISD::ZERO_EXTEND_VECTOR_INREG: 5689 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5690 case ISD::SHL: 5691 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5692 case ISD::SRL: 5693 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5694 case ISD::SRA: 5695 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5696 default: 5697 llvm_unreachable("Unexpected node to lower"); 5698 } 5699 } 5700 5701 // Lower operations with invalid operand or result types (currently used 5702 // only for 128-bit integer types). 5703 void 5704 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5705 SmallVectorImpl<SDValue> &Results, 5706 SelectionDAG &DAG) const { 5707 switch (N->getOpcode()) { 5708 case ISD::ATOMIC_LOAD: { 5709 SDLoc DL(N); 5710 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5711 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5712 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5713 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5714 DL, Tys, Ops, MVT::i128, MMO); 5715 Results.push_back(lowerGR128ToI128(DAG, Res)); 5716 Results.push_back(Res.getValue(1)); 5717 break; 5718 } 5719 case ISD::ATOMIC_STORE: { 5720 SDLoc DL(N); 5721 SDVTList Tys = DAG.getVTList(MVT::Other); 5722 SDValue Ops[] = { N->getOperand(0), 5723 lowerI128ToGR128(DAG, N->getOperand(2)), 5724 N->getOperand(1) }; 5725 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5726 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5727 DL, Tys, Ops, MVT::i128, MMO); 5728 // We have to enforce sequential consistency by performing a 5729 // serialization operation after the store. 5730 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 5731 AtomicOrdering::SequentiallyConsistent) 5732 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5733 MVT::Other, Res), 0); 5734 Results.push_back(Res); 5735 break; 5736 } 5737 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5738 SDLoc DL(N); 5739 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5740 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5741 lowerI128ToGR128(DAG, N->getOperand(2)), 5742 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5743 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5744 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5745 DL, Tys, Ops, MVT::i128, MMO); 5746 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5747 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5748 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5749 Results.push_back(lowerGR128ToI128(DAG, Res)); 5750 Results.push_back(Success); 5751 Results.push_back(Res.getValue(2)); 5752 break; 5753 } 5754 case ISD::BITCAST: { 5755 SDValue Src = N->getOperand(0); 5756 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 5757 !useSoftFloat()) { 5758 SDLoc DL(N); 5759 SDValue Lo, Hi; 5760 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 5761 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 5762 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5763 DAG.getConstant(1, DL, MVT::i32)); 5764 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5765 DAG.getConstant(0, DL, MVT::i32)); 5766 } else { 5767 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 5768 "Unrecognized register class for f128."); 5769 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5770 DL, MVT::f64, Src); 5771 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5772 DL, MVT::f64, Src); 5773 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 5774 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 5775 } 5776 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 5777 } 5778 break; 5779 } 5780 default: 5781 llvm_unreachable("Unexpected node to lower"); 5782 } 5783 } 5784 5785 void 5786 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5787 SmallVectorImpl<SDValue> &Results, 5788 SelectionDAG &DAG) const { 5789 return LowerOperationWrapper(N, Results, DAG); 5790 } 5791 5792 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5793 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5794 switch ((SystemZISD::NodeType)Opcode) { 5795 case SystemZISD::FIRST_NUMBER: break; 5796 OPCODE(RET_FLAG); 5797 OPCODE(CALL); 5798 OPCODE(SIBCALL); 5799 OPCODE(TLS_GDCALL); 5800 OPCODE(TLS_LDCALL); 5801 OPCODE(PCREL_WRAPPER); 5802 OPCODE(PCREL_OFFSET); 5803 OPCODE(ICMP); 5804 OPCODE(FCMP); 5805 OPCODE(STRICT_FCMP); 5806 OPCODE(STRICT_FCMPS); 5807 OPCODE(TM); 5808 OPCODE(BR_CCMASK); 5809 OPCODE(SELECT_CCMASK); 5810 OPCODE(ADJDYNALLOC); 5811 OPCODE(PROBED_ALLOCA); 5812 OPCODE(POPCNT); 5813 OPCODE(SMUL_LOHI); 5814 OPCODE(UMUL_LOHI); 5815 OPCODE(SDIVREM); 5816 OPCODE(UDIVREM); 5817 OPCODE(SADDO); 5818 OPCODE(SSUBO); 5819 OPCODE(UADDO); 5820 OPCODE(USUBO); 5821 OPCODE(ADDCARRY); 5822 OPCODE(SUBCARRY); 5823 OPCODE(GET_CCMASK); 5824 OPCODE(MVC); 5825 OPCODE(NC); 5826 OPCODE(OC); 5827 OPCODE(XC); 5828 OPCODE(CLC); 5829 OPCODE(MEMSET_MVC); 5830 OPCODE(STPCPY); 5831 OPCODE(STRCMP); 5832 OPCODE(SEARCH_STRING); 5833 OPCODE(IPM); 5834 OPCODE(MEMBARRIER); 5835 OPCODE(TBEGIN); 5836 OPCODE(TBEGIN_NOFLOAT); 5837 OPCODE(TEND); 5838 OPCODE(BYTE_MASK); 5839 OPCODE(ROTATE_MASK); 5840 OPCODE(REPLICATE); 5841 OPCODE(JOIN_DWORDS); 5842 OPCODE(SPLAT); 5843 OPCODE(MERGE_HIGH); 5844 OPCODE(MERGE_LOW); 5845 OPCODE(SHL_DOUBLE); 5846 OPCODE(PERMUTE_DWORDS); 5847 OPCODE(PERMUTE); 5848 OPCODE(PACK); 5849 OPCODE(PACKS_CC); 5850 OPCODE(PACKLS_CC); 5851 OPCODE(UNPACK_HIGH); 5852 OPCODE(UNPACKL_HIGH); 5853 OPCODE(UNPACK_LOW); 5854 OPCODE(UNPACKL_LOW); 5855 OPCODE(VSHL_BY_SCALAR); 5856 OPCODE(VSRL_BY_SCALAR); 5857 OPCODE(VSRA_BY_SCALAR); 5858 OPCODE(VSUM); 5859 OPCODE(VICMPE); 5860 OPCODE(VICMPH); 5861 OPCODE(VICMPHL); 5862 OPCODE(VICMPES); 5863 OPCODE(VICMPHS); 5864 OPCODE(VICMPHLS); 5865 OPCODE(VFCMPE); 5866 OPCODE(STRICT_VFCMPE); 5867 OPCODE(STRICT_VFCMPES); 5868 OPCODE(VFCMPH); 5869 OPCODE(STRICT_VFCMPH); 5870 OPCODE(STRICT_VFCMPHS); 5871 OPCODE(VFCMPHE); 5872 OPCODE(STRICT_VFCMPHE); 5873 OPCODE(STRICT_VFCMPHES); 5874 OPCODE(VFCMPES); 5875 OPCODE(VFCMPHS); 5876 OPCODE(VFCMPHES); 5877 OPCODE(VFTCI); 5878 OPCODE(VEXTEND); 5879 OPCODE(STRICT_VEXTEND); 5880 OPCODE(VROUND); 5881 OPCODE(STRICT_VROUND); 5882 OPCODE(VTM); 5883 OPCODE(VFAE_CC); 5884 OPCODE(VFAEZ_CC); 5885 OPCODE(VFEE_CC); 5886 OPCODE(VFEEZ_CC); 5887 OPCODE(VFENE_CC); 5888 OPCODE(VFENEZ_CC); 5889 OPCODE(VISTR_CC); 5890 OPCODE(VSTRC_CC); 5891 OPCODE(VSTRCZ_CC); 5892 OPCODE(VSTRS_CC); 5893 OPCODE(VSTRSZ_CC); 5894 OPCODE(TDC); 5895 OPCODE(ATOMIC_SWAPW); 5896 OPCODE(ATOMIC_LOADW_ADD); 5897 OPCODE(ATOMIC_LOADW_SUB); 5898 OPCODE(ATOMIC_LOADW_AND); 5899 OPCODE(ATOMIC_LOADW_OR); 5900 OPCODE(ATOMIC_LOADW_XOR); 5901 OPCODE(ATOMIC_LOADW_NAND); 5902 OPCODE(ATOMIC_LOADW_MIN); 5903 OPCODE(ATOMIC_LOADW_MAX); 5904 OPCODE(ATOMIC_LOADW_UMIN); 5905 OPCODE(ATOMIC_LOADW_UMAX); 5906 OPCODE(ATOMIC_CMP_SWAPW); 5907 OPCODE(ATOMIC_CMP_SWAP); 5908 OPCODE(ATOMIC_LOAD_128); 5909 OPCODE(ATOMIC_STORE_128); 5910 OPCODE(ATOMIC_CMP_SWAP_128); 5911 OPCODE(LRV); 5912 OPCODE(STRV); 5913 OPCODE(VLER); 5914 OPCODE(VSTER); 5915 OPCODE(PREFETCH); 5916 } 5917 return nullptr; 5918 #undef OPCODE 5919 } 5920 5921 // Return true if VT is a vector whose elements are a whole number of bytes 5922 // in width. Also check for presence of vector support. 5923 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5924 if (!Subtarget.hasVector()) 5925 return false; 5926 5927 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5928 } 5929 5930 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5931 // producing a result of type ResVT. Op is a possibly bitcast version 5932 // of the input vector and Index is the index (based on type VecVT) that 5933 // should be extracted. Return the new extraction if a simplification 5934 // was possible or if Force is true. 5935 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5936 EVT VecVT, SDValue Op, 5937 unsigned Index, 5938 DAGCombinerInfo &DCI, 5939 bool Force) const { 5940 SelectionDAG &DAG = DCI.DAG; 5941 5942 // The number of bytes being extracted. 5943 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5944 5945 for (;;) { 5946 unsigned Opcode = Op.getOpcode(); 5947 if (Opcode == ISD::BITCAST) 5948 // Look through bitcasts. 5949 Op = Op.getOperand(0); 5950 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5951 canTreatAsByteVector(Op.getValueType())) { 5952 // Get a VPERM-like permute mask and see whether the bytes covered 5953 // by the extracted element are a contiguous sequence from one 5954 // source operand. 5955 SmallVector<int, SystemZ::VectorBytes> Bytes; 5956 if (!getVPermMask(Op, Bytes)) 5957 break; 5958 int First; 5959 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5960 BytesPerElement, First)) 5961 break; 5962 if (First < 0) 5963 return DAG.getUNDEF(ResVT); 5964 // Make sure the contiguous sequence starts at a multiple of the 5965 // original element size. 5966 unsigned Byte = unsigned(First) % Bytes.size(); 5967 if (Byte % BytesPerElement != 0) 5968 break; 5969 // We can get the extracted value directly from an input. 5970 Index = Byte / BytesPerElement; 5971 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5972 Force = true; 5973 } else if (Opcode == ISD::BUILD_VECTOR && 5974 canTreatAsByteVector(Op.getValueType())) { 5975 // We can only optimize this case if the BUILD_VECTOR elements are 5976 // at least as wide as the extracted value. 5977 EVT OpVT = Op.getValueType(); 5978 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5979 if (OpBytesPerElement < BytesPerElement) 5980 break; 5981 // Make sure that the least-significant bit of the extracted value 5982 // is the least significant bit of an input. 5983 unsigned End = (Index + 1) * BytesPerElement; 5984 if (End % OpBytesPerElement != 0) 5985 break; 5986 // We're extracting the low part of one operand of the BUILD_VECTOR. 5987 Op = Op.getOperand(End / OpBytesPerElement - 1); 5988 if (!Op.getValueType().isInteger()) { 5989 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5990 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5991 DCI.AddToWorklist(Op.getNode()); 5992 } 5993 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5994 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5995 if (VT != ResVT) { 5996 DCI.AddToWorklist(Op.getNode()); 5997 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5998 } 5999 return Op; 6000 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6001 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6002 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6003 canTreatAsByteVector(Op.getValueType()) && 6004 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6005 // Make sure that only the unextended bits are significant. 6006 EVT ExtVT = Op.getValueType(); 6007 EVT OpVT = Op.getOperand(0).getValueType(); 6008 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6009 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6010 unsigned Byte = Index * BytesPerElement; 6011 unsigned SubByte = Byte % ExtBytesPerElement; 6012 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6013 if (SubByte < MinSubByte || 6014 SubByte + BytesPerElement > ExtBytesPerElement) 6015 break; 6016 // Get the byte offset of the unextended element 6017 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6018 // ...then add the byte offset relative to that element. 6019 Byte += SubByte - MinSubByte; 6020 if (Byte % BytesPerElement != 0) 6021 break; 6022 Op = Op.getOperand(0); 6023 Index = Byte / BytesPerElement; 6024 Force = true; 6025 } else 6026 break; 6027 } 6028 if (Force) { 6029 if (Op.getValueType() != VecVT) { 6030 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6031 DCI.AddToWorklist(Op.getNode()); 6032 } 6033 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6034 DAG.getConstant(Index, DL, MVT::i32)); 6035 } 6036 return SDValue(); 6037 } 6038 6039 // Optimize vector operations in scalar value Op on the basis that Op 6040 // is truncated to TruncVT. 6041 SDValue SystemZTargetLowering::combineTruncateExtract( 6042 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6043 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6044 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6045 // of type TruncVT. 6046 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6047 TruncVT.getSizeInBits() % 8 == 0) { 6048 SDValue Vec = Op.getOperand(0); 6049 EVT VecVT = Vec.getValueType(); 6050 if (canTreatAsByteVector(VecVT)) { 6051 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6052 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6053 unsigned TruncBytes = TruncVT.getStoreSize(); 6054 if (BytesPerElement % TruncBytes == 0) { 6055 // Calculate the value of Y' in the above description. We are 6056 // splitting the original elements into Scale equal-sized pieces 6057 // and for truncation purposes want the last (least-significant) 6058 // of these pieces for IndexN. This is easiest to do by calculating 6059 // the start index of the following element and then subtracting 1. 6060 unsigned Scale = BytesPerElement / TruncBytes; 6061 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6062 6063 // Defer the creation of the bitcast from X to combineExtract, 6064 // which might be able to optimize the extraction. 