1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents information about a comparison. 34 struct Comparison { 35 Comparison(SDValue Op0In, SDValue Op1In) 36 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 37 38 // The operands to the comparison. 39 SDValue Op0, Op1; 40 41 // The opcode that should be used to compare Op0 and Op1. 42 unsigned Opcode; 43 44 // A SystemZICMP value. Only used for integer comparisons. 45 unsigned ICmpType; 46 47 // The mask of CC values that Opcode can produce. 48 unsigned CCValid; 49 50 // The mask of CC values for which the original condition is true. 51 unsigned CCMask; 52 }; 53 } // end anonymous namespace 54 55 // Classify VT as either 32 or 64 bit. 56 static bool is32Bit(EVT VT) { 57 switch (VT.getSimpleVT().SimpleTy) { 58 case MVT::i32: 59 return true; 60 case MVT::i64: 61 return false; 62 default: 63 llvm_unreachable("Unsupported type"); 64 } 65 } 66 67 // Return a version of MachineOperand that can be safely used before the 68 // final use. 69 static MachineOperand earlyUseOperand(MachineOperand Op) { 70 if (Op.isReg()) 71 Op.setIsKill(false); 72 return Op; 73 } 74 75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 76 const SystemZSubtarget &STI) 77 : TargetLowering(TM), Subtarget(STI) { 78 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 79 80 // Set up the register classes. 81 if (Subtarget.hasHighWord()) 82 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 83 else 84 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 85 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 86 if (Subtarget.hasVector()) { 87 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 88 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 89 } else { 90 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 91 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 92 } 93 if (Subtarget.hasVectorEnhancements1()) 94 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 95 else 96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 97 98 if (Subtarget.hasVector()) { 99 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 100 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 105 } 106 107 // Compute derived properties from the register classes 108 computeRegisterProperties(Subtarget.getRegisterInfo()); 109 110 // Set up special registers. 111 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 112 113 // TODO: It may be better to default to latency-oriented scheduling, however 114 // LLVM's current latency-oriented scheduler can't handle physreg definitions 115 // such as SystemZ has with CC, so set this to the register-pressure 116 // scheduler, because it can. 117 setSchedulingPreference(Sched::RegPressure); 118 119 setBooleanContents(ZeroOrOneBooleanContent); 120 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 121 122 // Instructions are strings of 2-byte aligned 2-byte values. 123 setMinFunctionAlignment(2); 124 // For performance reasons we prefer 16-byte alignment. 125 setPrefFunctionAlignment(4); 126 127 // Handle operations that are handled in a similar way for all types. 128 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 129 I <= MVT::LAST_FP_VALUETYPE; 130 ++I) { 131 MVT VT = MVT::SimpleValueType(I); 132 if (isTypeLegal(VT)) { 133 // Lower SET_CC into an IPM-based sequence. 134 setOperationAction(ISD::SETCC, VT, Custom); 135 136 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 137 setOperationAction(ISD::SELECT, VT, Expand); 138 139 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 140 setOperationAction(ISD::SELECT_CC, VT, Custom); 141 setOperationAction(ISD::BR_CC, VT, Custom); 142 } 143 } 144 145 // Expand jump table branches as address arithmetic followed by an 146 // indirect jump. 147 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 148 149 // Expand BRCOND into a BR_CC (see above). 150 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 151 152 // Handle integer types. 153 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 154 I <= MVT::LAST_INTEGER_VALUETYPE; 155 ++I) { 156 MVT VT = MVT::SimpleValueType(I); 157 if (isTypeLegal(VT)) { 158 // Expand individual DIV and REMs into DIVREMs. 159 setOperationAction(ISD::SDIV, VT, Expand); 160 setOperationAction(ISD::UDIV, VT, Expand); 161 setOperationAction(ISD::SREM, VT, Expand); 162 setOperationAction(ISD::UREM, VT, Expand); 163 setOperationAction(ISD::SDIVREM, VT, Custom); 164 setOperationAction(ISD::UDIVREM, VT, Custom); 165 166 // Support addition/subtraction with overflow. 167 setOperationAction(ISD::SADDO, VT, Custom); 168 setOperationAction(ISD::SSUBO, VT, Custom); 169 170 // Support addition/subtraction with carry. 171 setOperationAction(ISD::UADDO, VT, Custom); 172 setOperationAction(ISD::USUBO, VT, Custom); 173 174 // Support carry in as value rather than glue. 175 setOperationAction(ISD::ADDCARRY, VT, Custom); 176 setOperationAction(ISD::SUBCARRY, VT, Custom); 177 178 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 179 // stores, putting a serialization instruction after the stores. 180 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 181 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 182 183 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 184 // available, or if the operand is constant. 185 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 186 187 // Use POPCNT on z196 and above. 188 if (Subtarget.hasPopulationCount()) 189 setOperationAction(ISD::CTPOP, VT, Custom); 190 else 191 setOperationAction(ISD::CTPOP, VT, Expand); 192 193 // No special instructions for these. 194 setOperationAction(ISD::CTTZ, VT, Expand); 195 setOperationAction(ISD::ROTR, VT, Expand); 196 197 // Use *MUL_LOHI where possible instead of MULH*. 198 setOperationAction(ISD::MULHS, VT, Expand); 199 setOperationAction(ISD::MULHU, VT, Expand); 200 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 201 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 202 203 // Only z196 and above have native support for conversions to unsigned. 204 // On z10, promoting to i64 doesn't generate an inexact condition for 205 // values that are outside the i32 range but in the i64 range, so use 206 // the default expansion. 207 if (!Subtarget.hasFPExtension()) 208 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 209 } 210 } 211 212 // Type legalization will convert 8- and 16-bit atomic operations into 213 // forms that operate on i32s (but still keeping the original memory VT). 214 // Lower them into full i32 operations. 215 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 226 227 // Even though i128 is not a legal type, we still need to custom lower 228 // the atomic operations in order to exploit SystemZ instructions. 229 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 230 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 231 232 // We can use the CC result of compare-and-swap to implement 233 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 234 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 237 238 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 239 240 // Traps are legal, as we will convert them to "j .+2". 241 setOperationAction(ISD::TRAP, MVT::Other, Legal); 242 243 // z10 has instructions for signed but not unsigned FP conversion. 244 // Handle unsigned 32-bit types as signed 64-bit types. 245 if (!Subtarget.hasFPExtension()) { 246 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 247 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 248 } 249 250 // We have native support for a 64-bit CTLZ, via FLOGR. 251 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 252 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 253 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 254 255 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 256 setOperationAction(ISD::OR, MVT::i64, Custom); 257 258 // FIXME: Can we support these natively? 259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 262 263 // We have native instructions for i8, i16 and i32 extensions, but not i1. 264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 265 for (MVT VT : MVT::integer_valuetypes()) { 266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 269 } 270 271 // Handle the various types of symbolic address. 272 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 275 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 276 setOperationAction(ISD::JumpTable, PtrVT, Custom); 277 278 // We need to handle dynamic allocations specially because of the 279 // 160-byte area at the bottom of the stack. 280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 282 283 // Use custom expanders so that we can force the function to use 284 // a frame pointer. 285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 287 288 // Handle prefetches with PFD or PFDRL. 289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 290 291 for (MVT VT : MVT::vector_valuetypes()) { 292 // Assume by default that all vector operations need to be expanded. 293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 294 if (getOperationAction(Opcode, VT) == Legal) 295 setOperationAction(Opcode, VT, Expand); 296 297 // Likewise all truncating stores and extending loads. 298 for (MVT InnerVT : MVT::vector_valuetypes()) { 299 setTruncStoreAction(VT, InnerVT, Expand); 300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 303 } 304 305 if (isTypeLegal(VT)) { 306 // These operations are legal for anything that can be stored in a 307 // vector register, even if there is no native support for the format 308 // as such. In particular, we can do these for v4f32 even though there 309 // are no specific instructions for that format. 310 setOperationAction(ISD::LOAD, VT, Legal); 311 setOperationAction(ISD::STORE, VT, Legal); 312 setOperationAction(ISD::VSELECT, VT, Legal); 313 setOperationAction(ISD::BITCAST, VT, Legal); 314 setOperationAction(ISD::UNDEF, VT, Legal); 315 316 // Likewise, except that we need to replace the nodes with something 317 // more specific. 318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 320 } 321 } 322 323 // Handle integer vector types. 324 for (MVT VT : MVT::integer_vector_valuetypes()) { 325 if (isTypeLegal(VT)) { 326 // These operations have direct equivalents. 327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 329 setOperationAction(ISD::ADD, VT, Legal); 330 setOperationAction(ISD::SUB, VT, Legal); 331 if (VT != MVT::v2i64) 332 setOperationAction(ISD::MUL, VT, Legal); 333 setOperationAction(ISD::AND, VT, Legal); 334 setOperationAction(ISD::OR, VT, Legal); 335 setOperationAction(ISD::XOR, VT, Legal); 336 if (Subtarget.hasVectorEnhancements1()) 337 setOperationAction(ISD::CTPOP, VT, Legal); 338 else 339 setOperationAction(ISD::CTPOP, VT, Custom); 340 setOperationAction(ISD::CTTZ, VT, Legal); 341 setOperationAction(ISD::CTLZ, VT, Legal); 342 343 // Convert a GPR scalar to a vector by inserting it into element 0. 344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 345 346 // Use a series of unpacks for extensions. 347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 349 350 // Detect shifts by a scalar amount and convert them into 351 // V*_BY_SCALAR. 352 setOperationAction(ISD::SHL, VT, Custom); 353 setOperationAction(ISD::SRA, VT, Custom); 354 setOperationAction(ISD::SRL, VT, Custom); 355 356 // At present ROTL isn't matched by DAGCombiner. ROTR should be 357 // converted into ROTL. 358 setOperationAction(ISD::ROTL, VT, Expand); 359 setOperationAction(ISD::ROTR, VT, Expand); 360 361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 362 // and inverting the result as necessary. 363 setOperationAction(ISD::SETCC, VT, Custom); 364 } 365 } 366 367 if (Subtarget.hasVector()) { 368 // There should be no need to check for float types other than v2f64 369 // since <2 x f32> isn't a legal type. 370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 378 } 379 380 // Handle floating-point types. 381 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 382 I <= MVT::LAST_FP_VALUETYPE; 383 ++I) { 384 MVT VT = MVT::SimpleValueType(I); 385 if (isTypeLegal(VT)) { 386 // We can use FI for FRINT. 