1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 auto &DL = *TM.getDataLayout(); 88 MVT PtrVT = getPointerTy(DL); 89 90 // Set up the register classes. 91 if (Subtarget.hasHighWord()) 92 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 93 else 94 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 95 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 96 if (Subtarget.hasVector()) { 97 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 98 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 99 } else { 100 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 101 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 102 } 103 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 104 105 if (Subtarget.hasVector()) { 106 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setExceptionPointerRegister(SystemZ::R6D); 119 setExceptionSelectorRegister(SystemZ::R7D); 120 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 121 122 // TODO: It may be better to default to latency-oriented scheduling, however 123 // LLVM's current latency-oriented scheduler can't handle physreg definitions 124 // such as SystemZ has with CC, so set this to the register-pressure 125 // scheduler, because it can. 126 setSchedulingPreference(Sched::RegPressure); 127 128 setBooleanContents(ZeroOrOneBooleanContent); 129 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 130 131 // Instructions are strings of 2-byte aligned 2-byte values. 132 setMinFunctionAlignment(2); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 143 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 144 setOperationAction(ISD::SELECT, VT, Expand); 145 146 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 147 setOperationAction(ISD::SELECT_CC, VT, Custom); 148 setOperationAction(ISD::BR_CC, VT, Custom); 149 } 150 } 151 152 // Expand jump table branches as address arithmetic followed by an 153 // indirect jump. 154 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 155 156 // Expand BRCOND into a BR_CC (see above). 157 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 158 159 // Handle integer types. 160 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 161 I <= MVT::LAST_INTEGER_VALUETYPE; 162 ++I) { 163 MVT VT = MVT::SimpleValueType(I); 164 if (isTypeLegal(VT)) { 165 // Expand individual DIV and REMs into DIVREMs. 166 setOperationAction(ISD::SDIV, VT, Expand); 167 setOperationAction(ISD::UDIV, VT, Expand); 168 setOperationAction(ISD::SREM, VT, Expand); 169 setOperationAction(ISD::UREM, VT, Expand); 170 setOperationAction(ISD::SDIVREM, VT, Custom); 171 setOperationAction(ISD::UDIVREM, VT, Custom); 172 173 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 174 // stores, putting a serialization instruction after the stores. 175 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 176 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 177 178 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 179 // available, or if the operand is constant. 180 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 181 182 // Use POPCNT on z196 and above. 183 if (Subtarget.hasPopulationCount()) 184 setOperationAction(ISD::CTPOP, VT, Custom); 185 else 186 setOperationAction(ISD::CTPOP, VT, Expand); 187 188 // No special instructions for these. 189 setOperationAction(ISD::CTTZ, VT, Expand); 190 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 191 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 192 setOperationAction(ISD::ROTR, VT, Expand); 193 194 // Use *MUL_LOHI where possible instead of MULH*. 195 setOperationAction(ISD::MULHS, VT, Expand); 196 setOperationAction(ISD::MULHU, VT, Expand); 197 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 198 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 199 200 // Only z196 and above have native support for conversions to unsigned. 201 if (!Subtarget.hasFPExtension()) 202 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 203 } 204 } 205 206 // Type legalization will convert 8- and 16-bit atomic operations into 207 // forms that operate on i32s (but still keeping the original memory VT). 208 // Lower them into full i32 operations. 209 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 221 222 // z10 has instructions for signed but not unsigned FP conversion. 223 // Handle unsigned 32-bit types as signed 64-bit types. 224 if (!Subtarget.hasFPExtension()) { 225 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 226 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 227 } 228 229 // We have native support for a 64-bit CTLZ, via FLOGR. 230 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 231 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 232 233 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 234 setOperationAction(ISD::OR, MVT::i64, Custom); 235 236 // FIXME: Can we support these natively? 237 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 239 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 240 241 // We have native instructions for i8, i16 and i32 extensions, but not i1. 242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 243 for (MVT VT : MVT::integer_valuetypes()) { 244 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 246 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 247 } 248 249 // Handle the various types of symbolic address. 250 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 251 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 252 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 253 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 254 setOperationAction(ISD::JumpTable, PtrVT, Custom); 255 256 // We need to handle dynamic allocations specially because of the 257 // 160-byte area at the bottom of the stack. 258 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 259 260 // Use custom expanders so that we can force the function to use 261 // a frame pointer. 262 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 263 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 264 265 // Handle prefetches with PFD or PFDRL. 266 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 267 268 for (MVT VT : MVT::vector_valuetypes()) { 269 // Assume by default that all vector operations need to be expanded. 270 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 271 if (getOperationAction(Opcode, VT) == Legal) 272 setOperationAction(Opcode, VT, Expand); 273 274 // Likewise all truncating stores and extending loads. 275 for (MVT InnerVT : MVT::vector_valuetypes()) { 276 setTruncStoreAction(VT, InnerVT, Expand); 277 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 278 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 279 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 280 } 281 282 if (isTypeLegal(VT)) { 283 // These operations are legal for anything that can be stored in a 284 // vector register, even if there is no native support for the format 285 // as such. In particular, we can do these for v4f32 even though there 286 // are no specific instructions for that format. 287 setOperationAction(ISD::LOAD, VT, Legal); 288 setOperationAction(ISD::STORE, VT, Legal); 289 setOperationAction(ISD::VSELECT, VT, Legal); 290 setOperationAction(ISD::BITCAST, VT, Legal); 291 setOperationAction(ISD::UNDEF, VT, Legal); 292 293 // Likewise, except that we need to replace the nodes with something 294 // more specific. 295 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 296 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 297 } 298 } 299 300 // Handle integer vector types. 301 for (MVT VT : MVT::integer_vector_valuetypes()) { 302 if (isTypeLegal(VT)) { 303 // These operations have direct equivalents. 304 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 305 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 306 setOperationAction(ISD::ADD, VT, Legal); 307 setOperationAction(ISD::SUB, VT, Legal); 308 if (VT != MVT::v2i64) 309 setOperationAction(ISD::MUL, VT, Legal); 310 setOperationAction(ISD::AND, VT, Legal); 311 setOperationAction(ISD::OR, VT, Legal); 312 setOperationAction(ISD::XOR, VT, Legal); 313 setOperationAction(ISD::CTPOP, VT, Custom); 314 setOperationAction(ISD::CTTZ, VT, Legal); 315 setOperationAction(ISD::CTLZ, VT, Legal); 316 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 317 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 318 319 // Convert a GPR scalar to a vector by inserting it into element 0. 320 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 321 322 // Use a series of unpacks for extensions. 323 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 324 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 325 326 // Detect shifts by a scalar amount and convert them into 327 // V*_BY_SCALAR. 328 setOperationAction(ISD::SHL, VT, Custom); 329 setOperationAction(ISD::SRA, VT, Custom); 330 setOperationAction(ISD::SRL, VT, Custom); 331 332 // At present ROTL isn't matched by DAGCombiner. ROTR should be 333 // converted into ROTL. 334 setOperationAction(ISD::ROTL, VT, Expand); 335 setOperationAction(ISD::ROTR, VT, Expand); 336 337 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 338 // and inverting the result as necessary. 339 setOperationAction(ISD::SETCC, VT, Custom); 340 } 341 } 342 343 if (Subtarget.hasVector()) { 344 // There should be no need to check for float types other than v2f64 345 // since <2 x f32> isn't a legal type. 346 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 348 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 349 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 350 } 351 352 // Handle floating-point types. 353 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 354 I <= MVT::LAST_FP_VALUETYPE; 355 ++I) { 356 MVT VT = MVT::SimpleValueType(I); 357 if (isTypeLegal(VT)) { 358 // We can use FI for FRINT. 359 setOperationAction(ISD::FRINT, VT, Legal); 360 361 // We can use the extended form of FI for other rounding operations. 362 if (Subtarget.hasFPExtension()) { 363 setOperationAction(ISD::FNEARBYINT, VT, Legal); 364 setOperationAction(ISD::FFLOOR, VT, Legal); 365 setOperationAction(ISD::FCEIL, VT, Legal); 366 setOperationAction(ISD::FTRUNC, VT, Legal); 367 setOperationAction(ISD::FROUND, VT, Legal); 368 } 369 370 // No special instructions for these. 371 setOperationAction(ISD::FSIN, VT, Expand); 372 setOperationAction(ISD::FCOS, VT, Expand); 373 setOperationAction(ISD::FREM, VT, Expand); 374 } 375 } 376 377 // Handle floating-point vector types. 378 if (Subtarget.hasVector()) { 379 // Scalar-to-vector conversion is just a subreg. 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 381 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 382 383 // Some insertions and extractions can be done directly but others 384 // need to go via integers. 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 386 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 388 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 389 390 // These operations have direct equivalents. 391 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 392 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 393 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 395 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 396 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 397 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 398 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 401 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 402 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 403 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 404 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 405 } 406 407 // We have fused multiply-addition for f32 and f64 but not f128. 408 setOperationAction(ISD::FMA, MVT::f32, Legal); 409 setOperationAction(ISD::FMA, MVT::f64, Legal); 410 setOperationAction(ISD::FMA, MVT::f128, Expand); 411 412 // Needed so that we don't try to implement f128 constant loads using 413 // a load-and-extend of a f80 constant (in cases where the constant 414 // would fit in an f80). 415 for (MVT VT : MVT::fp_valuetypes()) 416 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 417 418 // Floating-point truncation and stores need to be done separately. 419 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 421 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 422 423 // We have 64-bit FPR<->GPR moves, but need special handling for 424 // 32-bit forms. 425 if (!Subtarget.hasVector()) { 426 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 427 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 428 } 429 430 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 431 // structure, but VAEND is a no-op. 432 setOperationAction(ISD::VASTART, MVT::Other, Custom); 433 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 434 setOperationAction(ISD::VAEND, MVT::Other, Expand); 435 436 // Codes for which we want to perform some z-specific combinations. 437 setTargetDAGCombine(ISD::SIGN_EXTEND); 438 setTargetDAGCombine(ISD::STORE); 439 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 440 setTargetDAGCombine(ISD::FP_ROUND); 441 442 // Handle intrinsics. 443 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 444 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 445 446 // We want to use MVC in preference to even a single load/store pair. 447 MaxStoresPerMemcpy = 0; 448 MaxStoresPerMemcpyOptSize = 0; 449 450 // The main memset sequence is a byte store followed by an MVC. 451 // Two STC or MV..I stores win over that, but the kind of fused stores 452 // generated by target-independent code don't when the byte value is 453 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 454 // than "STC;MVC". Handle the choice in target-specific code instead. 455 MaxStoresPerMemset = 0; 456 MaxStoresPerMemsetOptSize = 0; 457 } 458 459 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 460 LLVMContext &, EVT VT) const { 461 if (!VT.isVector()) 462 return MVT::i32; 463 return VT.changeVectorElementTypeToInteger(); 464 } 465 466 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 467 VT = VT.getScalarType(); 468 469 if (!VT.isSimple()) 470 return false; 471 472 switch (VT.getSimpleVT().SimpleTy) { 473 case MVT::f32: 474 case MVT::f64: 475 return true; 476 case MVT::f128: 477 return false; 478 default: 479 break; 480 } 481 482 return false; 483 } 484 485 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 486 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 487 return Imm.isZero() || Imm.isNegZero(); 488 } 489 490 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 491 // We can use CGFI or CLGFI. 492 return isInt<32>(Imm) || isUInt<32>(Imm); 493 } 494 495 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 496 // We can use ALGFI or SLGFI. 497 return isUInt<32>(Imm) || isUInt<32>(-Imm); 498 } 499 500 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 501 unsigned, 502 unsigned, 503 bool *Fast) const { 504 // Unaligned accesses should never be slower than the expanded version. 505 // We check specifically for aligned accesses in the few cases where 506 // they are required. 507 if (Fast) 508 *Fast = true; 509 return true; 510 } 511 512 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 513 const AddrMode &AM, Type *Ty, 514 unsigned AS) const { 515 // Punt on globals for now, although they can be used in limited 516 // RELATIVE LONG cases. 517 if (AM.BaseGV) 518 return false; 519 520 // Require a 20-bit signed offset. 521 if (!isInt<20>(AM.BaseOffs)) 522 return false; 523 524 // Indexing is OK but no scale factor can be applied. 525 return AM.Scale == 0 || AM.Scale == 1; 526 } 527 528 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 529 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 530 return false; 531 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 532 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 533 return FromBits > ToBits; 534 } 535 536 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 537 if (!FromVT.isInteger() || !ToVT.isInteger()) 538 return false; 539 unsigned FromBits = FromVT.getSizeInBits(); 540 unsigned ToBits = ToVT.getSizeInBits(); 541 return FromBits > ToBits; 542 } 543 544 //===----------------------------------------------------------------------===// 545 // Inline asm support 546 //===----------------------------------------------------------------------===// 547 548 TargetLowering::ConstraintType 549 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 550 if (Constraint.size() == 1) { 551 switch (Constraint[0]) { 552 case 'a': // Address register 553 case 'd': // Data register (equivalent to 'r') 554 case 'f': // Floating-point register 555 case 'h': // High-part register 556 case 'r': // General-purpose register 557 return C_RegisterClass; 558 559 case 'Q': // Memory with base and unsigned 12-bit displacement 560 case 'R': // Likewise, plus an index 561 case 'S': // Memory with base and signed 20-bit displacement 562 case 'T': // Likewise, plus an index 563 case 'm': // Equivalent to 'T'. 564 return C_Memory; 565 566 case 'I': // Unsigned 8-bit constant 567 case 'J': // Unsigned 12-bit constant 568 case 'K': // Signed 16-bit constant 569 case 'L': // Signed 20-bit displacement (on all targets we support) 570 case 'M': // 0x7fffffff 571 return C_Other; 572 573 default: 574 break; 575 } 576 } 577 return TargetLowering::getConstraintType(Constraint); 578 } 579 580 TargetLowering::ConstraintWeight SystemZTargetLowering:: 581 getSingleConstraintMatchWeight(AsmOperandInfo &info, 582 const char *constraint) const { 583 ConstraintWeight weight = CW_Invalid; 584 Value *CallOperandVal = info.CallOperandVal; 585 // If we don't have a value, we can't do a match, 586 // but allow it at the lowest weight. 587 if (!CallOperandVal) 588 return CW_Default; 589 Type *type = CallOperandVal->getType(); 590 // Look at the constraint type. 591 switch (*constraint) { 592 default: 593 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 594 break; 595 596 case 'a': // Address register 597 case 'd': // Data register (equivalent to 'r') 598 case 'h': // High-part register 599 case 'r': // General-purpose register 600 if (CallOperandVal->getType()->isIntegerTy()) 601 weight = CW_Register; 602 break; 603 604 case 'f': // Floating-point register 605 if (type->isFloatingPointTy()) 606 weight = CW_Register; 607 break; 608 609 case 'I': // Unsigned 8-bit constant 610 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 611 if (isUInt<8>(C->getZExtValue())) 612 weight = CW_Constant; 613 break; 614 615 case 'J': // Unsigned 12-bit constant 616 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 617 if (isUInt<12>(C->getZExtValue())) 618 weight = CW_Constant; 619 break; 620 621 case 'K': // Signed 16-bit constant 622 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 623 if (isInt<16>(C->getSExtValue())) 624 weight = CW_Constant; 625 break; 626 627 case 'L': // Signed 20-bit displacement (on all targets we support) 628 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 629 if (isInt<20>(C->getSExtValue())) 630 weight = CW_Constant; 631 break; 632 633 case 'M': // 0x7fffffff 634 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 635 if (C->getZExtValue() == 0x7fffffff) 636 weight = CW_Constant; 637 break; 638 } 639 return weight; 640 } 641 642 // Parse a "{tNNN}" register constraint for which the register type "t" 643 // has already been verified. MC is the class associated with "t" and 644 // Map maps 0-based register numbers to LLVM register numbers. 645 static std::pair<unsigned, const TargetRegisterClass *> 646 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 647 const unsigned *Map) { 648 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 649 if (isdigit(Constraint[2])) { 650 unsigned Index; 651 bool Failed = 652 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 653 if (!Failed && Index < 16 && Map[Index]) 654 return std::make_pair(Map[Index], RC); 655 } 656 return std::make_pair(0U, nullptr); 657 } 658 659 std::pair<unsigned, const TargetRegisterClass *> 660 SystemZTargetLowering::getRegForInlineAsmConstraint( 661 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 662 if (Constraint.size() == 1) { 663 // GCC Constraint Letters 664 switch (Constraint[0]) { 665 default: break; 666 case 'd': // Data register (equivalent to 'r') 667 case 'r': // General-purpose register 668 if (VT == MVT::i64) 669 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 670 else if (VT == MVT::i128) 671 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 672 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 673 674 case 'a': // Address register 675 if (VT == MVT::i64) 676 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 677 else if (VT == MVT::i128) 678 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 679 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 680 681 case 'h': // High-part register (an LLVM extension) 682 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 683 684 case 'f': // Floating-point register 685 if (VT == MVT::f64) 686 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 687 else if (VT == MVT::f128) 688 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 689 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 690 } 691 } 692 if (Constraint.size() > 0 && Constraint[0] == '{') { 693 // We need to override the default register parsing for GPRs and FPRs 694 // because the interpretation depends on VT. The internal names of 695 // the registers are also different from the external names 696 // (F0D and F0S instead of F0, etc.). 697 if (Constraint[1] == 'r') { 698 if (VT == MVT::i32) 699 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 700 SystemZMC::GR32Regs); 701 if (VT == MVT::i128) 702 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 703 SystemZMC::GR128Regs); 704 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 705 SystemZMC::GR64Regs); 706 } 707 if (Constraint[1] == 'f') { 708 if (VT == MVT::f32) 709 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 710 SystemZMC::FP32Regs); 711 if (VT == MVT::f128) 712 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 713 SystemZMC::FP128Regs); 714 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 715 SystemZMC::FP64Regs); 716 } 717 } 718 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 719 } 720 721 void SystemZTargetLowering:: 722 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 723 std::vector<SDValue> &Ops, 724 SelectionDAG &DAG) const { 725 // Only support length 1 constraints for now. 726 if (Constraint.length() == 1) { 727 switch (Constraint[0]) { 728 case 'I': // Unsigned 8-bit constant 729 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 730 if (isUInt<8>(C->getZExtValue())) 731 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 732 Op.getValueType())); 733 return; 734 735 case 'J': // Unsigned 12-bit constant 736 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 737 if (isUInt<12>(C->getZExtValue())) 738 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 739 Op.getValueType())); 740 return; 741 742 case 'K': // Signed 16-bit constant 743 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 744 if (isInt<16>(C->getSExtValue())) 745 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 746 Op.getValueType())); 747 return; 748 749 case 'L': // Signed 20-bit displacement (on all targets we support) 750 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 751 if (isInt<20>(C->getSExtValue())) 752 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 753 Op.getValueType())); 754 return; 755 756 case 'M': // 0x7fffffff 757 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 758 if (C->getZExtValue() == 0x7fffffff) 759 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 760 Op.getValueType())); 761 return; 762 } 763 } 764 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 765 } 766 767 //===----------------------------------------------------------------------===// 768 // Calling conventions 769 //===----------------------------------------------------------------------===// 770 771 #include "SystemZGenCallingConv.inc" 772 773 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 774 Type *ToType) const { 775 return isTruncateFree(FromType, ToType); 776 } 777 778 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 779 if (!CI->isTailCall()) 780 return false; 781 return true; 782 } 783 784 // We do not yet support 128-bit single-element vector types. If the user 785 // attempts to use such types as function argument or return type, prefer 786 // to error out instead of emitting code violating the ABI. 787 static void VerifyVectorType(MVT VT, EVT ArgVT) { 788 if (ArgVT.isVector() && !VT.isVector()) 789 report_fatal_error("Unsupported vector argument or return type"); 790 } 791 792 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 793 for (unsigned i = 0; i < Ins.size(); ++i) 794 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 795 } 796 797 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 798 for (unsigned i = 0; i < Outs.size(); ++i) 799 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 800 } 801 802 // Value is a value that has been passed to us in the location described by VA 803 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 804 // any loads onto Chain. 805 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 806 CCValAssign &VA, SDValue Chain, 807 SDValue Value) { 808 // If the argument has been promoted from a smaller type, insert an 809 // assertion to capture this. 810 if (VA.getLocInfo() == CCValAssign::SExt) 811 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 812 DAG.getValueType(VA.getValVT())); 813 else if (VA.getLocInfo() == CCValAssign::ZExt) 814 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 815 DAG.getValueType(VA.getValVT())); 816 817 if (VA.isExtInLoc()) 818 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 819 else if (VA.getLocInfo() == CCValAssign::Indirect) 820 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 821 MachinePointerInfo(), false, false, false, 0); 822 else if (VA.getLocInfo() == CCValAssign::BCvt) { 823 // If this is a short vector argument loaded from the stack, 824 // extend from i64 to full vector size and then bitcast. 825 assert(VA.getLocVT() == MVT::i64); 826 assert(VA.getValVT().isVector()); 827 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 828 Value, DAG.getUNDEF(MVT::i64)); 829 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 830 } else 831 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 832 return Value; 833 } 834 835 // Value is a value of type VA.getValVT() that we need to copy into 836 // the location described by VA. Return a copy of Value converted to 837 // VA.getValVT(). The caller is responsible for handling indirect values. 838 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 839 CCValAssign &VA, SDValue Value) { 840 switch (VA.getLocInfo()) { 841 case CCValAssign::SExt: 842 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 843 case CCValAssign::ZExt: 844 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 845 case CCValAssign::AExt: 846 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 847 case CCValAssign::BCvt: 848 // If this is a short vector argument to be stored to the stack, 849 // bitcast to v2i64 and then extract first element. 