6065 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6066 VecVT.getStoreSize() / TruncBytes); 6067 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6068 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6069 } 6070 } 6071 } 6072 } 6073 return SDValue(); 6074 } 6075 6076 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6077 SDNode *N, DAGCombinerInfo &DCI) const { 6078 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6079 SelectionDAG &DAG = DCI.DAG; 6080 SDValue N0 = N->getOperand(0); 6081 EVT VT = N->getValueType(0); 6082 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6083 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6084 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6085 if (TrueOp && FalseOp) { 6086 SDLoc DL(N0); 6087 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6088 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6089 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6090 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6091 // If N0 has multiple uses, change other uses as well. 6092 if (!N0.hasOneUse()) { 6093 SDValue TruncSelect = 6094 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6095 DCI.CombineTo(N0.getNode(), TruncSelect); 6096 } 6097 return NewSelect; 6098 } 6099 } 6100 return SDValue(); 6101 } 6102 6103 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6104 SDNode *N, DAGCombinerInfo &DCI) const { 6105 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6106 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6107 // into (select_cc LHS, RHS, -1, 0, COND) 6108 SelectionDAG &DAG = DCI.DAG; 6109 SDValue N0 = N->getOperand(0); 6110 EVT VT = N->getValueType(0); 6111 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6112 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6113 N0 = N0.getOperand(0); 6114 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6115 SDLoc DL(N0); 6116 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6117 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6118 N0.getOperand(2) }; 6119 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6120 } 6121 return SDValue(); 6122 } 6123 6124 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6125 SDNode *N, DAGCombinerInfo &DCI) const { 6126 // Convert (sext (ashr (shl X, C1), C2)) to 6127 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6128 // cheap as narrower ones. 6129 SelectionDAG &DAG = DCI.DAG; 6130 SDValue N0 = N->getOperand(0); 6131 EVT VT = N->getValueType(0); 6132 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6133 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6134 SDValue Inner = N0.getOperand(0); 6135 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6136 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6137 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6138 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6139 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6140 EVT ShiftVT = N0.getOperand(1).getValueType(); 6141 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6142 Inner.getOperand(0)); 6143 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6144 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6145 ShiftVT)); 6146 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6147 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6148 } 6149 } 6150 } 6151 return SDValue(); 6152 } 6153 6154 SDValue SystemZTargetLowering::combineMERGE( 6155 SDNode *N, DAGCombinerInfo &DCI) const { 6156 SelectionDAG &DAG = DCI.DAG; 6157 unsigned Opcode = N->getOpcode(); 6158 SDValue Op0 = N->getOperand(0); 6159 SDValue Op1 = N->getOperand(1); 6160 if (Op0.getOpcode() == ISD::BITCAST) 6161 Op0 = Op0.getOperand(0); 6162 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6163 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6164 // for v4f32. 6165 if (Op1 == N->getOperand(0)) 6166 return Op1; 6167 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6168 EVT VT = Op1.getValueType(); 6169 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6170 if (ElemBytes <= 4) { 6171 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6172 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6173 EVT InVT = VT.changeVectorElementTypeToInteger(); 6174 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6175 SystemZ::VectorBytes / ElemBytes / 2); 6176 if (VT != InVT) { 6177 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6178 DCI.AddToWorklist(Op1.getNode()); 6179 } 6180 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6181 DCI.AddToWorklist(Op.getNode()); 6182 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6183 } 6184 } 6185 return SDValue(); 6186 } 6187 6188 SDValue SystemZTargetLowering::combineLOAD( 6189 SDNode *N, DAGCombinerInfo &DCI) const { 6190 SelectionDAG &DAG = DCI.DAG; 6191 EVT LdVT = N->getValueType(0); 6192 if (LdVT.isVector() || LdVT.isInteger()) 6193 return SDValue(); 6194 // Transform a scalar load that is REPLICATEd as well as having other 6195 // use(s) to the form where the other use(s) use the first element of the 6196 // REPLICATE instead of the load. Otherwise instruction selection will not 6197 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6198 // point loads. 6199 6200 SDValue Replicate; 6201 SmallVector<SDNode*, 8> OtherUses; 6202 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6203 UI != UE; ++UI) { 6204 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6205 if (Replicate) 6206 return SDValue(); // Should never happen 6207 Replicate = SDValue(*UI, 0); 6208 } 6209 else if (UI.getUse().getResNo() == 0) 6210 OtherUses.push_back(*UI); 6211 } 6212 if (!Replicate || OtherUses.empty()) 6213 return SDValue(); 6214 6215 SDLoc DL(N); 6216 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6217 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6218 // Update uses of the loaded Value while preserving old chains. 6219 for (SDNode *U : OtherUses) { 6220 SmallVector<SDValue, 8> Ops; 6221 for (SDValue Op : U->ops()) 6222 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6223 DAG.UpdateNodeOperands(U, Ops); 6224 } 6225 return SDValue(N, 0); 6226 } 6227 6228 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6229 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6230 return true; 6231 if (Subtarget.hasVectorEnhancements2()) 6232 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6233 return true; 6234 return false; 6235 } 6236 6237 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6238 if (!VT.isVector() || !VT.isSimple() || 6239 VT.getSizeInBits() != 128 || 6240 VT.getScalarSizeInBits() % 8 != 0) 6241 return false; 6242 6243 unsigned NumElts = VT.getVectorNumElements(); 6244 for (unsigned i = 0; i < NumElts; ++i) { 6245 if (M[i] < 0) continue; // ignore UNDEF indices 6246 if ((unsigned) M[i] != NumElts - 1 - i) 6247 return false; 6248 } 6249 6250 return true; 6251 } 6252 6253 SDValue SystemZTargetLowering::combineSTORE( 6254 SDNode *N, DAGCombinerInfo &DCI) const { 6255 SelectionDAG &DAG = DCI.DAG; 6256 auto *SN = cast<StoreSDNode>(N); 6257 auto &Op1 = N->getOperand(1); 6258 EVT MemVT = SN->getMemoryVT(); 6259 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6260 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6261 // If X has wider elements then convert it to: 6262 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6263 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6264 if (SDValue Value = 6265 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6266 DCI.AddToWorklist(Value.getNode()); 6267 6268 // Rewrite the store with the new form of stored value. 6269 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6270 SN->getBasePtr(), SN->getMemoryVT(), 6271 SN->getMemOperand()); 6272 } 6273 } 6274 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6275 if (!SN->isTruncatingStore() && 6276 Op1.getOpcode() == ISD::BSWAP && 6277 Op1.getNode()->hasOneUse() && 6278 canLoadStoreByteSwapped(Op1.getValueType())) { 6279 6280 SDValue BSwapOp = Op1.getOperand(0); 6281 6282 if (BSwapOp.getValueType() == MVT::i16) 6283 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6284 6285 SDValue Ops[] = { 6286 N->getOperand(0), BSwapOp, N->getOperand(2) 6287 }; 6288 6289 return 6290 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6291 Ops, MemVT, SN->getMemOperand()); 6292 } 6293 // Combine STORE (element-swap) into VSTER 6294 if (!SN->isTruncatingStore() && 6295 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6296 Op1.getNode()->hasOneUse() && 6297 Subtarget.hasVectorEnhancements2()) { 6298 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6299 ArrayRef<int> ShuffleMask = SVN->getMask(); 6300 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6301 SDValue Ops[] = { 6302 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6303 }; 6304 6305 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6306 DAG.getVTList(MVT::Other), 6307 Ops, MemVT, SN->getMemOperand()); 6308 } 6309 } 6310 6311 return SDValue(); 6312 } 6313 6314 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6315 SDNode *N, DAGCombinerInfo &DCI) const { 6316 SelectionDAG &DAG = DCI.DAG; 6317 // Combine element-swap (LOAD) into VLER 6318 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6319 N->getOperand(0).hasOneUse() && 6320 Subtarget.hasVectorEnhancements2()) { 6321 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6322 ArrayRef<int> ShuffleMask = SVN->getMask(); 6323 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6324 SDValue Load = N->getOperand(0); 6325 LoadSDNode *LD = cast<LoadSDNode>(Load); 6326 6327 // Create the element-swapping load. 6328 SDValue Ops[] = { 6329 LD->getChain(), // Chain 6330 LD->getBasePtr() // Ptr 6331 }; 6332 SDValue ESLoad = 6333 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6334 DAG.getVTList(LD->getValueType(0), MVT::Other), 6335 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6336 6337 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6338 // by the load dead. 6339 DCI.CombineTo(N, ESLoad); 6340 6341 // Next, combine the load away, we give it a bogus result value but a real 6342 // chain result. The result value is dead because the shuffle is dead. 6343 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6344 6345 // Return N so it doesn't get rechecked! 6346 return SDValue(N, 0); 6347 } 6348 } 6349 6350 return SDValue(); 6351 } 6352 6353 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6354 SDNode *N, DAGCombinerInfo &DCI) const { 6355 SelectionDAG &DAG = DCI.DAG; 6356 6357 if (!Subtarget.hasVector()) 6358 return SDValue(); 6359 6360 // Look through bitcasts that retain the number of vector elements. 6361 SDValue Op = N->getOperand(0); 6362 if (Op.getOpcode() == ISD::BITCAST && 6363 Op.getValueType().isVector() && 6364 Op.getOperand(0).getValueType().isVector() && 6365 Op.getValueType().getVectorNumElements() == 6366 Op.getOperand(0).getValueType().getVectorNumElements()) 6367 Op = Op.getOperand(0); 6368 6369 // Pull BSWAP out of a vector extraction. 6370 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6371 EVT VecVT = Op.getValueType(); 6372 EVT EltVT = VecVT.getVectorElementType(); 6373 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6374 Op.getOperand(0), N->getOperand(1)); 6375 DCI.AddToWorklist(Op.getNode()); 6376 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6377 if (EltVT != N->getValueType(0)) { 6378 DCI.AddToWorklist(Op.getNode()); 6379 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6380 } 6381 return Op; 6382 } 6383 6384 // Try to simplify a vector extraction. 6385 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6386 SDValue Op0 = N->getOperand(0); 6387 EVT VecVT = Op0.getValueType(); 6388 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6389 IndexN->getZExtValue(), DCI, false); 6390 } 6391 return SDValue(); 6392 } 6393 6394 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6395 SDNode *N, DAGCombinerInfo &DCI) const { 6396 SelectionDAG &DAG = DCI.DAG; 6397 // (join_dwords X, X) == (replicate X) 6398 if (N->getOperand(0) == N->getOperand(1)) 6399 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6400 N->getOperand(0)); 6401 return SDValue(); 6402 } 6403 6404 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6405 SDValue Chain1 = N1->getOperand(0); 6406 SDValue Chain2 = N2->getOperand(0); 6407 6408 // Trivial case: both nodes take the same chain. 6409 if (Chain1 == Chain2) 6410 return Chain1; 6411 6412 // FIXME - we could handle more complex cases via TokenFactor, 6413 // assuming we can verify that this would not create a cycle. 6414 return SDValue(); 6415 } 6416 6417 SDValue SystemZTargetLowering::combineFP_ROUND( 6418 SDNode *N, DAGCombinerInfo &DCI) const { 6419 6420 if (!Subtarget.hasVector()) 6421 return SDValue(); 6422 6423 // (fpround (extract_vector_elt X 0)) 6424 // (fpround (extract_vector_elt X 1)) -> 6425 // (extract_vector_elt (VROUND X) 0) 6426 // (extract_vector_elt (VROUND X) 2) 6427 // 6428 // This is a special case since the target doesn't really support v2f32s. 6429 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6430 SelectionDAG &DAG = DCI.DAG; 6431 SDValue Op0 = N->getOperand(OpNo); 6432 if (N->getValueType(0) == MVT::f32 && 6433 Op0.hasOneUse() && 6434 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6435 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6436 Op0.getOperand(1).getOpcode() == ISD::Constant && 6437 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6438 SDValue Vec = Op0.getOperand(0); 6439 for (auto *U : Vec->uses()) { 6440 if (U != Op0.getNode() && 6441 U->hasOneUse() && 6442 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6443 U->getOperand(0) == Vec && 6444 U->getOperand(1).getOpcode() == ISD::Constant && 6445 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6446 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6447 if (OtherRound.getOpcode() == N->getOpcode() && 6448 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6449 OtherRound.getValueType() == MVT::f32) { 6450 SDValue VRound, Chain; 6451 if (N->isStrictFPOpcode()) { 6452 Chain = MergeInputChains(N, OtherRound.getNode()); 6453 if (!Chain) 6454 continue; 6455 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6456 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6457 Chain = VRound.getValue(1); 6458 } else 6459 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6460 MVT::v4f32, Vec); 6461 DCI.AddToWorklist(VRound.getNode()); 6462 SDValue Extract1 = 6463 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6464 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6465 DCI.AddToWorklist(Extract1.getNode()); 6466 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6467 if (Chain) 6468 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6469 SDValue Extract0 = 6470 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6471 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6472 if (Chain) 6473 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6474 N->getVTList(), Extract0, Chain); 6475 return Extract0; 6476 } 6477 } 6478 } 6479 } 6480 return SDValue(); 6481 } 6482 6483 SDValue SystemZTargetLowering::combineFP_EXTEND( 6484 SDNode *N, DAGCombinerInfo &DCI) const { 6485 6486 if (!Subtarget.hasVector()) 6487 return SDValue(); 6488 6489 // (fpextend (extract_vector_elt X 0)) 6490 // (fpextend (extract_vector_elt X 2)) -> 6491 // (extract_vector_elt (VEXTEND X) 0) 6492 // (extract_vector_elt (VEXTEND X) 1) 6493 // 6494 // This is a special case since the target doesn't really support v2f32s. 6495 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6496 SelectionDAG &DAG = DCI.DAG; 6497 SDValue Op0 = N->getOperand(OpNo); 6498 if (N->getValueType(0) == MVT::f64 && 6499 Op0.hasOneUse() && 6500 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6501 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6502 Op0.getOperand(1).getOpcode() == ISD::Constant && 6503 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6504 SDValue Vec = Op0.getOperand(0); 6505 for (auto *U : Vec->uses()) { 6506 if (U != Op0.getNode() && 6507 U->hasOneUse() && 6508 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6509 U->getOperand(0) == Vec && 6510 U->getOperand(1).getOpcode() == ISD::Constant && 6511 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6512 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6513 if (OtherExtend.getOpcode() == N->getOpcode() && 6514 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6515 OtherExtend.getValueType() == MVT::f64) { 6516 SDValue VExtend, Chain; 6517 if (N->isStrictFPOpcode()) { 6518 Chain = MergeInputChains(N, OtherExtend.getNode()); 6519 if (!Chain) 6520 continue; 6521 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6522 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6523 Chain = VExtend.getValue(1); 6524 } else 6525 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6526 MVT::v2f64, Vec); 6527 DCI.AddToWorklist(VExtend.getNode()); 6528 SDValue Extract1 = 6529 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6530 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6531 DCI.AddToWorklist(Extract1.getNode()); 6532 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6533 if (Chain) 6534 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6535 SDValue Extract0 = 6536 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6537 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6538 if (Chain) 6539 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6540 N->getVTList(), Extract0, Chain); 6541 return Extract0; 6542 } 6543 } 6544 } 6545 } 6546 return SDValue(); 6547 } 6548 6549 SDValue SystemZTargetLowering::combineINT_TO_FP( 6550 SDNode *N, DAGCombinerInfo &DCI) const { 6551 if (DCI.Level != BeforeLegalizeTypes) 6552 return SDValue(); 6553 unsigned Opcode = N->getOpcode(); 6554 EVT OutVT = N->getValueType(0); 6555 SelectionDAG &DAG = DCI.DAG; 6556 SDValue Op = N->getOperand(0); 6557 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6558 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6559 6560 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6561 // v2f64 = uint_to_fp v2i16 6562 // => 6563 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6564 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6565 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6566 OutVT.getVectorNumElements()); 6567 unsigned ExtOpcode = 6568 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6569 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6570 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6571 } 6572 return SDValue(); 6573 } 6574 6575 SDValue SystemZTargetLowering::combineBSWAP( 6576 SDNode *N, DAGCombinerInfo &DCI) const { 6577 SelectionDAG &DAG = DCI.DAG; 6578 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6579 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6580 N->getOperand(0).hasOneUse() && 6581 canLoadStoreByteSwapped(N->getValueType(0))) { 6582 SDValue Load = N->getOperand(0); 6583 LoadSDNode *LD = cast<LoadSDNode>(Load); 6584 6585 // Create the byte-swapping load. 6586 SDValue Ops[] = { 6587 LD->getChain(), // Chain 6588 LD->getBasePtr() // Ptr 6589 }; 6590 EVT LoadVT = N->getValueType(0); 6591 if (LoadVT == MVT::i16) 6592 LoadVT = MVT::i32; 6593 SDValue BSLoad = 6594 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6595 DAG.getVTList(LoadVT, MVT::Other), 6596 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6597 6598 // If this is an i16 load, insert the truncate. 6599 SDValue ResVal = BSLoad; 6600 if (N->getValueType(0) == MVT::i16) 6601 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6602 6603 // First, combine the bswap away. This makes the value produced by the 6604 // load dead. 6605 DCI.CombineTo(N, ResVal); 6606 6607 // Next, combine the load away, we give it a bogus result value but a real 6608 // chain result. The result value is dead because the bswap is dead. 6609 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6610 6611 // Return N so it doesn't get rechecked! 6612 return SDValue(N, 0); 6613 } 6614 6615 // Look through bitcasts that retain the number of vector elements. 6616 SDValue Op = N->getOperand(0); 6617 if (Op.getOpcode() == ISD::BITCAST && 6618 Op.getValueType().isVector() && 6619 Op.getOperand(0).getValueType().isVector() && 6620 Op.getValueType().getVectorNumElements() == 6621 Op.getOperand(0).getValueType().getVectorNumElements()) 6622 Op = Op.getOperand(0); 6623 6624 // Push BSWAP into a vector insertion if at least one side then simplifies. 6625 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6626 SDValue Vec = Op.getOperand(0); 6627 SDValue Elt = Op.getOperand(1); 6628 SDValue Idx = Op.getOperand(2); 6629 6630 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6631 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6632 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6633 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6634 (canLoadStoreByteSwapped(N->getValueType(0)) && 6635 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6636 EVT VecVT = N->getValueType(0); 6637 EVT EltVT = N->getValueType(0).getVectorElementType(); 6638 if (VecVT != Vec.getValueType()) { 6639 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6640 DCI.AddToWorklist(Vec.getNode()); 6641 } 6642 if (EltVT != Elt.getValueType()) { 6643 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6644 DCI.AddToWorklist(Elt.getNode()); 6645 } 6646 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6647 DCI.AddToWorklist(Vec.getNode()); 6648 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6649 DCI.AddToWorklist(Elt.getNode()); 6650 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6651 Vec, Elt, Idx); 6652 } 6653 } 6654 6655 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6656 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6657 if (SV && Op.hasOneUse()) { 6658 SDValue Op0 = Op.getOperand(0); 6659 SDValue Op1 = Op.getOperand(1); 6660 6661 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6662 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6663 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6664 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6665 EVT VecVT = N->getValueType(0); 6666 if (VecVT != Op0.getValueType()) { 6667 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6668 DCI.AddToWorklist(Op0.getNode()); 6669 } 6670 if (VecVT != Op1.getValueType()) { 6671 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6672 DCI.AddToWorklist(Op1.getNode()); 6673 } 6674 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6675 DCI.AddToWorklist(Op0.getNode()); 6676 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6677 DCI.AddToWorklist(Op1.getNode()); 6678 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6679 } 6680 } 6681 6682 return SDValue(); 6683 } 6684 6685 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6686 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6687 // set by the CCReg instruction using the CCValid / CCMask masks, 6688 // If the CCReg instruction is itself a ICMP testing the condition 6689 // code set by some other instruction, see whether we can directly 6690 // use that condition code. 6691 6692 // Verify that we have an ICMP against some constant. 6693 if (CCValid != SystemZ::CCMASK_ICMP) 6694 return false; 6695 auto *ICmp = CCReg.getNode(); 6696 if (ICmp->getOpcode() != SystemZISD::ICMP) 6697 return false; 6698 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6699 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6700 if (!CompareRHS) 6701 return false; 6702 6703 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6704 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6705 // Verify that we have an appropriate mask for a EQ or NE comparison. 6706 bool Invert = false; 6707 if (CCMask == SystemZ::CCMASK_CMP_NE) 6708 Invert = !Invert; 6709 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6710 return false; 6711 6712 // Verify that the ICMP compares against one of select values. 6713 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6714 if (!TrueVal) 6715 return false; 6716 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6717 if (!FalseVal) 6718 return false; 6719 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6720 Invert = !Invert; 6721 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6722 return false; 6723 6724 // Compute the effective CC mask for the new branch or select. 6725 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6726 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6727 if (!NewCCValid || !NewCCMask) 6728 return false; 6729 CCValid = NewCCValid->getZExtValue(); 6730 CCMask = NewCCMask->getZExtValue(); 6731 if (Invert) 6732 CCMask ^= CCValid; 6733 6734 // Return the updated CCReg link. 6735 CCReg = CompareLHS->getOperand(4); 6736 return true; 6737 } 6738 6739 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6740 if (CompareLHS->getOpcode() == ISD::SRA) { 6741 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6742 if (!SRACount || SRACount->getZExtValue() != 30) 6743 return false; 6744 auto *SHL = CompareLHS->getOperand(0).getNode(); 6745 if (SHL->getOpcode() != ISD::SHL) 6746 return false; 6747 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6748 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6749 return false; 6750 auto *IPM = SHL->getOperand(0).getNode(); 6751 if (IPM->getOpcode() != SystemZISD::IPM) 6752 return false; 6753 6754 // Avoid introducing CC spills (because SRA would clobber CC). 6755 if (!CompareLHS->hasOneUse()) 6756 return false; 6757 // Verify that the ICMP compares against zero. 6758 if (CompareRHS->getZExtValue() != 0) 6759 return false; 6760 6761 // Compute the effective CC mask for the new branch or select. 6762 CCMask = SystemZ::reverseCCMask(CCMask); 6763 6764 // Return the updated CCReg link. 6765 CCReg = IPM->getOperand(0); 6766 return true; 6767 } 6768 6769 return false; 6770 } 6771 6772 SDValue SystemZTargetLowering::combineBR_CCMASK( 6773 SDNode *N, DAGCombinerInfo &DCI) const { 6774 SelectionDAG &DAG = DCI.DAG; 6775 6776 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6777 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6778 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6779 if (!CCValid || !CCMask) 6780 return SDValue(); 6781 6782 int CCValidVal = CCValid->getZExtValue(); 6783 int CCMaskVal = CCMask->getZExtValue(); 6784 SDValue Chain = N->getOperand(0); 6785 SDValue CCReg = N->getOperand(4); 6786 6787 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6788 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6789 Chain, 6790 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6791 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6792 N->getOperand(3), CCReg); 6793 return SDValue(); 6794 } 6795 6796 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6797 SDNode *N, DAGCombinerInfo &DCI) const { 6798 SelectionDAG &DAG = DCI.DAG; 6799 6800 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6801 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6802 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6803 if (!CCValid || !CCMask) 6804 return SDValue(); 6805 6806 int CCValidVal = CCValid->getZExtValue(); 6807 int CCMaskVal = CCMask->getZExtValue(); 6808 SDValue CCReg = N->getOperand(4); 6809 6810 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6811 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6812 N->getOperand(0), N->getOperand(1), 6813 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6814 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6815 CCReg); 6816 return SDValue(); 6817 } 6818 6819 6820 SDValue SystemZTargetLowering::combineGET_CCMASK( 6821 SDNode *N, DAGCombinerInfo &DCI) const { 6822 6823 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6824 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6825 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6826 if (!CCValid || !CCMask) 6827 return SDValue(); 6828 int CCValidVal = CCValid->getZExtValue(); 6829 int CCMaskVal = CCMask->getZExtValue(); 6830 6831 SDValue Select = N->getOperand(0); 6832 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6833 return SDValue(); 6834 6835 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6836 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6837 if (!SelectCCValid || !SelectCCMask) 6838 return SDValue(); 6839 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6840 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6841 6842 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6843 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6844 if (!TrueVal || !FalseVal) 6845 return SDValue(); 6846 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6847 ; 6848 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6849 SelectCCMaskVal ^= SelectCCValidVal; 6850 else 6851 return SDValue(); 6852 6853 if (SelectCCValidVal & ~CCValidVal) 6854 return SDValue(); 6855 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6856 return SDValue(); 6857 6858 return Select->getOperand(4); 6859 } 6860 6861 SDValue SystemZTargetLowering::combineIntDIVREM( 6862 SDNode *N, DAGCombinerInfo &DCI) const { 6863 SelectionDAG &DAG = DCI.DAG; 6864 EVT VT = N->getValueType(0); 6865 // In the case where the divisor is a vector of constants a cheaper 6866 // sequence of instructions can replace the divide. BuildSDIV is called to 6867 // do this during DAG combining, but it only succeeds when it can build a 6868 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6869 // since it is not Legal but Custom it can only happen before 6870 // legalization. Therefore we must scalarize this early before Combine 6871 // 1. For widened vectors, this is already the result of type legalization. 