387 setOperationAction(ISD::FRINT, VT, Legal); 388 389 // We can use the extended form of FI for other rounding operations. 390 if (Subtarget.hasFPExtension()) { 391 setOperationAction(ISD::FNEARBYINT, VT, Legal); 392 setOperationAction(ISD::FFLOOR, VT, Legal); 393 setOperationAction(ISD::FCEIL, VT, Legal); 394 setOperationAction(ISD::FTRUNC, VT, Legal); 395 setOperationAction(ISD::FROUND, VT, Legal); 396 } 397 398 // No special instructions for these. 399 setOperationAction(ISD::FSIN, VT, Expand); 400 setOperationAction(ISD::FCOS, VT, Expand); 401 setOperationAction(ISD::FSINCOS, VT, Expand); 402 setOperationAction(ISD::FREM, VT, Expand); 403 setOperationAction(ISD::FPOW, VT, Expand); 404 } 405 } 406 407 // Handle floating-point vector types. 408 if (Subtarget.hasVector()) { 409 // Scalar-to-vector conversion is just a subreg. 410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 412 413 // Some insertions and extractions can be done directly but others 414 // need to go via integers. 415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 419 420 // These operations have direct equivalents. 421 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 425 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 427 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 435 } 436 437 // The vector enhancements facility 1 has instructions for these. 438 if (Subtarget.hasVectorEnhancements1()) { 439 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 443 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 445 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 453 454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 455 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 457 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 458 459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 460 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 462 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 463 464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 465 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 467 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 468 469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 470 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 472 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 473 474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 475 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 477 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 478 } 479 480 // We have fused multiply-addition for f32 and f64 but not f128. 481 setOperationAction(ISD::FMA, MVT::f32, Legal); 482 setOperationAction(ISD::FMA, MVT::f64, Legal); 483 if (Subtarget.hasVectorEnhancements1()) 484 setOperationAction(ISD::FMA, MVT::f128, Legal); 485 else 486 setOperationAction(ISD::FMA, MVT::f128, Expand); 487 488 // We don't have a copysign instruction on vector registers. 489 if (Subtarget.hasVectorEnhancements1()) 490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 491 492 // Needed so that we don't try to implement f128 constant loads using 493 // a load-and-extend of a f80 constant (in cases where the constant 494 // would fit in an f80). 495 for (MVT VT : MVT::fp_valuetypes()) 496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 497 498 // We don't have extending load instruction on vector registers. 499 if (Subtarget.hasVectorEnhancements1()) { 500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 502 } 503 504 // Floating-point truncation and stores need to be done separately. 505 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 506 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 507 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 508 509 // We have 64-bit FPR<->GPR moves, but need special handling for 510 // 32-bit forms. 511 if (!Subtarget.hasVector()) { 512 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 513 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 514 } 515 516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 517 // structure, but VAEND is a no-op. 518 setOperationAction(ISD::VASTART, MVT::Other, Custom); 519 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 520 setOperationAction(ISD::VAEND, MVT::Other, Expand); 521 522 // Codes for which we want to perform some z-specific combinations. 523 setTargetDAGCombine(ISD::ZERO_EXTEND); 524 setTargetDAGCombine(ISD::SIGN_EXTEND); 525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 526 setTargetDAGCombine(ISD::LOAD); 527 setTargetDAGCombine(ISD::STORE); 528 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 529 setTargetDAGCombine(ISD::FP_ROUND); 530 setTargetDAGCombine(ISD::FP_EXTEND); 531 setTargetDAGCombine(ISD::BSWAP); 532 setTargetDAGCombine(ISD::SDIV); 533 setTargetDAGCombine(ISD::UDIV); 534 setTargetDAGCombine(ISD::SREM); 535 setTargetDAGCombine(ISD::UREM); 536 537 // Handle intrinsics. 538 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 539 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 540 541 // We want to use MVC in preference to even a single load/store pair. 542 MaxStoresPerMemcpy = 0; 543 MaxStoresPerMemcpyOptSize = 0; 544 545 // The main memset sequence is a byte store followed by an MVC. 546 // Two STC or MV..I stores win over that, but the kind of fused stores 547 // generated by target-independent code don't when the byte value is 548 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 549 // than "STC;MVC". Handle the choice in target-specific code instead. 550 MaxStoresPerMemset = 0; 551 MaxStoresPerMemsetOptSize = 0; 552 } 553 554 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 555 LLVMContext &, EVT VT) const { 556 if (!VT.isVector()) 557 return MVT::i32; 558 return VT.changeVectorElementTypeToInteger(); 559 } 560 561 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 562 VT = VT.getScalarType(); 563 564 if (!VT.isSimple()) 565 return false; 566 567 switch (VT.getSimpleVT().SimpleTy) { 568 case MVT::f32: 569 case MVT::f64: 570 return true; 571 case MVT::f128: 572 return Subtarget.hasVectorEnhancements1(); 573 default: 574 break; 575 } 576 577 return false; 578 } 579 580 581 // Return true if Imm can be generated with a vector instruction, such as VGM. 582 bool SystemZTargetLowering:: 583 analyzeFPImm(const APFloat &Imm, unsigned BitWidth, unsigned &Start, 584 unsigned &End, const SystemZInstrInfo *TII) { 585 APInt IntImm = Imm.bitcastToAPInt(); 586 if (IntImm.getActiveBits() > 64) 587 return false; 588 589 // See if this immediate could be generated with VGM. 590 bool Success = TII->isRxSBGMask(IntImm.getZExtValue(), BitWidth, Start, End); 591 if (!Success) 592 return false; 593 // isRxSBGMask returns the bit numbers for a full 64-bit value, 594 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 595 // bit numbers for an BitsPerElement value, so that 0 denotes 596 // 1 << (BitsPerElement-1). 597 Start -= 64 - BitWidth; 598 End -= 64 - BitWidth; 599 return true; 600 } 601 602 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 603 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 604 if (Imm.isZero() || Imm.isNegZero()) 605 return true; 606 607 if (!Subtarget.hasVector()) 608 return false; 609 const SystemZInstrInfo *TII = 610 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 611 unsigned Start, End; 612 return analyzeFPImm(Imm, VT.getSizeInBits(), Start, End, TII); 613 } 614 615 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 616 // We can use CGFI or CLGFI. 617 return isInt<32>(Imm) || isUInt<32>(Imm); 618 } 619 620 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 621 // We can use ALGFI or SLGFI. 622 return isUInt<32>(Imm) || isUInt<32>(-Imm); 623 } 624 625 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 626 unsigned, 627 unsigned, 628 bool *Fast) const { 629 // Unaligned accesses should never be slower than the expanded version. 630 // We check specifically for aligned accesses in the few cases where 631 // they are required. 632 if (Fast) 633 *Fast = true; 634 return true; 635 } 636 637 // Information about the addressing mode for a memory access. 638 struct AddressingMode { 639 // True if a long displacement is supported. 640 bool LongDisplacement; 641 642 // True if use of index register is supported. 643 bool IndexReg; 644 645 AddressingMode(bool LongDispl, bool IdxReg) : 646 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 647 }; 648 649 // Return the desired addressing mode for a Load which has only one use (in 650 // the same block) which is a Store. 651 static AddressingMode getLoadStoreAddrMode(bool HasVector, 652 Type *Ty) { 653 // With vector support a Load->Store combination may be combined to either 654 // an MVC or vector operations and it seems to work best to allow the 655 // vector addressing mode. 656 if (HasVector) 657 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 658 659 // Otherwise only the MVC case is special. 660 bool MVC = Ty->isIntegerTy(8); 661 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 662 } 663 664 // Return the addressing mode which seems most desirable given an LLVM 665 // Instruction pointer. 666 static AddressingMode 667 supportedAddressingMode(Instruction *I, bool HasVector) { 668 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 669 switch (II->getIntrinsicID()) { 670 default: break; 671 case Intrinsic::memset: 672 case Intrinsic::memmove: 673 case Intrinsic::memcpy: 674 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 675 } 676 } 677 678 if (isa<LoadInst>(I) && I->hasOneUse()) { 679 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 680 if (SingleUser->getParent() == I->getParent()) { 681 if (isa<ICmpInst>(SingleUser)) { 682 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 683 if (C->getBitWidth() <= 64 && 684 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 685 // Comparison of memory with 16 bit signed / unsigned immediate 686 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 687 } else if (isa<StoreInst>(SingleUser)) 688 // Load->Store 689 return getLoadStoreAddrMode(HasVector, I->getType()); 690 } 691 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 692 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 693 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 694 // Load->Store 695 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 696 } 697 698 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 699 700 // * Use LDE instead of LE/LEY for z13 to avoid partial register 701 // dependencies (LDE only supports small offsets). 702 // * Utilize the vector registers to hold floating point 703 // values (vector load / store instructions only support small 704 // offsets). 705 706 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 707 I->getOperand(0)->getType()); 708 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 709 bool IsVectorAccess = MemAccessTy->isVectorTy(); 710 711 // A store of an extracted vector element will be combined into a VSTE type 712 // instruction. 713 if (!IsVectorAccess && isa<StoreInst>(I)) { 714 Value *DataOp = I->getOperand(0); 715 if (isa<ExtractElementInst>(DataOp)) 716 IsVectorAccess = true; 717 } 718 719 // A load which gets inserted into a vector element will be combined into a 720 // VLE type instruction. 721 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 722 User *LoadUser = *I->user_begin(); 723 if (isa<InsertElementInst>(LoadUser)) 724 IsVectorAccess = true; 725 } 726 727 if (IsFPAccess || IsVectorAccess) 728 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 729 } 730 731 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 732 } 733 734 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 735 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 736 // Punt on globals for now, although they can be used in limited 737 // RELATIVE LONG cases. 738 if (AM.BaseGV) 739 return false; 740 741 // Require a 20-bit signed offset. 742 if (!isInt<20>(AM.BaseOffs)) 743 return false; 744 745 AddressingMode SupportedAM(true, true); 746 if (I != nullptr) 747 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 748 749 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 750 return false; 751 752 if (!SupportedAM.IndexReg) 753 // No indexing allowed. 