850 assert(VA.getLocVT() == MVT::i64); 851 assert(VA.getValVT().isVector()); 852 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 853 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 854 DAG.getConstant(0, DL, MVT::i32)); 855 case CCValAssign::Full: 856 return Value; 857 default: 858 llvm_unreachable("Unhandled getLocInfo()"); 859 } 860 } 861 862 SDValue SystemZTargetLowering:: 863 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 864 const SmallVectorImpl<ISD::InputArg> &Ins, 865 SDLoc DL, SelectionDAG &DAG, 866 SmallVectorImpl<SDValue> &InVals) const { 867 MachineFunction &MF = DAG.getMachineFunction(); 868 MachineFrameInfo *MFI = MF.getFrameInfo(); 869 MachineRegisterInfo &MRI = MF.getRegInfo(); 870 SystemZMachineFunctionInfo *FuncInfo = 871 MF.getInfo<SystemZMachineFunctionInfo>(); 872 auto *TFL = 873 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 874 875 // Detect unsupported vector argument types. 876 if (Subtarget.hasVector()) 877 VerifyVectorTypes(Ins); 878 879 // Assign locations to all of the incoming arguments. 880 SmallVector<CCValAssign, 16> ArgLocs; 881 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 882 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 883 884 unsigned NumFixedGPRs = 0; 885 unsigned NumFixedFPRs = 0; 886 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 887 SDValue ArgValue; 888 CCValAssign &VA = ArgLocs[I]; 889 EVT LocVT = VA.getLocVT(); 890 if (VA.isRegLoc()) { 891 // Arguments passed in registers 892 const TargetRegisterClass *RC; 893 switch (LocVT.getSimpleVT().SimpleTy) { 894 default: 895 // Integers smaller than i64 should be promoted to i64. 896 llvm_unreachable("Unexpected argument type"); 897 case MVT::i32: 898 NumFixedGPRs += 1; 899 RC = &SystemZ::GR32BitRegClass; 900 break; 901 case MVT::i64: 902 NumFixedGPRs += 1; 903 RC = &SystemZ::GR64BitRegClass; 904 break; 905 case MVT::f32: 906 NumFixedFPRs += 1; 907 RC = &SystemZ::FP32BitRegClass; 908 break; 909 case MVT::f64: 910 NumFixedFPRs += 1; 911 RC = &SystemZ::FP64BitRegClass; 912 break; 913 case MVT::v16i8: 914 case MVT::v8i16: 915 case MVT::v4i32: 916 case MVT::v2i64: 917 case MVT::v4f32: 918 case MVT::v2f64: 919 RC = &SystemZ::VR128BitRegClass; 920 break; 921 } 922 923 unsigned VReg = MRI.createVirtualRegister(RC); 924 MRI.addLiveIn(VA.getLocReg(), VReg); 925 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 926 } else { 927 assert(VA.isMemLoc() && "Argument not register or memory"); 928 929 // Create the frame index object for this incoming parameter. 930 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 931 VA.getLocMemOffset(), true); 932 933 // Create the SelectionDAG nodes corresponding to a load 934 // from this parameter. Unpromoted ints and floats are 935 // passed as right-justified 8-byte values. 936 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 937 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 938 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 939 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 940 DAG.getIntPtrConstant(4, DL)); 941 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 942 MachinePointerInfo::getFixedStack(FI), 943 false, false, false, 0); 944 } 945 946 // Convert the value of the argument register into the value that's 947 // being passed. 948 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 949 } 950 951 if (IsVarArg) { 952 // Save the number of non-varargs registers for later use by va_start, etc. 953 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 954 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 955 956 // Likewise the address (in the form of a frame index) of where the 957 // first stack vararg would be. The 1-byte size here is arbitrary. 958 int64_t StackSize = CCInfo.getNextStackOffset(); 959 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 960 961 // ...and a similar frame index for the caller-allocated save area 962 // that will be used to store the incoming registers. 963 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 964 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 965 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 966 967 // Store the FPR varargs in the reserved frame slots. (We store the 968 // GPRs as part of the prologue.) 969 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 970 SDValue MemOps[SystemZ::NumArgFPRs]; 971 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 972 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 973 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 974 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 975 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 976 &SystemZ::FP64BitRegClass); 977 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 978 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 979 MachinePointerInfo::getFixedStack(FI), 980 false, false, 0); 981 982 } 983 // Join the stores, which are independent of one another. 984 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 985 makeArrayRef(&MemOps[NumFixedFPRs], 986 SystemZ::NumArgFPRs-NumFixedFPRs)); 987 } 988 } 989 990 return Chain; 991 } 992 993 static bool canUseSiblingCall(const CCState &ArgCCInfo, 994 SmallVectorImpl<CCValAssign> &ArgLocs) { 995 // Punt if there are any indirect or stack arguments, or if the call 996 // needs the call-saved argument register R6. 997 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 998 CCValAssign &VA = ArgLocs[I]; 999 if (VA.getLocInfo() == CCValAssign::Indirect) 1000 return false; 1001 if (!VA.isRegLoc()) 1002 return false; 1003 unsigned Reg = VA.getLocReg(); 1004 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1005 return false; 1006 } 1007 return true; 1008 } 1009 1010 SDValue 1011 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1012 SmallVectorImpl<SDValue> &InVals) const { 1013 SelectionDAG &DAG = CLI.DAG; 1014 SDLoc &DL = CLI.DL; 1015 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1016 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1017 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1018 SDValue Chain = CLI.Chain; 1019 SDValue Callee = CLI.Callee; 1020 bool &IsTailCall = CLI.IsTailCall; 1021 CallingConv::ID CallConv = CLI.CallConv; 1022 bool IsVarArg = CLI.IsVarArg; 1023 MachineFunction &MF = DAG.getMachineFunction(); 1024 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1025 1026 // Detect unsupported vector argument and return types. 1027 if (Subtarget.hasVector()) { 1028 VerifyVectorTypes(Outs); 1029 VerifyVectorTypes(Ins); 1030 } 1031 1032 // Analyze the operands of the call, assigning locations to each operand. 1033 SmallVector<CCValAssign, 16> ArgLocs; 1034 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1035 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1036 1037 // We don't support GuaranteedTailCallOpt, only automatically-detected 1038 // sibling calls. 1039 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1040 IsTailCall = false; 1041 1042 // Get a count of how many bytes are to be pushed on the stack. 1043 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1044 1045 // Mark the start of the call. 1046 if (!IsTailCall) 1047 Chain = DAG.getCALLSEQ_START(Chain, 1048 DAG.getConstant(NumBytes, DL, PtrVT, true), 1049 DL); 1050 1051 // Copy argument values to their designated locations. 1052 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1053 SmallVector<SDValue, 8> MemOpChains; 1054 SDValue StackPtr; 1055 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1056 CCValAssign &VA = ArgLocs[I]; 1057 SDValue ArgValue = OutVals[I]; 1058 1059 if (VA.getLocInfo() == CCValAssign::Indirect) { 1060 // Store the argument in a stack slot and pass its address. 1061 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1062 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1063 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1064 MachinePointerInfo::getFixedStack(FI), 1065 false, false, 0)); 1066 ArgValue = SpillSlot; 1067 } else 1068 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1069 1070 if (VA.isRegLoc()) 1071 // Queue up the argument copies and emit them at the end. 1072 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1073 else { 1074 assert(VA.isMemLoc() && "Argument not register or memory"); 1075 1076 // Work out the address of the stack slot. Unpromoted ints and 1077 // floats are passed as right-justified 8-byte values. 1078 if (!StackPtr.getNode()) 1079 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1080 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1081 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1082 Offset += 4; 1083 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1084 DAG.getIntPtrConstant(Offset, DL)); 1085 1086 // Emit the store. 1087 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1088 MachinePointerInfo(), 1089 false, false, 0)); 1090 } 1091 } 1092 1093 // Join the stores, which are independent of one another. 1094 if (!MemOpChains.empty()) 1095 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1096 1097 // Accept direct calls by converting symbolic call addresses to the 1098 // associated Target* opcodes. Force %r1 to be used for indirect 1099 // tail calls. 1100 SDValue Glue; 1101 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1102 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1103 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1104 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1105 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1106 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1107 } else if (IsTailCall) { 1108 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1109 Glue = Chain.getValue(1); 1110 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1111 } 1112 1113 // Build a sequence of copy-to-reg nodes, chained and glued together. 1114 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1115 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1116 RegsToPass[I].second, Glue); 1117 Glue = Chain.getValue(1); 1118 } 1119 1120 // The first call operand is the chain and the second is the target address. 1121 SmallVector<SDValue, 8> Ops; 1122 Ops.push_back(Chain); 1123 Ops.push_back(Callee); 1124 1125 // Add argument registers to the end of the list so that they are 1126 // known live into the call. 1127 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1128 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1129 RegsToPass[I].second.getValueType())); 1130 1131 // Add a register mask operand representing the call-preserved registers. 1132 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1133 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1134 assert(Mask && "Missing call preserved mask for calling convention"); 1135 Ops.push_back(DAG.getRegisterMask(Mask)); 1136 1137 // Glue the call to the argument copies, if any. 1138 if (Glue.getNode()) 1139 Ops.push_back(Glue); 1140 1141 // Emit the call. 1142 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1143 if (IsTailCall) 1144 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1145 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1146 Glue = Chain.getValue(1); 1147 1148 // Mark the end of the call, which is glued to the call itself. 1149 Chain = DAG.getCALLSEQ_END(Chain, 1150 DAG.getConstant(NumBytes, DL, PtrVT, true), 1151 DAG.getConstant(0, DL, PtrVT, true), 1152 Glue, DL); 1153 Glue = Chain.getValue(1); 1154 1155 // Assign locations to each value returned by this call. 1156 SmallVector<CCValAssign, 16> RetLocs; 1157 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1158 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1159 1160 // Copy all of the result registers out of their specified physreg. 1161 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1162 CCValAssign &VA = RetLocs[I]; 1163 1164 // Copy the value out, gluing the copy to the end of the call sequence. 1165 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1166 VA.getLocVT(), Glue); 1167 Chain = RetValue.getValue(1); 1168 Glue = RetValue.getValue(2); 1169 1170 // Convert the value of the return register into the value that's 1171 // being returned. 1172 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1173 } 1174 1175 return Chain; 1176 } 1177 1178 SDValue 1179 SystemZTargetLowering::LowerReturn(SDValue Chain, 1180 CallingConv::ID CallConv, bool IsVarArg, 1181 const SmallVectorImpl<ISD::OutputArg> &Outs, 1182 const SmallVectorImpl<SDValue> &OutVals, 1183 SDLoc DL, SelectionDAG &DAG) const { 1184 MachineFunction &MF = DAG.getMachineFunction(); 1185 1186 // Detect unsupported vector return types. 1187 if (Subtarget.hasVector()) 1188 VerifyVectorTypes(Outs); 1189 1190 // Assign locations to each returned value. 1191 SmallVector<CCValAssign, 16> RetLocs; 1192 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1193 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1194 1195 // Quick exit for void returns 1196 if (RetLocs.empty()) 1197 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1198 1199 // Copy the result values into the output registers. 1200 SDValue Glue; 1201 SmallVector<SDValue, 4> RetOps; 1202 RetOps.push_back(Chain); 1203 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1204 CCValAssign &VA = RetLocs[I]; 1205 SDValue RetValue = OutVals[I]; 1206 1207 // Make the return register live on exit. 1208 assert(VA.isRegLoc() && "Can only return in registers!"); 1209 1210 // Promote the value as required. 1211 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1212 1213 // Chain and glue the copies together. 1214 unsigned Reg = VA.getLocReg(); 1215 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1216 Glue = Chain.getValue(1); 1217 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1218 } 1219 1220 // Update chain and glue. 1221 RetOps[0] = Chain; 1222 if (Glue.getNode()) 1223 RetOps.push_back(Glue); 1224 1225 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1226 } 1227 1228 SDValue SystemZTargetLowering:: 1229 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1230 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1231 } 1232 1233 // Return true if Op is an intrinsic node with chain that returns the CC value 1234 // as its only (other) argument. Provide the associated SystemZISD opcode and 1235 // the mask of valid CC values if so. 1236 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1237 unsigned &CCValid) { 1238 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1239 switch (Id) { 1240 case Intrinsic::s390_tbegin: 1241 Opcode = SystemZISD::TBEGIN; 1242 CCValid = SystemZ::CCMASK_TBEGIN; 1243 return true; 1244 1245 case Intrinsic::s390_tbegin_nofloat: 1246 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1247 CCValid = SystemZ::CCMASK_TBEGIN; 1248 return true; 1249 1250 case Intrinsic::s390_tend: 1251 Opcode = SystemZISD::TEND; 1252 CCValid = SystemZ::CCMASK_TEND; 1253 return true; 1254 1255 default: 1256 return false; 1257 } 1258 } 1259 1260 // Return true if Op is an intrinsic node without chain that returns the 1261 // CC value as its final argument. Provide the associated SystemZISD 1262 // opcode and the mask of valid CC values if so. 1263 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1264 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1265 switch (Id) { 1266 case Intrinsic::s390_vpkshs: 1267 case Intrinsic::s390_vpksfs: 1268 case Intrinsic::s390_vpksgs: 1269 Opcode = SystemZISD::PACKS_CC; 1270 CCValid = SystemZ::CCMASK_VCMP; 1271 return true; 1272 1273 case Intrinsic::s390_vpklshs: 1274 case Intrinsic::s390_vpklsfs: 1275 case Intrinsic::s390_vpklsgs: 1276 Opcode = SystemZISD::PACKLS_CC; 1277 CCValid = SystemZ::CCMASK_VCMP; 1278 return true; 1279 1280 case Intrinsic::s390_vceqbs: 1281 case Intrinsic::s390_vceqhs: 1282 case Intrinsic::s390_vceqfs: 1283 case Intrinsic::s390_vceqgs: 1284 Opcode = SystemZISD::VICMPES; 1285 CCValid = SystemZ::CCMASK_VCMP; 1286 return true; 1287 1288 case Intrinsic::s390_vchbs: 1289 case Intrinsic::s390_vchhs: 1290 case Intrinsic::s390_vchfs: 1291 case Intrinsic::s390_vchgs: 1292 Opcode = SystemZISD::VICMPHS; 1293 CCValid = SystemZ::CCMASK_VCMP; 1294 return true; 1295 1296 case Intrinsic::s390_vchlbs: 1297 case Intrinsic::s390_vchlhs: 1298 case Intrinsic::s390_vchlfs: 1299 case Intrinsic::s390_vchlgs: 1300 Opcode = SystemZISD::VICMPHLS; 1301 CCValid = SystemZ::CCMASK_VCMP; 1302 return true; 1303 1304 case Intrinsic::s390_vtm: 1305 Opcode = SystemZISD::VTM; 1306 CCValid = SystemZ::CCMASK_VCMP; 1307 return true; 1308 1309 case Intrinsic::s390_vfaebs: 1310 case Intrinsic::s390_vfaehs: 1311 case Intrinsic::s390_vfaefs: 1312 Opcode = SystemZISD::VFAE_CC; 1313 CCValid = SystemZ::CCMASK_ANY; 1314 return true; 1315 1316 case Intrinsic::s390_vfaezbs: 1317 case Intrinsic::s390_vfaezhs: 1318 case Intrinsic::s390_vfaezfs: 1319 Opcode = SystemZISD::VFAEZ_CC; 1320 CCValid = SystemZ::CCMASK_ANY; 1321 return true; 1322 1323 case Intrinsic::s390_vfeebs: 1324 case Intrinsic::s390_vfeehs: 1325 case Intrinsic::s390_vfeefs: 1326 Opcode = SystemZISD::VFEE_CC; 1327 CCValid = SystemZ::CCMASK_ANY; 1328 return true; 1329 1330 case Intrinsic::s390_vfeezbs: 1331 case Intrinsic::s390_vfeezhs: 1332 case Intrinsic::s390_vfeezfs: 1333 Opcode = SystemZISD::VFEEZ_CC; 1334 CCValid = SystemZ::CCMASK_ANY; 1335 return true; 1336 1337 case Intrinsic::s390_vfenebs: 1338 case Intrinsic::s390_vfenehs: 1339 case Intrinsic::s390_vfenefs: 1340 Opcode = SystemZISD::VFENE_CC; 1341 CCValid = SystemZ::CCMASK_ANY; 1342 return true; 1343 1344 case Intrinsic::s390_vfenezbs: 1345 case Intrinsic::s390_vfenezhs: 1346 case Intrinsic::s390_vfenezfs: 1347 Opcode = SystemZISD::VFENEZ_CC; 1348 CCValid = SystemZ::CCMASK_ANY; 1349 return true; 1350 1351 case Intrinsic::s390_vistrbs: 1352 case Intrinsic::s390_vistrhs: 1353 case Intrinsic::s390_vistrfs: 1354 Opcode = SystemZISD::VISTR_CC; 1355 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1356 return true; 1357 1358 case Intrinsic::s390_vstrcbs: 1359 case Intrinsic::s390_vstrchs: 1360 case Intrinsic::s390_vstrcfs: 1361 Opcode = SystemZISD::VSTRC_CC; 1362 CCValid = SystemZ::CCMASK_ANY; 1363 return true; 1364 1365 case Intrinsic::s390_vstrczbs: 1366 case Intrinsic::s390_vstrczhs: 1367 case Intrinsic::s390_vstrczfs: 1368 Opcode = SystemZISD::VSTRCZ_CC; 1369 CCValid = SystemZ::CCMASK_ANY; 1370 return true; 1371 1372 case Intrinsic::s390_vfcedbs: 1373 Opcode = SystemZISD::VFCMPES; 1374 CCValid = SystemZ::CCMASK_VCMP; 1375 return true; 1376 1377 case Intrinsic::s390_vfchdbs: 1378 Opcode = SystemZISD::VFCMPHS; 1379 CCValid = SystemZ::CCMASK_VCMP; 1380 return true; 1381 1382 case Intrinsic::s390_vfchedbs: 1383 Opcode = SystemZISD::VFCMPHES; 1384 CCValid = SystemZ::CCMASK_VCMP; 1385 return true; 1386 1387 case Intrinsic::s390_vftcidb: 1388 Opcode = SystemZISD::VFTCI; 1389 CCValid = SystemZ::CCMASK_VCMP; 1390 return true; 1391 1392 default: 1393 return false; 1394 } 1395 } 1396 1397 // Emit an intrinsic with chain with a glued value instead of its CC result. 1398 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1399 unsigned Opcode) { 1400 // Copy all operands except the intrinsic ID. 1401 unsigned NumOps = Op.getNumOperands(); 1402 SmallVector<SDValue, 6> Ops; 1403 Ops.reserve(NumOps - 1); 1404 Ops.push_back(Op.getOperand(0)); 1405 for (unsigned I = 2; I < NumOps; ++I) 1406 Ops.push_back(Op.getOperand(I)); 1407 1408 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1409 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1410 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1411 SDValue OldChain = SDValue(Op.getNode(), 1); 1412 SDValue NewChain = SDValue(Intr.getNode(), 0); 1413 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1414 return Intr; 1415 } 1416 1417 // Emit an intrinsic with a glued value instead of its CC result. 1418 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1419 unsigned Opcode) { 1420 // Copy all operands except the intrinsic ID. 1421 unsigned NumOps = Op.getNumOperands(); 1422 SmallVector<SDValue, 6> Ops; 1423 Ops.reserve(NumOps - 1); 1424 for (unsigned I = 1; I < NumOps; ++I) 1425 Ops.push_back(Op.getOperand(I)); 1426 1427 if (Op->getNumValues() == 1) 1428 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1429 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1430 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1431 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1432 } 1433 1434 // CC is a comparison that will be implemented using an integer or 1435 // floating-point comparison. Return the condition code mask for 1436 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1437 // unsigned comparisons and clear for signed ones. In the floating-point 1438 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1439 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1440 #define CONV(X) \ 1441 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1442 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1443 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1444 1445 switch (CC) { 1446 default: 1447 llvm_unreachable("Invalid integer condition!"); 1448 1449 CONV(EQ); 1450 CONV(NE); 1451 CONV(GT); 1452 CONV(GE); 1453 CONV(LT); 1454 CONV(LE); 1455 1456 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1457 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1458 } 1459 #undef CONV 1460 } 1461 1462 // Return a sequence for getting a 1 from an IPM result when CC has a 1463 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1464 // The handling of CC values outside CCValid doesn't matter. 1465 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1466 // Deal with cases where the result can be taken directly from a bit 1467 // of the IPM result. 1468 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1469 return IPMConversion(0, 0, SystemZ::IPM_CC); 1470 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1471 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1472 1473 // Deal with cases where we can add a value to force the sign bit 1474 // to contain the right value. Putting the bit in 31 means we can 1475 // use SRL rather than RISBG(L), and also makes it easier to get a 1476 // 0/-1 value, so it has priority over the other tests below. 1477 // 1478 // These sequences rely on the fact that the upper two bits of the 1479 // IPM result are zero. 1480 uint64_t TopBit = uint64_t(1) << 31; 1481 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1482 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1483 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1484 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1485 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1486 | SystemZ::CCMASK_1 1487 | SystemZ::CCMASK_2))) 1488 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1489 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1490 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1491 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1492 | SystemZ::CCMASK_2 1493 | SystemZ::CCMASK_3))) 1494 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1495 1496 // Next try inverting the value and testing a bit. 0/1 could be 1497 // handled this way too, but we dealt with that case above. 1498 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1499 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1500 1501 // Handle cases where adding a value forces a non-sign bit to contain 1502 // the right value. 1503 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1504 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1505 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1506 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1507 1508 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1509 // can be done by inverting the low CC bit and applying one of the 1510 // sign-based extractions above. 1511 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1512 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1513 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1514 return IPMConversion(1 << SystemZ::IPM_CC, 1515 TopBit - (3 << SystemZ::IPM_CC), 31); 1516 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1517 | SystemZ::CCMASK_1 1518 | SystemZ::CCMASK_3))) 1519 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1520 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1521 | SystemZ::CCMASK_2 1522 | SystemZ::CCMASK_3))) 1523 return IPMConversion(1 << SystemZ::IPM_CC, 1524 TopBit - (1 << SystemZ::IPM_CC), 31); 1525 1526 llvm_unreachable("Unexpected CC combination"); 1527 } 1528 1529 // If C can be converted to a comparison against zero, adjust the operands 1530 // as necessary. 1531 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1532 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1533 return; 1534 1535 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1536 if (!ConstOp1) 1537 return; 1538 1539 int64_t Value = ConstOp1->getSExtValue(); 1540 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1541 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1542 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1543 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1544 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1545 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1546 } 1547 } 1548 1549 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1550 // adjust the operands as necessary. 1551 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1552 // For us to make any changes, it must a comparison between a single-use 1553 // load and a constant. 1554 if (!C.Op0.hasOneUse() || 1555 C.Op0.getOpcode() != ISD::LOAD || 1556 C.Op1.getOpcode() != ISD::Constant) 1557 return; 1558 1559 // We must have an 8- or 16-bit load. 1560 auto *Load = cast<LoadSDNode>(C.Op0); 1561 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1562 if (NumBits != 8 && NumBits != 16) 1563 return; 1564 1565 // The load must be an extending one and the constant must be within the 1566 // range of the unextended value. 1567 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1568 uint64_t Value = ConstOp1->getZExtValue(); 1569 uint64_t Mask = (1 << NumBits) - 1; 1570 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1571 // Make sure that ConstOp1 is in range of C.Op0. 1572 int64_t SignedValue = ConstOp1->getSExtValue(); 1573 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1574 return; 1575 if (C.ICmpType != SystemZICMP::SignedOnly) { 1576 // Unsigned comparison between two sign-extended values is equivalent 1577 // to unsigned comparison between two zero-extended values. 1578 Value &= Mask; 1579 } else if (NumBits == 8) { 1580 // Try to treat the comparison as unsigned, so that we can use CLI. 1581 // Adjust CCMask and Value as necessary. 1582 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1583 // Test whether the high bit of the byte is set. 1584 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1585 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1586 // Test whether the high bit of the byte is clear. 1587 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1588 else 1589 // No instruction exists for this combination. 