6872 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6873 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6874 return DAG.UnrollVectorOp(N); 6875 return SDValue(); 6876 } 6877 6878 SDValue SystemZTargetLowering::combineINTRINSIC( 6879 SDNode *N, DAGCombinerInfo &DCI) const { 6880 SelectionDAG &DAG = DCI.DAG; 6881 6882 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6883 switch (Id) { 6884 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6885 // or larger is simply a vector load. 6886 case Intrinsic::s390_vll: 6887 case Intrinsic::s390_vlrl: 6888 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6889 if (C->getZExtValue() >= 15) 6890 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6891 N->getOperand(3), MachinePointerInfo()); 6892 break; 6893 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6894 case Intrinsic::s390_vstl: 6895 case Intrinsic::s390_vstrl: 6896 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6897 if (C->getZExtValue() >= 15) 6898 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6899 N->getOperand(4), MachinePointerInfo()); 6900 break; 6901 } 6902 6903 return SDValue(); 6904 } 6905 6906 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6907 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6908 return N->getOperand(0); 6909 return N; 6910 } 6911 6912 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6913 DAGCombinerInfo &DCI) const { 6914 switch(N->getOpcode()) { 6915 default: break; 6916 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6917 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6918 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6919 case SystemZISD::MERGE_HIGH: 6920 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6921 case ISD::LOAD: return combineLOAD(N, DCI); 6922 case ISD::STORE: return combineSTORE(N, DCI); 6923 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6924 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6925 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6926 case ISD::STRICT_FP_ROUND: 6927 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6928 case ISD::STRICT_FP_EXTEND: 6929 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6930 case ISD::SINT_TO_FP: 6931 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6932 case ISD::BSWAP: return combineBSWAP(N, DCI); 6933 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6934 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6935 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6936 case ISD::SDIV: 6937 case ISD::UDIV: 6938 case ISD::SREM: 6939 case ISD::UREM: return combineIntDIVREM(N, DCI); 6940 case ISD::INTRINSIC_W_CHAIN: 6941 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6942 } 6943 6944 return SDValue(); 6945 } 6946 6947 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6948 // are for Op. 6949 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6950 unsigned OpNo) { 6951 EVT VT = Op.getValueType(); 6952 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6953 APInt SrcDemE; 6954 unsigned Opcode = Op.getOpcode(); 6955 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6956 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6957 switch (Id) { 6958 case Intrinsic::s390_vpksh: // PACKS 6959 case Intrinsic::s390_vpksf: 6960 case Intrinsic::s390_vpksg: 6961 case Intrinsic::s390_vpkshs: // PACKS_CC 6962 case Intrinsic::s390_vpksfs: 6963 case Intrinsic::s390_vpksgs: 6964 case Intrinsic::s390_vpklsh: // PACKLS 6965 case Intrinsic::s390_vpklsf: 6966 case Intrinsic::s390_vpklsg: 6967 case Intrinsic::s390_vpklshs: // PACKLS_CC 6968 case Intrinsic::s390_vpklsfs: 6969 case Intrinsic::s390_vpklsgs: 6970 // VECTOR PACK truncates the elements of two source vectors into one. 6971 SrcDemE = DemandedElts; 6972 if (OpNo == 2) 6973 SrcDemE.lshrInPlace(NumElts / 2); 6974 SrcDemE = SrcDemE.trunc(NumElts / 2); 6975 break; 6976 // VECTOR UNPACK extends half the elements of the source vector. 6977 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6978 case Intrinsic::s390_vuphh: 6979 case Intrinsic::s390_vuphf: 6980 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6981 case Intrinsic::s390_vuplhh: 6982 case Intrinsic::s390_vuplhf: 6983 SrcDemE = APInt(NumElts * 2, 0); 6984 SrcDemE.insertBits(DemandedElts, 0); 6985 break; 6986 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6987 case Intrinsic::s390_vuplhw: 6988 case Intrinsic::s390_vuplf: 6989 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6990 case Intrinsic::s390_vupllh: 6991 case Intrinsic::s390_vupllf: 6992 SrcDemE = APInt(NumElts * 2, 0); 6993 SrcDemE.insertBits(DemandedElts, NumElts); 6994 break; 6995 case Intrinsic::s390_vpdi: { 6996 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6997 SrcDemE = APInt(NumElts, 0); 6998 if (!DemandedElts[OpNo - 1]) 6999 break; 7000 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7001 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7002 // Demand input element 0 or 1, given by the mask bit value. 7003 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7004 break; 7005 } 7006 case Intrinsic::s390_vsldb: { 7007 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7008 assert(VT == MVT::v16i8 && "Unexpected type."); 7009 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7010 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7011 unsigned NumSrc0Els = 16 - FirstIdx; 7012 SrcDemE = APInt(NumElts, 0); 7013 if (OpNo == 1) { 7014 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7015 SrcDemE.insertBits(DemEls, FirstIdx); 7016 } else { 7017 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7018 SrcDemE.insertBits(DemEls, 0); 7019 } 7020 break; 7021 } 7022 case Intrinsic::s390_vperm: 7023 SrcDemE = APInt(NumElts, 1); 7024 break; 7025 default: 7026 llvm_unreachable("Unhandled intrinsic."); 7027 break; 7028 } 7029 } else { 7030 switch (Opcode) { 7031 case SystemZISD::JOIN_DWORDS: 7032 // Scalar operand. 7033 SrcDemE = APInt(1, 1); 7034 break; 7035 case SystemZISD::SELECT_CCMASK: 7036 SrcDemE = DemandedElts; 7037 break; 7038 default: 7039 llvm_unreachable("Unhandled opcode."); 7040 break; 7041 } 7042 } 7043 return SrcDemE; 7044 } 7045 7046 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7047 const APInt &DemandedElts, 7048 const SelectionDAG &DAG, unsigned Depth, 7049 unsigned OpNo) { 7050 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7051 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7052 KnownBits LHSKnown = 7053 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7054 KnownBits RHSKnown = 7055 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7056 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 7057 } 7058 7059 void 7060 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7061 KnownBits &Known, 7062 const APInt &DemandedElts, 7063 const SelectionDAG &DAG, 7064 unsigned Depth) const { 7065 Known.resetAll(); 7066 7067 // Intrinsic CC result is returned in the two low bits. 7068 unsigned tmp0, tmp1; // not used 7069 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7070 Known.Zero.setBitsFrom(2); 7071 return; 7072 } 7073 EVT VT = Op.getValueType(); 7074 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7075 return; 7076 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7077 "KnownBits does not match VT in bitwidth"); 7078 assert ((!VT.isVector() || 7079 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7080 "DemandedElts does not match VT number of elements"); 7081 unsigned BitWidth = Known.getBitWidth(); 7082 unsigned Opcode = Op.getOpcode(); 7083 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7084 bool IsLogical = false; 7085 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7086 switch (Id) { 7087 case Intrinsic::s390_vpksh: // PACKS 7088 case Intrinsic::s390_vpksf: 7089 case Intrinsic::s390_vpksg: 7090 case Intrinsic::s390_vpkshs: // PACKS_CC 7091 case Intrinsic::s390_vpksfs: 7092 case Intrinsic::s390_vpksgs: 7093 case Intrinsic::s390_vpklsh: // PACKLS 7094 case Intrinsic::s390_vpklsf: 7095 case Intrinsic::s390_vpklsg: 7096 case Intrinsic::s390_vpklshs: // PACKLS_CC 7097 case Intrinsic::s390_vpklsfs: 7098 case Intrinsic::s390_vpklsgs: 7099 case Intrinsic::s390_vpdi: 7100 case Intrinsic::s390_vsldb: 7101 case Intrinsic::s390_vperm: 7102 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7103 break; 7104 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7105 case Intrinsic::s390_vuplhh: 7106 case Intrinsic::s390_vuplhf: 7107 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7108 case Intrinsic::s390_vupllh: 7109 case Intrinsic::s390_vupllf: 7110 IsLogical = true; 7111 LLVM_FALLTHROUGH; 7112 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7113 case Intrinsic::s390_vuphh: 7114 case Intrinsic::s390_vuphf: 7115 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7116 case Intrinsic::s390_vuplhw: 7117 case Intrinsic::s390_vuplf: { 7118 SDValue SrcOp = Op.getOperand(1); 7119 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7120 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7121 if (IsLogical) { 7122 Known = Known.zext(BitWidth); 7123 } else 7124 Known = Known.sext(BitWidth); 7125 break; 7126 } 7127 default: 7128 break; 7129 } 7130 } else { 7131 switch (Opcode) { 7132 case SystemZISD::JOIN_DWORDS: 7133 case SystemZISD::SELECT_CCMASK: 7134 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7135 break; 7136 case SystemZISD::REPLICATE: { 7137 SDValue SrcOp = Op.getOperand(0); 7138 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7139 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7140 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7141 break; 7142 } 7143 default: 7144 break; 7145 } 7146 } 7147 7148 // Known has the width of the source operand(s). Adjust if needed to match 7149 // the passed bitwidth. 7150 if (Known.getBitWidth() != BitWidth) 7151 Known = Known.anyextOrTrunc(BitWidth); 7152 } 7153 7154 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7155 const SelectionDAG &DAG, unsigned Depth, 7156 unsigned OpNo) { 7157 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7158 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7159 if (LHS == 1) return 1; // Early out. 7160 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7161 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7162 if (RHS == 1) return 1; // Early out. 7163 unsigned Common = std::min(LHS, RHS); 7164 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7165 EVT VT = Op.getValueType(); 7166 unsigned VTBits = VT.getScalarSizeInBits(); 7167 if (SrcBitWidth > VTBits) { // PACK 7168 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7169 if (Common > SrcExtraBits) 7170 return (Common - SrcExtraBits); 7171 return 1; 7172 } 7173 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7174 return Common; 7175 } 7176 7177 unsigned 7178 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7179 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7180 unsigned Depth) const { 7181 if (Op.getResNo() != 0) 7182 return 1; 7183 unsigned Opcode = Op.getOpcode(); 7184 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7185 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7186 switch (Id) { 7187 case Intrinsic::s390_vpksh: // PACKS 7188 case Intrinsic::s390_vpksf: 7189 case Intrinsic::s390_vpksg: 7190 case Intrinsic::s390_vpkshs: // PACKS_CC 7191 case Intrinsic::s390_vpksfs: 7192 case Intrinsic::s390_vpksgs: 7193 case Intrinsic::s390_vpklsh: // PACKLS 7194 case Intrinsic::s390_vpklsf: 7195 case Intrinsic::s390_vpklsg: 7196 case Intrinsic::s390_vpklshs: // PACKLS_CC 7197 case Intrinsic::s390_vpklsfs: 7198 case Intrinsic::s390_vpklsgs: 7199 case Intrinsic::s390_vpdi: 7200 case Intrinsic::s390_vsldb: 7201 case Intrinsic::s390_vperm: 7202 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7203 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7204 case Intrinsic::s390_vuphh: 7205 case Intrinsic::s390_vuphf: 7206 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7207 case Intrinsic::s390_vuplhw: 7208 case Intrinsic::s390_vuplf: { 7209 SDValue PackedOp = Op.getOperand(1); 7210 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7211 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7212 EVT VT = Op.getValueType(); 7213 unsigned VTBits = VT.getScalarSizeInBits(); 7214 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7215 return Tmp; 7216 } 7217 default: 7218 break; 7219 } 7220 } else { 7221 switch (Opcode) { 7222 case SystemZISD::SELECT_CCMASK: 7223 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7224 default: 7225 break; 7226 } 7227 } 7228 7229 return 1; 7230 } 7231 7232 unsigned 7233 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 7234 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7235 unsigned StackAlign = TFI->getStackAlignment(); 7236 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7237 "Unexpected stack alignment"); 7238 // The default stack probe size is 4096 if the function has no 7239 // stack-probe-size attribute. 7240 unsigned StackProbeSize = 4096; 7241 const Function &Fn = MF.getFunction(); 7242 if (Fn.hasFnAttribute("stack-probe-size")) 7243 Fn.getFnAttribute("stack-probe-size") 7244 .getValueAsString() 7245 .getAsInteger(0, StackProbeSize); 7246 // Round down to the stack alignment. 7247 StackProbeSize &= ~(StackAlign - 1); 7248 return StackProbeSize ? StackProbeSize : StackAlign; 7249 } 7250 7251 //===----------------------------------------------------------------------===// 7252 // Custom insertion 7253 //===----------------------------------------------------------------------===// 7254 7255 // Force base value Base into a register before MI. Return the register. 7256 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7257 const SystemZInstrInfo *TII) { 7258 MachineBasicBlock *MBB = MI.getParent(); 7259 MachineFunction &MF = *MBB->getParent(); 7260 MachineRegisterInfo &MRI = MF.getRegInfo(); 7261 7262 if (Base.isReg()) { 7263 // Copy Base into a new virtual register to help register coalescing in 7264 // cases with multiple uses. 7265 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7266 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7267 .add(Base); 7268 return Reg; 7269 } 7270 7271 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7272 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7273 .add(Base) 7274 .addImm(0) 7275 .addReg(0); 7276 return Reg; 7277 } 7278 7279 // The CC operand of MI might be missing a kill marker because there 7280 // were multiple uses of CC, and ISel didn't know which to mark. 7281 // Figure out whether MI should have had a kill marker. 7282 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7283 // Scan forward through BB for a use/def of CC. 7284 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7285 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7286 const MachineInstr& mi = *miI; 7287 if (mi.readsRegister(SystemZ::CC)) 7288 return false; 7289 if (mi.definesRegister(SystemZ::CC)) 7290 break; // Should have kill-flag - update below. 7291 } 7292 7293 // If we hit the end of the block, check whether CC is live into a 7294 // successor. 