1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174 
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178 
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182 
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186 
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191 
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195 
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201 
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205 
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211 
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218 
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224 
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231 
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246 
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251 
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257 
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259 
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262 
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271 
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276 
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282 
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285 
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290 
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298 
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305 
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310 
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315 
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318 
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324 
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332 
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343 
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350 
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370 
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373 
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377 
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383 
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388 
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397 
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409 
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419 
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429 
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439 
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448 
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457 
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464 
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484 
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490 
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497 
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513 
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528 
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545 
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550 
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555 
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560 
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565 
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570 
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592 
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598 
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602 
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608 
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614 
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619 
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626 
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632 
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
645   setTargetDAGCombine(ISD::BSWAP);
646   setTargetDAGCombine(ISD::SDIV);
647   setTargetDAGCombine(ISD::UDIV);
648   setTargetDAGCombine(ISD::SREM);
649   setTargetDAGCombine(ISD::UREM);
650 
651   // Handle intrinsics.
652   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
653   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
654 
655   // We want to use MVC in preference to even a single load/store pair.
656   MaxStoresPerMemcpy = 0;
657   MaxStoresPerMemcpyOptSize = 0;
658 
659   // The main memset sequence is a byte store followed by an MVC.
660   // Two STC or MV..I stores win over that, but the kind of fused stores
661   // generated by target-independent code don't when the byte value is
662   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
663   // than "STC;MVC".  Handle the choice in target-specific code instead.
664   MaxStoresPerMemset = 0;
665   MaxStoresPerMemsetOptSize = 0;
666 
667   // Default to having -disable-strictnode-mutation on
668   IsStrictFPEnabled = true;
669 }
670 
671 bool SystemZTargetLowering::useSoftFloat() const {
672   return Subtarget.hasSoftFloat();
673 }
674 
675 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
676                                               LLVMContext &, EVT VT) const {
677   if (!VT.isVector())
678     return MVT::i32;
679   return VT.changeVectorElementTypeToInteger();
680 }
681 
682 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
683     const MachineFunction &MF, EVT VT) const {
684   VT = VT.getScalarType();
685 
686   if (!VT.isSimple())
687     return false;
688 
689   switch (VT.getSimpleVT().SimpleTy) {
690   case MVT::f32:
691   case MVT::f64:
692     return true;
693   case MVT::f128:
694     return Subtarget.hasVectorEnhancements1();
695   default:
696     break;
697   }
698 
699   return false;
700 }
701 
702 // Return true if the constant can be generated with a vector instruction,
703 // such as VGM, VGMB or VREPI.
704 bool SystemZVectorConstantInfo::isVectorConstantLegal(
705     const SystemZSubtarget &Subtarget) {
706   const SystemZInstrInfo *TII =
707       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
708   if (!Subtarget.hasVector() ||
709       (isFP128 && !Subtarget.hasVectorEnhancements1()))
710     return false;
711 
712   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
713   // preferred way of creating all-zero and all-one vectors so give it
714   // priority over other methods below.
715   unsigned Mask = 0;
716   unsigned I = 0;
717   for (; I < SystemZ::VectorBytes; ++I) {
718     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
719     if (Byte == 0xff)
720       Mask |= 1ULL << I;
721     else if (Byte != 0)
722       break;
723   }
724   if (I == SystemZ::VectorBytes) {
725     Opcode = SystemZISD::BYTE_MASK;
726     OpVals.push_back(Mask);
727     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
728     return true;
729   }
730 
731   if (SplatBitSize > 64)
732     return false;
733 
734   auto tryValue = [&](uint64_t Value) -> bool {
735     // Try VECTOR REPLICATE IMMEDIATE
736     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
737     if (isInt<16>(SignedValue)) {
738       OpVals.push_back(((unsigned) SignedValue));
739       Opcode = SystemZISD::REPLICATE;
740       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
741                                SystemZ::VectorBits / SplatBitSize);
742       return true;
743     }
744     // Try VECTOR GENERATE MASK
745     unsigned Start, End;
746     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
747       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
748       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
749       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
750       OpVals.push_back(Start - (64 - SplatBitSize));
751       OpVals.push_back(End - (64 - SplatBitSize));
752       Opcode = SystemZISD::ROTATE_MASK;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     return false;
758   };
759 
760   // First try assuming that any undefined bits above the highest set bit
761   // and below the lowest set bit are 1s.  This increases the likelihood of
762   // being able to use a sign-extended element value in VECTOR REPLICATE
763   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
764   uint64_t SplatBitsZ = SplatBits.getZExtValue();
765   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
766   uint64_t Lower =
767       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
768   uint64_t Upper =
769       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
770   if (tryValue(SplatBitsZ | Upper | Lower))
771     return true;
772 
773   // Now try assuming that any undefined bits between the first and
774   // last defined set bits are set.  This increases the chances of
775   // using a non-wraparound mask.
776   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
777   return tryValue(SplatBitsZ | Middle);
778 }
779 
780 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
781   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
782   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
783 
784   // Find the smallest splat.
785   SplatBits = FPImm.bitcastToAPInt();
786   unsigned Width = SplatBits.getBitWidth();
787   while (Width > 8) {
788     unsigned HalfSize = Width / 2;
789     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
790     APInt LowValue = SplatBits.trunc(HalfSize);
791 
792     // If the two halves do not match, stop here.
793     if (HighValue != LowValue || 8 > HalfSize)
794       break;
795 
796     SplatBits = HighValue;
797     Width = HalfSize;
798   }
799   SplatUndef = 0;
800   SplatBitSize = Width;
801 }
802 
803 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
804   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
805   bool HasAnyUndefs;
806 
807   // Get IntBits by finding the 128 bit splat.
808   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
809                        true);
810 
811   // Get SplatBits by finding the 8 bit or greater splat.
812   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
813                        true);
814 }
815 
816 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
817                                          bool ForCodeSize) const {
818   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
819   if (Imm.isZero() || Imm.isNegZero())
820     return true;
821 
822   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
823 }
824 
825 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
826   // We can use CGFI or CLGFI.
827   return isInt<32>(Imm) || isUInt<32>(Imm);
828 }
829 
830 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
831   // We can use ALGFI or SLGFI.
832   return isUInt<32>(Imm) || isUInt<32>(-Imm);
833 }
834 
835 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
836     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
837   // Unaligned accesses should never be slower than the expanded version.
838   // We check specifically for aligned accesses in the few cases where
839   // they are required.
840   if (Fast)
841     *Fast = true;
842   return true;
843 }
844 
845 // Information about the addressing mode for a memory access.
846 struct AddressingMode {
847   // True if a long displacement is supported.
848   bool LongDisplacement;
849 
850   // True if use of index register is supported.
851   bool IndexReg;
852 
853   AddressingMode(bool LongDispl, bool IdxReg) :
854     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
855 };
856 
857 // Return the desired addressing mode for a Load which has only one use (in
858 // the same block) which is a Store.
859 static AddressingMode getLoadStoreAddrMode(bool HasVector,
860                                           Type *Ty) {
861   // With vector support a Load->Store combination may be combined to either
862   // an MVC or vector operations and it seems to work best to allow the
863   // vector addressing mode.
864   if (HasVector)
865     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
866 
867   // Otherwise only the MVC case is special.
868   bool MVC = Ty->isIntegerTy(8);
869   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
870 }
871 
872 // Return the addressing mode which seems most desirable given an LLVM
873 // Instruction pointer.
874 static AddressingMode
875 supportedAddressingMode(Instruction *I, bool HasVector) {
876   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
877     switch (II->getIntrinsicID()) {
878     default: break;
879     case Intrinsic::memset:
880     case Intrinsic::memmove:
881     case Intrinsic::memcpy:
882       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
883     }
884   }
885 
886   if (isa<LoadInst>(I) && I->hasOneUse()) {
887     auto *SingleUser = cast<Instruction>(*I->user_begin());
888     if (SingleUser->getParent() == I->getParent()) {
889       if (isa<ICmpInst>(SingleUser)) {
890         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
891           if (C->getBitWidth() <= 64 &&
892               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
893             // Comparison of memory with 16 bit signed / unsigned immediate
894             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
895       } else if (isa<StoreInst>(SingleUser))
896         // Load->Store
897         return getLoadStoreAddrMode(HasVector, I->getType());
898     }
899   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
900     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
901       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
902         // Load->Store
903         return getLoadStoreAddrMode(HasVector, LoadI->getType());
904   }
905 
906   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
907 
908     // * Use LDE instead of LE/LEY for z13 to avoid partial register
909     //   dependencies (LDE only supports small offsets).
910     // * Utilize the vector registers to hold floating point
911     //   values (vector load / store instructions only support small
912     //   offsets).
913 
914     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
915                          I->getOperand(0)->getType());
916     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
917     bool IsVectorAccess = MemAccessTy->isVectorTy();
918 
919     // A store of an extracted vector element will be combined into a VSTE type
920     // instruction.
921     if (!IsVectorAccess && isa<StoreInst>(I)) {
922       Value *DataOp = I->getOperand(0);
923       if (isa<ExtractElementInst>(DataOp))
924         IsVectorAccess = true;
925     }
926 
927     // A load which gets inserted into a vector element will be combined into a
928     // VLE type instruction.
929     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
930       User *LoadUser = *I->user_begin();
931       if (isa<InsertElementInst>(LoadUser))
932         IsVectorAccess = true;
933     }
934 
935     if (IsFPAccess || IsVectorAccess)
936       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
937   }
938 
939   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
940 }
941 
942 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
943        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
944   // Punt on globals for now, although they can be used in limited
945   // RELATIVE LONG cases.
946   if (AM.BaseGV)
947     return false;
948 
949   // Require a 20-bit signed offset.
950   if (!isInt<20>(AM.BaseOffs))
951     return false;
952 
953   AddressingMode SupportedAM(true, true);
954   if (I != nullptr)
955     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
956 
957   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
958     return false;
959 
960   if (!SupportedAM.IndexReg)
961     // No indexing allowed.
962     return AM.Scale == 0;
963   else
964     // Indexing is OK but no scale factor can be applied.
965     return AM.Scale == 0 || AM.Scale == 1;
966 }
967 
968 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
969   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
970     return false;
971   unsigned FromBits = FromType->getPrimitiveSizeInBits();
972   unsigned ToBits = ToType->getPrimitiveSizeInBits();
973   return FromBits > ToBits;
974 }
975 
976 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
977   if (!FromVT.isInteger() || !ToVT.isInteger())
978     return false;
979   unsigned FromBits = FromVT.getSizeInBits();
980   unsigned ToBits = ToVT.getSizeInBits();
981   return FromBits > ToBits;
982 }
983 
984 //===----------------------------------------------------------------------===//
985 // Inline asm support
986 //===----------------------------------------------------------------------===//
987 
988 TargetLowering::ConstraintType
989 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
990   if (Constraint.size() == 1) {
991     switch (Constraint[0]) {
992     case 'a': // Address register
993     case 'd': // Data register (equivalent to 'r')
994     case 'f': // Floating-point register
995     case 'h': // High-part register
996     case 'r': // General-purpose register
997     case 'v': // Vector register
998       return C_RegisterClass;
999 
1000     case 'Q': // Memory with base and unsigned 12-bit displacement
1001     case 'R': // Likewise, plus an index
1002     case 'S': // Memory with base and signed 20-bit displacement
1003     case 'T': // Likewise, plus an index
1004     case 'm': // Equivalent to 'T'.
1005       return C_Memory;
1006 
1007     case 'I': // Unsigned 8-bit constant
1008     case 'J': // Unsigned 12-bit constant
1009     case 'K': // Signed 16-bit constant
1010     case 'L': // Signed 20-bit displacement (on all targets we support)
1011     case 'M': // 0x7fffffff
1012       return C_Immediate;
1013 
1014     default:
1015       break;
1016     }
1017   }
1018   return TargetLowering::getConstraintType(Constraint);
1019 }
1020 
1021 TargetLowering::ConstraintWeight SystemZTargetLowering::
1022 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1023                                const char *constraint) const {
1024   ConstraintWeight weight = CW_Invalid;
1025   Value *CallOperandVal = info.CallOperandVal;
1026   // If we don't have a value, we can't do a match,
1027   // but allow it at the lowest weight.
1028   if (!CallOperandVal)
1029     return CW_Default;
1030   Type *type = CallOperandVal->getType();
1031   // Look at the constraint type.
1032   switch (*constraint) {
1033   default:
1034     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1035     break;
1036 
1037   case 'a': // Address register
1038   case 'd': // Data register (equivalent to 'r')
1039   case 'h': // High-part register
1040   case 'r': // General-purpose register
1041     if (CallOperandVal->getType()->isIntegerTy())
1042       weight = CW_Register;
1043     break;
1044 
1045   case 'f': // Floating-point register
1046     if (type->isFloatingPointTy())
1047       weight = CW_Register;
1048     break;
1049 
1050   case 'v': // Vector register
1051     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1052         Subtarget.hasVector())
1053       weight = CW_Register;
1054     break;
1055 
1056   case 'I': // Unsigned 8-bit constant
1057     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1058       if (isUInt<8>(C->getZExtValue()))
1059         weight = CW_Constant;
1060     break;
1061 
1062   case 'J': // Unsigned 12-bit constant
1063     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1064       if (isUInt<12>(C->getZExtValue()))
1065         weight = CW_Constant;
1066     break;
1067 
1068   case 'K': // Signed 16-bit constant
1069     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1070       if (isInt<16>(C->getSExtValue()))
1071         weight = CW_Constant;
1072     break;
1073 
1074   case 'L': // Signed 20-bit displacement (on all targets we support)
1075     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1076       if (isInt<20>(C->getSExtValue()))
1077         weight = CW_Constant;
1078     break;
1079 
1080   case 'M': // 0x7fffffff
1081     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1082       if (C->getZExtValue() == 0x7fffffff)
1083         weight = CW_Constant;
1084     break;
1085   }
1086   return weight;
1087 }
1088 
1089 // Parse a "{tNNN}" register constraint for which the register type "t"
1090 // has already been verified.  MC is the class associated with "t" and
1091 // Map maps 0-based register numbers to LLVM register numbers.
1092 static std::pair<unsigned, const TargetRegisterClass *>
1093 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1094                     const unsigned *Map, unsigned Size) {
1095   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1096   if (isdigit(Constraint[2])) {
1097     unsigned Index;
1098     bool Failed =
1099         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1100     if (!Failed && Index < Size && Map[Index])
1101       return std::make_pair(Map[Index], RC);
1102   }
1103   return std::make_pair(0U, nullptr);
1104 }
1105 
1106 std::pair<unsigned, const TargetRegisterClass *>
1107 SystemZTargetLowering::getRegForInlineAsmConstraint(
1108     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1109   if (Constraint.size() == 1) {
1110     // GCC Constraint Letters
1111     switch (Constraint[0]) {
1112     default: break;
1113     case 'd': // Data register (equivalent to 'r')
1114     case 'r': // General-purpose register
1115       if (VT == MVT::i64)
1116         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1117       else if (VT == MVT::i128)
1118         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1119       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1120 
1121     case 'a': // Address register
1122       if (VT == MVT::i64)
1123         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1124       else if (VT == MVT::i128)
1125         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1126       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1127 
1128     case 'h': // High-part register (an LLVM extension)
1129       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1130 
1131     case 'f': // Floating-point register
1132       if (!useSoftFloat()) {
1133         if (VT == MVT::f64)
1134           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1135         else if (VT == MVT::f128)
1136           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1137         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1138       }
1139       break;
1140     case 'v': // Vector register
1141       if (Subtarget.hasVector()) {
1142         if (VT == MVT::f32)
1143           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1144         if (VT == MVT::f64)
1145           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1146         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1147       }
1148       break;
1149     }
1150   }
1151   if (Constraint.size() > 0 && Constraint[0] == '{') {
1152     // We need to override the default register parsing for GPRs and FPRs
1153     // because the interpretation depends on VT.  The internal names of
1154     // the registers are also different from the external names
1155     // (F0D and F0S instead of F0, etc.).
1156     if (Constraint[1] == 'r') {
1157       if (VT == MVT::i32)
1158         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1159                                    SystemZMC::GR32Regs, 16);
1160       if (VT == MVT::i128)
1161         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1162                                    SystemZMC::GR128Regs, 16);
1163       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1164                                  SystemZMC::GR64Regs, 16);
1165     }
1166     if (Constraint[1] == 'f' && !useSoftFloat()) {
1167       if (VT == MVT::f32)
1168         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1169                                    SystemZMC::FP32Regs, 16);
1170       if (VT == MVT::f128)
1171         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1172                                    SystemZMC::FP128Regs, 16);
1173       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1174                                  SystemZMC::FP64Regs, 16);
1175     }
1176     if (Constraint[1] == 'v') {
1177       if (VT == MVT::f32)
1178         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1179                                    SystemZMC::VR32Regs, 32);
1180       if (VT == MVT::f64)
1181         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1182                                    SystemZMC::VR64Regs, 32);
1183       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1184                                  SystemZMC::VR128Regs, 32);
1185     }
1186   }
1187   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1188 }
1189 
1190 void SystemZTargetLowering::
1191 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1192                              std::vector<SDValue> &Ops,
1193                              SelectionDAG &DAG) const {
1194   // Only support length 1 constraints for now.
1195   if (Constraint.length() == 1) {
1196     switch (Constraint[0]) {
1197     case 'I': // Unsigned 8-bit constant
1198       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1199         if (isUInt<8>(C->getZExtValue()))
1200           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1201                                               Op.getValueType()));
1202       return;
1203 
1204     case 'J': // Unsigned 12-bit constant
1205       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1206         if (isUInt<12>(C->getZExtValue()))
1207           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1208                                               Op.getValueType()));
1209       return;
1210 
1211     case 'K': // Signed 16-bit constant
1212       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1213         if (isInt<16>(C->getSExtValue()))
1214           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1215                                               Op.getValueType()));
1216       return;
1217 
1218     case 'L': // Signed 20-bit displacement (on all targets we support)
1219       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1220         if (isInt<20>(C->getSExtValue()))
1221           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1222                                               Op.getValueType()));
1223       return;
1224 
1225     case 'M': // 0x7fffffff
1226       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1227         if (C->getZExtValue() == 0x7fffffff)
1228           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1229                                               Op.getValueType()));
1230       return;
1231     }
1232   }
1233   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1234 }
1235 
1236 //===----------------------------------------------------------------------===//
1237 // Calling conventions
1238 //===----------------------------------------------------------------------===//
1239 
1240 #include "SystemZGenCallingConv.inc"
1241 
1242 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1243   CallingConv::ID) const {
1244   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1245                                            SystemZ::R14D, 0 };
1246   return ScratchRegs;
1247 }
1248 
1249 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1250                                                      Type *ToType) const {
1251   return isTruncateFree(FromType, ToType);
1252 }
1253 
1254 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1255   return CI->isTailCall();
1256 }
1257 
1258 // We do not yet support 128-bit single-element vector types.  If the user
1259 // attempts to use such types as function argument or return type, prefer
1260 // to error out instead of emitting code violating the ABI.
1261 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1262   if (ArgVT.isVector() && !VT.isVector())
1263     report_fatal_error("Unsupported vector argument or return type");
1264 }
1265 
1266 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1267   for (unsigned i = 0; i < Ins.size(); ++i)
1268     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1269 }
1270 
1271 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1272   for (unsigned i = 0; i < Outs.size(); ++i)
1273     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1274 }
1275 
1276 // Value is a value that has been passed to us in the location described by VA
1277 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1278 // any loads onto Chain.
1279 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1280                                    CCValAssign &VA, SDValue Chain,
1281                                    SDValue Value) {
1282   // If the argument has been promoted from a smaller type, insert an
1283   // assertion to capture this.
1284   if (VA.getLocInfo() == CCValAssign::SExt)
1285     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1286                         DAG.getValueType(VA.getValVT()));
1287   else if (VA.getLocInfo() == CCValAssign::ZExt)
1288     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1289                         DAG.getValueType(VA.getValVT()));
1290 
1291   if (VA.isExtInLoc())
1292     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1293   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1294     // If this is a short vector argument loaded from the stack,
1295     // extend from i64 to full vector size and then bitcast.
1296     assert(VA.getLocVT() == MVT::i64);
1297     assert(VA.getValVT().isVector());
1298     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1299     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1300   } else
1301     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1302   return Value;
1303 }
1304 
1305 // Value is a value of type VA.getValVT() that we need to copy into
1306 // the location described by VA.  Return a copy of Value converted to
1307 // VA.getValVT().  The caller is responsible for handling indirect values.
1308 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1309                                    CCValAssign &VA, SDValue Value) {
1310   switch (VA.getLocInfo()) {
1311   case CCValAssign::SExt:
1312     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1313   case CCValAssign::ZExt:
1314     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1315   case CCValAssign::AExt:
1316     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1317   case CCValAssign::BCvt:
1318     // If this is a short vector argument to be stored to the stack,
1319     // bitcast to v2i64 and then extract first element.
1320     assert(VA.getLocVT() == MVT::i64);
1321     assert(VA.getValVT().isVector());
1322     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1323     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1324                        DAG.getConstant(0, DL, MVT::i32));
1325   case CCValAssign::Full:
1326     return Value;
1327   default:
1328     llvm_unreachable("Unhandled getLocInfo()");
1329   }
1330 }
1331 
1332 SDValue SystemZTargetLowering::LowerFormalArguments(
1333     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1334     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1335     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1336   MachineFunction &MF = DAG.getMachineFunction();
1337   MachineFrameInfo &MFI = MF.getFrameInfo();
1338   MachineRegisterInfo &MRI = MF.getRegInfo();
1339   SystemZMachineFunctionInfo *FuncInfo =
1340       MF.getInfo<SystemZMachineFunctionInfo>();
1341   auto *TFL =
1342       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1343   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1344 
1345   // Detect unsupported vector argument types.
1346   if (Subtarget.hasVector())
1347     VerifyVectorTypes(Ins);
1348 
1349   // Assign locations to all of the incoming arguments.
1350   SmallVector<CCValAssign, 16> ArgLocs;
1351   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1352   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1353 
1354   unsigned NumFixedGPRs = 0;
1355   unsigned NumFixedFPRs = 0;
1356   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1357     SDValue ArgValue;
1358     CCValAssign &VA = ArgLocs[I];
1359     EVT LocVT = VA.getLocVT();
1360     if (VA.isRegLoc()) {
1361       // Arguments passed in registers
1362       const TargetRegisterClass *RC;
1363       switch (LocVT.getSimpleVT().SimpleTy) {
1364       default:
1365         // Integers smaller than i64 should be promoted to i64.
1366         llvm_unreachable("Unexpected argument type");
1367       case MVT::i32:
1368         NumFixedGPRs += 1;
1369         RC = &SystemZ::GR32BitRegClass;
1370         break;
1371       case MVT::i64:
1372         NumFixedGPRs += 1;
1373         RC = &SystemZ::GR64BitRegClass;
1374         break;
1375       case MVT::f32:
1376         NumFixedFPRs += 1;
1377         RC = &SystemZ::FP32BitRegClass;
1378         break;
1379       case MVT::f64:
1380         NumFixedFPRs += 1;
1381         RC = &SystemZ::FP64BitRegClass;
1382         break;
1383       case MVT::v16i8:
1384       case MVT::v8i16:
1385       case MVT::v4i32:
1386       case MVT::v2i64:
1387       case MVT::v4f32:
1388       case MVT::v2f64:
1389         RC = &SystemZ::VR128BitRegClass;
1390         break;
1391       }
1392 
1393       Register VReg = MRI.createVirtualRegister(RC);
1394       MRI.addLiveIn(VA.getLocReg(), VReg);
1395       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1396     } else {
1397       assert(VA.isMemLoc() && "Argument not register or memory");
1398 
1399       // Create the frame index object for this incoming parameter.
1400       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1401                                      VA.getLocMemOffset(), true);
1402 
1403       // Create the SelectionDAG nodes corresponding to a load
1404       // from this parameter.  Unpromoted ints and floats are
1405       // passed as right-justified 8-byte values.
1406       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1407       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1408         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1409                           DAG.getIntPtrConstant(4, DL));
1410       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1411                              MachinePointerInfo::getFixedStack(MF, FI));
1412     }
1413 
1414     // Convert the value of the argument register into the value that's
1415     // being passed.
1416     if (VA.getLocInfo() == CCValAssign::Indirect) {
1417       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1418                                    MachinePointerInfo()));
1419       // If the original argument was split (e.g. i128), we need
1420       // to load all parts of it here (using the same address).
1421       unsigned ArgIndex = Ins[I].OrigArgIndex;
1422       assert (Ins[I].PartOffset == 0);
1423       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1424         CCValAssign &PartVA = ArgLocs[I + 1];
1425         unsigned PartOffset = Ins[I + 1].PartOffset;
1426         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1427                                       DAG.getIntPtrConstant(PartOffset, DL));
1428         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1429                                      MachinePointerInfo()));
1430         ++I;
1431       }
1432     } else
1433       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1434   }
1435 
1436   if (IsVarArg) {
1437     // Save the number of non-varargs registers for later use by va_start, etc.
1438     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1439     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1440 
1441     // Likewise the address (in the form of a frame index) of where the
1442     // first stack vararg would be.  The 1-byte size here is arbitrary.
1443     int64_t StackSize = CCInfo.getNextStackOffset();
1444     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1445 
1446     // ...and a similar frame index for the caller-allocated save area
1447     // that will be used to store the incoming registers.
1448     int64_t RegSaveOffset = -SystemZMC::CallFrameSize;
1449     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1450     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1451 
1452     // Store the FPR varargs in the reserved frame slots.  (We store the
1453     // GPRs as part of the prologue.)
1454     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1455       SDValue MemOps[SystemZ::NumArgFPRs];
1456       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1457         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1458         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1459         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1460         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1461                                      &SystemZ::FP64BitRegClass);
1462         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1463         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1464                                  MachinePointerInfo::getFixedStack(MF, FI));
1465       }
1466       // Join the stores, which are independent of one another.
1467       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1468                           makeArrayRef(&MemOps[NumFixedFPRs],
1469                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1470     }
1471   }
1472 
1473   return Chain;
1474 }
1475 
1476 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1477                               SmallVectorImpl<CCValAssign> &ArgLocs,
1478                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1479   // Punt if there are any indirect or stack arguments, or if the call
1480   // needs the callee-saved argument register R6, or if the call uses
1481   // the callee-saved register arguments SwiftSelf and SwiftError.
1482   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1483     CCValAssign &VA = ArgLocs[I];
1484     if (VA.getLocInfo() == CCValAssign::Indirect)
1485       return false;
1486     if (!VA.isRegLoc())
1487       return false;
1488     Register Reg = VA.getLocReg();
1489     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1490       return false;
1491     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1492       return false;
1493   }
1494   return true;
1495 }
1496 
1497 SDValue
1498 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1499                                  SmallVectorImpl<SDValue> &InVals) const {
1500   SelectionDAG &DAG = CLI.DAG;
1501   SDLoc &DL = CLI.DL;
1502   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1503   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1504   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1505   SDValue Chain = CLI.Chain;
1506   SDValue Callee = CLI.Callee;
1507   bool &IsTailCall = CLI.IsTailCall;
1508   CallingConv::ID CallConv = CLI.CallConv;
1509   bool IsVarArg = CLI.IsVarArg;
1510   MachineFunction &MF = DAG.getMachineFunction();
1511   EVT PtrVT = getPointerTy(MF.getDataLayout());
1512 
1513   // Detect unsupported vector argument and return types.
1514   if (Subtarget.hasVector()) {
1515     VerifyVectorTypes(Outs);
1516     VerifyVectorTypes(Ins);
1517   }
1518 
1519   // Analyze the operands of the call, assigning locations to each operand.
1520   SmallVector<CCValAssign, 16> ArgLocs;
1521   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1522   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1523 
1524   // We don't support GuaranteedTailCallOpt, only automatically-detected
1525   // sibling calls.
1526   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1527     IsTailCall = false;
1528 
1529   // Get a count of how many bytes are to be pushed on the stack.
1530   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1531 
1532   // Mark the start of the call.
1533   if (!IsTailCall)
1534     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1535 
1536   // Copy argument values to their designated locations.
1537   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1538   SmallVector<SDValue, 8> MemOpChains;
1539   SDValue StackPtr;
1540   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1541     CCValAssign &VA = ArgLocs[I];
1542     SDValue ArgValue = OutVals[I];
1543 
1544     if (VA.getLocInfo() == CCValAssign::Indirect) {
1545       // Store the argument in a stack slot and pass its address.
1546       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1547       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1548       MemOpChains.push_back(
1549           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1550                        MachinePointerInfo::getFixedStack(MF, FI)));
1551       // If the original argument was split (e.g. i128), we need
1552       // to store all parts of it here (and pass just one address).
1553       unsigned ArgIndex = Outs[I].OrigArgIndex;
1554       assert (Outs[I].PartOffset == 0);
1555       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1556         SDValue PartValue = OutVals[I + 1];
1557         unsigned PartOffset = Outs[I + 1].PartOffset;
1558         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1559                                       DAG.getIntPtrConstant(PartOffset, DL));
1560         MemOpChains.push_back(
1561             DAG.getStore(Chain, DL, PartValue, Address,
1562                          MachinePointerInfo::getFixedStack(MF, FI)));
1563         ++I;
1564       }
1565       ArgValue = SpillSlot;
1566     } else
1567       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1568 
1569     if (VA.isRegLoc())
1570       // Queue up the argument copies and emit them at the end.