1590 return; 1591 C.ICmpType = SystemZICMP::UnsignedOnly; 1592 } 1593 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1594 if (Value > Mask) 1595 return; 1596 assert(C.ICmpType == SystemZICMP::Any && 1597 "Signedness shouldn't matter here."); 1598 } else 1599 return; 1600 1601 // Make sure that the first operand is an i32 of the right extension type. 1602 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1603 ISD::SEXTLOAD : 1604 ISD::ZEXTLOAD); 1605 if (C.Op0.getValueType() != MVT::i32 || 1606 Load->getExtensionType() != ExtType) 1607 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1608 Load->getChain(), Load->getBasePtr(), 1609 Load->getPointerInfo(), Load->getMemoryVT(), 1610 Load->isVolatile(), Load->isNonTemporal(), 1611 Load->isInvariant(), Load->getAlignment()); 1612 1613 // Make sure that the second operand is an i32 with the right value. 1614 if (C.Op1.getValueType() != MVT::i32 || 1615 Value != ConstOp1->getZExtValue()) 1616 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1617 } 1618 1619 // Return true if Op is either an unextended load, or a load suitable 1620 // for integer register-memory comparisons of type ICmpType. 1621 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1622 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1623 if (Load) { 1624 // There are no instructions to compare a register with a memory byte. 1625 if (Load->getMemoryVT() == MVT::i8) 1626 return false; 1627 // Otherwise decide on extension type. 1628 switch (Load->getExtensionType()) { 1629 case ISD::NON_EXTLOAD: 1630 return true; 1631 case ISD::SEXTLOAD: 1632 return ICmpType != SystemZICMP::UnsignedOnly; 1633 case ISD::ZEXTLOAD: 1634 return ICmpType != SystemZICMP::SignedOnly; 1635 default: 1636 break; 1637 } 1638 } 1639 return false; 1640 } 1641 1642 // Return true if it is better to swap the operands of C. 1643 static bool shouldSwapCmpOperands(const Comparison &C) { 1644 // Leave f128 comparisons alone, since they have no memory forms. 1645 if (C.Op0.getValueType() == MVT::f128) 1646 return false; 1647 1648 // Always keep a floating-point constant second, since comparisons with 1649 // zero can use LOAD TEST and comparisons with other constants make a 1650 // natural memory operand. 1651 if (isa<ConstantFPSDNode>(C.Op1)) 1652 return false; 1653 1654 // Never swap comparisons with zero since there are many ways to optimize 1655 // those later. 1656 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1657 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1658 return false; 1659 1660 // Also keep natural memory operands second if the loaded value is 1661 // only used here. Several comparisons have memory forms. 1662 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1663 return false; 1664 1665 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1666 // In that case we generally prefer the memory to be second. 1667 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1668 // The only exceptions are when the second operand is a constant and 1669 // we can use things like CHHSI. 1670 if (!ConstOp1) 1671 return true; 1672 // The unsigned memory-immediate instructions can handle 16-bit 1673 // unsigned integers. 1674 if (C.ICmpType != SystemZICMP::SignedOnly && 1675 isUInt<16>(ConstOp1->getZExtValue())) 1676 return false; 1677 // The signed memory-immediate instructions can handle 16-bit 1678 // signed integers. 1679 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1680 isInt<16>(ConstOp1->getSExtValue())) 1681 return false; 1682 return true; 1683 } 1684 1685 // Try to promote the use of CGFR and CLGFR. 1686 unsigned Opcode0 = C.Op0.getOpcode(); 1687 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1688 return true; 1689 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1690 return true; 1691 if (C.ICmpType != SystemZICMP::SignedOnly && 1692 Opcode0 == ISD::AND && 1693 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1694 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1695 return true; 1696 1697 return false; 1698 } 1699 1700 // Return a version of comparison CC mask CCMask in which the LT and GT 1701 // actions are swapped. 1702 static unsigned reverseCCMask(unsigned CCMask) { 1703 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1704 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1705 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1706 (CCMask & SystemZ::CCMASK_CMP_UO)); 1707 } 1708 1709 // Check whether C tests for equality between X and Y and whether X - Y 1710 // or Y - X is also computed. In that case it's better to compare the 1711 // result of the subtraction against zero. 1712 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1713 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1714 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1715 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1716 SDNode *N = *I; 1717 if (N->getOpcode() == ISD::SUB && 1718 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1719 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1720 C.Op0 = SDValue(N, 0); 1721 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1722 return; 1723 } 1724 } 1725 } 1726 } 1727 1728 // Check whether C compares a floating-point value with zero and if that 1729 // floating-point value is also negated. In this case we can use the 1730 // negation to set CC, so avoiding separate LOAD AND TEST and 1731 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1732 static void adjustForFNeg(Comparison &C) { 1733 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1734 if (C1 && C1->isZero()) { 1735 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1736 SDNode *N = *I; 1737 if (N->getOpcode() == ISD::FNEG) { 1738 C.Op0 = SDValue(N, 0); 1739 C.CCMask = reverseCCMask(C.CCMask); 1740 return; 1741 } 1742 } 1743 } 1744 } 1745 1746 // Check whether C compares (shl X, 32) with 0 and whether X is 1747 // also sign-extended. In that case it is better to test the result 1748 // of the sign extension using LTGFR. 1749 // 1750 // This case is important because InstCombine transforms a comparison 1751 // with (sext (trunc X)) into a comparison with (shl X, 32). 1752 static void adjustForLTGFR(Comparison &C) { 1753 // Check for a comparison between (shl X, 32) and 0. 1754 if (C.Op0.getOpcode() == ISD::SHL && 1755 C.Op0.getValueType() == MVT::i64 && 1756 C.Op1.getOpcode() == ISD::Constant && 1757 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1758 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1759 if (C1 && C1->getZExtValue() == 32) { 1760 SDValue ShlOp0 = C.Op0.getOperand(0); 1761 // See whether X has any SIGN_EXTEND_INREG uses. 1762 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1763 SDNode *N = *I; 1764 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1765 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1766 C.Op0 = SDValue(N, 0); 1767 return; 1768 } 1769 } 1770 } 1771 } 1772 } 1773 1774 // If C compares the truncation of an extending load, try to compare 1775 // the untruncated value instead. This exposes more opportunities to 1776 // reuse CC. 1777 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1778 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1779 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1780 C.Op1.getOpcode() == ISD::Constant && 1781 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1782 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1783 if (L->getMemoryVT().getStoreSizeInBits() 1784 <= C.Op0.getValueType().getSizeInBits()) { 1785 unsigned Type = L->getExtensionType(); 1786 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1787 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1788 C.Op0 = C.Op0.getOperand(0); 1789 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1790 } 1791 } 1792 } 1793 } 1794 1795 // Return true if shift operation N has an in-range constant shift value. 1796 // Store it in ShiftVal if so. 1797 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1798 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1799 if (!Shift) 1800 return false; 1801 1802 uint64_t Amount = Shift->getZExtValue(); 1803 if (Amount >= N.getValueType().getSizeInBits()) 1804 return false; 1805 1806 ShiftVal = Amount; 1807 return true; 1808 } 1809 1810 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1811 // instruction and whether the CC value is descriptive enough to handle 1812 // a comparison of type Opcode between the AND result and CmpVal. 1813 // CCMask says which comparison result is being tested and BitSize is 1814 // the number of bits in the operands. If TEST UNDER MASK can be used, 1815 // return the corresponding CC mask, otherwise return 0. 1816 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1817 uint64_t Mask, uint64_t CmpVal, 1818 unsigned ICmpType) { 1819 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1820 1821 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1822 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1823 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1824 return 0; 1825 1826 // Work out the masks for the lowest and highest bits. 1827 unsigned HighShift = 63 - countLeadingZeros(Mask); 1828 uint64_t High = uint64_t(1) << HighShift; 1829 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1830 1831 // Signed ordered comparisons are effectively unsigned if the sign 1832 // bit is dropped. 1833 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1834 1835 // Check for equality comparisons with 0, or the equivalent. 1836 if (CmpVal == 0) { 1837 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1838 return SystemZ::CCMASK_TM_ALL_0; 1839 if (CCMask == SystemZ::CCMASK_CMP_NE) 1840 return SystemZ::CCMASK_TM_SOME_1; 1841 } 1842 if (EffectivelyUnsigned && CmpVal <= Low) { 1843 if (CCMask == SystemZ::CCMASK_CMP_LT) 1844 return SystemZ::CCMASK_TM_ALL_0; 1845 if (CCMask == SystemZ::CCMASK_CMP_GE) 1846 return SystemZ::CCMASK_TM_SOME_1; 1847 } 1848 if (EffectivelyUnsigned && CmpVal < Low) { 1849 if (CCMask == SystemZ::CCMASK_CMP_LE) 1850 return SystemZ::CCMASK_TM_ALL_0; 1851 if (CCMask == SystemZ::CCMASK_CMP_GT) 1852 return SystemZ::CCMASK_TM_SOME_1; 1853 } 1854 1855 // Check for equality comparisons with the mask, or the equivalent. 1856 if (CmpVal == Mask) { 1857 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1858 return SystemZ::CCMASK_TM_ALL_1; 1859 if (CCMask == SystemZ::CCMASK_CMP_NE) 1860 return SystemZ::CCMASK_TM_SOME_0; 1861 } 1862 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1863 if (CCMask == SystemZ::CCMASK_CMP_GT) 1864 return SystemZ::CCMASK_TM_ALL_1; 1865 if (CCMask == SystemZ::CCMASK_CMP_LE) 1866 return SystemZ::CCMASK_TM_SOME_0; 1867 } 1868 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1869 if (CCMask == SystemZ::CCMASK_CMP_GE) 1870 return SystemZ::CCMASK_TM_ALL_1; 1871 if (CCMask == SystemZ::CCMASK_CMP_LT) 1872 return SystemZ::CCMASK_TM_SOME_0; 1873 } 1874 1875 // Check for ordered comparisons with the top bit. 1876 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1877 if (CCMask == SystemZ::CCMASK_CMP_LE) 1878 return SystemZ::CCMASK_TM_MSB_0; 1879 if (CCMask == SystemZ::CCMASK_CMP_GT) 1880 return SystemZ::CCMASK_TM_MSB_1; 1881 } 1882 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1883 if (CCMask == SystemZ::CCMASK_CMP_LT) 1884 return SystemZ::CCMASK_TM_MSB_0; 1885 if (CCMask == SystemZ::CCMASK_CMP_GE) 1886 return SystemZ::CCMASK_TM_MSB_1; 1887 } 1888 1889 // If there are just two bits, we can do equality checks for Low and High 1890 // as well. 1891 if (Mask == Low + High) { 1892 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1893 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1894 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1895 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1896 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1897 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1898 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1899 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1900 } 1901 1902 // Looks like we've exhausted our options. 1903 return 0; 1904 } 1905 1906 // See whether C can be implemented as a TEST UNDER MASK instruction. 1907 // Update the arguments with the TM version if so. 1908 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1909 // Check that we have a comparison with a constant. 1910 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1911 if (!ConstOp1) 1912 return; 1913 uint64_t CmpVal = ConstOp1->getZExtValue(); 1914 1915 // Check whether the nonconstant input is an AND with a constant mask. 1916 Comparison NewC(C); 1917 uint64_t MaskVal; 1918 ConstantSDNode *Mask = nullptr; 1919 if (C.Op0.getOpcode() == ISD::AND) { 1920 NewC.Op0 = C.Op0.getOperand(0); 1921 NewC.Op1 = C.Op0.getOperand(1); 1922 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1923 if (!Mask) 1924 return; 1925 MaskVal = Mask->getZExtValue(); 1926 } else { 1927 // There is no instruction to compare with a 64-bit immediate 1928 // so use TMHH instead if possible. We need an unsigned ordered 1929 // comparison with an i64 immediate. 1930 if (NewC.Op0.getValueType() != MVT::i64 || 1931 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1932 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1933 NewC.ICmpType == SystemZICMP::SignedOnly) 1934 return; 1935 // Convert LE and GT comparisons into LT and GE. 1936 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1937 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1938 if (CmpVal == uint64_t(-1)) 1939 return; 1940 CmpVal += 1; 1941 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1942 } 1943 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1944 // be masked off without changing the result. 1945 MaskVal = -(CmpVal & -CmpVal); 1946 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1947 } 1948 if (!MaskVal) 1949 return; 1950 1951 // Check whether the combination of mask, comparison value and comparison 1952 // type are suitable. 1953 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1954 unsigned NewCCMask, ShiftVal; 1955 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1956 NewC.Op0.getOpcode() == ISD::SHL && 1957 isSimpleShift(NewC.Op0, ShiftVal) && 1958 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1959 MaskVal >> ShiftVal, 1960 CmpVal >> ShiftVal, 1961 SystemZICMP::Any))) { 1962 NewC.Op0 = NewC.Op0.getOperand(0); 1963 MaskVal >>= ShiftVal; 1964 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1965 NewC.Op0.getOpcode() == ISD::SRL && 1966 isSimpleShift(NewC.Op0, ShiftVal) && 1967 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1968 MaskVal << ShiftVal, 1969 CmpVal << ShiftVal, 1970 SystemZICMP::UnsignedOnly))) { 1971 NewC.Op0 = NewC.Op0.getOperand(0); 1972 MaskVal <<= ShiftVal; 1973 } else { 1974 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1975 NewC.ICmpType); 1976 if (!NewCCMask) 1977 return; 1978 } 1979 1980 // Go ahead and make the change. 1981 C.Opcode = SystemZISD::TM; 1982 C.Op0 = NewC.Op0; 1983 if (Mask && Mask->getZExtValue() == MaskVal) 1984 C.Op1 = SDValue(Mask, 0); 1985 else 1986 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 1987 C.CCValid = SystemZ::CCMASK_TM; 1988 C.CCMask = NewCCMask; 1989 } 1990 1991 // Return a Comparison that tests the condition-code result of intrinsic 1992 // node Call against constant integer CC using comparison code Cond. 1993 // Opcode is the opcode of the SystemZISD operation for the intrinsic 1994 // and CCValid is the set of possible condition-code results. 1995 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 1996 SDValue Call, unsigned CCValid, uint64_t CC, 1997 ISD::CondCode Cond) { 1998 Comparison C(Call, SDValue()); 1999 C.Opcode = Opcode; 2000 C.CCValid = CCValid; 2001 if (Cond == ISD::SETEQ) 2002 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2003 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2004 else if (Cond == ISD::SETNE) 2005 // ...and the inverse of that. 2006 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2007 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2008 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2009 // always true for CC>3. 2010 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2011 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2012 // ...and the inverse of that. 2013 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2014 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2015 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2016 // always true for CC>3. 2017 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2018 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2019 // ...and the inverse of that. 2020 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2021 else 2022 llvm_unreachable("Unexpected integer comparison type"); 2023 C.CCMask &= CCValid; 2024 return C; 2025 } 2026 2027 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2028 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2029 ISD::CondCode Cond, SDLoc DL) { 2030 if (CmpOp1.getOpcode() == ISD::Constant) { 2031 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2032 unsigned Opcode, CCValid; 2033 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2034 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2035 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2036 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2037 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2038 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2039 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2040 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2041 } 2042 Comparison C(CmpOp0, CmpOp1); 2043 C.CCMask = CCMaskForCondCode(Cond); 2044 if (C.Op0.getValueType().isFloatingPoint()) { 2045 C.CCValid = SystemZ::CCMASK_FCMP; 2046 C.Opcode = SystemZISD::FCMP; 2047 adjustForFNeg(C); 2048 } else { 2049 C.CCValid = SystemZ::CCMASK_ICMP; 2050 C.Opcode = SystemZISD::ICMP; 2051 // Choose the type of comparison. Equality and inequality tests can 2052 // use either signed or unsigned comparisons. The choice also doesn't 2053 // matter if both sign bits are known to be clear. In those cases we 2054 // want to give the main isel code the freedom to choose whichever 2055 // form fits best. 2056 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2057 C.CCMask == SystemZ::CCMASK_CMP_NE || 2058 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2059 C.ICmpType = SystemZICMP::Any; 2060 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2061 C.ICmpType = SystemZICMP::UnsignedOnly; 2062 else 2063 C.ICmpType = SystemZICMP::SignedOnly; 2064 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2065 adjustZeroCmp(DAG, DL, C); 2066 adjustSubwordCmp(DAG, DL, C); 2067 adjustForSubtraction(DAG, DL, C); 2068 adjustForLTGFR(C); 2069 adjustICmpTruncate(DAG, DL, C); 2070 } 2071 2072 if (shouldSwapCmpOperands(C)) { 2073 std::swap(C.Op0, C.Op1); 2074 C.CCMask = reverseCCMask(C.CCMask); 2075 } 2076 2077 adjustForTestUnderMask(DAG, DL, C); 2078 return C; 2079 } 2080 2081 // Emit the comparison instruction described by C. 2082 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2083 if (!C.Op1.getNode()) { 2084 SDValue Op; 2085 switch (C.Op0.getOpcode()) { 2086 case ISD::INTRINSIC_W_CHAIN: 2087 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2088 break; 2089 case ISD::INTRINSIC_WO_CHAIN: 2090 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2091 break; 2092 default: 2093 llvm_unreachable("Invalid comparison operands"); 2094 } 2095 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2096 } 2097 if (C.Opcode == SystemZISD::ICMP) 2098 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2099 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2100 if (C.Opcode == SystemZISD::TM) { 2101 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2102 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2103 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2104 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2105 } 2106 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2107 } 2108 2109 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2110 // 64 bits. Extend is the extension type to use. Store the high part 2111 // in Hi and the low part in Lo. 2112 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2113 unsigned Extend, SDValue Op0, SDValue Op1, 2114 SDValue &Hi, SDValue &Lo) { 2115 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2116 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2117 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2118 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2119 DAG.getConstant(32, DL, MVT::i64)); 2120 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2121 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2122 } 2123 2124 // Lower a binary operation that produces two VT results, one in each 2125 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2126 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2127 // on the extended Op0 and (unextended) Op1. Store the even register result 2128 // in Even and the odd register result in Odd. 2129 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2130 unsigned Extend, unsigned Opcode, 2131 SDValue Op0, SDValue Op1, 2132 SDValue &Even, SDValue &Odd) { 2133 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2134 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2135 SDValue(In128, 0), Op1); 2136 bool Is32Bit = is32Bit(VT); 2137 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2138 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2139 } 2140 2141 // Return an i32 value that is 1 if the CC value produced by Glue is 2142 // in the mask CCMask and 0 otherwise. CC is known to have a value 2143 // in CCValid, so other values can be ignored. 2144 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2145 unsigned CCValid, unsigned CCMask) { 2146 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2147 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2148 2149 if (Conversion.XORValue) 2150 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2151 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2152 2153 if (Conversion.AddValue) 2154 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2155 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2156 2157 // The SHR/AND sequence should get optimized to an RISBG. 2158 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2159 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2160 if (Conversion.Bit != 31) 2161 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2162 DAG.getConstant(1, DL, MVT::i32)); 2163 return Result; 2164 } 2165 2166 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2167 // be done directly. IsFP is true if CC is for a floating-point rather than 2168 // integer comparison. 2169 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2170 switch (CC) { 2171 case ISD::SETOEQ: 2172 case ISD::SETEQ: 2173 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2174 2175 case ISD::SETOGE: 2176 case ISD::SETGE: 2177 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2178 2179 case ISD::SETOGT: 2180 case ISD::SETGT: 2181 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2182 2183 case ISD::SETUGT: 2184 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2185 2186 default: 2187 return 0; 2188 } 2189 } 2190 2191 // Return the SystemZISD vector comparison operation for CC or its inverse, 2192 // or 0 if neither can be done directly. Indicate in Invert whether the 2193 // result is for the inverse of CC. IsFP is true if CC is for a 2194 // floating-point rather than integer comparison. 2195 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2196 bool &Invert) { 2197 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2198 Invert = false; 2199 return Opcode; 2200 } 2201 2202 CC = ISD::getSetCCInverse(CC, !IsFP); 2203 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2204 Invert = true; 2205 return Opcode; 2206 } 2207 2208 return 0; 2209 } 2210 2211 // Return a v2f64 that contains the extended form of elements Start and Start+1 2212 // of v4f32 value Op. 2213 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2214 SDValue Op) { 2215 int Mask[] = { Start, -1, Start + 1, -1 }; 2216 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2217 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2218 } 2219 2220 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2221 // producing a result of type VT. 2222 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2223 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2224 // There is no hardware support for v4f32, so extend the vector into 2225 // two v2f64s and compare those. 2226 if (CmpOp0.getValueType() == MVT::v4f32) { 2227 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2228 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2229 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2230 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2231 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2232 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2233 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2234 } 2235 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2236 } 2237 2238 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2239 // an integer mask of type VT. 2240 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2241 ISD::CondCode CC, SDValue CmpOp0, 2242 SDValue CmpOp1) { 2243 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2244 bool Invert = false; 2245 SDValue Cmp; 2246 switch (CC) { 2247 // Handle tests for order using (or (ogt y x) (oge x y)). 2248 case ISD::SETUO: 2249 Invert = true; 2250 case ISD::SETO: { 2251 assert(IsFP && "Unexpected integer comparison"); 2252 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2253 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2254 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2255 break; 2256 } 2257 2258 // Handle <> tests using (or (ogt y x) (ogt x y)). 2259 case ISD::SETUEQ: 2260 Invert = true; 2261 case ISD::SETONE: { 2262 assert(IsFP && "Unexpected integer comparison"); 2263 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2264 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2265 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2266 break; 2267 } 2268 2269 // Otherwise a single comparison is enough. It doesn't really 2270 // matter whether we try the inversion or the swap first, since 2271 // there are no cases where both work. 2272 default: 2273 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2274 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2275 else { 2276 CC = ISD::getSetCCSwappedOperands(CC); 2277 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2278 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2279 else 2280 llvm_unreachable("Unhandled comparison"); 2281 } 2282 break; 2283 } 2284 if (Invert) { 2285 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2286 DAG.getConstant(65535, DL, MVT::i32)); 2287 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2288 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2289 } 2290 return Cmp; 2291 } 2292 2293 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2294 SelectionDAG &DAG) const { 2295 SDValue CmpOp0 = Op.getOperand(0); 2296 SDValue CmpOp1 = Op.getOperand(1); 2297 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2298 SDLoc DL(Op); 2299 EVT VT = Op.getValueType(); 2300 if (VT.isVector()) 2301 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2302 2303 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2304 SDValue Glue = emitCmp(DAG, DL, C); 2305 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2306 } 2307 2308 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2309 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2310 SDValue CmpOp0 = Op.getOperand(2); 2311 SDValue CmpOp1 = Op.getOperand(3); 2312 SDValue Dest = Op.getOperand(4); 2313 SDLoc DL(Op); 2314 2315 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2316 SDValue Glue = emitCmp(DAG, DL, C); 2317 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2318 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2319 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2320 } 2321 2322 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2323 // allowing Pos and Neg to be wider than CmpOp. 