1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 118 119 // TODO: It may be better to default to latency-oriented scheduling, however 120 // LLVM's current latency-oriented scheduler can't handle physreg definitions 121 // such as SystemZ has with CC, so set this to the register-pressure 122 // scheduler, because it can. 123 setSchedulingPreference(Sched::RegPressure); 124 125 setBooleanContents(ZeroOrOneBooleanContent); 126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 127 128 // Instructions are strings of 2-byte aligned 2-byte values. 129 setMinFunctionAlignment(2); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 141 setOperationAction(ISD::SELECT, VT, Expand); 142 143 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 144 setOperationAction(ISD::SELECT_CC, VT, Custom); 145 setOperationAction(ISD::BR_CC, VT, Custom); 146 } 147 } 148 149 // Expand jump table branches as address arithmetic followed by an 150 // indirect jump. 151 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 152 153 // Expand BRCOND into a BR_CC (see above). 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // Handle integer types. 157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 158 I <= MVT::LAST_INTEGER_VALUETYPE; 159 ++I) { 160 MVT VT = MVT::SimpleValueType(I); 161 if (isTypeLegal(VT)) { 162 // Expand individual DIV and REMs into DIVREMs. 163 setOperationAction(ISD::SDIV, VT, Expand); 164 setOperationAction(ISD::UDIV, VT, Expand); 165 setOperationAction(ISD::SREM, VT, Expand); 166 setOperationAction(ISD::UREM, VT, Expand); 167 setOperationAction(ISD::SDIVREM, VT, Custom); 168 setOperationAction(ISD::UDIVREM, VT, Custom); 169 170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 171 // stores, putting a serialization instruction after the stores. 172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 174 175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 176 // available, or if the operand is constant. 177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 178 179 // Use POPCNT on z196 and above. 180 if (Subtarget.hasPopulationCount()) 181 setOperationAction(ISD::CTPOP, VT, Custom); 182 else 183 setOperationAction(ISD::CTPOP, VT, Expand); 184 185 // No special instructions for these. 186 setOperationAction(ISD::CTTZ, VT, Expand); 187 setOperationAction(ISD::ROTR, VT, Expand); 188 189 // Use *MUL_LOHI where possible instead of MULH*. 190 setOperationAction(ISD::MULHS, VT, Expand); 191 setOperationAction(ISD::MULHU, VT, Expand); 192 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 193 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 194 195 // Only z196 and above have native support for conversions to unsigned. 196 if (!Subtarget.hasFPExtension()) 197 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 198 } 199 } 200 201 // Type legalization will convert 8- and 16-bit atomic operations into 202 // forms that operate on i32s (but still keeping the original memory VT). 203 // Lower them into full i32 operations. 204 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 205 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 206 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 216 217 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 218 219 // Traps are legal, as we will convert them to "j .+2". 220 setOperationAction(ISD::TRAP, MVT::Other, Legal); 221 222 // z10 has instructions for signed but not unsigned FP conversion. 223 // Handle unsigned 32-bit types as signed 64-bit types. 224 if (!Subtarget.hasFPExtension()) { 225 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 226 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 227 } 228 229 // We have native support for a 64-bit CTLZ, via FLOGR. 230 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 231 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 232 233 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 234 setOperationAction(ISD::OR, MVT::i64, Custom); 235 236 // FIXME: Can we support these natively? 237 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 239 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 240 241 // We have native instructions for i8, i16 and i32 extensions, but not i1. 242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 243 for (MVT VT : MVT::integer_valuetypes()) { 244 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 246 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 247 } 248 249 // Handle the various types of symbolic address. 250 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 251 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 252 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 253 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 254 setOperationAction(ISD::JumpTable, PtrVT, Custom); 255 256 // We need to handle dynamic allocations specially because of the 257 // 160-byte area at the bottom of the stack. 258 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 259 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 260 261 // Use custom expanders so that we can force the function to use 262 // a frame pointer. 263 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 264 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 265 266 // Handle prefetches with PFD or PFDRL. 267 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 268 269 for (MVT VT : MVT::vector_valuetypes()) { 270 // Assume by default that all vector operations need to be expanded. 271 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 272 if (getOperationAction(Opcode, VT) == Legal) 273 setOperationAction(Opcode, VT, Expand); 274 275 // Likewise all truncating stores and extending loads. 276 for (MVT InnerVT : MVT::vector_valuetypes()) { 277 setTruncStoreAction(VT, InnerVT, Expand); 278 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 279 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 280 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 281 } 282 283 if (isTypeLegal(VT)) { 284 // These operations are legal for anything that can be stored in a 285 // vector register, even if there is no native support for the format 286 // as such. In particular, we can do these for v4f32 even though there 287 // are no specific instructions for that format. 288 setOperationAction(ISD::LOAD, VT, Legal); 289 setOperationAction(ISD::STORE, VT, Legal); 290 setOperationAction(ISD::VSELECT, VT, Legal); 291 setOperationAction(ISD::BITCAST, VT, Legal); 292 setOperationAction(ISD::UNDEF, VT, Legal); 293 294 // Likewise, except that we need to replace the nodes with something 295 // more specific. 296 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 297 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 298 } 299 } 300 301 // Handle integer vector types. 302 for (MVT VT : MVT::integer_vector_valuetypes()) { 303 if (isTypeLegal(VT)) { 304 // These operations have direct equivalents. 305 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 306 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 307 setOperationAction(ISD::ADD, VT, Legal); 308 setOperationAction(ISD::SUB, VT, Legal); 309 if (VT != MVT::v2i64) 310 setOperationAction(ISD::MUL, VT, Legal); 311 setOperationAction(ISD::AND, VT, Legal); 312 setOperationAction(ISD::OR, VT, Legal); 313 setOperationAction(ISD::XOR, VT, Legal); 314 setOperationAction(ISD::CTPOP, VT, Custom); 315 setOperationAction(ISD::CTTZ, VT, Legal); 316 setOperationAction(ISD::CTLZ, VT, Legal); 317 318 // Convert a GPR scalar to a vector by inserting it into element 0. 319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 320 321 // Use a series of unpacks for extensions. 322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 324 325 // Detect shifts by a scalar amount and convert them into 326 // V*_BY_SCALAR. 327 setOperationAction(ISD::SHL, VT, Custom); 328 setOperationAction(ISD::SRA, VT, Custom); 329 setOperationAction(ISD::SRL, VT, Custom); 330 331 // At present ROTL isn't matched by DAGCombiner. ROTR should be 332 // converted into ROTL. 333 setOperationAction(ISD::ROTL, VT, Expand); 334 setOperationAction(ISD::ROTR, VT, Expand); 335 336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 337 // and inverting the result as necessary. 338 setOperationAction(ISD::SETCC, VT, Custom); 339 } 340 } 341 342 if (Subtarget.hasVector()) { 343 // There should be no need to check for float types other than v2f64 344 // since <2 x f32> isn't a legal type. 345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 349 } 350 351 // Handle floating-point types. 352 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 353 I <= MVT::LAST_FP_VALUETYPE; 354 ++I) { 355 MVT VT = MVT::SimpleValueType(I); 356 if (isTypeLegal(VT)) { 357 // We can use FI for FRINT. 358 setOperationAction(ISD::FRINT, VT, Legal); 359 360 // We can use the extended form of FI for other rounding operations. 361 if (Subtarget.hasFPExtension()) { 362 setOperationAction(ISD::FNEARBYINT, VT, Legal); 363 setOperationAction(ISD::FFLOOR, VT, Legal); 364 setOperationAction(ISD::FCEIL, VT, Legal); 365 setOperationAction(ISD::FTRUNC, VT, Legal); 366 setOperationAction(ISD::FROUND, VT, Legal); 367 } 368 369 // No special instructions for these. 370 setOperationAction(ISD::FSIN, VT, Expand); 371 setOperationAction(ISD::FCOS, VT, Expand); 372 setOperationAction(ISD::FSINCOS, VT, Expand); 373 setOperationAction(ISD::FREM, VT, Expand); 374 setOperationAction(ISD::FPOW, VT, Expand); 375 } 376 } 377 378 // Handle floating-point vector types. 379 if (Subtarget.hasVector()) { 380 // Scalar-to-vector conversion is just a subreg. 381 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 382 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 383 384 // Some insertions and extractions can be done directly but others 385 // need to go via integers. 386 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 388 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 390 391 // These operations have direct equivalents. 392 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 393 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 394 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 395 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 396 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 397 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 398 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 399 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 401 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 402 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 403 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 404 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 405 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 406 } 407 408 // We have fused multiply-addition for f32 and f64 but not f128. 409 setOperationAction(ISD::FMA, MVT::f32, Legal); 410 setOperationAction(ISD::FMA, MVT::f64, Legal); 411 setOperationAction(ISD::FMA, MVT::f128, Expand); 412 413 // Needed so that we don't try to implement f128 constant loads using 414 // a load-and-extend of a f80 constant (in cases where the constant 415 // would fit in an f80). 416 for (MVT VT : MVT::fp_valuetypes()) 417 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 418 419 // Floating-point truncation and stores need to be done separately. 420 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 421 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 422 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 423 424 // We have 64-bit FPR<->GPR moves, but need special handling for 425 // 32-bit forms. 426 if (!Subtarget.hasVector()) { 427 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 428 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 429 } 430 431 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 432 // structure, but VAEND is a no-op. 433 setOperationAction(ISD::VASTART, MVT::Other, Custom); 434 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 435 setOperationAction(ISD::VAEND, MVT::Other, Expand); 436 437 // Codes for which we want to perform some z-specific combinations. 438 setTargetDAGCombine(ISD::SIGN_EXTEND); 439 setTargetDAGCombine(ISD::STORE); 440 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 441 setTargetDAGCombine(ISD::FP_ROUND); 442 setTargetDAGCombine(ISD::BSWAP); 443 setTargetDAGCombine(ISD::SHL); 444 setTargetDAGCombine(ISD::SRA); 445 setTargetDAGCombine(ISD::SRL); 446 setTargetDAGCombine(ISD::ROTL); 447 448 // Handle intrinsics. 449 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 450 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 451 452 // We want to use MVC in preference to even a single load/store pair. 453 MaxStoresPerMemcpy = 0; 454 MaxStoresPerMemcpyOptSize = 0; 455 456 // The main memset sequence is a byte store followed by an MVC. 457 // Two STC or MV..I stores win over that, but the kind of fused stores 458 // generated by target-independent code don't when the byte value is 459 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 460 // than "STC;MVC". Handle the choice in target-specific code instead. 461 MaxStoresPerMemset = 0; 462 MaxStoresPerMemsetOptSize = 0; 463 } 464 465 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 466 LLVMContext &, EVT VT) const { 467 if (!VT.isVector()) 468 return MVT::i32; 469 return VT.changeVectorElementTypeToInteger(); 470 } 471 472 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 473 VT = VT.getScalarType(); 474 475 if (!VT.isSimple()) 476 return false; 477 478 switch (VT.getSimpleVT().SimpleTy) { 479 case MVT::f32: 480 case MVT::f64: 481 return true; 482 case MVT::f128: 483 return false; 484 default: 485 break; 486 } 487 488 return false; 489 } 490 491 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 492 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 493 return Imm.isZero() || Imm.isNegZero(); 494 } 495 496 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 497 // We can use CGFI or CLGFI. 498 return isInt<32>(Imm) || isUInt<32>(Imm); 499 } 500 501 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 502 // We can use ALGFI or SLGFI. 503 return isUInt<32>(Imm) || isUInt<32>(-Imm); 504 } 505 506 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 507 unsigned, 508 unsigned, 509 bool *Fast) const { 510 // Unaligned accesses should never be slower than the expanded version. 511 // We check specifically for aligned accesses in the few cases where 512 // they are required. 513 if (Fast) 514 *Fast = true; 515 return true; 516 } 517 518 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 519 const AddrMode &AM, Type *Ty, 520 unsigned AS) const { 521 // Punt on globals for now, although they can be used in limited 522 // RELATIVE LONG cases. 523 if (AM.BaseGV) 524 return false; 525 526 // Require a 20-bit signed offset. 527 if (!isInt<20>(AM.BaseOffs)) 528 return false; 529 530 // Indexing is OK but no scale factor can be applied. 531 return AM.Scale == 0 || AM.Scale == 1; 532 } 533 534 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 535 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 536 return false; 537 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 538 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 539 return FromBits > ToBits; 540 } 541 542 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 543 if (!FromVT.isInteger() || !ToVT.isInteger()) 544 return false; 545 unsigned FromBits = FromVT.getSizeInBits(); 546 unsigned ToBits = ToVT.getSizeInBits(); 547 return FromBits > ToBits; 548 } 549 550 //===----------------------------------------------------------------------===// 551 // Inline asm support 552 //===----------------------------------------------------------------------===// 553 554 TargetLowering::ConstraintType 555 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 556 if (Constraint.size() == 1) { 557 switch (Constraint[0]) { 558 case 'a': // Address register 559 case 'd': // Data register (equivalent to 'r') 560 case 'f': // Floating-point register 561 case 'h': // High-part register 562 case 'r': // General-purpose register 563 return C_RegisterClass; 564 565 case 'Q': // Memory with base and unsigned 12-bit displacement 566 case 'R': // Likewise, plus an index 567 case 'S': // Memory with base and signed 20-bit displacement 568 case 'T': // Likewise, plus an index 569 case 'm': // Equivalent to 'T'. 570 return C_Memory; 571 572 case 'I': // Unsigned 8-bit constant 573 case 'J': // Unsigned 12-bit constant 574 case 'K': // Signed 16-bit constant 575 case 'L': // Signed 20-bit displacement (on all targets we support) 576 case 'M': // 0x7fffffff 577 return C_Other; 578 579 default: 580 break; 581 } 582 } 583 return TargetLowering::getConstraintType(Constraint); 584 } 585 586 TargetLowering::ConstraintWeight SystemZTargetLowering:: 587 getSingleConstraintMatchWeight(AsmOperandInfo &info, 588 const char *constraint) const { 589 ConstraintWeight weight = CW_Invalid; 590 Value *CallOperandVal = info.CallOperandVal; 591 // If we don't have a value, we can't do a match, 592 // but allow it at the lowest weight. 593 if (!CallOperandVal) 594 return CW_Default; 595 Type *type = CallOperandVal->getType(); 596 // Look at the constraint type. 597 switch (*constraint) { 598 default: 599 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 600 break; 601 602 case 'a': // Address register 603 case 'd': // Data register (equivalent to 'r') 604 case 'h': // High-part register 605 case 'r': // General-purpose register 606 if (CallOperandVal->getType()->isIntegerTy()) 607 weight = CW_Register; 608 break; 609 610 case 'f': // Floating-point register 611 if (type->isFloatingPointTy()) 612 weight = CW_Register; 613 break; 614 615 case 'I': // Unsigned 8-bit constant 616 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 617 if (isUInt<8>(C->getZExtValue())) 618 weight = CW_Constant; 619 break; 620 621 case 'J': // Unsigned 12-bit constant 622 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 623 if (isUInt<12>(C->getZExtValue())) 624 weight = CW_Constant; 625 break; 626 627 case 'K': // Signed 16-bit constant 628 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 629 if (isInt<16>(C->getSExtValue())) 630 weight = CW_Constant; 631 break; 632 633 case 'L': // Signed 20-bit displacement (on all targets we support) 634 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 635 if (isInt<20>(C->getSExtValue())) 636 weight = CW_Constant; 637 break; 638 639 case 'M': // 0x7fffffff 640 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 641 if (C->getZExtValue() == 0x7fffffff) 642 weight = CW_Constant; 643 break; 644 } 645 return weight; 646 } 647 648 // Parse a "{tNNN}" register constraint for which the register type "t" 649 // has already been verified. MC is the class associated with "t" and 650 // Map maps 0-based register numbers to LLVM register numbers. 651 static std::pair<unsigned, const TargetRegisterClass *> 652 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 653 const unsigned *Map) { 654 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 655 if (isdigit(Constraint[2])) { 656 unsigned Index; 657 bool Failed = 658 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 659 if (!Failed && Index < 16 && Map[Index]) 660 return std::make_pair(Map[Index], RC); 661 } 662 return std::make_pair(0U, nullptr); 663 } 664 665 std::pair<unsigned, const TargetRegisterClass *> 666 SystemZTargetLowering::getRegForInlineAsmConstraint( 667 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 668 if (Constraint.size() == 1) { 669 // GCC Constraint Letters 670 switch (Constraint[0]) { 671 default: break; 672 case 'd': // Data register (equivalent to 'r') 673 case 'r': // General-purpose register 674 if (VT == MVT::i64) 675 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 676 else if (VT == MVT::i128) 677 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 678 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 679 680 case 'a': // Address register 681 if (VT == MVT::i64) 682 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 683 else if (VT == MVT::i128) 684 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 685 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 686 687 case 'h': // High-part register (an LLVM extension) 688 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 689 690 case 'f': // Floating-point register 691 if (VT == MVT::f64) 692 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 693 else if (VT == MVT::f128) 694 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 695 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 696 } 697 } 698 if (Constraint.size() > 0 && Constraint[0] == '{') { 699 // We need to override the default register parsing for GPRs and FPRs 700 // because the interpretation depends on VT. The internal names of 701 // the registers are also different from the external names 702 // (F0D and F0S instead of F0, etc.). 703 if (Constraint[1] == 'r') { 704 if (VT == MVT::i32) 705 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 706 SystemZMC::GR32Regs); 707 if (VT == MVT::i128) 708 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 709 SystemZMC::GR128Regs); 710 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 711 SystemZMC::GR64Regs); 712 } 713 if (Constraint[1] == 'f') { 714 if (VT == MVT::f32) 715 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 716 SystemZMC::FP32Regs); 717 if (VT == MVT::f128) 718 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 719 SystemZMC::FP128Regs); 720 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 721 SystemZMC::FP64Regs); 722 } 723 } 724 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 725 } 726 727 void SystemZTargetLowering:: 728 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 729 std::vector<SDValue> &Ops, 730 SelectionDAG &DAG) const { 731 // Only support length 1 constraints for now. 732 if (Constraint.length() == 1) { 733 switch (Constraint[0]) { 734 case 'I': // Unsigned 8-bit constant 735 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 736 if (isUInt<8>(C->getZExtValue())) 737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 738 Op.getValueType())); 739 return; 740 741 case 'J': // Unsigned 12-bit constant 742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 743 if (isUInt<12>(C->getZExtValue())) 744 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 745 Op.getValueType())); 746 return; 747 748 case 'K': // Signed 16-bit constant 749 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 750 if (isInt<16>(C->getSExtValue())) 751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 752 Op.getValueType())); 753 return; 754 755 case 'L': // Signed 20-bit displacement (on all targets we support) 756 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 757 if (isInt<20>(C->getSExtValue())) 758 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 759 Op.getValueType())); 760 return; 761 762 case 'M': // 0x7fffffff 763 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 764 if (C->getZExtValue() == 0x7fffffff) 765 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 766 Op.getValueType())); 767 return; 768 } 769 } 770 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 771 } 772 773 //===----------------------------------------------------------------------===// 774 // Calling conventions 775 //===----------------------------------------------------------------------===// 776 777 #include "SystemZGenCallingConv.inc" 778 779 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 780 Type *ToType) const { 781 return isTruncateFree(FromType, ToType); 782 } 783 784 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 785 return CI->isTailCall(); 786 } 787 788 // We do not yet support 128-bit single-element vector types. If the user 789 // attempts to use such types as function argument or return type, prefer 790 // to error out instead of emitting code violating the ABI. 791 static void VerifyVectorType(MVT VT, EVT ArgVT) { 792 if (ArgVT.isVector() && !VT.isVector()) 793 report_fatal_error("Unsupported vector argument or return type"); 794 } 795 796 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 797 for (unsigned i = 0; i < Ins.size(); ++i) 798 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 799 } 800 801 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 802 for (unsigned i = 0; i < Outs.size(); ++i) 803 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 804 } 805 806 // Value is a value that has been passed to us in the location described by VA 807 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 808 // any loads onto Chain. 809 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 810 CCValAssign &VA, SDValue Chain, 811 SDValue Value) { 812 // If the argument has been promoted from a smaller type, insert an 813 // assertion to capture this. 814 if (VA.getLocInfo() == CCValAssign::SExt) 815 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 816 DAG.getValueType(VA.getValVT())); 817 else if (VA.getLocInfo() == CCValAssign::ZExt) 818 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 819 DAG.getValueType(VA.getValVT())); 820 821 if (VA.isExtInLoc()) 822 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 823 else if (VA.getLocInfo() == CCValAssign::BCvt) { 824 // If this is a short vector argument loaded from the stack, 825 // extend from i64 to full vector size and then bitcast. 826 assert(VA.getLocVT() == MVT::i64); 827 assert(VA.getValVT().isVector()); 828 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 829 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 830 } else 831 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 832 return Value; 833 } 834 835 // Value is a value of type VA.getValVT() that we need to copy into 836 // the location described by VA. Return a copy of Value converted to 837 // VA.getValVT(). The caller is responsible for handling indirect values. 838 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 839 CCValAssign &VA, SDValue Value) { 840 switch (VA.getLocInfo()) { 841 case CCValAssign::SExt: 842 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 843 case CCValAssign::ZExt: 844 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 845 case CCValAssign::AExt: 846 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 847 case CCValAssign::BCvt: 848 // If this is a short vector argument to be stored to the stack, 849 // bitcast to v2i64 and then extract first element. 850 assert(VA.getLocVT() == MVT::i64); 851 assert(VA.getValVT().isVector()); 852 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 853 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 854 DAG.getConstant(0, DL, MVT::i32)); 855 case CCValAssign::Full: 856 return Value; 857 default: 858 llvm_unreachable("Unhandled getLocInfo()"); 859 } 860 } 861 862 SDValue SystemZTargetLowering::LowerFormalArguments( 863 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 864 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 865 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 866 MachineFunction &MF = DAG.getMachineFunction(); 867 MachineFrameInfo *MFI = MF.getFrameInfo(); 868 MachineRegisterInfo &MRI = MF.getRegInfo(); 869 SystemZMachineFunctionInfo *FuncInfo = 870 MF.getInfo<SystemZMachineFunctionInfo>(); 871 auto *TFL = 872 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 873 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 874 875 // Detect unsupported vector argument types. 876 if (Subtarget.hasVector()) 877 VerifyVectorTypes(Ins); 878 879 // Assign locations to all of the incoming arguments. 880 SmallVector<CCValAssign, 16> ArgLocs; 881 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 882 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 883 884 unsigned NumFixedGPRs = 0; 885 unsigned NumFixedFPRs = 0; 886 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 887 SDValue ArgValue; 888 CCValAssign &VA = ArgLocs[I]; 889 EVT LocVT = VA.getLocVT(); 890 if (VA.isRegLoc()) { 891 // Arguments passed in registers 892 const TargetRegisterClass *RC; 893 switch (LocVT.getSimpleVT().SimpleTy) { 894 default: 895 // Integers smaller than i64 should be promoted to i64. 896 llvm_unreachable("Unexpected argument type"); 897 case MVT::i32: 898 NumFixedGPRs += 1; 899 RC = &SystemZ::GR32BitRegClass; 900 break; 901 case MVT::i64: 902 NumFixedGPRs += 1; 903 RC = &SystemZ::GR64BitRegClass; 904 break; 905 case MVT::f32: 906 NumFixedFPRs += 1; 907 RC = &SystemZ::FP32BitRegClass; 908 break; 909 case MVT::f64: 910 NumFixedFPRs += 1; 911 RC = &SystemZ::FP64BitRegClass; 912 break; 913 case MVT::v16i8: 914 case MVT::v8i16: 915 case MVT::v4i32: 916 case MVT::v2i64: 917 case MVT::v4f32: 918 case MVT::v2f64: 919 RC = &SystemZ::VR128BitRegClass; 920 break; 921 } 922 923 unsigned VReg = MRI.createVirtualRegister(RC); 924 MRI.addLiveIn(VA.getLocReg(), VReg); 925 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 926 } else { 927 assert(VA.isMemLoc() && "Argument not register or memory"); 928 929 // Create the frame index object for this incoming parameter. 