7295 if (miI == MBB->end()) { 7296 for (const MachineBasicBlock *Succ : MBB->successors()) 7297 if (Succ->isLiveIn(SystemZ::CC)) 7298 return false; 7299 } 7300 7301 return true; 7302 } 7303 7304 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7305 // together with other Select pseudo-opcodes into a single basic-block with 7306 // a conditional jump around it. 7307 static bool isSelectPseudo(MachineInstr &MI) { 7308 switch (MI.getOpcode()) { 7309 case SystemZ::Select32: 7310 case SystemZ::Select64: 7311 case SystemZ::SelectF32: 7312 case SystemZ::SelectF64: 7313 case SystemZ::SelectF128: 7314 case SystemZ::SelectVR32: 7315 case SystemZ::SelectVR64: 7316 case SystemZ::SelectVR128: 7317 return true; 7318 7319 default: 7320 return false; 7321 } 7322 } 7323 7324 // Helper function, which inserts PHI functions into SinkMBB: 7325 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7326 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7327 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7328 MachineBasicBlock *TrueMBB, 7329 MachineBasicBlock *FalseMBB, 7330 MachineBasicBlock *SinkMBB) { 7331 MachineFunction *MF = TrueMBB->getParent(); 7332 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7333 7334 MachineInstr *FirstMI = Selects.front(); 7335 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7336 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7337 7338 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7339 7340 // As we are creating the PHIs, we have to be careful if there is more than 7341 // one. Later Selects may reference the results of earlier Selects, but later 7342 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7343 // That also means that PHI construction must work forward from earlier to 7344 // later, and that the code must maintain a mapping from earlier PHI's 7345 // destination registers, and the registers that went into the PHI. 7346 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7347 7348 for (auto MI : Selects) { 7349 Register DestReg = MI->getOperand(0).getReg(); 7350 Register TrueReg = MI->getOperand(1).getReg(); 7351 Register FalseReg = MI->getOperand(2).getReg(); 7352 7353 // If this Select we are generating is the opposite condition from 7354 // the jump we generated, then we have to swap the operands for the 7355 // PHI that is going to be generated. 7356 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7357 std::swap(TrueReg, FalseReg); 7358 7359 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7360 TrueReg = RegRewriteTable[TrueReg].first; 7361 7362 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7363 FalseReg = RegRewriteTable[FalseReg].second; 7364 7365 DebugLoc DL = MI->getDebugLoc(); 7366 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7367 .addReg(TrueReg).addMBB(TrueMBB) 7368 .addReg(FalseReg).addMBB(FalseMBB); 7369 7370 // Add this PHI to the rewrite table. 7371 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7372 } 7373 7374 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7375 } 7376 7377 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7378 MachineBasicBlock * 7379 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7380 MachineBasicBlock *MBB) const { 7381 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7382 const SystemZInstrInfo *TII = 7383 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7384 7385 unsigned CCValid = MI.getOperand(3).getImm(); 7386 unsigned CCMask = MI.getOperand(4).getImm(); 7387 7388 // If we have a sequence of Select* pseudo instructions using the 7389 // same condition code value, we want to expand all of them into 7390 // a single pair of basic blocks using the same condition. 7391 SmallVector<MachineInstr*, 8> Selects; 7392 SmallVector<MachineInstr*, 8> DbgValues; 7393 Selects.push_back(&MI); 7394 unsigned Count = 0; 7395 for (MachineBasicBlock::iterator NextMIIt = 7396 std::next(MachineBasicBlock::iterator(MI)); 7397 NextMIIt != MBB->end(); ++NextMIIt) { 7398 if (isSelectPseudo(*NextMIIt)) { 7399 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7400 "Bad CCValid operands since CC was not redefined."); 7401 if (NextMIIt->getOperand(4).getImm() == CCMask || 7402 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7403 Selects.push_back(&*NextMIIt); 7404 continue; 7405 } 7406 break; 7407 } 7408 if (NextMIIt->definesRegister(SystemZ::CC) || 7409 NextMIIt->usesCustomInsertionHook()) 7410 break; 7411 bool User = false; 7412 for (auto SelMI : Selects) 7413 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7414 User = true; 7415 break; 7416 } 7417 if (NextMIIt->isDebugInstr()) { 7418 if (User) { 7419 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7420 DbgValues.push_back(&*NextMIIt); 7421 } 7422 } 7423 else if (User || ++Count > 20) 7424 break; 7425 } 7426 7427 MachineInstr *LastMI = Selects.back(); 7428 bool CCKilled = 7429 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7430 MachineBasicBlock *StartMBB = MBB; 7431 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7432 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7433 7434 // Unless CC was killed in the last Select instruction, mark it as 7435 // live-in to both FalseMBB and JoinMBB. 7436 if (!CCKilled) { 7437 FalseMBB->addLiveIn(SystemZ::CC); 7438 JoinMBB->addLiveIn(SystemZ::CC); 7439 } 7440 7441 // StartMBB: 7442 // BRC CCMask, JoinMBB 7443 // # fallthrough to FalseMBB 7444 MBB = StartMBB; 7445 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7446 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7447 MBB->addSuccessor(JoinMBB); 7448 MBB->addSuccessor(FalseMBB); 7449 7450 // FalseMBB: 7451 // # fallthrough to JoinMBB 7452 MBB = FalseMBB; 7453 MBB->addSuccessor(JoinMBB); 7454 7455 // JoinMBB: 7456 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7457 // ... 7458 MBB = JoinMBB; 7459 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7460 for (auto SelMI : Selects) 7461 SelMI->eraseFromParent(); 7462 7463 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7464 for (auto DbgMI : DbgValues) 7465 MBB->splice(InsertPos, StartMBB, DbgMI); 7466 7467 return JoinMBB; 7468 } 7469 7470 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7471 // StoreOpcode is the store to use and Invert says whether the store should 7472 // happen when the condition is false rather than true. If a STORE ON 7473 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7474 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7475 MachineBasicBlock *MBB, 7476 unsigned StoreOpcode, 7477 unsigned STOCOpcode, 7478 bool Invert) const { 7479 const SystemZInstrInfo *TII = 7480 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7481 7482 Register SrcReg = MI.getOperand(0).getReg(); 7483 MachineOperand Base = MI.getOperand(1); 7484 int64_t Disp = MI.getOperand(2).getImm(); 7485 Register IndexReg = MI.getOperand(3).getReg(); 7486 unsigned CCValid = MI.getOperand(4).getImm(); 7487 unsigned CCMask = MI.getOperand(5).getImm(); 7488 DebugLoc DL = MI.getDebugLoc(); 7489 7490 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7491 7492 // ISel pattern matching also adds a load memory operand of the same 7493 // address, so take special care to find the storing memory operand. 7494 MachineMemOperand *MMO = nullptr; 7495 for (auto *I : MI.memoperands()) 7496 if (I->isStore()) { 7497 MMO = I; 7498 break; 7499 } 7500 7501 // Use STOCOpcode if possible. We could use different store patterns in 7502 // order to avoid matching the index register, but the performance trade-offs 7503 // might be more complicated in that case. 7504 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7505 if (Invert) 7506 CCMask ^= CCValid; 7507 7508 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7509 .addReg(SrcReg) 7510 .add(Base) 7511 .addImm(Disp) 7512 .addImm(CCValid) 7513 .addImm(CCMask) 7514 .addMemOperand(MMO); 7515 7516 MI.eraseFromParent(); 7517 return MBB; 7518 } 7519 7520 // Get the condition needed to branch around the store. 7521 if (!Invert) 7522 CCMask ^= CCValid; 7523 7524 MachineBasicBlock *StartMBB = MBB; 7525 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7526 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7527 7528 // Unless CC was killed in the CondStore instruction, mark it as 7529 // live-in to both FalseMBB and JoinMBB. 7530 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7531 FalseMBB->addLiveIn(SystemZ::CC); 7532 JoinMBB->addLiveIn(SystemZ::CC); 7533 } 7534 7535 // StartMBB: 7536 // BRC CCMask, JoinMBB 7537 // # fallthrough to FalseMBB 7538 MBB = StartMBB; 7539 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7540 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7541 MBB->addSuccessor(JoinMBB); 7542 MBB->addSuccessor(FalseMBB); 7543 7544 // FalseMBB: 7545 // store %SrcReg, %Disp(%Index,%Base) 7546 // # fallthrough to JoinMBB 7547 MBB = FalseMBB; 7548 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7549 .addReg(SrcReg) 7550 .add(Base) 7551 .addImm(Disp) 7552 .addReg(IndexReg) 7553 .addMemOperand(MMO); 7554 MBB->addSuccessor(JoinMBB); 7555 7556 MI.eraseFromParent(); 7557 return JoinMBB; 7558 } 7559 7560 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7561 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7562 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7563 // BitSize is the width of the field in bits, or 0 if this is a partword 7564 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7565 // is one of the operands. Invert says whether the field should be 7566 // inverted after performing BinOpcode (e.g. for NAND). 7567 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7568 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7569 unsigned BitSize, bool Invert) const { 7570 MachineFunction &MF = *MBB->getParent(); 7571 const SystemZInstrInfo *TII = 7572 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7573 MachineRegisterInfo &MRI = MF.getRegInfo(); 7574 bool IsSubWord = (BitSize < 32); 7575 7576 // Extract the operands. Base can be a register or a frame index. 7577 // Src2 can be a register or immediate. 7578 Register Dest = MI.getOperand(0).getReg(); 7579 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7580 int64_t Disp = MI.getOperand(2).getImm(); 7581 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7582 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7583 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7584 DebugLoc DL = MI.getDebugLoc(); 7585 if (IsSubWord) 7586 BitSize = MI.getOperand(6).getImm(); 7587 7588 // Subword operations use 32-bit registers. 7589 const TargetRegisterClass *RC = (BitSize <= 32 ? 7590 &SystemZ::GR32BitRegClass : 7591 &SystemZ::GR64BitRegClass); 7592 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7593 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7594 7595 // Get the right opcodes for the displacement. 7596 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7597 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7598 assert(LOpcode && CSOpcode && "Displacement out of range"); 7599 7600 // Create virtual registers for temporary results. 7601 Register OrigVal = MRI.createVirtualRegister(RC); 7602 Register OldVal = MRI.createVirtualRegister(RC); 7603 Register NewVal = (BinOpcode || IsSubWord ? 7604 MRI.createVirtualRegister(RC) : Src2.getReg()); 7605 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7606 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7607 7608 // Insert a basic block for the main loop. 7609 MachineBasicBlock *StartMBB = MBB; 7610 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7611 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7612 7613 // StartMBB: 7614 // ... 7615 // %OrigVal = L Disp(%Base) 7616 // # fall through to LoopMBB 7617 MBB = StartMBB; 7618 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7619 MBB->addSuccessor(LoopMBB); 7620 7621 // LoopMBB: 7622 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7623 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7624 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7625 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7626 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7627 // JNE LoopMBB 7628 // # fall through to DoneMBB 7629 MBB = LoopMBB; 7630 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7631 .addReg(OrigVal).addMBB(StartMBB) 7632 .addReg(Dest).addMBB(LoopMBB); 7633 if (IsSubWord) 7634 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7635 .addReg(OldVal).addReg(BitShift).addImm(0); 7636 if (Invert) { 7637 // Perform the operation normally and then invert every bit of the field. 7638 Register Tmp = MRI.createVirtualRegister(RC); 7639 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7640 if (BitSize <= 32) 7641 // XILF with the upper BitSize bits set. 7642 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7643 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7644 else { 7645 // Use LCGR and add -1 to the result, which is more compact than 7646 // an XILF, XILH pair. 7647 Register Tmp2 = MRI.createVirtualRegister(RC); 7648 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7649 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7650 .addReg(Tmp2).addImm(-1); 7651 } 7652 } else if (BinOpcode) 7653 // A simply binary operation. 7654 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7655 .addReg(RotatedOldVal) 7656 .add(Src2); 7657 else if (IsSubWord) 7658 // Use RISBG to rotate Src2 into position and use it to replace the 7659 // field in RotatedOldVal. 7660 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7661 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7662 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7663 if (IsSubWord) 7664 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7665 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7666 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7667 .addReg(OldVal) 7668 .addReg(NewVal) 7669 .add(Base) 7670 .addImm(Disp); 7671 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7672 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7673 MBB->addSuccessor(LoopMBB); 7674 MBB->addSuccessor(DoneMBB); 7675 7676 MI.eraseFromParent(); 7677 return DoneMBB; 7678 } 7679 7680 // Implement EmitInstrWithCustomInserter for pseudo 7681 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7682 // instruction that should be used to compare the current field with the 7683 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7684 // for when the current field should be kept. BitSize is the width of 7685 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7686 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7687 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7688 unsigned KeepOldMask, unsigned BitSize) const { 7689 MachineFunction &MF = *MBB->getParent(); 7690 const SystemZInstrInfo *TII = 7691 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7692 MachineRegisterInfo &MRI = MF.getRegInfo(); 7693 bool IsSubWord = (BitSize < 32); 7694 7695 // Extract the operands. Base can be a register or a frame index. 7696 Register Dest = MI.getOperand(0).getReg(); 7697 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7698 int64_t Disp = MI.getOperand(2).getImm(); 7699 Register Src2 = MI.getOperand(3).getReg(); 7700 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7701 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7702 DebugLoc DL = MI.getDebugLoc(); 7703 if (IsSubWord) 7704 BitSize = MI.getOperand(6).getImm(); 7705 7706 // Subword operations use 32-bit registers. 7707 const TargetRegisterClass *RC = (BitSize <= 32 ? 7708 &SystemZ::GR32BitRegClass : 7709 &SystemZ::GR64BitRegClass); 7710 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7711 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7712 7713 // Get the right opcodes for the displacement. 