2324 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2325 return (Neg.getOpcode() == ISD::SUB && 2326 Neg.getOperand(0).getOpcode() == ISD::Constant && 2327 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2328 Neg.getOperand(1) == Pos && 2329 (Pos == CmpOp || 2330 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2331 Pos.getOperand(0) == CmpOp))); 2332 } 2333 2334 // Return the absolute or negative absolute of Op; IsNegative decides which. 2335 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2336 bool IsNegative) { 2337 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2338 if (IsNegative) 2339 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2340 DAG.getConstant(0, DL, Op.getValueType()), Op); 2341 return Op; 2342 } 2343 2344 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2345 SelectionDAG &DAG) const { 2346 SDValue CmpOp0 = Op.getOperand(0); 2347 SDValue CmpOp1 = Op.getOperand(1); 2348 SDValue TrueOp = Op.getOperand(2); 2349 SDValue FalseOp = Op.getOperand(3); 2350 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2351 SDLoc DL(Op); 2352 2353 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2354 2355 // Check for absolute and negative-absolute selections, including those 2356 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2357 // This check supplements the one in DAGCombiner. 2358 if (C.Opcode == SystemZISD::ICMP && 2359 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2360 C.CCMask != SystemZ::CCMASK_CMP_NE && 2361 C.Op1.getOpcode() == ISD::Constant && 2362 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2363 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2364 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2365 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2366 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2367 } 2368 2369 SDValue Glue = emitCmp(DAG, DL, C); 2370 2371 // Special case for handling -1/0 results. The shifts we use here 2372 // should get optimized with the IPM conversion sequence. 2373 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2374 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2375 if (TrueC && FalseC) { 2376 int64_t TrueVal = TrueC->getSExtValue(); 2377 int64_t FalseVal = FalseC->getSExtValue(); 2378 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2379 // Invert the condition if we want -1 on false. 2380 if (TrueVal == 0) 2381 C.CCMask ^= C.CCValid; 2382 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2383 EVT VT = Op.getValueType(); 2384 // Extend the result to VT. Upper bits are ignored. 2385 if (!is32Bit(VT)) 2386 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2387 // Sign-extend from the low bit. 2388 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2389 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2390 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2391 } 2392 } 2393 2394 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2395 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2396 2397 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2398 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2399 } 2400 2401 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2402 SelectionDAG &DAG) const { 2403 SDLoc DL(Node); 2404 const GlobalValue *GV = Node->getGlobal(); 2405 int64_t Offset = Node->getOffset(); 2406 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2407 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2408 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2409 2410 SDValue Result; 2411 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2412 // Assign anchors at 1<<12 byte boundaries. 2413 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2414 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2415 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2416 2417 // The offset can be folded into the address if it is aligned to a halfword. 2418 Offset -= Anchor; 2419 if (Offset != 0 && (Offset & 1) == 0) { 2420 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2421 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2422 Offset = 0; 2423 } 2424 } else { 2425 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2426 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2427 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2428 MachinePointerInfo::getGOT(), false, false, false, 0); 2429 } 2430 2431 // If there was a non-zero offset that we didn't fold, create an explicit 2432 // addition for it. 2433 if (Offset != 0) 2434 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2435 DAG.getConstant(Offset, DL, PtrVT)); 2436 2437 return Result; 2438 } 2439 2440 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2441 SelectionDAG &DAG, 2442 unsigned Opcode, 2443 SDValue GOTOffset) const { 2444 SDLoc DL(Node); 2445 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2446 SDValue Chain = DAG.getEntryNode(); 2447 SDValue Glue; 2448 2449 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2450 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2451 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2452 Glue = Chain.getValue(1); 2453 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2454 Glue = Chain.getValue(1); 2455 2456 // The first call operand is the chain and the second is the TLS symbol. 2457 SmallVector<SDValue, 8> Ops; 2458 Ops.push_back(Chain); 2459 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2460 Node->getValueType(0), 2461 0, 0)); 2462 2463 // Add argument registers to the end of the list so that they are 2464 // known live into the call. 2465 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2466 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2467 2468 // Add a register mask operand representing the call-preserved registers. 2469 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2470 const uint32_t *Mask = 2471 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2472 assert(Mask && "Missing call preserved mask for calling convention"); 2473 Ops.push_back(DAG.getRegisterMask(Mask)); 2474 2475 // Glue the call to the argument copies. 2476 Ops.push_back(Glue); 2477 2478 // Emit the call. 2479 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2480 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2481 Glue = Chain.getValue(1); 2482 2483 // Copy the return value from %r2. 2484 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2485 } 2486 2487 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2488 SelectionDAG &DAG) const { 2489 SDLoc DL(Node); 2490 const GlobalValue *GV = Node->getGlobal(); 2491 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2492 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2493 2494 // The high part of the thread pointer is in access register 0. 2495 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2496 DAG.getConstant(0, DL, MVT::i32)); 2497 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2498 2499 // The low part of the thread pointer is in access register 1. 2500 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2501 DAG.getConstant(1, DL, MVT::i32)); 2502 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2503 2504 // Merge them into a single 64-bit address. 2505 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2506 DAG.getConstant(32, DL, PtrVT)); 2507 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2508 2509 // Get the offset of GA from the thread pointer, based on the TLS model. 2510 SDValue Offset; 2511 switch (model) { 2512 case TLSModel::GeneralDynamic: { 2513 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2514 SystemZConstantPoolValue *CPV = 2515 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2516 2517 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2518 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2519 Offset, MachinePointerInfo::getConstantPool(), 2520 false, false, false, 0); 2521 2522 // Call __tls_get_offset to retrieve the offset. 2523 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2524 break; 2525 } 2526 2527 case TLSModel::LocalDynamic: { 2528 // Load the GOT offset of the module ID. 2529 SystemZConstantPoolValue *CPV = 2530 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2531 2532 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2533 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2534 Offset, MachinePointerInfo::getConstantPool(), 2535 false, false, false, 0); 2536 2537 // Call __tls_get_offset to retrieve the module base offset. 2538 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2539 2540 // Note: The SystemZLDCleanupPass will remove redundant computations 2541 // of the module base offset. Count total number of local-dynamic 2542 // accesses to trigger execution of that pass. 2543 SystemZMachineFunctionInfo* MFI = 2544 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2545 MFI->incNumLocalDynamicTLSAccesses(); 2546 2547 // Add the per-symbol offset. 2548 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2549 2550 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2551 DTPOffset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2552 DTPOffset, MachinePointerInfo::getConstantPool(), 2553 false, false, false, 0); 2554 2555 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2556 break; 2557 } 2558 2559 case TLSModel::InitialExec: { 2560 // Load the offset from the GOT. 2561 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2562 SystemZII::MO_INDNTPOFF); 2563 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2564 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2565 Offset, MachinePointerInfo::getGOT(), 2566 false, false, false, 0); 2567 break; 2568 } 2569 2570 case TLSModel::LocalExec: { 2571 // Force the offset into the constant pool and load it from there. 2572 SystemZConstantPoolValue *CPV = 2573 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2574 2575 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2576 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2577 Offset, MachinePointerInfo::getConstantPool(), 2578 false, false, false, 0); 2579 break; 2580 } 2581 } 2582 2583 // Add the base and offset together. 2584 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2585 } 2586 2587 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2588 SelectionDAG &DAG) const { 2589 SDLoc DL(Node); 2590 const BlockAddress *BA = Node->getBlockAddress(); 2591 int64_t Offset = Node->getOffset(); 2592 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2593 2594 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2595 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2596 return Result; 2597 } 2598 2599 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2600 SelectionDAG &DAG) const { 2601 SDLoc DL(JT); 2602 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2603 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2604 2605 // Use LARL to load the address of the table. 2606 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2607 } 2608 2609 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2610 SelectionDAG &DAG) const { 2611 SDLoc DL(CP); 2612 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2613 2614 SDValue Result; 2615 if (CP->isMachineConstantPoolEntry()) 2616 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2617 CP->getAlignment()); 2618 else 2619 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2620 CP->getAlignment(), CP->getOffset()); 2621 2622 // Use LARL to load the address of the constant pool entry. 2623 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2624 } 2625 2626 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2627 SelectionDAG &DAG) const { 2628 SDLoc DL(Op); 2629 SDValue In = Op.getOperand(0); 2630 EVT InVT = In.getValueType(); 2631 EVT ResVT = Op.getValueType(); 2632 2633 // Convert loads directly. This is normally done by DAGCombiner, 2634 // but we need this case for bitcasts that are created during lowering 2635 // and which are then lowered themselves. 2636 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2637 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2638 LoadN->getMemOperand()); 2639 2640 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2641 SDValue In64; 2642 if (Subtarget.hasHighWord()) { 2643 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2644 MVT::i64); 2645 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2646 MVT::i64, SDValue(U64, 0), In); 2647 } else { 2648 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2649 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2650 DAG.getConstant(32, DL, MVT::i64)); 2651 } 2652 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2653 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2654 DL, MVT::f32, Out64); 2655 } 2656 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2657 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2658 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2659 MVT::f64, SDValue(U64, 0), In); 2660 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2661 if (Subtarget.hasHighWord()) 2662 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2663 MVT::i32, Out64); 2664 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2665 DAG.getConstant(32, DL, MVT::i64)); 2666 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2667 } 2668 llvm_unreachable("Unexpected bitcast combination"); 2669 } 2670 2671 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2672 SelectionDAG &DAG) const { 2673 MachineFunction &MF = DAG.getMachineFunction(); 2674 SystemZMachineFunctionInfo *FuncInfo = 2675 MF.getInfo<SystemZMachineFunctionInfo>(); 2676 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2677 2678 SDValue Chain = Op.getOperand(0); 2679 SDValue Addr = Op.getOperand(1); 2680 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2681 SDLoc DL(Op); 2682 2683 // The initial values of each field. 2684 const unsigned NumFields = 4; 2685 SDValue Fields[NumFields] = { 2686 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2687 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2688 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2689 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2690 }; 2691 2692 // Store each field into its respective slot. 2693 SDValue MemOps[NumFields]; 2694 unsigned Offset = 0; 2695 for (unsigned I = 0; I < NumFields; ++I) { 2696 SDValue FieldAddr = Addr; 2697 if (Offset != 0) 2698 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2699 DAG.getIntPtrConstant(Offset, DL)); 2700 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2701 MachinePointerInfo(SV, Offset), 2702 false, false, 0); 2703 Offset += 8; 2704 } 2705 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2706 } 2707 2708 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2709 SelectionDAG &DAG) const { 2710 SDValue Chain = Op.getOperand(0); 2711 SDValue DstPtr = Op.getOperand(1); 2712 SDValue SrcPtr = Op.getOperand(2); 2713 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2714 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2715 SDLoc DL(Op); 2716 2717 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2718 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2719 /*isTailCall*/false, 2720 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2721 } 2722 2723 SDValue SystemZTargetLowering:: 2724 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2725 SDValue Chain = Op.getOperand(0); 2726 SDValue Size = Op.getOperand(1); 2727 SDLoc DL(Op); 2728 2729 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2730 2731 // Get a reference to the stack pointer. 2732 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2733 2734 // Get the new stack pointer value. 2735 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2736 2737 // Copy the new stack pointer back. 2738 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2739 2740 // The allocated data lives above the 160 bytes allocated for the standard 2741 // frame, plus any outgoing stack arguments. We don't know how much that 2742 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2743 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2744 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2745 2746 SDValue Ops[2] = { Result, Chain }; 2747 return DAG.getMergeValues(Ops, DL); 2748 } 2749 2750 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2751 SelectionDAG &DAG) const { 2752 EVT VT = Op.getValueType(); 2753 SDLoc DL(Op); 2754 SDValue Ops[2]; 2755 if (is32Bit(VT)) 2756 // Just do a normal 64-bit multiplication and extract the results. 2757 // We define this so that it can be used for constant division. 2758 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2759 Op.getOperand(1), Ops[1], Ops[0]); 2760 else { 2761 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2762 // 2763 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2764 // 2765 // but using the fact that the upper halves are either all zeros 2766 // or all ones: 2767 // 2768 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2769 // 2770 // and grouping the right terms together since they are quicker than the 2771 // multiplication: 2772 // 2773 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2774 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2775 SDValue LL = Op.getOperand(0); 2776 SDValue RL = Op.getOperand(1); 2777 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2778 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2779 // UMUL_LOHI64 returns the low result in the odd register and the high 2780 // result in the even register. SMUL_LOHI is defined to return the 2781 // low half first, so the results are in reverse order. 2782 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2783 LL, RL, Ops[1], Ops[0]); 2784 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2785 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2786 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2787 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2788 } 2789 return DAG.getMergeValues(Ops, DL); 2790 } 2791 2792 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2793 SelectionDAG &DAG) const { 2794 EVT VT = Op.getValueType(); 2795 SDLoc DL(Op); 2796 SDValue Ops[2]; 2797 if (is32Bit(VT)) 2798 // Just do a normal 64-bit multiplication and extract the results. 2799 // We define this so that it can be used for constant division. 2800 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2801 Op.getOperand(1), Ops[1], Ops[0]); 2802 else 2803 // UMUL_LOHI64 returns the low result in the odd register and the high 2804 // result in the even register. UMUL_LOHI is defined to return the 2805 // low half first, so the results are in reverse order. 2806 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2807 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2808 return DAG.getMergeValues(Ops, DL); 2809 } 2810 2811 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2812 SelectionDAG &DAG) const { 2813 SDValue Op0 = Op.getOperand(0); 2814 SDValue Op1 = Op.getOperand(1); 2815 EVT VT = Op.getValueType(); 2816 SDLoc DL(Op); 2817 unsigned Opcode; 2818 2819 // We use DSGF for 32-bit division. 2820 if (is32Bit(VT)) { 2821 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2822 Opcode = SystemZISD::SDIVREM32; 2823 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2824 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2825 Opcode = SystemZISD::SDIVREM32; 2826 } else 2827 Opcode = SystemZISD::SDIVREM64; 2828 2829 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2830 // input is "don't care". The instruction returns the remainder in 2831 // the even register and the quotient in the odd register. 2832 SDValue Ops[2]; 2833 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2834 Op0, Op1, Ops[1], Ops[0]); 2835 return DAG.getMergeValues(Ops, DL); 2836 } 2837 2838 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2839 SelectionDAG &DAG) const { 2840 EVT VT = Op.getValueType(); 2841 SDLoc DL(Op); 2842 2843 // DL(G) uses a double-width dividend, so we need to clear the even 2844 // register in the GR128 input. The instruction returns the remainder 2845 // in the even register and the quotient in the odd register. 2846 SDValue Ops[2]; 2847 if (is32Bit(VT)) 2848 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2849 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2850 else 2851 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2852 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2853 return DAG.getMergeValues(Ops, DL); 2854 } 2855 2856 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2857 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2858 2859 // Get the known-zero masks for each operand. 2860 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2861 APInt KnownZero[2], KnownOne[2]; 2862 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2863 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2864 2865 // See if the upper 32 bits of one operand and the lower 32 bits of the 2866 // other are known zero. They are the low and high operands respectively. 2867 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2868 KnownZero[1].getZExtValue() }; 2869 unsigned High, Low; 2870 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2871 High = 1, Low = 0; 2872 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2873 High = 0, Low = 1; 2874 else 2875 return Op; 2876 2877 SDValue LowOp = Ops[Low]; 2878 SDValue HighOp = Ops[High]; 2879 2880 // If the high part is a constant, we're better off using IILH. 2881 if (HighOp.getOpcode() == ISD::Constant) 2882 return Op; 2883 2884 // If the low part is a constant that is outside the range of LHI, 2885 // then we're better off using IILF. 2886 if (LowOp.getOpcode() == ISD::Constant) { 2887 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2888 if (!isInt<16>(Value)) 2889 return Op; 2890 } 2891 2892 // Check whether the high part is an AND that doesn't change the 2893 // high 32 bits and just masks out low bits. We can skip it if so. 2894 if (HighOp.getOpcode() == ISD::AND && 2895 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2896 SDValue HighOp0 = HighOp.getOperand(0); 2897 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2898 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2899 HighOp = HighOp0; 2900 } 2901 2902 // Take advantage of the fact that all GR32 operations only change the 2903 // low 32 bits by truncating Low to an i32 and inserting it directly 2904 // using a subreg. The interesting cases are those where the truncation 2905 // can be folded. 2906 SDLoc DL(Op); 2907 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2908 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2909 MVT::i64, HighOp, Low32); 2910 } 2911 2912 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2913 SelectionDAG &DAG) const { 2914 EVT VT = Op.getValueType(); 2915 SDLoc DL(Op); 2916 Op = Op.getOperand(0); 2917 2918 // Handle vector types via VPOPCT. 2919 if (VT.isVector()) { 2920 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2921 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2922 switch (VT.getVectorElementType().getSizeInBits()) { 2923 case 8: 2924 break; 2925 case 16: { 2926 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2927 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2928 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2929 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2930 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2931 break; 2932 } 2933 case 32: { 2934 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2935 DAG.getConstant(0, DL, MVT::i32)); 2936 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2937 break; 2938 } 2939 case 64: { 2940 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2941 DAG.getConstant(0, DL, MVT::i32)); 2942 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2943 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2944 break; 2945 } 2946 default: 2947 llvm_unreachable("Unexpected type"); 2948 } 2949 return Op; 2950 } 2951 2952 // Get the known-zero mask for the operand. 2953 APInt KnownZero, KnownOne; 2954 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2955 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 2956 if (NumSignificantBits == 0) 2957 return DAG.getConstant(0, DL, VT); 2958 2959 // Skip known-zero high parts of the operand. 2960 int64_t OrigBitSize = VT.getSizeInBits(); 2961 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 2962 BitSize = std::min(BitSize, OrigBitSize); 2963 2964 // The POPCNT instruction counts the number of bits in each byte. 2965 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 2966 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 2967 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 2968 2969 // Add up per-byte counts in a binary tree. All bits of Op at 2970 // position larger than BitSize remain zero throughout. 2971 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 2972 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 2973 if (BitSize != OrigBitSize) 2974 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 2975 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 2976 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2977 } 2978 2979 // Extract overall result from high byte. 2980 if (BitSize > 8) 2981 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 2982 DAG.getConstant(BitSize - 8, DL, VT)); 2983 2984 return Op; 2985 } 2986 2987 // Op is an atomic load. Lower it into a normal volatile load. 2988 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 2989 SelectionDAG &DAG) const { 2990 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2991 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 2992 Node->getChain(), Node->getBasePtr(), 2993 Node->getMemoryVT(), Node->getMemOperand()); 2994 } 2995 2996 // Op is an atomic store. Lower it into a normal volatile store followed 2997 // by a serialization. 2998 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 2999 SelectionDAG &DAG) const { 3000 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3001 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3002 Node->getBasePtr(), Node->getMemoryVT(), 3003 Node->getMemOperand()); 3004 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3005 Chain), 0); 3006 } 3007 3008 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3009 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3010 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3011 SelectionDAG &DAG, 3012 unsigned Opcode) const { 3013 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3014 3015 // 32-bit operations need no code outside the main loop. 3016 EVT NarrowVT = Node->getMemoryVT(); 3017 EVT WideVT = MVT::i32; 3018 if (NarrowVT == WideVT) 3019 return Op; 3020 3021 int64_t BitSize = NarrowVT.getSizeInBits(); 3022 SDValue ChainIn = Node->getChain(); 3023 SDValue Addr = Node->getBasePtr(); 3024 SDValue Src2 = Node->getVal(); 3025 MachineMemOperand *MMO = Node->getMemOperand(); 3026 SDLoc DL(Node); 3027 EVT PtrVT = Addr.getValueType(); 3028 3029 // Convert atomic subtracts of constants into additions. 