1571       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1572     else {
1573       assert(VA.isMemLoc() && "Argument not register or memory");
1574 
1575       // Work out the address of the stack slot.  Unpromoted ints and
1576       // floats are passed as right-justified 8-byte values.
1577       if (!StackPtr.getNode())
1578         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1579       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1580       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1581         Offset += 4;
1582       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1583                                     DAG.getIntPtrConstant(Offset, DL));
1584 
1585       // Emit the store.
1586       MemOpChains.push_back(
1587           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1588     }
1589   }
1590 
1591   // Join the stores, which are independent of one another.
1592   if (!MemOpChains.empty())
1593     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1594 
1595   // Accept direct calls by converting symbolic call addresses to the
1596   // associated Target* opcodes.  Force %r1 to be used for indirect
1597   // tail calls.
1598   SDValue Glue;
1599   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1600     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1601     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1602   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1603     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1604     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1605   } else if (IsTailCall) {
1606     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1607     Glue = Chain.getValue(1);
1608     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1609   }
1610 
1611   // Build a sequence of copy-to-reg nodes, chained and glued together.
1612   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1613     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1614                              RegsToPass[I].second, Glue);
1615     Glue = Chain.getValue(1);
1616   }
1617 
1618   // The first call operand is the chain and the second is the target address.
1619   SmallVector<SDValue, 8> Ops;
1620   Ops.push_back(Chain);
1621   Ops.push_back(Callee);
1622 
1623   // Add argument registers to the end of the list so that they are
1624   // known live into the call.
1625   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1626     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1627                                   RegsToPass[I].second.getValueType()));
1628 
1629   // Add a register mask operand representing the call-preserved registers.
1630   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1631   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1632   assert(Mask && "Missing call preserved mask for calling convention");
1633   Ops.push_back(DAG.getRegisterMask(Mask));
1634 
1635   // Glue the call to the argument copies, if any.
1636   if (Glue.getNode())
1637     Ops.push_back(Glue);
1638 
1639   // Emit the call.
1640   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1641   if (IsTailCall)
1642     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1643   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1644   Glue = Chain.getValue(1);
1645 
1646   // Mark the end of the call, which is glued to the call itself.
1647   Chain = DAG.getCALLSEQ_END(Chain,
1648                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1649                              DAG.getConstant(0, DL, PtrVT, true),
1650                              Glue, DL);
1651   Glue = Chain.getValue(1);
1652 
1653   // Assign locations to each value returned by this call.
1654   SmallVector<CCValAssign, 16> RetLocs;
1655   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1656   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1657 
1658   // Copy all of the result registers out of their specified physreg.
1659   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1660     CCValAssign &VA = RetLocs[I];
1661 
1662     // Copy the value out, gluing the copy to the end of the call sequence.
1663     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1664                                           VA.getLocVT(), Glue);
1665     Chain = RetValue.getValue(1);
1666     Glue = RetValue.getValue(2);
1667 
1668     // Convert the value of the return register into the value that's
1669     // being returned.
1670     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1671   }
1672 
1673   return Chain;
1674 }
1675 
1676 bool SystemZTargetLowering::
1677 CanLowerReturn(CallingConv::ID CallConv,
1678                MachineFunction &MF, bool isVarArg,
1679                const SmallVectorImpl<ISD::OutputArg> &Outs,
1680                LLVMContext &Context) const {
1681   // Detect unsupported vector return types.
1682   if (Subtarget.hasVector())
1683     VerifyVectorTypes(Outs);
1684 
1685   // Special case that we cannot easily detect in RetCC_SystemZ since
1686   // i128 is not a legal type.
1687   for (auto &Out : Outs)
1688     if (Out.ArgVT == MVT::i128)
1689       return false;
1690 
1691   SmallVector<CCValAssign, 16> RetLocs;
1692   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1693   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1694 }
1695 
1696 SDValue
1697 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1698                                    bool IsVarArg,
1699                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1700                                    const SmallVectorImpl<SDValue> &OutVals,
1701                                    const SDLoc &DL, SelectionDAG &DAG) const {
1702   MachineFunction &MF = DAG.getMachineFunction();
1703 
1704   // Detect unsupported vector return types.
1705   if (Subtarget.hasVector())
1706     VerifyVectorTypes(Outs);
1707 
1708   // Assign locations to each returned value.
1709   SmallVector<CCValAssign, 16> RetLocs;
1710   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1711   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1712 
1713   // Quick exit for void returns
1714   if (RetLocs.empty())
1715     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1716 
1717   if (CallConv == CallingConv::GHC)
1718     report_fatal_error("GHC functions return void only");
1719 
1720   // Copy the result values into the output registers.
1721   SDValue Glue;
1722   SmallVector<SDValue, 4> RetOps;
1723   RetOps.push_back(Chain);
1724   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1725     CCValAssign &VA = RetLocs[I];
1726     SDValue RetValue = OutVals[I];
1727 
1728     // Make the return register live on exit.
1729     assert(VA.isRegLoc() && "Can only return in registers!");
1730 
1731     // Promote the value as required.
1732     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1733 
1734     // Chain and glue the copies together.
1735     Register Reg = VA.getLocReg();
1736     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1737     Glue = Chain.getValue(1);
1738     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1739   }
1740 
1741   // Update chain and glue.
1742   RetOps[0] = Chain;
1743   if (Glue.getNode())
1744     RetOps.push_back(Glue);
1745 
1746   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1747 }
1748 
1749 // Return true if Op is an intrinsic node with chain that returns the CC value
1750 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1751 // the mask of valid CC values if so.
1752 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1753                                       unsigned &CCValid) {
1754   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1755   switch (Id) {
1756   case Intrinsic::s390_tbegin:
1757     Opcode = SystemZISD::TBEGIN;
1758     CCValid = SystemZ::CCMASK_TBEGIN;
1759     return true;
1760 
1761   case Intrinsic::s390_tbegin_nofloat:
1762     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1763     CCValid = SystemZ::CCMASK_TBEGIN;
1764     return true;
1765 
1766   case Intrinsic::s390_tend:
1767     Opcode = SystemZISD::TEND;
1768     CCValid = SystemZ::CCMASK_TEND;
1769     return true;
1770 
1771   default:
1772     return false;
1773   }
1774 }
1775 
1776 // Return true if Op is an intrinsic node without chain that returns the
1777 // CC value as its final argument.  Provide the associated SystemZISD
1778 // opcode and the mask of valid CC values if so.
1779 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1780   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1781   switch (Id) {
1782   case Intrinsic::s390_vpkshs:
1783   case Intrinsic::s390_vpksfs:
1784   case Intrinsic::s390_vpksgs:
1785     Opcode = SystemZISD::PACKS_CC;
1786     CCValid = SystemZ::CCMASK_VCMP;
1787     return true;
1788 
1789   case Intrinsic::s390_vpklshs:
1790   case Intrinsic::s390_vpklsfs:
1791   case Intrinsic::s390_vpklsgs:
1792     Opcode = SystemZISD::PACKLS_CC;
1793     CCValid = SystemZ::CCMASK_VCMP;
1794     return true;
1795 
1796   case Intrinsic::s390_vceqbs:
1797   case Intrinsic::s390_vceqhs:
1798   case Intrinsic::s390_vceqfs:
1799   case Intrinsic::s390_vceqgs:
1800     Opcode = SystemZISD::VICMPES;
1801     CCValid = SystemZ::CCMASK_VCMP;
1802     return true;
1803 
1804   case Intrinsic::s390_vchbs:
1805   case Intrinsic::s390_vchhs:
1806   case Intrinsic::s390_vchfs:
1807   case Intrinsic::s390_vchgs:
1808     Opcode = SystemZISD::VICMPHS;
1809     CCValid = SystemZ::CCMASK_VCMP;
1810     return true;
1811 
1812   case Intrinsic::s390_vchlbs:
1813   case Intrinsic::s390_vchlhs:
1814   case Intrinsic::s390_vchlfs:
1815   case Intrinsic::s390_vchlgs:
1816     Opcode = SystemZISD::VICMPHLS;
1817     CCValid = SystemZ::CCMASK_VCMP;
1818     return true;
1819 
1820   case Intrinsic::s390_vtm:
1821     Opcode = SystemZISD::VTM;
1822     CCValid = SystemZ::CCMASK_VCMP;
1823     return true;
1824 
1825   case Intrinsic::s390_vfaebs:
1826   case Intrinsic::s390_vfaehs:
1827   case Intrinsic::s390_vfaefs:
1828     Opcode = SystemZISD::VFAE_CC;
1829     CCValid = SystemZ::CCMASK_ANY;
1830     return true;
1831 
1832   case Intrinsic::s390_vfaezbs:
1833   case Intrinsic::s390_vfaezhs:
1834   case Intrinsic::s390_vfaezfs:
1835     Opcode = SystemZISD::VFAEZ_CC;
1836     CCValid = SystemZ::CCMASK_ANY;
1837     return true;
1838 
1839   case Intrinsic::s390_vfeebs:
1840   case Intrinsic::s390_vfeehs:
1841   case Intrinsic::s390_vfeefs:
1842     Opcode = SystemZISD::VFEE_CC;
1843     CCValid = SystemZ::CCMASK_ANY;
1844     return true;
1845 
1846   case Intrinsic::s390_vfeezbs:
1847   case Intrinsic::s390_vfeezhs:
1848   case Intrinsic::s390_vfeezfs:
1849     Opcode = SystemZISD::VFEEZ_CC;
1850     CCValid = SystemZ::CCMASK_ANY;
1851     return true;
1852 
1853   case Intrinsic::s390_vfenebs:
1854   case Intrinsic::s390_vfenehs:
1855   case Intrinsic::s390_vfenefs:
1856     Opcode = SystemZISD::VFENE_CC;
1857     CCValid = SystemZ::CCMASK_ANY;
1858     return true;
1859 
1860   case Intrinsic::s390_vfenezbs:
1861   case Intrinsic::s390_vfenezhs:
1862   case Intrinsic::s390_vfenezfs:
1863     Opcode = SystemZISD::VFENEZ_CC;
1864     CCValid = SystemZ::CCMASK_ANY;
1865     return true;
1866 
1867   case Intrinsic::s390_vistrbs:
1868   case Intrinsic::s390_vistrhs:
1869   case Intrinsic::s390_vistrfs:
1870     Opcode = SystemZISD::VISTR_CC;
1871     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1872     return true;
1873 
1874   case Intrinsic::s390_vstrcbs:
1875   case Intrinsic::s390_vstrchs:
1876   case Intrinsic::s390_vstrcfs:
1877     Opcode = SystemZISD::VSTRC_CC;
1878     CCValid = SystemZ::CCMASK_ANY;
1879     return true;
1880 
1881   case Intrinsic::s390_vstrczbs:
1882   case Intrinsic::s390_vstrczhs:
1883   case Intrinsic::s390_vstrczfs:
1884     Opcode = SystemZISD::VSTRCZ_CC;
1885     CCValid = SystemZ::CCMASK_ANY;
1886     return true;
1887 
1888   case Intrinsic::s390_vstrsb:
1889   case Intrinsic::s390_vstrsh:
1890   case Intrinsic::s390_vstrsf:
1891     Opcode = SystemZISD::VSTRS_CC;
1892     CCValid = SystemZ::CCMASK_ANY;
1893     return true;
1894 
1895   case Intrinsic::s390_vstrszb:
1896   case Intrinsic::s390_vstrszh:
1897   case Intrinsic::s390_vstrszf:
1898     Opcode = SystemZISD::VSTRSZ_CC;
1899     CCValid = SystemZ::CCMASK_ANY;
1900     return true;
1901 
1902   case Intrinsic::s390_vfcedbs:
1903   case Intrinsic::s390_vfcesbs:
1904     Opcode = SystemZISD::VFCMPES;
1905     CCValid = SystemZ::CCMASK_VCMP;
1906     return true;
1907 
1908   case Intrinsic::s390_vfchdbs:
1909   case Intrinsic::s390_vfchsbs:
1910     Opcode = SystemZISD::VFCMPHS;
1911     CCValid = SystemZ::CCMASK_VCMP;
1912     return true;
1913 
1914   case Intrinsic::s390_vfchedbs:
1915   case Intrinsic::s390_vfchesbs:
1916     Opcode = SystemZISD::VFCMPHES;
1917     CCValid = SystemZ::CCMASK_VCMP;
1918     return true;
1919 
1920   case Intrinsic::s390_vftcidb:
1921   case Intrinsic::s390_vftcisb:
1922     Opcode = SystemZISD::VFTCI;
1923     CCValid = SystemZ::CCMASK_VCMP;
1924     return true;
1925 
1926   case Intrinsic::s390_tdc:
1927     Opcode = SystemZISD::TDC;
1928     CCValid = SystemZ::CCMASK_TDC;
1929     return true;
1930 
1931   default:
1932     return false;
1933   }
1934 }
1935 
1936 // Emit an intrinsic with chain and an explicit CC register result.
1937 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1938                                            unsigned Opcode) {
1939   // Copy all operands except the intrinsic ID.
1940   unsigned NumOps = Op.getNumOperands();
1941   SmallVector<SDValue, 6> Ops;
1942   Ops.reserve(NumOps - 1);
1943   Ops.push_back(Op.getOperand(0));
1944   for (unsigned I = 2; I < NumOps; ++I)
1945     Ops.push_back(Op.getOperand(I));
1946 
1947   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1948   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1949   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1950   SDValue OldChain = SDValue(Op.getNode(), 1);
1951   SDValue NewChain = SDValue(Intr.getNode(), 1);
1952   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1953   return Intr.getNode();
1954 }
1955 
1956 // Emit an intrinsic with an explicit CC register result.
1957 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1958                                    unsigned Opcode) {
1959   // Copy all operands except the intrinsic ID.
1960   unsigned NumOps = Op.getNumOperands();
1961   SmallVector<SDValue, 6> Ops;
1962   Ops.reserve(NumOps - 1);
1963   for (unsigned I = 1; I < NumOps; ++I)
1964     Ops.push_back(Op.getOperand(I));
1965 
1966   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1967   return Intr.getNode();
1968 }
1969 
1970 // CC is a comparison that will be implemented using an integer or
1971 // floating-point comparison.  Return the condition code mask for
1972 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1973 // unsigned comparisons and clear for signed ones.  In the floating-point
1974 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1975 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1976 #define CONV(X) \
1977   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1978   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1979   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1980 
1981   switch (CC) {
1982   default:
1983     llvm_unreachable("Invalid integer condition!");
1984 
1985   CONV(EQ);
1986   CONV(NE);
1987   CONV(GT);
1988   CONV(GE);
1989   CONV(LT);
1990   CONV(LE);
1991 
1992   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1993   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1994   }
1995 #undef CONV
1996 }
1997 
1998 // If C can be converted to a comparison against zero, adjust the operands
1999 // as necessary.
2000 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2001   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2002     return;
2003 
2004   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2005   if (!ConstOp1)
2006     return;
2007 
2008   int64_t Value = ConstOp1->getSExtValue();
2009   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2010       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2011       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2012       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2013     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2014     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2015   }
2016 }
2017 
2018 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2019 // adjust the operands as necessary.
2020 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2021                              Comparison &C) {
2022   // For us to make any changes, it must a comparison between a single-use
2023   // load and a constant.
2024   if (!C.Op0.hasOneUse() ||
2025       C.Op0.getOpcode() != ISD::LOAD ||
2026       C.Op1.getOpcode() != ISD::Constant)
2027     return;
2028 
2029   // We must have an 8- or 16-bit load.
2030   auto *Load = cast<LoadSDNode>(C.Op0);
2031   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
2032   if (NumBits != 8 && NumBits != 16)
2033     return;
2034 
2035   // The load must be an extending one and the constant must be within the
2036   // range of the unextended value.
2037   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2038   uint64_t Value = ConstOp1->getZExtValue();
2039   uint64_t Mask = (1 << NumBits) - 1;
2040   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2041     // Make sure that ConstOp1 is in range of C.Op0.
2042     int64_t SignedValue = ConstOp1->getSExtValue();
2043     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2044       return;
2045     if (C.ICmpType != SystemZICMP::SignedOnly) {
2046       // Unsigned comparison between two sign-extended values is equivalent
2047       // to unsigned comparison between two zero-extended values.
2048       Value &= Mask;
2049     } else if (NumBits == 8) {
2050       // Try to treat the comparison as unsigned, so that we can use CLI.
2051       // Adjust CCMask and Value as necessary.
2052       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2053         // Test whether the high bit of the byte is set.
2054         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2055       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2056         // Test whether the high bit of the byte is clear.
2057         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2058       else
2059         // No instruction exists for this combination.
2060         return;
2061       C.ICmpType = SystemZICMP::UnsignedOnly;
2062     }
2063   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2064     if (Value > Mask)
2065       return;
2066     // If the constant is in range, we can use any comparison.
2067     C.ICmpType = SystemZICMP::Any;
2068   } else
2069     return;
2070 
2071   // Make sure that the first operand is an i32 of the right extension type.
2072   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2073                               ISD::SEXTLOAD :
2074                               ISD::ZEXTLOAD);
2075   if (C.Op0.getValueType() != MVT::i32 ||
2076       Load->getExtensionType() != ExtType) {
2077     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2078                            Load->getBasePtr(), Load->getPointerInfo(),
2079                            Load->getMemoryVT(), Load->getAlignment(),
2080                            Load->getMemOperand()->getFlags());
2081     // Update the chain uses.
2082     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2083   }
2084 
2085   // Make sure that the second operand is an i32 with the right value.
2086   if (C.Op1.getValueType() != MVT::i32 ||
2087       Value != ConstOp1->getZExtValue())
2088     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2089 }
2090 
2091 // Return true if Op is either an unextended load, or a load suitable
2092 // for integer register-memory comparisons of type ICmpType.
2093 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2094   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2095   if (Load) {
2096     // There are no instructions to compare a register with a memory byte.
2097     if (Load->getMemoryVT() == MVT::i8)
2098       return false;
2099     // Otherwise decide on extension type.
2100     switch (Load->getExtensionType()) {
2101     case ISD::NON_EXTLOAD:
2102       return true;
2103     case ISD::SEXTLOAD:
2104       return ICmpType != SystemZICMP::UnsignedOnly;
2105     case ISD::ZEXTLOAD:
2106       return ICmpType != SystemZICMP::SignedOnly;
2107     default:
2108       break;
2109     }
2110   }
2111   return false;
2112 }
2113 
2114 // Return true if it is better to swap the operands of C.
2115 static bool shouldSwapCmpOperands(const Comparison &C) {
2116   // Leave f128 comparisons alone, since they have no memory forms.
2117   if (C.Op0.getValueType() == MVT::f128)
2118     return false;
2119 
2120   // Always keep a floating-point constant second, since comparisons with
2121   // zero can use LOAD TEST and comparisons with other constants make a
2122   // natural memory operand.
2123   if (isa<ConstantFPSDNode>(C.Op1))
2124     return false;
2125 
2126   // Never swap comparisons with zero since there are many ways to optimize
2127   // those later.
2128   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2129   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2130     return false;
2131 
2132   // Also keep natural memory operands second if the loaded value is
2133   // only used here.  Several comparisons have memory forms.
2134   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2135     return false;
2136 
2137   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2138   // In that case we generally prefer the memory to be second.
2139   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2140     // The only exceptions are when the second operand is a constant and
2141     // we can use things like CHHSI.
2142     if (!ConstOp1)
2143       return true;
2144     // The unsigned memory-immediate instructions can handle 16-bit
2145     // unsigned integers.
2146     if (C.ICmpType != SystemZICMP::SignedOnly &&
2147         isUInt<16>(ConstOp1->getZExtValue()))
2148       return false;
2149     // The signed memory-immediate instructions can handle 16-bit
2150     // signed integers.
2151     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2152         isInt<16>(ConstOp1->getSExtValue()))
2153       return false;
2154     return true;
2155   }
2156 
2157   // Try to promote the use of CGFR and CLGFR.
2158   unsigned Opcode0 = C.Op0.getOpcode();
2159   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2160     return true;
2161   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2162     return true;
2163   if (C.ICmpType != SystemZICMP::SignedOnly &&
2164       Opcode0 == ISD::AND &&
2165       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2166       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2167     return true;
2168 
2169   return false;
2170 }
2171 
2172 // Return a version of comparison CC mask CCMask in which the LT and GT
2173 // actions are swapped.
2174 static unsigned reverseCCMask(unsigned CCMask) {
2175   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2176           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2177           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2178           (CCMask & SystemZ::CCMASK_CMP_UO));
2179 }
2180 
2181 // Check whether C tests for equality between X and Y and whether X - Y
2182 // or Y - X is also computed.  In that case it's better to compare the
2183 // result of the subtraction against zero.
2184 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2185                                  Comparison &C) {
2186   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2187       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2188     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2189       SDNode *N = *I;
2190       if (N->getOpcode() == ISD::SUB &&
2191           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2192            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2193         C.Op0 = SDValue(N, 0);
2194         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2195         return;
2196       }
2197     }
2198   }
2199 }
2200 
2201 // Check whether C compares a floating-point value with zero and if that
2202 // floating-point value is also negated.  In this case we can use the
2203 // negation to set CC, so avoiding separate LOAD AND TEST and
2204 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2205 static void adjustForFNeg(Comparison &C) {
2206   // This optimization is invalid for strict comparisons, since FNEG
2207   // does not raise any exceptions.
2208   if (C.Chain)
2209     return;
2210   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2211   if (C1 && C1->isZero()) {
2212     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2213       SDNode *N = *I;
2214       if (N->getOpcode() == ISD::FNEG) {
2215         C.Op0 = SDValue(N, 0);
2216         C.CCMask = reverseCCMask(C.CCMask);
2217         return;
2218       }
2219     }
2220   }
2221 }
2222 
2223 // Check whether C compares (shl X, 32) with 0 and whether X is
2224 // also sign-extended.  In that case it is better to test the result
2225 // of the sign extension using LTGFR.
2226 //
2227 // This case is important because InstCombine transforms a comparison
2228 // with (sext (trunc X)) into a comparison with (shl X, 32).
2229 static void adjustForLTGFR(Comparison &C) {
2230   // Check for a comparison between (shl X, 32) and 0.
2231   if (C.Op0.getOpcode() == ISD::SHL &&
2232       C.Op0.getValueType() == MVT::i64 &&
2233       C.Op1.getOpcode() == ISD::Constant &&
2234       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2235     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2236     if (C1 && C1->getZExtValue() == 32) {
2237       SDValue ShlOp0 = C.Op0.getOperand(0);
2238       // See whether X has any SIGN_EXTEND_INREG uses.
2239       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2240         SDNode *N = *I;
2241         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2242             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2243           C.Op0 = SDValue(N, 0);
2244           return;
2245         }
2246       }
2247     }
2248   }
2249 }
2250 
2251 // If C compares the truncation of an extending load, try to compare
2252 // the untruncated value instead.  This exposes more opportunities to
2253 // reuse CC.
2254 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2255                                Comparison &C) {
2256   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2257       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2258       C.Op1.getOpcode() == ISD::Constant &&
2259       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2260     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2261     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2262       unsigned Type = L->getExtensionType();
2263       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2264           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2265         C.Op0 = C.Op0.getOperand(0);
2266         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2267       }
2268     }
2269   }
2270 }
2271 
2272 // Return true if shift operation N has an in-range constant shift value.
2273 // Store it in ShiftVal if so.
2274 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2275   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2276   if (!Shift)
2277     return false;
2278 
2279   uint64_t Amount = Shift->getZExtValue();
2280   if (Amount >= N.getValueSizeInBits())
2281     return false;
2282 
2283   ShiftVal = Amount;
2284   return true;
2285 }
2286 
2287 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2288 // instruction and whether the CC value is descriptive enough to handle
2289 // a comparison of type Opcode between the AND result and CmpVal.
2290 // CCMask says which comparison result is being tested and BitSize is
2291 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2292 // return the corresponding CC mask, otherwise return 0.
2293 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2294                                      uint64_t Mask, uint64_t CmpVal,
2295                                      unsigned ICmpType) {
2296   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2297 
2298   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2299   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2300       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2301     return 0;
2302 
2303   // Work out the masks for the lowest and highest bits.
2304   unsigned HighShift = 63 - countLeadingZeros(Mask);
2305   uint64_t High = uint64_t(1) << HighShift;
2306   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2307 
2308   // Signed ordered comparisons are effectively unsigned if the sign
2309   // bit is dropped.
2310   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2311 
2312   // Check for equality comparisons with 0, or the equivalent.
2313   if (CmpVal == 0) {
2314     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2315       return SystemZ::CCMASK_TM_ALL_0;
2316     if (CCMask == SystemZ::CCMASK_CMP_NE)
2317       return SystemZ::CCMASK_TM_SOME_1;
2318   }
2319   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2320     if (CCMask == SystemZ::CCMASK_CMP_LT)
2321       return SystemZ::CCMASK_TM_ALL_0;
2322     if (CCMask == SystemZ::CCMASK_CMP_GE)
2323       return SystemZ::CCMASK_TM_SOME_1;
2324   }
2325   if (EffectivelyUnsigned && CmpVal < Low) {
2326     if (CCMask == SystemZ::CCMASK_CMP_LE)
2327       return SystemZ::CCMASK_TM_ALL_0;
2328     if (CCMask == SystemZ::CCMASK_CMP_GT)
2329       return SystemZ::CCMASK_TM_SOME_1;
2330   }
2331 
2332   // Check for equality comparisons with the mask, or the equivalent.
2333   if (CmpVal == Mask) {
2334     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2335       return SystemZ::CCMASK_TM_ALL_1;
2336     if (CCMask == SystemZ::CCMASK_CMP_NE)
2337       return SystemZ::CCMASK_TM_SOME_0;
2338   }
2339   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2340     if (CCMask == SystemZ::CCMASK_CMP_GT)
2341       return SystemZ::CCMASK_TM_ALL_1;
2342     if (CCMask == SystemZ::CCMASK_CMP_LE)
2343       return SystemZ::CCMASK_TM_SOME_0;
2344   }
2345   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2346     if (CCMask == SystemZ::CCMASK_CMP_GE)
2347       return SystemZ::CCMASK_TM_ALL_1;
2348     if (CCMask == SystemZ::CCMASK_CMP_LT)
2349       return SystemZ::CCMASK_TM_SOME_0;
2350   }
2351 
2352   // Check for ordered comparisons with the top bit.
2353   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2354     if (CCMask == SystemZ::CCMASK_CMP_LE)
2355       return SystemZ::CCMASK_TM_MSB_0;
2356     if (CCMask == SystemZ::CCMASK_CMP_GT)
2357       return SystemZ::CCMASK_TM_MSB_1;
2358   }
2359   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2360     if (CCMask == SystemZ::CCMASK_CMP_LT)
2361       return SystemZ::CCMASK_TM_MSB_0;
2362     if (CCMask == SystemZ::CCMASK_CMP_GE)
2363       return SystemZ::CCMASK_TM_MSB_1;
2364   }
2365 
2366   // If there are just two bits, we can do equality checks for Low and High
2367   // as well.
2368   if (Mask == Low + High) {
2369     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2370       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2371     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2372       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2373     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2374       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2375     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2376       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2377   }
2378 
2379   // Looks like we've exhausted our options.
2380   return 0;
2381 }
2382 
2383 // See whether C can be implemented as a TEST UNDER MASK instruction.
2384 // Update the arguments with the TM version if so.
2385 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2386                                    Comparison &C) {
2387   // Check that we have a comparison with a constant.
2388   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2389   if (!ConstOp1)
2390     return;
2391   uint64_t CmpVal = ConstOp1->getZExtValue();
2392 
2393   // Check whether the nonconstant input is an AND with a constant mask.
2394   Comparison NewC(C);
2395   uint64_t MaskVal;
2396   ConstantSDNode *Mask = nullptr;
2397   if (C.Op0.getOpcode() == ISD::AND) {
2398     NewC.Op0 = C.Op0.getOperand(0);
2399     NewC.Op1 = C.Op0.getOperand(1);
2400     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2401     if (!Mask)
2402       return;
2403     MaskVal = Mask->getZExtValue();
2404   } else {
2405     // There is no instruction to compare with a 64-bit immediate
2406     // so use TMHH instead if possible.  We need an unsigned ordered
2407     // comparison with an i64 immediate.
2408     if (NewC.Op0.getValueType() != MVT::i64 ||
2409         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2410         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2411         NewC.ICmpType == SystemZICMP::SignedOnly)
2412       return;
2413     // Convert LE and GT comparisons into LT and GE.
2414     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2415         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2416       if (CmpVal == uint64_t(-1))
2417         return;
2418       CmpVal += 1;
2419       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2420     }
2421     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2422     // be masked off without changing the result.
2423     MaskVal = -(CmpVal & -CmpVal);
2424     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2425   }
2426   if (!MaskVal)
2427     return;
2428 
2429   // Check whether the combination of mask, comparison value and comparison
2430   // type are suitable.