754 return AM.Scale == 0; 755 else 756 // Indexing is OK but no scale factor can be applied. 757 return AM.Scale == 0 || AM.Scale == 1; 758 } 759 760 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 761 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 762 return false; 763 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 764 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 765 return FromBits > ToBits; 766 } 767 768 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 769 if (!FromVT.isInteger() || !ToVT.isInteger()) 770 return false; 771 unsigned FromBits = FromVT.getSizeInBits(); 772 unsigned ToBits = ToVT.getSizeInBits(); 773 return FromBits > ToBits; 774 } 775 776 //===----------------------------------------------------------------------===// 777 // Inline asm support 778 //===----------------------------------------------------------------------===// 779 780 TargetLowering::ConstraintType 781 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 782 if (Constraint.size() == 1) { 783 switch (Constraint[0]) { 784 case 'a': // Address register 785 case 'd': // Data register (equivalent to 'r') 786 case 'f': // Floating-point register 787 case 'h': // High-part register 788 case 'r': // General-purpose register 789 case 'v': // Vector register 790 return C_RegisterClass; 791 792 case 'Q': // Memory with base and unsigned 12-bit displacement 793 case 'R': // Likewise, plus an index 794 case 'S': // Memory with base and signed 20-bit displacement 795 case 'T': // Likewise, plus an index 796 case 'm': // Equivalent to 'T'. 797 return C_Memory; 798 799 case 'I': // Unsigned 8-bit constant 800 case 'J': // Unsigned 12-bit constant 801 case 'K': // Signed 16-bit constant 802 case 'L': // Signed 20-bit displacement (on all targets we support) 803 case 'M': // 0x7fffffff 804 return C_Other; 805 806 default: 807 break; 808 } 809 } 810 return TargetLowering::getConstraintType(Constraint); 811 } 812 813 TargetLowering::ConstraintWeight SystemZTargetLowering:: 814 getSingleConstraintMatchWeight(AsmOperandInfo &info, 815 const char *constraint) const { 816 ConstraintWeight weight = CW_Invalid; 817 Value *CallOperandVal = info.CallOperandVal; 818 // If we don't have a value, we can't do a match, 819 // but allow it at the lowest weight. 820 if (!CallOperandVal) 821 return CW_Default; 822 Type *type = CallOperandVal->getType(); 823 // Look at the constraint type. 824 switch (*constraint) { 825 default: 826 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 827 break; 828 829 case 'a': // Address register 830 case 'd': // Data register (equivalent to 'r') 831 case 'h': // High-part register 832 case 'r': // General-purpose register 833 if (CallOperandVal->getType()->isIntegerTy()) 834 weight = CW_Register; 835 break; 836 837 case 'f': // Floating-point register 838 if (type->isFloatingPointTy()) 839 weight = CW_Register; 840 break; 841 842 case 'v': // Vector register 843 if ((type->isVectorTy() || type->isFloatingPointTy()) && 844 Subtarget.hasVector()) 845 weight = CW_Register; 846 break; 847 848 case 'I': // Unsigned 8-bit constant 849 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 850 if (isUInt<8>(C->getZExtValue())) 851 weight = CW_Constant; 852 break; 853 854 case 'J': // Unsigned 12-bit constant 855 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 856 if (isUInt<12>(C->getZExtValue())) 857 weight = CW_Constant; 858 break; 859 860 case 'K': // Signed 16-bit constant 861 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 862 if (isInt<16>(C->getSExtValue())) 863 weight = CW_Constant; 864 break; 865 866 case 'L': // Signed 20-bit displacement (on all targets we support) 867 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 868 if (isInt<20>(C->getSExtValue())) 869 weight = CW_Constant; 870 break; 871 872 case 'M': // 0x7fffffff 873 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 874 if (C->getZExtValue() == 0x7fffffff) 875 weight = CW_Constant; 876 break; 877 } 878 return weight; 879 } 880 881 // Parse a "{tNNN}" register constraint for which the register type "t" 882 // has already been verified. MC is the class associated with "t" and 883 // Map maps 0-based register numbers to LLVM register numbers. 884 static std::pair<unsigned, const TargetRegisterClass *> 885 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 886 const unsigned *Map, unsigned Size) { 887 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 888 if (isdigit(Constraint[2])) { 889 unsigned Index; 890 bool Failed = 891 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 892 if (!Failed && Index < Size && Map[Index]) 893 return std::make_pair(Map[Index], RC); 894 } 895 return std::make_pair(0U, nullptr); 896 } 897 898 std::pair<unsigned, const TargetRegisterClass *> 899 SystemZTargetLowering::getRegForInlineAsmConstraint( 900 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 901 if (Constraint.size() == 1) { 902 // GCC Constraint Letters 903 switch (Constraint[0]) { 904 default: break; 905 case 'd': // Data register (equivalent to 'r') 906 case 'r': // General-purpose register 907 if (VT == MVT::i64) 908 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 909 else if (VT == MVT::i128) 910 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 911 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 912 913 case 'a': // Address register 914 if (VT == MVT::i64) 915 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 916 else if (VT == MVT::i128) 917 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 918 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 919 920 case 'h': // High-part register (an LLVM extension) 921 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 922 923 case 'f': // Floating-point register 924 if (VT == MVT::f64) 925 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 926 else if (VT == MVT::f128) 927 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 928 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 929 930 case 'v': // Vector register 931 if (Subtarget.hasVector()) { 932 if (VT == MVT::f32) 933 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 934 if (VT == MVT::f64) 935 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 936 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 937 } 938 break; 939 } 940 } 941 if (Constraint.size() > 0 && Constraint[0] == '{') { 942 // We need to override the default register parsing for GPRs and FPRs 943 // because the interpretation depends on VT. The internal names of 944 // the registers are also different from the external names 945 // (F0D and F0S instead of F0, etc.). 946 if (Constraint[1] == 'r') { 947 if (VT == MVT::i32) 948 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 949 SystemZMC::GR32Regs, 16); 950 if (VT == MVT::i128) 951 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 952 SystemZMC::GR128Regs, 16); 953 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 954 SystemZMC::GR64Regs, 16); 955 } 956 if (Constraint[1] == 'f') { 957 if (VT == MVT::f32) 958 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 959 SystemZMC::FP32Regs, 16); 960 if (VT == MVT::f128) 961 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 962 SystemZMC::FP128Regs, 16); 963 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 964 SystemZMC::FP64Regs, 16); 965 } 966 if (Constraint[1] == 'v') { 967 if (VT == MVT::f32) 968 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 969 SystemZMC::VR32Regs, 32); 970 if (VT == MVT::f64) 971 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 972 SystemZMC::VR64Regs, 32); 973 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 974 SystemZMC::VR128Regs, 32); 975 } 976 } 977 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 978 } 979 980 void SystemZTargetLowering:: 981 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 982 std::vector<SDValue> &Ops, 983 SelectionDAG &DAG) const { 984 // Only support length 1 constraints for now. 985 if (Constraint.length() == 1) { 986 switch (Constraint[0]) { 987 case 'I': // Unsigned 8-bit constant 988 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 989 if (isUInt<8>(C->getZExtValue())) 990 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 991 Op.getValueType())); 992 return; 993 994 case 'J': // Unsigned 12-bit constant 995 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 996 if (isUInt<12>(C->getZExtValue())) 997 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 998 Op.getValueType())); 999 return; 1000 1001 case 'K': // Signed 16-bit constant 1002 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1003 if (isInt<16>(C->getSExtValue())) 1004 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1005 Op.getValueType())); 1006 return; 1007 1008 case 'L': // Signed 20-bit displacement (on all targets we support) 1009 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1010 if (isInt<20>(C->getSExtValue())) 1011 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1012 Op.getValueType())); 1013 return; 1014 1015 case 'M': // 0x7fffffff 1016 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1017 if (C->getZExtValue() == 0x7fffffff) 1018 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1019 Op.getValueType())); 1020 return; 1021 } 1022 } 1023 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1024 } 1025 1026 //===----------------------------------------------------------------------===// 1027 // Calling conventions 1028 //===----------------------------------------------------------------------===// 1029 1030 #include "SystemZGenCallingConv.inc" 1031 1032 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1033 CallingConv::ID) const { 1034 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1035 SystemZ::R14D, 0 }; 1036 return ScratchRegs; 1037 } 1038 1039 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1040 Type *ToType) const { 1041 return isTruncateFree(FromType, ToType); 1042 } 1043 1044 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1045 return CI->isTailCall(); 1046 } 1047 1048 // We do not yet support 128-bit single-element vector types. If the user 1049 // attempts to use such types as function argument or return type, prefer 1050 // to error out instead of emitting code violating the ABI. 1051 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1052 if (ArgVT.isVector() && !VT.isVector()) 1053 report_fatal_error("Unsupported vector argument or return type"); 1054 } 1055 1056 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1057 for (unsigned i = 0; i < Ins.size(); ++i) 1058 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1059 } 1060 1061 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1062 for (unsigned i = 0; i < Outs.size(); ++i) 1063 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1064 } 1065 1066 // Value is a value that has been passed to us in the location described by VA 1067 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1068 // any loads onto Chain. 1069 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1070 CCValAssign &VA, SDValue Chain, 1071 SDValue Value) { 1072 // If the argument has been promoted from a smaller type, insert an 1073 // assertion to capture this. 1074 if (VA.getLocInfo() == CCValAssign::SExt) 1075 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1076 DAG.getValueType(VA.getValVT())); 1077 else if (VA.getLocInfo() == CCValAssign::ZExt) 1078 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1079 DAG.getValueType(VA.getValVT())); 1080 1081 if (VA.isExtInLoc()) 1082 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1083 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1084 // If this is a short vector argument loaded from the stack, 1085 // extend from i64 to full vector size and then bitcast. 1086 assert(VA.getLocVT() == MVT::i64); 1087 assert(VA.getValVT().isVector()); 1088 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1089 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1090 } else 1091 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1092 return Value; 1093 } 1094 1095 // Value is a value of type VA.getValVT() that we need to copy into 1096 // the location described by VA. Return a copy of Value converted to 1097 // VA.getValVT(). The caller is responsible for handling indirect values. 