7714 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7715 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7716 assert(LOpcode && CSOpcode && "Displacement out of range"); 7717 7718 // Create virtual registers for temporary results. 7719 Register OrigVal = MRI.createVirtualRegister(RC); 7720 Register OldVal = MRI.createVirtualRegister(RC); 7721 Register NewVal = MRI.createVirtualRegister(RC); 7722 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7723 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7724 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7725 7726 // Insert 3 basic blocks for the loop. 7727 MachineBasicBlock *StartMBB = MBB; 7728 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7729 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7730 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7731 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7732 7733 // StartMBB: 7734 // ... 7735 // %OrigVal = L Disp(%Base) 7736 // # fall through to LoopMBB 7737 MBB = StartMBB; 7738 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7739 MBB->addSuccessor(LoopMBB); 7740 7741 // LoopMBB: 7742 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7743 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7744 // CompareOpcode %RotatedOldVal, %Src2 7745 // BRC KeepOldMask, UpdateMBB 7746 MBB = LoopMBB; 7747 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7748 .addReg(OrigVal).addMBB(StartMBB) 7749 .addReg(Dest).addMBB(UpdateMBB); 7750 if (IsSubWord) 7751 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7752 .addReg(OldVal).addReg(BitShift).addImm(0); 7753 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7754 .addReg(RotatedOldVal).addReg(Src2); 7755 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7756 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7757 MBB->addSuccessor(UpdateMBB); 7758 MBB->addSuccessor(UseAltMBB); 7759 7760 // UseAltMBB: 7761 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7762 // # fall through to UpdateMBB 7763 MBB = UseAltMBB; 7764 if (IsSubWord) 7765 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7766 .addReg(RotatedOldVal).addReg(Src2) 7767 .addImm(32).addImm(31 + BitSize).addImm(0); 7768 MBB->addSuccessor(UpdateMBB); 7769 7770 // UpdateMBB: 7771 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7772 // [ %RotatedAltVal, UseAltMBB ] 7773 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7774 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7775 // JNE LoopMBB 7776 // # fall through to DoneMBB 7777 MBB = UpdateMBB; 7778 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7779 .addReg(RotatedOldVal).addMBB(LoopMBB) 7780 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7781 if (IsSubWord) 7782 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7783 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7784 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7785 .addReg(OldVal) 7786 .addReg(NewVal) 7787 .add(Base) 7788 .addImm(Disp); 7789 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7790 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7791 MBB->addSuccessor(LoopMBB); 7792 MBB->addSuccessor(DoneMBB); 7793 7794 MI.eraseFromParent(); 7795 return DoneMBB; 7796 } 7797 7798 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7799 // instruction MI. 7800 MachineBasicBlock * 7801 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7802 MachineBasicBlock *MBB) const { 7803 MachineFunction &MF = *MBB->getParent(); 7804 const SystemZInstrInfo *TII = 7805 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7806 MachineRegisterInfo &MRI = MF.getRegInfo(); 7807 7808 // Extract the operands. Base can be a register or a frame index. 7809 Register Dest = MI.getOperand(0).getReg(); 7810 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7811 int64_t Disp = MI.getOperand(2).getImm(); 7812 Register CmpVal = MI.getOperand(3).getReg(); 7813 Register OrigSwapVal = MI.getOperand(4).getReg(); 7814 Register BitShift = MI.getOperand(5).getReg(); 7815 Register NegBitShift = MI.getOperand(6).getReg(); 7816 int64_t BitSize = MI.getOperand(7).getImm(); 7817 DebugLoc DL = MI.getDebugLoc(); 7818 7819 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7820 7821 // Get the right opcodes for the displacement and zero-extension. 7822 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7823 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7824 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 7825 assert(LOpcode && CSOpcode && "Displacement out of range"); 7826 7827 // Create virtual registers for temporary results. 7828 Register OrigOldVal = MRI.createVirtualRegister(RC); 7829 Register OldVal = MRI.createVirtualRegister(RC); 7830 Register SwapVal = MRI.createVirtualRegister(RC); 7831 Register StoreVal = MRI.createVirtualRegister(RC); 7832 Register OldValRot = MRI.createVirtualRegister(RC); 7833 Register RetryOldVal = MRI.createVirtualRegister(RC); 7834 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7835 7836 // Insert 2 basic blocks for the loop. 7837 MachineBasicBlock *StartMBB = MBB; 7838 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7839 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7840 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7841 7842 // StartMBB: 7843 // ... 7844 // %OrigOldVal = L Disp(%Base) 7845 // # fall through to LoopMBB 7846 MBB = StartMBB; 7847 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7848 .add(Base) 7849 .addImm(Disp) 7850 .addReg(0); 7851 MBB->addSuccessor(LoopMBB); 7852 7853 // LoopMBB: 7854 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7855 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7856 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 7857 // ^^ The low BitSize bits contain the field 7858 // of interest. 7859 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 7860 // ^^ Replace the upper 32-BitSize bits of the 7861 // swap value with those that we loaded and rotated. 7862 // %Dest = LL[CH] %OldValRot 7863 // CR %Dest, %CmpVal 7864 // JNE DoneMBB 7865 // # Fall through to SetMBB 7866 MBB = LoopMBB; 7867 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7868 .addReg(OrigOldVal).addMBB(StartMBB) 7869 .addReg(RetryOldVal).addMBB(SetMBB); 7870 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7871 .addReg(OrigSwapVal).addMBB(StartMBB) 7872 .addReg(RetrySwapVal).addMBB(SetMBB); 7873 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 7874 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7875 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7876 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 7877 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 7878 .addReg(OldValRot); 7879 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7880 .addReg(Dest).addReg(CmpVal); 7881 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7882 .addImm(SystemZ::CCMASK_ICMP) 7883 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7884 MBB->addSuccessor(DoneMBB); 7885 MBB->addSuccessor(SetMBB); 7886 7887 // SetMBB: 7888 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7889 // ^^ Rotate the new field to its proper position. 7890 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 7891 // JNE LoopMBB 7892 // # fall through to ExitMBB 7893 MBB = SetMBB; 7894 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7895 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7896 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7897 .addReg(OldVal) 7898 .addReg(StoreVal) 7899 .add(Base) 7900 .addImm(Disp); 7901 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7902 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7903 MBB->addSuccessor(LoopMBB); 7904 MBB->addSuccessor(DoneMBB); 7905 7906 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7907 // to the block after the loop. At this point, CC may have been defined 7908 // either by the CR in LoopMBB or by the CS in SetMBB. 7909 if (!MI.registerDefIsDead(SystemZ::CC)) 7910 DoneMBB->addLiveIn(SystemZ::CC); 7911 7912 MI.eraseFromParent(); 7913 return DoneMBB; 7914 } 7915 7916 // Emit a move from two GR64s to a GR128. 7917 MachineBasicBlock * 7918 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7919 MachineBasicBlock *MBB) const { 7920 MachineFunction &MF = *MBB->getParent(); 7921 const SystemZInstrInfo *TII = 7922 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7923 MachineRegisterInfo &MRI = MF.getRegInfo(); 7924 DebugLoc DL = MI.getDebugLoc(); 7925 7926 Register Dest = MI.getOperand(0).getReg(); 7927 Register Hi = MI.getOperand(1).getReg(); 7928 Register Lo = MI.getOperand(2).getReg(); 7929 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7930 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7931 7932 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7933 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7934 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7935 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7936 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7937 7938 MI.eraseFromParent(); 7939 return MBB; 7940 } 7941 7942 // Emit an extension from a GR64 to a GR128. ClearEven is true 7943 // if the high register of the GR128 value must be cleared or false if 7944 // it's "don't care". 7945 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7946 MachineBasicBlock *MBB, 7947 bool ClearEven) const { 7948 MachineFunction &MF = *MBB->getParent(); 7949 const SystemZInstrInfo *TII = 7950 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7951 MachineRegisterInfo &MRI = MF.getRegInfo(); 7952 DebugLoc DL = MI.getDebugLoc(); 7953 7954 Register Dest = MI.getOperand(0).getReg(); 7955 Register Src = MI.getOperand(1).getReg(); 7956 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7957 7958 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7959 if (ClearEven) { 7960 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7961 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7962 7963 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7964 .addImm(0); 7965 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7966 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7967 In128 = NewIn128; 7968 } 7969 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7970 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7971 7972 MI.eraseFromParent(); 7973 return MBB; 7974 } 7975 7976 MachineBasicBlock * 7977 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 7978 MachineBasicBlock *MBB, 7979 unsigned Opcode, bool IsMemset) const { 7980 MachineFunction &MF = *MBB->getParent(); 7981 const SystemZInstrInfo *TII = 7982 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7983 MachineRegisterInfo &MRI = MF.getRegInfo(); 7984 DebugLoc DL = MI.getDebugLoc(); 7985 7986 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7987 uint64_t DestDisp = MI.getOperand(1).getImm(); 7988 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 7989 uint64_t SrcDisp; 7990 7991 // Fold the displacement Disp if it is out of range. 7992 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 7993 if (!isUInt<12>(Disp)) { 7994 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7995 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 7996 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 7997 .add(Base).addImm(Disp).addReg(0); 7998 Base = MachineOperand::CreateReg(Reg, false); 7999 Disp = 0; 8000 } 8001 }; 8002 8003 if (!IsMemset) { 8004 SrcBase = earlyUseOperand(MI.getOperand(2)); 8005 SrcDisp = MI.getOperand(3).getImm(); 8006 } else { 8007 SrcBase = DestBase; 8008 SrcDisp = DestDisp++; 8009 foldDisplIfNeeded(DestBase, DestDisp); 8010 } 8011 8012 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8013 bool IsImmForm = LengthMO.isImm(); 8014 bool IsRegForm = !IsImmForm; 8015 8016 // Build and insert one Opcode of Length, with special treatment for memset. 8017 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8018 MachineBasicBlock::iterator InsPos, 8019 MachineOperand DBase, uint64_t DDisp, 8020 MachineOperand SBase, uint64_t SDisp, 8021 unsigned Length) -> void { 8022 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8023 if (IsMemset) { 8024 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8025 if (ByteMO.isImm()) 8026 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8027 .add(SBase).addImm(SDisp).add(ByteMO); 8028 else 8029 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8030 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8031 if (--Length == 0) 8032 return; 8033 } 8034 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8035 .add(DBase).addImm(DDisp).addImm(Length) 8036 .add(SBase).addImm(SDisp) 8037 .setMemRefs(MI.memoperands()); 8038 }; 8039 8040 bool NeedsLoop = false; 8041 uint64_t ImmLength = 0; 8042 Register LenAdjReg = SystemZ::NoRegister; 8043 if (IsImmForm) { 8044 ImmLength = LengthMO.getImm(); 8045 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8046 if (ImmLength == 0) { 8047 MI.eraseFromParent(); 8048 return MBB; 8049 } 8050 if (Opcode == SystemZ::CLC) { 8051 if (ImmLength > 3 * 256) 8052 // A two-CLC sequence is a clear win over a loop, not least because 8053 // it needs only one branch. A three-CLC sequence needs the same 8054 // number of branches as a loop (i.e. 2), but is shorter. That 8055 // brings us to lengths greater than 768 bytes. It seems relatively 8056 // likely that a difference will be found within the first 768 bytes, 8057 // so we just optimize for the smallest number of branch 8058 // instructions, in order to avoid polluting the prediction buffer 8059 // too much. 8060 NeedsLoop = true; 8061 } else if (ImmLength > 6 * 256) 8062 // The heuristic we use is to prefer loops for anything that would 8063 // require 7 or more MVCs. With these kinds of sizes there isn't much 8064 // to choose between straight-line code and looping code, since the 8065 // time will be dominated by the MVCs themselves. 8066 NeedsLoop = true; 8067 } else { 8068 NeedsLoop = true; 8069 LenAdjReg = LengthMO.getReg(); 8070 } 8071 8072 // When generating more than one CLC, all but the last will need to 8073 // branch to the end when a difference is found. 