930 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 931 VA.getLocMemOffset(), true); 932 933 // Create the SelectionDAG nodes corresponding to a load 934 // from this parameter. Unpromoted ints and floats are 935 // passed as right-justified 8-byte values. 936 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 937 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 938 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 939 DAG.getIntPtrConstant(4, DL)); 940 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 941 MachinePointerInfo::getFixedStack(MF, FI)); 942 } 943 944 // Convert the value of the argument register into the value that's 945 // being passed. 946 if (VA.getLocInfo() == CCValAssign::Indirect) { 947 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 948 MachinePointerInfo())); 949 // If the original argument was split (e.g. i128), we need 950 // to load all parts of it here (using the same address). 951 unsigned ArgIndex = Ins[I].OrigArgIndex; 952 assert (Ins[I].PartOffset == 0); 953 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 954 CCValAssign &PartVA = ArgLocs[I + 1]; 955 unsigned PartOffset = Ins[I + 1].PartOffset; 956 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 957 DAG.getIntPtrConstant(PartOffset, DL)); 958 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 959 MachinePointerInfo())); 960 ++I; 961 } 962 } else 963 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 964 } 965 966 if (IsVarArg) { 967 // Save the number of non-varargs registers for later use by va_start, etc. 968 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 969 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 970 971 // Likewise the address (in the form of a frame index) of where the 972 // first stack vararg would be. The 1-byte size here is arbitrary. 973 int64_t StackSize = CCInfo.getNextStackOffset(); 974 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 975 976 // ...and a similar frame index for the caller-allocated save area 977 // that will be used to store the incoming registers. 978 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 979 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 980 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 981 982 // Store the FPR varargs in the reserved frame slots. (We store the 983 // GPRs as part of the prologue.) 984 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 985 SDValue MemOps[SystemZ::NumArgFPRs]; 986 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 987 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 988 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 989 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 990 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 991 &SystemZ::FP64BitRegClass); 992 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 993 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 994 MachinePointerInfo::getFixedStack(MF, FI)); 995 } 996 // Join the stores, which are independent of one another. 997 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 998 makeArrayRef(&MemOps[NumFixedFPRs], 999 SystemZ::NumArgFPRs-NumFixedFPRs)); 1000 } 1001 } 1002 1003 return Chain; 1004 } 1005 1006 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1007 SmallVectorImpl<CCValAssign> &ArgLocs, 1008 SmallVectorImpl<ISD::OutputArg> &Outs) { 1009 // Punt if there are any indirect or stack arguments, or if the call 1010 // needs the callee-saved argument register R6, or if the call uses 1011 // the callee-saved register arguments SwiftSelf and SwiftError. 1012 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1013 CCValAssign &VA = ArgLocs[I]; 1014 if (VA.getLocInfo() == CCValAssign::Indirect) 1015 return false; 1016 if (!VA.isRegLoc()) 1017 return false; 1018 unsigned Reg = VA.getLocReg(); 1019 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1020 return false; 1021 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1022 return false; 1023 } 1024 return true; 1025 } 1026 1027 SDValue 1028 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1029 SmallVectorImpl<SDValue> &InVals) const { 1030 SelectionDAG &DAG = CLI.DAG; 1031 SDLoc &DL = CLI.DL; 1032 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1033 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1034 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1035 SDValue Chain = CLI.Chain; 1036 SDValue Callee = CLI.Callee; 1037 bool &IsTailCall = CLI.IsTailCall; 1038 CallingConv::ID CallConv = CLI.CallConv; 1039 bool IsVarArg = CLI.IsVarArg; 1040 MachineFunction &MF = DAG.getMachineFunction(); 1041 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1042 1043 // Detect unsupported vector argument and return types. 1044 if (Subtarget.hasVector()) { 1045 VerifyVectorTypes(Outs); 1046 VerifyVectorTypes(Ins); 1047 } 1048 1049 // Analyze the operands of the call, assigning locations to each operand. 1050 SmallVector<CCValAssign, 16> ArgLocs; 1051 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1052 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1053 1054 // We don't support GuaranteedTailCallOpt, only automatically-detected 1055 // sibling calls. 1056 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1057 IsTailCall = false; 1058 1059 // Get a count of how many bytes are to be pushed on the stack. 1060 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1061 1062 // Mark the start of the call. 1063 if (!IsTailCall) 1064 Chain = DAG.getCALLSEQ_START(Chain, 1065 DAG.getConstant(NumBytes, DL, PtrVT, true), 1066 DL); 1067 1068 // Copy argument values to their designated locations. 1069 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1070 SmallVector<SDValue, 8> MemOpChains; 1071 SDValue StackPtr; 1072 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1073 CCValAssign &VA = ArgLocs[I]; 1074 SDValue ArgValue = OutVals[I]; 1075 1076 if (VA.getLocInfo() == CCValAssign::Indirect) { 1077 // Store the argument in a stack slot and pass its address. 1078 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1079 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1080 MemOpChains.push_back( 1081 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1082 MachinePointerInfo::getFixedStack(MF, FI))); 1083 // If the original argument was split (e.g. i128), we need 1084 // to store all parts of it here (and pass just one address). 1085 unsigned ArgIndex = Outs[I].OrigArgIndex; 1086 assert (Outs[I].PartOffset == 0); 1087 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1088 SDValue PartValue = OutVals[I + 1]; 1089 unsigned PartOffset = Outs[I + 1].PartOffset; 1090 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1091 DAG.getIntPtrConstant(PartOffset, DL)); 1092 MemOpChains.push_back( 1093 DAG.getStore(Chain, DL, PartValue, Address, 1094 MachinePointerInfo::getFixedStack(MF, FI))); 1095 ++I; 1096 } 1097 ArgValue = SpillSlot; 1098 } else 1099 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1100 1101 if (VA.isRegLoc()) 1102 // Queue up the argument copies and emit them at the end. 1103 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1104 else { 1105 assert(VA.isMemLoc() && "Argument not register or memory"); 1106 1107 // Work out the address of the stack slot. Unpromoted ints and 1108 // floats are passed as right-justified 8-byte values. 1109 if (!StackPtr.getNode()) 1110 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1111 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1112 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1113 Offset += 4; 1114 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1115 DAG.getIntPtrConstant(Offset, DL)); 1116 1117 // Emit the store. 1118 MemOpChains.push_back( 1119 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1120 } 1121 } 1122 1123 // Join the stores, which are independent of one another. 1124 if (!MemOpChains.empty()) 1125 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1126 1127 // Accept direct calls by converting symbolic call addresses to the 1128 // associated Target* opcodes. Force %r1 to be used for indirect 1129 // tail calls. 1130 SDValue Glue; 1131 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1132 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1133 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1134 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1135 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1136 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1137 } else if (IsTailCall) { 1138 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1139 Glue = Chain.getValue(1); 1140 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1141 } 1142 1143 // Build a sequence of copy-to-reg nodes, chained and glued together. 1144 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1145 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1146 RegsToPass[I].second, Glue); 1147 Glue = Chain.getValue(1); 1148 } 1149 1150 // The first call operand is the chain and the second is the target address. 1151 SmallVector<SDValue, 8> Ops; 1152 Ops.push_back(Chain); 1153 Ops.push_back(Callee); 1154 1155 // Add argument registers to the end of the list so that they are 1156 // known live into the call. 1157 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1158 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1159 RegsToPass[I].second.getValueType())); 1160 1161 // Add a register mask operand representing the call-preserved registers. 1162 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1163 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1164 assert(Mask && "Missing call preserved mask for calling convention"); 1165 Ops.push_back(DAG.getRegisterMask(Mask)); 1166 1167 // Glue the call to the argument copies, if any. 1168 if (Glue.getNode()) 1169 Ops.push_back(Glue); 1170 1171 // Emit the call. 1172 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1173 if (IsTailCall) 1174 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1175 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1176 Glue = Chain.getValue(1); 1177 1178 // Mark the end of the call, which is glued to the call itself. 1179 Chain = DAG.getCALLSEQ_END(Chain, 1180 DAG.getConstant(NumBytes, DL, PtrVT, true), 1181 DAG.getConstant(0, DL, PtrVT, true), 1182 Glue, DL); 1183 Glue = Chain.getValue(1); 1184 1185 // Assign locations to each value returned by this call. 1186 SmallVector<CCValAssign, 16> RetLocs; 1187 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1188 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1189 1190 // Copy all of the result registers out of their specified physreg. 1191 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1192 CCValAssign &VA = RetLocs[I]; 1193 1194 // Copy the value out, gluing the copy to the end of the call sequence. 1195 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1196 VA.getLocVT(), Glue); 1197 Chain = RetValue.getValue(1); 1198 Glue = RetValue.getValue(2); 1199 1200 // Convert the value of the return register into the value that's 1201 // being returned. 1202 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1203 } 1204 1205 return Chain; 1206 } 1207 1208 bool SystemZTargetLowering:: 1209 CanLowerReturn(CallingConv::ID CallConv, 1210 MachineFunction &MF, bool isVarArg, 1211 const SmallVectorImpl<ISD::OutputArg> &Outs, 1212 LLVMContext &Context) const { 1213 // Detect unsupported vector return types. 1214 if (Subtarget.hasVector()) 1215 VerifyVectorTypes(Outs); 1216 1217 // Special case that we cannot easily detect in RetCC_SystemZ since 1218 // i128 is not a legal type. 1219 for (auto &Out : Outs) 1220 if (Out.ArgVT == MVT::i128) 1221 return false; 1222 1223 SmallVector<CCValAssign, 16> RetLocs; 1224 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1225 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1226 } 1227 1228 SDValue 1229 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1230 bool IsVarArg, 1231 const SmallVectorImpl<ISD::OutputArg> &Outs, 1232 const SmallVectorImpl<SDValue> &OutVals, 1233 const SDLoc &DL, SelectionDAG &DAG) const { 1234 MachineFunction &MF = DAG.getMachineFunction(); 1235 1236 // Detect unsupported vector return types. 1237 if (Subtarget.hasVector()) 1238 VerifyVectorTypes(Outs); 1239 1240 // Assign locations to each returned value. 1241 SmallVector<CCValAssign, 16> RetLocs; 1242 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1243 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1244 1245 // Quick exit for void returns 1246 if (RetLocs.empty()) 1247 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1248 1249 // Copy the result values into the output registers. 1250 SDValue Glue; 1251 SmallVector<SDValue, 4> RetOps; 1252 RetOps.push_back(Chain); 1253 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1254 CCValAssign &VA = RetLocs[I]; 1255 SDValue RetValue = OutVals[I]; 1256 1257 // Make the return register live on exit. 1258 assert(VA.isRegLoc() && "Can only return in registers!"); 1259 1260 // Promote the value as required. 1261 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1262 1263 // Chain and glue the copies together. 1264 unsigned Reg = VA.getLocReg(); 1265 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1266 Glue = Chain.getValue(1); 1267 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1268 } 1269 1270 // Update chain and glue. 1271 RetOps[0] = Chain; 1272 if (Glue.getNode()) 1273 RetOps.push_back(Glue); 1274 1275 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1276 } 1277 1278 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad( 1279 SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const { 1280 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1281 } 1282 1283 // Return true if Op is an intrinsic node with chain that returns the CC value 1284 // as its only (other) argument. Provide the associated SystemZISD opcode and 1285 // the mask of valid CC values if so. 1286 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1287 unsigned &CCValid) { 1288 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1289 switch (Id) { 1290 case Intrinsic::s390_tbegin: 1291 Opcode = SystemZISD::TBEGIN; 1292 CCValid = SystemZ::CCMASK_TBEGIN; 1293 return true; 1294 1295 case Intrinsic::s390_tbegin_nofloat: 1296 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1297 CCValid = SystemZ::CCMASK_TBEGIN; 1298 return true; 1299 1300 case Intrinsic::s390_tend: 1301 Opcode = SystemZISD::TEND; 1302 CCValid = SystemZ::CCMASK_TEND; 1303 return true; 1304 1305 default: 1306 return false; 1307 } 1308 } 1309 1310 // Return true if Op is an intrinsic node without chain that returns the 1311 // CC value as its final argument. Provide the associated SystemZISD 1312 // opcode and the mask of valid CC values if so. 1313 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1314 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1315 switch (Id) { 1316 case Intrinsic::s390_vpkshs: 1317 case Intrinsic::s390_vpksfs: 1318 case Intrinsic::s390_vpksgs: 1319 Opcode = SystemZISD::PACKS_CC; 1320 CCValid = SystemZ::CCMASK_VCMP; 1321 return true; 1322 1323 case Intrinsic::s390_vpklshs: 1324 case Intrinsic::s390_vpklsfs: 1325 case Intrinsic::s390_vpklsgs: 1326 Opcode = SystemZISD::PACKLS_CC; 1327 CCValid = SystemZ::CCMASK_VCMP; 1328 return true; 1329 1330 case Intrinsic::s390_vceqbs: 1331 case Intrinsic::s390_vceqhs: 1332 case Intrinsic::s390_vceqfs: 1333 case Intrinsic::s390_vceqgs: 1334 Opcode = SystemZISD::VICMPES; 1335 CCValid = SystemZ::CCMASK_VCMP; 1336 return true; 1337 1338 case Intrinsic::s390_vchbs: 1339 case Intrinsic::s390_vchhs: 1340 case Intrinsic::s390_vchfs: 1341 case Intrinsic::s390_vchgs: 1342 Opcode = SystemZISD::VICMPHS; 1343 CCValid = SystemZ::CCMASK_VCMP; 1344 return true; 1345 1346 case Intrinsic::s390_vchlbs: 1347 case Intrinsic::s390_vchlhs: 1348 case Intrinsic::s390_vchlfs: 1349 case Intrinsic::s390_vchlgs: 1350 Opcode = SystemZISD::VICMPHLS; 1351 CCValid = SystemZ::CCMASK_VCMP; 1352 return true; 1353 1354 case Intrinsic::s390_vtm: 1355 Opcode = SystemZISD::VTM; 1356 CCValid = SystemZ::CCMASK_VCMP; 1357 return true; 1358 1359 case Intrinsic::s390_vfaebs: 1360 case Intrinsic::s390_vfaehs: 1361 case Intrinsic::s390_vfaefs: 1362 Opcode = SystemZISD::VFAE_CC; 1363 CCValid = SystemZ::CCMASK_ANY; 1364 return true; 1365 1366 case Intrinsic::s390_vfaezbs: 1367 case Intrinsic::s390_vfaezhs: 1368 case Intrinsic::s390_vfaezfs: 1369 Opcode = SystemZISD::VFAEZ_CC; 1370 CCValid = SystemZ::CCMASK_ANY; 1371 return true; 1372 1373 case Intrinsic::s390_vfeebs: 1374 case Intrinsic::s390_vfeehs: 1375 case Intrinsic::s390_vfeefs: 1376 Opcode = SystemZISD::VFEE_CC; 1377 CCValid = SystemZ::CCMASK_ANY; 1378 return true; 1379 1380 case Intrinsic::s390_vfeezbs: 1381 case Intrinsic::s390_vfeezhs: 1382 case Intrinsic::s390_vfeezfs: 1383 Opcode = SystemZISD::VFEEZ_CC; 1384 CCValid = SystemZ::CCMASK_ANY; 1385 return true; 1386 1387 case Intrinsic::s390_vfenebs: 1388 case Intrinsic::s390_vfenehs: 1389 case Intrinsic::s390_vfenefs: 1390 Opcode = SystemZISD::VFENE_CC; 1391 CCValid = SystemZ::CCMASK_ANY; 1392 return true; 1393 1394 case Intrinsic::s390_vfenezbs: 1395 case Intrinsic::s390_vfenezhs: 1396 case Intrinsic::s390_vfenezfs: 1397 Opcode = SystemZISD::VFENEZ_CC; 1398 CCValid = SystemZ::CCMASK_ANY; 1399 return true; 1400 1401 case Intrinsic::s390_vistrbs: 1402 case Intrinsic::s390_vistrhs: 1403 case Intrinsic::s390_vistrfs: 1404 Opcode = SystemZISD::VISTR_CC; 1405 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1406 return true; 1407 1408 case Intrinsic::s390_vstrcbs: 1409 case Intrinsic::s390_vstrchs: 1410 case Intrinsic::s390_vstrcfs: 1411 Opcode = SystemZISD::VSTRC_CC; 1412 CCValid = SystemZ::CCMASK_ANY; 1413 return true; 1414 1415 case Intrinsic::s390_vstrczbs: 1416 case Intrinsic::s390_vstrczhs: 1417 case Intrinsic::s390_vstrczfs: 1418 Opcode = SystemZISD::VSTRCZ_CC; 1419 CCValid = SystemZ::CCMASK_ANY; 1420 return true; 1421 1422 case Intrinsic::s390_vfcedbs: 1423 Opcode = SystemZISD::VFCMPES; 1424 CCValid = SystemZ::CCMASK_VCMP; 1425 return true; 1426 1427 case Intrinsic::s390_vfchdbs: 1428 Opcode = SystemZISD::VFCMPHS; 1429 CCValid = SystemZ::CCMASK_VCMP; 1430 return true; 1431 1432 case Intrinsic::s390_vfchedbs: 1433 Opcode = SystemZISD::VFCMPHES; 1434 CCValid = SystemZ::CCMASK_VCMP; 1435 return true; 1436 1437 case Intrinsic::s390_vftcidb: 1438 Opcode = SystemZISD::VFTCI; 1439 CCValid = SystemZ::CCMASK_VCMP; 1440 return true; 1441 1442 case Intrinsic::s390_tdc: 1443 Opcode = SystemZISD::TDC; 1444 CCValid = SystemZ::CCMASK_TDC; 1445 return true; 1446 1447 default: 1448 return false; 1449 } 1450 } 1451 1452 // Emit an intrinsic with chain with a glued value instead of its CC result. 1453 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1454 unsigned Opcode) { 1455 // Copy all operands except the intrinsic ID. 1456 unsigned NumOps = Op.getNumOperands(); 1457 SmallVector<SDValue, 6> Ops; 1458 Ops.reserve(NumOps - 1); 1459 Ops.push_back(Op.getOperand(0)); 1460 for (unsigned I = 2; I < NumOps; ++I) 1461 Ops.push_back(Op.getOperand(I)); 1462 1463 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1464 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1465 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1466 SDValue OldChain = SDValue(Op.getNode(), 1); 1467 SDValue NewChain = SDValue(Intr.getNode(), 0); 1468 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1469 return Intr; 1470 } 1471 1472 // Emit an intrinsic with a glued value instead of its CC result. 1473 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1474 unsigned Opcode) { 1475 // Copy all operands except the intrinsic ID. 1476 unsigned NumOps = Op.getNumOperands(); 1477 SmallVector<SDValue, 6> Ops; 1478 Ops.reserve(NumOps - 1); 1479 for (unsigned I = 1; I < NumOps; ++I) 1480 Ops.push_back(Op.getOperand(I)); 1481 1482 if (Op->getNumValues() == 1) 1483 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1484 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1485 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1486 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1487 } 1488 1489 // CC is a comparison that will be implemented using an integer or 1490 // floating-point comparison. Return the condition code mask for 1491 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1492 // unsigned comparisons and clear for signed ones. In the floating-point 1493 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1494 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1495 #define CONV(X) \ 1496 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1497 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1498 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1499 1500 switch (CC) { 1501 default: 1502 llvm_unreachable("Invalid integer condition!"); 1503 1504 CONV(EQ); 1505 CONV(NE); 1506 CONV(GT); 1507 CONV(GE); 1508 CONV(LT); 1509 CONV(LE); 1510 1511 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1512 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1513 } 1514 #undef CONV 1515 } 1516 1517 // Return a sequence for getting a 1 from an IPM result when CC has a 1518 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1519 // The handling of CC values outside CCValid doesn't matter. 1520 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1521 // Deal with cases where the result can be taken directly from a bit 1522 // of the IPM result. 1523 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1524 return IPMConversion(0, 0, SystemZ::IPM_CC); 1525 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1526 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1527 1528 // Deal with cases where we can add a value to force the sign bit 1529 // to contain the right value. Putting the bit in 31 means we can 1530 // use SRL rather than RISBG(L), and also makes it easier to get a 1531 // 0/-1 value, so it has priority over the other tests below. 1532 // 1533 // These sequences rely on the fact that the upper two bits of the 1534 // IPM result are zero. 1535 uint64_t TopBit = uint64_t(1) << 31; 1536 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1537 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1538 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1539 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1540 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1541 | SystemZ::CCMASK_1 1542 | SystemZ::CCMASK_2))) 1543 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1544 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1545 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1546 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1547 | SystemZ::CCMASK_2 1548 | SystemZ::CCMASK_3))) 1549 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1550 1551 // Next try inverting the value and testing a bit. 0/1 could be 1552 // handled this way too, but we dealt with that case above. 1553 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1554 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1555 1556 // Handle cases where adding a value forces a non-sign bit to contain 1557 // the right value. 1558 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1559 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1560 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1561 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1562 1563 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1564 // can be done by inverting the low CC bit and applying one of the 1565 // sign-based extractions above. 1566 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1567 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1568 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1569 return IPMConversion(1 << SystemZ::IPM_CC, 1570 TopBit - (3 << SystemZ::IPM_CC), 31); 1571 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1572 | SystemZ::CCMASK_1 1573 | SystemZ::CCMASK_3))) 1574 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1575 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1576 | SystemZ::CCMASK_2 1577 | SystemZ::CCMASK_3))) 1578 return IPMConversion(1 << SystemZ::IPM_CC, 1579 TopBit - (1 << SystemZ::IPM_CC), 31); 1580 1581 llvm_unreachable("Unexpected CC combination"); 1582 } 1583 1584 // If C can be converted to a comparison against zero, adjust the operands 1585 // as necessary. 1586 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1587 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1588 return; 1589 1590 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1591 if (!ConstOp1) 1592 return; 1593 1594 int64_t Value = ConstOp1->getSExtValue(); 1595 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1596 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1597 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1598 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1599 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1600 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1601 } 1602 } 1603 1604 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1605 // adjust the operands as necessary. 1606 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1607 Comparison &C) { 1608 // For us to make any changes, it must a comparison between a single-use 1609 // load and a constant. 1610 if (!C.Op0.hasOneUse() || 1611 C.Op0.getOpcode() != ISD::LOAD || 1612 C.Op1.getOpcode() != ISD::Constant) 1613 return; 1614 1615 // We must have an 8- or 16-bit load. 1616 auto *Load = cast<LoadSDNode>(C.Op0); 1617 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1618 if (NumBits != 8 && NumBits != 16) 1619 return; 1620 1621 // The load must be an extending one and the constant must be within the 1622 // range of the unextended value. 1623 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1624 uint64_t Value = ConstOp1->getZExtValue(); 1625 uint64_t Mask = (1 << NumBits) - 1; 1626 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1627 // Make sure that ConstOp1 is in range of C.Op0. 1628 int64_t SignedValue = ConstOp1->getSExtValue(); 1629 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1630 return; 1631 if (C.ICmpType != SystemZICMP::SignedOnly) { 1632 // Unsigned comparison between two sign-extended values is equivalent 1633 // to unsigned comparison between two zero-extended values. 1634 Value &= Mask; 1635 } else if (NumBits == 8) { 1636 // Try to treat the comparison as unsigned, so that we can use CLI. 1637 // Adjust CCMask and Value as necessary. 1638 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1639 // Test whether the high bit of the byte is set. 1640 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1641 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1642 // Test whether the high bit of the byte is clear. 1643 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1644 else 1645 // No instruction exists for this combination. 1646 return; 1647 C.ICmpType = SystemZICMP::UnsignedOnly; 1648 } 1649 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1650 if (Value > Mask) 1651 return; 1652 // If the constant is in range, we can use any comparison. 1653 C.ICmpType = SystemZICMP::Any; 1654 } else 1655 return; 1656 1657 // Make sure that the first operand is an i32 of the right extension type. 1658 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1659 ISD::SEXTLOAD : 1660 ISD::ZEXTLOAD); 1661 if (C.Op0.getValueType() != MVT::i32 || 1662 Load->getExtensionType() != ExtType) 1663 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1664 Load->getBasePtr(), Load->getPointerInfo(), 1665 Load->getMemoryVT(), Load->getAlignment(), 1666 Load->getMemOperand()->getFlags()); 1667 1668 // Make sure that the second operand is an i32 with the right value. 1669 if (C.Op1.getValueType() != MVT::i32 || 1670 Value != ConstOp1->getZExtValue()) 1671 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1672 } 1673 1674 // Return true if Op is either an unextended load, or a load suitable 1675 // for integer register-memory comparisons of type ICmpType. 1676 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1677 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1678 if (Load) { 1679 // There are no instructions to compare a register with a memory byte. 1680 if (Load->getMemoryVT() == MVT::i8) 1681 return false; 1682 // Otherwise decide on extension type. 1683 switch (Load->getExtensionType()) { 1684 case ISD::NON_EXTLOAD: 1685 return true; 1686 case ISD::SEXTLOAD: 1687 return ICmpType != SystemZICMP::UnsignedOnly; 1688 case ISD::ZEXTLOAD: 1689 return ICmpType != SystemZICMP::SignedOnly; 1690 default: 1691 break; 1692 } 1693 } 1694 return false; 1695 } 1696 1697 // Return true if it is better to swap the operands of C. 1698 static bool shouldSwapCmpOperands(const Comparison &C) { 1699 // Leave f128 comparisons alone, since they have no memory forms. 