1098 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1099 CCValAssign &VA, SDValue Value) { 1100 switch (VA.getLocInfo()) { 1101 case CCValAssign::SExt: 1102 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1103 case CCValAssign::ZExt: 1104 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1105 case CCValAssign::AExt: 1106 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1107 case CCValAssign::BCvt: 1108 // If this is a short vector argument to be stored to the stack, 1109 // bitcast to v2i64 and then extract first element. 1110 assert(VA.getLocVT() == MVT::i64); 1111 assert(VA.getValVT().isVector()); 1112 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1113 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1114 DAG.getConstant(0, DL, MVT::i32)); 1115 case CCValAssign::Full: 1116 return Value; 1117 default: 1118 llvm_unreachable("Unhandled getLocInfo()"); 1119 } 1120 } 1121 1122 SDValue SystemZTargetLowering::LowerFormalArguments( 1123 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1124 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1125 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1126 MachineFunction &MF = DAG.getMachineFunction(); 1127 MachineFrameInfo &MFI = MF.getFrameInfo(); 1128 MachineRegisterInfo &MRI = MF.getRegInfo(); 1129 SystemZMachineFunctionInfo *FuncInfo = 1130 MF.getInfo<SystemZMachineFunctionInfo>(); 1131 auto *TFL = 1132 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1133 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1134 1135 // Detect unsupported vector argument types. 1136 if (Subtarget.hasVector()) 1137 VerifyVectorTypes(Ins); 1138 1139 // Assign locations to all of the incoming arguments. 1140 SmallVector<CCValAssign, 16> ArgLocs; 1141 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1142 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1143 1144 unsigned NumFixedGPRs = 0; 1145 unsigned NumFixedFPRs = 0; 1146 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1147 SDValue ArgValue; 1148 CCValAssign &VA = ArgLocs[I]; 1149 EVT LocVT = VA.getLocVT(); 1150 if (VA.isRegLoc()) { 1151 // Arguments passed in registers 1152 const TargetRegisterClass *RC; 1153 switch (LocVT.getSimpleVT().SimpleTy) { 1154 default: 1155 // Integers smaller than i64 should be promoted to i64. 1156 llvm_unreachable("Unexpected argument type"); 1157 case MVT::i32: 1158 NumFixedGPRs += 1; 1159 RC = &SystemZ::GR32BitRegClass; 1160 break; 1161 case MVT::i64: 1162 NumFixedGPRs += 1; 1163 RC = &SystemZ::GR64BitRegClass; 1164 break; 1165 case MVT::f32: 1166 NumFixedFPRs += 1; 1167 RC = &SystemZ::FP32BitRegClass; 1168 break; 1169 case MVT::f64: 1170 NumFixedFPRs += 1; 1171 RC = &SystemZ::FP64BitRegClass; 1172 break; 1173 case MVT::v16i8: 1174 case MVT::v8i16: 1175 case MVT::v4i32: 1176 case MVT::v2i64: 1177 case MVT::v4f32: 1178 case MVT::v2f64: 1179 RC = &SystemZ::VR128BitRegClass; 1180 break; 1181 } 1182 1183 unsigned VReg = MRI.createVirtualRegister(RC); 1184 MRI.addLiveIn(VA.getLocReg(), VReg); 1185 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1186 } else { 1187 assert(VA.isMemLoc() && "Argument not register or memory"); 1188 1189 // Create the frame index object for this incoming parameter. 1190 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1191 VA.getLocMemOffset(), true); 1192 1193 // Create the SelectionDAG nodes corresponding to a load 1194 // from this parameter. Unpromoted ints and floats are 1195 // passed as right-justified 8-byte values. 1196 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1197 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1198 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1199 DAG.getIntPtrConstant(4, DL)); 1200 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1201 MachinePointerInfo::getFixedStack(MF, FI)); 1202 } 1203 1204 // Convert the value of the argument register into the value that's 1205 // being passed. 1206 if (VA.getLocInfo() == CCValAssign::Indirect) { 1207 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1208 MachinePointerInfo())); 1209 // If the original argument was split (e.g. i128), we need 1210 // to load all parts of it here (using the same address). 1211 unsigned ArgIndex = Ins[I].OrigArgIndex; 1212 assert (Ins[I].PartOffset == 0); 1213 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1214 CCValAssign &PartVA = ArgLocs[I + 1]; 1215 unsigned PartOffset = Ins[I + 1].PartOffset; 1216 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1217 DAG.getIntPtrConstant(PartOffset, DL)); 1218 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1219 MachinePointerInfo())); 1220 ++I; 1221 } 1222 } else 1223 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1224 } 1225 1226 if (IsVarArg) { 1227 // Save the number of non-varargs registers for later use by va_start, etc. 1228 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1229 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1230 1231 // Likewise the address (in the form of a frame index) of where the 1232 // first stack vararg would be. The 1-byte size here is arbitrary. 1233 int64_t StackSize = CCInfo.getNextStackOffset(); 1234 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1235 1236 // ...and a similar frame index for the caller-allocated save area 1237 // that will be used to store the incoming registers. 1238 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1239 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1240 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1241 1242 // Store the FPR varargs in the reserved frame slots. (We store the 1243 // GPRs as part of the prologue.) 1244 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1245 SDValue MemOps[SystemZ::NumArgFPRs]; 1246 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1247 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1248 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1249 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1250 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1251 &SystemZ::FP64BitRegClass); 1252 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1253 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1254 MachinePointerInfo::getFixedStack(MF, FI)); 1255 } 1256 // Join the stores, which are independent of one another. 1257 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1258 makeArrayRef(&MemOps[NumFixedFPRs], 1259 SystemZ::NumArgFPRs-NumFixedFPRs)); 1260 } 1261 } 1262 1263 return Chain; 1264 } 1265 1266 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1267 SmallVectorImpl<CCValAssign> &ArgLocs, 1268 SmallVectorImpl<ISD::OutputArg> &Outs) { 1269 // Punt if there are any indirect or stack arguments, or if the call 1270 // needs the callee-saved argument register R6, or if the call uses 1271 // the callee-saved register arguments SwiftSelf and SwiftError. 1272 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1273 CCValAssign &VA = ArgLocs[I]; 1274 if (VA.getLocInfo() == CCValAssign::Indirect) 1275 return false; 1276 if (!VA.isRegLoc()) 1277 return false; 1278 unsigned Reg = VA.getLocReg(); 1279 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1280 return false; 1281 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1282 return false; 1283 } 1284 return true; 1285 } 1286 1287 SDValue 1288 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1289 SmallVectorImpl<SDValue> &InVals) const { 1290 SelectionDAG &DAG = CLI.DAG; 1291 SDLoc &DL = CLI.DL; 1292 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1293 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1294 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1295 SDValue Chain = CLI.Chain; 1296 SDValue Callee = CLI.Callee; 1297 bool &IsTailCall = CLI.IsTailCall; 1298 CallingConv::ID CallConv = CLI.CallConv; 1299 bool IsVarArg = CLI.IsVarArg; 1300 MachineFunction &MF = DAG.getMachineFunction(); 1301 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1302 1303 // Detect unsupported vector argument and return types. 1304 if (Subtarget.hasVector()) { 1305 VerifyVectorTypes(Outs); 1306 VerifyVectorTypes(Ins); 1307 } 1308 1309 // Analyze the operands of the call, assigning locations to each operand. 1310 SmallVector<CCValAssign, 16> ArgLocs; 1311 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1312 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1313 1314 // We don't support GuaranteedTailCallOpt, only automatically-detected 1315 // sibling calls. 1316 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1317 IsTailCall = false; 1318 1319 // Get a count of how many bytes are to be pushed on the stack. 1320 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1321 1322 // Mark the start of the call. 1323 if (!IsTailCall) 1324 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1325 1326 // Copy argument values to their designated locations. 1327 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1328 SmallVector<SDValue, 8> MemOpChains; 1329 SDValue StackPtr; 1330 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1331 CCValAssign &VA = ArgLocs[I]; 1332 SDValue ArgValue = OutVals[I]; 1333 1334 if (VA.getLocInfo() == CCValAssign::Indirect) { 1335 // Store the argument in a stack slot and pass its address. 1336 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1337 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1338 MemOpChains.push_back( 1339 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1340 MachinePointerInfo::getFixedStack(MF, FI))); 1341 // If the original argument was split (e.g. i128), we need 1342 // to store all parts of it here (and pass just one address). 1343 unsigned ArgIndex = Outs[I].OrigArgIndex; 1344 assert (Outs[I].PartOffset == 0); 1345 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1346 SDValue PartValue = OutVals[I + 1]; 1347 unsigned PartOffset = Outs[I + 1].PartOffset; 1348 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1349 DAG.getIntPtrConstant(PartOffset, DL)); 1350 MemOpChains.push_back( 1351 DAG.getStore(Chain, DL, PartValue, Address, 1352 MachinePointerInfo::getFixedStack(MF, FI))); 1353 ++I; 1354 } 1355 ArgValue = SpillSlot; 1356 } else 1357 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1358 1359 if (VA.isRegLoc()) 1360 // Queue up the argument copies and emit them at the end. 1361 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1362 else { 1363 assert(VA.isMemLoc() && "Argument not register or memory"); 1364 1365 // Work out the address of the stack slot. Unpromoted ints and 1366 // floats are passed as right-justified 8-byte values. 1367 if (!StackPtr.getNode()) 1368 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1369 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1370 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1371 Offset += 4; 1372 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1373 DAG.getIntPtrConstant(Offset, DL)); 1374 1375 // Emit the store. 1376 MemOpChains.push_back( 1377 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1378 } 1379 } 1380 1381 // Join the stores, which are independent of one another. 1382 if (!MemOpChains.empty()) 1383 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1384 1385 // Accept direct calls by converting symbolic call addresses to the 1386 // associated Target* opcodes. Force %r1 to be used for indirect 1387 // tail calls. 1388 SDValue Glue; 1389 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1390 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1391 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1392 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1393 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1394 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1395 } else if (IsTailCall) { 1396 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1397 Glue = Chain.getValue(1); 1398 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1399 } 1400 1401 // Build a sequence of copy-to-reg nodes, chained and glued together. 