2431   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2432   unsigned NewCCMask, ShiftVal;
2433   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2434       NewC.Op0.getOpcode() == ISD::SHL &&
2435       isSimpleShift(NewC.Op0, ShiftVal) &&
2436       (MaskVal >> ShiftVal != 0) &&
2437       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2438       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2439                                         MaskVal >> ShiftVal,
2440                                         CmpVal >> ShiftVal,
2441                                         SystemZICMP::Any))) {
2442     NewC.Op0 = NewC.Op0.getOperand(0);
2443     MaskVal >>= ShiftVal;
2444   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2445              NewC.Op0.getOpcode() == ISD::SRL &&
2446              isSimpleShift(NewC.Op0, ShiftVal) &&
2447              (MaskVal << ShiftVal != 0) &&
2448              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2449              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2450                                                MaskVal << ShiftVal,
2451                                                CmpVal << ShiftVal,
2452                                                SystemZICMP::UnsignedOnly))) {
2453     NewC.Op0 = NewC.Op0.getOperand(0);
2454     MaskVal <<= ShiftVal;
2455   } else {
2456     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2457                                      NewC.ICmpType);
2458     if (!NewCCMask)
2459       return;
2460   }
2461 
2462   // Go ahead and make the change.
2463   C.Opcode = SystemZISD::TM;
2464   C.Op0 = NewC.Op0;
2465   if (Mask && Mask->getZExtValue() == MaskVal)
2466     C.Op1 = SDValue(Mask, 0);
2467   else
2468     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2469   C.CCValid = SystemZ::CCMASK_TM;
2470   C.CCMask = NewCCMask;
2471 }
2472 
2473 // See whether the comparison argument contains a redundant AND
2474 // and remove it if so.  This sometimes happens due to the generic
2475 // BRCOND expansion.
2476 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2477                                   Comparison &C) {
2478   if (C.Op0.getOpcode() != ISD::AND)
2479     return;
2480   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2481   if (!Mask)
2482     return;
2483   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2484   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2485     return;
2486 
2487   C.Op0 = C.Op0.getOperand(0);
2488 }
2489 
2490 // Return a Comparison that tests the condition-code result of intrinsic
2491 // node Call against constant integer CC using comparison code Cond.
2492 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2493 // and CCValid is the set of possible condition-code results.
2494 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2495                                   SDValue Call, unsigned CCValid, uint64_t CC,
2496                                   ISD::CondCode Cond) {
2497   Comparison C(Call, SDValue(), SDValue());
2498   C.Opcode = Opcode;
2499   C.CCValid = CCValid;
2500   if (Cond == ISD::SETEQ)
2501     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2502     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2503   else if (Cond == ISD::SETNE)
2504     // ...and the inverse of that.
2505     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2506   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2507     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2508     // always true for CC>3.
2509     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2510   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2511     // ...and the inverse of that.
2512     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2513   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2514     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2515     // always true for CC>3.
2516     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2517   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2518     // ...and the inverse of that.
2519     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2520   else
2521     llvm_unreachable("Unexpected integer comparison type");
2522   C.CCMask &= CCValid;
2523   return C;
2524 }
2525 
2526 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2527 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2528                          ISD::CondCode Cond, const SDLoc &DL,
2529                          SDValue Chain = SDValue(),
2530                          bool IsSignaling = false) {
2531   if (CmpOp1.getOpcode() == ISD::Constant) {
2532     assert(!Chain);
2533     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2534     unsigned Opcode, CCValid;
2535     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2536         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2537         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2538       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2539     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2540         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2541         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2542       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2543   }
2544   Comparison C(CmpOp0, CmpOp1, Chain);
2545   C.CCMask = CCMaskForCondCode(Cond);
2546   if (C.Op0.getValueType().isFloatingPoint()) {
2547     C.CCValid = SystemZ::CCMASK_FCMP;
2548     if (!C.Chain)
2549       C.Opcode = SystemZISD::FCMP;
2550     else if (!IsSignaling)
2551       C.Opcode = SystemZISD::STRICT_FCMP;
2552     else
2553       C.Opcode = SystemZISD::STRICT_FCMPS;
2554     adjustForFNeg(C);
2555   } else {
2556     assert(!C.Chain);
2557     C.CCValid = SystemZ::CCMASK_ICMP;
2558     C.Opcode = SystemZISD::ICMP;
2559     // Choose the type of comparison.  Equality and inequality tests can
2560     // use either signed or unsigned comparisons.  The choice also doesn't
2561     // matter if both sign bits are known to be clear.  In those cases we
2562     // want to give the main isel code the freedom to choose whichever
2563     // form fits best.
2564     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2565         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2566         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2567       C.ICmpType = SystemZICMP::Any;
2568     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2569       C.ICmpType = SystemZICMP::UnsignedOnly;
2570     else
2571       C.ICmpType = SystemZICMP::SignedOnly;
2572     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2573     adjustForRedundantAnd(DAG, DL, C);
2574     adjustZeroCmp(DAG, DL, C);
2575     adjustSubwordCmp(DAG, DL, C);
2576     adjustForSubtraction(DAG, DL, C);
2577     adjustForLTGFR(C);
2578     adjustICmpTruncate(DAG, DL, C);
2579   }
2580 
2581   if (shouldSwapCmpOperands(C)) {
2582     std::swap(C.Op0, C.Op1);
2583     C.CCMask = reverseCCMask(C.CCMask);
2584   }
2585 
2586   adjustForTestUnderMask(DAG, DL, C);
2587   return C;
2588 }
2589 
2590 // Emit the comparison instruction described by C.
2591 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2592   if (!C.Op1.getNode()) {
2593     SDNode *Node;
2594     switch (C.Op0.getOpcode()) {
2595     case ISD::INTRINSIC_W_CHAIN:
2596       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2597       return SDValue(Node, 0);
2598     case ISD::INTRINSIC_WO_CHAIN:
2599       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2600       return SDValue(Node, Node->getNumValues() - 1);
2601     default:
2602       llvm_unreachable("Invalid comparison operands");
2603     }
2604   }
2605   if (C.Opcode == SystemZISD::ICMP)
2606     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2607                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2608   if (C.Opcode == SystemZISD::TM) {
2609     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2610                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2611     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2612                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2613   }
2614   if (C.Chain) {
2615     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2616     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2617   }
2618   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2619 }
2620 
2621 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2622 // 64 bits.  Extend is the extension type to use.  Store the high part
2623 // in Hi and the low part in Lo.
2624 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2625                             SDValue Op0, SDValue Op1, SDValue &Hi,
2626                             SDValue &Lo) {
2627   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2628   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2629   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2630   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2631                    DAG.getConstant(32, DL, MVT::i64));
2632   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2633   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2634 }
2635 
2636 // Lower a binary operation that produces two VT results, one in each
2637 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2638 // and Opcode performs the GR128 operation.  Store the even register result
2639 // in Even and the odd register result in Odd.
2640 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2641                              unsigned Opcode, SDValue Op0, SDValue Op1,
2642                              SDValue &Even, SDValue &Odd) {
2643   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2644   bool Is32Bit = is32Bit(VT);
2645   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2646   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2647 }
2648 
2649 // Return an i32 value that is 1 if the CC value produced by CCReg is
2650 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2651 // in CCValid, so other values can be ignored.
2652 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2653                          unsigned CCValid, unsigned CCMask) {
2654   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2655                    DAG.getConstant(0, DL, MVT::i32),
2656                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2657                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2658   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2659 }
2660 
2661 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2662 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2663 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2664 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2665 // floating-point comparisons.
2666 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2667 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2668   switch (CC) {
2669   case ISD::SETOEQ:
2670   case ISD::SETEQ:
2671     switch (Mode) {
2672     case CmpMode::Int:         return SystemZISD::VICMPE;
2673     case CmpMode::FP:          return SystemZISD::VFCMPE;
2674     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2675     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2676     }
2677     llvm_unreachable("Bad mode");
2678 
2679   case ISD::SETOGE:
2680   case ISD::SETGE:
2681     switch (Mode) {
2682     case CmpMode::Int:         return 0;
2683     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2684     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2685     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2686     }
2687     llvm_unreachable("Bad mode");
2688 
2689   case ISD::SETOGT:
2690   case ISD::SETGT:
2691     switch (Mode) {
2692     case CmpMode::Int:         return SystemZISD::VICMPH;
2693     case CmpMode::FP:          return SystemZISD::VFCMPH;
2694     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2695     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2696     }
2697     llvm_unreachable("Bad mode");
2698 
2699   case ISD::SETUGT:
2700     switch (Mode) {
2701     case CmpMode::Int:         return SystemZISD::VICMPHL;
2702     case CmpMode::FP:          return 0;
2703     case CmpMode::StrictFP:    return 0;
2704     case CmpMode::SignalingFP: return 0;
2705     }
2706     llvm_unreachable("Bad mode");
2707 
2708   default:
2709     return 0;
2710   }
2711 }
2712 
2713 // Return the SystemZISD vector comparison operation for CC or its inverse,
2714 // or 0 if neither can be done directly.  Indicate in Invert whether the
2715 // result is for the inverse of CC.  Mode is as above.
2716 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2717                                             bool &Invert) {
2718   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2719     Invert = false;
2720     return Opcode;
2721   }
2722 
2723   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2724   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2725     Invert = true;
2726     return Opcode;
2727   }
2728 
2729   return 0;
2730 }
2731 
2732 // Return a v2f64 that contains the extended form of elements Start and Start+1
2733 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2734 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2735                                   SDValue Op, SDValue Chain) {
2736   int Mask[] = { Start, -1, Start + 1, -1 };
2737   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2738   if (Chain) {
2739     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2740     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2741   }
2742   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2743 }
2744 
2745 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2746 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2747 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2748                                             const SDLoc &DL, EVT VT,
2749                                             SDValue CmpOp0,
2750                                             SDValue CmpOp1,
2751                                             SDValue Chain) const {
2752   // There is no hardware support for v4f32 (unless we have the vector
2753   // enhancements facility 1), so extend the vector into two v2f64s
2754   // and compare those.
2755   if (CmpOp0.getValueType() == MVT::v4f32 &&
2756       !Subtarget.hasVectorEnhancements1()) {
2757     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2758     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2759     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2760     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2761     if (Chain) {
2762       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2763       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2764       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2765       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2766       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2767                             H1.getValue(1), L1.getValue(1),
2768                             HRes.getValue(1), LRes.getValue(1) };
2769       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2770       SDValue Ops[2] = { Res, NewChain };
2771       return DAG.getMergeValues(Ops, DL);
2772     }
2773     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2774     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2775     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2776   }
2777   if (Chain) {
2778     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2779     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2780   }
2781   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2782 }
2783 
2784 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2785 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2786 // floating-point comparison.  If in addition IsSignaling is true, we have
2787 // a strict signaling floating-point comparison.
2788 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2789                                                 const SDLoc &DL, EVT VT,
2790                                                 ISD::CondCode CC,
2791                                                 SDValue CmpOp0,
2792                                                 SDValue CmpOp1,
2793                                                 SDValue Chain,
2794                                                 bool IsSignaling) const {
2795   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2796   assert (!Chain || IsFP);
2797   assert (!IsSignaling || Chain);
2798   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2799                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2800   bool Invert = false;
2801   SDValue Cmp;
2802   switch (CC) {
2803     // Handle tests for order using (or (ogt y x) (oge x y)).
2804   case ISD::SETUO:
2805     Invert = true;
2806     LLVM_FALLTHROUGH;
2807   case ISD::SETO: {
2808     assert(IsFP && "Unexpected integer comparison");
2809     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2810                               DL, VT, CmpOp1, CmpOp0, Chain);
2811     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2812                               DL, VT, CmpOp0, CmpOp1, Chain);
2813     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2814     if (Chain)
2815       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2816                           LT.getValue(1), GE.getValue(1));
2817     break;
2818   }
2819 
2820     // Handle <> tests using (or (ogt y x) (ogt x y)).
2821   case ISD::SETUEQ:
2822     Invert = true;
2823     LLVM_FALLTHROUGH;
2824   case ISD::SETONE: {
2825     assert(IsFP && "Unexpected integer comparison");
2826     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2827                               DL, VT, CmpOp1, CmpOp0, Chain);
2828     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2829                               DL, VT, CmpOp0, CmpOp1, Chain);
2830     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2831     if (Chain)
2832       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2833                           LT.getValue(1), GT.getValue(1));
2834     break;
2835   }
2836 
2837     // Otherwise a single comparison is enough.  It doesn't really
2838     // matter whether we try the inversion or the swap first, since
2839     // there are no cases where both work.
2840   default:
2841     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2842       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2843     else {
2844       CC = ISD::getSetCCSwappedOperands(CC);
2845       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2846         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2847       else
2848         llvm_unreachable("Unhandled comparison");
2849     }
2850     if (Chain)
2851       Chain = Cmp.getValue(1);
2852     break;
2853   }
2854   if (Invert) {
2855     SDValue Mask =
2856       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2857     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2858   }
2859   if (Chain && Chain.getNode() != Cmp.getNode()) {
2860     SDValue Ops[2] = { Cmp, Chain };
2861     Cmp = DAG.getMergeValues(Ops, DL);
2862   }
2863   return Cmp;
2864 }
2865 
2866 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2867                                           SelectionDAG &DAG) const {
2868   SDValue CmpOp0   = Op.getOperand(0);
2869   SDValue CmpOp1   = Op.getOperand(1);
2870   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2871   SDLoc DL(Op);
2872   EVT VT = Op.getValueType();
2873   if (VT.isVector())
2874     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2875 
2876   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2877   SDValue CCReg = emitCmp(DAG, DL, C);
2878   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2879 }
2880 
2881 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2882                                                   SelectionDAG &DAG,
2883                                                   bool IsSignaling) const {
2884   SDValue Chain    = Op.getOperand(0);
2885   SDValue CmpOp0   = Op.getOperand(1);
2886   SDValue CmpOp1   = Op.getOperand(2);
2887   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2888   SDLoc DL(Op);
2889   EVT VT = Op.getNode()->getValueType(0);
2890   if (VT.isVector()) {
2891     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2892                                    Chain, IsSignaling);
2893     return Res.getValue(Op.getResNo());
2894   }
2895 
2896   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2897   SDValue CCReg = emitCmp(DAG, DL, C);
2898   CCReg->setFlags(Op->getFlags());
2899   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2900   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2901   return DAG.getMergeValues(Ops, DL);
2902 }
2903 
2904 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2905   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2906   SDValue CmpOp0   = Op.getOperand(2);
2907   SDValue CmpOp1   = Op.getOperand(3);
2908   SDValue Dest     = Op.getOperand(4);
2909   SDLoc DL(Op);
2910 
2911   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2912   SDValue CCReg = emitCmp(DAG, DL, C);
2913   return DAG.getNode(
2914       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2915       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2916       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2917 }
2918 
2919 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2920 // allowing Pos and Neg to be wider than CmpOp.
2921 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2922   return (Neg.getOpcode() == ISD::SUB &&
2923           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2924           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2925           Neg.getOperand(1) == Pos &&
2926           (Pos == CmpOp ||
2927            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2928             Pos.getOperand(0) == CmpOp)));
2929 }
2930 
2931 // Return the absolute or negative absolute of Op; IsNegative decides which.
2932 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2933                            bool IsNegative) {
2934   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2935   if (IsNegative)
2936     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2937                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2938   return Op;
2939 }
2940 
2941 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2942                                               SelectionDAG &DAG) const {
2943   SDValue CmpOp0   = Op.getOperand(0);
2944   SDValue CmpOp1   = Op.getOperand(1);
2945   SDValue TrueOp   = Op.getOperand(2);
2946   SDValue FalseOp  = Op.getOperand(3);
2947   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2948   SDLoc DL(Op);
2949 
2950   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2951 
2952   // Check for absolute and negative-absolute selections, including those
2953   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2954   // This check supplements the one in DAGCombiner.
2955   if (C.Opcode == SystemZISD::ICMP &&
2956       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2957       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2958       C.Op1.getOpcode() == ISD::Constant &&
2959       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2960     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2961       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2962     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2963       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2964   }
2965 
2966   SDValue CCReg = emitCmp(DAG, DL, C);
2967   SDValue Ops[] = {TrueOp, FalseOp,
2968                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2969                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2970 
2971   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2972 }
2973 
2974 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2975                                                   SelectionDAG &DAG) const {
2976   SDLoc DL(Node);
2977   const GlobalValue *GV = Node->getGlobal();
2978   int64_t Offset = Node->getOffset();
2979   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2980   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2981 
2982   SDValue Result;
2983   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2984     if (isInt<32>(Offset)) {
2985       // Assign anchors at 1<<12 byte boundaries.
2986       uint64_t Anchor = Offset & ~uint64_t(0xfff);
2987       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2988       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2989 
2990       // The offset can be folded into the address if it is aligned to a
2991       // halfword.
2992       Offset -= Anchor;
2993       if (Offset != 0 && (Offset & 1) == 0) {
2994         SDValue Full =
2995           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2996         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2997         Offset = 0;
2998       }
2999     } else {
3000       // Conservatively load a constant offset greater than 32 bits into a
3001       // register below.
3002       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3003       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3004     }
3005   } else {
3006     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3007     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3008     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3009                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3010   }
3011 
3012   // If there was a non-zero offset that we didn't fold, create an explicit
3013   // addition for it.
3014   if (Offset != 0)
3015     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3016                          DAG.getConstant(Offset, DL, PtrVT));
3017 
3018   return Result;
3019 }
3020 
3021 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3022                                                  SelectionDAG &DAG,
3023                                                  unsigned Opcode,
3024                                                  SDValue GOTOffset) const {
3025   SDLoc DL(Node);
3026   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3027   SDValue Chain = DAG.getEntryNode();
3028   SDValue Glue;
3029 
3030   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3031       CallingConv::GHC)
3032     report_fatal_error("In GHC calling convention TLS is not supported");
3033 
3034   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3035   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3036   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3037   Glue = Chain.getValue(1);
3038   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3039   Glue = Chain.getValue(1);
3040 
3041   // The first call operand is the chain and the second is the TLS symbol.
3042   SmallVector<SDValue, 8> Ops;
3043   Ops.push_back(Chain);
3044   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3045                                            Node->getValueType(0),
3046                                            0, 0));
3047 
3048   // Add argument registers to the end of the list so that they are
3049   // known live into the call.
3050   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3051   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3052 
3053   // Add a register mask operand representing the call-preserved registers.
3054   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3055   const uint32_t *Mask =
3056       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3057   assert(Mask && "Missing call preserved mask for calling convention");
3058   Ops.push_back(DAG.getRegisterMask(Mask));
3059 
3060   // Glue the call to the argument copies.
3061   Ops.push_back(Glue);
3062 
3063   // Emit the call.
3064   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3065   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3066   Glue = Chain.getValue(1);
3067 
3068   // Copy the return value from %r2.
3069   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3070 }
3071 
3072 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3073                                                   SelectionDAG &DAG) const {
3074   SDValue Chain = DAG.getEntryNode();
3075   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3076 
3077   // The high part of the thread pointer is in access register 0.
3078   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3079   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3080 
3081   // The low part of the thread pointer is in access register 1.
3082   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3083   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3084 
3085   // Merge them into a single 64-bit address.
3086   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3087                                     DAG.getConstant(32, DL, PtrVT));
3088   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3089 }
3090 
3091 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3092                                                      SelectionDAG &DAG) const {
3093   if (DAG.getTarget().useEmulatedTLS())
3094     return LowerToTLSEmulatedModel(Node, DAG);
3095   SDLoc DL(Node);
3096   const GlobalValue *GV = Node->getGlobal();
3097   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3098   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3099 
3100   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3101       CallingConv::GHC)
3102     report_fatal_error("In GHC calling convention TLS is not supported");
3103 
3104   SDValue TP = lowerThreadPointer(DL, DAG);
3105 
3106   // Get the offset of GA from the thread pointer, based on the TLS model.
3107   SDValue Offset;
3108   switch (model) {
3109     case TLSModel::GeneralDynamic: {
3110       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3111       SystemZConstantPoolValue *CPV =
3112         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3113 
3114       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3115       Offset = DAG.getLoad(
3116           PtrVT, DL, DAG.getEntryNode(), Offset,
3117           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3118 
3119       // Call __tls_get_offset to retrieve the offset.
3120       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3121       break;
3122     }
3123 
3124     case TLSModel::LocalDynamic: {
3125       // Load the GOT offset of the module ID.
3126       SystemZConstantPoolValue *CPV =
3127         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3128 
3129       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3130       Offset = DAG.getLoad(
3131           PtrVT, DL, DAG.getEntryNode(), Offset,
3132           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3133 
3134       // Call __tls_get_offset to retrieve the module base offset.
3135       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3136 
3137       // Note: The SystemZLDCleanupPass will remove redundant computations
3138       // of the module base offset.  Count total number of local-dynamic
3139       // accesses to trigger execution of that pass.
3140       SystemZMachineFunctionInfo* MFI =
3141         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3142       MFI->incNumLocalDynamicTLSAccesses();
3143 
3144       // Add the per-symbol offset.
3145       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3146 
3147       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
3148       DTPOffset = DAG.getLoad(
3149           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3150           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3151 
3152       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3153       break;
3154     }
3155 
3156     case TLSModel::InitialExec: {
3157       // Load the offset from the GOT.
3158       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3159                                           SystemZII::MO_INDNTPOFF);
3160       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3161       Offset =
3162           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3163                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3164       break;
3165     }
3166 
3167     case TLSModel::LocalExec: {
3168       // Force the offset into the constant pool and load it from there.
3169       SystemZConstantPoolValue *CPV =
3170         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3171 
3172       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3173       Offset = DAG.getLoad(
3174           PtrVT, DL, DAG.getEntryNode(), Offset,
3175           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3176       break;
3177     }
3178   }
3179 
3180   // Add the base and offset together.
3181   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3182 }
3183 
3184 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3185                                                  SelectionDAG &DAG) const {
3186   SDLoc DL(Node);
3187   const BlockAddress *BA = Node->getBlockAddress();
3188   int64_t Offset = Node->getOffset();
3189   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3190 
3191   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3192   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3193   return Result;
3194 }
3195 
3196 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3197                                               SelectionDAG &DAG) const {
3198   SDLoc DL(JT);
3199   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3200   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3201 
3202   // Use LARL to load the address of the table.
3203   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3204 }
3205 
3206 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3207                                                  SelectionDAG &DAG) const {
3208   SDLoc DL(CP);
3209   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3210 
3211   SDValue Result;
3212   if (CP->isMachineConstantPoolEntry())
3213     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3214                                        CP->getAlignment());
3215   else
3216     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3217                                        CP->getAlignment(), CP->getOffset());
3218 
3219   // Use LARL to load the address of the constant pool entry.
3220   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3221 }
3222 
3223 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3224                                               SelectionDAG &DAG) const {
3225   MachineFunction &MF = DAG.getMachineFunction();
3226   MachineFrameInfo &MFI = MF.getFrameInfo();
3227   MFI.setFrameAddressIsTaken(true);
3228 
3229   SDLoc DL(Op);
3230   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3231   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3232 
3233   // By definition, the frame address is the address of the back chain.
3234   auto *TFL =
3235       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3236   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3237   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3238 
3239   // FIXME The frontend should detect this case.
3240   if (Depth > 0) {
3241     report_fatal_error("Unsupported stack frame traversal count");
3242   }
3243 
3244   return BackChain;
3245 }
3246 
3247 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3248                                                SelectionDAG &DAG) const {
3249   MachineFunction &MF = DAG.getMachineFunction();
3250   MachineFrameInfo &MFI = MF.getFrameInfo();
3251   MFI.setReturnAddressIsTaken(true);
3252 
3253   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3254     return SDValue();
3255 
3256   SDLoc DL(Op);
3257   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3258   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3259 
3260   // FIXME The frontend should detect this case.
3261   if (Depth > 0) {
3262     report_fatal_error("Unsupported stack frame traversal count");
3263   }
3264 
3265   // Return R14D, which has the return address. Mark it an implicit live-in.
3266   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3267   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3268 }
3269 
3270 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3271                                             SelectionDAG &DAG) const {
3272   SDLoc DL(Op);
3273   SDValue In = Op.getOperand(0);
3274   EVT InVT = In.getValueType();
3275   EVT ResVT = Op.getValueType();
3276 
3277   // Convert loads directly.  This is normally done by DAGCombiner,
3278   // but we need this case for bitcasts that are created during lowering
3279   // and which are then lowered themselves.
3280   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3281     if (ISD::isNormalLoad(LoadN)) {
3282       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3283                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3284       // Update the chain uses.
3285       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3286       return NewLoad;
3287     }
3288 
3289   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3290     SDValue In64;
3291     if (Subtarget.hasHighWord()) {
3292       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3293                                        MVT::i64);
3294       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3295                                        MVT::i64, SDValue(U64, 0), In);
3296     } else {
3297       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3298       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3299                          DAG.getConstant(32, DL, MVT::i64));
3300     }
3301     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3302     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3303                                       DL, MVT::f32, Out64);
3304   }
3305   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3306     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3307     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3308                                              MVT::f64, SDValue(U64, 0), In);
3309     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3310     if (Subtarget.hasHighWord())
3311       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3312                                         MVT::i32, Out64);
3313     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3314                                 DAG.getConstant(32, DL, MVT::i64));
3315     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3316   }
3317   llvm_unreachable("Unexpected bitcast combination");
3318 }
3319 
3320 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3321                                             SelectionDAG &DAG) const {
3322   MachineFunction &MF = DAG.getMachineFunction();
3323   SystemZMachineFunctionInfo *FuncInfo =
3324     MF.getInfo<SystemZMachineFunctionInfo>();
3325   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3326 
3327   SDValue Chain   = Op.getOperand(0);
3328   SDValue Addr    = Op.getOperand(1);
3329   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3330   SDLoc DL(Op);
3331 
3332   // The initial values of each field.
3333   const unsigned NumFields = 4;
3334   SDValue Fields[NumFields] = {
3335     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3336     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3337     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3338     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3339   };
3340 
3341   // Store each field into its respective slot.
3342   SDValue MemOps[NumFields];
3343   unsigned Offset = 0;
3344   for (unsigned I = 0; I < NumFields; ++I) {
3345     SDValue FieldAddr = Addr;
3346     if (Offset != 0)
3347       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3348                               DAG.getIntPtrConstant(Offset, DL));
3349     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3350                              MachinePointerInfo(SV, Offset));
3351     Offset += 8;
3352   }
3353   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3354 }
3355 
3356 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3357                                            SelectionDAG &DAG) const {
3358   SDValue Chain      = Op.getOperand(0);
3359   SDValue DstPtr     = Op.getOperand(1);
3360   SDValue SrcPtr     = Op.getOperand(2);
3361   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3362   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3363   SDLoc DL(Op);
3364 
3365   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3366                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3367                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3368                        MachinePointerInfo(SrcSV));
3369 }
3370 
3371 SDValue SystemZTargetLowering::
3372 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3373   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3374   MachineFunction &MF = DAG.getMachineFunction();
3375   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3376   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3377 
3378   SDValue Chain = Op.getOperand(0);
3379   SDValue Size  = Op.getOperand(1);
3380   SDValue Align = Op.getOperand(2);
3381   SDLoc DL(Op);
3382 
3383   // If user has set the no alignment function attribute, ignore
3384   // alloca alignments.
3385   uint64_t AlignVal = (RealignOpt ?
3386                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3387 
3388   uint64_t StackAlign = TFI->getStackAlignment();
3389   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3390   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3391 
3392   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3393   SDValue NeededSpace = Size;
3394 
3395   // Get a reference to the stack pointer.
3396   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3397 
3398   // If we need a backchain, save it now.
3399   SDValue Backchain;
3400   if (StoreBackchain)
3401     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3402 
3403   // Add extra space for alignment if needed.
3404   if (ExtraAlignSpace)
3405     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3406                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3407 
3408   // Get the new stack pointer value.
3409   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3410 
3411   // Copy the new stack pointer back.
3412   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3413 
3414   // The allocated data lives above the 160 bytes allocated for the standard
3415   // frame, plus any outgoing stack arguments.  We don't know how much that
3416   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3417   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3418   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3419 
3420   // Dynamically realign if needed.
3421   if (RequiredAlign > StackAlign) {
3422     Result =
3423       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3424                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3425     Result =
3426       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3427                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3428   }
3429 
3430   if (StoreBackchain)
3431     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3432 
3433   SDValue Ops[2] = { Result, Chain };
3434   return DAG.getMergeValues(Ops, DL);
3435 }
3436 
3437 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3438     SDValue Op, SelectionDAG &DAG) const {
3439   SDLoc DL(Op);
3440 
3441   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3442 }
3443 
3444 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3445                                               SelectionDAG &DAG) const {
3446   EVT VT = Op.getValueType();
3447   SDLoc DL(Op);
3448   SDValue Ops[2];
3449   if (is32Bit(VT))
3450     // Just do a normal 64-bit multiplication and extract the results.
3451     // We define this so that it can be used for constant division.
3452     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3453                     Op.getOperand(1), Ops[1], Ops[0]);
3454   else if (Subtarget.hasMiscellaneousExtensions2())
3455     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3456     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3457     // return the low half first, so the results are in reverse order.
3458     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3459                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3460   else {
3461     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3462     //
3463     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3464     //
3465     // but using the fact that the upper halves are either all zeros
3466     // or all ones:
3467     //
3468     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3469     //
3470     // and grouping the right terms together since they are quicker than the
3471     // multiplication:
3472     //
3473     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3474     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3475     SDValue LL = Op.getOperand(0);
3476     SDValue RL = Op.getOperand(1);
3477     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3478     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3479     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3480     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3481     // return the low half first, so the results are in reverse order.
3482     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3483                      LL, RL, Ops[1], Ops[0]);
3484     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3485     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3486     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3487     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3488   }
3489   return DAG.getMergeValues(Ops, DL);
3490 }
3491 
3492 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3493                                               SelectionDAG &DAG) const {
3494   EVT VT = Op.getValueType();
3495   SDLoc DL(Op);
3496   SDValue Ops[2];
3497   if (is32Bit(VT))
3498     // Just do a normal 64-bit multiplication and extract the results.