3030 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3031 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3032 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3033 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3034 } 3035 3036 // Get the address of the containing word. 3037 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3038 DAG.getConstant(-4, DL, PtrVT)); 3039 3040 // Get the number of bits that the word must be rotated left in order 3041 // to bring the field to the top bits of a GR32. 3042 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3043 DAG.getConstant(3, DL, PtrVT)); 3044 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3045 3046 // Get the complementing shift amount, for rotating a field in the top 3047 // bits back to its proper position. 3048 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3049 DAG.getConstant(0, DL, WideVT), BitShift); 3050 3051 // Extend the source operand to 32 bits and prepare it for the inner loop. 3052 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3053 // operations require the source to be shifted in advance. (This shift 3054 // can be folded if the source is constant.) For AND and NAND, the lower 3055 // bits must be set, while for other opcodes they should be left clear. 3056 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3057 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3058 DAG.getConstant(32 - BitSize, DL, WideVT)); 3059 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3060 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3061 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3062 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3063 3064 // Construct the ATOMIC_LOADW_* node. 3065 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3066 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3067 DAG.getConstant(BitSize, DL, WideVT) }; 3068 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3069 NarrowVT, MMO); 3070 3071 // Rotate the result of the final CS so that the field is in the lower 3072 // bits of a GR32, then truncate it. 3073 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3074 DAG.getConstant(BitSize, DL, WideVT)); 3075 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3076 3077 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3078 return DAG.getMergeValues(RetOps, DL); 3079 } 3080 3081 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3082 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3083 // operations into additions. 3084 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3085 SelectionDAG &DAG) const { 3086 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3087 EVT MemVT = Node->getMemoryVT(); 3088 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3089 // A full-width operation. 3090 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3091 SDValue Src2 = Node->getVal(); 3092 SDValue NegSrc2; 3093 SDLoc DL(Src2); 3094 3095 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3096 // Use an addition if the operand is constant and either LAA(G) is 3097 // available or the negative value is in the range of A(G)FHI. 3098 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3099 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3100 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3101 } else if (Subtarget.hasInterlockedAccess1()) 3102 // Use LAA(G) if available. 3103 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3104 Src2); 3105 3106 if (NegSrc2.getNode()) 3107 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3108 Node->getChain(), Node->getBasePtr(), NegSrc2, 3109 Node->getMemOperand(), Node->getOrdering(), 3110 Node->getSynchScope()); 3111 3112 // Use the node as-is. 3113 return Op; 3114 } 3115 3116 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3117 } 3118 3119 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3120 // into a fullword ATOMIC_CMP_SWAPW operation. 3121 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3122 SelectionDAG &DAG) const { 3123 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3124 3125 // We have native support for 32-bit compare and swap. 3126 EVT NarrowVT = Node->getMemoryVT(); 3127 EVT WideVT = MVT::i32; 3128 if (NarrowVT == WideVT) 3129 return Op; 3130 3131 int64_t BitSize = NarrowVT.getSizeInBits(); 3132 SDValue ChainIn = Node->getOperand(0); 3133 SDValue Addr = Node->getOperand(1); 3134 SDValue CmpVal = Node->getOperand(2); 3135 SDValue SwapVal = Node->getOperand(3); 3136 MachineMemOperand *MMO = Node->getMemOperand(); 3137 SDLoc DL(Node); 3138 EVT PtrVT = Addr.getValueType(); 3139 3140 // Get the address of the containing word. 3141 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3142 DAG.getConstant(-4, DL, PtrVT)); 3143 3144 // Get the number of bits that the word must be rotated left in order 3145 // to bring the field to the top bits of a GR32. 3146 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3147 DAG.getConstant(3, DL, PtrVT)); 3148 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3149 3150 // Get the complementing shift amount, for rotating a field in the top 3151 // bits back to its proper position. 3152 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3153 DAG.getConstant(0, DL, WideVT), BitShift); 3154 3155 // Construct the ATOMIC_CMP_SWAPW node. 3156 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3157 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3158 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3159 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3160 VTList, Ops, NarrowVT, MMO); 3161 return AtomicOp; 3162 } 3163 3164 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3165 SelectionDAG &DAG) const { 3166 MachineFunction &MF = DAG.getMachineFunction(); 3167 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3168 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3169 SystemZ::R15D, Op.getValueType()); 3170 } 3171 3172 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3173 SelectionDAG &DAG) const { 3174 MachineFunction &MF = DAG.getMachineFunction(); 3175 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3176 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3177 SystemZ::R15D, Op.getOperand(1)); 3178 } 3179 3180 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3181 SelectionDAG &DAG) const { 3182 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3183 if (!IsData) 3184 // Just preserve the chain. 3185 return Op.getOperand(0); 3186 3187 SDLoc DL(Op); 3188 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3189 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3190 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3191 SDValue Ops[] = { 3192 Op.getOperand(0), 3193 DAG.getConstant(Code, DL, MVT::i32), 3194 Op.getOperand(1) 3195 }; 3196 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3197 Node->getVTList(), Ops, 3198 Node->getMemoryVT(), Node->getMemOperand()); 3199 } 3200 3201 // Return an i32 that contains the value of CC immediately after After, 3202 // whose final operand must be MVT::Glue. 3203 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3204 SDLoc DL(After); 3205 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3206 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3207 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3208 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3209 } 3210 3211 SDValue 3212 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3213 SelectionDAG &DAG) const { 3214 unsigned Opcode, CCValid; 3215 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3216 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3217 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3218 SDValue CC = getCCResult(DAG, Glued.getNode()); 3219 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3220 return SDValue(); 3221 } 3222 3223 return SDValue(); 3224 } 3225 3226 SDValue 3227 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3228 SelectionDAG &DAG) const { 3229 unsigned Opcode, CCValid; 3230 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3231 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3232 SDValue CC = getCCResult(DAG, Glued.getNode()); 3233 if (Op->getNumValues() == 1) 3234 return CC; 3235 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3236 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3237 Glued, CC); 3238 } 3239 3240 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3241 switch (Id) { 3242 case Intrinsic::s390_vpdi: 3243 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3244 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3245 3246 case Intrinsic::s390_vperm: 3247 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3248 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3249 3250 case Intrinsic::s390_vuphb: 3251 case Intrinsic::s390_vuphh: 3252 case Intrinsic::s390_vuphf: 3253 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3254 Op.getOperand(1)); 3255 3256 case Intrinsic::s390_vuplhb: 3257 case Intrinsic::s390_vuplhh: 3258 case Intrinsic::s390_vuplhf: 3259 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3260 Op.getOperand(1)); 3261 3262 case Intrinsic::s390_vuplb: 3263 case Intrinsic::s390_vuplhw: 3264 case Intrinsic::s390_vuplf: 3265 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3266 Op.getOperand(1)); 3267 3268 case Intrinsic::s390_vupllb: 3269 case Intrinsic::s390_vupllh: 3270 case Intrinsic::s390_vupllf: 3271 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3272 Op.getOperand(1)); 3273 3274 case Intrinsic::s390_vsumb: 3275 case Intrinsic::s390_vsumh: 3276 case Intrinsic::s390_vsumgh: 3277 case Intrinsic::s390_vsumgf: 3278 case Intrinsic::s390_vsumqf: 3279 case Intrinsic::s390_vsumqg: 3280 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3281 Op.getOperand(1), Op.getOperand(2)); 3282 } 3283 3284 return SDValue(); 3285 } 3286 3287 namespace { 3288 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3289 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3290 // Operand is the constant third operand, otherwise it is the number of 3291 // bytes in each element of the result. 3292 struct Permute { 3293 unsigned Opcode; 3294 unsigned Operand; 3295 unsigned char Bytes[SystemZ::VectorBytes]; 3296 }; 3297 } 3298 3299 static const Permute PermuteForms[] = { 3300 // VMRHG 3301 { SystemZISD::MERGE_HIGH, 8, 3302 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3303 // VMRHF 3304 { SystemZISD::MERGE_HIGH, 4, 3305 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3306 // VMRHH 3307 { SystemZISD::MERGE_HIGH, 2, 3308 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3309 // VMRHB 3310 { SystemZISD::MERGE_HIGH, 1, 3311 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3312 // VMRLG 3313 { SystemZISD::MERGE_LOW, 8, 3314 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3315 // VMRLF 3316 { SystemZISD::MERGE_LOW, 4, 3317 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3318 // VMRLH 3319 { SystemZISD::MERGE_LOW, 2, 3320 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3321 // VMRLB 3322 { SystemZISD::MERGE_LOW, 1, 3323 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3324 // VPKG 3325 { SystemZISD::PACK, 4, 3326 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3327 // VPKF 3328 { SystemZISD::PACK, 2, 3329 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3330 // VPKH 3331 { SystemZISD::PACK, 1, 3332 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3333 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3334 { SystemZISD::PERMUTE_DWORDS, 4, 3335 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3336 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3337 { SystemZISD::PERMUTE_DWORDS, 1, 3338 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3339 }; 3340 3341 // Called after matching a vector shuffle against a particular pattern. 3342 // Both the original shuffle and the pattern have two vector operands. 3343 // OpNos[0] is the operand of the original shuffle that should be used for 3344 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3345 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3346 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3347 // for operands 0 and 1 of the pattern. 3348 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3349 if (OpNos[0] < 0) { 3350 if (OpNos[1] < 0) 3351 return false; 3352 OpNo0 = OpNo1 = OpNos[1]; 3353 } else if (OpNos[1] < 0) { 3354 OpNo0 = OpNo1 = OpNos[0]; 3355 } else { 3356 OpNo0 = OpNos[0]; 3357 OpNo1 = OpNos[1]; 3358 } 3359 return true; 3360 } 3361 3362 // Bytes is a VPERM-like permute vector, except that -1 is used for 3363 // undefined bytes. Return true if the VPERM can be implemented using P. 3364 // When returning true set OpNo0 to the VPERM operand that should be 3365 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3366 // 3367 // For example, if swapping the VPERM operands allows P to match, OpNo0 3368 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3369 // operand, but rewriting it to use two duplicated operands allows it to 3370 // match P, then OpNo0 and OpNo1 will be the same. 3371 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3372 unsigned &OpNo0, unsigned &OpNo1) { 3373 int OpNos[] = { -1, -1 }; 3374 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3375 int Elt = Bytes[I]; 3376 if (Elt >= 0) { 3377 // Make sure that the two permute vectors use the same suboperand 3378 // byte number. Only the operand numbers (the high bits) are 3379 // allowed to differ. 3380 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3381 return false; 3382 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3383 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3384 // Make sure that the operand mappings are consistent with previous 3385 // elements. 3386 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3387 return false; 3388 OpNos[ModelOpNo] = RealOpNo; 3389 } 3390 } 3391 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3392 } 3393 3394 // As above, but search for a matching permute. 3395 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3396 unsigned &OpNo0, unsigned &OpNo1) { 3397 for (auto &P : PermuteForms) 3398 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3399 return &P; 3400 return nullptr; 3401 } 3402 3403 // Bytes is a VPERM-like permute vector, except that -1 is used for 3404 // undefined bytes. This permute is an operand of an outer permute. 3405 // See whether redistributing the -1 bytes gives a shuffle that can be 3406 // implemented using P. If so, set Transform to a VPERM-like permute vector 3407 // that, when applied to the result of P, gives the original permute in Bytes. 3408 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3409 const Permute &P, 3410 SmallVectorImpl<int> &Transform) { 3411 unsigned To = 0; 3412 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3413 int Elt = Bytes[From]; 3414 if (Elt < 0) 3415 // Byte number From of the result is undefined. 3416 Transform[From] = -1; 3417 else { 3418 while (P.Bytes[To] != Elt) { 3419 To += 1; 3420 if (To == SystemZ::VectorBytes) 3421 return false; 3422 } 3423 Transform[From] = To; 3424 } 3425 } 3426 return true; 3427 } 3428 3429 // As above, but search for a matching permute. 3430 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3431 SmallVectorImpl<int> &Transform) { 3432 for (auto &P : PermuteForms) 3433 if (matchDoublePermute(Bytes, P, Transform)) 3434 return &P; 3435 return nullptr; 3436 } 3437 3438 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3439 // as if it had type vNi8. 3440 static void getVPermMask(ShuffleVectorSDNode *VSN, 3441 SmallVectorImpl<int> &Bytes) { 3442 EVT VT = VSN->getValueType(0); 3443 unsigned NumElements = VT.getVectorNumElements(); 3444 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3445 Bytes.resize(NumElements * BytesPerElement, -1); 3446 for (unsigned I = 0; I < NumElements; ++I) { 3447 int Index = VSN->getMaskElt(I); 3448 if (Index >= 0) 3449 for (unsigned J = 0; J < BytesPerElement; ++J) 3450 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3451 } 3452 } 3453 3454 // Bytes is a VPERM-like permute vector, except that -1 is used for 3455 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3456 // the result come from a contiguous sequence of bytes from one input. 3457 // Set Base to the selector for the first byte if so. 3458 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3459 unsigned BytesPerElement, int &Base) { 3460 Base = -1; 3461 for (unsigned I = 0; I < BytesPerElement; ++I) { 3462 if (Bytes[Start + I] >= 0) { 3463 unsigned Elem = Bytes[Start + I]; 3464 if (Base < 0) { 3465 Base = Elem - I; 3466 // Make sure the bytes would come from one input operand. 3467 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3468 return false; 3469 } else if (unsigned(Base) != Elem - I) 3470 return false; 3471 } 3472 } 3473 return true; 3474 } 3475 3476 // Bytes is a VPERM-like permute vector, except that -1 is used for 3477 // undefined bytes. Return true if it can be performed using VSLDI. 3478 // When returning true, set StartIndex to the shift amount and OpNo0 3479 // and OpNo1 to the VPERM operands that should be used as the first 3480 // and second shift operand respectively. 3481 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3482 unsigned &StartIndex, unsigned &OpNo0, 3483 unsigned &OpNo1) { 3484 int OpNos[] = { -1, -1 }; 3485 int Shift = -1; 3486 for (unsigned I = 0; I < 16; ++I) { 3487 int Index = Bytes[I]; 3488 if (Index >= 0) { 3489 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3490 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3491 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3492 if (Shift < 0) 3493 Shift = ExpectedShift; 3494 else if (Shift != ExpectedShift) 3495 return false; 3496 // Make sure that the operand mappings are consistent with previous 3497 // elements. 3498 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3499 return false; 3500 OpNos[ModelOpNo] = RealOpNo; 3501 } 3502 } 3503 StartIndex = Shift; 3504 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3505 } 3506 3507 // Create a node that performs P on operands Op0 and Op1, casting the 3508 // operands to the appropriate type. The type of the result is determined by P. 3509 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3510 const Permute &P, SDValue Op0, SDValue Op1) { 3511 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3512 // elements of a PACK are twice as wide as the outputs. 3513 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3514 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3515 P.Operand); 3516 // Cast both operands to the appropriate type. 3517 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3518 SystemZ::VectorBytes / InBytes); 3519 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3520 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3521 SDValue Op; 3522 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3523 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3524 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3525 } else if (P.Opcode == SystemZISD::PACK) { 3526 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3527 SystemZ::VectorBytes / P.Operand); 3528 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3529 } else { 3530 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3531 } 3532 return Op; 3533 } 3534 3535 // Bytes is a VPERM-like permute vector, except that -1 is used for 3536 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3537 // VSLDI or VPERM. 3538 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3539 const SmallVectorImpl<int> &Bytes) { 3540 for (unsigned I = 0; I < 2; ++I) 3541 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3542 3543 // First see whether VSLDI can be used. 3544 unsigned StartIndex, OpNo0, OpNo1; 3545 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3546 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3547 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3548 3549 // Fall back on VPERM. Construct an SDNode for the permute vector. 3550 SDValue IndexNodes[SystemZ::VectorBytes]; 3551 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3552 if (Bytes[I] >= 0) 3553 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3554 else 3555 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3556 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3557 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3558 } 3559 3560 namespace { 3561 // Describes a general N-operand vector shuffle. 3562 struct GeneralShuffle { 3563 GeneralShuffle(EVT vt) : VT(vt) {} 3564 void addUndef(); 3565 void add(SDValue, unsigned); 3566 SDValue getNode(SelectionDAG &, SDLoc); 3567 3568 // The operands of the shuffle. 3569 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3570 3571 // Index I is -1 if byte I of the result is undefined. Otherwise the 3572 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3573 // Bytes[I] / SystemZ::VectorBytes. 3574 SmallVector<int, SystemZ::VectorBytes> Bytes; 3575 3576 // The type of the shuffle result. 3577 EVT VT; 3578 }; 3579 } 3580 3581 // Add an extra undefined element to the shuffle. 3582 void GeneralShuffle::addUndef() { 3583 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3584 for (unsigned I = 0; I < BytesPerElement; ++I) 3585 Bytes.push_back(-1); 3586 } 3587 3588 // Add an extra element to the shuffle, taking it from element Elem of Op. 3589 // A null Op indicates a vector input whose value will be calculated later; 3590 // there is at most one such input per shuffle and it always has the same 3591 // type as the result. 3592 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3593 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3594 3595 // The source vector can have wider elements than the result, 3596 // either through an explicit TRUNCATE or because of type legalization. 3597 // We want the least significant part. 3598 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3599 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3600 assert(FromBytesPerElement >= BytesPerElement && 3601 "Invalid EXTRACT_VECTOR_ELT"); 3602 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3603 (FromBytesPerElement - BytesPerElement)); 3604 3605 // Look through things like shuffles and bitcasts. 3606 while (Op.getNode()) { 3607 if (Op.getOpcode() == ISD::BITCAST) 3608 Op = Op.getOperand(0); 3609 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3610 // See whether the bytes we need come from a contiguous part of one 3611 // operand. 3612 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3613 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3614 int NewByte; 3615 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3616 break; 3617 if (NewByte < 0) { 3618 addUndef(); 3619 return; 3620 } 3621 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3622 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3623 } else if (Op.getOpcode() == ISD::UNDEF) { 3624 addUndef(); 3625 return; 3626 } else 3627 break; 3628 } 3629 3630 // Make sure that the source of the extraction is in Ops. 3631 unsigned OpNo = 0; 3632 for (; OpNo < Ops.size(); ++OpNo) 3633 if (Ops[OpNo] == Op) 3634 break; 3635 if (OpNo == Ops.size()) 3636 Ops.push_back(Op); 3637 3638 // Add the element to Bytes. 3639 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3640 for (unsigned I = 0; I < BytesPerElement; ++I) 3641 Bytes.push_back(Base + I); 3642 } 3643 3644 // Return SDNodes for the completed shuffle. 3645 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3646 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3647 3648 if (Ops.size() == 0) 3649 return DAG.getUNDEF(VT); 3650 3651 // Make sure that there are at least two shuffle operands. 3652 if (Ops.size() == 1) 3653 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3654 3655 // Create a tree of shuffles, deferring root node until after the loop. 3656 // Try to redistribute the undefined elements of non-root nodes so that 3657 // the non-root shuffles match something like a pack or merge, then adjust 3658 // the parent node's permute vector to compensate for the new order. 3659 // Among other things, this copes with vectors like <2 x i16> that were 3660 // padded with undefined elements during type legalization. 3661 // 3662 // In the best case this redistribution will lead to the whole tree 3663 // using packs and merges. It should rarely be a loss in other cases. 3664 unsigned Stride = 1; 3665 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3666 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3667 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3668 3669 // Create a mask for just these two operands. 3670 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3671 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3672 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3673 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3674 if (OpNo == I) 3675 NewBytes[J] = Byte; 3676 else if (OpNo == I + Stride) 3677 NewBytes[J] = SystemZ::VectorBytes + Byte; 3678 else 3679 NewBytes[J] = -1; 3680 } 3681 // See if it would be better to reorganize NewMask to avoid using VPERM. 3682 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3683 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3684 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3685 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3686 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3687 if (NewBytes[J] >= 0) { 3688 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3689 "Invalid double permute"); 3690 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3691 } else 3692 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3693 } 3694 } else { 3695 // Just use NewBytes on the operands. 3696 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3697 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3698 if (NewBytes[J] >= 0) 3699 Bytes[J] = I * SystemZ::VectorBytes + J; 3700 } 3701 } 3702 } 3703 3704 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3705 if (Stride > 1) { 3706 Ops[1] = Ops[Stride]; 3707 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3708 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3709 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3710 } 3711 3712 // Look for an instruction that can do the permute without resorting 3713 // to VPERM. 3714 unsigned OpNo0, OpNo1; 3715 SDValue Op; 3716 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3717 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3718 else 3719 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3720 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3721 } 3722 3723 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3724 static bool isScalarToVector(SDValue Op) { 3725 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3726 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3727 return false; 3728 return true; 3729 } 3730 3731 // Return a vector of type VT that contains Value in the first element. 3732 // The other elements don't matter. 