1402 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1403 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1404 RegsToPass[I].second, Glue); 1405 Glue = Chain.getValue(1); 1406 } 1407 1408 // The first call operand is the chain and the second is the target address. 1409 SmallVector<SDValue, 8> Ops; 1410 Ops.push_back(Chain); 1411 Ops.push_back(Callee); 1412 1413 // Add argument registers to the end of the list so that they are 1414 // known live into the call. 1415 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1416 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1417 RegsToPass[I].second.getValueType())); 1418 1419 // Add a register mask operand representing the call-preserved registers. 1420 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1421 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1422 assert(Mask && "Missing call preserved mask for calling convention"); 1423 Ops.push_back(DAG.getRegisterMask(Mask)); 1424 1425 // Glue the call to the argument copies, if any. 1426 if (Glue.getNode()) 1427 Ops.push_back(Glue); 1428 1429 // Emit the call. 1430 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1431 if (IsTailCall) 1432 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1433 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1434 Glue = Chain.getValue(1); 1435 1436 // Mark the end of the call, which is glued to the call itself. 1437 Chain = DAG.getCALLSEQ_END(Chain, 1438 DAG.getConstant(NumBytes, DL, PtrVT, true), 1439 DAG.getConstant(0, DL, PtrVT, true), 1440 Glue, DL); 1441 Glue = Chain.getValue(1); 1442 1443 // Assign locations to each value returned by this call. 1444 SmallVector<CCValAssign, 16> RetLocs; 1445 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1446 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1447 1448 // Copy all of the result registers out of their specified physreg. 1449 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1450 CCValAssign &VA = RetLocs[I]; 1451 1452 // Copy the value out, gluing the copy to the end of the call sequence. 1453 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1454 VA.getLocVT(), Glue); 1455 Chain = RetValue.getValue(1); 1456 Glue = RetValue.getValue(2); 1457 1458 // Convert the value of the return register into the value that's 1459 // being returned. 1460 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1461 } 1462 1463 return Chain; 1464 } 1465 1466 bool SystemZTargetLowering:: 1467 CanLowerReturn(CallingConv::ID CallConv, 1468 MachineFunction &MF, bool isVarArg, 1469 const SmallVectorImpl<ISD::OutputArg> &Outs, 1470 LLVMContext &Context) const { 1471 // Detect unsupported vector return types. 1472 if (Subtarget.hasVector()) 1473 VerifyVectorTypes(Outs); 1474 1475 // Special case that we cannot easily detect in RetCC_SystemZ since 1476 // i128 is not a legal type. 1477 for (auto &Out : Outs) 1478 if (Out.ArgVT == MVT::i128) 1479 return false; 1480 1481 SmallVector<CCValAssign, 16> RetLocs; 1482 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1483 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1484 } 1485 1486 SDValue 1487 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1488 bool IsVarArg, 1489 const SmallVectorImpl<ISD::OutputArg> &Outs, 1490 const SmallVectorImpl<SDValue> &OutVals, 1491 const SDLoc &DL, SelectionDAG &DAG) const { 1492 MachineFunction &MF = DAG.getMachineFunction(); 1493 1494 // Detect unsupported vector return types. 1495 if (Subtarget.hasVector()) 1496 VerifyVectorTypes(Outs); 1497 1498 // Assign locations to each returned value. 1499 SmallVector<CCValAssign, 16> RetLocs; 1500 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1501 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1502 1503 // Quick exit for void returns 1504 if (RetLocs.empty()) 1505 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1506 1507 // Copy the result values into the output registers. 1508 SDValue Glue; 1509 SmallVector<SDValue, 4> RetOps; 1510 RetOps.push_back(Chain); 1511 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1512 CCValAssign &VA = RetLocs[I]; 1513 SDValue RetValue = OutVals[I]; 1514 1515 // Make the return register live on exit. 1516 assert(VA.isRegLoc() && "Can only return in registers!"); 1517 1518 // Promote the value as required. 1519 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1520 1521 // Chain and glue the copies together. 1522 unsigned Reg = VA.getLocReg(); 1523 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1524 Glue = Chain.getValue(1); 1525 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1526 } 1527 1528 // Update chain and glue. 1529 RetOps[0] = Chain; 1530 if (Glue.getNode()) 1531 RetOps.push_back(Glue); 1532 1533 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1534 } 1535 1536 // Return true if Op is an intrinsic node with chain that returns the CC value 1537 // as its only (other) argument. Provide the associated SystemZISD opcode and 1538 // the mask of valid CC values if so. 1539 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1540 unsigned &CCValid) { 1541 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1542 switch (Id) { 1543 case Intrinsic::s390_tbegin: 1544 Opcode = SystemZISD::TBEGIN; 1545 CCValid = SystemZ::CCMASK_TBEGIN; 1546 return true; 1547 1548 case Intrinsic::s390_tbegin_nofloat: 1549 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1550 CCValid = SystemZ::CCMASK_TBEGIN; 1551 return true; 1552 1553 case Intrinsic::s390_tend: 1554 Opcode = SystemZISD::TEND; 1555 CCValid = SystemZ::CCMASK_TEND; 1556 return true; 1557 1558 default: 1559 return false; 1560 } 1561 } 1562 1563 // Return true if Op is an intrinsic node without chain that returns the 1564 // CC value as its final argument. Provide the associated SystemZISD 1565 // opcode and the mask of valid CC values if so. 1566 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1567 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1568 switch (Id) { 1569 case Intrinsic::s390_vpkshs: 1570 case Intrinsic::s390_vpksfs: 1571 case Intrinsic::s390_vpksgs: 1572 Opcode = SystemZISD::PACKS_CC; 1573 CCValid = SystemZ::CCMASK_VCMP; 1574 return true; 1575 1576 case Intrinsic::s390_vpklshs: 1577 case Intrinsic::s390_vpklsfs: 1578 case Intrinsic::s390_vpklsgs: 1579 Opcode = SystemZISD::PACKLS_CC; 1580 CCValid = SystemZ::CCMASK_VCMP; 1581 return true; 1582 1583 case Intrinsic::s390_vceqbs: 1584 case Intrinsic::s390_vceqhs: 1585 case Intrinsic::s390_vceqfs: 1586 case Intrinsic::s390_vceqgs: 1587 Opcode = SystemZISD::VICMPES; 1588 CCValid = SystemZ::CCMASK_VCMP; 1589 return true; 1590 1591 case Intrinsic::s390_vchbs: 1592 case Intrinsic::s390_vchhs: 1593 case Intrinsic::s390_vchfs: 1594 case Intrinsic::s390_vchgs: 1595 Opcode = SystemZISD::VICMPHS; 1596 CCValid = SystemZ::CCMASK_VCMP; 1597 return true; 1598 1599 case Intrinsic::s390_vchlbs: 1600 case Intrinsic::s390_vchlhs: 1601 case Intrinsic::s390_vchlfs: 1602 case Intrinsic::s390_vchlgs: 1603 Opcode = SystemZISD::VICMPHLS; 1604 CCValid = SystemZ::CCMASK_VCMP; 1605 return true; 1606 1607 case Intrinsic::s390_vtm: 1608 Opcode = SystemZISD::VTM; 1609 CCValid = SystemZ::CCMASK_VCMP; 1610 return true; 1611 1612 case Intrinsic::s390_vfaebs: 1613 case Intrinsic::s390_vfaehs: 1614 case Intrinsic::s390_vfaefs: 1615 Opcode = SystemZISD::VFAE_CC; 1616 CCValid = SystemZ::CCMASK_ANY; 1617 return true; 1618 1619 case Intrinsic::s390_vfaezbs: 1620 case Intrinsic::s390_vfaezhs: 1621 case Intrinsic::s390_vfaezfs: 1622 Opcode = SystemZISD::VFAEZ_CC; 1623 CCValid = SystemZ::CCMASK_ANY; 1624 return true; 1625 1626 case Intrinsic::s390_vfeebs: 1627 case Intrinsic::s390_vfeehs: 1628 case Intrinsic::s390_vfeefs: 1629 Opcode = SystemZISD::VFEE_CC; 1630 CCValid = SystemZ::CCMASK_ANY; 1631 return true; 1632 1633 case Intrinsic::s390_vfeezbs: 1634 case Intrinsic::s390_vfeezhs: 1635 case Intrinsic::s390_vfeezfs: 1636 Opcode = SystemZISD::VFEEZ_CC; 1637 CCValid = SystemZ::CCMASK_ANY; 1638 return true; 1639 1640 case Intrinsic::s390_vfenebs: 1641 case Intrinsic::s390_vfenehs: 1642 case Intrinsic::s390_vfenefs: 1643 Opcode = SystemZISD::VFENE_CC; 1644 CCValid = SystemZ::CCMASK_ANY; 1645 return true; 1646 1647 case Intrinsic::s390_vfenezbs: 1648 case Intrinsic::s390_vfenezhs: 1649 case Intrinsic::s390_vfenezfs: 1650 Opcode = SystemZISD::VFENEZ_CC; 1651 CCValid = SystemZ::CCMASK_ANY; 1652 return true; 1653 1654 case Intrinsic::s390_vistrbs: 1655 case Intrinsic::s390_vistrhs: 1656 case Intrinsic::s390_vistrfs: 1657 Opcode = SystemZISD::VISTR_CC; 1658 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1659 return true; 1660 1661 case Intrinsic::s390_vstrcbs: 1662 case Intrinsic::s390_vstrchs: 1663 case Intrinsic::s390_vstrcfs: 1664 Opcode = SystemZISD::VSTRC_CC; 1665 CCValid = SystemZ::CCMASK_ANY; 1666 return true; 1667 1668 case Intrinsic::s390_vstrczbs: 1669 case Intrinsic::s390_vstrczhs: 1670 case Intrinsic::s390_vstrczfs: 1671 Opcode = SystemZISD::VSTRCZ_CC; 1672 CCValid = SystemZ::CCMASK_ANY; 1673 return true; 1674 1675 case Intrinsic::s390_vfcedbs: 1676 case Intrinsic::s390_vfcesbs: 1677 Opcode = SystemZISD::VFCMPES; 1678 CCValid = SystemZ::CCMASK_VCMP; 1679 return true; 1680 1681 case Intrinsic::s390_vfchdbs: 1682 case Intrinsic::s390_vfchsbs: 1683 Opcode = SystemZISD::VFCMPHS; 1684 CCValid = SystemZ::CCMASK_VCMP; 1685 return true; 1686 1687 case Intrinsic::s390_vfchedbs: 1688 case Intrinsic::s390_vfchesbs: 1689 Opcode = SystemZISD::VFCMPHES; 1690 CCValid = SystemZ::CCMASK_VCMP; 1691 return true; 1692 1693 case Intrinsic::s390_vftcidb: 1694 case Intrinsic::s390_vftcisb: 1695 Opcode = SystemZISD::VFTCI; 1696 CCValid = SystemZ::CCMASK_VCMP; 1697 return true; 1698 1699 case Intrinsic::s390_tdc: 1700 Opcode = SystemZISD::TDC; 1701 CCValid = SystemZ::CCMASK_TDC; 1702 return true; 1703 1704 default: 1705 return false; 1706 } 1707 } 1708 1709 // Emit an intrinsic with chain and an explicit CC register result. 1710 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1711 unsigned Opcode) { 1712 // Copy all operands except the intrinsic ID. 1713 unsigned NumOps = Op.getNumOperands(); 1714 SmallVector<SDValue, 6> Ops; 1715 Ops.reserve(NumOps - 1); 1716 Ops.push_back(Op.getOperand(0)); 1717 for (unsigned I = 2; I < NumOps; ++I) 1718 Ops.push_back(Op.getOperand(I)); 1719 1720 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1721 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1722 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1723 SDValue OldChain = SDValue(Op.getNode(), 1); 1724 SDValue NewChain = SDValue(Intr.getNode(), 1); 1725 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1726 return Intr.getNode(); 1727 } 1728 1729 // Emit an intrinsic with an explicit CC register result. 1730 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1731 unsigned Opcode) { 1732 // Copy all operands except the intrinsic ID. 1733 unsigned NumOps = Op.getNumOperands(); 1734 SmallVector<SDValue, 6> Ops; 1735 Ops.reserve(NumOps - 1); 1736 for (unsigned I = 1; I < NumOps; ++I) 1737 Ops.push_back(Op.getOperand(I)); 1738 1739 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1740 return Intr.getNode(); 1741 } 1742 1743 // CC is a comparison that will be implemented using an integer or 1744 // floating-point comparison. Return the condition code mask for 1745 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1746 // unsigned comparisons and clear for signed ones. In the floating-point 1747 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1748 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1749 #define CONV(X) \ 1750 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1751 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1752 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1753 1754 switch (CC) { 1755 default: 1756 llvm_unreachable("Invalid integer condition!"); 1757 1758 CONV(EQ); 1759 CONV(NE); 1760 CONV(GT); 1761 CONV(GE); 1762 CONV(LT); 1763 CONV(LE); 1764 1765 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1766 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1767 } 1768 #undef CONV 1769 } 1770 1771 // If C can be converted to a comparison against zero, adjust the operands 1772 // as necessary. 