1700 if (C.Op0.getValueType() == MVT::f128) 1701 return false; 1702 1703 // Always keep a floating-point constant second, since comparisons with 1704 // zero can use LOAD TEST and comparisons with other constants make a 1705 // natural memory operand. 1706 if (isa<ConstantFPSDNode>(C.Op1)) 1707 return false; 1708 1709 // Never swap comparisons with zero since there are many ways to optimize 1710 // those later. 1711 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1712 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1713 return false; 1714 1715 // Also keep natural memory operands second if the loaded value is 1716 // only used here. Several comparisons have memory forms. 1717 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1718 return false; 1719 1720 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1721 // In that case we generally prefer the memory to be second. 1722 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1723 // The only exceptions are when the second operand is a constant and 1724 // we can use things like CHHSI. 1725 if (!ConstOp1) 1726 return true; 1727 // The unsigned memory-immediate instructions can handle 16-bit 1728 // unsigned integers. 1729 if (C.ICmpType != SystemZICMP::SignedOnly && 1730 isUInt<16>(ConstOp1->getZExtValue())) 1731 return false; 1732 // The signed memory-immediate instructions can handle 16-bit 1733 // signed integers. 1734 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1735 isInt<16>(ConstOp1->getSExtValue())) 1736 return false; 1737 return true; 1738 } 1739 1740 // Try to promote the use of CGFR and CLGFR. 1741 unsigned Opcode0 = C.Op0.getOpcode(); 1742 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1743 return true; 1744 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1745 return true; 1746 if (C.ICmpType != SystemZICMP::SignedOnly && 1747 Opcode0 == ISD::AND && 1748 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1749 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1750 return true; 1751 1752 return false; 1753 } 1754 1755 // Return a version of comparison CC mask CCMask in which the LT and GT 1756 // actions are swapped. 1757 static unsigned reverseCCMask(unsigned CCMask) { 1758 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1759 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1760 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1761 (CCMask & SystemZ::CCMASK_CMP_UO)); 1762 } 1763 1764 // Check whether C tests for equality between X and Y and whether X - Y 1765 // or Y - X is also computed. In that case it's better to compare the 1766 // result of the subtraction against zero. 1767 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1768 Comparison &C) { 1769 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1770 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1771 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1772 SDNode *N = *I; 1773 if (N->getOpcode() == ISD::SUB && 1774 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1775 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1776 C.Op0 = SDValue(N, 0); 1777 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1778 return; 1779 } 1780 } 1781 } 1782 } 1783 1784 // Check whether C compares a floating-point value with zero and if that 1785 // floating-point value is also negated. In this case we can use the 1786 // negation to set CC, so avoiding separate LOAD AND TEST and 1787 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1788 static void adjustForFNeg(Comparison &C) { 1789 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1790 if (C1 && C1->isZero()) { 1791 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1792 SDNode *N = *I; 1793 if (N->getOpcode() == ISD::FNEG) { 1794 C.Op0 = SDValue(N, 0); 1795 C.CCMask = reverseCCMask(C.CCMask); 1796 return; 1797 } 1798 } 1799 } 1800 } 1801 1802 // Check whether C compares (shl X, 32) with 0 and whether X is 1803 // also sign-extended. In that case it is better to test the result 1804 // of the sign extension using LTGFR. 1805 // 1806 // This case is important because InstCombine transforms a comparison 1807 // with (sext (trunc X)) into a comparison with (shl X, 32). 1808 static void adjustForLTGFR(Comparison &C) { 1809 // Check for a comparison between (shl X, 32) and 0. 1810 if (C.Op0.getOpcode() == ISD::SHL && 1811 C.Op0.getValueType() == MVT::i64 && 1812 C.Op1.getOpcode() == ISD::Constant && 1813 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1814 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1815 if (C1 && C1->getZExtValue() == 32) { 1816 SDValue ShlOp0 = C.Op0.getOperand(0); 1817 // See whether X has any SIGN_EXTEND_INREG uses. 1818 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1819 SDNode *N = *I; 1820 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1821 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1822 C.Op0 = SDValue(N, 0); 1823 return; 1824 } 1825 } 1826 } 1827 } 1828 } 1829 1830 // If C compares the truncation of an extending load, try to compare 1831 // the untruncated value instead. This exposes more opportunities to 1832 // reuse CC. 1833 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1834 Comparison &C) { 1835 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1836 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1837 C.Op1.getOpcode() == ISD::Constant && 1838 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1839 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1840 if (L->getMemoryVT().getStoreSizeInBits() 1841 <= C.Op0.getValueType().getSizeInBits()) { 1842 unsigned Type = L->getExtensionType(); 1843 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1844 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1845 C.Op0 = C.Op0.getOperand(0); 1846 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1847 } 1848 } 1849 } 1850 } 1851 1852 // Return true if shift operation N has an in-range constant shift value. 1853 // Store it in ShiftVal if so. 1854 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1855 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1856 if (!Shift) 1857 return false; 1858 1859 uint64_t Amount = Shift->getZExtValue(); 1860 if (Amount >= N.getValueType().getSizeInBits()) 1861 return false; 1862 1863 ShiftVal = Amount; 1864 return true; 1865 } 1866 1867 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1868 // instruction and whether the CC value is descriptive enough to handle 1869 // a comparison of type Opcode between the AND result and CmpVal. 1870 // CCMask says which comparison result is being tested and BitSize is 1871 // the number of bits in the operands. If TEST UNDER MASK can be used, 1872 // return the corresponding CC mask, otherwise return 0. 1873 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1874 uint64_t Mask, uint64_t CmpVal, 1875 unsigned ICmpType) { 1876 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1877 1878 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1879 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1880 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1881 return 0; 1882 1883 // Work out the masks for the lowest and highest bits. 1884 unsigned HighShift = 63 - countLeadingZeros(Mask); 1885 uint64_t High = uint64_t(1) << HighShift; 1886 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1887 1888 // Signed ordered comparisons are effectively unsigned if the sign 1889 // bit is dropped. 1890 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1891 1892 // Check for equality comparisons with 0, or the equivalent. 1893 if (CmpVal == 0) { 1894 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1895 return SystemZ::CCMASK_TM_ALL_0; 1896 if (CCMask == SystemZ::CCMASK_CMP_NE) 1897 return SystemZ::CCMASK_TM_SOME_1; 1898 } 1899 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1900 if (CCMask == SystemZ::CCMASK_CMP_LT) 1901 return SystemZ::CCMASK_TM_ALL_0; 1902 if (CCMask == SystemZ::CCMASK_CMP_GE) 1903 return SystemZ::CCMASK_TM_SOME_1; 1904 } 1905 if (EffectivelyUnsigned && CmpVal < Low) { 1906 if (CCMask == SystemZ::CCMASK_CMP_LE) 1907 return SystemZ::CCMASK_TM_ALL_0; 1908 if (CCMask == SystemZ::CCMASK_CMP_GT) 1909 return SystemZ::CCMASK_TM_SOME_1; 1910 } 1911 1912 // Check for equality comparisons with the mask, or the equivalent. 1913 if (CmpVal == Mask) { 1914 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1915 return SystemZ::CCMASK_TM_ALL_1; 1916 if (CCMask == SystemZ::CCMASK_CMP_NE) 1917 return SystemZ::CCMASK_TM_SOME_0; 1918 } 1919 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1920 if (CCMask == SystemZ::CCMASK_CMP_GT) 1921 return SystemZ::CCMASK_TM_ALL_1; 1922 if (CCMask == SystemZ::CCMASK_CMP_LE) 1923 return SystemZ::CCMASK_TM_SOME_0; 1924 } 1925 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1926 if (CCMask == SystemZ::CCMASK_CMP_GE) 1927 return SystemZ::CCMASK_TM_ALL_1; 1928 if (CCMask == SystemZ::CCMASK_CMP_LT) 1929 return SystemZ::CCMASK_TM_SOME_0; 1930 } 1931 1932 // Check for ordered comparisons with the top bit. 1933 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1934 if (CCMask == SystemZ::CCMASK_CMP_LE) 1935 return SystemZ::CCMASK_TM_MSB_0; 1936 if (CCMask == SystemZ::CCMASK_CMP_GT) 1937 return SystemZ::CCMASK_TM_MSB_1; 1938 } 1939 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1940 if (CCMask == SystemZ::CCMASK_CMP_LT) 1941 return SystemZ::CCMASK_TM_MSB_0; 1942 if (CCMask == SystemZ::CCMASK_CMP_GE) 1943 return SystemZ::CCMASK_TM_MSB_1; 1944 } 1945 1946 // If there are just two bits, we can do equality checks for Low and High 1947 // as well. 1948 if (Mask == Low + High) { 1949 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1950 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1951 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1952 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1953 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1954 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1955 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1956 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1957 } 1958 1959 // Looks like we've exhausted our options. 1960 return 0; 1961 } 1962 1963 // See whether C can be implemented as a TEST UNDER MASK instruction. 1964 // Update the arguments with the TM version if so. 1965 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 1966 Comparison &C) { 1967 // Check that we have a comparison with a constant. 1968 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1969 if (!ConstOp1) 1970 return; 1971 uint64_t CmpVal = ConstOp1->getZExtValue(); 1972 1973 // Check whether the nonconstant input is an AND with a constant mask. 1974 Comparison NewC(C); 1975 uint64_t MaskVal; 1976 ConstantSDNode *Mask = nullptr; 1977 if (C.Op0.getOpcode() == ISD::AND) { 1978 NewC.Op0 = C.Op0.getOperand(0); 1979 NewC.Op1 = C.Op0.getOperand(1); 1980 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1981 if (!Mask) 1982 return; 1983 MaskVal = Mask->getZExtValue(); 1984 } else { 1985 // There is no instruction to compare with a 64-bit immediate 1986 // so use TMHH instead if possible. We need an unsigned ordered 1987 // comparison with an i64 immediate. 1988 if (NewC.Op0.getValueType() != MVT::i64 || 1989 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1990 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1991 NewC.ICmpType == SystemZICMP::SignedOnly) 1992 return; 1993 // Convert LE and GT comparisons into LT and GE. 1994 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1995 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1996 if (CmpVal == uint64_t(-1)) 1997 return; 1998 CmpVal += 1; 1999 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2000 } 2001 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2002 // be masked off without changing the result. 2003 MaskVal = -(CmpVal & -CmpVal); 2004 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2005 } 2006 if (!MaskVal) 2007 return; 2008 2009 // Check whether the combination of mask, comparison value and comparison 2010 // type are suitable. 2011 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 2012 unsigned NewCCMask, ShiftVal; 2013 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2014 NewC.Op0.getOpcode() == ISD::SHL && 2015 isSimpleShift(NewC.Op0, ShiftVal) && 2016 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2017 MaskVal >> ShiftVal, 2018 CmpVal >> ShiftVal, 2019 SystemZICMP::Any))) { 2020 NewC.Op0 = NewC.Op0.getOperand(0); 2021 MaskVal >>= ShiftVal; 2022 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2023 NewC.Op0.getOpcode() == ISD::SRL && 2024 isSimpleShift(NewC.Op0, ShiftVal) && 2025 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2026 MaskVal << ShiftVal, 2027 CmpVal << ShiftVal, 2028 SystemZICMP::UnsignedOnly))) { 2029 NewC.Op0 = NewC.Op0.getOperand(0); 2030 MaskVal <<= ShiftVal; 2031 } else { 2032 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2033 NewC.ICmpType); 2034 if (!NewCCMask) 2035 return; 2036 } 2037 2038 // Go ahead and make the change. 2039 C.Opcode = SystemZISD::TM; 2040 C.Op0 = NewC.Op0; 2041 if (Mask && Mask->getZExtValue() == MaskVal) 2042 C.Op1 = SDValue(Mask, 0); 2043 else 2044 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2045 C.CCValid = SystemZ::CCMASK_TM; 2046 C.CCMask = NewCCMask; 2047 } 2048 2049 // Return a Comparison that tests the condition-code result of intrinsic 2050 // node Call against constant integer CC using comparison code Cond. 2051 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2052 // and CCValid is the set of possible condition-code results. 2053 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2054 SDValue Call, unsigned CCValid, uint64_t CC, 2055 ISD::CondCode Cond) { 2056 Comparison C(Call, SDValue()); 2057 C.Opcode = Opcode; 2058 C.CCValid = CCValid; 2059 if (Cond == ISD::SETEQ) 2060 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2061 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2062 else if (Cond == ISD::SETNE) 2063 // ...and the inverse of that. 2064 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2065 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2066 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2067 // always true for CC>3. 2068 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2069 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2070 // ...and the inverse of that. 2071 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2072 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2073 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2074 // always true for CC>3. 2075 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2076 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2077 // ...and the inverse of that. 2078 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2079 else 2080 llvm_unreachable("Unexpected integer comparison type"); 2081 C.CCMask &= CCValid; 2082 return C; 2083 } 2084 2085 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2086 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2087 ISD::CondCode Cond, const SDLoc &DL) { 2088 if (CmpOp1.getOpcode() == ISD::Constant) { 2089 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2090 unsigned Opcode, CCValid; 2091 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2092 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2093 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2094 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2095 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2096 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2097 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2098 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2099 } 2100 Comparison C(CmpOp0, CmpOp1); 2101 C.CCMask = CCMaskForCondCode(Cond); 2102 if (C.Op0.getValueType().isFloatingPoint()) { 2103 C.CCValid = SystemZ::CCMASK_FCMP; 2104 C.Opcode = SystemZISD::FCMP; 2105 adjustForFNeg(C); 2106 } else { 2107 C.CCValid = SystemZ::CCMASK_ICMP; 2108 C.Opcode = SystemZISD::ICMP; 2109 // Choose the type of comparison. Equality and inequality tests can 2110 // use either signed or unsigned comparisons. The choice also doesn't 2111 // matter if both sign bits are known to be clear. In those cases we 2112 // want to give the main isel code the freedom to choose whichever 2113 // form fits best. 2114 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2115 C.CCMask == SystemZ::CCMASK_CMP_NE || 2116 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2117 C.ICmpType = SystemZICMP::Any; 2118 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2119 C.ICmpType = SystemZICMP::UnsignedOnly; 2120 else 2121 C.ICmpType = SystemZICMP::SignedOnly; 2122 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2123 adjustZeroCmp(DAG, DL, C); 2124 adjustSubwordCmp(DAG, DL, C); 2125 adjustForSubtraction(DAG, DL, C); 2126 adjustForLTGFR(C); 2127 adjustICmpTruncate(DAG, DL, C); 2128 } 2129 2130 if (shouldSwapCmpOperands(C)) { 2131 std::swap(C.Op0, C.Op1); 2132 C.CCMask = reverseCCMask(C.CCMask); 2133 } 2134 2135 adjustForTestUnderMask(DAG, DL, C); 2136 return C; 2137 } 2138 2139 // Emit the comparison instruction described by C. 2140 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2141 if (!C.Op1.getNode()) { 2142 SDValue Op; 2143 switch (C.Op0.getOpcode()) { 2144 case ISD::INTRINSIC_W_CHAIN: 2145 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2146 break; 2147 case ISD::INTRINSIC_WO_CHAIN: 2148 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2149 break; 2150 default: 2151 llvm_unreachable("Invalid comparison operands"); 2152 } 2153 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2154 } 2155 if (C.Opcode == SystemZISD::ICMP) 2156 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2157 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2158 if (C.Opcode == SystemZISD::TM) { 2159 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2160 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2161 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2162 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2163 } 2164 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2165 } 2166 2167 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2168 // 64 bits. Extend is the extension type to use. Store the high part 2169 // in Hi and the low part in Lo. 2170 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2171 SDValue Op0, SDValue Op1, SDValue &Hi, 2172 SDValue &Lo) { 2173 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2174 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2175 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2176 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2177 DAG.getConstant(32, DL, MVT::i64)); 2178 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2179 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2180 } 2181 2182 // Lower a binary operation that produces two VT results, one in each 2183 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2184 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2185 // on the extended Op0 and (unextended) Op1. Store the even register result 2186 // in Even and the odd register result in Odd. 2187 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2188 unsigned Extend, unsigned Opcode, SDValue Op0, 2189 SDValue Op1, SDValue &Even, SDValue &Odd) { 2190 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2191 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2192 SDValue(In128, 0), Op1); 2193 bool Is32Bit = is32Bit(VT); 2194 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2195 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2196 } 2197 2198 // Return an i32 value that is 1 if the CC value produced by Glue is 2199 // in the mask CCMask and 0 otherwise. CC is known to have a value 2200 // in CCValid, so other values can be ignored. 2201 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, 2202 unsigned CCValid, unsigned CCMask) { 2203 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2204 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2205 2206 if (Conversion.XORValue) 2207 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2208 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2209 2210 if (Conversion.AddValue) 2211 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2212 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2213 2214 // The SHR/AND sequence should get optimized to an RISBG. 2215 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2216 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2217 if (Conversion.Bit != 31) 2218 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2219 DAG.getConstant(1, DL, MVT::i32)); 2220 return Result; 2221 } 2222 2223 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2224 // be done directly. IsFP is true if CC is for a floating-point rather than 2225 // integer comparison. 2226 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2227 switch (CC) { 2228 case ISD::SETOEQ: 2229 case ISD::SETEQ: 2230 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2231 2232 case ISD::SETOGE: 2233 case ISD::SETGE: 2234 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2235 2236 case ISD::SETOGT: 2237 case ISD::SETGT: 2238 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2239 2240 case ISD::SETUGT: 2241 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2242 2243 default: 2244 return 0; 2245 } 2246 } 2247 2248 // Return the SystemZISD vector comparison operation for CC or its inverse, 2249 // or 0 if neither can be done directly. Indicate in Invert whether the 2250 // result is for the inverse of CC. IsFP is true if CC is for a 2251 // floating-point rather than integer comparison. 2252 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2253 bool &Invert) { 2254 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2255 Invert = false; 2256 return Opcode; 2257 } 2258 2259 CC = ISD::getSetCCInverse(CC, !IsFP); 2260 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2261 Invert = true; 2262 return Opcode; 2263 } 2264 2265 return 0; 2266 } 2267 2268 // Return a v2f64 that contains the extended form of elements Start and Start+1 2269 // of v4f32 value Op. 2270 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2271 SDValue Op) { 2272 int Mask[] = { Start, -1, Start + 1, -1 }; 2273 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2274 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2275 } 2276 2277 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2278 // producing a result of type VT. 2279 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL, 2280 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2281 // There is no hardware support for v4f32, so extend the vector into 2282 // two v2f64s and compare those. 2283 if (CmpOp0.getValueType() == MVT::v4f32) { 2284 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2285 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2286 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2287 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2288 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2289 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2290 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2291 } 2292 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2293 } 2294 2295 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2296 // an integer mask of type VT. 2297 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2298 ISD::CondCode CC, SDValue CmpOp0, 2299 SDValue CmpOp1) { 2300 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2301 bool Invert = false; 2302 SDValue Cmp; 2303 switch (CC) { 2304 // Handle tests for order using (or (ogt y x) (oge x y)). 2305 case ISD::SETUO: 2306 Invert = true; 2307 case ISD::SETO: { 2308 assert(IsFP && "Unexpected integer comparison"); 2309 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2310 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2311 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2312 break; 2313 } 2314 2315 // Handle <> tests using (or (ogt y x) (ogt x y)). 2316 case ISD::SETUEQ: 2317 Invert = true; 2318 case ISD::SETONE: { 2319 assert(IsFP && "Unexpected integer comparison"); 2320 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2321 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2322 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2323 break; 2324 } 2325 2326 // Otherwise a single comparison is enough. It doesn't really 2327 // matter whether we try the inversion or the swap first, since 2328 // there are no cases where both work. 2329 default: 2330 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2331 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2332 else { 2333 CC = ISD::getSetCCSwappedOperands(CC); 2334 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2335 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2336 else 2337 llvm_unreachable("Unhandled comparison"); 2338 } 2339 break; 2340 } 2341 if (Invert) { 2342 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2343 DAG.getConstant(65535, DL, MVT::i32)); 2344 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2345 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2346 } 2347 return Cmp; 2348 } 2349 2350 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2351 SelectionDAG &DAG) const { 2352 SDValue CmpOp0 = Op.getOperand(0); 2353 SDValue CmpOp1 = Op.getOperand(1); 2354 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2355 SDLoc DL(Op); 2356 EVT VT = Op.getValueType(); 2357 if (VT.isVector()) 2358 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2359 2360 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2361 SDValue Glue = emitCmp(DAG, DL, C); 2362 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2363 } 2364 2365 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2366 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2367 SDValue CmpOp0 = Op.getOperand(2); 2368 SDValue CmpOp1 = Op.getOperand(3); 2369 SDValue Dest = Op.getOperand(4); 2370 SDLoc DL(Op); 2371 2372 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2373 SDValue Glue = emitCmp(DAG, DL, C); 2374 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2375 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2376 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2377 } 2378 2379 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2380 // allowing Pos and Neg to be wider than CmpOp. 2381 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2382 return (Neg.getOpcode() == ISD::SUB && 2383 Neg.getOperand(0).getOpcode() == ISD::Constant && 2384 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2385 Neg.getOperand(1) == Pos && 2386 (Pos == CmpOp || 2387 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2388 Pos.getOperand(0) == CmpOp))); 2389 } 2390 2391 // Return the absolute or negative absolute of Op; IsNegative decides which. 2392 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2393 bool IsNegative) { 2394 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2395 if (IsNegative) 2396 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2397 DAG.getConstant(0, DL, Op.getValueType()), Op); 2398 return Op; 2399 } 2400 2401 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2402 SelectionDAG &DAG) const { 2403 SDValue CmpOp0 = Op.getOperand(0); 2404 SDValue CmpOp1 = Op.getOperand(1); 2405 SDValue TrueOp = Op.getOperand(2); 2406 SDValue FalseOp = Op.getOperand(3); 2407 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2408 SDLoc DL(Op); 2409 2410 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2411 2412 // Check for absolute and negative-absolute selections, including those 2413 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2414 // This check supplements the one in DAGCombiner. 2415 if (C.Opcode == SystemZISD::ICMP && 2416 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2417 C.CCMask != SystemZ::CCMASK_CMP_NE && 2418 C.Op1.getOpcode() == ISD::Constant && 2419 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2420 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2421 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2422 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2423 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2424 } 2425 2426 SDValue Glue = emitCmp(DAG, DL, C); 2427 2428 // Special case for handling -1/0 results. The shifts we use here 2429 // should get optimized with the IPM conversion sequence. 2430 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2431 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2432 if (TrueC && FalseC) { 2433 int64_t TrueVal = TrueC->getSExtValue(); 2434 int64_t FalseVal = FalseC->getSExtValue(); 2435 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2436 // Invert the condition if we want -1 on false. 2437 if (TrueVal == 0) 2438 C.CCMask ^= C.CCValid; 2439 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2440 EVT VT = Op.getValueType(); 2441 // Extend the result to VT. Upper bits are ignored. 