3733 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3734 SDValue Value) { 3735 // If we have a constant, replicate it to all elements and let the 3736 // BUILD_VECTOR lowering take care of it. 3737 if (Value.getOpcode() == ISD::Constant || 3738 Value.getOpcode() == ISD::ConstantFP) { 3739 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3740 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3741 } 3742 if (Value.getOpcode() == ISD::UNDEF) 3743 return DAG.getUNDEF(VT); 3744 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3745 } 3746 3747 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3748 // element 1. Used for cases in which replication is cheap. 3749 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3750 SDValue Op0, SDValue Op1) { 3751 if (Op0.getOpcode() == ISD::UNDEF) { 3752 if (Op1.getOpcode() == ISD::UNDEF) 3753 return DAG.getUNDEF(VT); 3754 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3755 } 3756 if (Op1.getOpcode() == ISD::UNDEF) 3757 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3758 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3759 buildScalarToVector(DAG, DL, VT, Op0), 3760 buildScalarToVector(DAG, DL, VT, Op1)); 3761 } 3762 3763 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3764 // vector for them. 3765 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3766 SDValue Op1) { 3767 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3768 return DAG.getUNDEF(MVT::v2i64); 3769 // If one of the two inputs is undefined then replicate the other one, 3770 // in order to avoid using another register unnecessarily. 3771 if (Op0.getOpcode() == ISD::UNDEF) 3772 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3773 else if (Op1.getOpcode() == ISD::UNDEF) 3774 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3775 else { 3776 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3777 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3778 } 3779 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3780 } 3781 3782 // Try to represent constant BUILD_VECTOR node BVN using a 3783 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3784 // on success. 3785 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3786 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3787 unsigned BytesPerElement = ElemVT.getStoreSize(); 3788 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3789 SDValue Op = BVN->getOperand(I); 3790 if (Op.getOpcode() != ISD::UNDEF) { 3791 uint64_t Value; 3792 if (Op.getOpcode() == ISD::Constant) 3793 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3794 else if (Op.getOpcode() == ISD::ConstantFP) 3795 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3796 .getZExtValue()); 3797 else 3798 return false; 3799 for (unsigned J = 0; J < BytesPerElement; ++J) { 3800 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3801 if (Byte == 0xff) 3802 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3803 else if (Byte != 0) 3804 return false; 3805 } 3806 } 3807 } 3808 return true; 3809 } 3810 3811 // Try to load a vector constant in which BitsPerElement-bit value Value 3812 // is replicated to fill the vector. VT is the type of the resulting 3813 // constant, which may have elements of a different size from BitsPerElement. 3814 // Return the SDValue of the constant on success, otherwise return 3815 // an empty value. 3816 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3817 const SystemZInstrInfo *TII, 3818 SDLoc DL, EVT VT, uint64_t Value, 3819 unsigned BitsPerElement) { 3820 // Signed 16-bit values can be replicated using VREPI. 3821 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3822 if (isInt<16>(SignedValue)) { 3823 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3824 SystemZ::VectorBits / BitsPerElement); 3825 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3826 DAG.getConstant(SignedValue, DL, MVT::i32)); 3827 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3828 } 3829 // See whether rotating the constant left some N places gives a value that 3830 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3831 // If so we can use VGM. 3832 unsigned Start, End; 3833 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3834 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3835 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3836 // bit numbers for an BitsPerElement value, so that 0 denotes 3837 // 1 << (BitsPerElement-1). 3838 Start -= 64 - BitsPerElement; 3839 End -= 64 - BitsPerElement; 3840 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3841 SystemZ::VectorBits / BitsPerElement); 3842 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3843 DAG.getConstant(Start, DL, MVT::i32), 3844 DAG.getConstant(End, DL, MVT::i32)); 3845 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3846 } 3847 return SDValue(); 3848 } 3849 3850 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3851 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3852 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3853 // would benefit from this representation and return it if so. 3854 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3855 BuildVectorSDNode *BVN) { 3856 EVT VT = BVN->getValueType(0); 3857 unsigned NumElements = VT.getVectorNumElements(); 3858 3859 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3860 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3861 // need a BUILD_VECTOR, add an additional placeholder operand for that 3862 // BUILD_VECTOR and store its operands in ResidueOps. 3863 GeneralShuffle GS(VT); 3864 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3865 bool FoundOne = false; 3866 for (unsigned I = 0; I < NumElements; ++I) { 3867 SDValue Op = BVN->getOperand(I); 3868 if (Op.getOpcode() == ISD::TRUNCATE) 3869 Op = Op.getOperand(0); 3870 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3871 Op.getOperand(1).getOpcode() == ISD::Constant) { 3872 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3873 GS.add(Op.getOperand(0), Elem); 3874 FoundOne = true; 3875 } else if (Op.getOpcode() == ISD::UNDEF) { 3876 GS.addUndef(); 3877 } else { 3878 GS.add(SDValue(), ResidueOps.size()); 3879 ResidueOps.push_back(Op); 3880 } 3881 } 3882 3883 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3884 if (!FoundOne) 3885 return SDValue(); 3886 3887 // Create the BUILD_VECTOR for the remaining elements, if any. 3888 if (!ResidueOps.empty()) { 3889 while (ResidueOps.size() < NumElements) 3890 ResidueOps.push_back(DAG.getUNDEF(VT.getVectorElementType())); 3891 for (auto &Op : GS.Ops) { 3892 if (!Op.getNode()) { 3893 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3894 break; 3895 } 3896 } 3897 } 3898 return GS.getNode(DAG, SDLoc(BVN)); 3899 } 3900 3901 // Combine GPR scalar values Elems into a vector of type VT. 3902 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3903 SmallVectorImpl<SDValue> &Elems) { 3904 // See whether there is a single replicated value. 3905 SDValue Single; 3906 unsigned int NumElements = Elems.size(); 3907 unsigned int Count = 0; 3908 for (auto Elem : Elems) { 3909 if (Elem.getOpcode() != ISD::UNDEF) { 3910 if (!Single.getNode()) 3911 Single = Elem; 3912 else if (Elem != Single) { 3913 Single = SDValue(); 3914 break; 3915 } 3916 Count += 1; 3917 } 3918 } 3919 // There are three cases here: 3920 // 3921 // - if the only defined element is a loaded one, the best sequence 3922 // is a replicating load. 3923 // 3924 // - otherwise, if the only defined element is an i64 value, we will 3925 // end up with the same VLVGP sequence regardless of whether we short-cut 3926 // for replication or fall through to the later code. 3927 // 3928 // - otherwise, if the only defined element is an i32 or smaller value, 3929 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3930 // This is only a win if the single defined element is used more than once. 3931 // In other cases we're better off using a single VLVGx. 3932 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3933 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3934 3935 // The best way of building a v2i64 from two i64s is to use VLVGP. 3936 if (VT == MVT::v2i64) 3937 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3938 3939 // Use a 64-bit merge high to combine two doubles. 3940 if (VT == MVT::v2f64) 3941 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3942 3943 // Build v4f32 values directly from the FPRs: 3944 // 3945 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3946 // V V VMRHF 3947 // <ABxx> <CDxx> 3948 // V VMRHG 3949 // <ABCD> 3950 if (VT == MVT::v4f32) { 3951 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3952 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 3953 // Avoid unnecessary undefs by reusing the other operand. 3954 if (Op01.getOpcode() == ISD::UNDEF) 3955 Op01 = Op23; 3956 else if (Op23.getOpcode() == ISD::UNDEF) 3957 Op23 = Op01; 3958 // Merging identical replications is a no-op. 3959 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 3960 return Op01; 3961 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 3962 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 3963 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 3964 DL, MVT::v2i64, Op01, Op23); 3965 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3966 } 3967 3968 // Collect the constant terms. 3969 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 3970 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 3971 3972 unsigned NumConstants = 0; 3973 for (unsigned I = 0; I < NumElements; ++I) { 3974 SDValue Elem = Elems[I]; 3975 if (Elem.getOpcode() == ISD::Constant || 3976 Elem.getOpcode() == ISD::ConstantFP) { 3977 NumConstants += 1; 3978 Constants[I] = Elem; 3979 Done[I] = true; 3980 } 3981 } 3982 // If there was at least one constant, fill in the other elements of 3983 // Constants with undefs to get a full vector constant and use that 3984 // as the starting point. 3985 SDValue Result; 3986 if (NumConstants > 0) { 3987 for (unsigned I = 0; I < NumElements; ++I) 3988 if (!Constants[I].getNode()) 3989 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 3990 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 3991 } else { 3992 // Otherwise try to use VLVGP to start the sequence in order to 3993 // avoid a false dependency on any previous contents of the vector 3994 // register. This only makes sense if one of the associated elements 3995 // is defined. 3996 unsigned I1 = NumElements / 2 - 1; 3997 unsigned I2 = NumElements - 1; 3998 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 3999 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4000 if (Def1 || Def2) { 4001 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4002 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4003 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4004 joinDwords(DAG, DL, Elem1, Elem2)); 4005 Done[I1] = true; 4006 Done[I2] = true; 4007 } else 4008 Result = DAG.getUNDEF(VT); 4009 } 4010 4011 // Use VLVGx to insert the other elements. 4012 for (unsigned I = 0; I < NumElements; ++I) 4013 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4014 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4015 DAG.getConstant(I, DL, MVT::i32)); 4016 return Result; 4017 } 4018 4019 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4020 SelectionDAG &DAG) const { 4021 const SystemZInstrInfo *TII = 4022 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4023 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4024 SDLoc DL(Op); 4025 EVT VT = Op.getValueType(); 4026 4027 if (BVN->isConstant()) { 4028 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4029 // preferred way of creating all-zero and all-one vectors so give it 4030 // priority over other methods below. 4031 uint64_t Mask = 0; 4032 if (tryBuildVectorByteMask(BVN, Mask)) { 4033 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4034 DAG.getConstant(Mask, DL, MVT::i32)); 4035 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4036 } 4037 4038 // Try using some form of replication. 4039 APInt SplatBits, SplatUndef; 4040 unsigned SplatBitSize; 4041 bool HasAnyUndefs; 4042 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4043 8, true) && 4044 SplatBitSize <= 64) { 4045 // First try assuming that any undefined bits above the highest set bit 4046 // and below the lowest set bit are 1s. This increases the likelihood of 4047 // being able to use a sign-extended element value in VECTOR REPLICATE 4048 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4049 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4050 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4051 uint64_t Lower = (SplatUndefZ 4052 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4053 uint64_t Upper = (SplatUndefZ 4054 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4055 uint64_t Value = SplatBitsZ | Upper | Lower; 4056 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4057 SplatBitSize); 4058 if (Op.getNode()) 4059 return Op; 4060 4061 // Now try assuming that any undefined bits between the first and 4062 // last defined set bits are set. This increases the chances of 4063 // using a non-wraparound mask. 4064 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4065 Value = SplatBitsZ | Middle; 4066 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4067 if (Op.getNode()) 4068 return Op; 4069 } 4070 4071 // Fall back to loading it from memory. 4072 return SDValue(); 4073 } 4074 4075 // See if we should use shuffles to construct the vector from other vectors. 4076 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4077 if (Res.getNode()) 4078 return Res; 4079 4080 // Detect SCALAR_TO_VECTOR conversions. 4081 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4082 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4083 4084 // Otherwise use buildVector to build the vector up from GPRs. 4085 unsigned NumElements = Op.getNumOperands(); 4086 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4087 for (unsigned I = 0; I < NumElements; ++I) 4088 Ops[I] = Op.getOperand(I); 4089 return buildVector(DAG, DL, VT, Ops); 4090 } 4091 4092 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4093 SelectionDAG &DAG) const { 4094 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4095 SDLoc DL(Op); 4096 EVT VT = Op.getValueType(); 4097 unsigned NumElements = VT.getVectorNumElements(); 4098 4099 if (VSN->isSplat()) { 4100 SDValue Op0 = Op.getOperand(0); 4101 unsigned Index = VSN->getSplatIndex(); 4102 assert(Index < VT.getVectorNumElements() && 4103 "Splat index should be defined and in first operand"); 4104 // See whether the value we're splatting is directly available as a scalar. 4105 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4106 Op0.getOpcode() == ISD::BUILD_VECTOR) 4107 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4108 // Otherwise keep it as a vector-to-vector operation. 4109 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4110 DAG.getConstant(Index, DL, MVT::i32)); 4111 } 4112 4113 GeneralShuffle GS(VT); 4114 for (unsigned I = 0; I < NumElements; ++I) { 4115 int Elt = VSN->getMaskElt(I); 4116 if (Elt < 0) 4117 GS.addUndef(); 4118 else 4119 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4120 unsigned(Elt) % NumElements); 4121 } 4122 return GS.getNode(DAG, SDLoc(VSN)); 4123 } 4124 4125 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4126 SelectionDAG &DAG) const { 4127 SDLoc DL(Op); 4128 // Just insert the scalar into element 0 of an undefined vector. 4129 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4130 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4131 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4132 } 4133 4134 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4135 SelectionDAG &DAG) const { 4136 // Handle insertions of floating-point values. 4137 SDLoc DL(Op); 4138 SDValue Op0 = Op.getOperand(0); 4139 SDValue Op1 = Op.getOperand(1); 4140 SDValue Op2 = Op.getOperand(2); 4141 EVT VT = Op.getValueType(); 4142 4143 // Insertions into constant indices of a v2f64 can be done using VPDI. 4144 // However, if the inserted value is a bitcast or a constant then it's 4145 // better to use GPRs, as below. 4146 if (VT == MVT::v2f64 && 4147 Op1.getOpcode() != ISD::BITCAST && 4148 Op1.getOpcode() != ISD::ConstantFP && 4149 Op2.getOpcode() == ISD::Constant) { 4150 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4151 unsigned Mask = VT.getVectorNumElements() - 1; 4152 if (Index <= Mask) 4153 return Op; 4154 } 4155 4156 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4157 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4158 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4159 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4160 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4161 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4162 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4163 } 4164 4165 SDValue 4166 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4167 SelectionDAG &DAG) const { 4168 // Handle extractions of floating-point values. 4169 SDLoc DL(Op); 4170 SDValue Op0 = Op.getOperand(0); 4171 SDValue Op1 = Op.getOperand(1); 4172 EVT VT = Op.getValueType(); 4173 EVT VecVT = Op0.getValueType(); 4174 4175 // Extractions of constant indices can be done directly. 4176 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4177 uint64_t Index = CIndexN->getZExtValue(); 4178 unsigned Mask = VecVT.getVectorNumElements() - 1; 4179 if (Index <= Mask) 4180 return Op; 4181 } 4182 4183 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4184 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4185 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4186 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4187 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4188 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4189 } 4190 4191 SDValue 4192 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4193 unsigned UnpackHigh) const { 4194 SDValue PackedOp = Op.getOperand(0); 4195 EVT OutVT = Op.getValueType(); 4196 EVT InVT = PackedOp.getValueType(); 4197 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4198 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4199 do { 4200 FromBits *= 2; 4201 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4202 SystemZ::VectorBits / FromBits); 4203 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4204 } while (FromBits != ToBits); 4205 return PackedOp; 4206 } 4207 4208 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4209 unsigned ByScalar) const { 4210 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4211 SDValue Op0 = Op.getOperand(0); 4212 SDValue Op1 = Op.getOperand(1); 4213 SDLoc DL(Op); 4214 EVT VT = Op.getValueType(); 4215 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4216 4217 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4218 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4219 APInt SplatBits, SplatUndef; 4220 unsigned SplatBitSize; 4221 bool HasAnyUndefs; 4222 // Check for constant splats. Use ElemBitSize as the minimum element 4223 // width and reject splats that need wider elements. 4224 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4225 ElemBitSize, true) && 4226 SplatBitSize == ElemBitSize) { 4227 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4228 DL, MVT::i32); 4229 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4230 } 4231 // Check for variable splats. 4232 BitVector UndefElements; 4233 SDValue Splat = BVN->getSplatValue(&UndefElements); 4234 if (Splat) { 4235 // Since i32 is the smallest legal type, we either need a no-op 4236 // or a truncation. 4237 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4238 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4239 } 4240 } 4241 4242 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4243 // and the shift amount is directly available in a GPR. 4244 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4245 if (VSN->isSplat()) { 4246 SDValue VSNOp0 = VSN->getOperand(0); 4247 unsigned Index = VSN->getSplatIndex(); 4248 assert(Index < VT.getVectorNumElements() && 4249 "Splat index should be defined and in first operand"); 4250 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4251 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4252 // Since i32 is the smallest legal type, we either need a no-op 4253 // or a truncation. 4254 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4255 VSNOp0.getOperand(Index)); 4256 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4257 } 4258 } 4259 } 4260 4261 // Otherwise just treat the current form as legal. 4262 return Op; 4263 } 4264 4265 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4266 SelectionDAG &DAG) const { 4267 switch (Op.getOpcode()) { 4268 case ISD::BR_CC: 4269 return lowerBR_CC(Op, DAG); 4270 case ISD::SELECT_CC: 4271 return lowerSELECT_CC(Op, DAG); 4272 case ISD::SETCC: 4273 return lowerSETCC(Op, DAG); 4274 case ISD::GlobalAddress: 4275 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4276 case ISD::GlobalTLSAddress: 4277 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4278 case ISD::BlockAddress: 4279 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4280 case ISD::JumpTable: 4281 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4282 case ISD::ConstantPool: 4283 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4284 case ISD::BITCAST: 4285 return lowerBITCAST(Op, DAG); 4286 case ISD::VASTART: 4287 return lowerVASTART(Op, DAG); 4288 case ISD::VACOPY: 4289 return lowerVACOPY(Op, DAG); 4290 case ISD::DYNAMIC_STACKALLOC: 4291 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4292 case ISD::SMUL_LOHI: 4293 return lowerSMUL_LOHI(Op, DAG); 4294 case ISD::UMUL_LOHI: 4295 return lowerUMUL_LOHI(Op, DAG); 4296 case ISD::SDIVREM: 4297 return lowerSDIVREM(Op, DAG); 4298 case ISD::UDIVREM: 4299 return lowerUDIVREM(Op, DAG); 4300 case ISD::OR: 4301 return lowerOR(Op, DAG); 4302 case ISD::CTPOP: 4303 return lowerCTPOP(Op, DAG); 4304 case ISD::CTLZ_ZERO_UNDEF: 4305 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4306 Op.getValueType(), Op.getOperand(0)); 4307 case ISD::CTTZ_ZERO_UNDEF: 4308 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4309 Op.getValueType(), Op.getOperand(0)); 4310 case ISD::ATOMIC_SWAP: 4311 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4312 case ISD::ATOMIC_STORE: 4313 return lowerATOMIC_STORE(Op, DAG); 4314 case ISD::ATOMIC_LOAD: 4315 return lowerATOMIC_LOAD(Op, DAG); 4316 case ISD::ATOMIC_LOAD_ADD: 4317 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4318 case ISD::ATOMIC_LOAD_SUB: 4319 return lowerATOMIC_LOAD_SUB(Op, DAG); 4320 case ISD::ATOMIC_LOAD_AND: 4321 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4322 case ISD::ATOMIC_LOAD_OR: 4323 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4324 case ISD::ATOMIC_LOAD_XOR: 4325 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4326 case ISD::ATOMIC_LOAD_NAND: 4327 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4328 case ISD::ATOMIC_LOAD_MIN: 4329 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4330 case ISD::ATOMIC_LOAD_MAX: 4331 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4332 case ISD::ATOMIC_LOAD_UMIN: 4333 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4334 case ISD::ATOMIC_LOAD_UMAX: 4335 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4336 case ISD::ATOMIC_CMP_SWAP: 4337 return lowerATOMIC_CMP_SWAP(Op, DAG); 4338 case ISD::STACKSAVE: 4339 return lowerSTACKSAVE(Op, DAG); 4340 case ISD::STACKRESTORE: 4341 return lowerSTACKRESTORE(Op, DAG); 4342 case ISD::PREFETCH: 4343 return lowerPREFETCH(Op, DAG); 4344 case ISD::INTRINSIC_W_CHAIN: 4345 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4346 case ISD::INTRINSIC_WO_CHAIN: 4347 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4348 case ISD::BUILD_VECTOR: 4349 return lowerBUILD_VECTOR(Op, DAG); 4350 case ISD::VECTOR_SHUFFLE: 4351 return lowerVECTOR_SHUFFLE(Op, DAG); 4352 case ISD::SCALAR_TO_VECTOR: 4353 return lowerSCALAR_TO_VECTOR(Op, DAG); 4354 case ISD::INSERT_VECTOR_ELT: 4355 return lowerINSERT_VECTOR_ELT(Op, DAG); 4356 case ISD::EXTRACT_VECTOR_ELT: 4357 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4358 case ISD::SIGN_EXTEND_VECTOR_INREG: 4359 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4360 case ISD::ZERO_EXTEND_VECTOR_INREG: 4361 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4362 case ISD::SHL: 4363 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4364 case ISD::SRL: 4365 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4366 case ISD::SRA: 4367 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4368 default: 4369 llvm_unreachable("Unexpected node to lower"); 4370 } 4371 } 4372 4373 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4374 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4375 switch ((SystemZISD::NodeType)Opcode) { 4376 case SystemZISD::FIRST_NUMBER: break; 4377 OPCODE(RET_FLAG); 4378 OPCODE(CALL); 4379 OPCODE(SIBCALL); 4380 OPCODE(TLS_GDCALL); 4381 OPCODE(TLS_LDCALL); 4382 OPCODE(PCREL_WRAPPER); 4383 OPCODE(PCREL_OFFSET); 4384 OPCODE(IABS); 4385 OPCODE(ICMP); 4386 OPCODE(FCMP); 4387 OPCODE(TM); 4388 OPCODE(BR_CCMASK); 4389 OPCODE(SELECT_CCMASK); 4390 OPCODE(ADJDYNALLOC); 4391 OPCODE(EXTRACT_ACCESS); 4392 OPCODE(POPCNT); 4393 OPCODE(UMUL_LOHI64); 4394 OPCODE(SDIVREM32); 4395 OPCODE(SDIVREM64); 4396 OPCODE(UDIVREM32); 4397 OPCODE(UDIVREM64); 4398 OPCODE(MVC); 4399 OPCODE(MVC_LOOP); 4400 OPCODE(NC); 4401 OPCODE(NC_LOOP); 4402 OPCODE(OC); 4403 OPCODE(OC_LOOP); 4404 OPCODE(XC); 4405 OPCODE(XC_LOOP); 4406 OPCODE(CLC); 4407 OPCODE(CLC_LOOP); 4408 OPCODE(STPCPY); 4409 OPCODE(STRCMP); 4410 OPCODE(SEARCH_STRING); 4411 OPCODE(IPM); 4412 OPCODE(SERIALIZE); 4413 OPCODE(TBEGIN); 4414 OPCODE(TBEGIN_NOFLOAT); 4415 OPCODE(TEND); 4416 OPCODE(BYTE_MASK); 4417 OPCODE(ROTATE_MASK); 4418 OPCODE(REPLICATE); 4419 OPCODE(JOIN_DWORDS); 4420 OPCODE(SPLAT); 4421 OPCODE(MERGE_HIGH); 4422 OPCODE(MERGE_LOW); 4423 OPCODE(SHL_DOUBLE); 4424 OPCODE(PERMUTE_DWORDS); 4425 OPCODE(PERMUTE); 4426 OPCODE(PACK); 4427 OPCODE(PACKS_CC); 4428 OPCODE(PACKLS_CC); 4429 OPCODE(UNPACK_HIGH); 4430 OPCODE(UNPACKL_HIGH); 4431 OPCODE(UNPACK_LOW); 4432 OPCODE(UNPACKL_LOW); 4433 OPCODE(VSHL_BY_SCALAR); 4434 OPCODE(VSRL_BY_SCALAR); 4435 OPCODE(VSRA_BY_SCALAR); 4436 OPCODE(VSUM); 4437 OPCODE(VICMPE); 4438 OPCODE(VICMPH); 4439 OPCODE(VICMPHL); 4440 OPCODE(VICMPES); 4441 OPCODE(VICMPHS); 4442 OPCODE(VICMPHLS); 4443 OPCODE(VFCMPE); 4444 OPCODE(VFCMPH); 4445 OPCODE(VFCMPHE); 4446 OPCODE(VFCMPES); 4447 OPCODE(VFCMPHS); 4448 OPCODE(VFCMPHES); 4449 OPCODE(VFTCI); 4450 OPCODE(VEXTEND); 4451 OPCODE(VROUND); 4452 OPCODE(VTM); 4453 OPCODE(VFAE_CC); 4454 OPCODE(VFAEZ_CC); 4455 OPCODE(VFEE_CC); 4456 OPCODE(VFEEZ_CC); 4457 OPCODE(VFENE_CC); 4458 OPCODE(VFENEZ_CC); 4459 OPCODE(VISTR_CC); 4460 OPCODE(VSTRC_CC); 4461 OPCODE(VSTRCZ_CC); 4462 OPCODE(ATOMIC_SWAPW); 4463 OPCODE(ATOMIC_LOADW_ADD); 4464 OPCODE(ATOMIC_LOADW_SUB); 4465 OPCODE(ATOMIC_LOADW_AND); 4466 OPCODE(ATOMIC_LOADW_OR); 4467 OPCODE(ATOMIC_LOADW_XOR); 4468 OPCODE(ATOMIC_LOADW_NAND); 4469 OPCODE(ATOMIC_LOADW_MIN); 4470 OPCODE(ATOMIC_LOADW_MAX); 4471 OPCODE(ATOMIC_LOADW_UMIN); 4472 OPCODE(ATOMIC_LOADW_UMAX); 4473 OPCODE(ATOMIC_CMP_SWAPW); 4474 OPCODE(PREFETCH); 4475 } 4476 return nullptr; 4477 #undef OPCODE 4478 } 4479 4480 // Return true if VT is a vector whose elements are a whole number of bytes 4481 // in width. 