1773 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1774 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1775 return; 1776 1777 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1778 if (!ConstOp1) 1779 return; 1780 1781 int64_t Value = ConstOp1->getSExtValue(); 1782 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1783 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1784 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1785 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1786 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1787 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1788 } 1789 } 1790 1791 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1792 // adjust the operands as necessary. 1793 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1794 Comparison &C) { 1795 // For us to make any changes, it must a comparison between a single-use 1796 // load and a constant. 1797 if (!C.Op0.hasOneUse() || 1798 C.Op0.getOpcode() != ISD::LOAD || 1799 C.Op1.getOpcode() != ISD::Constant) 1800 return; 1801 1802 // We must have an 8- or 16-bit load. 1803 auto *Load = cast<LoadSDNode>(C.Op0); 1804 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1805 if (NumBits != 8 && NumBits != 16) 1806 return; 1807 1808 // The load must be an extending one and the constant must be within the 1809 // range of the unextended value. 1810 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1811 uint64_t Value = ConstOp1->getZExtValue(); 1812 uint64_t Mask = (1 << NumBits) - 1; 1813 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1814 // Make sure that ConstOp1 is in range of C.Op0. 1815 int64_t SignedValue = ConstOp1->getSExtValue(); 1816 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1817 return; 1818 if (C.ICmpType != SystemZICMP::SignedOnly) { 1819 // Unsigned comparison between two sign-extended values is equivalent 1820 // to unsigned comparison between two zero-extended values. 1821 Value &= Mask; 1822 } else if (NumBits == 8) { 1823 // Try to treat the comparison as unsigned, so that we can use CLI. 1824 // Adjust CCMask and Value as necessary. 1825 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1826 // Test whether the high bit of the byte is set. 1827 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1828 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1829 // Test whether the high bit of the byte is clear. 1830 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1831 else 1832 // No instruction exists for this combination. 1833 return; 1834 C.ICmpType = SystemZICMP::UnsignedOnly; 1835 } 1836 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1837 if (Value > Mask) 1838 return; 1839 // If the constant is in range, we can use any comparison. 1840 C.ICmpType = SystemZICMP::Any; 1841 } else 1842 return; 1843 1844 // Make sure that the first operand is an i32 of the right extension type. 1845 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1846 ISD::SEXTLOAD : 1847 ISD::ZEXTLOAD); 1848 if (C.Op0.getValueType() != MVT::i32 || 1849 Load->getExtensionType() != ExtType) { 1850 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1851 Load->getBasePtr(), Load->getPointerInfo(), 1852 Load->getMemoryVT(), Load->getAlignment(), 1853 Load->getMemOperand()->getFlags()); 1854 // Update the chain uses. 1855 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 1856 } 1857 1858 // Make sure that the second operand is an i32 with the right value. 1859 if (C.Op1.getValueType() != MVT::i32 || 1860 Value != ConstOp1->getZExtValue()) 1861 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1862 } 1863 1864 // Return true if Op is either an unextended load, or a load suitable 1865 // for integer register-memory comparisons of type ICmpType. 1866 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1867 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1868 if (Load) { 1869 // There are no instructions to compare a register with a memory byte. 1870 if (Load->getMemoryVT() == MVT::i8) 1871 return false; 1872 // Otherwise decide on extension type. 1873 switch (Load->getExtensionType()) { 1874 case ISD::NON_EXTLOAD: 1875 return true; 1876 case ISD::SEXTLOAD: 1877 return ICmpType != SystemZICMP::UnsignedOnly; 1878 case ISD::ZEXTLOAD: 1879 return ICmpType != SystemZICMP::SignedOnly; 1880 default: 1881 break; 1882 } 1883 } 1884 return false; 1885 } 1886 1887 // Return true if it is better to swap the operands of C. 1888 static bool shouldSwapCmpOperands(const Comparison &C) { 1889 // Leave f128 comparisons alone, since they have no memory forms. 1890 if (C.Op0.getValueType() == MVT::f128) 1891 return false; 1892 1893 // Always keep a floating-point constant second, since comparisons with 1894 // zero can use LOAD TEST and comparisons with other constants make a 1895 // natural memory operand. 1896 if (isa<ConstantFPSDNode>(C.Op1)) 1897 return false; 1898 1899 // Never swap comparisons with zero since there are many ways to optimize 1900 // those later. 1901 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1902 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1903 return false; 1904 1905 // Also keep natural memory operands second if the loaded value is 1906 // only used here. Several comparisons have memory forms. 1907 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1908 return false; 1909 1910 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1911 // In that case we generally prefer the memory to be second. 1912 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1913 // The only exceptions are when the second operand is a constant and 1914 // we can use things like CHHSI. 1915 if (!ConstOp1) 1916 return true; 1917 // The unsigned memory-immediate instructions can handle 16-bit 1918 // unsigned integers. 1919 if (C.ICmpType != SystemZICMP::SignedOnly && 1920 isUInt<16>(ConstOp1->getZExtValue())) 1921 return false; 1922 // The signed memory-immediate instructions can handle 16-bit 1923 // signed integers. 1924 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1925 isInt<16>(ConstOp1->getSExtValue())) 1926 return false; 1927 return true; 1928 } 1929 1930 // Try to promote the use of CGFR and CLGFR. 1931 unsigned Opcode0 = C.Op0.getOpcode(); 1932 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1933 return true; 1934 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1935 return true; 1936 if (C.ICmpType != SystemZICMP::SignedOnly && 1937 Opcode0 == ISD::AND && 1938 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1939 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1940 return true; 1941 1942 return false; 1943 } 1944 1945 // Return a version of comparison CC mask CCMask in which the LT and GT 1946 // actions are swapped. 1947 static unsigned reverseCCMask(unsigned CCMask) { 1948 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1949 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1950 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1951 (CCMask & SystemZ::CCMASK_CMP_UO)); 1952 } 1953 1954 // Check whether C tests for equality between X and Y and whether X - Y 1955 // or Y - X is also computed. In that case it's better to compare the 1956 // result of the subtraction against zero. 1957 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1958 Comparison &C) { 1959 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1960 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1961 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1962 SDNode *N = *I; 1963 if (N->getOpcode() == ISD::SUB && 1964 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1965 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1966 C.Op0 = SDValue(N, 0); 1967 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1968 return; 1969 } 1970 } 1971 } 1972 } 1973 1974 // Check whether C compares a floating-point value with zero and if that 1975 // floating-point value is also negated. In this case we can use the 1976 // negation to set CC, so avoiding separate LOAD AND TEST and 1977 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1978 static void adjustForFNeg(Comparison &C) { 1979 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1980 if (C1 && C1->isZero()) { 1981 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1982 SDNode *N = *I; 1983 if (N->getOpcode() == ISD::FNEG) { 1984 C.Op0 = SDValue(N, 0); 1985 C.CCMask = reverseCCMask(C.CCMask); 1986 return; 1987 } 1988 } 1989 } 1990 } 1991 1992 // Check whether C compares (shl X, 32) with 0 and whether X is 1993 // also sign-extended. In that case it is better to test the result 1994 // of the sign extension using LTGFR. 1995 // 1996 // This case is important because InstCombine transforms a comparison 1997 // with (sext (trunc X)) into a comparison with (shl X, 32). 1998 static void adjustForLTGFR(Comparison &C) { 1999 // Check for a comparison between (shl X, 32) and 0. 2000 if (C.Op0.getOpcode() == ISD::SHL && 2001 C.Op0.getValueType() == MVT::i64 && 2002 C.Op1.getOpcode() == ISD::Constant && 2003 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2004 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2005 if (C1 && C1->getZExtValue() == 32) { 2006 SDValue ShlOp0 = C.Op0.getOperand(0); 2007 // See whether X has any SIGN_EXTEND_INREG uses. 2008 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2009 SDNode *N = *I; 2010 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2011 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2012 C.Op0 = SDValue(N, 0); 2013 return; 2014 } 2015 } 2016 } 2017 } 2018 } 2019 2020 // If C compares the truncation of an extending load, try to compare 2021 // the untruncated value instead. This exposes more opportunities to 2022 // reuse CC. 2023 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2024 Comparison &C) { 2025 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2026 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2027 C.Op1.getOpcode() == ISD::Constant && 2028 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2029 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2030 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2031 unsigned Type = L->getExtensionType(); 2032 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2033 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2034 C.Op0 = C.Op0.getOperand(0); 2035 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2036 } 2037 } 2038 } 2039 } 2040 2041 // Return true if shift operation N has an in-range constant shift value. 2042 // Store it in ShiftVal if so. 2043 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2044 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2045 if (!Shift) 2046 return false; 2047 2048 uint64_t Amount = Shift->getZExtValue(); 2049 if (Amount >= N.getValueSizeInBits()) 2050 return false; 2051 2052 ShiftVal = Amount; 2053 return true; 2054 } 2055 2056 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2057 // instruction and whether the CC value is descriptive enough to handle 2058 // a comparison of type Opcode between the AND result and CmpVal. 2059 // CCMask says which comparison result is being tested and BitSize is 2060 // the number of bits in the operands. If TEST UNDER MASK can be used, 2061 // return the corresponding CC mask, otherwise return 0. 2062 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2063 uint64_t Mask, uint64_t CmpVal, 2064 unsigned ICmpType) { 2065 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2066 2067 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2068 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2069 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2070 return 0; 2071 2072 // Work out the masks for the lowest and highest bits. 2073 unsigned HighShift = 63 - countLeadingZeros(Mask); 2074 uint64_t High = uint64_t(1) << HighShift; 2075 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2076 2077 // Signed ordered comparisons are effectively unsigned if the sign 2078 // bit is dropped. 2079 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2080 2081 // Check for equality comparisons with 0, or the equivalent. 