2442 if (!is32Bit(VT)) 2443 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2444 // Sign-extend from the low bit. 2445 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2446 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2447 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2448 } 2449 } 2450 2451 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2452 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2453 2454 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2455 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2456 } 2457 2458 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2459 SelectionDAG &DAG) const { 2460 SDLoc DL(Node); 2461 const GlobalValue *GV = Node->getGlobal(); 2462 int64_t Offset = Node->getOffset(); 2463 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2464 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2465 2466 SDValue Result; 2467 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2468 // Assign anchors at 1<<12 byte boundaries. 2469 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2470 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2471 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2472 2473 // The offset can be folded into the address if it is aligned to a halfword. 2474 Offset -= Anchor; 2475 if (Offset != 0 && (Offset & 1) == 0) { 2476 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2477 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2478 Offset = 0; 2479 } 2480 } else { 2481 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2482 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2483 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2484 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2485 } 2486 2487 // If there was a non-zero offset that we didn't fold, create an explicit 2488 // addition for it. 2489 if (Offset != 0) 2490 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2491 DAG.getConstant(Offset, DL, PtrVT)); 2492 2493 return Result; 2494 } 2495 2496 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2497 SelectionDAG &DAG, 2498 unsigned Opcode, 2499 SDValue GOTOffset) const { 2500 SDLoc DL(Node); 2501 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2502 SDValue Chain = DAG.getEntryNode(); 2503 SDValue Glue; 2504 2505 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2506 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2507 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2508 Glue = Chain.getValue(1); 2509 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2510 Glue = Chain.getValue(1); 2511 2512 // The first call operand is the chain and the second is the TLS symbol. 2513 SmallVector<SDValue, 8> Ops; 2514 Ops.push_back(Chain); 2515 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2516 Node->getValueType(0), 2517 0, 0)); 2518 2519 // Add argument registers to the end of the list so that they are 2520 // known live into the call. 2521 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2522 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2523 2524 // Add a register mask operand representing the call-preserved registers. 2525 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2526 const uint32_t *Mask = 2527 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2528 assert(Mask && "Missing call preserved mask for calling convention"); 2529 Ops.push_back(DAG.getRegisterMask(Mask)); 2530 2531 // Glue the call to the argument copies. 2532 Ops.push_back(Glue); 2533 2534 // Emit the call. 2535 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2536 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2537 Glue = Chain.getValue(1); 2538 2539 // Copy the return value from %r2. 2540 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2541 } 2542 2543 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2544 SelectionDAG &DAG) const { 2545 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2546 2547 // The high part of the thread pointer is in access register 0. 2548 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2549 DAG.getConstant(0, DL, MVT::i32)); 2550 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2551 2552 // The low part of the thread pointer is in access register 1. 2553 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2554 DAG.getConstant(1, DL, MVT::i32)); 2555 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2556 2557 // Merge them into a single 64-bit address. 2558 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2559 DAG.getConstant(32, DL, PtrVT)); 2560 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2561 } 2562 2563 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2564 SelectionDAG &DAG) const { 2565 if (DAG.getTarget().Options.EmulatedTLS) 2566 return LowerToTLSEmulatedModel(Node, DAG); 2567 SDLoc DL(Node); 2568 const GlobalValue *GV = Node->getGlobal(); 2569 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2570 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2571 2572 SDValue TP = lowerThreadPointer(DL, DAG); 2573 2574 // Get the offset of GA from the thread pointer, based on the TLS model. 2575 SDValue Offset; 2576 switch (model) { 2577 case TLSModel::GeneralDynamic: { 2578 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2579 SystemZConstantPoolValue *CPV = 2580 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2581 2582 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2583 Offset = DAG.getLoad( 2584 PtrVT, DL, DAG.getEntryNode(), Offset, 2585 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2586 2587 // Call __tls_get_offset to retrieve the offset. 2588 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2589 break; 2590 } 2591 2592 case TLSModel::LocalDynamic: { 2593 // Load the GOT offset of the module ID. 2594 SystemZConstantPoolValue *CPV = 2595 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2596 2597 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2598 Offset = DAG.getLoad( 2599 PtrVT, DL, DAG.getEntryNode(), Offset, 2600 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2601 2602 // Call __tls_get_offset to retrieve the module base offset. 2603 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2604 2605 // Note: The SystemZLDCleanupPass will remove redundant computations 2606 // of the module base offset. Count total number of local-dynamic 2607 // accesses to trigger execution of that pass. 2608 SystemZMachineFunctionInfo* MFI = 2609 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2610 MFI->incNumLocalDynamicTLSAccesses(); 2611 2612 // Add the per-symbol offset. 2613 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2614 2615 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2616 DTPOffset = DAG.getLoad( 2617 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2618 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2619 2620 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2621 break; 2622 } 2623 2624 case TLSModel::InitialExec: { 2625 // Load the offset from the GOT. 2626 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2627 SystemZII::MO_INDNTPOFF); 2628 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2629 Offset = 2630 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2631 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2632 break; 2633 } 2634 2635 case TLSModel::LocalExec: { 2636 // Force the offset into the constant pool and load it from there. 2637 SystemZConstantPoolValue *CPV = 2638 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2639 2640 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2641 Offset = DAG.getLoad( 2642 PtrVT, DL, DAG.getEntryNode(), Offset, 2643 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2644 break; 2645 } 2646 } 2647 2648 // Add the base and offset together. 2649 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2650 } 2651 2652 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2653 SelectionDAG &DAG) const { 2654 SDLoc DL(Node); 2655 const BlockAddress *BA = Node->getBlockAddress(); 2656 int64_t Offset = Node->getOffset(); 2657 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2658 2659 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2660 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2661 return Result; 2662 } 2663 2664 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2665 SelectionDAG &DAG) const { 2666 SDLoc DL(JT); 2667 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2668 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2669 2670 // Use LARL to load the address of the table. 2671 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2672 } 2673 2674 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2675 SelectionDAG &DAG) const { 2676 SDLoc DL(CP); 2677 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2678 2679 SDValue Result; 2680 if (CP->isMachineConstantPoolEntry()) 2681 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2682 CP->getAlignment()); 2683 else 2684 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2685 CP->getAlignment(), CP->getOffset()); 2686 2687 // Use LARL to load the address of the constant pool entry. 2688 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2689 } 2690 2691 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2692 SelectionDAG &DAG) const { 2693 MachineFunction &MF = DAG.getMachineFunction(); 2694 MachineFrameInfo *MFI = MF.getFrameInfo(); 2695 MFI->setFrameAddressIsTaken(true); 2696 2697 SDLoc DL(Op); 2698 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2699 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2700 2701 // If the back chain frame index has not been allocated yet, do so. 2702 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2703 int BackChainIdx = FI->getFramePointerSaveIndex(); 2704 if (!BackChainIdx) { 2705 // By definition, the frame address is the address of the back chain. 2706 BackChainIdx = MFI->CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2707 FI->setFramePointerSaveIndex(BackChainIdx); 2708 } 2709 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2710 2711 // FIXME The frontend should detect this case. 2712 if (Depth > 0) { 2713 report_fatal_error("Unsupported stack frame traversal count"); 2714 } 2715 2716 return BackChain; 2717 } 2718 2719 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2720 SelectionDAG &DAG) const { 2721 MachineFunction &MF = DAG.getMachineFunction(); 2722 MachineFrameInfo *MFI = MF.getFrameInfo(); 2723 MFI->setReturnAddressIsTaken(true); 2724 2725 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2726 return SDValue(); 2727 2728 SDLoc DL(Op); 2729 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2730 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2731 2732 // FIXME The frontend should detect this case. 2733 if (Depth > 0) { 2734 report_fatal_error("Unsupported stack frame traversal count"); 2735 } 2736 2737 // Return R14D, which has the return address. Mark it an implicit live-in. 2738 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2739 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2740 } 2741 2742 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2743 SelectionDAG &DAG) const { 2744 SDLoc DL(Op); 2745 SDValue In = Op.getOperand(0); 2746 EVT InVT = In.getValueType(); 2747 EVT ResVT = Op.getValueType(); 2748 2749 // Convert loads directly. This is normally done by DAGCombiner, 2750 // but we need this case for bitcasts that are created during lowering 2751 // and which are then lowered themselves. 2752 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2753 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2754 LoadN->getMemOperand()); 2755 2756 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2757 SDValue In64; 2758 if (Subtarget.hasHighWord()) { 2759 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2760 MVT::i64); 2761 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2762 MVT::i64, SDValue(U64, 0), In); 2763 } else { 2764 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2765 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2766 DAG.getConstant(32, DL, MVT::i64)); 2767 } 2768 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2769 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2770 DL, MVT::f32, Out64); 2771 } 2772 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2773 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2774 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2775 MVT::f64, SDValue(U64, 0), In); 2776 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2777 if (Subtarget.hasHighWord()) 2778 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2779 MVT::i32, Out64); 2780 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2781 DAG.getConstant(32, DL, MVT::i64)); 2782 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2783 } 2784 llvm_unreachable("Unexpected bitcast combination"); 2785 } 2786 2787 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2788 SelectionDAG &DAG) const { 2789 MachineFunction &MF = DAG.getMachineFunction(); 2790 SystemZMachineFunctionInfo *FuncInfo = 2791 MF.getInfo<SystemZMachineFunctionInfo>(); 2792 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2793 2794 SDValue Chain = Op.getOperand(0); 2795 SDValue Addr = Op.getOperand(1); 2796 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2797 SDLoc DL(Op); 2798 2799 // The initial values of each field. 2800 const unsigned NumFields = 4; 2801 SDValue Fields[NumFields] = { 2802 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2803 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2804 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2805 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2806 }; 2807 2808 // Store each field into its respective slot. 2809 SDValue MemOps[NumFields]; 2810 unsigned Offset = 0; 2811 for (unsigned I = 0; I < NumFields; ++I) { 2812 SDValue FieldAddr = Addr; 2813 if (Offset != 0) 2814 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2815 DAG.getIntPtrConstant(Offset, DL)); 2816 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2817 MachinePointerInfo(SV, Offset)); 2818 Offset += 8; 2819 } 2820 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2821 } 2822 2823 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2824 SelectionDAG &DAG) const { 2825 SDValue Chain = Op.getOperand(0); 2826 SDValue DstPtr = Op.getOperand(1); 2827 SDValue SrcPtr = Op.getOperand(2); 2828 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2829 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2830 SDLoc DL(Op); 2831 2832 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2833 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2834 /*isTailCall*/false, 2835 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2836 } 2837 2838 SDValue SystemZTargetLowering:: 2839 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2840 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2841 MachineFunction &MF = DAG.getMachineFunction(); 2842 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 2843 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 2844 2845 SDValue Chain = Op.getOperand(0); 2846 SDValue Size = Op.getOperand(1); 2847 SDValue Align = Op.getOperand(2); 2848 SDLoc DL(Op); 2849 2850 // If user has set the no alignment function attribute, ignore 2851 // alloca alignments. 2852 uint64_t AlignVal = (RealignOpt ? 2853 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2854 2855 uint64_t StackAlign = TFI->getStackAlignment(); 2856 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2857 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2858 2859 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2860 SDValue NeededSpace = Size; 2861 2862 // Get a reference to the stack pointer. 2863 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2864 2865 // If we need a backchain, save it now. 2866 SDValue Backchain; 2867 if (StoreBackchain) 2868 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 2869 2870 // Add extra space for alignment if needed. 2871 if (ExtraAlignSpace) 2872 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2873 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2874 2875 // Get the new stack pointer value. 2876 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2877 2878 // Copy the new stack pointer back. 2879 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2880 2881 // The allocated data lives above the 160 bytes allocated for the standard 2882 // frame, plus any outgoing stack arguments. We don't know how much that 2883 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2884 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2885 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2886 2887 // Dynamically realign if needed. 2888 if (RequiredAlign > StackAlign) { 2889 Result = 2890 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2891 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2892 Result = 2893 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2894 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2895 } 2896 2897 if (StoreBackchain) 2898 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 2899 2900 SDValue Ops[2] = { Result, Chain }; 2901 return DAG.getMergeValues(Ops, DL); 2902 } 2903 2904 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 2905 SDValue Op, SelectionDAG &DAG) const { 2906 SDLoc DL(Op); 2907 2908 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2909 } 2910 2911 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2912 SelectionDAG &DAG) const { 2913 EVT VT = Op.getValueType(); 2914 SDLoc DL(Op); 2915 SDValue Ops[2]; 2916 if (is32Bit(VT)) 2917 // Just do a normal 64-bit multiplication and extract the results. 2918 // We define this so that it can be used for constant division. 2919 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2920 Op.getOperand(1), Ops[1], Ops[0]); 2921 else { 2922 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2923 // 2924 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2925 // 2926 // but using the fact that the upper halves are either all zeros 2927 // or all ones: 2928 // 2929 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2930 // 2931 // and grouping the right terms together since they are quicker than the 2932 // multiplication: 2933 // 2934 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2935 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2936 SDValue LL = Op.getOperand(0); 2937 SDValue RL = Op.getOperand(1); 2938 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2939 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2940 // UMUL_LOHI64 returns the low result in the odd register and the high 2941 // result in the even register. SMUL_LOHI is defined to return the 2942 // low half first, so the results are in reverse order. 2943 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2944 LL, RL, Ops[1], Ops[0]); 2945 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2946 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2947 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2948 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2949 } 2950 return DAG.getMergeValues(Ops, DL); 2951 } 2952 2953 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2954 SelectionDAG &DAG) const { 2955 EVT VT = Op.getValueType(); 2956 SDLoc DL(Op); 2957 SDValue Ops[2]; 2958 if (is32Bit(VT)) 2959 // Just do a normal 64-bit multiplication and extract the results. 2960 // We define this so that it can be used for constant division. 2961 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2962 Op.getOperand(1), Ops[1], Ops[0]); 2963 else 2964 // UMUL_LOHI64 returns the low result in the odd register and the high 2965 // result in the even register. UMUL_LOHI is defined to return the 2966 // low half first, so the results are in reverse order. 2967 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2968 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2969 return DAG.getMergeValues(Ops, DL); 2970 } 2971 2972 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2973 SelectionDAG &DAG) const { 2974 SDValue Op0 = Op.getOperand(0); 2975 SDValue Op1 = Op.getOperand(1); 2976 EVT VT = Op.getValueType(); 2977 SDLoc DL(Op); 2978 unsigned Opcode; 2979 2980 // We use DSGF for 32-bit division. 2981 if (is32Bit(VT)) { 2982 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2983 Opcode = SystemZISD::SDIVREM32; 2984 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2985 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2986 Opcode = SystemZISD::SDIVREM32; 2987 } else 2988 Opcode = SystemZISD::SDIVREM64; 2989 2990 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2991 // input is "don't care". The instruction returns the remainder in 2992 // the even register and the quotient in the odd register. 2993 SDValue Ops[2]; 2994 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2995 Op0, Op1, Ops[1], Ops[0]); 2996 return DAG.getMergeValues(Ops, DL); 2997 } 2998 2999 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3000 SelectionDAG &DAG) const { 3001 EVT VT = Op.getValueType(); 3002 SDLoc DL(Op); 3003 3004 // DL(G) uses a double-width dividend, so we need to clear the even 3005 // register in the GR128 input. The instruction returns the remainder 3006 // in the even register and the quotient in the odd register. 3007 SDValue Ops[2]; 3008 if (is32Bit(VT)) 3009 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 3010 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3011 else 3012 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 3013 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3014 return DAG.getMergeValues(Ops, DL); 3015 } 3016 3017 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3018 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3019 3020 // Get the known-zero masks for each operand. 3021 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3022 APInt KnownZero[2], KnownOne[2]; 3023 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 3024 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 3025 3026 // See if the upper 32 bits of one operand and the lower 32 bits of the 3027 // other are known zero. They are the low and high operands respectively. 3028 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 3029 KnownZero[1].getZExtValue() }; 3030 unsigned High, Low; 3031 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3032 High = 1, Low = 0; 3033 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3034 High = 0, Low = 1; 3035 else 3036 return Op; 3037 3038 SDValue LowOp = Ops[Low]; 3039 SDValue HighOp = Ops[High]; 3040 3041 // If the high part is a constant, we're better off using IILH. 3042 if (HighOp.getOpcode() == ISD::Constant) 3043 return Op; 3044 3045 // If the low part is a constant that is outside the range of LHI, 3046 // then we're better off using IILF. 3047 if (LowOp.getOpcode() == ISD::Constant) { 3048 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3049 if (!isInt<16>(Value)) 3050 return Op; 3051 } 3052 3053 // Check whether the high part is an AND that doesn't change the 3054 // high 32 bits and just masks out low bits. We can skip it if so. 3055 if (HighOp.getOpcode() == ISD::AND && 3056 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3057 SDValue HighOp0 = HighOp.getOperand(0); 3058 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3059 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3060 HighOp = HighOp0; 3061 } 3062 3063 // Take advantage of the fact that all GR32 operations only change the 3064 // low 32 bits by truncating Low to an i32 and inserting it directly 3065 // using a subreg. The interesting cases are those where the truncation 3066 // can be folded. 3067 SDLoc DL(Op); 3068 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3069 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3070 MVT::i64, HighOp, Low32); 3071 } 3072 3073 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3074 SelectionDAG &DAG) const { 3075 EVT VT = Op.getValueType(); 3076 SDLoc DL(Op); 3077 Op = Op.getOperand(0); 3078 3079 // Handle vector types via VPOPCT. 3080 if (VT.isVector()) { 3081 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3082 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3083 switch (VT.getVectorElementType().getSizeInBits()) { 3084 case 8: 3085 break; 3086 case 16: { 3087 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3088 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3089 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3090 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3091 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3092 break; 3093 } 3094 case 32: { 3095 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3096 DAG.getConstant(0, DL, MVT::i32)); 3097 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3098 break; 3099 } 3100 case 64: { 3101 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3102 DAG.getConstant(0, DL, MVT::i32)); 3103 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3104 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3105 break; 3106 } 3107 default: 3108 llvm_unreachable("Unexpected type"); 3109 } 3110 return Op; 3111 } 3112 3113 // Get the known-zero mask for the operand. 3114 APInt KnownZero, KnownOne; 3115 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3116 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3117 if (NumSignificantBits == 0) 3118 return DAG.getConstant(0, DL, VT); 3119 3120 // Skip known-zero high parts of the operand. 3121 int64_t OrigBitSize = VT.getSizeInBits(); 3122 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3123 BitSize = std::min(BitSize, OrigBitSize); 3124 3125 // The POPCNT instruction counts the number of bits in each byte. 3126 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3127 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3128 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3129 3130 // Add up per-byte counts in a binary tree. All bits of Op at 3131 // position larger than BitSize remain zero throughout. 3132 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3133 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3134 if (BitSize != OrigBitSize) 3135 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3136 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3137 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3138 } 3139 3140 // Extract overall result from high byte. 3141 if (BitSize > 8) 3142 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3143 DAG.getConstant(BitSize - 8, DL, VT)); 3144 3145 return Op; 3146 } 3147 3148 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3149 SelectionDAG &DAG) const { 3150 SDLoc DL(Op); 3151 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3152 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3153 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3154 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3155 3156 // The only fence that needs an instruction is a sequentially-consistent 3157 // cross-thread fence. 3158 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3159 FenceScope == CrossThread) { 3160 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3161 Op.getOperand(0)), 3162 0); 3163 } 3164 3165 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3166 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3167 } 3168 3169 // Op is an atomic load. Lower it into a normal volatile load. 3170 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3171 SelectionDAG &DAG) const { 3172 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3173 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3174 Node->getChain(), Node->getBasePtr(), 3175 Node->getMemoryVT(), Node->getMemOperand()); 3176 } 3177 3178 // Op is an atomic store. Lower it into a normal volatile store followed 3179 // by a serialization. 3180 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3181 SelectionDAG &DAG) const { 3182 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3183 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3184 Node->getBasePtr(), Node->getMemoryVT(), 3185 Node->getMemOperand()); 3186 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3187 Chain), 0); 3188 } 3189 3190 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3191 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3192 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3193 SelectionDAG &DAG, 3194 unsigned Opcode) const { 3195 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3196 3197 // 32-bit operations need no code outside the main loop. 3198 EVT NarrowVT = Node->getMemoryVT(); 3199 EVT WideVT = MVT::i32; 3200 if (NarrowVT == WideVT) 3201 return Op; 3202 3203 int64_t BitSize = NarrowVT.getSizeInBits(); 3204 SDValue ChainIn = Node->getChain(); 3205 SDValue Addr = Node->getBasePtr(); 3206 SDValue Src2 = Node->getVal(); 3207 MachineMemOperand *MMO = Node->getMemOperand(); 3208 SDLoc DL(Node); 3209 EVT PtrVT = Addr.getValueType(); 3210 3211 // Convert atomic subtracts of constants into additions. 