3499     // We define this so that it can be used for constant division.
3500     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3501                     Op.getOperand(1), Ops[1], Ops[0]);
3502   else
3503     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3504     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3505     // return the low half first, so the results are in reverse order.
3506     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3507                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3508   return DAG.getMergeValues(Ops, DL);
3509 }
3510 
3511 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3512                                             SelectionDAG &DAG) const {
3513   SDValue Op0 = Op.getOperand(0);
3514   SDValue Op1 = Op.getOperand(1);
3515   EVT VT = Op.getValueType();
3516   SDLoc DL(Op);
3517 
3518   // We use DSGF for 32-bit division.  This means the first operand must
3519   // always be 64-bit, and the second operand should be 32-bit whenever
3520   // that is possible, to improve performance.
3521   if (is32Bit(VT))
3522     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3523   else if (DAG.ComputeNumSignBits(Op1) > 32)
3524     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3525 
3526   // DSG(F) returns the remainder in the even register and the
3527   // quotient in the odd register.
3528   SDValue Ops[2];
3529   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3530   return DAG.getMergeValues(Ops, DL);
3531 }
3532 
3533 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3534                                             SelectionDAG &DAG) const {
3535   EVT VT = Op.getValueType();
3536   SDLoc DL(Op);
3537 
3538   // DL(G) returns the remainder in the even register and the
3539   // quotient in the odd register.
3540   SDValue Ops[2];
3541   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3542                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3543   return DAG.getMergeValues(Ops, DL);
3544 }
3545 
3546 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3547   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3548 
3549   // Get the known-zero masks for each operand.
3550   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3551   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3552                         DAG.computeKnownBits(Ops[1])};
3553 
3554   // See if the upper 32 bits of one operand and the lower 32 bits of the
3555   // other are known zero.  They are the low and high operands respectively.
3556   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3557                        Known[1].Zero.getZExtValue() };
3558   unsigned High, Low;
3559   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3560     High = 1, Low = 0;
3561   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3562     High = 0, Low = 1;
3563   else
3564     return Op;
3565 
3566   SDValue LowOp = Ops[Low];
3567   SDValue HighOp = Ops[High];
3568 
3569   // If the high part is a constant, we're better off using IILH.
3570   if (HighOp.getOpcode() == ISD::Constant)
3571     return Op;
3572 
3573   // If the low part is a constant that is outside the range of LHI,
3574   // then we're better off using IILF.
3575   if (LowOp.getOpcode() == ISD::Constant) {
3576     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3577     if (!isInt<16>(Value))
3578       return Op;
3579   }
3580 
3581   // Check whether the high part is an AND that doesn't change the
3582   // high 32 bits and just masks out low bits.  We can skip it if so.
3583   if (HighOp.getOpcode() == ISD::AND &&
3584       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3585     SDValue HighOp0 = HighOp.getOperand(0);
3586     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3587     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3588       HighOp = HighOp0;
3589   }
3590 
3591   // Take advantage of the fact that all GR32 operations only change the
3592   // low 32 bits by truncating Low to an i32 and inserting it directly
3593   // using a subreg.  The interesting cases are those where the truncation
3594   // can be folded.
3595   SDLoc DL(Op);
3596   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3597   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3598                                    MVT::i64, HighOp, Low32);
3599 }
3600 
3601 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3602 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3603                                           SelectionDAG &DAG) const {
3604   SDNode *N = Op.getNode();
3605   SDValue LHS = N->getOperand(0);
3606   SDValue RHS = N->getOperand(1);
3607   SDLoc DL(N);
3608   unsigned BaseOp = 0;
3609   unsigned CCValid = 0;
3610   unsigned CCMask = 0;
3611 
3612   switch (Op.getOpcode()) {
3613   default: llvm_unreachable("Unknown instruction!");
3614   case ISD::SADDO:
3615     BaseOp = SystemZISD::SADDO;
3616     CCValid = SystemZ::CCMASK_ARITH;
3617     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3618     break;
3619   case ISD::SSUBO:
3620     BaseOp = SystemZISD::SSUBO;
3621     CCValid = SystemZ::CCMASK_ARITH;
3622     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3623     break;
3624   case ISD::UADDO:
3625     BaseOp = SystemZISD::UADDO;
3626     CCValid = SystemZ::CCMASK_LOGICAL;
3627     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3628     break;
3629   case ISD::USUBO:
3630     BaseOp = SystemZISD::USUBO;
3631     CCValid = SystemZ::CCMASK_LOGICAL;
3632     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3633     break;
3634   }
3635 
3636   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3637   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3638 
3639   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3640   if (N->getValueType(1) == MVT::i1)
3641     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3642 
3643   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3644 }
3645 
3646 static bool isAddCarryChain(SDValue Carry) {
3647   while (Carry.getOpcode() == ISD::ADDCARRY)
3648     Carry = Carry.getOperand(2);
3649   return Carry.getOpcode() == ISD::UADDO;
3650 }
3651 
3652 static bool isSubBorrowChain(SDValue Carry) {
3653   while (Carry.getOpcode() == ISD::SUBCARRY)
3654     Carry = Carry.getOperand(2);
3655   return Carry.getOpcode() == ISD::USUBO;
3656 }
3657 
3658 // Lower ADDCARRY/SUBCARRY nodes.
3659 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3660                                                 SelectionDAG &DAG) const {
3661 
3662   SDNode *N = Op.getNode();
3663   MVT VT = N->getSimpleValueType(0);
3664 
3665   // Let legalize expand this if it isn't a legal type yet.
3666   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3667     return SDValue();
3668 
3669   SDValue LHS = N->getOperand(0);
3670   SDValue RHS = N->getOperand(1);
3671   SDValue Carry = Op.getOperand(2);
3672   SDLoc DL(N);
3673   unsigned BaseOp = 0;
3674   unsigned CCValid = 0;
3675   unsigned CCMask = 0;
3676 
3677   switch (Op.getOpcode()) {
3678   default: llvm_unreachable("Unknown instruction!");
3679   case ISD::ADDCARRY:
3680     if (!isAddCarryChain(Carry))
3681       return SDValue();
3682 
3683     BaseOp = SystemZISD::ADDCARRY;
3684     CCValid = SystemZ::CCMASK_LOGICAL;
3685     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3686     break;
3687   case ISD::SUBCARRY:
3688     if (!isSubBorrowChain(Carry))
3689       return SDValue();
3690 
3691     BaseOp = SystemZISD::SUBCARRY;
3692     CCValid = SystemZ::CCMASK_LOGICAL;
3693     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3694     break;
3695   }
3696 
3697   // Set the condition code from the carry flag.
3698   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3699                       DAG.getConstant(CCValid, DL, MVT::i32),
3700                       DAG.getConstant(CCMask, DL, MVT::i32));
3701 
3702   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3703   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3704 
3705   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3706   if (N->getValueType(1) == MVT::i1)
3707     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3708 
3709   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3710 }
3711 
3712 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3713                                           SelectionDAG &DAG) const {
3714   EVT VT = Op.getValueType();
3715   SDLoc DL(Op);
3716   Op = Op.getOperand(0);
3717 
3718   // Handle vector types via VPOPCT.
3719   if (VT.isVector()) {
3720     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3721     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3722     switch (VT.getScalarSizeInBits()) {
3723     case 8:
3724       break;
3725     case 16: {
3726       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3727       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3728       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3729       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3730       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3731       break;
3732     }
3733     case 32: {
3734       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3735                                             DAG.getConstant(0, DL, MVT::i32));
3736       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3737       break;
3738     }
3739     case 64: {
3740       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3741                                             DAG.getConstant(0, DL, MVT::i32));
3742       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3743       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3744       break;
3745     }
3746     default:
3747       llvm_unreachable("Unexpected type");
3748     }
3749     return Op;
3750   }
3751 
3752   // Get the known-zero mask for the operand.
3753   KnownBits Known = DAG.computeKnownBits(Op);
3754   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3755   if (NumSignificantBits == 0)
3756     return DAG.getConstant(0, DL, VT);
3757 
3758   // Skip known-zero high parts of the operand.
3759   int64_t OrigBitSize = VT.getSizeInBits();
3760   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3761   BitSize = std::min(BitSize, OrigBitSize);
3762 
3763   // The POPCNT instruction counts the number of bits in each byte.
3764   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3765   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3766   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3767 
3768   // Add up per-byte counts in a binary tree.  All bits of Op at
3769   // position larger than BitSize remain zero throughout.
3770   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3771     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3772     if (BitSize != OrigBitSize)
3773       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3774                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3775     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3776   }
3777 
3778   // Extract overall result from high byte.
3779   if (BitSize > 8)
3780     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3781                      DAG.getConstant(BitSize - 8, DL, VT));
3782 
3783   return Op;
3784 }
3785 
3786 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3787                                                  SelectionDAG &DAG) const {
3788   SDLoc DL(Op);
3789   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3790     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3791   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3792     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3793 
3794   // The only fence that needs an instruction is a sequentially-consistent
3795   // cross-thread fence.
3796   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3797       FenceSSID == SyncScope::System) {
3798     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3799                                       Op.getOperand(0)),
3800                    0);
3801   }
3802 
3803   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3804   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3805 }
3806 
3807 // Op is an atomic load.  Lower it into a normal volatile load.
3808 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3809                                                 SelectionDAG &DAG) const {
3810   auto *Node = cast<AtomicSDNode>(Op.getNode());
3811   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3812                         Node->getChain(), Node->getBasePtr(),
3813                         Node->getMemoryVT(), Node->getMemOperand());
3814 }
3815 
3816 // Op is an atomic store.  Lower it into a normal volatile store.
3817 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3818                                                  SelectionDAG &DAG) const {
3819   auto *Node = cast<AtomicSDNode>(Op.getNode());
3820   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3821                                     Node->getBasePtr(), Node->getMemoryVT(),
3822                                     Node->getMemOperand());
3823   // We have to enforce sequential consistency by performing a
3824   // serialization operation after the store.
3825   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3826     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3827                                        MVT::Other, Chain), 0);
3828   return Chain;
3829 }
3830 
3831 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3832 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3833 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3834                                                    SelectionDAG &DAG,
3835                                                    unsigned Opcode) const {
3836   auto *Node = cast<AtomicSDNode>(Op.getNode());
3837 
3838   // 32-bit operations need no code outside the main loop.
3839   EVT NarrowVT = Node->getMemoryVT();
3840   EVT WideVT = MVT::i32;
3841   if (NarrowVT == WideVT)
3842     return Op;
3843 
3844   int64_t BitSize = NarrowVT.getSizeInBits();
3845   SDValue ChainIn = Node->getChain();
3846   SDValue Addr = Node->getBasePtr();
3847   SDValue Src2 = Node->getVal();
3848   MachineMemOperand *MMO = Node->getMemOperand();
3849   SDLoc DL(Node);
3850   EVT PtrVT = Addr.getValueType();
3851 
3852   // Convert atomic subtracts of constants into additions.
3853   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3854     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3855       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3856       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3857     }
3858 
3859   // Get the address of the containing word.
3860   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3861                                     DAG.getConstant(-4, DL, PtrVT));
3862 
3863   // Get the number of bits that the word must be rotated left in order
3864   // to bring the field to the top bits of a GR32.
3865   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3866                                  DAG.getConstant(3, DL, PtrVT));
3867   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3868 
3869   // Get the complementing shift amount, for rotating a field in the top
3870   // bits back to its proper position.
3871   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3872                                     DAG.getConstant(0, DL, WideVT), BitShift);
3873 
3874   // Extend the source operand to 32 bits and prepare it for the inner loop.
3875   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3876   // operations require the source to be shifted in advance.  (This shift
3877   // can be folded if the source is constant.)  For AND and NAND, the lower
3878   // bits must be set, while for other opcodes they should be left clear.
3879   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3880     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3881                        DAG.getConstant(32 - BitSize, DL, WideVT));
3882   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3883       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3884     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3885                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3886 
3887   // Construct the ATOMIC_LOADW_* node.
3888   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3889   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3890                     DAG.getConstant(BitSize, DL, WideVT) };
3891   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3892                                              NarrowVT, MMO);
3893 
3894   // Rotate the result of the final CS so that the field is in the lower
3895   // bits of a GR32, then truncate it.
3896   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3897                                     DAG.getConstant(BitSize, DL, WideVT));
3898   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3899 
3900   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3901   return DAG.getMergeValues(RetOps, DL);
3902 }
3903 
3904 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3905 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3906 // operations into additions.
3907 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3908                                                     SelectionDAG &DAG) const {
3909   auto *Node = cast<AtomicSDNode>(Op.getNode());
3910   EVT MemVT = Node->getMemoryVT();
3911   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3912     // A full-width operation.
3913     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3914     SDValue Src2 = Node->getVal();
3915     SDValue NegSrc2;
3916     SDLoc DL(Src2);
3917 
3918     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3919       // Use an addition if the operand is constant and either LAA(G) is
3920       // available or the negative value is in the range of A(G)FHI.
3921       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3922       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3923         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3924     } else if (Subtarget.hasInterlockedAccess1())
3925       // Use LAA(G) if available.
3926       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3927                             Src2);
3928 
3929     if (NegSrc2.getNode())
3930       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3931                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3932                            Node->getMemOperand());
3933 
3934     // Use the node as-is.
3935     return Op;
3936   }
3937 
3938   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3939 }
3940 
3941 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3942 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3943                                                     SelectionDAG &DAG) const {
3944   auto *Node = cast<AtomicSDNode>(Op.getNode());
3945   SDValue ChainIn = Node->getOperand(0);
3946   SDValue Addr = Node->getOperand(1);
3947   SDValue CmpVal = Node->getOperand(2);
3948   SDValue SwapVal = Node->getOperand(3);
3949   MachineMemOperand *MMO = Node->getMemOperand();
3950   SDLoc DL(Node);
3951 
3952   // We have native support for 32-bit and 64-bit compare and swap, but we
3953   // still need to expand extracting the "success" result from the CC.
3954   EVT NarrowVT = Node->getMemoryVT();
3955   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3956   if (NarrowVT == WideVT) {
3957     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3958     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3959     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3960                                                DL, Tys, Ops, NarrowVT, MMO);
3961     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3962                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3963 
3964     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3965     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3966     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3967     return SDValue();
3968   }
3969 
3970   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3971   // via a fullword ATOMIC_CMP_SWAPW operation.
3972   int64_t BitSize = NarrowVT.getSizeInBits();
3973   EVT PtrVT = Addr.getValueType();
3974 
3975   // Get the address of the containing word.
3976   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3977                                     DAG.getConstant(-4, DL, PtrVT));
3978 
3979   // Get the number of bits that the word must be rotated left in order
3980   // to bring the field to the top bits of a GR32.
3981   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3982                                  DAG.getConstant(3, DL, PtrVT));
3983   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3984 
3985   // Get the complementing shift amount, for rotating a field in the top
3986   // bits back to its proper position.
3987   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3988                                     DAG.getConstant(0, DL, WideVT), BitShift);
3989 
3990   // Construct the ATOMIC_CMP_SWAPW node.
3991   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3992   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3993                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3994   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3995                                              VTList, Ops, NarrowVT, MMO);
3996   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3997                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3998 
3999   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4000   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4001   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4002   return SDValue();
4003 }
4004 
4005 MachineMemOperand::Flags
4006 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4007   // Because of how we convert atomic_load and atomic_store to normal loads and
4008   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4009   // since DAGCombine hasn't been updated to account for atomic, but non
4010   // volatile loads.  (See D57601)
4011   if (auto *SI = dyn_cast<StoreInst>(&I))
4012     if (SI->isAtomic())
4013       return MachineMemOperand::MOVolatile;
4014   if (auto *LI = dyn_cast<LoadInst>(&I))
4015     if (LI->isAtomic())
4016       return MachineMemOperand::MOVolatile;
4017   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4018     if (AI->isAtomic())
4019       return MachineMemOperand::MOVolatile;
4020   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4021     if (AI->isAtomic())
4022       return MachineMemOperand::MOVolatile;
4023   return MachineMemOperand::MONone;
4024 }
4025 
4026 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4027                                               SelectionDAG &DAG) const {
4028   MachineFunction &MF = DAG.getMachineFunction();
4029   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4030   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4031     report_fatal_error("Variable-sized stack allocations are not supported "
4032                        "in GHC calling convention");
4033   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4034                             SystemZ::R15D, Op.getValueType());
4035 }
4036 
4037 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4038                                                  SelectionDAG &DAG) const {
4039   MachineFunction &MF = DAG.getMachineFunction();
4040   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4041   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4042 
4043   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4044     report_fatal_error("Variable-sized stack allocations are not supported "
4045                        "in GHC calling convention");
4046 
4047   SDValue Chain = Op.getOperand(0);
4048   SDValue NewSP = Op.getOperand(1);
4049   SDValue Backchain;
4050   SDLoc DL(Op);
4051 
4052   if (StoreBackchain) {
4053     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4054     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4055   }
4056 
4057   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4058 
4059   if (StoreBackchain)
4060     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4061 
4062   return Chain;
4063 }
4064 
4065 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4066                                              SelectionDAG &DAG) const {
4067   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4068   if (!IsData)
4069     // Just preserve the chain.
4070     return Op.getOperand(0);
4071 
4072   SDLoc DL(Op);
4073   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4074   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4075   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4076   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4077                    Op.getOperand(1)};
4078   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4079                                  Node->getVTList(), Ops,
4080                                  Node->getMemoryVT(), Node->getMemOperand());
4081 }
4082 
4083 // Convert condition code in CCReg to an i32 value.
4084 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4085   SDLoc DL(CCReg);
4086   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4087   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4088                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4089 }
4090 
4091 SDValue
4092 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4093                                               SelectionDAG &DAG) const {
4094   unsigned Opcode, CCValid;
4095   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4096     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4097     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4098     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4099     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4100     return SDValue();
4101   }
4102 
4103   return SDValue();
4104 }
4105 
4106 SDValue
4107 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4108                                                SelectionDAG &DAG) const {
4109   unsigned Opcode, CCValid;
4110   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4111     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4112     if (Op->getNumValues() == 1)
4113       return getCCResult(DAG, SDValue(Node, 0));
4114     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4115     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4116                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4117   }
4118 
4119   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4120   switch (Id) {
4121   case Intrinsic::thread_pointer:
4122     return lowerThreadPointer(SDLoc(Op), DAG);
4123 
4124   case Intrinsic::s390_vpdi:
4125     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4126                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4127 
4128   case Intrinsic::s390_vperm:
4129     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4130                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4131 
4132   case Intrinsic::s390_vuphb:
4133   case Intrinsic::s390_vuphh:
4134   case Intrinsic::s390_vuphf:
4135     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4136                        Op.getOperand(1));
4137 
4138   case Intrinsic::s390_vuplhb:
4139   case Intrinsic::s390_vuplhh:
4140   case Intrinsic::s390_vuplhf:
4141     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4142                        Op.getOperand(1));
4143 
4144   case Intrinsic::s390_vuplb:
4145   case Intrinsic::s390_vuplhw:
4146   case Intrinsic::s390_vuplf:
4147     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4148                        Op.getOperand(1));
4149 
4150   case Intrinsic::s390_vupllb:
4151   case Intrinsic::s390_vupllh:
4152   case Intrinsic::s390_vupllf:
4153     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4154                        Op.getOperand(1));
4155 
4156   case Intrinsic::s390_vsumb:
4157   case Intrinsic::s390_vsumh:
4158   case Intrinsic::s390_vsumgh:
4159   case Intrinsic::s390_vsumgf:
4160   case Intrinsic::s390_vsumqf:
4161   case Intrinsic::s390_vsumqg:
4162     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4163                        Op.getOperand(1), Op.getOperand(2));
4164   }
4165 
4166   return SDValue();
4167 }
4168 
4169 namespace {
4170 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4171 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4172 // Operand is the constant third operand, otherwise it is the number of
4173 // bytes in each element of the result.
4174 struct Permute {
4175   unsigned Opcode;
4176   unsigned Operand;
4177   unsigned char Bytes[SystemZ::VectorBytes];
4178 };
4179 }
4180 
4181 static const Permute PermuteForms[] = {
4182   // VMRHG
4183   { SystemZISD::MERGE_HIGH, 8,
4184     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4185   // VMRHF
4186   { SystemZISD::MERGE_HIGH, 4,
4187     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4188   // VMRHH
4189   { SystemZISD::MERGE_HIGH, 2,
4190     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4191   // VMRHB
4192   { SystemZISD::MERGE_HIGH, 1,
4193     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4194   // VMRLG
4195   { SystemZISD::MERGE_LOW, 8,
4196     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4197   // VMRLF
4198   { SystemZISD::MERGE_LOW, 4,
4199     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4200   // VMRLH
4201   { SystemZISD::MERGE_LOW, 2,
4202     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4203   // VMRLB
4204   { SystemZISD::MERGE_LOW, 1,
4205     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4206   // VPKG
4207   { SystemZISD::PACK, 4,
4208     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4209   // VPKF
4210   { SystemZISD::PACK, 2,
4211     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4212   // VPKH
4213   { SystemZISD::PACK, 1,
4214     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4215   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4216   { SystemZISD::PERMUTE_DWORDS, 4,
4217     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4218   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4219   { SystemZISD::PERMUTE_DWORDS, 1,
4220     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4221 };
4222 
4223 // Called after matching a vector shuffle against a particular pattern.
4224 // Both the original shuffle and the pattern have two vector operands.
4225 // OpNos[0] is the operand of the original shuffle that should be used for
4226 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4227 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4228 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4229 // for operands 0 and 1 of the pattern.
4230 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4231   if (OpNos[0] < 0) {
4232     if (OpNos[1] < 0)
4233       return false;
4234     OpNo0 = OpNo1 = OpNos[1];
4235   } else if (OpNos[1] < 0) {
4236     OpNo0 = OpNo1 = OpNos[0];
4237   } else {
4238     OpNo0 = OpNos[0];
4239     OpNo1 = OpNos[1];
4240   }
4241   return true;
4242 }
4243 
4244 // Bytes is a VPERM-like permute vector, except that -1 is used for
4245 // undefined bytes.  Return true if the VPERM can be implemented using P.
4246 // When returning true set OpNo0 to the VPERM operand that should be
4247 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4248 //
4249 // For example, if swapping the VPERM operands allows P to match, OpNo0
4250 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4251 // operand, but rewriting it to use two duplicated operands allows it to
4252 // match P, then OpNo0 and OpNo1 will be the same.
4253 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4254                          unsigned &OpNo0, unsigned &OpNo1) {
4255   int OpNos[] = { -1, -1 };
4256   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4257     int Elt = Bytes[I];
4258     if (Elt >= 0) {
4259       // Make sure that the two permute vectors use the same suboperand
4260       // byte number.  Only the operand numbers (the high bits) are
4261       // allowed to differ.
4262       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4263         return false;
4264       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4265       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4266       // Make sure that the operand mappings are consistent with previous
4267       // elements.
4268       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4269         return false;
4270       OpNos[ModelOpNo] = RealOpNo;
4271     }
4272   }
4273   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4274 }
4275 
4276 // As above, but search for a matching permute.
4277 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4278                                    unsigned &OpNo0, unsigned &OpNo1) {
4279   for (auto &P : PermuteForms)
4280     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4281       return &P;
4282   return nullptr;
4283 }
4284 
4285 // Bytes is a VPERM-like permute vector, except that -1 is used for
4286 // undefined bytes.  This permute is an operand of an outer permute.
4287 // See whether redistributing the -1 bytes gives a shuffle that can be
4288 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4289 // that, when applied to the result of P, gives the original permute in Bytes.
4290 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4291                                const Permute &P,
4292                                SmallVectorImpl<int> &Transform) {
4293   unsigned To = 0;
4294   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4295     int Elt = Bytes[From];
4296     if (Elt < 0)
4297       // Byte number From of the result is undefined.
4298       Transform[From] = -1;
4299     else {
4300       while (P.Bytes[To] != Elt) {
4301         To += 1;
4302         if (To == SystemZ::VectorBytes)
4303           return false;
4304       }
4305       Transform[From] = To;
4306     }
4307   }
4308   return true;
4309 }
4310 
4311 // As above, but search for a matching permute.
4312 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4313                                          SmallVectorImpl<int> &Transform) {
4314   for (auto &P : PermuteForms)
4315     if (matchDoublePermute(Bytes, P, Transform))
4316       return &P;
4317   return nullptr;
4318 }
4319 
4320 // Convert the mask of the given shuffle op into a byte-level mask,
4321 // as if it had type vNi8.
4322 static bool getVPermMask(SDValue ShuffleOp,
4323                          SmallVectorImpl<int> &Bytes) {
4324   EVT VT = ShuffleOp.getValueType();
4325   unsigned NumElements = VT.getVectorNumElements();
4326   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4327 
4328   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4329     Bytes.resize(NumElements * BytesPerElement, -1);
4330     for (unsigned I = 0; I < NumElements; ++I) {
4331       int Index = VSN->getMaskElt(I);
4332       if (Index >= 0)
4333         for (unsigned J = 0; J < BytesPerElement; ++J)
4334           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4335     }
4336     return true;
4337   }
4338   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4339       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4340     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4341     Bytes.resize(NumElements * BytesPerElement, -1);
4342     for (unsigned I = 0; I < NumElements; ++I)
4343       for (unsigned J = 0; J < BytesPerElement; ++J)
4344         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4345     return true;
4346   }
4347   return false;
4348 }
4349 
4350 // Bytes is a VPERM-like permute vector, except that -1 is used for
4351 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4352 // the result come from a contiguous sequence of bytes from one input.
4353 // Set Base to the selector for the first byte if so.
4354 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4355                             unsigned BytesPerElement, int &Base) {
4356   Base = -1;
4357   for (unsigned I = 0; I < BytesPerElement; ++I) {
4358     if (Bytes[Start + I] >= 0) {
4359       unsigned Elem = Bytes[Start + I];
4360       if (Base < 0) {
4361         Base = Elem - I;
4362         // Make sure the bytes would come from one input operand.
4363         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4364           return false;
4365       } else if (unsigned(Base) != Elem - I)
4366         return false;
4367     }
4368   }
4369   return true;
4370 }
4371 
4372 // Bytes is a VPERM-like permute vector, except that -1 is used for
4373 // undefined bytes.  Return true if it can be performed using VSLDI.
4374 // When returning true, set StartIndex to the shift amount and OpNo0
4375 // and OpNo1 to the VPERM operands that should be used as the first
4376 // and second shift operand respectively.
4377 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4378                                unsigned &StartIndex, unsigned &OpNo0,
4379                                unsigned &OpNo1) {
4380   int OpNos[] = { -1, -1 };
4381   int Shift = -1;
4382   for (unsigned I = 0; I < 16; ++I) {
4383     int Index = Bytes[I];
4384     if (Index >= 0) {
4385       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4386       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4387       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4388       if (Shift < 0)
4389         Shift = ExpectedShift;
4390       else if (Shift != ExpectedShift)
4391         return false;
4392       // Make sure that the operand mappings are consistent with previous
4393       // elements.
4394       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4395         return false;
4396       OpNos[ModelOpNo] = RealOpNo;
4397     }
4398   }
4399   StartIndex = Shift;
4400   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4401 }
4402 
4403 // Create a node that performs P on operands Op0 and Op1, casting the
4404 // operands to the appropriate type.  The type of the result is determined by P.
4405 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4406                               const Permute &P, SDValue Op0, SDValue Op1) {
4407   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4408   // elements of a PACK are twice as wide as the outputs.
4409   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4410                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4411                       P.Operand);
4412   // Cast both operands to the appropriate type.
4413   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4414                               SystemZ::VectorBytes / InBytes);
4415   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4416   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4417   SDValue Op;
4418   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4419     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4420     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4421   } else if (P.Opcode == SystemZISD::PACK) {
4422     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4423                                  SystemZ::VectorBytes / P.Operand);
4424     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4425   } else {
4426     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4427   }
4428   return Op;
4429 }
4430 
4431 // Bytes is a VPERM-like permute vector, except that -1 is used for
4432 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4433 // VSLDI or VPERM.
4434 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4435                                      SDValue *Ops,
4436                                      const SmallVectorImpl<int> &Bytes) {
4437   for (unsigned I = 0; I < 2; ++I)
4438     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4439 
4440   // First see whether VSLDI can be used.
4441   unsigned StartIndex, OpNo0, OpNo1;
4442   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4443     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4444                        Ops[OpNo1],
4445                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4446 
4447   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4448   SDValue IndexNodes[SystemZ::VectorBytes];
4449   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4450     if (Bytes[I] >= 0)
4451       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4452     else
4453       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4454   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4455   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4456 }
4457 
4458 namespace {
4459 // Describes a general N-operand vector shuffle.
4460 struct GeneralShuffle {
4461   GeneralShuffle(EVT vt) : VT(vt) {}
4462   void addUndef();
4463   bool add(SDValue, unsigned);
4464   SDValue getNode(SelectionDAG &, const SDLoc &);
4465 
4466   // The operands of the shuffle.
4467   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4468 
4469   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4470   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4471   // Bytes[I] / SystemZ::VectorBytes.
4472   SmallVector<int, SystemZ::VectorBytes> Bytes;
4473 
4474   // The type of the shuffle result.
4475   EVT VT;
4476 };
4477 }
4478 
4479 // Add an extra undefined element to the shuffle.