2082 if (CmpVal == 0) { 2083 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2084 return SystemZ::CCMASK_TM_ALL_0; 2085 if (CCMask == SystemZ::CCMASK_CMP_NE) 2086 return SystemZ::CCMASK_TM_SOME_1; 2087 } 2088 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2089 if (CCMask == SystemZ::CCMASK_CMP_LT) 2090 return SystemZ::CCMASK_TM_ALL_0; 2091 if (CCMask == SystemZ::CCMASK_CMP_GE) 2092 return SystemZ::CCMASK_TM_SOME_1; 2093 } 2094 if (EffectivelyUnsigned && CmpVal < Low) { 2095 if (CCMask == SystemZ::CCMASK_CMP_LE) 2096 return SystemZ::CCMASK_TM_ALL_0; 2097 if (CCMask == SystemZ::CCMASK_CMP_GT) 2098 return SystemZ::CCMASK_TM_SOME_1; 2099 } 2100 2101 // Check for equality comparisons with the mask, or the equivalent. 2102 if (CmpVal == Mask) { 2103 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2104 return SystemZ::CCMASK_TM_ALL_1; 2105 if (CCMask == SystemZ::CCMASK_CMP_NE) 2106 return SystemZ::CCMASK_TM_SOME_0; 2107 } 2108 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2109 if (CCMask == SystemZ::CCMASK_CMP_GT) 2110 return SystemZ::CCMASK_TM_ALL_1; 2111 if (CCMask == SystemZ::CCMASK_CMP_LE) 2112 return SystemZ::CCMASK_TM_SOME_0; 2113 } 2114 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2115 if (CCMask == SystemZ::CCMASK_CMP_GE) 2116 return SystemZ::CCMASK_TM_ALL_1; 2117 if (CCMask == SystemZ::CCMASK_CMP_LT) 2118 return SystemZ::CCMASK_TM_SOME_0; 2119 } 2120 2121 // Check for ordered comparisons with the top bit. 2122 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2123 if (CCMask == SystemZ::CCMASK_CMP_LE) 2124 return SystemZ::CCMASK_TM_MSB_0; 2125 if (CCMask == SystemZ::CCMASK_CMP_GT) 2126 return SystemZ::CCMASK_TM_MSB_1; 2127 } 2128 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2129 if (CCMask == SystemZ::CCMASK_CMP_LT) 2130 return SystemZ::CCMASK_TM_MSB_0; 2131 if (CCMask == SystemZ::CCMASK_CMP_GE) 2132 return SystemZ::CCMASK_TM_MSB_1; 2133 } 2134 2135 // If there are just two bits, we can do equality checks for Low and High 2136 // as well. 2137 if (Mask == Low + High) { 2138 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2139 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2140 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2141 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2142 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2143 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2144 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2145 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2146 } 2147 2148 // Looks like we've exhausted our options. 2149 return 0; 2150 } 2151 2152 // See whether C can be implemented as a TEST UNDER MASK instruction. 2153 // Update the arguments with the TM version if so. 2154 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2155 Comparison &C) { 2156 // Check that we have a comparison with a constant. 2157 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2158 if (!ConstOp1) 2159 return; 2160 uint64_t CmpVal = ConstOp1->getZExtValue(); 2161 2162 // Check whether the nonconstant input is an AND with a constant mask. 2163 Comparison NewC(C); 2164 uint64_t MaskVal; 2165 ConstantSDNode *Mask = nullptr; 2166 if (C.Op0.getOpcode() == ISD::AND) { 2167 NewC.Op0 = C.Op0.getOperand(0); 2168 NewC.Op1 = C.Op0.getOperand(1); 2169 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2170 if (!Mask) 2171 return; 2172 MaskVal = Mask->getZExtValue(); 2173 } else { 2174 // There is no instruction to compare with a 64-bit immediate 2175 // so use TMHH instead if possible. We need an unsigned ordered 2176 // comparison with an i64 immediate. 2177 if (NewC.Op0.getValueType() != MVT::i64 || 2178 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2179 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2180 NewC.ICmpType == SystemZICMP::SignedOnly) 2181 return; 2182 // Convert LE and GT comparisons into LT and GE. 2183 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2184 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2185 if (CmpVal == uint64_t(-1)) 2186 return; 2187 CmpVal += 1; 2188 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2189 } 2190 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2191 // be masked off without changing the result. 2192 MaskVal = -(CmpVal & -CmpVal); 2193 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2194 } 2195 if (!MaskVal) 2196 return; 2197 2198 // Check whether the combination of mask, comparison value and comparison 2199 // type are suitable. 2200 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2201 unsigned NewCCMask, ShiftVal; 2202 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2203 NewC.Op0.getOpcode() == ISD::SHL && 2204 isSimpleShift(NewC.Op0, ShiftVal) && 2205 (MaskVal >> ShiftVal != 0) && 2206 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2207 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2208 MaskVal >> ShiftVal, 2209 CmpVal >> ShiftVal, 2210 SystemZICMP::Any))) { 2211 NewC.Op0 = NewC.Op0.getOperand(0); 2212 MaskVal >>= ShiftVal; 2213 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2214 NewC.Op0.getOpcode() == ISD::SRL && 2215 isSimpleShift(NewC.Op0, ShiftVal) && 2216 (MaskVal << ShiftVal != 0) && 2217 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2218 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2219 MaskVal << ShiftVal, 2220 CmpVal << ShiftVal, 2221 SystemZICMP::UnsignedOnly))) { 2222 NewC.Op0 = NewC.Op0.getOperand(0); 2223 MaskVal <<= ShiftVal; 2224 } else { 2225 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2226 NewC.ICmpType); 2227 if (!NewCCMask) 2228 return; 2229 } 2230 2231 // Go ahead and make the change. 2232 C.Opcode = SystemZISD::TM; 2233 C.Op0 = NewC.Op0; 2234 if (Mask && Mask->getZExtValue() == MaskVal) 2235 C.Op1 = SDValue(Mask, 0); 2236 else 2237 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2238 C.CCValid = SystemZ::CCMASK_TM; 2239 C.CCMask = NewCCMask; 2240 } 2241 2242 // See whether the comparison argument contains a redundant AND 2243 // and remove it if so. This sometimes happens due to the generic 2244 // BRCOND expansion. 2245 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2246 Comparison &C) { 2247 if (C.Op0.getOpcode() != ISD::AND) 2248 return; 2249 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2250 if (!Mask) 2251 return; 2252 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2253 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2254 return; 2255 2256 C.Op0 = C.Op0.getOperand(0); 2257 } 2258 2259 // Return a Comparison that tests the condition-code result of intrinsic 2260 // node Call against constant integer CC using comparison code Cond. 2261 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2262 // and CCValid is the set of possible condition-code results. 2263 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2264 SDValue Call, unsigned CCValid, uint64_t CC, 2265 ISD::CondCode Cond) { 2266 Comparison C(Call, SDValue()); 2267 C.Opcode = Opcode; 2268 C.CCValid = CCValid; 2269 if (Cond == ISD::SETEQ) 2270 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2271 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2272 else if (Cond == ISD::SETNE) 2273 // ...and the inverse of that. 2274 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2275 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2276 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2277 // always true for CC>3. 2278 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2279 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2280 // ...and the inverse of that. 2281 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2282 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2283 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2284 // always true for CC>3. 2285 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2286 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2287 // ...and the inverse of that. 2288 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2289 else 2290 llvm_unreachable("Unexpected integer comparison type"); 2291 C.CCMask &= CCValid; 2292 return C; 2293 } 2294 2295 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2296 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2297 ISD::CondCode Cond, const SDLoc &DL) { 2298 if (CmpOp1.getOpcode() == ISD::Constant) { 2299 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2300 unsigned Opcode, CCValid; 2301 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2302 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2303 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2304 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2305 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2306 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2307 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2308 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2309 } 2310 Comparison C(CmpOp0, CmpOp1); 2311 C.CCMask = CCMaskForCondCode(Cond); 2312 if (C.Op0.getValueType().isFloatingPoint()) { 2313 C.CCValid = SystemZ::CCMASK_FCMP; 2314 C.Opcode = SystemZISD::FCMP; 2315 adjustForFNeg(C); 2316 } else { 2317 C.CCValid = SystemZ::CCMASK_ICMP; 2318 C.Opcode = SystemZISD::ICMP; 2319 // Choose the type of comparison. Equality and inequality tests can 2320 // use either signed or unsigned comparisons. The choice also doesn't 2321 // matter if both sign bits are known to be clear. In those cases we 2322 // want to give the main isel code the freedom to choose whichever 2323 // form fits best. 2324 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2325 C.CCMask == SystemZ::CCMASK_CMP_NE || 2326 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2327 C.ICmpType = SystemZICMP::Any; 2328 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2329 C.ICmpType = SystemZICMP::UnsignedOnly; 2330 else 2331 C.ICmpType = SystemZICMP::SignedOnly; 2332 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2333 adjustForRedundantAnd(DAG, DL, C); 2334 adjustZeroCmp(DAG, DL, C); 2335 adjustSubwordCmp(DAG, DL, C); 2336 adjustForSubtraction(DAG, DL, C); 2337 adjustForLTGFR(C); 2338 adjustICmpTruncate(DAG, DL, C); 2339 } 2340 2341 if (shouldSwapCmpOperands(C)) { 2342 std::swap(C.Op0, C.Op1); 2343 C.CCMask = reverseCCMask(C.CCMask); 2344 } 2345 2346 adjustForTestUnderMask(DAG, DL, C); 2347 return C; 2348 } 2349 2350 // Emit the comparison instruction described by C. 2351 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2352 if (!C.Op1.getNode()) { 2353 SDNode *Node; 2354 switch (C.Op0.getOpcode()) { 2355 case ISD::INTRINSIC_W_CHAIN: 2356 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2357 return SDValue(Node, 0); 2358 case ISD::INTRINSIC_WO_CHAIN: 2359 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2360 return SDValue(Node, Node->getNumValues() - 1); 2361 default: 2362 llvm_unreachable("Invalid comparison operands"); 2363 } 2364 } 2365 if (C.Opcode == SystemZISD::ICMP) 2366 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2367 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2368 if (C.Opcode == SystemZISD::TM) { 2369 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2370 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2371 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2372 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2373 } 2374 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2375 } 2376 2377 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2378 // 64 bits. Extend is the extension type to use. Store the high part 2379 // in Hi and the low part in Lo. 2380 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2381 SDValue Op0, SDValue Op1, SDValue &Hi, 2382 SDValue &Lo) { 2383 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2384 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2385 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2386 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2387 DAG.getConstant(32, DL, MVT::i64)); 2388 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2389 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2390 } 2391 2392 // Lower a binary operation that produces two VT results, one in each 2393 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2394 // and Opcode performs the GR128 operation. Store the even register result 2395 // in Even and the odd register result in Odd. 2396 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2397 unsigned Opcode, SDValue Op0, SDValue Op1, 2398 SDValue &Even, SDValue &Odd) { 2399 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2400 bool Is32Bit = is32Bit(VT); 2401 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2402 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2403 } 2404 2405 // Return an i32 value that is 1 if the CC value produced by CCReg is 2406 // in the mask CCMask and 0 otherwise. CC is known to have a value 2407 // in CCValid, so other values can be ignored. 