3212 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3213 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3214 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3215 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3216 } 3217 3218 // Get the address of the containing word. 3219 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3220 DAG.getConstant(-4, DL, PtrVT)); 3221 3222 // Get the number of bits that the word must be rotated left in order 3223 // to bring the field to the top bits of a GR32. 3224 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3225 DAG.getConstant(3, DL, PtrVT)); 3226 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3227 3228 // Get the complementing shift amount, for rotating a field in the top 3229 // bits back to its proper position. 3230 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3231 DAG.getConstant(0, DL, WideVT), BitShift); 3232 3233 // Extend the source operand to 32 bits and prepare it for the inner loop. 3234 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3235 // operations require the source to be shifted in advance. (This shift 3236 // can be folded if the source is constant.) For AND and NAND, the lower 3237 // bits must be set, while for other opcodes they should be left clear. 3238 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3239 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3240 DAG.getConstant(32 - BitSize, DL, WideVT)); 3241 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3242 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3243 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3244 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3245 3246 // Construct the ATOMIC_LOADW_* node. 3247 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3248 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3249 DAG.getConstant(BitSize, DL, WideVT) }; 3250 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3251 NarrowVT, MMO); 3252 3253 // Rotate the result of the final CS so that the field is in the lower 3254 // bits of a GR32, then truncate it. 3255 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3256 DAG.getConstant(BitSize, DL, WideVT)); 3257 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3258 3259 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3260 return DAG.getMergeValues(RetOps, DL); 3261 } 3262 3263 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3264 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3265 // operations into additions. 3266 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3267 SelectionDAG &DAG) const { 3268 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3269 EVT MemVT = Node->getMemoryVT(); 3270 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3271 // A full-width operation. 3272 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3273 SDValue Src2 = Node->getVal(); 3274 SDValue NegSrc2; 3275 SDLoc DL(Src2); 3276 3277 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3278 // Use an addition if the operand is constant and either LAA(G) is 3279 // available or the negative value is in the range of A(G)FHI. 3280 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3281 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3282 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3283 } else if (Subtarget.hasInterlockedAccess1()) 3284 // Use LAA(G) if available. 3285 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3286 Src2); 3287 3288 if (NegSrc2.getNode()) 3289 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3290 Node->getChain(), Node->getBasePtr(), NegSrc2, 3291 Node->getMemOperand(), Node->getOrdering(), 3292 Node->getSynchScope()); 3293 3294 // Use the node as-is. 3295 return Op; 3296 } 3297 3298 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3299 } 3300 3301 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3302 // into a fullword ATOMIC_CMP_SWAPW operation. 3303 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3304 SelectionDAG &DAG) const { 3305 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3306 3307 // We have native support for 32-bit compare and swap. 3308 EVT NarrowVT = Node->getMemoryVT(); 3309 EVT WideVT = MVT::i32; 3310 if (NarrowVT == WideVT) 3311 return Op; 3312 3313 int64_t BitSize = NarrowVT.getSizeInBits(); 3314 SDValue ChainIn = Node->getOperand(0); 3315 SDValue Addr = Node->getOperand(1); 3316 SDValue CmpVal = Node->getOperand(2); 3317 SDValue SwapVal = Node->getOperand(3); 3318 MachineMemOperand *MMO = Node->getMemOperand(); 3319 SDLoc DL(Node); 3320 EVT PtrVT = Addr.getValueType(); 3321 3322 // Get the address of the containing word. 3323 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3324 DAG.getConstant(-4, DL, PtrVT)); 3325 3326 // Get the number of bits that the word must be rotated left in order 3327 // to bring the field to the top bits of a GR32. 3328 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3329 DAG.getConstant(3, DL, PtrVT)); 3330 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3331 3332 // Get the complementing shift amount, for rotating a field in the top 3333 // bits back to its proper position. 3334 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3335 DAG.getConstant(0, DL, WideVT), BitShift); 3336 3337 // Construct the ATOMIC_CMP_SWAPW node. 3338 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3339 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3340 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3341 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3342 VTList, Ops, NarrowVT, MMO); 3343 return AtomicOp; 3344 } 3345 3346 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3347 SelectionDAG &DAG) const { 3348 MachineFunction &MF = DAG.getMachineFunction(); 3349 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3350 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3351 SystemZ::R15D, Op.getValueType()); 3352 } 3353 3354 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3355 SelectionDAG &DAG) const { 3356 MachineFunction &MF = DAG.getMachineFunction(); 3357 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3358 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3359 3360 SDValue Chain = Op.getOperand(0); 3361 SDValue NewSP = Op.getOperand(1); 3362 SDValue Backchain; 3363 SDLoc DL(Op); 3364 3365 if (StoreBackchain) { 3366 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3367 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3368 } 3369 3370 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3371 3372 if (StoreBackchain) 3373 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3374 3375 return Chain; 3376 } 3377 3378 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3379 SelectionDAG &DAG) const { 3380 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3381 if (!IsData) 3382 // Just preserve the chain. 3383 return Op.getOperand(0); 3384 3385 SDLoc DL(Op); 3386 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3387 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3388 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3389 SDValue Ops[] = { 3390 Op.getOperand(0), 3391 DAG.getConstant(Code, DL, MVT::i32), 3392 Op.getOperand(1) 3393 }; 3394 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3395 Node->getVTList(), Ops, 3396 Node->getMemoryVT(), Node->getMemOperand()); 3397 } 3398 3399 // Return an i32 that contains the value of CC immediately after After, 3400 // whose final operand must be MVT::Glue. 3401 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3402 SDLoc DL(After); 3403 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3404 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3405 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3406 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3407 } 3408 3409 SDValue 3410 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3411 SelectionDAG &DAG) const { 3412 unsigned Opcode, CCValid; 3413 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3414 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3415 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3416 SDValue CC = getCCResult(DAG, Glued.getNode()); 3417 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3418 return SDValue(); 3419 } 3420 3421 return SDValue(); 3422 } 3423 3424 SDValue 3425 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3426 SelectionDAG &DAG) const { 3427 unsigned Opcode, CCValid; 3428 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3429 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3430 SDValue CC = getCCResult(DAG, Glued.getNode()); 3431 if (Op->getNumValues() == 1) 3432 return CC; 3433 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3434 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3435 CC); 3436 } 3437 3438 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3439 switch (Id) { 3440 case Intrinsic::thread_pointer: 3441 return lowerThreadPointer(SDLoc(Op), DAG); 3442 3443 case Intrinsic::s390_vpdi: 3444 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3445 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3446 3447 case Intrinsic::s390_vperm: 3448 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3449 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3450 3451 case Intrinsic::s390_vuphb: 3452 case Intrinsic::s390_vuphh: 3453 case Intrinsic::s390_vuphf: 3454 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3455 Op.getOperand(1)); 3456 3457 case Intrinsic::s390_vuplhb: 3458 case Intrinsic::s390_vuplhh: 3459 case Intrinsic::s390_vuplhf: 3460 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3461 Op.getOperand(1)); 3462 3463 case Intrinsic::s390_vuplb: 3464 case Intrinsic::s390_vuplhw: 3465 case Intrinsic::s390_vuplf: 3466 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3467 Op.getOperand(1)); 3468 3469 case Intrinsic::s390_vupllb: 3470 case Intrinsic::s390_vupllh: 3471 case Intrinsic::s390_vupllf: 3472 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3473 Op.getOperand(1)); 3474 3475 case Intrinsic::s390_vsumb: 3476 case Intrinsic::s390_vsumh: 3477 case Intrinsic::s390_vsumgh: 3478 case Intrinsic::s390_vsumgf: 3479 case Intrinsic::s390_vsumqf: 3480 case Intrinsic::s390_vsumqg: 3481 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3482 Op.getOperand(1), Op.getOperand(2)); 3483 } 3484 3485 return SDValue(); 3486 } 3487 3488 namespace { 3489 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3490 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3491 // Operand is the constant third operand, otherwise it is the number of 3492 // bytes in each element of the result. 3493 struct Permute { 3494 unsigned Opcode; 3495 unsigned Operand; 3496 unsigned char Bytes[SystemZ::VectorBytes]; 3497 }; 3498 } 3499 3500 static const Permute PermuteForms[] = { 3501 // VMRHG 3502 { SystemZISD::MERGE_HIGH, 8, 3503 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3504 // VMRHF 3505 { SystemZISD::MERGE_HIGH, 4, 3506 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3507 // VMRHH 3508 { SystemZISD::MERGE_HIGH, 2, 3509 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3510 // VMRHB 3511 { SystemZISD::MERGE_HIGH, 1, 3512 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3513 // VMRLG 3514 { SystemZISD::MERGE_LOW, 8, 3515 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3516 // VMRLF 3517 { SystemZISD::MERGE_LOW, 4, 3518 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3519 // VMRLH 3520 { SystemZISD::MERGE_LOW, 2, 3521 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3522 // VMRLB 3523 { SystemZISD::MERGE_LOW, 1, 3524 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3525 // VPKG 3526 { SystemZISD::PACK, 4, 3527 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3528 // VPKF 3529 { SystemZISD::PACK, 2, 3530 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3531 // VPKH 3532 { SystemZISD::PACK, 1, 3533 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3534 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3535 { SystemZISD::PERMUTE_DWORDS, 4, 3536 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3537 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3538 { SystemZISD::PERMUTE_DWORDS, 1, 3539 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3540 }; 3541 3542 // Called after matching a vector shuffle against a particular pattern. 3543 // Both the original shuffle and the pattern have two vector operands. 3544 // OpNos[0] is the operand of the original shuffle that should be used for 3545 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3546 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3547 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3548 // for operands 0 and 1 of the pattern. 3549 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3550 if (OpNos[0] < 0) { 3551 if (OpNos[1] < 0) 3552 return false; 3553 OpNo0 = OpNo1 = OpNos[1]; 3554 } else if (OpNos[1] < 0) { 3555 OpNo0 = OpNo1 = OpNos[0]; 3556 } else { 3557 OpNo0 = OpNos[0]; 3558 OpNo1 = OpNos[1]; 3559 } 3560 return true; 3561 } 3562 3563 // Bytes is a VPERM-like permute vector, except that -1 is used for 3564 // undefined bytes. Return true if the VPERM can be implemented using P. 3565 // When returning true set OpNo0 to the VPERM operand that should be 3566 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3567 // 3568 // For example, if swapping the VPERM operands allows P to match, OpNo0 3569 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3570 // operand, but rewriting it to use two duplicated operands allows it to 3571 // match P, then OpNo0 and OpNo1 will be the same. 3572 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3573 unsigned &OpNo0, unsigned &OpNo1) { 3574 int OpNos[] = { -1, -1 }; 3575 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3576 int Elt = Bytes[I]; 3577 if (Elt >= 0) { 3578 // Make sure that the two permute vectors use the same suboperand 3579 // byte number. Only the operand numbers (the high bits) are 3580 // allowed to differ. 3581 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3582 return false; 3583 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3584 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3585 // Make sure that the operand mappings are consistent with previous 3586 // elements. 3587 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3588 return false; 3589 OpNos[ModelOpNo] = RealOpNo; 3590 } 3591 } 3592 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3593 } 3594 3595 // As above, but search for a matching permute. 3596 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3597 unsigned &OpNo0, unsigned &OpNo1) { 3598 for (auto &P : PermuteForms) 3599 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3600 return &P; 3601 return nullptr; 3602 } 3603 3604 // Bytes is a VPERM-like permute vector, except that -1 is used for 3605 // undefined bytes. This permute is an operand of an outer permute. 3606 // See whether redistributing the -1 bytes gives a shuffle that can be 3607 // implemented using P. If so, set Transform to a VPERM-like permute vector 3608 // that, when applied to the result of P, gives the original permute in Bytes. 3609 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3610 const Permute &P, 3611 SmallVectorImpl<int> &Transform) { 3612 unsigned To = 0; 3613 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3614 int Elt = Bytes[From]; 3615 if (Elt < 0) 3616 // Byte number From of the result is undefined. 3617 Transform[From] = -1; 3618 else { 3619 while (P.Bytes[To] != Elt) { 3620 To += 1; 3621 if (To == SystemZ::VectorBytes) 3622 return false; 3623 } 3624 Transform[From] = To; 3625 } 3626 } 3627 return true; 3628 } 3629 3630 // As above, but search for a matching permute. 3631 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3632 SmallVectorImpl<int> &Transform) { 3633 for (auto &P : PermuteForms) 3634 if (matchDoublePermute(Bytes, P, Transform)) 3635 return &P; 3636 return nullptr; 3637 } 3638 3639 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3640 // as if it had type vNi8. 3641 static void getVPermMask(ShuffleVectorSDNode *VSN, 3642 SmallVectorImpl<int> &Bytes) { 3643 EVT VT = VSN->getValueType(0); 3644 unsigned NumElements = VT.getVectorNumElements(); 3645 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3646 Bytes.resize(NumElements * BytesPerElement, -1); 3647 for (unsigned I = 0; I < NumElements; ++I) { 3648 int Index = VSN->getMaskElt(I); 3649 if (Index >= 0) 3650 for (unsigned J = 0; J < BytesPerElement; ++J) 3651 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3652 } 3653 } 3654 3655 // Bytes is a VPERM-like permute vector, except that -1 is used for 3656 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3657 // the result come from a contiguous sequence of bytes from one input. 3658 // Set Base to the selector for the first byte if so. 3659 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3660 unsigned BytesPerElement, int &Base) { 3661 Base = -1; 3662 for (unsigned I = 0; I < BytesPerElement; ++I) { 3663 if (Bytes[Start + I] >= 0) { 3664 unsigned Elem = Bytes[Start + I]; 3665 if (Base < 0) { 3666 Base = Elem - I; 3667 // Make sure the bytes would come from one input operand. 3668 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3669 return false; 3670 } else if (unsigned(Base) != Elem - I) 3671 return false; 3672 } 3673 } 3674 return true; 3675 } 3676 3677 // Bytes is a VPERM-like permute vector, except that -1 is used for 3678 // undefined bytes. Return true if it can be performed using VSLDI. 3679 // When returning true, set StartIndex to the shift amount and OpNo0 3680 // and OpNo1 to the VPERM operands that should be used as the first 3681 // and second shift operand respectively. 3682 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3683 unsigned &StartIndex, unsigned &OpNo0, 3684 unsigned &OpNo1) { 3685 int OpNos[] = { -1, -1 }; 3686 int Shift = -1; 3687 for (unsigned I = 0; I < 16; ++I) { 3688 int Index = Bytes[I]; 3689 if (Index >= 0) { 3690 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3691 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3692 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3693 if (Shift < 0) 3694 Shift = ExpectedShift; 3695 else if (Shift != ExpectedShift) 3696 return false; 3697 // Make sure that the operand mappings are consistent with previous 3698 // elements. 3699 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3700 return false; 3701 OpNos[ModelOpNo] = RealOpNo; 3702 } 3703 } 3704 StartIndex = Shift; 3705 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3706 } 3707 3708 // Create a node that performs P on operands Op0 and Op1, casting the 3709 // operands to the appropriate type. The type of the result is determined by P. 3710 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3711 const Permute &P, SDValue Op0, SDValue Op1) { 3712 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3713 // elements of a PACK are twice as wide as the outputs. 3714 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3715 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3716 P.Operand); 3717 // Cast both operands to the appropriate type. 3718 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3719 SystemZ::VectorBytes / InBytes); 3720 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3721 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3722 SDValue Op; 3723 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3724 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3725 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3726 } else if (P.Opcode == SystemZISD::PACK) { 3727 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3728 SystemZ::VectorBytes / P.Operand); 3729 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3730 } else { 3731 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3732 } 3733 return Op; 3734 } 3735 3736 // Bytes is a VPERM-like permute vector, except that -1 is used for 3737 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3738 // VSLDI or VPERM. 3739 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3740 SDValue *Ops, 3741 const SmallVectorImpl<int> &Bytes) { 3742 for (unsigned I = 0; I < 2; ++I) 3743 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3744 3745 // First see whether VSLDI can be used. 3746 unsigned StartIndex, OpNo0, OpNo1; 3747 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3748 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3749 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3750 3751 // Fall back on VPERM. Construct an SDNode for the permute vector. 3752 SDValue IndexNodes[SystemZ::VectorBytes]; 3753 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3754 if (Bytes[I] >= 0) 3755 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3756 else 3757 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3758 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3759 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3760 } 3761 3762 namespace { 3763 // Describes a general N-operand vector shuffle. 3764 struct GeneralShuffle { 3765 GeneralShuffle(EVT vt) : VT(vt) {} 3766 void addUndef(); 3767 void add(SDValue, unsigned); 3768 SDValue getNode(SelectionDAG &, const SDLoc &); 3769 3770 // The operands of the shuffle. 3771 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3772 3773 // Index I is -1 if byte I of the result is undefined. Otherwise the 3774 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3775 // Bytes[I] / SystemZ::VectorBytes. 3776 SmallVector<int, SystemZ::VectorBytes> Bytes; 3777 3778 // The type of the shuffle result. 3779 EVT VT; 3780 }; 3781 } 3782 3783 // Add an extra undefined element to the shuffle. 3784 void GeneralShuffle::addUndef() { 3785 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3786 for (unsigned I = 0; I < BytesPerElement; ++I) 3787 Bytes.push_back(-1); 3788 } 3789 3790 // Add an extra element to the shuffle, taking it from element Elem of Op. 3791 // A null Op indicates a vector input whose value will be calculated later; 3792 // there is at most one such input per shuffle and it always has the same 3793 // type as the result. 3794 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3795 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3796 3797 // The source vector can have wider elements than the result, 3798 // either through an explicit TRUNCATE or because of type legalization. 3799 // We want the least significant part. 3800 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3801 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3802 assert(FromBytesPerElement >= BytesPerElement && 3803 "Invalid EXTRACT_VECTOR_ELT"); 3804 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3805 (FromBytesPerElement - BytesPerElement)); 3806 3807 // Look through things like shuffles and bitcasts. 3808 while (Op.getNode()) { 3809 if (Op.getOpcode() == ISD::BITCAST) 3810 Op = Op.getOperand(0); 3811 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3812 // See whether the bytes we need come from a contiguous part of one 3813 // operand. 3814 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3815 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3816 int NewByte; 3817 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3818 break; 3819 if (NewByte < 0) { 3820 addUndef(); 3821 return; 3822 } 3823 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3824 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3825 } else if (Op.isUndef()) { 3826 addUndef(); 3827 return; 3828 } else 3829 break; 3830 } 3831 3832 // Make sure that the source of the extraction is in Ops. 3833 unsigned OpNo = 0; 3834 for (; OpNo < Ops.size(); ++OpNo) 3835 if (Ops[OpNo] == Op) 3836 break; 3837 if (OpNo == Ops.size()) 3838 Ops.push_back(Op); 3839 3840 // Add the element to Bytes. 3841 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3842 for (unsigned I = 0; I < BytesPerElement; ++I) 3843 Bytes.push_back(Base + I); 3844 } 3845 3846 // Return SDNodes for the completed shuffle. 3847 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 3848 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3849 3850 if (Ops.size() == 0) 3851 return DAG.getUNDEF(VT); 3852 3853 // Make sure that there are at least two shuffle operands. 3854 if (Ops.size() == 1) 3855 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3856 3857 // Create a tree of shuffles, deferring root node until after the loop. 3858 // Try to redistribute the undefined elements of non-root nodes so that 3859 // the non-root shuffles match something like a pack or merge, then adjust 3860 // the parent node's permute vector to compensate for the new order. 3861 // Among other things, this copes with vectors like <2 x i16> that were 3862 // padded with undefined elements during type legalization. 3863 // 3864 // In the best case this redistribution will lead to the whole tree 3865 // using packs and merges. It should rarely be a loss in other cases. 3866 unsigned Stride = 1; 3867 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3868 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3869 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3870 3871 // Create a mask for just these two operands. 3872 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3873 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3874 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3875 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3876 if (OpNo == I) 3877 NewBytes[J] = Byte; 3878 else if (OpNo == I + Stride) 3879 NewBytes[J] = SystemZ::VectorBytes + Byte; 3880 else 3881 NewBytes[J] = -1; 3882 } 3883 // See if it would be better to reorganize NewMask to avoid using VPERM. 3884 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3885 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3886 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3887 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3888 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3889 if (NewBytes[J] >= 0) { 3890 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3891 "Invalid double permute"); 3892 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3893 } else 3894 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3895 } 3896 } else { 3897 // Just use NewBytes on the operands. 3898 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3899 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3900 if (NewBytes[J] >= 0) 3901 Bytes[J] = I * SystemZ::VectorBytes + J; 3902 } 3903 } 3904 } 3905 3906 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3907 if (Stride > 1) { 3908 Ops[1] = Ops[Stride]; 3909 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3910 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3911 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3912 } 3913 3914 // Look for an instruction that can do the permute without resorting 3915 // to VPERM. 3916 unsigned OpNo0, OpNo1; 3917 SDValue Op; 3918 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3919 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3920 else 3921 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3922 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3923 } 3924 3925 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3926 static bool isScalarToVector(SDValue Op) { 3927 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3928 if (!Op.getOperand(I).isUndef()) 3929 return false; 3930 return true; 3931 } 3932 3933 // Return a vector of type VT that contains Value in the first element. 3934 // The other elements don't matter. 3935 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3936 SDValue Value) { 3937 // If we have a constant, replicate it to all elements and let the 3938 // BUILD_VECTOR lowering take care of it. 3939 if (Value.getOpcode() == ISD::Constant || 3940 Value.getOpcode() == ISD::ConstantFP) { 3941 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3942 return DAG.getBuildVector(VT, DL, Ops); 3943 } 3944 if (Value.isUndef()) 3945 return DAG.getUNDEF(VT); 3946 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3947 } 3948 3949 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3950 // element 1. Used for cases in which replication is cheap. 3951 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3952 SDValue Op0, SDValue Op1) { 3953 if (Op0.isUndef()) { 3954 if (Op1.isUndef()) 3955 return DAG.getUNDEF(VT); 3956 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3957 } 3958 if (Op1.isUndef()) 3959 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3960 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3961 buildScalarToVector(DAG, DL, VT, Op0), 3962 buildScalarToVector(DAG, DL, VT, Op1)); 3963 } 3964 3965 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3966 // vector for them. 3967 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 3968 SDValue Op1) { 3969 if (Op0.isUndef() && Op1.isUndef()) 3970 return DAG.getUNDEF(MVT::v2i64); 3971 // If one of the two inputs is undefined then replicate the other one, 3972 // in order to avoid using another register unnecessarily. 