4480 void GeneralShuffle::addUndef() {
4481   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4482   for (unsigned I = 0; I < BytesPerElement; ++I)
4483     Bytes.push_back(-1);
4484 }
4485 
4486 // Add an extra element to the shuffle, taking it from element Elem of Op.
4487 // A null Op indicates a vector input whose value will be calculated later;
4488 // there is at most one such input per shuffle and it always has the same
4489 // type as the result. Aborts and returns false if the source vector elements
4490 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4491 // LLVM they become implicitly extended, but this is rare and not optimized.
4492 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4493   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4494 
4495   // The source vector can have wider elements than the result,
4496   // either through an explicit TRUNCATE or because of type legalization.
4497   // We want the least significant part.
4498   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4499   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4500 
4501   // Return false if the source elements are smaller than their destination
4502   // elements.
4503   if (FromBytesPerElement < BytesPerElement)
4504     return false;
4505 
4506   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4507                    (FromBytesPerElement - BytesPerElement));
4508 
4509   // Look through things like shuffles and bitcasts.
4510   while (Op.getNode()) {
4511     if (Op.getOpcode() == ISD::BITCAST)
4512       Op = Op.getOperand(0);
4513     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4514       // See whether the bytes we need come from a contiguous part of one
4515       // operand.
4516       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4517       if (!getVPermMask(Op, OpBytes))
4518         break;
4519       int NewByte;
4520       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4521         break;
4522       if (NewByte < 0) {
4523         addUndef();
4524         return true;
4525       }
4526       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4527       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4528     } else if (Op.isUndef()) {
4529       addUndef();
4530       return true;
4531     } else
4532       break;
4533   }
4534 
4535   // Make sure that the source of the extraction is in Ops.
4536   unsigned OpNo = 0;
4537   for (; OpNo < Ops.size(); ++OpNo)
4538     if (Ops[OpNo] == Op)
4539       break;
4540   if (OpNo == Ops.size())
4541     Ops.push_back(Op);
4542 
4543   // Add the element to Bytes.
4544   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4545   for (unsigned I = 0; I < BytesPerElement; ++I)
4546     Bytes.push_back(Base + I);
4547 
4548   return true;
4549 }
4550 
4551 // Return SDNodes for the completed shuffle.
4552 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4553   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4554 
4555   if (Ops.size() == 0)
4556     return DAG.getUNDEF(VT);
4557 
4558   // Make sure that there are at least two shuffle operands.
4559   if (Ops.size() == 1)
4560     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4561 
4562   // Create a tree of shuffles, deferring root node until after the loop.
4563   // Try to redistribute the undefined elements of non-root nodes so that
4564   // the non-root shuffles match something like a pack or merge, then adjust
4565   // the parent node's permute vector to compensate for the new order.
4566   // Among other things, this copes with vectors like <2 x i16> that were
4567   // padded with undefined elements during type legalization.
4568   //
4569   // In the best case this redistribution will lead to the whole tree
4570   // using packs and merges.  It should rarely be a loss in other cases.
4571   unsigned Stride = 1;
4572   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4573     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4574       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4575 
4576       // Create a mask for just these two operands.
4577       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4578       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4579         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4580         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4581         if (OpNo == I)
4582           NewBytes[J] = Byte;
4583         else if (OpNo == I + Stride)
4584           NewBytes[J] = SystemZ::VectorBytes + Byte;
4585         else
4586           NewBytes[J] = -1;
4587       }
4588       // See if it would be better to reorganize NewMask to avoid using VPERM.
4589       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4590       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4591         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4592         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4593         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4594           if (NewBytes[J] >= 0) {
4595             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4596                    "Invalid double permute");
4597             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4598           } else
4599             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4600         }
4601       } else {
4602         // Just use NewBytes on the operands.
4603         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4604         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4605           if (NewBytes[J] >= 0)
4606             Bytes[J] = I * SystemZ::VectorBytes + J;
4607       }
4608     }
4609   }
4610 
4611   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4612   if (Stride > 1) {
4613     Ops[1] = Ops[Stride];
4614     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4615       if (Bytes[I] >= int(SystemZ::VectorBytes))
4616         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4617   }
4618 
4619   // Look for an instruction that can do the permute without resorting
4620   // to VPERM.
4621   unsigned OpNo0, OpNo1;
4622   SDValue Op;
4623   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4624     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4625   else
4626     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4627   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4628 }
4629 
4630 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4631 static bool isScalarToVector(SDValue Op) {
4632   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4633     if (!Op.getOperand(I).isUndef())
4634       return false;
4635   return true;
4636 }
4637 
4638 // Return a vector of type VT that contains Value in the first element.
4639 // The other elements don't matter.
4640 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4641                                    SDValue Value) {
4642   // If we have a constant, replicate it to all elements and let the
4643   // BUILD_VECTOR lowering take care of it.
4644   if (Value.getOpcode() == ISD::Constant ||
4645       Value.getOpcode() == ISD::ConstantFP) {
4646     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4647     return DAG.getBuildVector(VT, DL, Ops);
4648   }
4649   if (Value.isUndef())
4650     return DAG.getUNDEF(VT);
4651   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4652 }
4653 
4654 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4655 // element 1.  Used for cases in which replication is cheap.
4656 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4657                                  SDValue Op0, SDValue Op1) {
4658   if (Op0.isUndef()) {
4659     if (Op1.isUndef())
4660       return DAG.getUNDEF(VT);
4661     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4662   }
4663   if (Op1.isUndef())
4664     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4665   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4666                      buildScalarToVector(DAG, DL, VT, Op0),
4667                      buildScalarToVector(DAG, DL, VT, Op1));
4668 }
4669 
4670 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4671 // vector for them.
4672 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4673                           SDValue Op1) {
4674   if (Op0.isUndef() && Op1.isUndef())
4675     return DAG.getUNDEF(MVT::v2i64);
4676   // If one of the two inputs is undefined then replicate the other one,
4677   // in order to avoid using another register unnecessarily.
4678   if (Op0.isUndef())
4679     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4680   else if (Op1.isUndef())
4681     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4682   else {
4683     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4684     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4685   }
4686   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4687 }
4688 
4689 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4690 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4691 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4692 // would benefit from this representation and return it if so.
4693 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4694                                      BuildVectorSDNode *BVN) {
4695   EVT VT = BVN->getValueType(0);
4696   unsigned NumElements = VT.getVectorNumElements();
4697 
4698   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4699   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4700   // need a BUILD_VECTOR, add an additional placeholder operand for that
4701   // BUILD_VECTOR and store its operands in ResidueOps.
4702   GeneralShuffle GS(VT);
4703   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4704   bool FoundOne = false;
4705   for (unsigned I = 0; I < NumElements; ++I) {
4706     SDValue Op = BVN->getOperand(I);
4707     if (Op.getOpcode() == ISD::TRUNCATE)
4708       Op = Op.getOperand(0);
4709     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4710         Op.getOperand(1).getOpcode() == ISD::Constant) {
4711       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4712       if (!GS.add(Op.getOperand(0), Elem))
4713         return SDValue();
4714       FoundOne = true;
4715     } else if (Op.isUndef()) {
4716       GS.addUndef();
4717     } else {
4718       if (!GS.add(SDValue(), ResidueOps.size()))
4719         return SDValue();
4720       ResidueOps.push_back(BVN->getOperand(I));
4721     }
4722   }
4723 
4724   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4725   if (!FoundOne)
4726     return SDValue();
4727 
4728   // Create the BUILD_VECTOR for the remaining elements, if any.
4729   if (!ResidueOps.empty()) {
4730     while (ResidueOps.size() < NumElements)
4731       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4732     for (auto &Op : GS.Ops) {
4733       if (!Op.getNode()) {
4734         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4735         break;
4736       }
4737     }
4738   }
4739   return GS.getNode(DAG, SDLoc(BVN));
4740 }
4741 
4742 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4743   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4744     return true;
4745   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4746     return true;
4747   return false;
4748 }
4749 
4750 // Combine GPR scalar values Elems into a vector of type VT.
4751 SDValue
4752 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4753                                    SmallVectorImpl<SDValue> &Elems) const {
4754   // See whether there is a single replicated value.
4755   SDValue Single;
4756   unsigned int NumElements = Elems.size();
4757   unsigned int Count = 0;
4758   for (auto Elem : Elems) {
4759     if (!Elem.isUndef()) {
4760       if (!Single.getNode())
4761         Single = Elem;
4762       else if (Elem != Single) {
4763         Single = SDValue();
4764         break;
4765       }
4766       Count += 1;
4767     }
4768   }
4769   // There are three cases here:
4770   //
4771   // - if the only defined element is a loaded one, the best sequence
4772   //   is a replicating load.
4773   //
4774   // - otherwise, if the only defined element is an i64 value, we will
4775   //   end up with the same VLVGP sequence regardless of whether we short-cut
4776   //   for replication or fall through to the later code.
4777   //
4778   // - otherwise, if the only defined element is an i32 or smaller value,
4779   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4780   //   This is only a win if the single defined element is used more than once.
4781   //   In other cases we're better off using a single VLVGx.
4782   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4783     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4784 
4785   // If all elements are loads, use VLREP/VLEs (below).
4786   bool AllLoads = true;
4787   for (auto Elem : Elems)
4788     if (!isVectorElementLoad(Elem)) {
4789       AllLoads = false;
4790       break;
4791     }
4792 
4793   // The best way of building a v2i64 from two i64s is to use VLVGP.
4794   if (VT == MVT::v2i64 && !AllLoads)
4795     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4796 
4797   // Use a 64-bit merge high to combine two doubles.
4798   if (VT == MVT::v2f64 && !AllLoads)
4799     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4800 
4801   // Build v4f32 values directly from the FPRs:
4802   //
4803   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4804   //         V              V         VMRHF
4805   //      <ABxx>         <CDxx>
4806   //                V                 VMRHG
4807   //              <ABCD>
4808   if (VT == MVT::v4f32 && !AllLoads) {
4809     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4810     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4811     // Avoid unnecessary undefs by reusing the other operand.
4812     if (Op01.isUndef())
4813       Op01 = Op23;
4814     else if (Op23.isUndef())
4815       Op23 = Op01;
4816     // Merging identical replications is a no-op.
4817     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4818       return Op01;
4819     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4820     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4821     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4822                              DL, MVT::v2i64, Op01, Op23);
4823     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4824   }
4825 
4826   // Collect the constant terms.
4827   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4828   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4829 
4830   unsigned NumConstants = 0;
4831   for (unsigned I = 0; I < NumElements; ++I) {
4832     SDValue Elem = Elems[I];
4833     if (Elem.getOpcode() == ISD::Constant ||
4834         Elem.getOpcode() == ISD::ConstantFP) {
4835       NumConstants += 1;
4836       Constants[I] = Elem;
4837       Done[I] = true;
4838     }
4839   }
4840   // If there was at least one constant, fill in the other elements of
4841   // Constants with undefs to get a full vector constant and use that
4842   // as the starting point.
4843   SDValue Result;
4844   SDValue ReplicatedVal;
4845   if (NumConstants > 0) {
4846     for (unsigned I = 0; I < NumElements; ++I)
4847       if (!Constants[I].getNode())
4848         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4849     Result = DAG.getBuildVector(VT, DL, Constants);
4850   } else {
4851     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4852     // avoid a false dependency on any previous contents of the vector
4853     // register.
4854 
4855     // Use a VLREP if at least one element is a load. Make sure to replicate
4856     // the load with the most elements having its value.
4857     std::map<const SDNode*, unsigned> UseCounts;
4858     SDNode *LoadMaxUses = nullptr;
4859     for (unsigned I = 0; I < NumElements; ++I)
4860       if (isVectorElementLoad(Elems[I])) {
4861         SDNode *Ld = Elems[I].getNode();
4862         UseCounts[Ld]++;
4863         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4864           LoadMaxUses = Ld;
4865       }
4866     if (LoadMaxUses != nullptr) {
4867       ReplicatedVal = SDValue(LoadMaxUses, 0);
4868       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4869     } else {
4870       // Try to use VLVGP.
4871       unsigned I1 = NumElements / 2 - 1;
4872       unsigned I2 = NumElements - 1;
4873       bool Def1 = !Elems[I1].isUndef();
4874       bool Def2 = !Elems[I2].isUndef();
4875       if (Def1 || Def2) {
4876         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4877         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4878         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4879                              joinDwords(DAG, DL, Elem1, Elem2));
4880         Done[I1] = true;
4881         Done[I2] = true;
4882       } else
4883         Result = DAG.getUNDEF(VT);
4884     }
4885   }
4886 
4887   // Use VLVGx to insert the other elements.
4888   for (unsigned I = 0; I < NumElements; ++I)
4889     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4890       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4891                            DAG.getConstant(I, DL, MVT::i32));
4892   return Result;
4893 }
4894 
4895 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4896                                                  SelectionDAG &DAG) const {
4897   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4898   SDLoc DL(Op);
4899   EVT VT = Op.getValueType();
4900 
4901   if (BVN->isConstant()) {
4902     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4903       return Op;
4904 
4905     // Fall back to loading it from memory.
4906     return SDValue();
4907   }
4908 
4909   // See if we should use shuffles to construct the vector from other vectors.
4910   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4911     return Res;
4912 
4913   // Detect SCALAR_TO_VECTOR conversions.
4914   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4915     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4916 
4917   // Otherwise use buildVector to build the vector up from GPRs.
4918   unsigned NumElements = Op.getNumOperands();
4919   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4920   for (unsigned I = 0; I < NumElements; ++I)
4921     Ops[I] = Op.getOperand(I);
4922   return buildVector(DAG, DL, VT, Ops);
4923 }
4924 
4925 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4926                                                    SelectionDAG &DAG) const {
4927   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4928   SDLoc DL(Op);
4929   EVT VT = Op.getValueType();
4930   unsigned NumElements = VT.getVectorNumElements();
4931 
4932   if (VSN->isSplat()) {
4933     SDValue Op0 = Op.getOperand(0);
4934     unsigned Index = VSN->getSplatIndex();
4935     assert(Index < VT.getVectorNumElements() &&
4936            "Splat index should be defined and in first operand");
4937     // See whether the value we're splatting is directly available as a scalar.
4938     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4939         Op0.getOpcode() == ISD::BUILD_VECTOR)
4940       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4941     // Otherwise keep it as a vector-to-vector operation.
4942     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4943                        DAG.getTargetConstant(Index, DL, MVT::i32));
4944   }
4945 
4946   GeneralShuffle GS(VT);
4947   for (unsigned I = 0; I < NumElements; ++I) {
4948     int Elt = VSN->getMaskElt(I);
4949     if (Elt < 0)
4950       GS.addUndef();
4951     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4952                      unsigned(Elt) % NumElements))
4953       return SDValue();
4954   }
4955   return GS.getNode(DAG, SDLoc(VSN));
4956 }
4957 
4958 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4959                                                      SelectionDAG &DAG) const {
4960   SDLoc DL(Op);
4961   // Just insert the scalar into element 0 of an undefined vector.
4962   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4963                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4964                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4965 }
4966 
4967 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4968                                                       SelectionDAG &DAG) const {
4969   // Handle insertions of floating-point values.
4970   SDLoc DL(Op);
4971   SDValue Op0 = Op.getOperand(0);
4972   SDValue Op1 = Op.getOperand(1);
4973   SDValue Op2 = Op.getOperand(2);
4974   EVT VT = Op.getValueType();
4975 
4976   // Insertions into constant indices of a v2f64 can be done using VPDI.
4977   // However, if the inserted value is a bitcast or a constant then it's
4978   // better to use GPRs, as below.
4979   if (VT == MVT::v2f64 &&
4980       Op1.getOpcode() != ISD::BITCAST &&
4981       Op1.getOpcode() != ISD::ConstantFP &&
4982       Op2.getOpcode() == ISD::Constant) {
4983     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4984     unsigned Mask = VT.getVectorNumElements() - 1;
4985     if (Index <= Mask)
4986       return Op;
4987   }
4988 
4989   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4990   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4991   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4992   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4993                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4994                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4995   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4996 }
4997 
4998 SDValue
4999 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5000                                                SelectionDAG &DAG) const {
5001   // Handle extractions of floating-point values.
5002   SDLoc DL(Op);
5003   SDValue Op0 = Op.getOperand(0);
5004   SDValue Op1 = Op.getOperand(1);
5005   EVT VT = Op.getValueType();
5006   EVT VecVT = Op0.getValueType();
5007 
5008   // Extractions of constant indices can be done directly.
5009   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5010     uint64_t Index = CIndexN->getZExtValue();
5011     unsigned Mask = VecVT.getVectorNumElements() - 1;
5012     if (Index <= Mask)
5013       return Op;
5014   }
5015 
5016   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5017   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5018   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5019   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5020                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5021   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5022 }
5023 
5024 SDValue
5025 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
5026                                               unsigned UnpackHigh) const {
5027   SDValue PackedOp = Op.getOperand(0);
5028   EVT OutVT = Op.getValueType();
5029   EVT InVT = PackedOp.getValueType();
5030   unsigned ToBits = OutVT.getScalarSizeInBits();
5031   unsigned FromBits = InVT.getScalarSizeInBits();
5032   do {
5033     FromBits *= 2;
5034     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5035                                  SystemZ::VectorBits / FromBits);
5036     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
5037   } while (FromBits != ToBits);
5038   return PackedOp;
5039 }
5040 
5041 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5042                                           unsigned ByScalar) const {
5043   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5044   SDValue Op0 = Op.getOperand(0);
5045   SDValue Op1 = Op.getOperand(1);
5046   SDLoc DL(Op);
5047   EVT VT = Op.getValueType();
5048   unsigned ElemBitSize = VT.getScalarSizeInBits();
5049 
5050   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5051   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5052     APInt SplatBits, SplatUndef;
5053     unsigned SplatBitSize;
5054     bool HasAnyUndefs;
5055     // Check for constant splats.  Use ElemBitSize as the minimum element
5056     // width and reject splats that need wider elements.
5057     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5058                              ElemBitSize, true) &&
5059         SplatBitSize == ElemBitSize) {
5060       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5061                                       DL, MVT::i32);
5062       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5063     }
5064     // Check for variable splats.
5065     BitVector UndefElements;
5066     SDValue Splat = BVN->getSplatValue(&UndefElements);
5067     if (Splat) {
5068       // Since i32 is the smallest legal type, we either need a no-op
5069       // or a truncation.
5070       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5071       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5072     }
5073   }
5074 
5075   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5076   // and the shift amount is directly available in a GPR.
5077   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5078     if (VSN->isSplat()) {
5079       SDValue VSNOp0 = VSN->getOperand(0);
5080       unsigned Index = VSN->getSplatIndex();
5081       assert(Index < VT.getVectorNumElements() &&
5082              "Splat index should be defined and in first operand");
5083       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5084           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5085         // Since i32 is the smallest legal type, we either need a no-op
5086         // or a truncation.
5087         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5088                                     VSNOp0.getOperand(Index));
5089         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5090       }
5091     }
5092   }
5093 
5094   // Otherwise just treat the current form as legal.
5095   return Op;
5096 }
5097 
5098 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5099                                               SelectionDAG &DAG) const {
5100   switch (Op.getOpcode()) {
5101   case ISD::FRAMEADDR:
5102     return lowerFRAMEADDR(Op, DAG);
5103   case ISD::RETURNADDR:
5104     return lowerRETURNADDR(Op, DAG);
5105   case ISD::BR_CC:
5106     return lowerBR_CC(Op, DAG);
5107   case ISD::SELECT_CC:
5108     return lowerSELECT_CC(Op, DAG);
5109   case ISD::SETCC:
5110     return lowerSETCC(Op, DAG);
5111   case ISD::STRICT_FSETCC:
5112     return lowerSTRICT_FSETCC(Op, DAG, false);
5113   case ISD::STRICT_FSETCCS:
5114     return lowerSTRICT_FSETCC(Op, DAG, true);
5115   case ISD::GlobalAddress:
5116     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5117   case ISD::GlobalTLSAddress:
5118     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5119   case ISD::BlockAddress:
5120     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5121   case ISD::JumpTable:
5122     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5123   case ISD::ConstantPool:
5124     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5125   case ISD::BITCAST:
5126     return lowerBITCAST(Op, DAG);
5127   case ISD::VASTART:
5128     return lowerVASTART(Op, DAG);
5129   case ISD::VACOPY:
5130     return lowerVACOPY(Op, DAG);
5131   case ISD::DYNAMIC_STACKALLOC:
5132     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5133   case ISD::GET_DYNAMIC_AREA_OFFSET:
5134     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5135   case ISD::SMUL_LOHI:
5136     return lowerSMUL_LOHI(Op, DAG);
5137   case ISD::UMUL_LOHI:
5138     return lowerUMUL_LOHI(Op, DAG);
5139   case ISD::SDIVREM:
5140     return lowerSDIVREM(Op, DAG);
5141   case ISD::UDIVREM:
5142     return lowerUDIVREM(Op, DAG);
5143   case ISD::SADDO:
5144   case ISD::SSUBO:
5145   case ISD::UADDO:
5146   case ISD::USUBO:
5147     return lowerXALUO(Op, DAG);
5148   case ISD::ADDCARRY:
5149   case ISD::SUBCARRY:
5150     return lowerADDSUBCARRY(Op, DAG);
5151   case ISD::OR:
5152     return lowerOR(Op, DAG);
5153   case ISD::CTPOP:
5154     return lowerCTPOP(Op, DAG);
5155   case ISD::ATOMIC_FENCE:
5156     return lowerATOMIC_FENCE(Op, DAG);
5157   case ISD::ATOMIC_SWAP:
5158     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5159   case ISD::ATOMIC_STORE:
5160     return lowerATOMIC_STORE(Op, DAG);
5161   case ISD::ATOMIC_LOAD:
5162     return lowerATOMIC_LOAD(Op, DAG);
5163   case ISD::ATOMIC_LOAD_ADD:
5164     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5165   case ISD::ATOMIC_LOAD_SUB:
5166     return lowerATOMIC_LOAD_SUB(Op, DAG);
5167   case ISD::ATOMIC_LOAD_AND:
5168     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5169   case ISD::ATOMIC_LOAD_OR:
5170     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5171   case ISD::ATOMIC_LOAD_XOR:
5172     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5173   case ISD::ATOMIC_LOAD_NAND:
5174     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5175   case ISD::ATOMIC_LOAD_MIN:
5176     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5177   case ISD::ATOMIC_LOAD_MAX:
5178     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5179   case ISD::ATOMIC_LOAD_UMIN:
5180     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5181   case ISD::ATOMIC_LOAD_UMAX:
5182     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5183   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5184     return lowerATOMIC_CMP_SWAP(Op, DAG);
5185   case ISD::STACKSAVE:
5186     return lowerSTACKSAVE(Op, DAG);
5187   case ISD::STACKRESTORE:
5188     return lowerSTACKRESTORE(Op, DAG);
5189   case ISD::PREFETCH:
5190     return lowerPREFETCH(Op, DAG);
5191   case ISD::INTRINSIC_W_CHAIN:
5192     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5193   case ISD::INTRINSIC_WO_CHAIN:
5194     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5195   case ISD::BUILD_VECTOR:
5196     return lowerBUILD_VECTOR(Op, DAG);
5197   case ISD::VECTOR_SHUFFLE:
5198     return lowerVECTOR_SHUFFLE(Op, DAG);
5199   case ISD::SCALAR_TO_VECTOR:
5200     return lowerSCALAR_TO_VECTOR(Op, DAG);
5201   case ISD::INSERT_VECTOR_ELT:
5202     return lowerINSERT_VECTOR_ELT(Op, DAG);
5203   case ISD::EXTRACT_VECTOR_ELT:
5204     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5205   case ISD::SIGN_EXTEND_VECTOR_INREG:
5206     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5207   case ISD::ZERO_EXTEND_VECTOR_INREG:
5208     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5209   case ISD::SHL:
5210     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5211   case ISD::SRL:
5212     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5213   case ISD::SRA:
5214     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5215   default:
5216     llvm_unreachable("Unexpected node to lower");
5217   }
5218 }
5219 
5220 // Lower operations with invalid operand or result types (currently used
5221 // only for 128-bit integer types).
5222 
5223 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5224   SDLoc DL(In);
5225   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5226                            DAG.getIntPtrConstant(0, DL));
5227   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5228                            DAG.getIntPtrConstant(1, DL));
5229   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5230                                     MVT::Untyped, Hi, Lo);
5231   return SDValue(Pair, 0);
5232 }
5233 
5234 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5235   SDLoc DL(In);
5236   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5237                                           DL, MVT::i64, In);
5238   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5239                                           DL, MVT::i64, In);
5240   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5241 }
5242 
5243 void
5244 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5245                                              SmallVectorImpl<SDValue> &Results,
5246                                              SelectionDAG &DAG) const {
5247   switch (N->getOpcode()) {
5248   case ISD::ATOMIC_LOAD: {
5249     SDLoc DL(N);
5250     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5251     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5252     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5253     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5254                                           DL, Tys, Ops, MVT::i128, MMO);
5255     Results.push_back(lowerGR128ToI128(DAG, Res));
5256     Results.push_back(Res.getValue(1));
5257     break;
5258   }
5259   case ISD::ATOMIC_STORE: {
5260     SDLoc DL(N);
5261     SDVTList Tys = DAG.getVTList(MVT::Other);
5262     SDValue Ops[] = { N->getOperand(0),
5263                       lowerI128ToGR128(DAG, N->getOperand(2)),
5264                       N->getOperand(1) };
5265     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5266     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5267                                           DL, Tys, Ops, MVT::i128, MMO);
5268     // We have to enforce sequential consistency by performing a
5269     // serialization operation after the store.
5270     if (cast<AtomicSDNode>(N)->getOrdering() ==
5271         AtomicOrdering::SequentiallyConsistent)
5272       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5273                                        MVT::Other, Res), 0);
5274     Results.push_back(Res);
5275     break;
5276   }
5277   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5278     SDLoc DL(N);
5279     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5280     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5281                       lowerI128ToGR128(DAG, N->getOperand(2)),
5282                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5283     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5284     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5285                                           DL, Tys, Ops, MVT::i128, MMO);
5286     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5287                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5288     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5289     Results.push_back(lowerGR128ToI128(DAG, Res));
5290     Results.push_back(Success);
5291     Results.push_back(Res.getValue(2));
5292     break;
5293   }
5294   default:
5295     llvm_unreachable("Unexpected node to lower");
5296   }
5297 }
5298 
5299 void
5300 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5301                                           SmallVectorImpl<SDValue> &Results,
5302                                           SelectionDAG &DAG) const {
5303   return LowerOperationWrapper(N, Results, DAG);
5304 }
5305 
5306 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5307 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5308   switch ((SystemZISD::NodeType)Opcode) {
5309     case SystemZISD::FIRST_NUMBER: break;
5310     OPCODE(RET_FLAG);
5311     OPCODE(CALL);
5312     OPCODE(SIBCALL);
5313     OPCODE(TLS_GDCALL);
5314     OPCODE(TLS_LDCALL);
5315     OPCODE(PCREL_WRAPPER);
5316     OPCODE(PCREL_OFFSET);
5317     OPCODE(IABS);
5318     OPCODE(ICMP);
5319     OPCODE(FCMP);
5320     OPCODE(STRICT_FCMP);
5321     OPCODE(STRICT_FCMPS);
5322     OPCODE(TM);
5323     OPCODE(BR_CCMASK);
5324     OPCODE(SELECT_CCMASK);
5325     OPCODE(ADJDYNALLOC);
5326     OPCODE(POPCNT);
5327     OPCODE(SMUL_LOHI);
5328     OPCODE(UMUL_LOHI);
5329     OPCODE(SDIVREM);
5330     OPCODE(UDIVREM);
5331     OPCODE(SADDO);
5332     OPCODE(SSUBO);
5333     OPCODE(UADDO);
5334     OPCODE(USUBO);
5335     OPCODE(ADDCARRY);
5336     OPCODE(SUBCARRY);
5337     OPCODE(GET_CCMASK);
5338     OPCODE(MVC);
5339     OPCODE(MVC_LOOP);
5340     OPCODE(NC);
5341     OPCODE(NC_LOOP);
5342     OPCODE(OC);
5343     OPCODE(OC_LOOP);
5344     OPCODE(XC);
5345     OPCODE(XC_LOOP);
5346     OPCODE(CLC);
5347     OPCODE(CLC_LOOP);
5348     OPCODE(STPCPY);
5349     OPCODE(STRCMP);
5350     OPCODE(SEARCH_STRING);
5351     OPCODE(IPM);
5352     OPCODE(MEMBARRIER);
5353     OPCODE(TBEGIN);
5354     OPCODE(TBEGIN_NOFLOAT);
5355     OPCODE(TEND);
5356     OPCODE(BYTE_MASK);
5357     OPCODE(ROTATE_MASK);
5358     OPCODE(REPLICATE);
5359     OPCODE(JOIN_DWORDS);
5360     OPCODE(SPLAT);
5361     OPCODE(MERGE_HIGH);
5362     OPCODE(MERGE_LOW);
5363     OPCODE(SHL_DOUBLE);
5364     OPCODE(PERMUTE_DWORDS);
5365     OPCODE(PERMUTE);
5366     OPCODE(PACK);
5367     OPCODE(PACKS_CC);
5368     OPCODE(PACKLS_CC);
5369     OPCODE(UNPACK_HIGH);
5370     OPCODE(UNPACKL_HIGH);
5371     OPCODE(UNPACK_LOW);
5372     OPCODE(UNPACKL_LOW);
5373     OPCODE(VSHL_BY_SCALAR);
5374     OPCODE(VSRL_BY_SCALAR);
5375     OPCODE(VSRA_BY_SCALAR);
5376     OPCODE(VSUM);
5377     OPCODE(VICMPE);
5378     OPCODE(VICMPH);
5379     OPCODE(VICMPHL);
5380     OPCODE(VICMPES);
5381     OPCODE(VICMPHS);
5382     OPCODE(VICMPHLS);
5383     OPCODE(VFCMPE);
5384     OPCODE(STRICT_VFCMPE);
5385     OPCODE(STRICT_VFCMPES);
5386     OPCODE(VFCMPH);
5387     OPCODE(STRICT_VFCMPH);
5388     OPCODE(STRICT_VFCMPHS);
5389     OPCODE(VFCMPHE);
5390     OPCODE(STRICT_VFCMPHE);
5391     OPCODE(STRICT_VFCMPHES);
5392     OPCODE(VFCMPES);
5393     OPCODE(VFCMPHS);
5394     OPCODE(VFCMPHES);
5395     OPCODE(VFTCI);
5396     OPCODE(VEXTEND);
5397     OPCODE(STRICT_VEXTEND);
5398     OPCODE(VROUND);
5399     OPCODE(STRICT_VROUND);
5400     OPCODE(VTM);
5401     OPCODE(VFAE_CC);
5402     OPCODE(VFAEZ_CC);
5403     OPCODE(VFEE_CC);
5404     OPCODE(VFEEZ_CC);
5405     OPCODE(VFENE_CC);
5406     OPCODE(VFENEZ_CC);
5407     OPCODE(VISTR_CC);
5408     OPCODE(VSTRC_CC);
5409     OPCODE(VSTRCZ_CC);
5410     OPCODE(VSTRS_CC);
5411     OPCODE(VSTRSZ_CC);
5412     OPCODE(TDC);
5413     OPCODE(ATOMIC_SWAPW);
5414     OPCODE(ATOMIC_LOADW_ADD);
5415     OPCODE(ATOMIC_LOADW_SUB);
5416     OPCODE(ATOMIC_LOADW_AND);
5417     OPCODE(ATOMIC_LOADW_OR);
5418     OPCODE(ATOMIC_LOADW_XOR);
5419     OPCODE(ATOMIC_LOADW_NAND);
5420     OPCODE(ATOMIC_LOADW_MIN);
5421     OPCODE(ATOMIC_LOADW_MAX);
5422     OPCODE(ATOMIC_LOADW_UMIN);
5423     OPCODE(ATOMIC_LOADW_UMAX);
5424     OPCODE(ATOMIC_CMP_SWAPW);
5425     OPCODE(ATOMIC_CMP_SWAP);
5426     OPCODE(ATOMIC_LOAD_128);
5427     OPCODE(ATOMIC_STORE_128);
5428     OPCODE(ATOMIC_CMP_SWAP_128);
5429     OPCODE(LRV);
5430     OPCODE(STRV);
5431     OPCODE(VLER);
5432     OPCODE(VSTER);
5433     OPCODE(PREFETCH);
5434   }
5435   return nullptr;
5436 #undef OPCODE
5437 }
5438 
5439 // Return true if VT is a vector whose elements are a whole number of bytes
5440 // in width. Also check for presence of vector support.