8074 MachineBasicBlock *EndMBB = 8075 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8076 ? SystemZ::splitBlockAfter(MI, MBB) 8077 : nullptr); 8078 8079 if (NeedsLoop) { 8080 Register StartCountReg = 8081 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8082 if (IsImmForm) { 8083 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8084 ImmLength &= 255; 8085 } else { 8086 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8087 .addReg(LenAdjReg) 8088 .addReg(0) 8089 .addImm(8); 8090 } 8091 8092 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8093 auto loadZeroAddress = [&]() -> MachineOperand { 8094 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8095 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8096 return MachineOperand::CreateReg(Reg, false); 8097 }; 8098 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8099 DestBase = loadZeroAddress(); 8100 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8101 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8102 8103 MachineBasicBlock *StartMBB = nullptr; 8104 MachineBasicBlock *LoopMBB = nullptr; 8105 MachineBasicBlock *NextMBB = nullptr; 8106 MachineBasicBlock *DoneMBB = nullptr; 8107 MachineBasicBlock *AllDoneMBB = nullptr; 8108 8109 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8110 Register StartDestReg = 8111 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8112 8113 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8114 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8115 Register ThisDestReg = 8116 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8117 Register NextSrcReg = MRI.createVirtualRegister(RC); 8118 Register NextDestReg = 8119 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8120 RC = &SystemZ::GR64BitRegClass; 8121 Register ThisCountReg = MRI.createVirtualRegister(RC); 8122 Register NextCountReg = MRI.createVirtualRegister(RC); 8123 8124 if (IsRegForm) { 8125 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8126 StartMBB = SystemZ::emitBlockAfter(MBB); 8127 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8128 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8129 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8130 8131 // MBB: 8132 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8133 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8134 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8135 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8136 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8137 .addMBB(AllDoneMBB); 8138 MBB->addSuccessor(AllDoneMBB); 8139 if (!IsMemset) 8140 MBB->addSuccessor(StartMBB); 8141 else { 8142 // MemsetOneCheckMBB: 8143 // # Jump to MemsetOneMBB for a memset of length 1, or 8144 // # fall thru to StartMBB. 8145 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8146 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8147 MBB->addSuccessor(MemsetOneCheckMBB); 8148 MBB = MemsetOneCheckMBB; 8149 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8150 .addReg(LenAdjReg).addImm(-1); 8151 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8152 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8153 .addMBB(MemsetOneMBB); 8154 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8155 MBB->addSuccessor(StartMBB, {90, 100}); 8156 8157 // MemsetOneMBB: 8158 // # Jump back to AllDoneMBB after a single MVI or STC. 8159 MBB = MemsetOneMBB; 8160 insertMemMemOp(MBB, MBB->end(), 8161 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8162 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8163 1); 8164 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8165 MBB->addSuccessor(AllDoneMBB); 8166 } 8167 8168 // StartMBB: 8169 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8170 MBB = StartMBB; 8171 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8172 .addReg(StartCountReg).addImm(0); 8173 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8174 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8175 .addMBB(DoneMBB); 8176 MBB->addSuccessor(DoneMBB); 8177 MBB->addSuccessor(LoopMBB); 8178 } 8179 else { 8180 StartMBB = MBB; 8181 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8182 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8183 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8184 8185 // StartMBB: 8186 // # fall through to LoopMBB 8187 MBB->addSuccessor(LoopMBB); 8188 8189 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8190 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8191 if (EndMBB && !ImmLength) 8192 // If the loop handled the whole CLC range, DoneMBB will be empty with 8193 // CC live-through into EndMBB, so add it as live-in. 8194 DoneMBB->addLiveIn(SystemZ::CC); 8195 } 8196 8197 // LoopMBB: 8198 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8199 // [ %NextDestReg, NextMBB ] 8200 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8201 // [ %NextSrcReg, NextMBB ] 8202 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8203 // [ %NextCountReg, NextMBB ] 8204 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8205 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8206 // ( JLH EndMBB ) 8207 // 8208 // The prefetch is used only for MVC. The JLH is used only for CLC. 8209 MBB = LoopMBB; 8210 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8211 .addReg(StartDestReg).addMBB(StartMBB) 8212 .addReg(NextDestReg).addMBB(NextMBB); 8213 if (!HaveSingleBase) 8214 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8215 .addReg(StartSrcReg).addMBB(StartMBB) 8216 .addReg(NextSrcReg).addMBB(NextMBB); 8217 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8218 .addReg(StartCountReg).addMBB(StartMBB) 8219 .addReg(NextCountReg).addMBB(NextMBB); 8220 if (Opcode == SystemZ::MVC) 8221 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8222 .addImm(SystemZ::PFD_WRITE) 8223 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8224 insertMemMemOp(MBB, MBB->end(), 8225 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8226 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8227 if (EndMBB) { 8228 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8229 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8230 .addMBB(EndMBB); 8231 MBB->addSuccessor(EndMBB); 8232 MBB->addSuccessor(NextMBB); 8233 } 8234 8235 // NextMBB: 8236 // %NextDestReg = LA 256(%ThisDestReg) 8237 // %NextSrcReg = LA 256(%ThisSrcReg) 8238 // %NextCountReg = AGHI %ThisCountReg, -1 8239 // CGHI %NextCountReg, 0 8240 // JLH LoopMBB 8241 // # fall through to DoneMBB 8242 // 8243 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8244 MBB = NextMBB; 8245 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8246 .addReg(ThisDestReg).addImm(256).addReg(0); 8247 if (!HaveSingleBase) 8248 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8249 .addReg(ThisSrcReg).addImm(256).addReg(0); 8250 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8251 .addReg(ThisCountReg).addImm(-1); 8252 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8253 .addReg(NextCountReg).addImm(0); 8254 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8255 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8256 .addMBB(LoopMBB); 8257 MBB->addSuccessor(LoopMBB); 8258 MBB->addSuccessor(DoneMBB); 8259 8260 MBB = DoneMBB; 8261 if (IsRegForm) { 8262 // DoneMBB: 8263 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 8264 // # Use EXecute Relative Long for the remainder of the bytes. The target 8265 // instruction of the EXRL will have a length field of 1 since 0 is an 8266 // illegal value. The number of bytes processed becomes (%LenAdjReg & 8267 // 0xff) + 1. 8268 // # Fall through to AllDoneMBB. 8269 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8270 Register RemDestReg = HaveSingleBase ? RemSrcReg 8271 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8272 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 8273 .addReg(StartDestReg).addMBB(StartMBB) 8274 .addReg(NextDestReg).addMBB(NextMBB); 8275 if (!HaveSingleBase) 8276 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 8277 .addReg(StartSrcReg).addMBB(StartMBB) 8278 .addReg(NextSrcReg).addMBB(NextMBB); 8279 if (IsMemset) 8280 insertMemMemOp(MBB, MBB->end(), 8281 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 8282 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 8283 MachineInstrBuilder EXRL_MIB = 8284 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 8285 .addImm(Opcode) 8286 .addReg(LenAdjReg) 8287 .addReg(RemDestReg).addImm(DestDisp) 8288 .addReg(RemSrcReg).addImm(SrcDisp); 8289 MBB->addSuccessor(AllDoneMBB); 8290 MBB = AllDoneMBB; 8291 if (EndMBB) { 8292 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 8293 MBB->addLiveIn(SystemZ::CC); 8294 } 8295 } 8296 } 8297 8298 // Handle any remaining bytes with straight-line code. 8299 while (ImmLength > 0) { 8300 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 8301 // The previous iteration might have created out-of-range displacements. 8302 // Apply them using LA/LAY if so. 8303 foldDisplIfNeeded(DestBase, DestDisp); 8304 foldDisplIfNeeded(SrcBase, SrcDisp); 8305 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 8306 DestDisp += ThisLength; 8307 SrcDisp += ThisLength; 8308 ImmLength -= ThisLength; 8309 // If there's another CLC to go, branch to the end if a difference 8310 // was found. 8311 if (EndMBB && ImmLength > 0) { 8312 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 8313 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8314 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8315 .addMBB(EndMBB); 8316 MBB->addSuccessor(EndMBB); 8317 MBB->addSuccessor(NextMBB); 8318 MBB = NextMBB; 8319 } 8320 } 8321 if (EndMBB) { 8322 MBB->addSuccessor(EndMBB); 8323 MBB = EndMBB; 8324 MBB->addLiveIn(SystemZ::CC); 8325 } 8326 8327 MI.eraseFromParent(); 8328 return MBB; 8329 } 8330 8331 // Decompose string pseudo-instruction MI into a loop that continually performs 8332 // Opcode until CC != 3. 8333 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 8334 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8335 MachineFunction &MF = *MBB->getParent(); 8336 const SystemZInstrInfo *TII = 8337 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8338 MachineRegisterInfo &MRI = MF.getRegInfo(); 8339 DebugLoc DL = MI.getDebugLoc(); 8340 8341 uint64_t End1Reg = MI.getOperand(0).getReg(); 8342 uint64_t Start1Reg = MI.getOperand(1).getReg(); 8343 uint64_t Start2Reg = MI.getOperand(2).getReg(); 8344 uint64_t CharReg = MI.getOperand(3).getReg(); 8345 8346 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 8347 uint64_t This1Reg = MRI.createVirtualRegister(RC); 8348 uint64_t This2Reg = MRI.createVirtualRegister(RC); 8349 uint64_t End2Reg = MRI.createVirtualRegister(RC); 8350 8351 MachineBasicBlock *StartMBB = MBB; 8352 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8353 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8354 8355 // StartMBB: 8356 // # fall through to LoopMBB 8357 MBB->addSuccessor(LoopMBB); 8358 8359 // LoopMBB: 8360 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 8361 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 8362 // R0L = %CharReg 8363 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 8364 // JO LoopMBB 8365 // # fall through to DoneMBB 8366 // 8367 // The load of R0L can be hoisted by post-RA LICM. 8368 MBB = LoopMBB; 8369 8370 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 8371 .addReg(Start1Reg).addMBB(StartMBB) 8372 .addReg(End1Reg).addMBB(LoopMBB); 8373 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 8374 .addReg(Start2Reg).addMBB(StartMBB) 8375 .addReg(End2Reg).addMBB(LoopMBB); 8376 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 8377 BuildMI(MBB, DL, TII->get(Opcode)) 8378 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 8379 .addReg(This1Reg).addReg(This2Reg); 8380 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8381 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 8382 MBB->addSuccessor(LoopMBB); 8383 MBB->addSuccessor(DoneMBB); 8384 8385 DoneMBB->addLiveIn(SystemZ::CC); 8386 8387 MI.eraseFromParent(); 8388 return DoneMBB; 8389 } 8390 8391 // Update TBEGIN instruction with final opcode and register clobbers. 8392 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 8393 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8394 bool NoFloat) const { 8395 MachineFunction &MF = *MBB->getParent(); 8396 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8397 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8398 8399 // Update opcode. 8400 MI.setDesc(TII->get(Opcode)); 8401 8402 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8403 // Make sure to add the corresponding GRSM bits if they are missing. 8404 uint64_t Control = MI.getOperand(2).getImm(); 8405 static const unsigned GPRControlBit[16] = { 8406 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8407 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8408 }; 8409 Control |= GPRControlBit[15]; 8410 if (TFI->hasFP(MF)) 8411 Control |= GPRControlBit[11]; 8412 MI.getOperand(2).setImm(Control); 8413 8414 // Add GPR clobbers. 8415 for (int I = 0; I < 16; I++) { 8416 if ((Control & GPRControlBit[I]) == 0) { 8417 unsigned Reg = SystemZMC::GR64Regs[I]; 8418 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8419 } 8420 } 8421 8422 // Add FPR/VR clobbers. 8423 if (!NoFloat && (Control & 4) != 0) { 8424 if (Subtarget.hasVector()) { 8425 for (unsigned Reg : SystemZMC::VR128Regs) { 8426 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8427 } 8428 } else { 8429 for (unsigned Reg : SystemZMC::FP64Regs) { 8430 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8431 } 8432 } 8433 } 8434 8435 return MBB; 8436 } 8437 8438 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8439 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8440 MachineFunction &MF = *MBB->getParent(); 8441 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8442 const SystemZInstrInfo *TII = 8443 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8444 DebugLoc DL = MI.getDebugLoc(); 8445 8446 Register SrcReg = MI.getOperand(0).getReg(); 8447 8448 // Create new virtual register of the same class as source. 