3973 if (Op0.isUndef()) 3974 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3975 else if (Op1.isUndef()) 3976 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3977 else { 3978 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3979 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3980 } 3981 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3982 } 3983 3984 // Try to represent constant BUILD_VECTOR node BVN using a 3985 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3986 // on success. 3987 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3988 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3989 unsigned BytesPerElement = ElemVT.getStoreSize(); 3990 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3991 SDValue Op = BVN->getOperand(I); 3992 if (!Op.isUndef()) { 3993 uint64_t Value; 3994 if (Op.getOpcode() == ISD::Constant) 3995 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3996 else if (Op.getOpcode() == ISD::ConstantFP) 3997 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3998 .getZExtValue()); 3999 else 4000 return false; 4001 for (unsigned J = 0; J < BytesPerElement; ++J) { 4002 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4003 if (Byte == 0xff) 4004 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4005 else if (Byte != 0) 4006 return false; 4007 } 4008 } 4009 } 4010 return true; 4011 } 4012 4013 // Try to load a vector constant in which BitsPerElement-bit value Value 4014 // is replicated to fill the vector. VT is the type of the resulting 4015 // constant, which may have elements of a different size from BitsPerElement. 4016 // Return the SDValue of the constant on success, otherwise return 4017 // an empty value. 4018 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4019 const SystemZInstrInfo *TII, 4020 const SDLoc &DL, EVT VT, uint64_t Value, 4021 unsigned BitsPerElement) { 4022 // Signed 16-bit values can be replicated using VREPI. 4023 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4024 if (isInt<16>(SignedValue)) { 4025 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4026 SystemZ::VectorBits / BitsPerElement); 4027 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4028 DAG.getConstant(SignedValue, DL, MVT::i32)); 4029 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4030 } 4031 // See whether rotating the constant left some N places gives a value that 4032 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4033 // If so we can use VGM. 4034 unsigned Start, End; 4035 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4036 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4037 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4038 // bit numbers for an BitsPerElement value, so that 0 denotes 4039 // 1 << (BitsPerElement-1). 4040 Start -= 64 - BitsPerElement; 4041 End -= 64 - BitsPerElement; 4042 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4043 SystemZ::VectorBits / BitsPerElement); 4044 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4045 DAG.getConstant(Start, DL, MVT::i32), 4046 DAG.getConstant(End, DL, MVT::i32)); 4047 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4048 } 4049 return SDValue(); 4050 } 4051 4052 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4053 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4054 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4055 // would benefit from this representation and return it if so. 4056 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4057 BuildVectorSDNode *BVN) { 4058 EVT VT = BVN->getValueType(0); 4059 unsigned NumElements = VT.getVectorNumElements(); 4060 4061 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4062 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4063 // need a BUILD_VECTOR, add an additional placeholder operand for that 4064 // BUILD_VECTOR and store its operands in ResidueOps. 4065 GeneralShuffle GS(VT); 4066 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4067 bool FoundOne = false; 4068 for (unsigned I = 0; I < NumElements; ++I) { 4069 SDValue Op = BVN->getOperand(I); 4070 if (Op.getOpcode() == ISD::TRUNCATE) 4071 Op = Op.getOperand(0); 4072 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4073 Op.getOperand(1).getOpcode() == ISD::Constant) { 4074 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4075 GS.add(Op.getOperand(0), Elem); 4076 FoundOne = true; 4077 } else if (Op.isUndef()) { 4078 GS.addUndef(); 4079 } else { 4080 GS.add(SDValue(), ResidueOps.size()); 4081 ResidueOps.push_back(BVN->getOperand(I)); 4082 } 4083 } 4084 4085 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4086 if (!FoundOne) 4087 return SDValue(); 4088 4089 // Create the BUILD_VECTOR for the remaining elements, if any. 4090 if (!ResidueOps.empty()) { 4091 while (ResidueOps.size() < NumElements) 4092 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4093 for (auto &Op : GS.Ops) { 4094 if (!Op.getNode()) { 4095 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4096 break; 4097 } 4098 } 4099 } 4100 return GS.getNode(DAG, SDLoc(BVN)); 4101 } 4102 4103 // Combine GPR scalar values Elems into a vector of type VT. 4104 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4105 SmallVectorImpl<SDValue> &Elems) { 4106 // See whether there is a single replicated value. 4107 SDValue Single; 4108 unsigned int NumElements = Elems.size(); 4109 unsigned int Count = 0; 4110 for (auto Elem : Elems) { 4111 if (!Elem.isUndef()) { 4112 if (!Single.getNode()) 4113 Single = Elem; 4114 else if (Elem != Single) { 4115 Single = SDValue(); 4116 break; 4117 } 4118 Count += 1; 4119 } 4120 } 4121 // There are three cases here: 4122 // 4123 // - if the only defined element is a loaded one, the best sequence 4124 // is a replicating load. 4125 // 4126 // - otherwise, if the only defined element is an i64 value, we will 4127 // end up with the same VLVGP sequence regardless of whether we short-cut 4128 // for replication or fall through to the later code. 4129 // 4130 // - otherwise, if the only defined element is an i32 or smaller value, 4131 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4132 // This is only a win if the single defined element is used more than once. 4133 // In other cases we're better off using a single VLVGx. 4134 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4135 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4136 4137 // The best way of building a v2i64 from two i64s is to use VLVGP. 4138 if (VT == MVT::v2i64) 4139 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4140 4141 // Use a 64-bit merge high to combine two doubles. 4142 if (VT == MVT::v2f64) 4143 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4144 4145 // Build v4f32 values directly from the FPRs: 4146 // 4147 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4148 // V V VMRHF 4149 // <ABxx> <CDxx> 4150 // V VMRHG 4151 // <ABCD> 4152 if (VT == MVT::v4f32) { 4153 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4154 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4155 // Avoid unnecessary undefs by reusing the other operand. 4156 if (Op01.isUndef()) 4157 Op01 = Op23; 4158 else if (Op23.isUndef()) 4159 Op23 = Op01; 4160 // Merging identical replications is a no-op. 4161 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4162 return Op01; 4163 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4164 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4165 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4166 DL, MVT::v2i64, Op01, Op23); 4167 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4168 } 4169 4170 // Collect the constant terms. 4171 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4172 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4173 4174 unsigned NumConstants = 0; 4175 for (unsigned I = 0; I < NumElements; ++I) { 4176 SDValue Elem = Elems[I]; 4177 if (Elem.getOpcode() == ISD::Constant || 4178 Elem.getOpcode() == ISD::ConstantFP) { 4179 NumConstants += 1; 4180 Constants[I] = Elem; 4181 Done[I] = true; 4182 } 4183 } 4184 // If there was at least one constant, fill in the other elements of 4185 // Constants with undefs to get a full vector constant and use that 4186 // as the starting point. 4187 SDValue Result; 4188 if (NumConstants > 0) { 4189 for (unsigned I = 0; I < NumElements; ++I) 4190 if (!Constants[I].getNode()) 4191 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4192 Result = DAG.getBuildVector(VT, DL, Constants); 4193 } else { 4194 // Otherwise try to use VLVGP to start the sequence in order to 4195 // avoid a false dependency on any previous contents of the vector 4196 // register. This only makes sense if one of the associated elements 4197 // is defined. 4198 unsigned I1 = NumElements / 2 - 1; 4199 unsigned I2 = NumElements - 1; 4200 bool Def1 = !Elems[I1].isUndef(); 4201 bool Def2 = !Elems[I2].isUndef(); 4202 if (Def1 || Def2) { 4203 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4204 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4205 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4206 joinDwords(DAG, DL, Elem1, Elem2)); 4207 Done[I1] = true; 4208 Done[I2] = true; 4209 } else 4210 Result = DAG.getUNDEF(VT); 4211 } 4212 4213 // Use VLVGx to insert the other elements. 4214 for (unsigned I = 0; I < NumElements; ++I) 4215 if (!Done[I] && !Elems[I].isUndef()) 4216 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4217 DAG.getConstant(I, DL, MVT::i32)); 4218 return Result; 4219 } 4220 4221 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4222 SelectionDAG &DAG) const { 4223 const SystemZInstrInfo *TII = 4224 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4225 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4226 SDLoc DL(Op); 4227 EVT VT = Op.getValueType(); 4228 4229 if (BVN->isConstant()) { 4230 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4231 // preferred way of creating all-zero and all-one vectors so give it 4232 // priority over other methods below. 4233 uint64_t Mask = 0; 4234 if (tryBuildVectorByteMask(BVN, Mask)) { 4235 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4236 DAG.getConstant(Mask, DL, MVT::i32)); 4237 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4238 } 4239 4240 // Try using some form of replication. 4241 APInt SplatBits, SplatUndef; 4242 unsigned SplatBitSize; 4243 bool HasAnyUndefs; 4244 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4245 8, true) && 4246 SplatBitSize <= 64) { 4247 // First try assuming that any undefined bits above the highest set bit 4248 // and below the lowest set bit are 1s. This increases the likelihood of 4249 // being able to use a sign-extended element value in VECTOR REPLICATE 4250 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4251 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4252 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4253 uint64_t Lower = (SplatUndefZ 4254 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4255 uint64_t Upper = (SplatUndefZ 4256 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4257 uint64_t Value = SplatBitsZ | Upper | Lower; 4258 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4259 SplatBitSize); 4260 if (Op.getNode()) 4261 return Op; 4262 4263 // Now try assuming that any undefined bits between the first and 4264 // last defined set bits are set. This increases the chances of 4265 // using a non-wraparound mask. 4266 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4267 Value = SplatBitsZ | Middle; 4268 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4269 if (Op.getNode()) 4270 return Op; 4271 } 4272 4273 // Fall back to loading it from memory. 4274 return SDValue(); 4275 } 4276 4277 // See if we should use shuffles to construct the vector from other vectors. 4278 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4279 return Res; 4280 4281 // Detect SCALAR_TO_VECTOR conversions. 4282 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4283 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4284 4285 // Otherwise use buildVector to build the vector up from GPRs. 4286 unsigned NumElements = Op.getNumOperands(); 4287 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4288 for (unsigned I = 0; I < NumElements; ++I) 4289 Ops[I] = Op.getOperand(I); 4290 return buildVector(DAG, DL, VT, Ops); 4291 } 4292 4293 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4294 SelectionDAG &DAG) const { 4295 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4296 SDLoc DL(Op); 4297 EVT VT = Op.getValueType(); 4298 unsigned NumElements = VT.getVectorNumElements(); 4299 4300 if (VSN->isSplat()) { 4301 SDValue Op0 = Op.getOperand(0); 4302 unsigned Index = VSN->getSplatIndex(); 4303 assert(Index < VT.getVectorNumElements() && 4304 "Splat index should be defined and in first operand"); 4305 // See whether the value we're splatting is directly available as a scalar. 4306 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4307 Op0.getOpcode() == ISD::BUILD_VECTOR) 4308 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4309 // Otherwise keep it as a vector-to-vector operation. 4310 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4311 DAG.getConstant(Index, DL, MVT::i32)); 4312 } 4313 4314 GeneralShuffle GS(VT); 4315 for (unsigned I = 0; I < NumElements; ++I) { 4316 int Elt = VSN->getMaskElt(I); 4317 if (Elt < 0) 4318 GS.addUndef(); 4319 else 4320 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4321 unsigned(Elt) % NumElements); 4322 } 4323 return GS.getNode(DAG, SDLoc(VSN)); 4324 } 4325 4326 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4327 SelectionDAG &DAG) const { 4328 SDLoc DL(Op); 4329 // Just insert the scalar into element 0 of an undefined vector. 4330 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4331 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4332 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4333 } 4334 4335 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4336 SelectionDAG &DAG) const { 4337 // Handle insertions of floating-point values. 4338 SDLoc DL(Op); 4339 SDValue Op0 = Op.getOperand(0); 4340 SDValue Op1 = Op.getOperand(1); 4341 SDValue Op2 = Op.getOperand(2); 4342 EVT VT = Op.getValueType(); 4343 4344 // Insertions into constant indices of a v2f64 can be done using VPDI. 4345 // However, if the inserted value is a bitcast or a constant then it's 4346 // better to use GPRs, as below. 4347 if (VT == MVT::v2f64 && 4348 Op1.getOpcode() != ISD::BITCAST && 4349 Op1.getOpcode() != ISD::ConstantFP && 4350 Op2.getOpcode() == ISD::Constant) { 4351 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4352 unsigned Mask = VT.getVectorNumElements() - 1; 4353 if (Index <= Mask) 4354 return Op; 4355 } 4356 4357 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4358 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4359 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4360 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4361 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4362 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4363 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4364 } 4365 4366 SDValue 4367 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4368 SelectionDAG &DAG) const { 4369 // Handle extractions of floating-point values. 4370 SDLoc DL(Op); 4371 SDValue Op0 = Op.getOperand(0); 4372 SDValue Op1 = Op.getOperand(1); 4373 EVT VT = Op.getValueType(); 4374 EVT VecVT = Op0.getValueType(); 4375 4376 // Extractions of constant indices can be done directly. 4377 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4378 uint64_t Index = CIndexN->getZExtValue(); 4379 unsigned Mask = VecVT.getVectorNumElements() - 1; 4380 if (Index <= Mask) 4381 return Op; 4382 } 4383 4384 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4385 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4386 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4387 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4388 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4389 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4390 } 4391 4392 SDValue 4393 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4394 unsigned UnpackHigh) const { 4395 SDValue PackedOp = Op.getOperand(0); 4396 EVT OutVT = Op.getValueType(); 4397 EVT InVT = PackedOp.getValueType(); 4398 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4399 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4400 do { 4401 FromBits *= 2; 4402 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4403 SystemZ::VectorBits / FromBits); 4404 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4405 } while (FromBits != ToBits); 4406 return PackedOp; 4407 } 4408 4409 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4410 unsigned ByScalar) const { 4411 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4412 SDValue Op0 = Op.getOperand(0); 4413 SDValue Op1 = Op.getOperand(1); 4414 SDLoc DL(Op); 4415 EVT VT = Op.getValueType(); 4416 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4417 4418 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4419 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4420 APInt SplatBits, SplatUndef; 4421 unsigned SplatBitSize; 4422 bool HasAnyUndefs; 4423 // Check for constant splats. Use ElemBitSize as the minimum element 4424 // width and reject splats that need wider elements. 4425 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4426 ElemBitSize, true) && 4427 SplatBitSize == ElemBitSize) { 4428 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4429 DL, MVT::i32); 4430 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4431 } 4432 // Check for variable splats. 4433 BitVector UndefElements; 4434 SDValue Splat = BVN->getSplatValue(&UndefElements); 4435 if (Splat) { 4436 // Since i32 is the smallest legal type, we either need a no-op 4437 // or a truncation. 4438 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4439 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4440 } 4441 } 4442 4443 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4444 // and the shift amount is directly available in a GPR. 4445 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4446 if (VSN->isSplat()) { 4447 SDValue VSNOp0 = VSN->getOperand(0); 4448 unsigned Index = VSN->getSplatIndex(); 4449 assert(Index < VT.getVectorNumElements() && 4450 "Splat index should be defined and in first operand"); 4451 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4452 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4453 // Since i32 is the smallest legal type, we either need a no-op 4454 // or a truncation. 4455 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4456 VSNOp0.getOperand(Index)); 4457 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4458 } 4459 } 4460 } 4461 4462 // Otherwise just treat the current form as legal. 4463 return Op; 4464 } 4465 4466 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4467 SelectionDAG &DAG) const { 4468 switch (Op.getOpcode()) { 4469 case ISD::FRAMEADDR: 4470 return lowerFRAMEADDR(Op, DAG); 4471 case ISD::RETURNADDR: 4472 return lowerRETURNADDR(Op, DAG); 4473 case ISD::BR_CC: 4474 return lowerBR_CC(Op, DAG); 4475 case ISD::SELECT_CC: 4476 return lowerSELECT_CC(Op, DAG); 4477 case ISD::SETCC: 4478 return lowerSETCC(Op, DAG); 4479 case ISD::GlobalAddress: 4480 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4481 case ISD::GlobalTLSAddress: 4482 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4483 case ISD::BlockAddress: 4484 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4485 case ISD::JumpTable: 4486 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4487 case ISD::ConstantPool: 4488 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4489 case ISD::BITCAST: 4490 return lowerBITCAST(Op, DAG); 4491 case ISD::VASTART: 4492 return lowerVASTART(Op, DAG); 4493 case ISD::VACOPY: 4494 return lowerVACOPY(Op, DAG); 4495 case ISD::DYNAMIC_STACKALLOC: 4496 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4497 case ISD::GET_DYNAMIC_AREA_OFFSET: 4498 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4499 case ISD::SMUL_LOHI: 4500 return lowerSMUL_LOHI(Op, DAG); 4501 case ISD::UMUL_LOHI: 4502 return lowerUMUL_LOHI(Op, DAG); 4503 case ISD::SDIVREM: 4504 return lowerSDIVREM(Op, DAG); 4505 case ISD::UDIVREM: 4506 return lowerUDIVREM(Op, DAG); 4507 case ISD::OR: 4508 return lowerOR(Op, DAG); 4509 case ISD::CTPOP: 4510 return lowerCTPOP(Op, DAG); 4511 case ISD::ATOMIC_FENCE: 4512 return lowerATOMIC_FENCE(Op, DAG); 4513 case ISD::ATOMIC_SWAP: 4514 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4515 case ISD::ATOMIC_STORE: 4516 return lowerATOMIC_STORE(Op, DAG); 4517 case ISD::ATOMIC_LOAD: 4518 return lowerATOMIC_LOAD(Op, DAG); 4519 case ISD::ATOMIC_LOAD_ADD: 4520 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4521 case ISD::ATOMIC_LOAD_SUB: 4522 return lowerATOMIC_LOAD_SUB(Op, DAG); 4523 case ISD::ATOMIC_LOAD_AND: 4524 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4525 case ISD::ATOMIC_LOAD_OR: 4526 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4527 case ISD::ATOMIC_LOAD_XOR: 4528 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4529 case ISD::ATOMIC_LOAD_NAND: 4530 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4531 case ISD::ATOMIC_LOAD_MIN: 4532 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4533 case ISD::ATOMIC_LOAD_MAX: 4534 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4535 case ISD::ATOMIC_LOAD_UMIN: 4536 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4537 case ISD::ATOMIC_LOAD_UMAX: 4538 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4539 case ISD::ATOMIC_CMP_SWAP: 4540 return lowerATOMIC_CMP_SWAP(Op, DAG); 4541 case ISD::STACKSAVE: 4542 return lowerSTACKSAVE(Op, DAG); 4543 case ISD::STACKRESTORE: 4544 return lowerSTACKRESTORE(Op, DAG); 4545 case ISD::PREFETCH: 4546 return lowerPREFETCH(Op, DAG); 4547 case ISD::INTRINSIC_W_CHAIN: 4548 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4549 case ISD::INTRINSIC_WO_CHAIN: 4550 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4551 case ISD::BUILD_VECTOR: 4552 return lowerBUILD_VECTOR(Op, DAG); 4553 case ISD::VECTOR_SHUFFLE: 4554 return lowerVECTOR_SHUFFLE(Op, DAG); 4555 case ISD::SCALAR_TO_VECTOR: 4556 return lowerSCALAR_TO_VECTOR(Op, DAG); 4557 case ISD::INSERT_VECTOR_ELT: 4558 return lowerINSERT_VECTOR_ELT(Op, DAG); 4559 case ISD::EXTRACT_VECTOR_ELT: 4560 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4561 case ISD::SIGN_EXTEND_VECTOR_INREG: 4562 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4563 case ISD::ZERO_EXTEND_VECTOR_INREG: 4564 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4565 case ISD::SHL: 4566 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4567 case ISD::SRL: 4568 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4569 case ISD::SRA: 4570 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4571 default: 4572 llvm_unreachable("Unexpected node to lower"); 4573 } 4574 } 4575 4576 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4577 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4578 switch ((SystemZISD::NodeType)Opcode) { 4579 case SystemZISD::FIRST_NUMBER: break; 4580 OPCODE(RET_FLAG); 4581 OPCODE(CALL); 4582 OPCODE(SIBCALL); 4583 OPCODE(TLS_GDCALL); 4584 OPCODE(TLS_LDCALL); 4585 OPCODE(PCREL_WRAPPER); 4586 OPCODE(PCREL_OFFSET); 4587 OPCODE(IABS); 4588 OPCODE(ICMP); 4589 OPCODE(FCMP); 4590 OPCODE(TM); 4591 OPCODE(BR_CCMASK); 4592 OPCODE(SELECT_CCMASK); 4593 OPCODE(ADJDYNALLOC); 4594 OPCODE(EXTRACT_ACCESS); 4595 OPCODE(POPCNT); 4596 OPCODE(UMUL_LOHI64); 4597 OPCODE(SDIVREM32); 4598 OPCODE(SDIVREM64); 4599 OPCODE(UDIVREM32); 4600 OPCODE(UDIVREM64); 4601 OPCODE(MVC); 4602 OPCODE(MVC_LOOP); 4603 OPCODE(NC); 4604 OPCODE(NC_LOOP); 4605 OPCODE(OC); 4606 OPCODE(OC_LOOP); 4607 OPCODE(XC); 4608 OPCODE(XC_LOOP); 4609 OPCODE(CLC); 4610 OPCODE(CLC_LOOP); 4611 OPCODE(STPCPY); 4612 OPCODE(STRCMP); 4613 OPCODE(SEARCH_STRING); 4614 OPCODE(IPM); 4615 OPCODE(SERIALIZE); 4616 OPCODE(MEMBARRIER); 4617 OPCODE(TBEGIN); 4618 OPCODE(TBEGIN_NOFLOAT); 4619 OPCODE(TEND); 4620 OPCODE(BYTE_MASK); 4621 OPCODE(ROTATE_MASK); 4622 OPCODE(REPLICATE); 4623 OPCODE(JOIN_DWORDS); 4624 OPCODE(SPLAT); 4625 OPCODE(MERGE_HIGH); 4626 OPCODE(MERGE_LOW); 4627 OPCODE(SHL_DOUBLE); 4628 OPCODE(PERMUTE_DWORDS); 4629 OPCODE(PERMUTE); 4630 OPCODE(PACK); 4631 OPCODE(PACKS_CC); 4632 OPCODE(PACKLS_CC); 4633 OPCODE(UNPACK_HIGH); 4634 OPCODE(UNPACKL_HIGH); 4635 OPCODE(UNPACK_LOW); 4636 OPCODE(UNPACKL_LOW); 4637 OPCODE(VSHL_BY_SCALAR); 4638 OPCODE(VSRL_BY_SCALAR); 4639 OPCODE(VSRA_BY_SCALAR); 4640 OPCODE(VSUM); 4641 OPCODE(VICMPE); 4642 OPCODE(VICMPH); 4643 OPCODE(VICMPHL); 4644 OPCODE(VICMPES); 4645 OPCODE(VICMPHS); 4646 OPCODE(VICMPHLS); 4647 OPCODE(VFCMPE); 4648 OPCODE(VFCMPH); 4649 OPCODE(VFCMPHE); 4650 OPCODE(VFCMPES); 4651 OPCODE(VFCMPHS); 4652 OPCODE(VFCMPHES); 4653 OPCODE(VFTCI); 4654 OPCODE(VEXTEND); 4655 OPCODE(VROUND); 4656 OPCODE(VTM); 4657 OPCODE(VFAE_CC); 4658 OPCODE(VFAEZ_CC); 4659 OPCODE(VFEE_CC); 4660 OPCODE(VFEEZ_CC); 4661 OPCODE(VFENE_CC); 4662 OPCODE(VFENEZ_CC); 4663 OPCODE(VISTR_CC); 4664 OPCODE(VSTRC_CC); 4665 OPCODE(VSTRCZ_CC); 4666 OPCODE(TDC); 4667 OPCODE(ATOMIC_SWAPW); 4668 OPCODE(ATOMIC_LOADW_ADD); 4669 OPCODE(ATOMIC_LOADW_SUB); 4670 OPCODE(ATOMIC_LOADW_AND); 4671 OPCODE(ATOMIC_LOADW_OR); 4672 OPCODE(ATOMIC_LOADW_XOR); 4673 OPCODE(ATOMIC_LOADW_NAND); 4674 OPCODE(ATOMIC_LOADW_MIN); 4675 OPCODE(ATOMIC_LOADW_MAX); 4676 OPCODE(ATOMIC_LOADW_UMIN); 4677 OPCODE(ATOMIC_LOADW_UMAX); 4678 OPCODE(ATOMIC_CMP_SWAPW); 4679 OPCODE(LRV); 4680 OPCODE(STRV); 4681 OPCODE(PREFETCH); 4682 } 4683 return nullptr; 4684 #undef OPCODE 4685 } 4686 4687 // Return true if VT is a vector whose elements are a whole number of bytes 4688 // in width. 4689 static bool canTreatAsByteVector(EVT VT) { 4690 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4691 } 4692 4693 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4694 // producing a result of type ResVT. Op is a possibly bitcast version 4695 // of the input vector and Index is the index (based on type VecVT) that 4696 // should be extracted. Return the new extraction if a simplification 4697 // was possible or if Force is true. 4698 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 4699 EVT VecVT, SDValue Op, 4700 unsigned Index, 4701 DAGCombinerInfo &DCI, 4702 bool Force) const { 4703 SelectionDAG &DAG = DCI.DAG; 4704 4705 // The number of bytes being extracted. 4706 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4707 4708 for (;;) { 4709 unsigned Opcode = Op.getOpcode(); 4710 if (Opcode == ISD::BITCAST) 4711 // Look through bitcasts. 4712 Op = Op.getOperand(0); 4713 else if (Opcode == ISD::VECTOR_SHUFFLE && 4714 canTreatAsByteVector(Op.getValueType())) { 4715 // Get a VPERM-like permute mask and see whether the bytes covered 4716 // by the extracted element are a contiguous sequence from one 4717 // source operand. 4718 SmallVector<int, SystemZ::VectorBytes> Bytes; 4719 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4720 int First; 4721 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4722 BytesPerElement, First)) 4723 break; 4724 if (First < 0) 4725 return DAG.getUNDEF(ResVT); 4726 // Make sure the contiguous sequence starts at a multiple of the 4727 // original element size. 4728 unsigned Byte = unsigned(First) % Bytes.size(); 4729 if (Byte % BytesPerElement != 0) 4730 break; 4731 // We can get the extracted value directly from an input. 4732 Index = Byte / BytesPerElement; 4733 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4734 Force = true; 4735 } else if (Opcode == ISD::BUILD_VECTOR && 4736 canTreatAsByteVector(Op.getValueType())) { 4737 // We can only optimize this case if the BUILD_VECTOR elements are 4738 // at least as wide as the extracted value. 4739 EVT OpVT = Op.getValueType(); 4740 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4741 if (OpBytesPerElement < BytesPerElement) 4742 break; 4743 // Make sure that the least-significant bit of the extracted value 4744 // is the least significant bit of an input. 4745 unsigned End = (Index + 1) * BytesPerElement; 4746 if (End % OpBytesPerElement != 0) 4747 break; 4748 // We're extracting the low part of one operand of the BUILD_VECTOR. 4749 Op = Op.getOperand(End / OpBytesPerElement - 1); 4750 if (!Op.getValueType().isInteger()) { 4751 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4752 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4753 DCI.AddToWorklist(Op.getNode()); 4754 } 4755 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4756 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4757 if (VT != ResVT) { 4758 DCI.AddToWorklist(Op.getNode()); 4759 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4760 } 4761 return Op; 4762 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4763 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4764 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4765 canTreatAsByteVector(Op.getValueType()) && 4766 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4767 // Make sure that only the unextended bits are significant. 