5441 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5442   if (!Subtarget.hasVector())
5443     return false;
5444 
5445   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5446 }
5447 
5448 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5449 // producing a result of type ResVT.  Op is a possibly bitcast version
5450 // of the input vector and Index is the index (based on type VecVT) that
5451 // should be extracted.  Return the new extraction if a simplification
5452 // was possible or if Force is true.
5453 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5454                                               EVT VecVT, SDValue Op,
5455                                               unsigned Index,
5456                                               DAGCombinerInfo &DCI,
5457                                               bool Force) const {
5458   SelectionDAG &DAG = DCI.DAG;
5459 
5460   // The number of bytes being extracted.
5461   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5462 
5463   for (;;) {
5464     unsigned Opcode = Op.getOpcode();
5465     if (Opcode == ISD::BITCAST)
5466       // Look through bitcasts.
5467       Op = Op.getOperand(0);
5468     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5469              canTreatAsByteVector(Op.getValueType())) {
5470       // Get a VPERM-like permute mask and see whether the bytes covered
5471       // by the extracted element are a contiguous sequence from one
5472       // source operand.
5473       SmallVector<int, SystemZ::VectorBytes> Bytes;
5474       if (!getVPermMask(Op, Bytes))
5475         break;
5476       int First;
5477       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5478                            BytesPerElement, First))
5479         break;
5480       if (First < 0)
5481         return DAG.getUNDEF(ResVT);
5482       // Make sure the contiguous sequence starts at a multiple of the
5483       // original element size.
5484       unsigned Byte = unsigned(First) % Bytes.size();
5485       if (Byte % BytesPerElement != 0)
5486         break;
5487       // We can get the extracted value directly from an input.
5488       Index = Byte / BytesPerElement;
5489       Op = Op.getOperand(unsigned(First) / Bytes.size());
5490       Force = true;
5491     } else if (Opcode == ISD::BUILD_VECTOR &&
5492                canTreatAsByteVector(Op.getValueType())) {
5493       // We can only optimize this case if the BUILD_VECTOR elements are
5494       // at least as wide as the extracted value.
5495       EVT OpVT = Op.getValueType();
5496       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5497       if (OpBytesPerElement < BytesPerElement)
5498         break;
5499       // Make sure that the least-significant bit of the extracted value
5500       // is the least significant bit of an input.
5501       unsigned End = (Index + 1) * BytesPerElement;
5502       if (End % OpBytesPerElement != 0)
5503         break;
5504       // We're extracting the low part of one operand of the BUILD_VECTOR.
5505       Op = Op.getOperand(End / OpBytesPerElement - 1);
5506       if (!Op.getValueType().isInteger()) {
5507         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5508         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5509         DCI.AddToWorklist(Op.getNode());
5510       }
5511       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5512       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5513       if (VT != ResVT) {
5514         DCI.AddToWorklist(Op.getNode());
5515         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5516       }
5517       return Op;
5518     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5519                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5520                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5521                canTreatAsByteVector(Op.getValueType()) &&
5522                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5523       // Make sure that only the unextended bits are significant.
5524       EVT ExtVT = Op.getValueType();
5525       EVT OpVT = Op.getOperand(0).getValueType();
5526       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5527       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5528       unsigned Byte = Index * BytesPerElement;
5529       unsigned SubByte = Byte % ExtBytesPerElement;
5530       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5531       if (SubByte < MinSubByte ||
5532           SubByte + BytesPerElement > ExtBytesPerElement)
5533         break;
5534       // Get the byte offset of the unextended element
5535       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5536       // ...then add the byte offset relative to that element.
5537       Byte += SubByte - MinSubByte;
5538       if (Byte % BytesPerElement != 0)
5539         break;
5540       Op = Op.getOperand(0);
5541       Index = Byte / BytesPerElement;
5542       Force = true;
5543     } else
5544       break;
5545   }
5546   if (Force) {
5547     if (Op.getValueType() != VecVT) {
5548       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5549       DCI.AddToWorklist(Op.getNode());
5550     }
5551     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5552                        DAG.getConstant(Index, DL, MVT::i32));
5553   }
5554   return SDValue();
5555 }
5556 
5557 // Optimize vector operations in scalar value Op on the basis that Op
5558 // is truncated to TruncVT.
5559 SDValue SystemZTargetLowering::combineTruncateExtract(
5560     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5561   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5562   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5563   // of type TruncVT.
5564   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5565       TruncVT.getSizeInBits() % 8 == 0) {
5566     SDValue Vec = Op.getOperand(0);
5567     EVT VecVT = Vec.getValueType();
5568     if (canTreatAsByteVector(VecVT)) {
5569       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5570         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5571         unsigned TruncBytes = TruncVT.getStoreSize();
5572         if (BytesPerElement % TruncBytes == 0) {
5573           // Calculate the value of Y' in the above description.  We are
5574           // splitting the original elements into Scale equal-sized pieces
5575           // and for truncation purposes want the last (least-significant)
5576           // of these pieces for IndexN.  This is easiest to do by calculating
5577           // the start index of the following element and then subtracting 1.
5578           unsigned Scale = BytesPerElement / TruncBytes;
5579           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5580 
5581           // Defer the creation of the bitcast from X to combineExtract,
5582           // which might be able to optimize the extraction.
5583           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5584                                    VecVT.getStoreSize() / TruncBytes);
5585           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5586           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5587         }
5588       }
5589     }
5590   }
5591   return SDValue();
5592 }
5593 
5594 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5595     SDNode *N, DAGCombinerInfo &DCI) const {
5596   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5597   SelectionDAG &DAG = DCI.DAG;
5598   SDValue N0 = N->getOperand(0);
5599   EVT VT = N->getValueType(0);
5600   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5601     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5602     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5603     if (TrueOp && FalseOp) {
5604       SDLoc DL(N0);
5605       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5606                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5607                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5608       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5609       // If N0 has multiple uses, change other uses as well.
5610       if (!N0.hasOneUse()) {
5611         SDValue TruncSelect =
5612           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5613         DCI.CombineTo(N0.getNode(), TruncSelect);
5614       }
5615       return NewSelect;
5616     }
5617   }
5618   return SDValue();
5619 }
5620 
5621 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5622     SDNode *N, DAGCombinerInfo &DCI) const {
5623   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5624   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5625   // into (select_cc LHS, RHS, -1, 0, COND)
5626   SelectionDAG &DAG = DCI.DAG;
5627   SDValue N0 = N->getOperand(0);
5628   EVT VT = N->getValueType(0);
5629   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5630   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5631     N0 = N0.getOperand(0);
5632   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5633     SDLoc DL(N0);
5634     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5635                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5636                       N0.getOperand(2) };
5637     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5638   }
5639   return SDValue();
5640 }
5641 
5642 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5643     SDNode *N, DAGCombinerInfo &DCI) const {
5644   // Convert (sext (ashr (shl X, C1), C2)) to
5645   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5646   // cheap as narrower ones.
5647   SelectionDAG &DAG = DCI.DAG;
5648   SDValue N0 = N->getOperand(0);
5649   EVT VT = N->getValueType(0);
5650   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5651     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5652     SDValue Inner = N0.getOperand(0);
5653     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5654       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5655         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5656         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5657         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5658         EVT ShiftVT = N0.getOperand(1).getValueType();
5659         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5660                                   Inner.getOperand(0));
5661         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5662                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5663                                                   ShiftVT));
5664         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5665                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5666       }
5667     }
5668   }
5669   return SDValue();
5670 }
5671 
5672 SDValue SystemZTargetLowering::combineMERGE(
5673     SDNode *N, DAGCombinerInfo &DCI) const {
5674   SelectionDAG &DAG = DCI.DAG;
5675   unsigned Opcode = N->getOpcode();
5676   SDValue Op0 = N->getOperand(0);
5677   SDValue Op1 = N->getOperand(1);
5678   if (Op0.getOpcode() == ISD::BITCAST)
5679     Op0 = Op0.getOperand(0);
5680   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5681     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5682     // for v4f32.
5683     if (Op1 == N->getOperand(0))
5684       return Op1;
5685     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5686     EVT VT = Op1.getValueType();
5687     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5688     if (ElemBytes <= 4) {
5689       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5690                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5691       EVT InVT = VT.changeVectorElementTypeToInteger();
5692       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5693                                    SystemZ::VectorBytes / ElemBytes / 2);
5694       if (VT != InVT) {
5695         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5696         DCI.AddToWorklist(Op1.getNode());
5697       }
5698       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5699       DCI.AddToWorklist(Op.getNode());
5700       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5701     }
5702   }
5703   return SDValue();
5704 }
5705 
5706 SDValue SystemZTargetLowering::combineLOAD(
5707     SDNode *N, DAGCombinerInfo &DCI) const {
5708   SelectionDAG &DAG = DCI.DAG;
5709   EVT LdVT = N->getValueType(0);
5710   if (LdVT.isVector() || LdVT.isInteger())
5711     return SDValue();
5712   // Transform a scalar load that is REPLICATEd as well as having other
5713   // use(s) to the form where the other use(s) use the first element of the
5714   // REPLICATE instead of the load. Otherwise instruction selection will not
5715   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5716   // point loads.
5717 
5718   SDValue Replicate;
5719   SmallVector<SDNode*, 8> OtherUses;
5720   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5721        UI != UE; ++UI) {
5722     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5723       if (Replicate)
5724         return SDValue(); // Should never happen
5725       Replicate = SDValue(*UI, 0);
5726     }
5727     else if (UI.getUse().getResNo() == 0)
5728       OtherUses.push_back(*UI);
5729   }
5730   if (!Replicate || OtherUses.empty())
5731     return SDValue();
5732 
5733   SDLoc DL(N);
5734   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5735                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5736   // Update uses of the loaded Value while preserving old chains.
5737   for (SDNode *U : OtherUses) {
5738     SmallVector<SDValue, 8> Ops;
5739     for (SDValue Op : U->ops())
5740       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5741     DAG.UpdateNodeOperands(U, Ops);
5742   }
5743   return SDValue(N, 0);
5744 }
5745 
5746 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5747   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5748     return true;
5749   if (Subtarget.hasVectorEnhancements2())
5750     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5751       return true;
5752   return false;
5753 }
5754 
5755 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5756   if (!VT.isVector() || !VT.isSimple() ||
5757       VT.getSizeInBits() != 128 ||
5758       VT.getScalarSizeInBits() % 8 != 0)
5759     return false;
5760 
5761   unsigned NumElts = VT.getVectorNumElements();
5762   for (unsigned i = 0; i < NumElts; ++i) {
5763     if (M[i] < 0) continue; // ignore UNDEF indices
5764     if ((unsigned) M[i] != NumElts - 1 - i)
5765       return false;
5766   }
5767 
5768   return true;
5769 }
5770 
5771 SDValue SystemZTargetLowering::combineSTORE(
5772     SDNode *N, DAGCombinerInfo &DCI) const {
5773   SelectionDAG &DAG = DCI.DAG;
5774   auto *SN = cast<StoreSDNode>(N);
5775   auto &Op1 = N->getOperand(1);
5776   EVT MemVT = SN->getMemoryVT();
5777   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5778   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5779   // If X has wider elements then convert it to:
5780   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5781   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5782     if (SDValue Value =
5783             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5784       DCI.AddToWorklist(Value.getNode());
5785 
5786       // Rewrite the store with the new form of stored value.
5787       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5788                                SN->getBasePtr(), SN->getMemoryVT(),
5789                                SN->getMemOperand());
5790     }
5791   }
5792   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5793   if (!SN->isTruncatingStore() &&
5794       Op1.getOpcode() == ISD::BSWAP &&
5795       Op1.getNode()->hasOneUse() &&
5796       canLoadStoreByteSwapped(Op1.getValueType())) {
5797 
5798       SDValue BSwapOp = Op1.getOperand(0);
5799 
5800       if (BSwapOp.getValueType() == MVT::i16)
5801         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5802 
5803       SDValue Ops[] = {
5804         N->getOperand(0), BSwapOp, N->getOperand(2)
5805       };
5806 
5807       return
5808         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5809                                 Ops, MemVT, SN->getMemOperand());
5810     }
5811   // Combine STORE (element-swap) into VSTER
5812   if (!SN->isTruncatingStore() &&
5813       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5814       Op1.getNode()->hasOneUse() &&
5815       Subtarget.hasVectorEnhancements2()) {
5816     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5817     ArrayRef<int> ShuffleMask = SVN->getMask();
5818     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5819       SDValue Ops[] = {
5820         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5821       };
5822 
5823       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5824                                      DAG.getVTList(MVT::Other),
5825                                      Ops, MemVT, SN->getMemOperand());
5826     }
5827   }
5828 
5829   return SDValue();
5830 }
5831 
5832 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5833     SDNode *N, DAGCombinerInfo &DCI) const {
5834   SelectionDAG &DAG = DCI.DAG;
5835   // Combine element-swap (LOAD) into VLER
5836   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5837       N->getOperand(0).hasOneUse() &&
5838       Subtarget.hasVectorEnhancements2()) {
5839     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5840     ArrayRef<int> ShuffleMask = SVN->getMask();
5841     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5842       SDValue Load = N->getOperand(0);
5843       LoadSDNode *LD = cast<LoadSDNode>(Load);
5844 
5845       // Create the element-swapping load.
5846       SDValue Ops[] = {
5847         LD->getChain(),    // Chain
5848         LD->getBasePtr()   // Ptr
5849       };
5850       SDValue ESLoad =
5851         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5852                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5853                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5854 
5855       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5856       // by the load dead.
5857       DCI.CombineTo(N, ESLoad);
5858 
5859       // Next, combine the load away, we give it a bogus result value but a real
5860       // chain result.  The result value is dead because the shuffle is dead.
5861       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5862 
5863       // Return N so it doesn't get rechecked!
5864       return SDValue(N, 0);
5865     }
5866   }
5867 
5868   return SDValue();
5869 }
5870 
5871 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5872     SDNode *N, DAGCombinerInfo &DCI) const {
5873   SelectionDAG &DAG = DCI.DAG;
5874 
5875   if (!Subtarget.hasVector())
5876     return SDValue();
5877 
5878   // Look through bitcasts that retain the number of vector elements.
5879   SDValue Op = N->getOperand(0);
5880   if (Op.getOpcode() == ISD::BITCAST &&
5881       Op.getValueType().isVector() &&
5882       Op.getOperand(0).getValueType().isVector() &&
5883       Op.getValueType().getVectorNumElements() ==
5884       Op.getOperand(0).getValueType().getVectorNumElements())
5885     Op = Op.getOperand(0);
5886 
5887   // Pull BSWAP out of a vector extraction.
5888   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5889     EVT VecVT = Op.getValueType();
5890     EVT EltVT = VecVT.getVectorElementType();
5891     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5892                      Op.getOperand(0), N->getOperand(1));
5893     DCI.AddToWorklist(Op.getNode());
5894     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5895     if (EltVT != N->getValueType(0)) {
5896       DCI.AddToWorklist(Op.getNode());
5897       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5898     }
5899     return Op;
5900   }
5901 
5902   // Try to simplify a vector extraction.
5903   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5904     SDValue Op0 = N->getOperand(0);
5905     EVT VecVT = Op0.getValueType();
5906     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5907                           IndexN->getZExtValue(), DCI, false);
5908   }
5909   return SDValue();
5910 }
5911 
5912 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5913     SDNode *N, DAGCombinerInfo &DCI) const {
5914   SelectionDAG &DAG = DCI.DAG;
5915   // (join_dwords X, X) == (replicate X)
5916   if (N->getOperand(0) == N->getOperand(1))
5917     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5918                        N->getOperand(0));
5919   return SDValue();
5920 }
5921 
5922 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
5923   SDValue Chain1 = N1->getOperand(0);
5924   SDValue Chain2 = N2->getOperand(0);
5925 
5926   // Trivial case: both nodes take the same chain.
5927   if (Chain1 == Chain2)
5928     return Chain1;
5929 
5930   // FIXME - we could handle more complex cases via TokenFactor,
5931   // assuming we can verify that this would not create a cycle.
5932   return SDValue();
5933 }
5934 
5935 SDValue SystemZTargetLowering::combineFP_ROUND(
5936     SDNode *N, DAGCombinerInfo &DCI) const {
5937 
5938   if (!Subtarget.hasVector())
5939     return SDValue();
5940 
5941   // (fpround (extract_vector_elt X 0))
5942   // (fpround (extract_vector_elt X 1)) ->
5943   // (extract_vector_elt (VROUND X) 0)
5944   // (extract_vector_elt (VROUND X) 2)
5945   //
5946   // This is a special case since the target doesn't really support v2f32s.
5947   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
5948   SelectionDAG &DAG = DCI.DAG;
5949   SDValue Op0 = N->getOperand(OpNo);
5950   if (N->getValueType(0) == MVT::f32 &&
5951       Op0.hasOneUse() &&
5952       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5953       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5954       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5955       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5956     SDValue Vec = Op0.getOperand(0);
5957     for (auto *U : Vec->uses()) {
5958       if (U != Op0.getNode() &&
5959           U->hasOneUse() &&
5960           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5961           U->getOperand(0) == Vec &&
5962           U->getOperand(1).getOpcode() == ISD::Constant &&
5963           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5964         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5965         if (OtherRound.getOpcode() == N->getOpcode() &&
5966             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
5967             OtherRound.getValueType() == MVT::f32) {
5968           SDValue VRound, Chain;
5969           if (N->isStrictFPOpcode()) {
5970             Chain = MergeInputChains(N, OtherRound.getNode());
5971             if (!Chain)
5972               continue;
5973             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
5974                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
5975             Chain = VRound.getValue(1);
5976           } else
5977             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5978                                  MVT::v4f32, Vec);
5979           DCI.AddToWorklist(VRound.getNode());
5980           SDValue Extract1 =
5981             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5982                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5983           DCI.AddToWorklist(Extract1.getNode());
5984           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5985           if (Chain)
5986             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
5987           SDValue Extract0 =
5988             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5989                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5990           if (Chain)
5991             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
5992                                N->getVTList(), Extract0, Chain);
5993           return Extract0;
5994         }
5995       }
5996     }
5997   }
5998   return SDValue();
5999 }
6000 
6001 SDValue SystemZTargetLowering::combineFP_EXTEND(
6002     SDNode *N, DAGCombinerInfo &DCI) const {
6003 
6004   if (!Subtarget.hasVector())
6005     return SDValue();
6006 
6007   // (fpextend (extract_vector_elt X 0))
6008   // (fpextend (extract_vector_elt X 2)) ->
6009   // (extract_vector_elt (VEXTEND X) 0)
6010   // (extract_vector_elt (VEXTEND X) 1)
6011   //
6012   // This is a special case since the target doesn't really support v2f32s.
6013   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6014   SelectionDAG &DAG = DCI.DAG;
6015   SDValue Op0 = N->getOperand(OpNo);
6016   if (N->getValueType(0) == MVT::f64 &&
6017       Op0.hasOneUse() &&
6018       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6019       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6020       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6021       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6022     SDValue Vec = Op0.getOperand(0);
6023     for (auto *U : Vec->uses()) {
6024       if (U != Op0.getNode() &&
6025           U->hasOneUse() &&
6026           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6027           U->getOperand(0) == Vec &&
6028           U->getOperand(1).getOpcode() == ISD::Constant &&
6029           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6030         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6031         if (OtherExtend.getOpcode() == N->getOpcode() &&
6032             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6033             OtherExtend.getValueType() == MVT::f64) {
6034           SDValue VExtend, Chain;
6035           if (N->isStrictFPOpcode()) {
6036             Chain = MergeInputChains(N, OtherExtend.getNode());
6037             if (!Chain)
6038               continue;
6039             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6040                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6041             Chain = VExtend.getValue(1);
6042           } else
6043             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6044                                   MVT::v2f64, Vec);
6045           DCI.AddToWorklist(VExtend.getNode());
6046           SDValue Extract1 =
6047             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6048                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6049           DCI.AddToWorklist(Extract1.getNode());
6050           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6051           if (Chain)
6052             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6053           SDValue Extract0 =
6054             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6055                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6056           if (Chain)
6057             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6058                                N->getVTList(), Extract0, Chain);
6059           return Extract0;
6060         }
6061       }
6062     }
6063   }
6064   return SDValue();
6065 }
6066 
6067 SDValue SystemZTargetLowering::combineBSWAP(
6068     SDNode *N, DAGCombinerInfo &DCI) const {
6069   SelectionDAG &DAG = DCI.DAG;
6070   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6071   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6072       N->getOperand(0).hasOneUse() &&
6073       canLoadStoreByteSwapped(N->getValueType(0))) {
6074       SDValue Load = N->getOperand(0);
6075       LoadSDNode *LD = cast<LoadSDNode>(Load);
6076 
6077       // Create the byte-swapping load.
6078       SDValue Ops[] = {
6079         LD->getChain(),    // Chain
6080         LD->getBasePtr()   // Ptr
6081       };
6082       EVT LoadVT = N->getValueType(0);
6083       if (LoadVT == MVT::i16)
6084         LoadVT = MVT::i32;
6085       SDValue BSLoad =
6086         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6087                                 DAG.getVTList(LoadVT, MVT::Other),
6088                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6089 
6090       // If this is an i16 load, insert the truncate.
6091       SDValue ResVal = BSLoad;
6092       if (N->getValueType(0) == MVT::i16)
6093         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6094 
6095       // First, combine the bswap away.  This makes the value produced by the
6096       // load dead.
6097       DCI.CombineTo(N, ResVal);
6098 
6099       // Next, combine the load away, we give it a bogus result value but a real
6100       // chain result.  The result value is dead because the bswap is dead.
6101       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6102 
6103       // Return N so it doesn't get rechecked!
6104       return SDValue(N, 0);
6105     }
6106 
6107   // Look through bitcasts that retain the number of vector elements.
6108   SDValue Op = N->getOperand(0);
6109   if (Op.getOpcode() == ISD::BITCAST &&
6110       Op.getValueType().isVector() &&
6111       Op.getOperand(0).getValueType().isVector() &&
6112       Op.getValueType().getVectorNumElements() ==
6113       Op.getOperand(0).getValueType().getVectorNumElements())
6114     Op = Op.getOperand(0);
6115 
6116   // Push BSWAP into a vector insertion if at least one side then simplifies.
6117   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6118     SDValue Vec = Op.getOperand(0);
6119     SDValue Elt = Op.getOperand(1);
6120     SDValue Idx = Op.getOperand(2);
6121 
6122     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6123         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6124         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6125         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6126         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6127          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6128       EVT VecVT = N->getValueType(0);
6129       EVT EltVT = N->getValueType(0).getVectorElementType();
6130       if (VecVT != Vec.getValueType()) {
6131         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6132         DCI.AddToWorklist(Vec.getNode());
6133       }
6134       if (EltVT != Elt.getValueType()) {
6135         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6136         DCI.AddToWorklist(Elt.getNode());
6137       }
6138       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6139       DCI.AddToWorklist(Vec.getNode());
6140       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6141       DCI.AddToWorklist(Elt.getNode());
6142       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6143                          Vec, Elt, Idx);
6144     }
6145   }
6146 
6147   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6148   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6149   if (SV && Op.hasOneUse()) {
6150     SDValue Op0 = Op.getOperand(0);
6151     SDValue Op1 = Op.getOperand(1);
6152 
6153     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6154         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6155         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6156         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6157       EVT VecVT = N->getValueType(0);
6158       if (VecVT != Op0.getValueType()) {
6159         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6160         DCI.AddToWorklist(Op0.getNode());
6161       }
6162       if (VecVT != Op1.getValueType()) {
6163         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6164         DCI.AddToWorklist(Op1.getNode());
6165       }
6166       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6167       DCI.AddToWorklist(Op0.getNode());
6168       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6169       DCI.AddToWorklist(Op1.getNode());
6170       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6171     }
6172   }
6173 
6174   return SDValue();
6175 }
6176 
6177 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6178   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6179   // set by the CCReg instruction using the CCValid / CCMask masks,
6180   // If the CCReg instruction is itself a ICMP testing the condition
6181   // code set by some other instruction, see whether we can directly
6182   // use that condition code.
6183 
6184   // Verify that we have an ICMP against some constant.
6185   if (CCValid != SystemZ::CCMASK_ICMP)
6186     return false;
6187   auto *ICmp = CCReg.getNode();
6188   if (ICmp->getOpcode() != SystemZISD::ICMP)
6189     return false;
6190   auto *CompareLHS = ICmp->getOperand(0).getNode();
6191   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6192   if (!CompareRHS)
6193     return false;
6194 
6195   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6196   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6197     // Verify that we have an appropriate mask for a EQ or NE comparison.
6198     bool Invert = false;
6199     if (CCMask == SystemZ::CCMASK_CMP_NE)
6200       Invert = !Invert;
6201     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6202       return false;
6203 
6204     // Verify that the ICMP compares against one of select values.
6205     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6206     if (!TrueVal)
6207       return false;
6208     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6209     if (!FalseVal)
6210       return false;
6211     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6212       Invert = !Invert;
6213     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6214       return false;
6215 
6216     // Compute the effective CC mask for the new branch or select.
6217     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6218     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6219     if (!NewCCValid || !NewCCMask)
6220       return false;
6221     CCValid = NewCCValid->getZExtValue();
6222     CCMask = NewCCMask->getZExtValue();
6223     if (Invert)
6224       CCMask ^= CCValid;
6225 
6226     // Return the updated CCReg link.
6227     CCReg = CompareLHS->getOperand(4);
6228     return true;
6229   }
6230 
6231   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6232   if (CompareLHS->getOpcode() == ISD::SRA) {
6233     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6234     if (!SRACount || SRACount->getZExtValue() != 30)
6235       return false;
6236     auto *SHL = CompareLHS->getOperand(0).getNode();
6237     if (SHL->getOpcode() != ISD::SHL)
6238       return false;
6239     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6240     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6241       return false;
6242     auto *IPM = SHL->getOperand(0).getNode();
6243     if (IPM->getOpcode() != SystemZISD::IPM)
6244       return false;
6245 
6246     // Avoid introducing CC spills (because SRA would clobber CC).
6247     if (!CompareLHS->hasOneUse())
6248       return false;
6249     // Verify that the ICMP compares against zero.