8449 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8450 Register DstReg = MRI->createVirtualRegister(RC); 8451 8452 // Replace pseudo with a normal load-and-test that models the def as 8453 // well. 8454 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8455 .addReg(SrcReg) 8456 .setMIFlags(MI.getFlags()); 8457 MI.eraseFromParent(); 8458 8459 return MBB; 8460 } 8461 8462 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8463 MachineInstr &MI, MachineBasicBlock *MBB) const { 8464 MachineFunction &MF = *MBB->getParent(); 8465 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8466 const SystemZInstrInfo *TII = 8467 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8468 DebugLoc DL = MI.getDebugLoc(); 8469 const unsigned ProbeSize = getStackProbeSize(MF); 8470 Register DstReg = MI.getOperand(0).getReg(); 8471 Register SizeReg = MI.getOperand(2).getReg(); 8472 8473 MachineBasicBlock *StartMBB = MBB; 8474 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8475 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8476 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8477 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8478 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8479 8480 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8481 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8482 8483 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8484 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8485 8486 // LoopTestMBB 8487 // BRC TailTestMBB 8488 // # fallthrough to LoopBodyMBB 8489 StartMBB->addSuccessor(LoopTestMBB); 8490 MBB = LoopTestMBB; 8491 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8492 .addReg(SizeReg) 8493 .addMBB(StartMBB) 8494 .addReg(IncReg) 8495 .addMBB(LoopBodyMBB); 8496 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8497 .addReg(PHIReg) 8498 .addImm(ProbeSize); 8499 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8500 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8501 .addMBB(TailTestMBB); 8502 MBB->addSuccessor(LoopBodyMBB); 8503 MBB->addSuccessor(TailTestMBB); 8504 8505 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8506 // J LoopTestMBB 8507 MBB = LoopBodyMBB; 8508 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8509 .addReg(PHIReg) 8510 .addImm(ProbeSize); 8511 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8512 .addReg(SystemZ::R15D) 8513 .addImm(ProbeSize); 8514 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8515 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8516 .setMemRefs(VolLdMMO); 8517 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8518 MBB->addSuccessor(LoopTestMBB); 8519 8520 // TailTestMBB 8521 // BRC DoneMBB 8522 // # fallthrough to TailMBB 8523 MBB = TailTestMBB; 8524 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8525 .addReg(PHIReg) 8526 .addImm(0); 8527 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8528 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8529 .addMBB(DoneMBB); 8530 MBB->addSuccessor(TailMBB); 8531 MBB->addSuccessor(DoneMBB); 8532 8533 // TailMBB 8534 // # fallthrough to DoneMBB 8535 MBB = TailMBB; 8536 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8537 .addReg(SystemZ::R15D) 8538 .addReg(PHIReg); 8539 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8540 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8541 .setMemRefs(VolLdMMO); 8542 MBB->addSuccessor(DoneMBB); 8543 8544 // DoneMBB 8545 MBB = DoneMBB; 8546 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8547 .addReg(SystemZ::R15D); 8548 8549 MI.eraseFromParent(); 8550 return DoneMBB; 8551 } 8552 8553 SDValue SystemZTargetLowering:: 8554 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8555 MachineFunction &MF = DAG.getMachineFunction(); 8556 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8557 SDLoc DL(SP); 8558 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8559 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8560 } 8561 8562 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8563 MachineInstr &MI, MachineBasicBlock *MBB) const { 8564 switch (MI.getOpcode()) { 8565 case SystemZ::Select32: 8566 case SystemZ::Select64: 8567 case SystemZ::SelectF32: 8568 case SystemZ::SelectF64: 8569 case SystemZ::SelectF128: 8570 case SystemZ::SelectVR32: 8571 case SystemZ::SelectVR64: 8572 case SystemZ::SelectVR128: 8573 return emitSelect(MI, MBB); 8574 8575 case SystemZ::CondStore8Mux: 8576 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8577 case SystemZ::CondStore8MuxInv: 8578 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8579 case SystemZ::CondStore16Mux: 8580 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8581 case SystemZ::CondStore16MuxInv: 8582 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8583 case SystemZ::CondStore32Mux: 8584 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8585 case SystemZ::CondStore32MuxInv: 8586 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8587 case SystemZ::CondStore8: 8588 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8589 case SystemZ::CondStore8Inv: 8590 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8591 case SystemZ::CondStore16: 8592 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8593 case SystemZ::CondStore16Inv: 8594 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8595 case SystemZ::CondStore32: 8596 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8597 case SystemZ::CondStore32Inv: 8598 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8599 case SystemZ::CondStore64: 8600 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8601 case SystemZ::CondStore64Inv: 8602 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8603 case SystemZ::CondStoreF32: 8604 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8605 case SystemZ::CondStoreF32Inv: 8606 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8607 case SystemZ::CondStoreF64: 8608 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8609 case SystemZ::CondStoreF64Inv: 8610 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8611 8612 case SystemZ::PAIR128: 8613 return emitPair128(MI, MBB); 8614 case SystemZ::AEXT128: 8615 return emitExt128(MI, MBB, false); 8616 case SystemZ::ZEXT128: 8617 return emitExt128(MI, MBB, true); 8618 8619 case SystemZ::ATOMIC_SWAPW: 8620 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8621 case SystemZ::ATOMIC_SWAP_32: 8622 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8623 case SystemZ::ATOMIC_SWAP_64: 8624 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8625 8626 case SystemZ::ATOMIC_LOADW_AR: 8627 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8628 case SystemZ::ATOMIC_LOADW_AFI: 8629 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8630 case SystemZ::ATOMIC_LOAD_AR: 8631 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8632 case SystemZ::ATOMIC_LOAD_AHI: 8633 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8634 case SystemZ::ATOMIC_LOAD_AFI: 8635 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8636 case SystemZ::ATOMIC_LOAD_AGR: 8637 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8638 case SystemZ::ATOMIC_LOAD_AGHI: 8639 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8640 case SystemZ::ATOMIC_LOAD_AGFI: 8641 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8642 8643 case SystemZ::ATOMIC_LOADW_SR: 8644 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8645 case SystemZ::ATOMIC_LOAD_SR: 8646 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8647 case SystemZ::ATOMIC_LOAD_SGR: 8648 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8649 8650 case SystemZ::ATOMIC_LOADW_NR: 8651 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8652 case SystemZ::ATOMIC_LOADW_NILH: 8653 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8654 case SystemZ::ATOMIC_LOAD_NR: 8655 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8656 case SystemZ::ATOMIC_LOAD_NILL: 8657 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8658 case SystemZ::ATOMIC_LOAD_NILH: 8659 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8660 case SystemZ::ATOMIC_LOAD_NILF: 8661 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8662 case SystemZ::ATOMIC_LOAD_NGR: 8663 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8664 case SystemZ::ATOMIC_LOAD_NILL64: 8665 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8666 case SystemZ::ATOMIC_LOAD_NILH64: 8667 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8668 case SystemZ::ATOMIC_LOAD_NIHL64: 8669 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8670 case SystemZ::ATOMIC_LOAD_NIHH64: 8671 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8672 case SystemZ::ATOMIC_LOAD_NILF64: 8673 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8674 case SystemZ::ATOMIC_LOAD_NIHF64: 8675 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8676 8677 case SystemZ::ATOMIC_LOADW_OR: 8678 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8679 case SystemZ::ATOMIC_LOADW_OILH: 8680 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8681 case SystemZ::ATOMIC_LOAD_OR: 8682 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8683 case SystemZ::ATOMIC_LOAD_OILL: 8684 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8685 case SystemZ::ATOMIC_LOAD_OILH: 8686 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8687 case SystemZ::ATOMIC_LOAD_OILF: 8688 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8689 case SystemZ::ATOMIC_LOAD_OGR: 8690 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8691 case SystemZ::ATOMIC_LOAD_OILL64: 8692 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8693 case SystemZ::ATOMIC_LOAD_OILH64: 8694 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8695 case SystemZ::ATOMIC_LOAD_OIHL64: 8696 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8697 case SystemZ::ATOMIC_LOAD_OIHH64: 8698 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8699 case SystemZ::ATOMIC_LOAD_OILF64: 8700 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8701 case SystemZ::ATOMIC_LOAD_OIHF64: 8702 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8703 8704 case SystemZ::ATOMIC_LOADW_XR: 8705 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8706 case SystemZ::ATOMIC_LOADW_XILF: 8707 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8708 case SystemZ::ATOMIC_LOAD_XR: 8709 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8710 case SystemZ::ATOMIC_LOAD_XILF: 8711 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8712 case SystemZ::ATOMIC_LOAD_XGR: 8713 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8714 case SystemZ::ATOMIC_LOAD_XILF64: 8715 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8716 case SystemZ::ATOMIC_LOAD_XIHF64: 8717 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8718 8719 case SystemZ::ATOMIC_LOADW_NRi: 8720 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8721 case SystemZ::ATOMIC_LOADW_NILHi: 8722 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8723 case SystemZ::ATOMIC_LOAD_NRi: 8724 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8725 case SystemZ::ATOMIC_LOAD_NILLi: 8726 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8727 case SystemZ::ATOMIC_LOAD_NILHi: 8728 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8729 case SystemZ::ATOMIC_LOAD_NILFi: 8730 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8731 case SystemZ::ATOMIC_LOAD_NGRi: 8732 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8733 case SystemZ::ATOMIC_LOAD_NILL64i: 8734 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8735 case SystemZ::ATOMIC_LOAD_NILH64i: 8736 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8737 case SystemZ::ATOMIC_LOAD_NIHL64i: 8738 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8739 case SystemZ::ATOMIC_LOAD_NIHH64i: 8740 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8741 case SystemZ::ATOMIC_LOAD_NILF64i: 8742 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8743 case SystemZ::ATOMIC_LOAD_NIHF64i: 8744 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8745 8746 case SystemZ::ATOMIC_LOADW_MIN: 8747 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8748 SystemZ::CCMASK_CMP_LE, 0); 8749 case SystemZ::ATOMIC_LOAD_MIN_32: 8750 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8751 SystemZ::CCMASK_CMP_LE, 32); 8752 case SystemZ::ATOMIC_LOAD_MIN_64: 8753 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8754 SystemZ::CCMASK_CMP_LE, 64); 8755 8756 case SystemZ::ATOMIC_LOADW_MAX: 8757 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8758 SystemZ::CCMASK_CMP_GE, 0); 8759 case SystemZ::ATOMIC_LOAD_MAX_32: 8760 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8761 SystemZ::CCMASK_CMP_GE, 32); 8762 case SystemZ::ATOMIC_LOAD_MAX_64: 8763 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8764 SystemZ::CCMASK_CMP_GE, 64); 8765 8766 case SystemZ::ATOMIC_LOADW_UMIN: 8767 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8768 SystemZ::CCMASK_CMP_LE, 0); 8769 case SystemZ::ATOMIC_LOAD_UMIN_32: 8770 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8771 SystemZ::CCMASK_CMP_LE, 32); 8772 case SystemZ::ATOMIC_LOAD_UMIN_64: 8773 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8774 SystemZ::CCMASK_CMP_LE, 64); 8775 8776 case SystemZ::ATOMIC_LOADW_UMAX: 8777 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8778 SystemZ::CCMASK_CMP_GE, 0); 8779 case SystemZ::ATOMIC_LOAD_UMAX_32: 8780 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8781 SystemZ::CCMASK_CMP_GE, 32); 8782 case SystemZ::ATOMIC_LOAD_UMAX_64: 8783 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8784 SystemZ::CCMASK_CMP_GE, 64); 8785 8786 case SystemZ::ATOMIC_CMP_SWAPW: 8787 return emitAtomicCmpSwapW(MI, MBB); 8788 case SystemZ::MVCImm: 8789 case SystemZ::MVCReg: 8790 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8791 case SystemZ::NCImm: 8792 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8793 case SystemZ::OCImm: 8794 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8795 case SystemZ::XCImm: 8796 case SystemZ::XCReg: 8797 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8798 case SystemZ::CLCImm: 8799 case SystemZ::CLCReg: 8800 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8801 case SystemZ::MemsetImmImm: 8802 case SystemZ::MemsetImmReg: 8803 case SystemZ::MemsetRegImm: 8804 case SystemZ::MemsetRegReg: 8805 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 8806 case SystemZ::CLSTLoop: 8807 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8808 case SystemZ::MVSTLoop: 8809 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8810 case SystemZ::SRSTLoop: 8811 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8812 case SystemZ::TBEGIN: 8813 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8814 case SystemZ::TBEGIN_nofloat: 8815 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8816 case SystemZ::TBEGINC: 8817 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8818 case SystemZ::LTEBRCompare_VecPseudo: 8819 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8820 case SystemZ::LTDBRCompare_VecPseudo: 8821 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8822 case SystemZ::LTXBRCompare_VecPseudo: 8823 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8824 8825 case SystemZ::PROBED_ALLOCA: 8826 return emitProbedAlloca(MI, MBB); 8827 8828 case TargetOpcode::STACKMAP: 8829 case TargetOpcode::PATCHPOINT: 8830 return emitPatchPoint(MI, MBB); 8831 8832 default: 8833 llvm_unreachable("Unexpected instr type to insert"); 8834 } 8835 } 8836 8837 // This is only used by the isel schedulers, and is needed only to prevent 8838 // compiler from crashing when list-ilp is used. 8839 const TargetRegisterClass * 8840 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8841 if (VT == MVT::Untyped) 8842 return &SystemZ::ADDR128BitRegClass; 8843 return TargetLowering::getRepRegClassFor(VT); 8844 } 8845