4768 EVT ExtVT = Op.getValueType(); 4769 EVT OpVT = Op.getOperand(0).getValueType(); 4770 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4771 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4772 unsigned Byte = Index * BytesPerElement; 4773 unsigned SubByte = Byte % ExtBytesPerElement; 4774 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4775 if (SubByte < MinSubByte || 4776 SubByte + BytesPerElement > ExtBytesPerElement) 4777 break; 4778 // Get the byte offset of the unextended element 4779 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4780 // ...then add the byte offset relative to that element. 4781 Byte += SubByte - MinSubByte; 4782 if (Byte % BytesPerElement != 0) 4783 break; 4784 Op = Op.getOperand(0); 4785 Index = Byte / BytesPerElement; 4786 Force = true; 4787 } else 4788 break; 4789 } 4790 if (Force) { 4791 if (Op.getValueType() != VecVT) { 4792 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4793 DCI.AddToWorklist(Op.getNode()); 4794 } 4795 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4796 DAG.getConstant(Index, DL, MVT::i32)); 4797 } 4798 return SDValue(); 4799 } 4800 4801 // Optimize vector operations in scalar value Op on the basis that Op 4802 // is truncated to TruncVT. 4803 SDValue SystemZTargetLowering::combineTruncateExtract( 4804 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 4805 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4806 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4807 // of type TruncVT. 4808 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4809 TruncVT.getSizeInBits() % 8 == 0) { 4810 SDValue Vec = Op.getOperand(0); 4811 EVT VecVT = Vec.getValueType(); 4812 if (canTreatAsByteVector(VecVT)) { 4813 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4814 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4815 unsigned TruncBytes = TruncVT.getStoreSize(); 4816 if (BytesPerElement % TruncBytes == 0) { 4817 // Calculate the value of Y' in the above description. We are 4818 // splitting the original elements into Scale equal-sized pieces 4819 // and for truncation purposes want the last (least-significant) 4820 // of these pieces for IndexN. This is easiest to do by calculating 4821 // the start index of the following element and then subtracting 1. 4822 unsigned Scale = BytesPerElement / TruncBytes; 4823 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4824 4825 // Defer the creation of the bitcast from X to combineExtract, 4826 // which might be able to optimize the extraction. 4827 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4828 VecVT.getStoreSize() / TruncBytes); 4829 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4830 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4831 } 4832 } 4833 } 4834 } 4835 return SDValue(); 4836 } 4837 4838 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 4839 SDNode *N, DAGCombinerInfo &DCI) const { 4840 // Convert (sext (ashr (shl X, C1), C2)) to 4841 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4842 // cheap as narrower ones. 4843 SelectionDAG &DAG = DCI.DAG; 4844 SDValue N0 = N->getOperand(0); 4845 EVT VT = N->getValueType(0); 4846 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4847 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4848 SDValue Inner = N0.getOperand(0); 4849 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4850 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4851 unsigned Extra = (VT.getSizeInBits() - 4852 N0.getValueType().getSizeInBits()); 4853 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4854 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4855 EVT ShiftVT = N0.getOperand(1).getValueType(); 4856 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4857 Inner.getOperand(0)); 4858 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4859 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4860 ShiftVT)); 4861 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4862 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4863 } 4864 } 4865 } 4866 return SDValue(); 4867 } 4868 4869 SDValue SystemZTargetLowering::combineMERGE( 4870 SDNode *N, DAGCombinerInfo &DCI) const { 4871 SelectionDAG &DAG = DCI.DAG; 4872 unsigned Opcode = N->getOpcode(); 4873 SDValue Op0 = N->getOperand(0); 4874 SDValue Op1 = N->getOperand(1); 4875 if (Op0.getOpcode() == ISD::BITCAST) 4876 Op0 = Op0.getOperand(0); 4877 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4878 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4879 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4880 // for v4f32. 4881 if (Op1 == N->getOperand(0)) 4882 return Op1; 4883 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4884 EVT VT = Op1.getValueType(); 4885 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4886 if (ElemBytes <= 4) { 4887 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4888 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4889 EVT InVT = VT.changeVectorElementTypeToInteger(); 4890 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4891 SystemZ::VectorBytes / ElemBytes / 2); 4892 if (VT != InVT) { 4893 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4894 DCI.AddToWorklist(Op1.getNode()); 4895 } 4896 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4897 DCI.AddToWorklist(Op.getNode()); 4898 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4899 } 4900 } 4901 return SDValue(); 4902 } 4903 4904 SDValue SystemZTargetLowering::combineSTORE( 4905 SDNode *N, DAGCombinerInfo &DCI) const { 4906 SelectionDAG &DAG = DCI.DAG; 4907 auto *SN = cast<StoreSDNode>(N); 4908 auto &Op1 = N->getOperand(1); 4909 EVT MemVT = SN->getMemoryVT(); 4910 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4911 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4912 // If X has wider elements then convert it to: 4913 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4914 if (MemVT.isInteger()) { 4915 if (SDValue Value = 4916 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4917 DCI.AddToWorklist(Value.getNode()); 4918 4919 // Rewrite the store with the new form of stored value. 4920 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4921 SN->getBasePtr(), SN->getMemoryVT(), 4922 SN->getMemOperand()); 4923 } 4924 } 4925 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 4926 // See comment in combineBSWAP about volatile accesses. 4927 if (!SN->isVolatile() && 4928 Op1.getOpcode() == ISD::BSWAP && 4929 Op1.getNode()->hasOneUse() && 4930 (Op1.getValueType() == MVT::i16 || 4931 Op1.getValueType() == MVT::i32 || 4932 Op1.getValueType() == MVT::i64)) { 4933 4934 SDValue BSwapOp = Op1.getOperand(0); 4935 4936 if (BSwapOp.getValueType() == MVT::i16) 4937 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 4938 4939 SDValue Ops[] = { 4940 N->getOperand(0), BSwapOp, N->getOperand(2), 4941 DAG.getValueType(Op1.getValueType()) 4942 }; 4943 4944 return 4945 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 4946 Ops, MemVT, SN->getMemOperand()); 4947 } 4948 return SDValue(); 4949 } 4950 4951 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 4952 SDNode *N, DAGCombinerInfo &DCI) const { 4953 // Try to simplify a vector extraction. 4954 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4955 SDValue Op0 = N->getOperand(0); 4956 EVT VecVT = Op0.getValueType(); 4957 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4958 IndexN->getZExtValue(), DCI, false); 4959 } 4960 return SDValue(); 4961 } 4962 4963 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 4964 SDNode *N, DAGCombinerInfo &DCI) const { 4965 SelectionDAG &DAG = DCI.DAG; 4966 // (join_dwords X, X) == (replicate X) 4967 if (N->getOperand(0) == N->getOperand(1)) 4968 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4969 N->getOperand(0)); 4970 return SDValue(); 4971 } 4972 4973 SDValue SystemZTargetLowering::combineFP_ROUND( 4974 SDNode *N, DAGCombinerInfo &DCI) const { 4975 // (fround (extract_vector_elt X 0)) 4976 // (fround (extract_vector_elt X 1)) -> 4977 // (extract_vector_elt (VROUND X) 0) 4978 // (extract_vector_elt (VROUND X) 1) 4979 // 4980 // This is a special case since the target doesn't really support v2f32s. 4981 SelectionDAG &DAG = DCI.DAG; 4982 SDValue Op0 = N->getOperand(0); 4983 if (N->getValueType(0) == MVT::f32 && 4984 Op0.hasOneUse() && 4985 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4986 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4987 Op0.getOperand(1).getOpcode() == ISD::Constant && 4988 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4989 SDValue Vec = Op0.getOperand(0); 4990 for (auto *U : Vec->uses()) { 4991 if (U != Op0.getNode() && 4992 U->hasOneUse() && 4993 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4994 U->getOperand(0) == Vec && 4995 U->getOperand(1).getOpcode() == ISD::Constant && 4996 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4997 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4998 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4999 OtherRound.getOperand(0) == SDValue(U, 0) && 5000 OtherRound.getValueType() == MVT::f32) { 5001 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5002 MVT::v4f32, Vec); 5003 DCI.AddToWorklist(VRound.getNode()); 5004 SDValue Extract1 = 5005 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5006 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5007 DCI.AddToWorklist(Extract1.getNode()); 5008 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5009 SDValue Extract0 = 5010 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5011 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5012 return Extract0; 5013 } 5014 } 5015 } 5016 } 5017 return SDValue(); 5018 } 5019 5020 SDValue SystemZTargetLowering::combineBSWAP( 5021 SDNode *N, DAGCombinerInfo &DCI) const { 5022 SelectionDAG &DAG = DCI.DAG; 5023 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5024 // These loads are allowed to access memory multiple times, and so we must check 5025 // that the loads are not volatile before performing the combine. 5026 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5027 N->getOperand(0).hasOneUse() && 5028 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5029 N->getValueType(0) == MVT::i64) && 5030 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 5031 SDValue Load = N->getOperand(0); 5032 LoadSDNode *LD = cast<LoadSDNode>(Load); 5033 5034 // Create the byte-swapping load. 5035 SDValue Ops[] = { 5036 LD->getChain(), // Chain 5037 LD->getBasePtr(), // Ptr 5038 DAG.getValueType(N->getValueType(0)) // VT 5039 }; 5040 SDValue BSLoad = 5041 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5042 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5043 MVT::i64 : MVT::i32, MVT::Other), 5044 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5045 5046 // If this is an i16 load, insert the truncate. 5047 SDValue ResVal = BSLoad; 5048 if (N->getValueType(0) == MVT::i16) 5049 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5050 5051 // First, combine the bswap away. This makes the value produced by the 5052 // load dead. 5053 DCI.CombineTo(N, ResVal); 5054 5055 // Next, combine the load away, we give it a bogus result value but a real 5056 // chain result. The result value is dead because the bswap is dead. 5057 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5058 5059 // Return N so it doesn't get rechecked! 5060 return SDValue(N, 0); 5061 } 5062 return SDValue(); 5063 } 5064 5065 SDValue SystemZTargetLowering::combineSHIFTROT( 5066 SDNode *N, DAGCombinerInfo &DCI) const { 5067 5068 SelectionDAG &DAG = DCI.DAG; 5069 5070 // Shift/rotate instructions only use the last 6 bits of the second operand 5071 // register. If the second operand is the result of an AND with an immediate 5072 // value that has its last 6 bits set, we can safely remove the AND operation. 5073 SDValue N1 = N->getOperand(1); 5074 if (N1.getOpcode() == ISD::AND) { 5075 auto *AndMask = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5076 5077 // The AND mask is constant 5078 if (AndMask) { 5079 auto AmtVal = AndMask->getZExtValue(); 5080 5081 // Bottom 6 bits are set 5082 if ((AmtVal & 0x3f) == 0x3f) { 5083 SDValue AndOp = N1->getOperand(0); 5084 5085 // This is the only use, so remove the node 5086 if (N1.hasOneUse()) { 5087 // Combine the AND away 5088 DCI.CombineTo(N1.getNode(), AndOp); 5089 5090 // Return N so it isn't rechecked 5091 return SDValue(N, 0); 5092 5093 // The node will be reused, so create a new node for this one use 5094 } else { 5095 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5096 N->getValueType(0), N->getOperand(0), 5097 AndOp); 5098 DCI.AddToWorklist(Replace.getNode()); 5099 5100 return Replace; 5101 } 5102 } 5103 } 5104 } 5105 5106 return SDValue(); 5107 } 5108 5109 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5110 DAGCombinerInfo &DCI) const { 5111 switch(N->getOpcode()) { 5112 default: break; 5113 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5114 case SystemZISD::MERGE_HIGH: 5115 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5116 case ISD::STORE: return combineSTORE(N, DCI); 5117 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5118 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5119 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5120 case ISD::BSWAP: return combineBSWAP(N, DCI); 5121 case ISD::SHL: 5122 case ISD::SRA: 5123 case ISD::SRL: 5124 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5125 } 5126 5127 return SDValue(); 5128 } 5129 5130 //===----------------------------------------------------------------------===// 5131 // Custom insertion 5132 //===----------------------------------------------------------------------===// 5133 5134 // Create a new basic block after MBB. 5135 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5136 MachineFunction &MF = *MBB->getParent(); 5137 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5138 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5139 return NewMBB; 5140 } 5141 5142 // Split MBB after MI and return the new block (the one that contains 5143 // instructions after MI). 5144 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5145 MachineBasicBlock *MBB) { 5146 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5147 NewMBB->splice(NewMBB->begin(), MBB, 5148 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5149 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5150 return NewMBB; 5151 } 5152 5153 // Split MBB before MI and return the new block (the one that contains MI). 5154 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 5155 MachineBasicBlock *MBB) { 5156 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5157 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5158 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5159 return NewMBB; 5160 } 5161 5162 // Force base value Base into a register before MI. Return the register. 5163 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 5164 const SystemZInstrInfo *TII) { 5165 if (Base.isReg()) 5166 return Base.getReg(); 5167 5168 MachineBasicBlock *MBB = MI.getParent(); 5169 MachineFunction &MF = *MBB->getParent(); 5170 MachineRegisterInfo &MRI = MF.getRegInfo(); 5171 5172 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5173 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 5174 .addOperand(Base) 5175 .addImm(0) 5176 .addReg(0); 5177 return Reg; 5178 } 5179 5180 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5181 MachineBasicBlock * 5182 SystemZTargetLowering::emitSelect(MachineInstr &MI, 5183 MachineBasicBlock *MBB) const { 5184 const SystemZInstrInfo *TII = 5185 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5186 5187 unsigned DestReg = MI.getOperand(0).getReg(); 5188 unsigned TrueReg = MI.getOperand(1).getReg(); 5189 unsigned FalseReg = MI.getOperand(2).getReg(); 5190 unsigned CCValid = MI.getOperand(3).getImm(); 5191 unsigned CCMask = MI.getOperand(4).getImm(); 5192 DebugLoc DL = MI.getDebugLoc(); 5193 5194 MachineBasicBlock *StartMBB = MBB; 5195 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5196 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5197 5198 // StartMBB: 5199 // BRC CCMask, JoinMBB 5200 // # fallthrough to FalseMBB 5201 MBB = StartMBB; 5202 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5203 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5204 MBB->addSuccessor(JoinMBB); 5205 MBB->addSuccessor(FalseMBB); 5206 5207 // FalseMBB: 5208 // # fallthrough to JoinMBB 5209 MBB = FalseMBB; 5210 MBB->addSuccessor(JoinMBB); 5211 5212 // JoinMBB: 5213 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5214 // ... 5215 MBB = JoinMBB; 5216 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5217 .addReg(TrueReg).addMBB(StartMBB) 5218 .addReg(FalseReg).addMBB(FalseMBB); 5219 5220 MI.eraseFromParent(); 5221 return JoinMBB; 5222 } 5223 5224 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5225 // StoreOpcode is the store to use and Invert says whether the store should 5226 // happen when the condition is false rather than true. If a STORE ON 5227 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5228 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 5229 MachineBasicBlock *MBB, 5230 unsigned StoreOpcode, 5231 unsigned STOCOpcode, 5232 bool Invert) const { 5233 const SystemZInstrInfo *TII = 5234 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5235 5236 unsigned SrcReg = MI.getOperand(0).getReg(); 5237 MachineOperand Base = MI.getOperand(1); 5238 int64_t Disp = MI.getOperand(2).getImm(); 5239 unsigned IndexReg = MI.getOperand(3).getReg(); 5240 unsigned CCValid = MI.getOperand(4).getImm(); 5241 unsigned CCMask = MI.getOperand(5).getImm(); 5242 DebugLoc DL = MI.getDebugLoc(); 5243 5244 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5245 5246 // Use STOCOpcode if possible. We could use different store patterns in 5247 // order to avoid matching the index register, but the performance trade-offs 5248 // might be more complicated in that case. 5249 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5250 if (Invert) 5251 CCMask ^= CCValid; 5252 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5253 .addReg(SrcReg).addOperand(Base).addImm(Disp) 5254 .addImm(CCValid).addImm(CCMask); 5255 MI.eraseFromParent(); 5256 return MBB; 5257 } 5258 5259 // Get the condition needed to branch around the store. 5260 if (!Invert) 5261 CCMask ^= CCValid; 5262 5263 MachineBasicBlock *StartMBB = MBB; 5264 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5265 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5266 5267 // StartMBB: 5268 // BRC CCMask, JoinMBB 5269 // # fallthrough to FalseMBB 5270 MBB = StartMBB; 5271 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5272 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5273 MBB->addSuccessor(JoinMBB); 5274 MBB->addSuccessor(FalseMBB); 5275 5276 // FalseMBB: 5277 // store %SrcReg, %Disp(%Index,%Base) 5278 // # fallthrough to JoinMBB 5279 MBB = FalseMBB; 5280 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5281 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 5282 MBB->addSuccessor(JoinMBB); 5283 5284 MI.eraseFromParent(); 5285 return JoinMBB; 5286 } 5287 5288 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5289 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5290 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5291 // BitSize is the width of the field in bits, or 0 if this is a partword 5292 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5293 // is one of the operands. Invert says whether the field should be 5294 // inverted after performing BinOpcode (e.g. for NAND). 5295 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 5296 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 5297 unsigned BitSize, bool Invert) const { 5298 MachineFunction &MF = *MBB->getParent(); 5299 const SystemZInstrInfo *TII = 5300 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5301 MachineRegisterInfo &MRI = MF.getRegInfo(); 5302 bool IsSubWord = (BitSize < 32); 5303 5304 // Extract the operands. Base can be a register or a frame index. 5305 // Src2 can be a register or immediate. 5306 unsigned Dest = MI.getOperand(0).getReg(); 5307 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5308 int64_t Disp = MI.getOperand(2).getImm(); 5309 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 5310 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5311 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5312 DebugLoc DL = MI.getDebugLoc(); 5313 if (IsSubWord) 5314 BitSize = MI.getOperand(6).getImm(); 5315 5316 // Subword operations use 32-bit registers. 5317 const TargetRegisterClass *RC = (BitSize <= 32 ? 5318 &SystemZ::GR32BitRegClass : 5319 &SystemZ::GR64BitRegClass); 5320 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5321 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5322 5323 // Get the right opcodes for the displacement. 5324 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5325 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5326 assert(LOpcode && CSOpcode && "Displacement out of range"); 5327 5328 // Create virtual registers for temporary results. 5329 unsigned OrigVal = MRI.createVirtualRegister(RC); 5330 unsigned OldVal = MRI.createVirtualRegister(RC); 5331 unsigned NewVal = (BinOpcode || IsSubWord ? 5332 MRI.createVirtualRegister(RC) : Src2.getReg()); 5333 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5334 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5335 5336 // Insert a basic block for the main loop. 5337 MachineBasicBlock *StartMBB = MBB; 5338 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5339 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5340 5341 // StartMBB: 5342 // ... 5343 // %OrigVal = L Disp(%Base) 5344 // # fall through to LoopMMB 5345 MBB = StartMBB; 5346 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5347 .addOperand(Base).addImm(Disp).addReg(0); 5348 MBB->addSuccessor(LoopMBB); 5349 5350 // LoopMBB: 5351 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5352 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5353 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5354 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5355 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5356 // JNE LoopMBB 5357 // # fall through to DoneMMB 5358 MBB = LoopMBB; 5359 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5360 .addReg(OrigVal).addMBB(StartMBB) 5361 .addReg(Dest).addMBB(LoopMBB); 5362 if (IsSubWord) 5363 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5364 .addReg(OldVal).addReg(BitShift).addImm(0); 5365 if (Invert) { 5366 // Perform the operation normally and then invert every bit of the field. 5367 unsigned Tmp = MRI.createVirtualRegister(RC); 5368 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5369 .addReg(RotatedOldVal).addOperand(Src2); 5370 if (BitSize <= 32) 5371 // XILF with the upper BitSize bits set. 5372 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5373 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5374 else { 5375 // Use LCGR and add -1 to the result, which is more compact than 5376 // an XILF, XILH pair. 5377 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5378 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5379 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5380 .addReg(Tmp2).addImm(-1); 5381 } 5382 } else if (BinOpcode) 5383 // A simply binary operation. 5384 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5385 .addReg(RotatedOldVal).addOperand(Src2); 5386 else if (IsSubWord) 5387 // Use RISBG to rotate Src2 into position and use it to replace the 5388 // field in RotatedOldVal. 5389 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5390 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5391 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5392 if (IsSubWord) 5393 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5394 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5395 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5396 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5397 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5398 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5399 MBB->addSuccessor(LoopMBB); 5400 MBB->addSuccessor(DoneMBB); 5401 5402 MI.eraseFromParent(); 5403 return DoneMBB; 5404 } 5405 5406 // Implement EmitInstrWithCustomInserter for pseudo 5407 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5408 // instruction that should be used to compare the current field with the 5409 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5410 // for when the current field should be kept. BitSize is the width of 5411 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5412 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 5413 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 5414 unsigned KeepOldMask, unsigned BitSize) const { 5415 MachineFunction &MF = *MBB->getParent(); 5416 const SystemZInstrInfo *TII = 5417 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5418 MachineRegisterInfo &MRI = MF.getRegInfo(); 5419 bool IsSubWord = (BitSize < 32); 5420 5421 // Extract the operands. Base can be a register or a frame index. 5422 unsigned Dest = MI.getOperand(0).getReg(); 5423 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5424 int64_t Disp = MI.getOperand(2).getImm(); 5425 unsigned Src2 = MI.getOperand(3).getReg(); 5426 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5427 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5428 DebugLoc DL = MI.getDebugLoc(); 5429 if (IsSubWord) 5430 BitSize = MI.getOperand(6).getImm(); 5431 5432 // Subword operations use 32-bit registers. 5433 const TargetRegisterClass *RC = (BitSize <= 32 ? 5434 &SystemZ::GR32BitRegClass : 5435 &SystemZ::GR64BitRegClass); 5436 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5437 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5438 5439 // Get the right opcodes for the displacement. 5440 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5441 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5442 assert(LOpcode && CSOpcode && "Displacement out of range"); 5443 5444 // Create virtual registers for temporary results. 5445 unsigned OrigVal = MRI.createVirtualRegister(RC); 5446 unsigned OldVal = MRI.createVirtualRegister(RC); 5447 unsigned NewVal = MRI.createVirtualRegister(RC); 5448 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5449 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5450 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5451 5452 // Insert 3 basic blocks for the loop. 5453 MachineBasicBlock *StartMBB = MBB; 5454 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5455 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5456 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5457 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5458 5459 // StartMBB: 5460 // ... 5461 // %OrigVal = L Disp(%Base) 5462 // # fall through to LoopMMB 5463 MBB = StartMBB; 5464 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5465 .addOperand(Base).addImm(Disp).addReg(0); 5466 MBB->addSuccessor(LoopMBB); 5467 5468 // LoopMBB: 5469 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5470 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5471 // CompareOpcode %RotatedOldVal, %Src2 5472 // BRC KeepOldMask, UpdateMBB 5473 MBB = LoopMBB; 5474 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5475 .addReg(OrigVal).addMBB(StartMBB) 5476 .addReg(Dest).addMBB(UpdateMBB); 5477 if (IsSubWord) 5478 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5479 .addReg(OldVal).addReg(BitShift).addImm(0); 5480 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5481 .addReg(RotatedOldVal).addReg(Src2); 5482 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5483 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5484 MBB->addSuccessor(UpdateMBB); 5485 MBB->addSuccessor(UseAltMBB); 5486 5487 // UseAltMBB: 5488 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5489 // # fall through to UpdateMMB 5490 MBB = UseAltMBB; 5491 if (IsSubWord) 5492 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5493 .addReg(RotatedOldVal).addReg(Src2) 5494 .addImm(32).addImm(31 + BitSize).addImm(0); 5495 MBB->addSuccessor(UpdateMBB); 5496 5497 // UpdateMBB: 5498 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5499 // [ %RotatedAltVal, UseAltMBB ] 5500 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5501 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5502 // JNE LoopMBB 5503 // # fall through to DoneMMB 5504 MBB = UpdateMBB; 5505 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5506 .addReg(RotatedOldVal).addMBB(LoopMBB) 5507 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5508 if (IsSubWord) 5509 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5510 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5511 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5512 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5513 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5514 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5515 MBB->addSuccessor(LoopMBB); 5516 MBB->addSuccessor(DoneMBB); 5517 5518 MI.eraseFromParent(); 5519 return DoneMBB; 5520 } 5521 5522 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5523 // instruction MI. 5524 MachineBasicBlock * 5525 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 5526 MachineBasicBlock *MBB) const { 5527 5528 MachineFunction &MF = *MBB->getParent(); 5529 const SystemZInstrInfo *TII = 5530 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5531 MachineRegisterInfo &MRI = MF.getRegInfo(); 5532 5533 // Extract the operands. Base can be a register or a frame index. 