6250     if (CompareRHS->getZExtValue() != 0)
6251       return false;
6252 
6253     // Compute the effective CC mask for the new branch or select.
6254     switch (CCMask) {
6255     case SystemZ::CCMASK_CMP_EQ: break;
6256     case SystemZ::CCMASK_CMP_NE: break;
6257     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6258     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6259     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6260     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6261     default: return false;
6262     }
6263 
6264     // Return the updated CCReg link.
6265     CCReg = IPM->getOperand(0);
6266     return true;
6267   }
6268 
6269   return false;
6270 }
6271 
6272 SDValue SystemZTargetLowering::combineBR_CCMASK(
6273     SDNode *N, DAGCombinerInfo &DCI) const {
6274   SelectionDAG &DAG = DCI.DAG;
6275 
6276   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6277   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6278   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6279   if (!CCValid || !CCMask)
6280     return SDValue();
6281 
6282   int CCValidVal = CCValid->getZExtValue();
6283   int CCMaskVal = CCMask->getZExtValue();
6284   SDValue Chain = N->getOperand(0);
6285   SDValue CCReg = N->getOperand(4);
6286 
6287   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6288     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6289                        Chain,
6290                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6291                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6292                        N->getOperand(3), CCReg);
6293   return SDValue();
6294 }
6295 
6296 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6297     SDNode *N, DAGCombinerInfo &DCI) const {
6298   SelectionDAG &DAG = DCI.DAG;
6299 
6300   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6301   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6302   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6303   if (!CCValid || !CCMask)
6304     return SDValue();
6305 
6306   int CCValidVal = CCValid->getZExtValue();
6307   int CCMaskVal = CCMask->getZExtValue();
6308   SDValue CCReg = N->getOperand(4);
6309 
6310   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6311     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6312                        N->getOperand(0), N->getOperand(1),
6313                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6314                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6315                        CCReg);
6316   return SDValue();
6317 }
6318 
6319 
6320 SDValue SystemZTargetLowering::combineGET_CCMASK(
6321     SDNode *N, DAGCombinerInfo &DCI) const {
6322 
6323   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6324   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6325   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6326   if (!CCValid || !CCMask)
6327     return SDValue();
6328   int CCValidVal = CCValid->getZExtValue();
6329   int CCMaskVal = CCMask->getZExtValue();
6330 
6331   SDValue Select = N->getOperand(0);
6332   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6333     return SDValue();
6334 
6335   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6336   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6337   if (!SelectCCValid || !SelectCCMask)
6338     return SDValue();
6339   int SelectCCValidVal = SelectCCValid->getZExtValue();
6340   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6341 
6342   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6343   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6344   if (!TrueVal || !FalseVal)
6345     return SDValue();
6346   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6347     ;
6348   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6349     SelectCCMaskVal ^= SelectCCValidVal;
6350   else
6351     return SDValue();
6352 
6353   if (SelectCCValidVal & ~CCValidVal)
6354     return SDValue();
6355   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6356     return SDValue();
6357 
6358   return Select->getOperand(4);
6359 }
6360 
6361 SDValue SystemZTargetLowering::combineIntDIVREM(
6362     SDNode *N, DAGCombinerInfo &DCI) const {
6363   SelectionDAG &DAG = DCI.DAG;
6364   EVT VT = N->getValueType(0);
6365   // In the case where the divisor is a vector of constants a cheaper
6366   // sequence of instructions can replace the divide. BuildSDIV is called to
6367   // do this during DAG combining, but it only succeeds when it can build a
6368   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6369   // since it is not Legal but Custom it can only happen before
6370   // legalization. Therefore we must scalarize this early before Combine
6371   // 1. For widened vectors, this is already the result of type legalization.
6372   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6373       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6374     return DAG.UnrollVectorOp(N);
6375   return SDValue();
6376 }
6377 
6378 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6379   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6380     return N->getOperand(0);
6381   return N;
6382 }
6383 
6384 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6385                                                  DAGCombinerInfo &DCI) const {
6386   switch(N->getOpcode()) {
6387   default: break;
6388   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6389   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6390   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6391   case SystemZISD::MERGE_HIGH:
6392   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6393   case ISD::LOAD:               return combineLOAD(N, DCI);
6394   case ISD::STORE:              return combineSTORE(N, DCI);
6395   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6396   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6397   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6398   case ISD::STRICT_FP_ROUND:
6399   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6400   case ISD::STRICT_FP_EXTEND:
6401   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6402   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6403   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6404   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6405   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6406   case ISD::SDIV:
6407   case ISD::UDIV:
6408   case ISD::SREM:
6409   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6410   }
6411 
6412   return SDValue();
6413 }
6414 
6415 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6416 // are for Op.
6417 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6418                                     unsigned OpNo) {
6419   EVT VT = Op.getValueType();
6420   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6421   APInt SrcDemE;
6422   unsigned Opcode = Op.getOpcode();
6423   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6424     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6425     switch (Id) {
6426     case Intrinsic::s390_vpksh:   // PACKS
6427     case Intrinsic::s390_vpksf:
6428     case Intrinsic::s390_vpksg:
6429     case Intrinsic::s390_vpkshs:  // PACKS_CC
6430     case Intrinsic::s390_vpksfs:
6431     case Intrinsic::s390_vpksgs:
6432     case Intrinsic::s390_vpklsh:  // PACKLS
6433     case Intrinsic::s390_vpklsf:
6434     case Intrinsic::s390_vpklsg:
6435     case Intrinsic::s390_vpklshs: // PACKLS_CC
6436     case Intrinsic::s390_vpklsfs:
6437     case Intrinsic::s390_vpklsgs:
6438       // VECTOR PACK truncates the elements of two source vectors into one.
6439       SrcDemE = DemandedElts;
6440       if (OpNo == 2)
6441         SrcDemE.lshrInPlace(NumElts / 2);
6442       SrcDemE = SrcDemE.trunc(NumElts / 2);
6443       break;
6444       // VECTOR UNPACK extends half the elements of the source vector.
6445     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6446     case Intrinsic::s390_vuphh:
6447     case Intrinsic::s390_vuphf:
6448     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6449     case Intrinsic::s390_vuplhh:
6450     case Intrinsic::s390_vuplhf:
6451       SrcDemE = APInt(NumElts * 2, 0);
6452       SrcDemE.insertBits(DemandedElts, 0);
6453       break;
6454     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6455     case Intrinsic::s390_vuplhw:
6456     case Intrinsic::s390_vuplf:
6457     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6458     case Intrinsic::s390_vupllh:
6459     case Intrinsic::s390_vupllf:
6460       SrcDemE = APInt(NumElts * 2, 0);
6461       SrcDemE.insertBits(DemandedElts, NumElts);
6462       break;
6463     case Intrinsic::s390_vpdi: {
6464       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6465       SrcDemE = APInt(NumElts, 0);
6466       if (!DemandedElts[OpNo - 1])
6467         break;
6468       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6469       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6470       // Demand input element 0 or 1, given by the mask bit value.
6471       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6472       break;
6473     }
6474     case Intrinsic::s390_vsldb: {
6475       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6476       assert(VT == MVT::v16i8 && "Unexpected type.");
6477       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6478       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6479       unsigned NumSrc0Els = 16 - FirstIdx;
6480       SrcDemE = APInt(NumElts, 0);
6481       if (OpNo == 1) {
6482         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6483         SrcDemE.insertBits(DemEls, FirstIdx);
6484       } else {
6485         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6486         SrcDemE.insertBits(DemEls, 0);
6487       }
6488       break;
6489     }
6490     case Intrinsic::s390_vperm:
6491       SrcDemE = APInt(NumElts, 1);
6492       break;
6493     default:
6494       llvm_unreachable("Unhandled intrinsic.");
6495       break;
6496     }
6497   } else {
6498     switch (Opcode) {
6499     case SystemZISD::JOIN_DWORDS:
6500       // Scalar operand.
6501       SrcDemE = APInt(1, 1);
6502       break;
6503     case SystemZISD::SELECT_CCMASK:
6504       SrcDemE = DemandedElts;
6505       break;
6506     default:
6507       llvm_unreachable("Unhandled opcode.");
6508       break;
6509     }
6510   }
6511   return SrcDemE;
6512 }
6513 
6514 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6515                                   const APInt &DemandedElts,
6516                                   const SelectionDAG &DAG, unsigned Depth,
6517                                   unsigned OpNo) {
6518   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6519   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6520   KnownBits LHSKnown =
6521       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6522   KnownBits RHSKnown =
6523       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6524   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6525   Known.One = LHSKnown.One & RHSKnown.One;
6526 }
6527 
6528 void
6529 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6530                                                      KnownBits &Known,
6531                                                      const APInt &DemandedElts,
6532                                                      const SelectionDAG &DAG,
6533                                                      unsigned Depth) const {
6534   Known.resetAll();
6535 
6536   // Intrinsic CC result is returned in the two low bits.
6537   unsigned tmp0, tmp1; // not used
6538   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6539     Known.Zero.setBitsFrom(2);
6540     return;
6541   }
6542   EVT VT = Op.getValueType();
6543   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6544     return;
6545   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6546           "KnownBits does not match VT in bitwidth");
6547   assert ((!VT.isVector() ||
6548            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6549           "DemandedElts does not match VT number of elements");
6550   unsigned BitWidth = Known.getBitWidth();
6551   unsigned Opcode = Op.getOpcode();
6552   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6553     bool IsLogical = false;
6554     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6555     switch (Id) {
6556     case Intrinsic::s390_vpksh:   // PACKS
6557     case Intrinsic::s390_vpksf:
6558     case Intrinsic::s390_vpksg:
6559     case Intrinsic::s390_vpkshs:  // PACKS_CC
6560     case Intrinsic::s390_vpksfs:
6561     case Intrinsic::s390_vpksgs:
6562     case Intrinsic::s390_vpklsh:  // PACKLS
6563     case Intrinsic::s390_vpklsf:
6564     case Intrinsic::s390_vpklsg:
6565     case Intrinsic::s390_vpklshs: // PACKLS_CC
6566     case Intrinsic::s390_vpklsfs:
6567     case Intrinsic::s390_vpklsgs:
6568     case Intrinsic::s390_vpdi:
6569     case Intrinsic::s390_vsldb:
6570     case Intrinsic::s390_vperm:
6571       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6572       break;
6573     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6574     case Intrinsic::s390_vuplhh:
6575     case Intrinsic::s390_vuplhf:
6576     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6577     case Intrinsic::s390_vupllh:
6578     case Intrinsic::s390_vupllf:
6579       IsLogical = true;
6580       LLVM_FALLTHROUGH;
6581     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6582     case Intrinsic::s390_vuphh:
6583     case Intrinsic::s390_vuphf:
6584     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6585     case Intrinsic::s390_vuplhw:
6586     case Intrinsic::s390_vuplf: {
6587       SDValue SrcOp = Op.getOperand(1);
6588       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6589       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6590       if (IsLogical) {
6591         Known = Known.zext(BitWidth, true);
6592       } else
6593         Known = Known.sext(BitWidth);
6594       break;
6595     }
6596     default:
6597       break;
6598     }
6599   } else {
6600     switch (Opcode) {
6601     case SystemZISD::JOIN_DWORDS:
6602     case SystemZISD::SELECT_CCMASK:
6603       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6604       break;
6605     case SystemZISD::REPLICATE: {
6606       SDValue SrcOp = Op.getOperand(0);
6607       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6608       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6609         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6610       break;
6611     }
6612     default:
6613       break;
6614     }
6615   }
6616 
6617   // Known has the width of the source operand(s). Adjust if needed to match
6618   // the passed bitwidth.
6619   if (Known.getBitWidth() != BitWidth)
6620     Known = Known.zextOrTrunc(BitWidth, false);
6621 }
6622 
6623 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6624                                         const SelectionDAG &DAG, unsigned Depth,
6625                                         unsigned OpNo) {
6626   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6627   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6628   if (LHS == 1) return 1; // Early out.
6629   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6630   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6631   if (RHS == 1) return 1; // Early out.
6632   unsigned Common = std::min(LHS, RHS);
6633   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6634   EVT VT = Op.getValueType();
6635   unsigned VTBits = VT.getScalarSizeInBits();
6636   if (SrcBitWidth > VTBits) { // PACK
6637     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6638     if (Common > SrcExtraBits)
6639       return (Common - SrcExtraBits);
6640     return 1;
6641   }
6642   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6643   return Common;
6644 }
6645 
6646 unsigned
6647 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6648     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6649     unsigned Depth) const {
6650   if (Op.getResNo() != 0)
6651     return 1;
6652   unsigned Opcode = Op.getOpcode();
6653   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6654     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6655     switch (Id) {
6656     case Intrinsic::s390_vpksh:   // PACKS
6657     case Intrinsic::s390_vpksf:
6658     case Intrinsic::s390_vpksg:
6659     case Intrinsic::s390_vpkshs:  // PACKS_CC
6660     case Intrinsic::s390_vpksfs:
6661     case Intrinsic::s390_vpksgs:
6662     case Intrinsic::s390_vpklsh:  // PACKLS
6663     case Intrinsic::s390_vpklsf:
6664     case Intrinsic::s390_vpklsg:
6665     case Intrinsic::s390_vpklshs: // PACKLS_CC
6666     case Intrinsic::s390_vpklsfs:
6667     case Intrinsic::s390_vpklsgs:
6668     case Intrinsic::s390_vpdi:
6669     case Intrinsic::s390_vsldb:
6670     case Intrinsic::s390_vperm:
6671       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6672     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6673     case Intrinsic::s390_vuphh:
6674     case Intrinsic::s390_vuphf:
6675     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6676     case Intrinsic::s390_vuplhw:
6677     case Intrinsic::s390_vuplf: {
6678       SDValue PackedOp = Op.getOperand(1);
6679       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6680       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6681       EVT VT = Op.getValueType();
6682       unsigned VTBits = VT.getScalarSizeInBits();
6683       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6684       return Tmp;
6685     }
6686     default:
6687       break;
6688     }
6689   } else {
6690     switch (Opcode) {
6691     case SystemZISD::SELECT_CCMASK:
6692       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6693     default:
6694       break;
6695     }
6696   }
6697 
6698   return 1;
6699 }
6700 
6701 //===----------------------------------------------------------------------===//
6702 // Custom insertion
6703 //===----------------------------------------------------------------------===//
6704 
6705 // Create a new basic block after MBB.
6706 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6707   MachineFunction &MF = *MBB->getParent();
6708   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6709   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6710   return NewMBB;
6711 }
6712 
6713 // Split MBB after MI and return the new block (the one that contains
6714 // instructions after MI).
6715 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6716                                           MachineBasicBlock *MBB) {
6717   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6718   NewMBB->splice(NewMBB->begin(), MBB,
6719                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6720   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6721   return NewMBB;
6722 }
6723 
6724 // Split MBB before MI and return the new block (the one that contains MI).
6725 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6726                                            MachineBasicBlock *MBB) {
6727   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6728   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6729   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6730   return NewMBB;
6731 }
6732 
6733 // Force base value Base into a register before MI.  Return the register.
6734 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6735                          const SystemZInstrInfo *TII) {
6736   if (Base.isReg())
6737     return Base.getReg();
6738 
6739   MachineBasicBlock *MBB = MI.getParent();
6740   MachineFunction &MF = *MBB->getParent();
6741   MachineRegisterInfo &MRI = MF.getRegInfo();
6742 
6743   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6744   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6745       .add(Base)
6746       .addImm(0)
6747       .addReg(0);
6748   return Reg;
6749 }
6750 
6751 // The CC operand of MI might be missing a kill marker because there
6752 // were multiple uses of CC, and ISel didn't know which to mark.
6753 // Figure out whether MI should have had a kill marker.
6754 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6755   // Scan forward through BB for a use/def of CC.
6756   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6757   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6758     const MachineInstr& mi = *miI;
6759     if (mi.readsRegister(SystemZ::CC))
6760       return false;
6761     if (mi.definesRegister(SystemZ::CC))
6762       break; // Should have kill-flag - update below.
6763   }
6764 
6765   // If we hit the end of the block, check whether CC is live into a
6766   // successor.
6767   if (miI == MBB->end()) {
6768     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6769       if ((*SI)->isLiveIn(SystemZ::CC))
6770         return false;
6771   }
6772 
6773   return true;
6774 }
6775 
6776 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6777 // together with other Select pseudo-opcodes into a single basic-block with
6778 // a conditional jump around it.
6779 static bool isSelectPseudo(MachineInstr &MI) {
6780   switch (MI.getOpcode()) {
6781   case SystemZ::Select32:
6782   case SystemZ::Select64:
6783   case SystemZ::SelectF32:
6784   case SystemZ::SelectF64:
6785   case SystemZ::SelectF128:
6786   case SystemZ::SelectVR32:
6787   case SystemZ::SelectVR64:
6788   case SystemZ::SelectVR128:
6789     return true;
6790 
6791   default:
6792     return false;
6793   }
6794 }
6795 
6796 // Helper function, which inserts PHI functions into SinkMBB:
6797 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6798 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6799 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6800                                  MachineBasicBlock *TrueMBB,
6801                                  MachineBasicBlock *FalseMBB,
6802                                  MachineBasicBlock *SinkMBB) {
6803   MachineFunction *MF = TrueMBB->getParent();
6804   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6805 
6806   MachineInstr *FirstMI = Selects.front();
6807   unsigned CCValid = FirstMI->getOperand(3).getImm();
6808   unsigned CCMask = FirstMI->getOperand(4).getImm();
6809 
6810   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6811 
6812   // As we are creating the PHIs, we have to be careful if there is more than
6813   // one.  Later Selects may reference the results of earlier Selects, but later
6814   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6815   // That also means that PHI construction must work forward from earlier to
6816   // later, and that the code must maintain a mapping from earlier PHI's
6817   // destination registers, and the registers that went into the PHI.
6818   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6819 
6820   for (auto MI : Selects) {
6821     Register DestReg = MI->getOperand(0).getReg();
6822     Register TrueReg = MI->getOperand(1).getReg();
6823     Register FalseReg = MI->getOperand(2).getReg();
6824 
6825     // If this Select we are generating is the opposite condition from
6826     // the jump we generated, then we have to swap the operands for the
6827     // PHI that is going to be generated.
6828     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6829       std::swap(TrueReg, FalseReg);
6830 
6831     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6832       TrueReg = RegRewriteTable[TrueReg].first;
6833 
6834     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6835       FalseReg = RegRewriteTable[FalseReg].second;
6836 
6837     DebugLoc DL = MI->getDebugLoc();
6838     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6839       .addReg(TrueReg).addMBB(TrueMBB)
6840       .addReg(FalseReg).addMBB(FalseMBB);
6841 
6842     // Add this PHI to the rewrite table.
6843     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6844   }
6845 
6846   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6847 }
6848 
6849 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6850 MachineBasicBlock *
6851 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6852                                   MachineBasicBlock *MBB) const {
6853   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6854   const SystemZInstrInfo *TII =
6855       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6856 
6857   unsigned CCValid = MI.getOperand(3).getImm();
6858   unsigned CCMask = MI.getOperand(4).getImm();
6859 
6860   // If we have a sequence of Select* pseudo instructions using the
6861   // same condition code value, we want to expand all of them into
6862   // a single pair of basic blocks using the same condition.
6863   SmallVector<MachineInstr*, 8> Selects;
6864   SmallVector<MachineInstr*, 8> DbgValues;
6865   Selects.push_back(&MI);
6866   unsigned Count = 0;
6867   for (MachineBasicBlock::iterator NextMIIt =
6868          std::next(MachineBasicBlock::iterator(MI));
6869        NextMIIt != MBB->end(); ++NextMIIt) {
6870     if (NextMIIt->definesRegister(SystemZ::CC))
6871       break;
6872     if (isSelectPseudo(*NextMIIt)) {
6873       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
6874              "Bad CCValid operands since CC was not redefined.");
6875       if (NextMIIt->getOperand(4).getImm() == CCMask ||
6876           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
6877         Selects.push_back(&*NextMIIt);
6878         continue;
6879       }
6880       break;
6881     }
6882     bool User = false;
6883     for (auto SelMI : Selects)
6884       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
6885         User = true;
6886         break;
6887       }
6888     if (NextMIIt->isDebugInstr()) {
6889       if (User) {
6890         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
6891         DbgValues.push_back(&*NextMIIt);
6892       }
6893     }
6894     else if (User || ++Count > 20)
6895       break;
6896   }
6897 
6898   MachineInstr *LastMI = Selects.back();
6899   bool CCKilled =
6900       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
6901   MachineBasicBlock *StartMBB = MBB;
6902   MachineBasicBlock *JoinMBB  = splitBlockAfter(LastMI, MBB);
6903   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6904 
6905   // Unless CC was killed in the last Select instruction, mark it as
6906   // live-in to both FalseMBB and JoinMBB.
6907   if (!CCKilled) {
6908     FalseMBB->addLiveIn(SystemZ::CC);
6909     JoinMBB->addLiveIn(SystemZ::CC);
6910   }
6911 
6912   //  StartMBB:
6913   //   BRC CCMask, JoinMBB
6914   //   # fallthrough to FalseMBB
6915   MBB = StartMBB;
6916   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
6917     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6918   MBB->addSuccessor(JoinMBB);
6919   MBB->addSuccessor(FalseMBB);
6920 
6921   //  FalseMBB:
6922   //   # fallthrough to JoinMBB
6923   MBB = FalseMBB;
6924   MBB->addSuccessor(JoinMBB);
6925 
6926   //  JoinMBB:
6927   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6928   //  ...
6929   MBB = JoinMBB;
6930   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
6931   for (auto SelMI : Selects)
6932     SelMI->eraseFromParent();
6933 
6934   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
6935   for (auto DbgMI : DbgValues)
6936     MBB->splice(InsertPos, StartMBB, DbgMI);
6937 
6938   return JoinMBB;
6939 }
6940 
6941 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6942 // StoreOpcode is the store to use and Invert says whether the store should
6943 // happen when the condition is false rather than true.  If a STORE ON
6944 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6945 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6946                                                         MachineBasicBlock *MBB,
6947                                                         unsigned StoreOpcode,
6948                                                         unsigned STOCOpcode,
6949                                                         bool Invert) const {
6950   const SystemZInstrInfo *TII =
6951       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6952 
6953   Register SrcReg = MI.getOperand(0).getReg();
6954   MachineOperand Base = MI.getOperand(1);
6955   int64_t Disp = MI.getOperand(2).getImm();
6956   Register IndexReg = MI.getOperand(3).getReg();
6957   unsigned CCValid = MI.getOperand(4).getImm();
6958   unsigned CCMask = MI.getOperand(5).getImm();
6959   DebugLoc DL = MI.getDebugLoc();
6960 
6961   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6962 
6963   // Use STOCOpcode if possible.  We could use different store patterns in
6964   // order to avoid matching the index register, but the performance trade-offs
6965   // might be more complicated in that case.
6966   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6967     if (Invert)
6968       CCMask ^= CCValid;
6969 
6970     // ISel pattern matching also adds a load memory operand of the same
6971     // address, so take special care to find the storing memory operand.
6972     MachineMemOperand *MMO = nullptr;
6973     for (auto *I : MI.memoperands())
6974       if (I->isStore()) {
6975           MMO = I;
6976           break;
6977         }
6978 
6979     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6980       .addReg(SrcReg)
6981       .add(Base)
6982       .addImm(Disp)
6983       .addImm(CCValid)
6984       .addImm(CCMask)
6985       .addMemOperand(MMO);
6986 
6987     MI.eraseFromParent();
6988     return MBB;
6989   }
6990 
6991   // Get the condition needed to branch around the store.
6992   if (!Invert)
6993     CCMask ^= CCValid;
6994 
6995   MachineBasicBlock *StartMBB = MBB;
6996   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6997   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6998 
6999   // Unless CC was killed in the CondStore instruction, mark it as
7000   // live-in to both FalseMBB and JoinMBB.
7001   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7002     FalseMBB->addLiveIn(SystemZ::CC);
7003     JoinMBB->addLiveIn(SystemZ::CC);
7004   }
7005 
7006   //  StartMBB:
7007   //   BRC CCMask, JoinMBB
7008   //   # fallthrough to FalseMBB
7009   MBB = StartMBB;
7010   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7011     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7012   MBB->addSuccessor(JoinMBB);
7013   MBB->addSuccessor(FalseMBB);
7014 
7015   //  FalseMBB:
7016   //   store %SrcReg, %Disp(%Index,%Base)
7017   //   # fallthrough to JoinMBB
7018   MBB = FalseMBB;
7019   BuildMI(MBB, DL, TII->get(StoreOpcode))
7020       .addReg(SrcReg)
7021       .add(Base)
7022       .addImm(Disp)
7023       .addReg(IndexReg);
7024   MBB->addSuccessor(JoinMBB);
7025 
7026   MI.eraseFromParent();
7027   return JoinMBB;
7028 }
7029 
7030 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7031 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7032 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7033 // BitSize is the width of the field in bits, or 0 if this is a partword
7034 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7035 // is one of the operands.  Invert says whether the field should be
7036 // inverted after performing BinOpcode (e.g. for NAND).
7037 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7038     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7039     unsigned BitSize, bool Invert) const {
7040   MachineFunction &MF = *MBB->getParent();
7041   const SystemZInstrInfo *TII =
7042       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7043   MachineRegisterInfo &MRI = MF.getRegInfo();
7044   bool IsSubWord = (BitSize < 32);
7045 
7046   // Extract the operands.  Base can be a register or a frame index.
7047   // Src2 can be a register or immediate.
7048   Register Dest = MI.getOperand(0).getReg();
7049   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7050   int64_t Disp = MI.getOperand(2).getImm();
7051   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7052   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7053   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7054   DebugLoc DL = MI.getDebugLoc();
7055   if (IsSubWord)
7056     BitSize = MI.getOperand(6).getImm();
7057 
7058   // Subword operations use 32-bit registers.
7059   const TargetRegisterClass *RC = (BitSize <= 32 ?
7060                                    &SystemZ::GR32BitRegClass :
7061                                    &SystemZ::GR64BitRegClass);
7062   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7063   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7064 
7065   // Get the right opcodes for the displacement.
7066   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7067   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7068   assert(LOpcode && CSOpcode && "Displacement out of range");
7069 
7070   // Create virtual registers for temporary results.
7071   Register OrigVal       = MRI.createVirtualRegister(RC);
7072   Register OldVal        = MRI.createVirtualRegister(RC);
7073   Register NewVal        = (BinOpcode || IsSubWord ?
7074                             MRI.createVirtualRegister(RC) : Src2.getReg());
7075   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7076   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7077 
7078   // Insert a basic block for the main loop.
7079   MachineBasicBlock *StartMBB = MBB;
7080   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7081   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7082 
7083   //  StartMBB:
7084   //   ...
7085   //   %OrigVal = L Disp(%Base)
7086   //   # fall through to LoopMMB
7087   MBB = StartMBB;
7088   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7089   MBB->addSuccessor(LoopMBB);
7090 
7091   //  LoopMBB:
7092   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7093   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7094   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7095   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7096   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7097   //   JNE LoopMBB
7098   //   # fall through to DoneMMB
7099   MBB = LoopMBB;
7100   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7101     .addReg(OrigVal).addMBB(StartMBB)
7102     .addReg(Dest).addMBB(LoopMBB);
7103   if (IsSubWord)
7104     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7105       .addReg(OldVal).addReg(BitShift).addImm(0);
7106   if (Invert) {
7107     // Perform the operation normally and then invert every bit of the field.
7108     Register Tmp = MRI.createVirtualRegister(RC);
7109     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7110     if (BitSize <= 32)
7111       // XILF with the upper BitSize bits set.
7112       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7113         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7114     else {
7115       // Use LCGR and add -1 to the result, which is more compact than
7116       // an XILF, XILH pair.
7117       Register Tmp2 = MRI.createVirtualRegister(RC);
7118       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7119       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7120         .addReg(Tmp2).addImm(-1);
7121     }
7122   } else if (BinOpcode)
7123     // A simply binary operation.
7124     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7125         .addReg(RotatedOldVal)
7126         .add(Src2);
7127   else if (IsSubWord)
7128     // Use RISBG to rotate Src2 into position and use it to replace the
7129     // field in RotatedOldVal.
7130     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7131       .addReg(RotatedOldVal).addReg(Src2.getReg())
7132       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7133   if (IsSubWord)
7134     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7135       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7136   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7137       .addReg(OldVal)
7138       .addReg(NewVal)
7139       .add(Base)
7140       .addImm(Disp);
7141   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7142     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7143   MBB->addSuccessor(LoopMBB);
7144   MBB->addSuccessor(DoneMBB);
7145 
7146   MI.eraseFromParent();
7147   return DoneMBB;
7148 }
7149 
7150 // Implement EmitInstrWithCustomInserter for pseudo
7151 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7152 // instruction that should be used to compare the current field with the
7153 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7154 // for when the current field should be kept.  BitSize is the width of
7155 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7156 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7157     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7158     unsigned KeepOldMask, unsigned BitSize) const {
7159   MachineFunction &MF = *MBB->getParent();
7160   const SystemZInstrInfo *TII =
7161       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7162   MachineRegisterInfo &MRI = MF.getRegInfo();
7163   bool IsSubWord = (BitSize < 32);
7164 
7165   // Extract the operands.  Base can be a register or a frame index.