4482 static bool canTreatAsByteVector(EVT VT) { 4483 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4484 } 4485 4486 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4487 // producing a result of type ResVT. Op is a possibly bitcast version 4488 // of the input vector and Index is the index (based on type VecVT) that 4489 // should be extracted. Return the new extraction if a simplification 4490 // was possible or if Force is true. 4491 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4492 SDValue Op, unsigned Index, 4493 DAGCombinerInfo &DCI, 4494 bool Force) const { 4495 SelectionDAG &DAG = DCI.DAG; 4496 4497 // The number of bytes being extracted. 4498 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4499 4500 for (;;) { 4501 unsigned Opcode = Op.getOpcode(); 4502 if (Opcode == ISD::BITCAST) 4503 // Look through bitcasts. 4504 Op = Op.getOperand(0); 4505 else if (Opcode == ISD::VECTOR_SHUFFLE && 4506 canTreatAsByteVector(Op.getValueType())) { 4507 // Get a VPERM-like permute mask and see whether the bytes covered 4508 // by the extracted element are a contiguous sequence from one 4509 // source operand. 4510 SmallVector<int, SystemZ::VectorBytes> Bytes; 4511 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4512 int First; 4513 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4514 BytesPerElement, First)) 4515 break; 4516 if (First < 0) 4517 return DAG.getUNDEF(ResVT); 4518 // Make sure the contiguous sequence starts at a multiple of the 4519 // original element size. 4520 unsigned Byte = unsigned(First) % Bytes.size(); 4521 if (Byte % BytesPerElement != 0) 4522 break; 4523 // We can get the extracted value directly from an input. 4524 Index = Byte / BytesPerElement; 4525 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4526 Force = true; 4527 } else if (Opcode == ISD::BUILD_VECTOR && 4528 canTreatAsByteVector(Op.getValueType())) { 4529 // We can only optimize this case if the BUILD_VECTOR elements are 4530 // at least as wide as the extracted value. 4531 EVT OpVT = Op.getValueType(); 4532 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4533 if (OpBytesPerElement < BytesPerElement) 4534 break; 4535 // Make sure that the least-significant bit of the extracted value 4536 // is the least significant bit of an input. 4537 unsigned End = (Index + 1) * BytesPerElement; 4538 if (End % OpBytesPerElement != 0) 4539 break; 4540 // We're extracting the low part of one operand of the BUILD_VECTOR. 4541 Op = Op.getOperand(End / OpBytesPerElement - 1); 4542 if (!Op.getValueType().isInteger()) { 4543 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4544 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4545 DCI.AddToWorklist(Op.getNode()); 4546 } 4547 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4548 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4549 if (VT != ResVT) { 4550 DCI.AddToWorklist(Op.getNode()); 4551 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4552 } 4553 return Op; 4554 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4555 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4556 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4557 canTreatAsByteVector(Op.getValueType()) && 4558 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4559 // Make sure that only the unextended bits are significant. 4560 EVT ExtVT = Op.getValueType(); 4561 EVT OpVT = Op.getOperand(0).getValueType(); 4562 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4563 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4564 unsigned Byte = Index * BytesPerElement; 4565 unsigned SubByte = Byte % ExtBytesPerElement; 4566 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4567 if (SubByte < MinSubByte || 4568 SubByte + BytesPerElement > ExtBytesPerElement) 4569 break; 4570 // Get the byte offset of the unextended element 4571 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4572 // ...then add the byte offset relative to that element. 4573 Byte += SubByte - MinSubByte; 4574 if (Byte % BytesPerElement != 0) 4575 break; 4576 Op = Op.getOperand(0); 4577 Index = Byte / BytesPerElement; 4578 Force = true; 4579 } else 4580 break; 4581 } 4582 if (Force) { 4583 if (Op.getValueType() != VecVT) { 4584 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4585 DCI.AddToWorklist(Op.getNode()); 4586 } 4587 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4588 DAG.getConstant(Index, DL, MVT::i32)); 4589 } 4590 return SDValue(); 4591 } 4592 4593 // Optimize vector operations in scalar value Op on the basis that Op 4594 // is truncated to TruncVT. 4595 SDValue 4596 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4597 DAGCombinerInfo &DCI) const { 4598 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4599 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4600 // of type TruncVT. 4601 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4602 TruncVT.getSizeInBits() % 8 == 0) { 4603 SDValue Vec = Op.getOperand(0); 4604 EVT VecVT = Vec.getValueType(); 4605 if (canTreatAsByteVector(VecVT)) { 4606 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4607 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4608 unsigned TruncBytes = TruncVT.getStoreSize(); 4609 if (BytesPerElement % TruncBytes == 0) { 4610 // Calculate the value of Y' in the above description. We are 4611 // splitting the original elements into Scale equal-sized pieces 4612 // and for truncation purposes want the last (least-significant) 4613 // of these pieces for IndexN. This is easiest to do by calculating 4614 // the start index of the following element and then subtracting 1. 4615 unsigned Scale = BytesPerElement / TruncBytes; 4616 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4617 4618 // Defer the creation of the bitcast from X to combineExtract, 4619 // which might be able to optimize the extraction. 4620 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4621 VecVT.getStoreSize() / TruncBytes); 4622 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4623 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4624 } 4625 } 4626 } 4627 } 4628 return SDValue(); 4629 } 4630 4631 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4632 DAGCombinerInfo &DCI) const { 4633 SelectionDAG &DAG = DCI.DAG; 4634 unsigned Opcode = N->getOpcode(); 4635 if (Opcode == ISD::SIGN_EXTEND) { 4636 // Convert (sext (ashr (shl X, C1), C2)) to 4637 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4638 // cheap as narrower ones. 4639 SDValue N0 = N->getOperand(0); 4640 EVT VT = N->getValueType(0); 4641 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4642 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4643 SDValue Inner = N0.getOperand(0); 4644 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4645 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4646 unsigned Extra = (VT.getSizeInBits() - 4647 N0.getValueType().getSizeInBits()); 4648 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4649 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4650 EVT ShiftVT = N0.getOperand(1).getValueType(); 4651 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4652 Inner.getOperand(0)); 4653 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4654 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4655 ShiftVT)); 4656 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4657 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4658 } 4659 } 4660 } 4661 } 4662 if (Opcode == SystemZISD::MERGE_HIGH || 4663 Opcode == SystemZISD::MERGE_LOW) { 4664 SDValue Op0 = N->getOperand(0); 4665 SDValue Op1 = N->getOperand(1); 4666 if (Op0.getOpcode() == ISD::BITCAST) 4667 Op0 = Op0.getOperand(0); 4668 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4669 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4670 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4671 // for v4f32. 4672 if (Op1 == N->getOperand(0)) 4673 return Op1; 4674 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4675 EVT VT = Op1.getValueType(); 4676 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4677 if (ElemBytes <= 4) { 4678 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4679 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4680 EVT InVT = VT.changeVectorElementTypeToInteger(); 4681 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4682 SystemZ::VectorBytes / ElemBytes / 2); 4683 if (VT != InVT) { 4684 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4685 DCI.AddToWorklist(Op1.getNode()); 4686 } 4687 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4688 DCI.AddToWorklist(Op.getNode()); 4689 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4690 } 4691 } 4692 } 4693 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4694 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4695 // If X has wider elements then convert it to: 4696 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4697 if (Opcode == ISD::STORE) { 4698 auto *SN = cast<StoreSDNode>(N); 4699 EVT MemVT = SN->getMemoryVT(); 4700 if (MemVT.isInteger()) { 4701 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4702 SN->getValue(), DCI); 4703 if (Value.getNode()) { 4704 DCI.AddToWorklist(Value.getNode()); 4705 4706 // Rewrite the store with the new form of stored value. 4707 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4708 SN->getBasePtr(), SN->getMemoryVT(), 4709 SN->getMemOperand()); 4710 } 4711 } 4712 } 4713 // Try to simplify a vector extraction. 4714 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4715 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4716 SDValue Op0 = N->getOperand(0); 4717 EVT VecVT = Op0.getValueType(); 4718 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4719 IndexN->getZExtValue(), DCI, false); 4720 } 4721 } 4722 // (join_dwords X, X) == (replicate X) 4723 if (Opcode == SystemZISD::JOIN_DWORDS && 4724 N->getOperand(0) == N->getOperand(1)) 4725 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4726 N->getOperand(0)); 4727 // (fround (extract_vector_elt X 0)) 4728 // (fround (extract_vector_elt X 1)) -> 4729 // (extract_vector_elt (VROUND X) 0) 4730 // (extract_vector_elt (VROUND X) 1) 4731 // 4732 // This is a special case since the target doesn't really support v2f32s. 4733 if (Opcode == ISD::FP_ROUND) { 4734 SDValue Op0 = N->getOperand(0); 4735 if (N->getValueType(0) == MVT::f32 && 4736 Op0.hasOneUse() && 4737 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4738 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4739 Op0.getOperand(1).getOpcode() == ISD::Constant && 4740 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4741 SDValue Vec = Op0.getOperand(0); 4742 for (auto *U : Vec->uses()) { 4743 if (U != Op0.getNode() && 4744 U->hasOneUse() && 4745 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4746 U->getOperand(0) == Vec && 4747 U->getOperand(1).getOpcode() == ISD::Constant && 4748 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4749 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4750 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4751 OtherRound.getOperand(0) == SDValue(U, 0) && 4752 OtherRound.getValueType() == MVT::f32) { 4753 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4754 MVT::v4f32, Vec); 4755 DCI.AddToWorklist(VRound.getNode()); 4756 SDValue Extract1 = 4757 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4758 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4759 DCI.AddToWorklist(Extract1.getNode()); 4760 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4761 SDValue Extract0 = 4762 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4763 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4764 return Extract0; 4765 } 4766 } 4767 } 4768 } 4769 } 4770 return SDValue(); 4771 } 4772 4773 //===----------------------------------------------------------------------===// 4774 // Custom insertion 4775 //===----------------------------------------------------------------------===// 4776 4777 // Create a new basic block after MBB. 4778 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4779 MachineFunction &MF = *MBB->getParent(); 4780 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4781 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4782 return NewMBB; 4783 } 4784 4785 // Split MBB after MI and return the new block (the one that contains 4786 // instructions after MI). 4787 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4788 MachineBasicBlock *MBB) { 4789 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4790 NewMBB->splice(NewMBB->begin(), MBB, 4791 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4792 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4793 return NewMBB; 4794 } 4795 4796 // Split MBB before MI and return the new block (the one that contains MI). 4797 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4798 MachineBasicBlock *MBB) { 4799 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4800 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4801 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4802 return NewMBB; 4803 } 4804 4805 // Force base value Base into a register before MI. Return the register. 4806 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4807 const SystemZInstrInfo *TII) { 4808 if (Base.isReg()) 4809 return Base.getReg(); 4810 4811 MachineBasicBlock *MBB = MI->getParent(); 4812 MachineFunction &MF = *MBB->getParent(); 4813 MachineRegisterInfo &MRI = MF.getRegInfo(); 4814 4815 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4816 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4817 .addOperand(Base).addImm(0).addReg(0); 4818 return Reg; 4819 } 4820 4821 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4822 MachineBasicBlock * 4823 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4824 MachineBasicBlock *MBB) const { 4825 const SystemZInstrInfo *TII = 4826 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4827 4828 unsigned DestReg = MI->getOperand(0).getReg(); 4829 unsigned TrueReg = MI->getOperand(1).getReg(); 4830 unsigned FalseReg = MI->getOperand(2).getReg(); 4831 unsigned CCValid = MI->getOperand(3).getImm(); 4832 unsigned CCMask = MI->getOperand(4).getImm(); 4833 DebugLoc DL = MI->getDebugLoc(); 4834 4835 MachineBasicBlock *StartMBB = MBB; 4836 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4837 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4838 4839 // StartMBB: 4840 // BRC CCMask, JoinMBB 4841 // # fallthrough to FalseMBB 4842 MBB = StartMBB; 4843 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4844 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4845 MBB->addSuccessor(JoinMBB); 4846 MBB->addSuccessor(FalseMBB); 4847 4848 // FalseMBB: 4849 // # fallthrough to JoinMBB 4850 MBB = FalseMBB; 4851 MBB->addSuccessor(JoinMBB); 4852 4853 // JoinMBB: 4854 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4855 // ... 4856 MBB = JoinMBB; 4857 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4858 .addReg(TrueReg).addMBB(StartMBB) 4859 .addReg(FalseReg).addMBB(FalseMBB); 4860 4861 MI->eraseFromParent(); 4862 return JoinMBB; 4863 } 4864 4865 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4866 // StoreOpcode is the store to use and Invert says whether the store should 4867 // happen when the condition is false rather than true. If a STORE ON 4868 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4869 MachineBasicBlock * 4870 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4871 MachineBasicBlock *MBB, 4872 unsigned StoreOpcode, unsigned STOCOpcode, 4873 bool Invert) const { 4874 const SystemZInstrInfo *TII = 4875 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4876 4877 unsigned SrcReg = MI->getOperand(0).getReg(); 4878 MachineOperand Base = MI->getOperand(1); 4879 int64_t Disp = MI->getOperand(2).getImm(); 4880 unsigned IndexReg = MI->getOperand(3).getReg(); 4881 unsigned CCValid = MI->getOperand(4).getImm(); 4882 unsigned CCMask = MI->getOperand(5).getImm(); 4883 DebugLoc DL = MI->getDebugLoc(); 4884 4885 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4886 4887 // Use STOCOpcode if possible. We could use different store patterns in 4888 // order to avoid matching the index register, but the performance trade-offs 4889 // might be more complicated in that case. 4890 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4891 if (Invert) 4892 CCMask ^= CCValid; 4893 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4894 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4895 .addImm(CCValid).addImm(CCMask); 4896 MI->eraseFromParent(); 4897 return MBB; 4898 } 4899 4900 // Get the condition needed to branch around the store. 4901 if (!Invert) 4902 CCMask ^= CCValid; 4903 4904 MachineBasicBlock *StartMBB = MBB; 4905 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4906 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4907 4908 // StartMBB: 4909 // BRC CCMask, JoinMBB 4910 // # fallthrough to FalseMBB 4911 MBB = StartMBB; 4912 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4913 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4914 MBB->addSuccessor(JoinMBB); 4915 MBB->addSuccessor(FalseMBB); 4916 4917 // FalseMBB: 4918 // store %SrcReg, %Disp(%Index,%Base) 4919 // # fallthrough to JoinMBB 4920 MBB = FalseMBB; 4921 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4922 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4923 MBB->addSuccessor(JoinMBB); 4924 4925 MI->eraseFromParent(); 4926 return JoinMBB; 4927 } 4928 4929 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4930 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4931 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4932 // BitSize is the width of the field in bits, or 0 if this is a partword 4933 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4934 // is one of the operands. Invert says whether the field should be 4935 // inverted after performing BinOpcode (e.g. for NAND). 4936 MachineBasicBlock * 4937 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4938 MachineBasicBlock *MBB, 4939 unsigned BinOpcode, 4940 unsigned BitSize, 4941 bool Invert) const { 4942 MachineFunction &MF = *MBB->getParent(); 4943 const SystemZInstrInfo *TII = 4944 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4945 MachineRegisterInfo &MRI = MF.getRegInfo(); 4946 bool IsSubWord = (BitSize < 32); 4947 4948 // Extract the operands. Base can be a register or a frame index. 4949 // Src2 can be a register or immediate. 4950 unsigned Dest = MI->getOperand(0).getReg(); 4951 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4952 int64_t Disp = MI->getOperand(2).getImm(); 4953 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 4954 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 4955 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 4956 DebugLoc DL = MI->getDebugLoc(); 4957 if (IsSubWord) 4958 BitSize = MI->getOperand(6).getImm(); 4959 4960 // Subword operations use 32-bit registers. 4961 const TargetRegisterClass *RC = (BitSize <= 32 ? 4962 &SystemZ::GR32BitRegClass : 4963 &SystemZ::GR64BitRegClass); 4964 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 4965 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 4966 4967 // Get the right opcodes for the displacement. 4968 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 4969 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 4970 assert(LOpcode && CSOpcode && "Displacement out of range"); 4971 4972 // Create virtual registers for temporary results. 4973 unsigned OrigVal = MRI.createVirtualRegister(RC); 4974 unsigned OldVal = MRI.createVirtualRegister(RC); 4975 unsigned NewVal = (BinOpcode || IsSubWord ? 4976 MRI.createVirtualRegister(RC) : Src2.getReg()); 4977 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 4978 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 4979 4980 // Insert a basic block for the main loop. 4981 MachineBasicBlock *StartMBB = MBB; 4982 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 4983 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 4984 4985 // StartMBB: 4986 // ... 4987 // %OrigVal = L Disp(%Base) 4988 // # fall through to LoopMMB 4989 MBB = StartMBB; 4990 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 4991 .addOperand(Base).addImm(Disp).addReg(0); 4992 MBB->addSuccessor(LoopMBB); 4993 4994 // LoopMBB: 4995 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 4996 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 4997 // %RotatedNewVal = OP %RotatedOldVal, %Src2 4998 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 4999 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5000 // JNE LoopMBB 5001 // # fall through to DoneMMB 5002 MBB = LoopMBB; 5003 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5004 .addReg(OrigVal).addMBB(StartMBB) 5005 .addReg(Dest).addMBB(LoopMBB); 5006 if (IsSubWord) 5007 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5008 .addReg(OldVal).addReg(BitShift).addImm(0); 5009 if (Invert) { 5010 // Perform the operation normally and then invert every bit of the field. 5011 unsigned Tmp = MRI.createVirtualRegister(RC); 5012 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5013 .addReg(RotatedOldVal).addOperand(Src2); 5014 if (BitSize <= 32) 5015 // XILF with the upper BitSize bits set. 5016 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5017 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5018 else { 5019 // Use LCGR and add -1 to the result, which is more compact than 5020 // an XILF, XILH pair. 5021 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5022 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5023 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5024 .addReg(Tmp2).addImm(-1); 5025 } 5026 } else if (BinOpcode) 5027 // A simply binary operation. 5028 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5029 .addReg(RotatedOldVal).addOperand(Src2); 5030 else if (IsSubWord) 5031 // Use RISBG to rotate Src2 into position and use it to replace the 5032 // field in RotatedOldVal. 5033 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5034 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5035 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5036 if (IsSubWord) 5037 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5038 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5039 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5040 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5041 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5042 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5043 MBB->addSuccessor(LoopMBB); 5044 MBB->addSuccessor(DoneMBB); 5045 5046 MI->eraseFromParent(); 5047 return DoneMBB; 5048 } 5049 5050 // Implement EmitInstrWithCustomInserter for pseudo 5051 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5052 // instruction that should be used to compare the current field with the 5053 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5054 // for when the current field should be kept. BitSize is the width of 5055 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5056 MachineBasicBlock * 5057 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5058 MachineBasicBlock *MBB, 5059 unsigned CompareOpcode, 5060 unsigned KeepOldMask, 5061 unsigned BitSize) const { 5062 MachineFunction &MF = *MBB->getParent(); 5063 const SystemZInstrInfo *TII = 5064 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5065 MachineRegisterInfo &MRI = MF.getRegInfo(); 5066 bool IsSubWord = (BitSize < 32); 5067 5068 // Extract the operands. Base can be a register or a frame index. 5069 unsigned Dest = MI->getOperand(0).getReg(); 5070 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5071 int64_t Disp = MI->getOperand(2).getImm(); 5072 unsigned Src2 = MI->getOperand(3).getReg(); 5073 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5074 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5075 DebugLoc DL = MI->getDebugLoc(); 5076 if (IsSubWord) 5077 BitSize = MI->getOperand(6).getImm(); 5078 5079 // Subword operations use 32-bit registers. 5080 const TargetRegisterClass *RC = (BitSize <= 32 ? 5081 &SystemZ::GR32BitRegClass : 5082 &SystemZ::GR64BitRegClass); 5083 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5084 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5085 5086 // Get the right opcodes for the displacement. 5087 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5088 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5089 assert(LOpcode && CSOpcode && "Displacement out of range"); 5090 5091 // Create virtual registers for temporary results. 5092 unsigned OrigVal = MRI.createVirtualRegister(RC); 5093 unsigned OldVal = MRI.createVirtualRegister(RC); 5094 unsigned NewVal = MRI.createVirtualRegister(RC); 5095 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5096 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5097 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5098 5099 // Insert 3 basic blocks for the loop. 5100 MachineBasicBlock *StartMBB = MBB; 5101 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5102 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5103 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5104 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5105 5106 // StartMBB: 5107 // ... 5108 // %OrigVal = L Disp(%Base) 5109 // # fall through to LoopMMB 5110 MBB = StartMBB; 5111 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5112 .addOperand(Base).addImm(Disp).addReg(0); 5113 MBB->addSuccessor(LoopMBB); 5114 5115 // LoopMBB: 5116 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5117 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5118 // CompareOpcode %RotatedOldVal, %Src2 5119 // BRC KeepOldMask, UpdateMBB 5120 MBB = LoopMBB; 5121 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5122 .addReg(OrigVal).addMBB(StartMBB) 5123 .addReg(Dest).addMBB(UpdateMBB); 5124 if (IsSubWord) 5125 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5126 .addReg(OldVal).addReg(BitShift).addImm(0); 5127 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5128 .addReg(RotatedOldVal).addReg(Src2); 5129 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5130 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5131 MBB->addSuccessor(UpdateMBB); 5132 MBB->addSuccessor(UseAltMBB); 5133 5134 // UseAltMBB: 5135 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5136 // # fall through to UpdateMMB 5137 MBB = UseAltMBB; 5138 if (IsSubWord) 5139 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5140 .addReg(RotatedOldVal).addReg(Src2) 5141 .addImm(32).addImm(31 + BitSize).addImm(0); 5142 MBB->addSuccessor(UpdateMBB); 5143 5144 // UpdateMBB: 5145 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5146 // [ %RotatedAltVal, UseAltMBB ] 5147 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5148 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5149 // JNE LoopMBB 5150 // # fall through to DoneMMB 5151 MBB = UpdateMBB; 5152 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5153 .addReg(RotatedOldVal).addMBB(LoopMBB) 5154 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5155 if (IsSubWord) 5156 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5157 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5158 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5159 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5160 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5161 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5162 MBB->addSuccessor(LoopMBB); 5163 MBB->addSuccessor(DoneMBB); 5164 5165 MI->eraseFromParent(); 5166 return DoneMBB; 5167 } 5168 5169 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5170 // instruction MI. 5171 MachineBasicBlock * 5172 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5173 MachineBasicBlock *MBB) const { 5174 MachineFunction &MF = *MBB->getParent(); 5175 const SystemZInstrInfo *TII = 5176 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5177 MachineRegisterInfo &MRI = MF.getRegInfo(); 5178 5179 // Extract the operands. Base can be a register or a frame index. 