5534 unsigned Dest = MI.getOperand(0).getReg(); 5535 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5536 int64_t Disp = MI.getOperand(2).getImm(); 5537 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 5538 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 5539 unsigned BitShift = MI.getOperand(5).getReg(); 5540 unsigned NegBitShift = MI.getOperand(6).getReg(); 5541 int64_t BitSize = MI.getOperand(7).getImm(); 5542 DebugLoc DL = MI.getDebugLoc(); 5543 5544 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5545 5546 // Get the right opcodes for the displacement. 5547 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5548 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5549 assert(LOpcode && CSOpcode && "Displacement out of range"); 5550 5551 // Create virtual registers for temporary results. 5552 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5553 unsigned OldVal = MRI.createVirtualRegister(RC); 5554 unsigned CmpVal = MRI.createVirtualRegister(RC); 5555 unsigned SwapVal = MRI.createVirtualRegister(RC); 5556 unsigned StoreVal = MRI.createVirtualRegister(RC); 5557 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5558 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5559 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5560 5561 // Insert 2 basic blocks for the loop. 5562 MachineBasicBlock *StartMBB = MBB; 5563 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5564 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5565 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5566 5567 // StartMBB: 5568 // ... 5569 // %OrigOldVal = L Disp(%Base) 5570 // # fall through to LoopMMB 5571 MBB = StartMBB; 5572 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5573 .addOperand(Base).addImm(Disp).addReg(0); 5574 MBB->addSuccessor(LoopMBB); 5575 5576 // LoopMBB: 5577 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5578 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5579 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5580 // %Dest = RLL %OldVal, BitSize(%BitShift) 5581 // ^^ The low BitSize bits contain the field 5582 // of interest. 5583 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5584 // ^^ Replace the upper 32-BitSize bits of the 5585 // comparison value with those that we loaded, 5586 // so that we can use a full word comparison. 5587 // CR %Dest, %RetryCmpVal 5588 // JNE DoneMBB 5589 // # Fall through to SetMBB 5590 MBB = LoopMBB; 5591 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5592 .addReg(OrigOldVal).addMBB(StartMBB) 5593 .addReg(RetryOldVal).addMBB(SetMBB); 5594 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5595 .addReg(OrigCmpVal).addMBB(StartMBB) 5596 .addReg(RetryCmpVal).addMBB(SetMBB); 5597 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5598 .addReg(OrigSwapVal).addMBB(StartMBB) 5599 .addReg(RetrySwapVal).addMBB(SetMBB); 5600 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5601 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5602 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5603 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5604 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5605 .addReg(Dest).addReg(RetryCmpVal); 5606 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5607 .addImm(SystemZ::CCMASK_ICMP) 5608 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5609 MBB->addSuccessor(DoneMBB); 5610 MBB->addSuccessor(SetMBB); 5611 5612 // SetMBB: 5613 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5614 // ^^ Replace the upper 32-BitSize bits of the new 5615 // value with those that we loaded. 5616 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5617 // ^^ Rotate the new field to its proper position. 5618 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5619 // JNE LoopMBB 5620 // # fall through to ExitMMB 5621 MBB = SetMBB; 5622 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5623 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5624 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5625 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5626 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5627 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5628 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5629 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5630 MBB->addSuccessor(LoopMBB); 5631 MBB->addSuccessor(DoneMBB); 5632 5633 MI.eraseFromParent(); 5634 return DoneMBB; 5635 } 5636 5637 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5638 // if the high register of the GR128 value must be cleared or false if 5639 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5640 // and subreg_l64 when extending a GR64. 5641 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 5642 MachineBasicBlock *MBB, 5643 bool ClearEven, 5644 unsigned SubReg) const { 5645 MachineFunction &MF = *MBB->getParent(); 5646 const SystemZInstrInfo *TII = 5647 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5648 MachineRegisterInfo &MRI = MF.getRegInfo(); 5649 DebugLoc DL = MI.getDebugLoc(); 5650 5651 unsigned Dest = MI.getOperand(0).getReg(); 5652 unsigned Src = MI.getOperand(1).getReg(); 5653 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5654 5655 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5656 if (ClearEven) { 5657 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5658 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5659 5660 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5661 .addImm(0); 5662 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5663 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5664 In128 = NewIn128; 5665 } 5666 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5667 .addReg(In128).addReg(Src).addImm(SubReg); 5668 5669 MI.eraseFromParent(); 5670 return MBB; 5671 } 5672 5673 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 5674 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5675 MachineFunction &MF = *MBB->getParent(); 5676 const SystemZInstrInfo *TII = 5677 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5678 MachineRegisterInfo &MRI = MF.getRegInfo(); 5679 DebugLoc DL = MI.getDebugLoc(); 5680 5681 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 5682 uint64_t DestDisp = MI.getOperand(1).getImm(); 5683 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 5684 uint64_t SrcDisp = MI.getOperand(3).getImm(); 5685 uint64_t Length = MI.getOperand(4).getImm(); 5686 5687 // When generating more than one CLC, all but the last will need to 5688 // branch to the end when a difference is found. 5689 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5690 splitBlockAfter(MI, MBB) : nullptr); 5691 5692 // Check for the loop form, in which operand 5 is the trip count. 5693 if (MI.getNumExplicitOperands() > 5) { 5694 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5695 5696 uint64_t StartCountReg = MI.getOperand(5).getReg(); 5697 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5698 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5699 forceReg(MI, DestBase, TII)); 5700 5701 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5702 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5703 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5704 MRI.createVirtualRegister(RC)); 5705 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5706 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5707 MRI.createVirtualRegister(RC)); 5708 5709 RC = &SystemZ::GR64BitRegClass; 5710 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5711 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5712 5713 MachineBasicBlock *StartMBB = MBB; 5714 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5715 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5716 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5717 5718 // StartMBB: 5719 // # fall through to LoopMMB 5720 MBB->addSuccessor(LoopMBB); 5721 5722 // LoopMBB: 5723 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5724 // [ %NextDestReg, NextMBB ] 5725 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5726 // [ %NextSrcReg, NextMBB ] 5727 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5728 // [ %NextCountReg, NextMBB ] 5729 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5730 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5731 // ( JLH EndMBB ) 5732 // 5733 // The prefetch is used only for MVC. The JLH is used only for CLC. 5734 MBB = LoopMBB; 5735 5736 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5737 .addReg(StartDestReg).addMBB(StartMBB) 5738 .addReg(NextDestReg).addMBB(NextMBB); 5739 if (!HaveSingleBase) 5740 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5741 .addReg(StartSrcReg).addMBB(StartMBB) 5742 .addReg(NextSrcReg).addMBB(NextMBB); 5743 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5744 .addReg(StartCountReg).addMBB(StartMBB) 5745 .addReg(NextCountReg).addMBB(NextMBB); 5746 if (Opcode == SystemZ::MVC) 5747 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5748 .addImm(SystemZ::PFD_WRITE) 5749 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5750 BuildMI(MBB, DL, TII->get(Opcode)) 5751 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5752 .addReg(ThisSrcReg).addImm(SrcDisp); 5753 if (EndMBB) { 5754 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5755 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5756 .addMBB(EndMBB); 5757 MBB->addSuccessor(EndMBB); 5758 MBB->addSuccessor(NextMBB); 5759 } 5760 5761 // NextMBB: 5762 // %NextDestReg = LA 256(%ThisDestReg) 5763 // %NextSrcReg = LA 256(%ThisSrcReg) 5764 // %NextCountReg = AGHI %ThisCountReg, -1 5765 // CGHI %NextCountReg, 0 5766 // JLH LoopMBB 5767 // # fall through to DoneMMB 5768 // 5769 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5770 MBB = NextMBB; 5771 5772 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5773 .addReg(ThisDestReg).addImm(256).addReg(0); 5774 if (!HaveSingleBase) 5775 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5776 .addReg(ThisSrcReg).addImm(256).addReg(0); 5777 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5778 .addReg(ThisCountReg).addImm(-1); 5779 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5780 .addReg(NextCountReg).addImm(0); 5781 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5782 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5783 .addMBB(LoopMBB); 5784 MBB->addSuccessor(LoopMBB); 5785 MBB->addSuccessor(DoneMBB); 5786 5787 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5788 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5789 Length &= 255; 5790 MBB = DoneMBB; 5791 } 5792 // Handle any remaining bytes with straight-line code. 5793 while (Length > 0) { 5794 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5795 // The previous iteration might have created out-of-range displacements. 5796 // Apply them using LAY if so. 5797 if (!isUInt<12>(DestDisp)) { 5798 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5799 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5800 .addOperand(DestBase) 5801 .addImm(DestDisp) 5802 .addReg(0); 5803 DestBase = MachineOperand::CreateReg(Reg, false); 5804 DestDisp = 0; 5805 } 5806 if (!isUInt<12>(SrcDisp)) { 5807 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5808 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5809 .addOperand(SrcBase) 5810 .addImm(SrcDisp) 5811 .addReg(0); 5812 SrcBase = MachineOperand::CreateReg(Reg, false); 5813 SrcDisp = 0; 5814 } 5815 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5816 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5817 .addOperand(SrcBase).addImm(SrcDisp); 5818 DestDisp += ThisLength; 5819 SrcDisp += ThisLength; 5820 Length -= ThisLength; 5821 // If there's another CLC to go, branch to the end if a difference 5822 // was found. 5823 if (EndMBB && Length > 0) { 5824 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5825 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5826 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5827 .addMBB(EndMBB); 5828 MBB->addSuccessor(EndMBB); 5829 MBB->addSuccessor(NextMBB); 5830 MBB = NextMBB; 5831 } 5832 } 5833 if (EndMBB) { 5834 MBB->addSuccessor(EndMBB); 5835 MBB = EndMBB; 5836 MBB->addLiveIn(SystemZ::CC); 5837 } 5838 5839 MI.eraseFromParent(); 5840 return MBB; 5841 } 5842 5843 // Decompose string pseudo-instruction MI into a loop that continually performs 5844 // Opcode until CC != 3. 5845 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 5846 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5847 MachineFunction &MF = *MBB->getParent(); 5848 const SystemZInstrInfo *TII = 5849 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5850 MachineRegisterInfo &MRI = MF.getRegInfo(); 5851 DebugLoc DL = MI.getDebugLoc(); 5852 5853 uint64_t End1Reg = MI.getOperand(0).getReg(); 5854 uint64_t Start1Reg = MI.getOperand(1).getReg(); 5855 uint64_t Start2Reg = MI.getOperand(2).getReg(); 5856 uint64_t CharReg = MI.getOperand(3).getReg(); 5857 5858 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5859 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5860 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5861 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5862 5863 MachineBasicBlock *StartMBB = MBB; 5864 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5865 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5866 5867 // StartMBB: 5868 // # fall through to LoopMMB 5869 MBB->addSuccessor(LoopMBB); 5870 5871 // LoopMBB: 5872 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5873 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5874 // R0L = %CharReg 5875 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5876 // JO LoopMBB 5877 // # fall through to DoneMMB 5878 // 5879 // The load of R0L can be hoisted by post-RA LICM. 5880 MBB = LoopMBB; 5881 5882 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5883 .addReg(Start1Reg).addMBB(StartMBB) 5884 .addReg(End1Reg).addMBB(LoopMBB); 5885 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5886 .addReg(Start2Reg).addMBB(StartMBB) 5887 .addReg(End2Reg).addMBB(LoopMBB); 5888 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5889 BuildMI(MBB, DL, TII->get(Opcode)) 5890 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5891 .addReg(This1Reg).addReg(This2Reg); 5892 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5893 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5894 MBB->addSuccessor(LoopMBB); 5895 MBB->addSuccessor(DoneMBB); 5896 5897 DoneMBB->addLiveIn(SystemZ::CC); 5898 5899 MI.eraseFromParent(); 5900 return DoneMBB; 5901 } 5902 5903 // Update TBEGIN instruction with final opcode and register clobbers. 5904 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 5905 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 5906 bool NoFloat) const { 5907 MachineFunction &MF = *MBB->getParent(); 5908 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5909 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5910 5911 // Update opcode. 5912 MI.setDesc(TII->get(Opcode)); 5913 5914 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5915 // Make sure to add the corresponding GRSM bits if they are missing. 5916 uint64_t Control = MI.getOperand(2).getImm(); 5917 static const unsigned GPRControlBit[16] = { 5918 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5919 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5920 }; 5921 Control |= GPRControlBit[15]; 5922 if (TFI->hasFP(MF)) 5923 Control |= GPRControlBit[11]; 5924 MI.getOperand(2).setImm(Control); 5925 5926 // Add GPR clobbers. 5927 for (int I = 0; I < 16; I++) { 5928 if ((Control & GPRControlBit[I]) == 0) { 5929 unsigned Reg = SystemZMC::GR64Regs[I]; 5930 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 5931 } 5932 } 5933 5934 // Add FPR/VR clobbers. 5935 if (!NoFloat && (Control & 4) != 0) { 5936 if (Subtarget.hasVector()) { 5937 for (int I = 0; I < 32; I++) { 5938 unsigned Reg = SystemZMC::VR128Regs[I]; 5939 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 5940 } 5941 } else { 5942 for (int I = 0; I < 16; I++) { 5943 unsigned Reg = SystemZMC::FP64Regs[I]; 5944 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 5945 } 5946 } 5947 } 5948 5949 return MBB; 5950 } 5951 5952 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 5953 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5954 MachineFunction &MF = *MBB->getParent(); 5955 MachineRegisterInfo *MRI = &MF.getRegInfo(); 5956 const SystemZInstrInfo *TII = 5957 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5958 DebugLoc DL = MI.getDebugLoc(); 5959 5960 unsigned SrcReg = MI.getOperand(0).getReg(); 5961 5962 // Create new virtual register of the same class as source. 5963 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 5964 unsigned DstReg = MRI->createVirtualRegister(RC); 5965 5966 // Replace pseudo with a normal load-and-test that models the def as 5967 // well. 5968 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 5969 .addReg(SrcReg); 5970 MI.eraseFromParent(); 5971 5972 return MBB; 5973 } 5974 5975 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 5976 MachineInstr &MI, MachineBasicBlock *MBB) const { 5977 switch (MI.getOpcode()) { 5978 case SystemZ::Select32Mux: 5979 case SystemZ::Select32: 5980 case SystemZ::SelectF32: 5981 case SystemZ::Select64: 5982 case SystemZ::SelectF64: 5983 case SystemZ::SelectF128: 5984 return emitSelect(MI, MBB); 5985 5986 case SystemZ::CondStore8Mux: 5987 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5988 case SystemZ::CondStore8MuxInv: 5989 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5990 case SystemZ::CondStore16Mux: 5991 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5992 case SystemZ::CondStore16MuxInv: 5993 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5994 case SystemZ::CondStore8: 5995 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5996 case SystemZ::CondStore8Inv: 5997 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5998 case SystemZ::CondStore16: 5999 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 6000 case SystemZ::CondStore16Inv: 6001 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 6002 case SystemZ::CondStore32: 6003 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 6004 case SystemZ::CondStore32Inv: 6005 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 6006 case SystemZ::CondStore64: 6007 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 6008 case SystemZ::CondStore64Inv: 6009 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 6010 case SystemZ::CondStoreF32: 6011 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 6012 case SystemZ::CondStoreF32Inv: 6013 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 6014 case SystemZ::CondStoreF64: 6015 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 6016 case SystemZ::CondStoreF64Inv: 6017 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 6018 6019 case SystemZ::AEXT128_64: 6020 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 6021 case SystemZ::ZEXT128_32: 6022 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 6023 case SystemZ::ZEXT128_64: 6024 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 6025 6026 case SystemZ::ATOMIC_SWAPW: 6027 return emitAtomicLoadBinary(MI, MBB, 0, 0); 6028 case SystemZ::ATOMIC_SWAP_32: 6029 return emitAtomicLoadBinary(MI, MBB, 0, 32); 6030 case SystemZ::ATOMIC_SWAP_64: 6031 return emitAtomicLoadBinary(MI, MBB, 0, 64); 6032 6033 case SystemZ::ATOMIC_LOADW_AR: 6034 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 6035 case SystemZ::ATOMIC_LOADW_AFI: 6036 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 6037 case SystemZ::ATOMIC_LOAD_AR: 6038 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 6039 case SystemZ::ATOMIC_LOAD_AHI: 6040 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 6041 case SystemZ::ATOMIC_LOAD_AFI: 6042 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 6043 case SystemZ::ATOMIC_LOAD_AGR: 6044 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 6045 case SystemZ::ATOMIC_LOAD_AGHI: 6046 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 6047 case SystemZ::ATOMIC_LOAD_AGFI: 6048 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 6049 6050 case SystemZ::ATOMIC_LOADW_SR: 6051 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 6052 case SystemZ::ATOMIC_LOAD_SR: 6053 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 6054 case SystemZ::ATOMIC_LOAD_SGR: 6055 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 6056 6057 case SystemZ::ATOMIC_LOADW_NR: 6058 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 6059 case SystemZ::ATOMIC_LOADW_NILH: 6060 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 6061 case SystemZ::ATOMIC_LOAD_NR: 6062 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 6063 case SystemZ::ATOMIC_LOAD_NILL: 6064 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 6065 case SystemZ::ATOMIC_LOAD_NILH: 6066 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 6067 case SystemZ::ATOMIC_LOAD_NILF: 6068 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 6069 case SystemZ::ATOMIC_LOAD_NGR: 6070 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 6071 case SystemZ::ATOMIC_LOAD_NILL64: 6072 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 6073 case SystemZ::ATOMIC_LOAD_NILH64: 6074 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6075 case SystemZ::ATOMIC_LOAD_NIHL64: 6076 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6077 case SystemZ::ATOMIC_LOAD_NIHH64: 6078 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6079 case SystemZ::ATOMIC_LOAD_NILF64: 6080 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6081 case SystemZ::ATOMIC_LOAD_NIHF64: 6082 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6083 6084 case SystemZ::ATOMIC_LOADW_OR: 6085 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6086 case SystemZ::ATOMIC_LOADW_OILH: 6087 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6088 case SystemZ::ATOMIC_LOAD_OR: 6089 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6090 case SystemZ::ATOMIC_LOAD_OILL: 6091 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6092 case SystemZ::ATOMIC_LOAD_OILH: 6093 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6094 case SystemZ::ATOMIC_LOAD_OILF: 6095 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6096 case SystemZ::ATOMIC_LOAD_OGR: 6097 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6098 case SystemZ::ATOMIC_LOAD_OILL64: 6099 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6100 case SystemZ::ATOMIC_LOAD_OILH64: 6101 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6102 case SystemZ::ATOMIC_LOAD_OIHL64: 6103 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6104 case SystemZ::ATOMIC_LOAD_OIHH64: 6105 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6106 case SystemZ::ATOMIC_LOAD_OILF64: 6107 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6108 case SystemZ::ATOMIC_LOAD_OIHF64: 6109 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6110 6111 case SystemZ::ATOMIC_LOADW_XR: 6112 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6113 case SystemZ::ATOMIC_LOADW_XILF: 6114 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6115 case SystemZ::ATOMIC_LOAD_XR: 6116 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6117 case SystemZ::ATOMIC_LOAD_XILF: 6118 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6119 case SystemZ::ATOMIC_LOAD_XGR: 6120 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6121 case SystemZ::ATOMIC_LOAD_XILF64: 6122 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6123 case SystemZ::ATOMIC_LOAD_XIHF64: 6124 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6125 6126 case SystemZ::ATOMIC_LOADW_NRi: 6127 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6128 case SystemZ::ATOMIC_LOADW_NILHi: 6129 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6130 case SystemZ::ATOMIC_LOAD_NRi: 6131 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6132 case SystemZ::ATOMIC_LOAD_NILLi: 6133 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6134 case SystemZ::ATOMIC_LOAD_NILHi: 6135 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6136 case SystemZ::ATOMIC_LOAD_NILFi: 6137 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6138 case SystemZ::ATOMIC_LOAD_NGRi: 6139 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6140 case SystemZ::ATOMIC_LOAD_NILL64i: 6141 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6142 case SystemZ::ATOMIC_LOAD_NILH64i: 6143 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6144 case SystemZ::ATOMIC_LOAD_NIHL64i: 6145 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6146 case SystemZ::ATOMIC_LOAD_NIHH64i: 6147 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6148 case SystemZ::ATOMIC_LOAD_NILF64i: 6149 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6150 case SystemZ::ATOMIC_LOAD_NIHF64i: 6151 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6152 6153 case SystemZ::ATOMIC_LOADW_MIN: 6154 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6155 SystemZ::CCMASK_CMP_LE, 0); 6156 case SystemZ::ATOMIC_LOAD_MIN_32: 6157 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6158 SystemZ::CCMASK_CMP_LE, 32); 6159 case SystemZ::ATOMIC_LOAD_MIN_64: 6160 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6161 SystemZ::CCMASK_CMP_LE, 64); 6162 6163 case SystemZ::ATOMIC_LOADW_MAX: 6164 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6165 SystemZ::CCMASK_CMP_GE, 0); 6166 case SystemZ::ATOMIC_LOAD_MAX_32: 6167 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6168 SystemZ::CCMASK_CMP_GE, 32); 6169 case SystemZ::ATOMIC_LOAD_MAX_64: 6170 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6171 SystemZ::CCMASK_CMP_GE, 64); 6172 6173 case SystemZ::ATOMIC_LOADW_UMIN: 6174 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6175 SystemZ::CCMASK_CMP_LE, 0); 6176 case SystemZ::ATOMIC_LOAD_UMIN_32: 6177 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6178 SystemZ::CCMASK_CMP_LE, 32); 6179 case SystemZ::ATOMIC_LOAD_UMIN_64: 6180 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6181 SystemZ::CCMASK_CMP_LE, 64); 6182 6183 case SystemZ::ATOMIC_LOADW_UMAX: 6184 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6185 SystemZ::CCMASK_CMP_GE, 0); 6186 case SystemZ::ATOMIC_LOAD_UMAX_32: 6187 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6188 SystemZ::CCMASK_CMP_GE, 32); 6189 case SystemZ::ATOMIC_LOAD_UMAX_64: 6190 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6191 SystemZ::CCMASK_CMP_GE, 64); 6192 6193 case SystemZ::ATOMIC_CMP_SWAPW: 6194 return emitAtomicCmpSwapW(MI, MBB); 6195 case SystemZ::MVCSequence: 6196 case SystemZ::MVCLoop: 6197 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6198 case SystemZ::NCSequence: 6199 case SystemZ::NCLoop: 6200 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6201 case SystemZ::OCSequence: 6202 case SystemZ::OCLoop: 6203 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6204 case SystemZ::XCSequence: 6205 case SystemZ::XCLoop: 6206 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6207 case SystemZ::CLCSequence: 6208 case SystemZ::CLCLoop: 6209 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6210 case SystemZ::CLSTLoop: 6211 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6212 case SystemZ::MVSTLoop: 6213 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6214 case SystemZ::SRSTLoop: 6215 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6216 case SystemZ::TBEGIN: 6217 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6218 case SystemZ::TBEGIN_nofloat: 6219 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6220 case SystemZ::TBEGINC: 6221 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6222 case SystemZ::LTEBRCompare_VecPseudo: 6223 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6224 case SystemZ::LTDBRCompare_VecPseudo: 6225 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6226 case SystemZ::LTXBRCompare_VecPseudo: 6227 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6228 6229 default: 6230 llvm_unreachable("Unexpected instr type to insert"); 6231 } 6232 } 6233