7166   Register Dest = MI.getOperand(0).getReg();
7167   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7168   int64_t Disp = MI.getOperand(2).getImm();
7169   Register Src2 = MI.getOperand(3).getReg();
7170   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7171   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7172   DebugLoc DL = MI.getDebugLoc();
7173   if (IsSubWord)
7174     BitSize = MI.getOperand(6).getImm();
7175 
7176   // Subword operations use 32-bit registers.
7177   const TargetRegisterClass *RC = (BitSize <= 32 ?
7178                                    &SystemZ::GR32BitRegClass :
7179                                    &SystemZ::GR64BitRegClass);
7180   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7181   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7182 
7183   // Get the right opcodes for the displacement.
7184   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7185   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7186   assert(LOpcode && CSOpcode && "Displacement out of range");
7187 
7188   // Create virtual registers for temporary results.
7189   Register OrigVal       = MRI.createVirtualRegister(RC);
7190   Register OldVal        = MRI.createVirtualRegister(RC);
7191   Register NewVal        = MRI.createVirtualRegister(RC);
7192   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7193   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7194   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7195 
7196   // Insert 3 basic blocks for the loop.
7197   MachineBasicBlock *StartMBB  = MBB;
7198   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
7199   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
7200   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
7201   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
7202 
7203   //  StartMBB:
7204   //   ...
7205   //   %OrigVal     = L Disp(%Base)
7206   //   # fall through to LoopMMB
7207   MBB = StartMBB;
7208   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7209   MBB->addSuccessor(LoopMBB);
7210 
7211   //  LoopMBB:
7212   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7213   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7214   //   CompareOpcode %RotatedOldVal, %Src2
7215   //   BRC KeepOldMask, UpdateMBB
7216   MBB = LoopMBB;
7217   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7218     .addReg(OrigVal).addMBB(StartMBB)
7219     .addReg(Dest).addMBB(UpdateMBB);
7220   if (IsSubWord)
7221     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7222       .addReg(OldVal).addReg(BitShift).addImm(0);
7223   BuildMI(MBB, DL, TII->get(CompareOpcode))
7224     .addReg(RotatedOldVal).addReg(Src2);
7225   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7226     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7227   MBB->addSuccessor(UpdateMBB);
7228   MBB->addSuccessor(UseAltMBB);
7229 
7230   //  UseAltMBB:
7231   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7232   //   # fall through to UpdateMMB
7233   MBB = UseAltMBB;
7234   if (IsSubWord)
7235     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7236       .addReg(RotatedOldVal).addReg(Src2)
7237       .addImm(32).addImm(31 + BitSize).addImm(0);
7238   MBB->addSuccessor(UpdateMBB);
7239 
7240   //  UpdateMBB:
7241   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7242   //                        [ %RotatedAltVal, UseAltMBB ]
7243   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7244   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7245   //   JNE LoopMBB
7246   //   # fall through to DoneMMB
7247   MBB = UpdateMBB;
7248   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7249     .addReg(RotatedOldVal).addMBB(LoopMBB)
7250     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7251   if (IsSubWord)
7252     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7253       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7254   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7255       .addReg(OldVal)
7256       .addReg(NewVal)
7257       .add(Base)
7258       .addImm(Disp);
7259   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7260     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7261   MBB->addSuccessor(LoopMBB);
7262   MBB->addSuccessor(DoneMBB);
7263 
7264   MI.eraseFromParent();
7265   return DoneMBB;
7266 }
7267 
7268 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7269 // instruction MI.
7270 MachineBasicBlock *
7271 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7272                                           MachineBasicBlock *MBB) const {
7273 
7274   MachineFunction &MF = *MBB->getParent();
7275   const SystemZInstrInfo *TII =
7276       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7277   MachineRegisterInfo &MRI = MF.getRegInfo();
7278 
7279   // Extract the operands.  Base can be a register or a frame index.
7280   Register Dest = MI.getOperand(0).getReg();
7281   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7282   int64_t Disp = MI.getOperand(2).getImm();
7283   Register OrigCmpVal = MI.getOperand(3).getReg();
7284   Register OrigSwapVal = MI.getOperand(4).getReg();
7285   Register BitShift = MI.getOperand(5).getReg();
7286   Register NegBitShift = MI.getOperand(6).getReg();
7287   int64_t BitSize = MI.getOperand(7).getImm();
7288   DebugLoc DL = MI.getDebugLoc();
7289 
7290   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7291 
7292   // Get the right opcodes for the displacement.
7293   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7294   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7295   assert(LOpcode && CSOpcode && "Displacement out of range");
7296 
7297   // Create virtual registers for temporary results.
7298   Register OrigOldVal = MRI.createVirtualRegister(RC);
7299   Register OldVal = MRI.createVirtualRegister(RC);
7300   Register CmpVal = MRI.createVirtualRegister(RC);
7301   Register SwapVal = MRI.createVirtualRegister(RC);
7302   Register StoreVal = MRI.createVirtualRegister(RC);
7303   Register RetryOldVal = MRI.createVirtualRegister(RC);
7304   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7305   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7306 
7307   // Insert 2 basic blocks for the loop.
7308   MachineBasicBlock *StartMBB = MBB;
7309   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7310   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7311   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7312 
7313   //  StartMBB:
7314   //   ...
7315   //   %OrigOldVal     = L Disp(%Base)
7316   //   # fall through to LoopMMB
7317   MBB = StartMBB;
7318   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7319       .add(Base)
7320       .addImm(Disp)
7321       .addReg(0);
7322   MBB->addSuccessor(LoopMBB);
7323 
7324   //  LoopMBB:
7325   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7326   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7327   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7328   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7329   //                      ^^ The low BitSize bits contain the field
7330   //                         of interest.
7331   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7332   //                      ^^ Replace the upper 32-BitSize bits of the
7333   //                         comparison value with those that we loaded,
7334   //                         so that we can use a full word comparison.
7335   //   CR %Dest, %RetryCmpVal
7336   //   JNE DoneMBB
7337   //   # Fall through to SetMBB
7338   MBB = LoopMBB;
7339   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7340     .addReg(OrigOldVal).addMBB(StartMBB)
7341     .addReg(RetryOldVal).addMBB(SetMBB);
7342   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7343     .addReg(OrigCmpVal).addMBB(StartMBB)
7344     .addReg(RetryCmpVal).addMBB(SetMBB);
7345   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7346     .addReg(OrigSwapVal).addMBB(StartMBB)
7347     .addReg(RetrySwapVal).addMBB(SetMBB);
7348   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7349     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7350   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7351     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7352   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7353     .addReg(Dest).addReg(RetryCmpVal);
7354   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7355     .addImm(SystemZ::CCMASK_ICMP)
7356     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7357   MBB->addSuccessor(DoneMBB);
7358   MBB->addSuccessor(SetMBB);
7359 
7360   //  SetMBB:
7361   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7362   //                      ^^ Replace the upper 32-BitSize bits of the new
7363   //                         value with those that we loaded.
7364   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7365   //                      ^^ Rotate the new field to its proper position.
7366   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7367   //   JNE LoopMBB
7368   //   # fall through to ExitMMB
7369   MBB = SetMBB;
7370   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7371     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7372   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7373     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7374   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7375       .addReg(OldVal)
7376       .addReg(StoreVal)
7377       .add(Base)
7378       .addImm(Disp);
7379   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7380     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7381   MBB->addSuccessor(LoopMBB);
7382   MBB->addSuccessor(DoneMBB);
7383 
7384   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7385   // to the block after the loop.  At this point, CC may have been defined
7386   // either by the CR in LoopMBB or by the CS in SetMBB.
7387   if (!MI.registerDefIsDead(SystemZ::CC))
7388     DoneMBB->addLiveIn(SystemZ::CC);
7389 
7390   MI.eraseFromParent();
7391   return DoneMBB;
7392 }
7393 
7394 // Emit a move from two GR64s to a GR128.
7395 MachineBasicBlock *
7396 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7397                                    MachineBasicBlock *MBB) const {
7398   MachineFunction &MF = *MBB->getParent();
7399   const SystemZInstrInfo *TII =
7400       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7401   MachineRegisterInfo &MRI = MF.getRegInfo();
7402   DebugLoc DL = MI.getDebugLoc();
7403 
7404   Register Dest = MI.getOperand(0).getReg();
7405   Register Hi = MI.getOperand(1).getReg();
7406   Register Lo = MI.getOperand(2).getReg();
7407   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7408   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7409 
7410   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7411   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7412     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7413   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7414     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7415 
7416   MI.eraseFromParent();
7417   return MBB;
7418 }
7419 
7420 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7421 // if the high register of the GR128 value must be cleared or false if
7422 // it's "don't care".
7423 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7424                                                      MachineBasicBlock *MBB,
7425                                                      bool ClearEven) const {
7426   MachineFunction &MF = *MBB->getParent();
7427   const SystemZInstrInfo *TII =
7428       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7429   MachineRegisterInfo &MRI = MF.getRegInfo();
7430   DebugLoc DL = MI.getDebugLoc();
7431 
7432   Register Dest = MI.getOperand(0).getReg();
7433   Register Src = MI.getOperand(1).getReg();
7434   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7435 
7436   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7437   if (ClearEven) {
7438     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7439     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7440 
7441     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7442       .addImm(0);
7443     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7444       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7445     In128 = NewIn128;
7446   }
7447   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7448     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7449 
7450   MI.eraseFromParent();
7451   return MBB;
7452 }
7453 
7454 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7455     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7456   MachineFunction &MF = *MBB->getParent();
7457   const SystemZInstrInfo *TII =
7458       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7459   MachineRegisterInfo &MRI = MF.getRegInfo();
7460   DebugLoc DL = MI.getDebugLoc();
7461 
7462   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7463   uint64_t DestDisp = MI.getOperand(1).getImm();
7464   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7465   uint64_t SrcDisp = MI.getOperand(3).getImm();
7466   uint64_t Length = MI.getOperand(4).getImm();
7467 
7468   // When generating more than one CLC, all but the last will need to
7469   // branch to the end when a difference is found.
7470   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7471                                splitBlockAfter(MI, MBB) : nullptr);
7472 
7473   // Check for the loop form, in which operand 5 is the trip count.
7474   if (MI.getNumExplicitOperands() > 5) {
7475     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7476 
7477     Register StartCountReg = MI.getOperand(5).getReg();
7478     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7479     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7480                               forceReg(MI, DestBase, TII));
7481 
7482     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7483     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7484     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7485                             MRI.createVirtualRegister(RC));
7486     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7487     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7488                             MRI.createVirtualRegister(RC));
7489 
7490     RC = &SystemZ::GR64BitRegClass;
7491     Register ThisCountReg = MRI.createVirtualRegister(RC);
7492     Register NextCountReg = MRI.createVirtualRegister(RC);
7493 
7494     MachineBasicBlock *StartMBB = MBB;
7495     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7496     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7497     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7498 
7499     //  StartMBB:
7500     //   # fall through to LoopMMB
7501     MBB->addSuccessor(LoopMBB);
7502 
7503     //  LoopMBB:
7504     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7505     //                      [ %NextDestReg, NextMBB ]
7506     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7507     //                     [ %NextSrcReg, NextMBB ]
7508     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7509     //                       [ %NextCountReg, NextMBB ]
7510     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7511     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7512     //   ( JLH EndMBB )
7513     //
7514     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7515     MBB = LoopMBB;
7516 
7517     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7518       .addReg(StartDestReg).addMBB(StartMBB)
7519       .addReg(NextDestReg).addMBB(NextMBB);
7520     if (!HaveSingleBase)
7521       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7522         .addReg(StartSrcReg).addMBB(StartMBB)
7523         .addReg(NextSrcReg).addMBB(NextMBB);
7524     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7525       .addReg(StartCountReg).addMBB(StartMBB)
7526       .addReg(NextCountReg).addMBB(NextMBB);
7527     if (Opcode == SystemZ::MVC)
7528       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7529         .addImm(SystemZ::PFD_WRITE)
7530         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7531     BuildMI(MBB, DL, TII->get(Opcode))
7532       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7533       .addReg(ThisSrcReg).addImm(SrcDisp);
7534     if (EndMBB) {
7535       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7536         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7537         .addMBB(EndMBB);
7538       MBB->addSuccessor(EndMBB);
7539       MBB->addSuccessor(NextMBB);
7540     }
7541 
7542     // NextMBB:
7543     //   %NextDestReg = LA 256(%ThisDestReg)
7544     //   %NextSrcReg = LA 256(%ThisSrcReg)
7545     //   %NextCountReg = AGHI %ThisCountReg, -1
7546     //   CGHI %NextCountReg, 0
7547     //   JLH LoopMBB
7548     //   # fall through to DoneMMB
7549     //
7550     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7551     MBB = NextMBB;
7552 
7553     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7554       .addReg(ThisDestReg).addImm(256).addReg(0);
7555     if (!HaveSingleBase)
7556       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7557         .addReg(ThisSrcReg).addImm(256).addReg(0);
7558     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7559       .addReg(ThisCountReg).addImm(-1);
7560     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7561       .addReg(NextCountReg).addImm(0);
7562     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7563       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7564       .addMBB(LoopMBB);
7565     MBB->addSuccessor(LoopMBB);
7566     MBB->addSuccessor(DoneMBB);
7567 
7568     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7569     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7570     Length &= 255;
7571     if (EndMBB && !Length)
7572       // If the loop handled the whole CLC range, DoneMBB will be empty with
7573       // CC live-through into EndMBB, so add it as live-in.
7574       DoneMBB->addLiveIn(SystemZ::CC);
7575     MBB = DoneMBB;
7576   }
7577   // Handle any remaining bytes with straight-line code.
7578   while (Length > 0) {
7579     uint64_t ThisLength = std::min(Length, uint64_t(256));
7580     // The previous iteration might have created out-of-range displacements.
7581     // Apply them using LAY if so.
7582     if (!isUInt<12>(DestDisp)) {
7583       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7584       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7585           .add(DestBase)
7586           .addImm(DestDisp)
7587           .addReg(0);
7588       DestBase = MachineOperand::CreateReg(Reg, false);
7589       DestDisp = 0;
7590     }
7591     if (!isUInt<12>(SrcDisp)) {
7592       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7593       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7594           .add(SrcBase)
7595           .addImm(SrcDisp)
7596           .addReg(0);
7597       SrcBase = MachineOperand::CreateReg(Reg, false);
7598       SrcDisp = 0;
7599     }
7600     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7601         .add(DestBase)
7602         .addImm(DestDisp)
7603         .addImm(ThisLength)
7604         .add(SrcBase)
7605         .addImm(SrcDisp)
7606         .setMemRefs(MI.memoperands());
7607     DestDisp += ThisLength;
7608     SrcDisp += ThisLength;
7609     Length -= ThisLength;
7610     // If there's another CLC to go, branch to the end if a difference
7611     // was found.
7612     if (EndMBB && Length > 0) {
7613       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7614       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7615         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7616         .addMBB(EndMBB);
7617       MBB->addSuccessor(EndMBB);
7618       MBB->addSuccessor(NextMBB);
7619       MBB = NextMBB;
7620     }
7621   }
7622   if (EndMBB) {
7623     MBB->addSuccessor(EndMBB);
7624     MBB = EndMBB;
7625     MBB->addLiveIn(SystemZ::CC);
7626   }
7627 
7628   MI.eraseFromParent();
7629   return MBB;
7630 }
7631 
7632 // Decompose string pseudo-instruction MI into a loop that continually performs
7633 // Opcode until CC != 3.
7634 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7635     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7636   MachineFunction &MF = *MBB->getParent();
7637   const SystemZInstrInfo *TII =
7638       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7639   MachineRegisterInfo &MRI = MF.getRegInfo();
7640   DebugLoc DL = MI.getDebugLoc();
7641 
7642   uint64_t End1Reg = MI.getOperand(0).getReg();
7643   uint64_t Start1Reg = MI.getOperand(1).getReg();
7644   uint64_t Start2Reg = MI.getOperand(2).getReg();
7645   uint64_t CharReg = MI.getOperand(3).getReg();
7646 
7647   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7648   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7649   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7650   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7651 
7652   MachineBasicBlock *StartMBB = MBB;
7653   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7654   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7655 
7656   //  StartMBB:
7657   //   # fall through to LoopMMB
7658   MBB->addSuccessor(LoopMBB);
7659 
7660   //  LoopMBB:
7661   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7662   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7663   //   R0L = %CharReg
7664   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7665   //   JO LoopMBB
7666   //   # fall through to DoneMMB
7667   //
7668   // The load of R0L can be hoisted by post-RA LICM.
7669   MBB = LoopMBB;
7670 
7671   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7672     .addReg(Start1Reg).addMBB(StartMBB)
7673     .addReg(End1Reg).addMBB(LoopMBB);
7674   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7675     .addReg(Start2Reg).addMBB(StartMBB)
7676     .addReg(End2Reg).addMBB(LoopMBB);
7677   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7678   BuildMI(MBB, DL, TII->get(Opcode))
7679     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7680     .addReg(This1Reg).addReg(This2Reg);
7681   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7682     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7683   MBB->addSuccessor(LoopMBB);
7684   MBB->addSuccessor(DoneMBB);
7685 
7686   DoneMBB->addLiveIn(SystemZ::CC);
7687 
7688   MI.eraseFromParent();
7689   return DoneMBB;
7690 }
7691 
7692 // Update TBEGIN instruction with final opcode and register clobbers.
7693 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7694     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7695     bool NoFloat) const {
7696   MachineFunction &MF = *MBB->getParent();
7697   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7698   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7699 
7700   // Update opcode.
7701   MI.setDesc(TII->get(Opcode));
7702 
7703   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7704   // Make sure to add the corresponding GRSM bits if they are missing.
7705   uint64_t Control = MI.getOperand(2).getImm();
7706   static const unsigned GPRControlBit[16] = {
7707     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7708     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7709   };
7710   Control |= GPRControlBit[15];
7711   if (TFI->hasFP(MF))
7712     Control |= GPRControlBit[11];
7713   MI.getOperand(2).setImm(Control);
7714 
7715   // Add GPR clobbers.
7716   for (int I = 0; I < 16; I++) {
7717     if ((Control & GPRControlBit[I]) == 0) {
7718       unsigned Reg = SystemZMC::GR64Regs[I];
7719       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7720     }
7721   }
7722 
7723   // Add FPR/VR clobbers.
7724   if (!NoFloat && (Control & 4) != 0) {
7725     if (Subtarget.hasVector()) {
7726       for (int I = 0; I < 32; I++) {
7727         unsigned Reg = SystemZMC::VR128Regs[I];
7728         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7729       }
7730     } else {
7731       for (int I = 0; I < 16; I++) {
7732         unsigned Reg = SystemZMC::FP64Regs[I];
7733         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7734       }
7735     }
7736   }
7737 
7738   return MBB;
7739 }
7740 
7741 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7742     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7743   MachineFunction &MF = *MBB->getParent();
7744   MachineRegisterInfo *MRI = &MF.getRegInfo();
7745   const SystemZInstrInfo *TII =
7746       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7747   DebugLoc DL = MI.getDebugLoc();
7748 
7749   Register SrcReg = MI.getOperand(0).getReg();
7750 
7751   // Create new virtual register of the same class as source.
7752   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7753   Register DstReg = MRI->createVirtualRegister(RC);
7754 
7755   // Replace pseudo with a normal load-and-test that models the def as
7756   // well.
7757   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7758     .addReg(SrcReg)
7759     .setMIFlags(MI.getFlags());
7760   MI.eraseFromParent();
7761 
7762   return MBB;
7763 }
7764 
7765 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7766     MachineInstr &MI, MachineBasicBlock *MBB) const {
7767   switch (MI.getOpcode()) {
7768   case SystemZ::Select32:
7769   case SystemZ::Select64:
7770   case SystemZ::SelectF32:
7771   case SystemZ::SelectF64:
7772   case SystemZ::SelectF128:
7773   case SystemZ::SelectVR32:
7774   case SystemZ::SelectVR64:
7775   case SystemZ::SelectVR128:
7776     return emitSelect(MI, MBB);
7777 
7778   case SystemZ::CondStore8Mux:
7779     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7780   case SystemZ::CondStore8MuxInv:
7781     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7782   case SystemZ::CondStore16Mux:
7783     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7784   case SystemZ::CondStore16MuxInv:
7785     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7786   case SystemZ::CondStore32Mux:
7787     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7788   case SystemZ::CondStore32MuxInv:
7789     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7790   case SystemZ::CondStore8:
7791     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7792   case SystemZ::CondStore8Inv:
7793     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7794   case SystemZ::CondStore16:
7795     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7796   case SystemZ::CondStore16Inv:
7797     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7798   case SystemZ::CondStore32:
7799     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7800   case SystemZ::CondStore32Inv:
7801     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7802   case SystemZ::CondStore64:
7803     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7804   case SystemZ::CondStore64Inv:
7805     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7806   case SystemZ::CondStoreF32:
7807     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7808   case SystemZ::CondStoreF32Inv:
7809     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7810   case SystemZ::CondStoreF64:
7811     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7812   case SystemZ::CondStoreF64Inv:
7813     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7814 
7815   case SystemZ::PAIR128:
7816     return emitPair128(MI, MBB);
7817   case SystemZ::AEXT128:
7818     return emitExt128(MI, MBB, false);
7819   case SystemZ::ZEXT128:
7820     return emitExt128(MI, MBB, true);
7821 
7822   case SystemZ::ATOMIC_SWAPW:
7823     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7824   case SystemZ::ATOMIC_SWAP_32:
7825     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7826   case SystemZ::ATOMIC_SWAP_64:
7827     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7828 
7829   case SystemZ::ATOMIC_LOADW_AR:
7830     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7831   case SystemZ::ATOMIC_LOADW_AFI:
7832     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7833   case SystemZ::ATOMIC_LOAD_AR:
7834     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7835   case SystemZ::ATOMIC_LOAD_AHI:
7836     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7837   case SystemZ::ATOMIC_LOAD_AFI:
7838     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7839   case SystemZ::ATOMIC_LOAD_AGR:
7840     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7841   case SystemZ::ATOMIC_LOAD_AGHI:
7842     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7843   case SystemZ::ATOMIC_LOAD_AGFI:
7844     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7845 
7846   case SystemZ::ATOMIC_LOADW_SR:
7847     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7848   case SystemZ::ATOMIC_LOAD_SR:
7849     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7850   case SystemZ::ATOMIC_LOAD_SGR:
7851     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7852 
7853   case SystemZ::ATOMIC_LOADW_NR:
7854     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7855   case SystemZ::ATOMIC_LOADW_NILH:
7856     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7857   case SystemZ::ATOMIC_LOAD_NR:
7858     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7859   case SystemZ::ATOMIC_LOAD_NILL:
7860     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7861   case SystemZ::ATOMIC_LOAD_NILH:
7862     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7863   case SystemZ::ATOMIC_LOAD_NILF:
7864     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7865   case SystemZ::ATOMIC_LOAD_NGR:
7866     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7867   case SystemZ::ATOMIC_LOAD_NILL64:
7868     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7869   case SystemZ::ATOMIC_LOAD_NILH64:
7870     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7871   case SystemZ::ATOMIC_LOAD_NIHL64:
7872     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7873   case SystemZ::ATOMIC_LOAD_NIHH64:
7874     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7875   case SystemZ::ATOMIC_LOAD_NILF64:
7876     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7877   case SystemZ::ATOMIC_LOAD_NIHF64:
7878     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7879 
7880   case SystemZ::ATOMIC_LOADW_OR:
7881     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7882   case SystemZ::ATOMIC_LOADW_OILH:
7883     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7884   case SystemZ::ATOMIC_LOAD_OR:
7885     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7886   case SystemZ::ATOMIC_LOAD_OILL:
7887     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7888   case SystemZ::ATOMIC_LOAD_OILH:
7889     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7890   case SystemZ::ATOMIC_LOAD_OILF:
7891     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7892   case SystemZ::ATOMIC_LOAD_OGR:
7893     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7894   case SystemZ::ATOMIC_LOAD_OILL64:
7895     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7896   case SystemZ::ATOMIC_LOAD_OILH64:
7897     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7898   case SystemZ::ATOMIC_LOAD_OIHL64:
7899     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7900   case SystemZ::ATOMIC_LOAD_OIHH64:
7901     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7902   case SystemZ::ATOMIC_LOAD_OILF64:
7903     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7904   case SystemZ::ATOMIC_LOAD_OIHF64:
7905     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7906 
7907   case SystemZ::ATOMIC_LOADW_XR:
7908     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7909   case SystemZ::ATOMIC_LOADW_XILF:
7910     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7911   case SystemZ::ATOMIC_LOAD_XR:
7912     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7913   case SystemZ::ATOMIC_LOAD_XILF:
7914     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7915   case SystemZ::ATOMIC_LOAD_XGR:
7916     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7917   case SystemZ::ATOMIC_LOAD_XILF64:
7918     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7919   case SystemZ::ATOMIC_LOAD_XIHF64:
7920     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7921 
7922   case SystemZ::ATOMIC_LOADW_NRi:
7923     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7924   case SystemZ::ATOMIC_LOADW_NILHi:
7925     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7926   case SystemZ::ATOMIC_LOAD_NRi:
7927     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7928   case SystemZ::ATOMIC_LOAD_NILLi:
7929     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7930   case SystemZ::ATOMIC_LOAD_NILHi:
7931     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7932   case SystemZ::ATOMIC_LOAD_NILFi:
7933     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7934   case SystemZ::ATOMIC_LOAD_NGRi:
7935     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7936   case SystemZ::ATOMIC_LOAD_NILL64i:
7937     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7938   case SystemZ::ATOMIC_LOAD_NILH64i:
7939     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7940   case SystemZ::ATOMIC_LOAD_NIHL64i:
7941     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7942   case SystemZ::ATOMIC_LOAD_NIHH64i:
7943     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7944   case SystemZ::ATOMIC_LOAD_NILF64i:
7945     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7946   case SystemZ::ATOMIC_LOAD_NIHF64i:
7947     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7948 
7949   case SystemZ::ATOMIC_LOADW_MIN:
7950     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7951                                 SystemZ::CCMASK_CMP_LE, 0);
7952   case SystemZ::ATOMIC_LOAD_MIN_32:
7953     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7954                                 SystemZ::CCMASK_CMP_LE, 32);
7955   case SystemZ::ATOMIC_LOAD_MIN_64:
7956     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7957                                 SystemZ::CCMASK_CMP_LE, 64);
7958 
7959   case SystemZ::ATOMIC_LOADW_MAX:
7960     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7961                                 SystemZ::CCMASK_CMP_GE, 0);
7962   case SystemZ::ATOMIC_LOAD_MAX_32:
7963     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7964                                 SystemZ::CCMASK_CMP_GE, 32);
7965   case SystemZ::ATOMIC_LOAD_MAX_64:
7966     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7967                                 SystemZ::CCMASK_CMP_GE, 64);
7968 
7969   case SystemZ::ATOMIC_LOADW_UMIN:
7970     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7971                                 SystemZ::CCMASK_CMP_LE, 0);
7972   case SystemZ::ATOMIC_LOAD_UMIN_32:
7973     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7974                                 SystemZ::CCMASK_CMP_LE, 32);
7975   case SystemZ::ATOMIC_LOAD_UMIN_64:
7976     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7977                                 SystemZ::CCMASK_CMP_LE, 64);
7978 
7979   case SystemZ::ATOMIC_LOADW_UMAX:
7980     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7981                                 SystemZ::CCMASK_CMP_GE, 0);
7982   case SystemZ::ATOMIC_LOAD_UMAX_32:
7983     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7984                                 SystemZ::CCMASK_CMP_GE, 32);
7985   case SystemZ::ATOMIC_LOAD_UMAX_64:
7986     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7987                                 SystemZ::CCMASK_CMP_GE, 64);
7988 
7989   case SystemZ::ATOMIC_CMP_SWAPW:
7990     return emitAtomicCmpSwapW(MI, MBB);
7991   case SystemZ::MVCSequence:
7992   case SystemZ::MVCLoop:
7993     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7994   case SystemZ::NCSequence:
7995   case SystemZ::NCLoop:
7996     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7997   case SystemZ::OCSequence:
7998   case SystemZ::OCLoop:
7999     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8000   case SystemZ::XCSequence:
8001   case SystemZ::XCLoop:
8002     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8003   case SystemZ::CLCSequence:
8004   case SystemZ::CLCLoop:
8005     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8006   case SystemZ::CLSTLoop:
8007     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8008   case SystemZ::MVSTLoop:
8009     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8010   case SystemZ::SRSTLoop:
8011     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8012   case SystemZ::TBEGIN:
8013     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8014   case SystemZ::TBEGIN_nofloat:
8015     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8016   case SystemZ::TBEGINC:
8017     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8018   case SystemZ::LTEBRCompare_VecPseudo:
8019     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8020   case SystemZ::LTDBRCompare_VecPseudo:
8021     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8022   case SystemZ::LTXBRCompare_VecPseudo:
8023     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8024 
8025   case TargetOpcode::STACKMAP:
8026   case TargetOpcode::PATCHPOINT:
8027     return emitPatchPoint(MI, MBB);
8028 
8029   default:
8030     llvm_unreachable("Unexpected instr type to insert");
8031   }
8032 }
8033 
8034 // This is only used by the isel schedulers, and is needed only to prevent
8035 // compiler from crashing when list-ilp is used.
8036 const TargetRegisterClass *
8037 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8038   if (VT == MVT::Untyped)
8039     return &SystemZ::ADDR128BitRegClass;
8040   return TargetLowering::getRepRegClassFor(VT);
8041 }
8042