5180 unsigned Dest = MI->getOperand(0).getReg(); 5181 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5182 int64_t Disp = MI->getOperand(2).getImm(); 5183 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5184 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5185 unsigned BitShift = MI->getOperand(5).getReg(); 5186 unsigned NegBitShift = MI->getOperand(6).getReg(); 5187 int64_t BitSize = MI->getOperand(7).getImm(); 5188 DebugLoc DL = MI->getDebugLoc(); 5189 5190 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5191 5192 // Get the right opcodes for the displacement. 5193 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5194 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5195 assert(LOpcode && CSOpcode && "Displacement out of range"); 5196 5197 // Create virtual registers for temporary results. 5198 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5199 unsigned OldVal = MRI.createVirtualRegister(RC); 5200 unsigned CmpVal = MRI.createVirtualRegister(RC); 5201 unsigned SwapVal = MRI.createVirtualRegister(RC); 5202 unsigned StoreVal = MRI.createVirtualRegister(RC); 5203 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5204 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5205 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5206 5207 // Insert 2 basic blocks for the loop. 5208 MachineBasicBlock *StartMBB = MBB; 5209 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5210 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5211 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5212 5213 // StartMBB: 5214 // ... 5215 // %OrigOldVal = L Disp(%Base) 5216 // # fall through to LoopMMB 5217 MBB = StartMBB; 5218 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5219 .addOperand(Base).addImm(Disp).addReg(0); 5220 MBB->addSuccessor(LoopMBB); 5221 5222 // LoopMBB: 5223 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5224 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5225 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5226 // %Dest = RLL %OldVal, BitSize(%BitShift) 5227 // ^^ The low BitSize bits contain the field 5228 // of interest. 5229 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5230 // ^^ Replace the upper 32-BitSize bits of the 5231 // comparison value with those that we loaded, 5232 // so that we can use a full word comparison. 5233 // CR %Dest, %RetryCmpVal 5234 // JNE DoneMBB 5235 // # Fall through to SetMBB 5236 MBB = LoopMBB; 5237 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5238 .addReg(OrigOldVal).addMBB(StartMBB) 5239 .addReg(RetryOldVal).addMBB(SetMBB); 5240 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5241 .addReg(OrigCmpVal).addMBB(StartMBB) 5242 .addReg(RetryCmpVal).addMBB(SetMBB); 5243 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5244 .addReg(OrigSwapVal).addMBB(StartMBB) 5245 .addReg(RetrySwapVal).addMBB(SetMBB); 5246 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5247 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5248 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5249 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5250 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5251 .addReg(Dest).addReg(RetryCmpVal); 5252 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5253 .addImm(SystemZ::CCMASK_ICMP) 5254 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5255 MBB->addSuccessor(DoneMBB); 5256 MBB->addSuccessor(SetMBB); 5257 5258 // SetMBB: 5259 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5260 // ^^ Replace the upper 32-BitSize bits of the new 5261 // value with those that we loaded. 5262 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5263 // ^^ Rotate the new field to its proper position. 5264 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5265 // JNE LoopMBB 5266 // # fall through to ExitMMB 5267 MBB = SetMBB; 5268 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5269 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5270 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5271 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5272 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5273 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5274 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5275 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5276 MBB->addSuccessor(LoopMBB); 5277 MBB->addSuccessor(DoneMBB); 5278 5279 MI->eraseFromParent(); 5280 return DoneMBB; 5281 } 5282 5283 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5284 // if the high register of the GR128 value must be cleared or false if 5285 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5286 // and subreg_l64 when extending a GR64. 5287 MachineBasicBlock * 5288 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5289 MachineBasicBlock *MBB, 5290 bool ClearEven, unsigned SubReg) const { 5291 MachineFunction &MF = *MBB->getParent(); 5292 const SystemZInstrInfo *TII = 5293 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5294 MachineRegisterInfo &MRI = MF.getRegInfo(); 5295 DebugLoc DL = MI->getDebugLoc(); 5296 5297 unsigned Dest = MI->getOperand(0).getReg(); 5298 unsigned Src = MI->getOperand(1).getReg(); 5299 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5300 5301 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5302 if (ClearEven) { 5303 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5304 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5305 5306 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5307 .addImm(0); 5308 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5309 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5310 In128 = NewIn128; 5311 } 5312 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5313 .addReg(In128).addReg(Src).addImm(SubReg); 5314 5315 MI->eraseFromParent(); 5316 return MBB; 5317 } 5318 5319 MachineBasicBlock * 5320 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5321 MachineBasicBlock *MBB, 5322 unsigned Opcode) const { 5323 MachineFunction &MF = *MBB->getParent(); 5324 const SystemZInstrInfo *TII = 5325 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5326 MachineRegisterInfo &MRI = MF.getRegInfo(); 5327 DebugLoc DL = MI->getDebugLoc(); 5328 5329 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5330 uint64_t DestDisp = MI->getOperand(1).getImm(); 5331 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5332 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5333 uint64_t Length = MI->getOperand(4).getImm(); 5334 5335 // When generating more than one CLC, all but the last will need to 5336 // branch to the end when a difference is found. 5337 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5338 splitBlockAfter(MI, MBB) : nullptr); 5339 5340 // Check for the loop form, in which operand 5 is the trip count. 5341 if (MI->getNumExplicitOperands() > 5) { 5342 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5343 5344 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5345 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5346 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5347 forceReg(MI, DestBase, TII)); 5348 5349 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5350 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5351 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5352 MRI.createVirtualRegister(RC)); 5353 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5354 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5355 MRI.createVirtualRegister(RC)); 5356 5357 RC = &SystemZ::GR64BitRegClass; 5358 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5359 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5360 5361 MachineBasicBlock *StartMBB = MBB; 5362 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5363 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5364 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5365 5366 // StartMBB: 5367 // # fall through to LoopMMB 5368 MBB->addSuccessor(LoopMBB); 5369 5370 // LoopMBB: 5371 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5372 // [ %NextDestReg, NextMBB ] 5373 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5374 // [ %NextSrcReg, NextMBB ] 5375 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5376 // [ %NextCountReg, NextMBB ] 5377 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5378 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5379 // ( JLH EndMBB ) 5380 // 5381 // The prefetch is used only for MVC. The JLH is used only for CLC. 5382 MBB = LoopMBB; 5383 5384 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5385 .addReg(StartDestReg).addMBB(StartMBB) 5386 .addReg(NextDestReg).addMBB(NextMBB); 5387 if (!HaveSingleBase) 5388 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5389 .addReg(StartSrcReg).addMBB(StartMBB) 5390 .addReg(NextSrcReg).addMBB(NextMBB); 5391 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5392 .addReg(StartCountReg).addMBB(StartMBB) 5393 .addReg(NextCountReg).addMBB(NextMBB); 5394 if (Opcode == SystemZ::MVC) 5395 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5396 .addImm(SystemZ::PFD_WRITE) 5397 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5398 BuildMI(MBB, DL, TII->get(Opcode)) 5399 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5400 .addReg(ThisSrcReg).addImm(SrcDisp); 5401 if (EndMBB) { 5402 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5403 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5404 .addMBB(EndMBB); 5405 MBB->addSuccessor(EndMBB); 5406 MBB->addSuccessor(NextMBB); 5407 } 5408 5409 // NextMBB: 5410 // %NextDestReg = LA 256(%ThisDestReg) 5411 // %NextSrcReg = LA 256(%ThisSrcReg) 5412 // %NextCountReg = AGHI %ThisCountReg, -1 5413 // CGHI %NextCountReg, 0 5414 // JLH LoopMBB 5415 // # fall through to DoneMMB 5416 // 5417 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5418 MBB = NextMBB; 5419 5420 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5421 .addReg(ThisDestReg).addImm(256).addReg(0); 5422 if (!HaveSingleBase) 5423 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5424 .addReg(ThisSrcReg).addImm(256).addReg(0); 5425 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5426 .addReg(ThisCountReg).addImm(-1); 5427 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5428 .addReg(NextCountReg).addImm(0); 5429 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5430 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5431 .addMBB(LoopMBB); 5432 MBB->addSuccessor(LoopMBB); 5433 MBB->addSuccessor(DoneMBB); 5434 5435 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5436 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5437 Length &= 255; 5438 MBB = DoneMBB; 5439 } 5440 // Handle any remaining bytes with straight-line code. 5441 while (Length > 0) { 5442 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5443 // The previous iteration might have created out-of-range displacements. 5444 // Apply them using LAY if so. 5445 if (!isUInt<12>(DestDisp)) { 5446 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5447 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5448 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5449 DestBase = MachineOperand::CreateReg(Reg, false); 5450 DestDisp = 0; 5451 } 5452 if (!isUInt<12>(SrcDisp)) { 5453 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5454 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5455 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5456 SrcBase = MachineOperand::CreateReg(Reg, false); 5457 SrcDisp = 0; 5458 } 5459 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5460 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5461 .addOperand(SrcBase).addImm(SrcDisp); 5462 DestDisp += ThisLength; 5463 SrcDisp += ThisLength; 5464 Length -= ThisLength; 5465 // If there's another CLC to go, branch to the end if a difference 5466 // was found. 5467 if (EndMBB && Length > 0) { 5468 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5469 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5470 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5471 .addMBB(EndMBB); 5472 MBB->addSuccessor(EndMBB); 5473 MBB->addSuccessor(NextMBB); 5474 MBB = NextMBB; 5475 } 5476 } 5477 if (EndMBB) { 5478 MBB->addSuccessor(EndMBB); 5479 MBB = EndMBB; 5480 MBB->addLiveIn(SystemZ::CC); 5481 } 5482 5483 MI->eraseFromParent(); 5484 return MBB; 5485 } 5486 5487 // Decompose string pseudo-instruction MI into a loop that continually performs 5488 // Opcode until CC != 3. 5489 MachineBasicBlock * 5490 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5491 MachineBasicBlock *MBB, 5492 unsigned Opcode) const { 5493 MachineFunction &MF = *MBB->getParent(); 5494 const SystemZInstrInfo *TII = 5495 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5496 MachineRegisterInfo &MRI = MF.getRegInfo(); 5497 DebugLoc DL = MI->getDebugLoc(); 5498 5499 uint64_t End1Reg = MI->getOperand(0).getReg(); 5500 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5501 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5502 uint64_t CharReg = MI->getOperand(3).getReg(); 5503 5504 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5505 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5506 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5507 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5508 5509 MachineBasicBlock *StartMBB = MBB; 5510 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5511 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5512 5513 // StartMBB: 5514 // # fall through to LoopMMB 5515 MBB->addSuccessor(LoopMBB); 5516 5517 // LoopMBB: 5518 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5519 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5520 // R0L = %CharReg 5521 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5522 // JO LoopMBB 5523 // # fall through to DoneMMB 5524 // 5525 // The load of R0L can be hoisted by post-RA LICM. 5526 MBB = LoopMBB; 5527 5528 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5529 .addReg(Start1Reg).addMBB(StartMBB) 5530 .addReg(End1Reg).addMBB(LoopMBB); 5531 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5532 .addReg(Start2Reg).addMBB(StartMBB) 5533 .addReg(End2Reg).addMBB(LoopMBB); 5534 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5535 BuildMI(MBB, DL, TII->get(Opcode)) 5536 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5537 .addReg(This1Reg).addReg(This2Reg); 5538 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5539 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5540 MBB->addSuccessor(LoopMBB); 5541 MBB->addSuccessor(DoneMBB); 5542 5543 DoneMBB->addLiveIn(SystemZ::CC); 5544 5545 MI->eraseFromParent(); 5546 return DoneMBB; 5547 } 5548 5549 // Update TBEGIN instruction with final opcode and register clobbers. 5550 MachineBasicBlock * 5551 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5552 MachineBasicBlock *MBB, 5553 unsigned Opcode, 5554 bool NoFloat) const { 5555 MachineFunction &MF = *MBB->getParent(); 5556 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5557 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5558 5559 // Update opcode. 5560 MI->setDesc(TII->get(Opcode)); 5561 5562 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5563 // Make sure to add the corresponding GRSM bits if they are missing. 5564 uint64_t Control = MI->getOperand(2).getImm(); 5565 static const unsigned GPRControlBit[16] = { 5566 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5567 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5568 }; 5569 Control |= GPRControlBit[15]; 5570 if (TFI->hasFP(MF)) 5571 Control |= GPRControlBit[11]; 5572 MI->getOperand(2).setImm(Control); 5573 5574 // Add GPR clobbers. 5575 for (int I = 0; I < 16; I++) { 5576 if ((Control & GPRControlBit[I]) == 0) { 5577 unsigned Reg = SystemZMC::GR64Regs[I]; 5578 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5579 } 5580 } 5581 5582 // Add FPR/VR clobbers. 5583 if (!NoFloat && (Control & 4) != 0) { 5584 if (Subtarget.hasVector()) { 5585 for (int I = 0; I < 32; I++) { 5586 unsigned Reg = SystemZMC::VR128Regs[I]; 5587 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5588 } 5589 } else { 5590 for (int I = 0; I < 16; I++) { 5591 unsigned Reg = SystemZMC::FP64Regs[I]; 5592 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5593 } 5594 } 5595 } 5596 5597 return MBB; 5598 } 5599 5600 MachineBasicBlock *SystemZTargetLowering:: 5601 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5602 switch (MI->getOpcode()) { 5603 case SystemZ::Select32Mux: 5604 case SystemZ::Select32: 5605 case SystemZ::SelectF32: 5606 case SystemZ::Select64: 5607 case SystemZ::SelectF64: 5608 case SystemZ::SelectF128: 5609 return emitSelect(MI, MBB); 5610 5611 case SystemZ::CondStore8Mux: 5612 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5613 case SystemZ::CondStore8MuxInv: 5614 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5615 case SystemZ::CondStore16Mux: 5616 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5617 case SystemZ::CondStore16MuxInv: 5618 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5619 case SystemZ::CondStore8: 5620 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5621 case SystemZ::CondStore8Inv: 5622 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5623 case SystemZ::CondStore16: 5624 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5625 case SystemZ::CondStore16Inv: 5626 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5627 case SystemZ::CondStore32: 5628 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5629 case SystemZ::CondStore32Inv: 5630 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5631 case SystemZ::CondStore64: 5632 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5633 case SystemZ::CondStore64Inv: 5634 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5635 case SystemZ::CondStoreF32: 5636 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5637 case SystemZ::CondStoreF32Inv: 5638 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5639 case SystemZ::CondStoreF64: 5640 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5641 case SystemZ::CondStoreF64Inv: 5642 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5643 5644 case SystemZ::AEXT128_64: 5645 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5646 case SystemZ::ZEXT128_32: 5647 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5648 case SystemZ::ZEXT128_64: 5649 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5650 5651 case SystemZ::ATOMIC_SWAPW: 5652 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5653 case SystemZ::ATOMIC_SWAP_32: 5654 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5655 case SystemZ::ATOMIC_SWAP_64: 5656 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5657 5658 case SystemZ::ATOMIC_LOADW_AR: 5659 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5660 case SystemZ::ATOMIC_LOADW_AFI: 5661 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5662 case SystemZ::ATOMIC_LOAD_AR: 5663 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5664 case SystemZ::ATOMIC_LOAD_AHI: 5665 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5666 case SystemZ::ATOMIC_LOAD_AFI: 5667 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5668 case SystemZ::ATOMIC_LOAD_AGR: 5669 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5670 case SystemZ::ATOMIC_LOAD_AGHI: 5671 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5672 case SystemZ::ATOMIC_LOAD_AGFI: 5673 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5674 5675 case SystemZ::ATOMIC_LOADW_SR: 5676 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5677 case SystemZ::ATOMIC_LOAD_SR: 5678 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5679 case SystemZ::ATOMIC_LOAD_SGR: 5680 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5681 5682 case SystemZ::ATOMIC_LOADW_NR: 5683 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5684 case SystemZ::ATOMIC_LOADW_NILH: 5685 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5686 case SystemZ::ATOMIC_LOAD_NR: 5687 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5688 case SystemZ::ATOMIC_LOAD_NILL: 5689 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5690 case SystemZ::ATOMIC_LOAD_NILH: 5691 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5692 case SystemZ::ATOMIC_LOAD_NILF: 5693 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5694 case SystemZ::ATOMIC_LOAD_NGR: 5695 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5696 case SystemZ::ATOMIC_LOAD_NILL64: 5697 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5698 case SystemZ::ATOMIC_LOAD_NILH64: 5699 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5700 case SystemZ::ATOMIC_LOAD_NIHL64: 5701 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5702 case SystemZ::ATOMIC_LOAD_NIHH64: 5703 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5704 case SystemZ::ATOMIC_LOAD_NILF64: 5705 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5706 case SystemZ::ATOMIC_LOAD_NIHF64: 5707 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5708 5709 case SystemZ::ATOMIC_LOADW_OR: 5710 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5711 case SystemZ::ATOMIC_LOADW_OILH: 5712 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5713 case SystemZ::ATOMIC_LOAD_OR: 5714 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5715 case SystemZ::ATOMIC_LOAD_OILL: 5716 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5717 case SystemZ::ATOMIC_LOAD_OILH: 5718 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5719 case SystemZ::ATOMIC_LOAD_OILF: 5720 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5721 case SystemZ::ATOMIC_LOAD_OGR: 5722 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5723 case SystemZ::ATOMIC_LOAD_OILL64: 5724 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5725 case SystemZ::ATOMIC_LOAD_OILH64: 5726 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5727 case SystemZ::ATOMIC_LOAD_OIHL64: 5728 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5729 case SystemZ::ATOMIC_LOAD_OIHH64: 5730 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5731 case SystemZ::ATOMIC_LOAD_OILF64: 5732 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5733 case SystemZ::ATOMIC_LOAD_OIHF64: 5734 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5735 5736 case SystemZ::ATOMIC_LOADW_XR: 5737 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5738 case SystemZ::ATOMIC_LOADW_XILF: 5739 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5740 case SystemZ::ATOMIC_LOAD_XR: 5741 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5742 case SystemZ::ATOMIC_LOAD_XILF: 5743 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5744 case SystemZ::ATOMIC_LOAD_XGR: 5745 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5746 case SystemZ::ATOMIC_LOAD_XILF64: 5747 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5748 case SystemZ::ATOMIC_LOAD_XIHF64: 5749 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5750 5751 case SystemZ::ATOMIC_LOADW_NRi: 5752 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5753 case SystemZ::ATOMIC_LOADW_NILHi: 5754 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5755 case SystemZ::ATOMIC_LOAD_NRi: 5756 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5757 case SystemZ::ATOMIC_LOAD_NILLi: 5758 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5759 case SystemZ::ATOMIC_LOAD_NILHi: 5760 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5761 case SystemZ::ATOMIC_LOAD_NILFi: 5762 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5763 case SystemZ::ATOMIC_LOAD_NGRi: 5764 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5765 case SystemZ::ATOMIC_LOAD_NILL64i: 5766 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5767 case SystemZ::ATOMIC_LOAD_NILH64i: 5768 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5769 case SystemZ::ATOMIC_LOAD_NIHL64i: 5770 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5771 case SystemZ::ATOMIC_LOAD_NIHH64i: 5772 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5773 case SystemZ::ATOMIC_LOAD_NILF64i: 5774 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5775 case SystemZ::ATOMIC_LOAD_NIHF64i: 5776 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5777 5778 case SystemZ::ATOMIC_LOADW_MIN: 5779 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5780 SystemZ::CCMASK_CMP_LE, 0); 5781 case SystemZ::ATOMIC_LOAD_MIN_32: 5782 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5783 SystemZ::CCMASK_CMP_LE, 32); 5784 case SystemZ::ATOMIC_LOAD_MIN_64: 5785 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5786 SystemZ::CCMASK_CMP_LE, 64); 5787 5788 case SystemZ::ATOMIC_LOADW_MAX: 5789 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5790 SystemZ::CCMASK_CMP_GE, 0); 5791 case SystemZ::ATOMIC_LOAD_MAX_32: 5792 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5793 SystemZ::CCMASK_CMP_GE, 32); 5794 case SystemZ::ATOMIC_LOAD_MAX_64: 5795 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5796 SystemZ::CCMASK_CMP_GE, 64); 5797 5798 case SystemZ::ATOMIC_LOADW_UMIN: 5799 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5800 SystemZ::CCMASK_CMP_LE, 0); 5801 case SystemZ::ATOMIC_LOAD_UMIN_32: 5802 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5803 SystemZ::CCMASK_CMP_LE, 32); 5804 case SystemZ::ATOMIC_LOAD_UMIN_64: 5805 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5806 SystemZ::CCMASK_CMP_LE, 64); 5807 5808 case SystemZ::ATOMIC_LOADW_UMAX: 5809 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5810 SystemZ::CCMASK_CMP_GE, 0); 5811 case SystemZ::ATOMIC_LOAD_UMAX_32: 5812 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5813 SystemZ::CCMASK_CMP_GE, 32); 5814 case SystemZ::ATOMIC_LOAD_UMAX_64: 5815 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5816 SystemZ::CCMASK_CMP_GE, 64); 5817 5818 case SystemZ::ATOMIC_CMP_SWAPW: 5819 return emitAtomicCmpSwapW(MI, MBB); 5820 case SystemZ::MVCSequence: 5821 case SystemZ::MVCLoop: 5822 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5823 case SystemZ::NCSequence: 5824 case SystemZ::NCLoop: 5825 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5826 case SystemZ::OCSequence: 5827 case SystemZ::OCLoop: 5828 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5829 case SystemZ::XCSequence: 5830 case SystemZ::XCLoop: 5831 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5832 case SystemZ::CLCSequence: 5833 case SystemZ::CLCLoop: 5834 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5835 case SystemZ::CLSTLoop: 5836 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5837 case SystemZ::MVSTLoop: 5838 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5839 case SystemZ::SRSTLoop: 5840 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5841 case SystemZ::TBEGIN: 5842 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5843 case SystemZ::TBEGIN_nofloat: 5844 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5845 case SystemZ::TBEGINC: 5846 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5847 default: 5848 llvm_unreachable("Unexpected instr type to insert"); 5849 } 5850 } 5851