2408 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2409 unsigned CCValid, unsigned CCMask) { 2410 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32), 2411 DAG.getConstant(0, DL, MVT::i32), 2412 DAG.getConstant(CCValid, DL, MVT::i32), 2413 DAG.getConstant(CCMask, DL, MVT::i32), CCReg }; 2414 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2415 } 2416 2417 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2418 // be done directly. IsFP is true if CC is for a floating-point rather than 2419 // integer comparison. 2420 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2421 switch (CC) { 2422 case ISD::SETOEQ: 2423 case ISD::SETEQ: 2424 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2425 2426 case ISD::SETOGE: 2427 case ISD::SETGE: 2428 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2429 2430 case ISD::SETOGT: 2431 case ISD::SETGT: 2432 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2433 2434 case ISD::SETUGT: 2435 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2436 2437 default: 2438 return 0; 2439 } 2440 } 2441 2442 // Return the SystemZISD vector comparison operation for CC or its inverse, 2443 // or 0 if neither can be done directly. Indicate in Invert whether the 2444 // result is for the inverse of CC. IsFP is true if CC is for a 2445 // floating-point rather than integer comparison. 2446 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2447 bool &Invert) { 2448 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2449 Invert = false; 2450 return Opcode; 2451 } 2452 2453 CC = ISD::getSetCCInverse(CC, !IsFP); 2454 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2455 Invert = true; 2456 return Opcode; 2457 } 2458 2459 return 0; 2460 } 2461 2462 // Return a v2f64 that contains the extended form of elements Start and Start+1 2463 // of v4f32 value Op. 2464 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2465 SDValue Op) { 2466 int Mask[] = { Start, -1, Start + 1, -1 }; 2467 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2468 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2469 } 2470 2471 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2472 // producing a result of type VT. 2473 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2474 const SDLoc &DL, EVT VT, 2475 SDValue CmpOp0, 2476 SDValue CmpOp1) const { 2477 // There is no hardware support for v4f32 (unless we have the vector 2478 // enhancements facility 1), so extend the vector into two v2f64s 2479 // and compare those. 2480 if (CmpOp0.getValueType() == MVT::v4f32 && 2481 !Subtarget.hasVectorEnhancements1()) { 2482 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2483 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2484 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2485 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2486 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2487 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2488 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2489 } 2490 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2491 } 2492 2493 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2494 // an integer mask of type VT. 2495 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2496 const SDLoc &DL, EVT VT, 2497 ISD::CondCode CC, 2498 SDValue CmpOp0, 2499 SDValue CmpOp1) const { 2500 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2501 bool Invert = false; 2502 SDValue Cmp; 2503 switch (CC) { 2504 // Handle tests for order using (or (ogt y x) (oge x y)). 2505 case ISD::SETUO: 2506 Invert = true; 2507 LLVM_FALLTHROUGH; 2508 case ISD::SETO: { 2509 assert(IsFP && "Unexpected integer comparison"); 2510 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2511 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2512 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2513 break; 2514 } 2515 2516 // Handle <> tests using (or (ogt y x) (ogt x y)). 2517 case ISD::SETUEQ: 2518 Invert = true; 2519 LLVM_FALLTHROUGH; 2520 case ISD::SETONE: { 2521 assert(IsFP && "Unexpected integer comparison"); 2522 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2523 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2524 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2525 break; 2526 } 2527 2528 // Otherwise a single comparison is enough. It doesn't really 2529 // matter whether we try the inversion or the swap first, since 2530 // there are no cases where both work. 2531 default: 2532 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2533 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2534 else { 2535 CC = ISD::getSetCCSwappedOperands(CC); 2536 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2537 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2538 else 2539 llvm_unreachable("Unhandled comparison"); 2540 } 2541 break; 2542 } 2543 if (Invert) { 2544 SDValue Mask = 2545 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2546 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2547 } 2548 return Cmp; 2549 } 2550 2551 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2552 SelectionDAG &DAG) const { 2553 SDValue CmpOp0 = Op.getOperand(0); 2554 SDValue CmpOp1 = Op.getOperand(1); 2555 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2556 SDLoc DL(Op); 2557 EVT VT = Op.getValueType(); 2558 if (VT.isVector()) 2559 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2560 2561 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2562 SDValue CCReg = emitCmp(DAG, DL, C); 2563 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2564 } 2565 2566 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2567 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2568 SDValue CmpOp0 = Op.getOperand(2); 2569 SDValue CmpOp1 = Op.getOperand(3); 2570 SDValue Dest = Op.getOperand(4); 2571 SDLoc DL(Op); 2572 2573 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2574 SDValue CCReg = emitCmp(DAG, DL, C); 2575 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2576 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2577 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2578 } 2579 2580 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2581 // allowing Pos and Neg to be wider than CmpOp. 2582 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2583 return (Neg.getOpcode() == ISD::SUB && 2584 Neg.getOperand(0).getOpcode() == ISD::Constant && 2585 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2586 Neg.getOperand(1) == Pos && 2587 (Pos == CmpOp || 2588 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2589 Pos.getOperand(0) == CmpOp))); 2590 } 2591 2592 // Return the absolute or negative absolute of Op; IsNegative decides which. 2593 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2594 bool IsNegative) { 2595 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2596 if (IsNegative) 2597 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2598 DAG.getConstant(0, DL, Op.getValueType()), Op); 2599 return Op; 2600 } 2601 2602 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2603 SelectionDAG &DAG) const { 2604 SDValue CmpOp0 = Op.getOperand(0); 2605 SDValue CmpOp1 = Op.getOperand(1); 2606 SDValue TrueOp = Op.getOperand(2); 2607 SDValue FalseOp = Op.getOperand(3); 2608 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2609 SDLoc DL(Op); 2610 2611 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2612 2613 // Check for absolute and negative-absolute selections, including those 2614 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2615 // This check supplements the one in DAGCombiner. 2616 if (C.Opcode == SystemZISD::ICMP && 2617 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2618 C.CCMask != SystemZ::CCMASK_CMP_NE && 2619 C.Op1.getOpcode() == ISD::Constant && 2620 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2621 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2622 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2623 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2624 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2625 } 2626 2627 SDValue CCReg = emitCmp(DAG, DL, C); 2628 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2629 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg}; 2630 2631 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2632 } 2633 2634 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2635 SelectionDAG &DAG) const { 2636 SDLoc DL(Node); 2637 const GlobalValue *GV = Node->getGlobal(); 2638 int64_t Offset = Node->getOffset(); 2639 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2640 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2641 2642 SDValue Result; 2643 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2644 // Assign anchors at 1<<12 byte boundaries. 2645 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2646 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2647 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2648 2649 // The offset can be folded into the address if it is aligned to a halfword. 2650 Offset -= Anchor; 2651 if (Offset != 0 && (Offset & 1) == 0) { 2652 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2653 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2654 Offset = 0; 2655 } 2656 } else { 2657 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2658 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2659 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2660 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2661 } 2662 2663 // If there was a non-zero offset that we didn't fold, create an explicit 2664 // addition for it. 2665 if (Offset != 0) 2666 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2667 DAG.getConstant(Offset, DL, PtrVT)); 2668 2669 return Result; 2670 } 2671 2672 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2673 SelectionDAG &DAG, 2674 unsigned Opcode, 2675 SDValue GOTOffset) const { 2676 SDLoc DL(Node); 2677 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2678 SDValue Chain = DAG.getEntryNode(); 2679 SDValue Glue; 2680 2681 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2682 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2683 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2684 Glue = Chain.getValue(1); 2685 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2686 Glue = Chain.getValue(1); 2687 2688 // The first call operand is the chain and the second is the TLS symbol. 2689 SmallVector<SDValue, 8> Ops; 2690 Ops.push_back(Chain); 2691 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2692 Node->getValueType(0), 2693 0, 0)); 2694 2695 // Add argument registers to the end of the list so that they are 2696 // known live into the call. 2697 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2698 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2699 2700 // Add a register mask operand representing the call-preserved registers. 2701 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2702 const uint32_t *Mask = 2703 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2704 assert(Mask && "Missing call preserved mask for calling convention"); 2705 Ops.push_back(DAG.getRegisterMask(Mask)); 2706 2707 // Glue the call to the argument copies. 2708 Ops.push_back(Glue); 2709 2710 // Emit the call. 2711 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2712 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2713 Glue = Chain.getValue(1); 2714 2715 // Copy the return value from %r2. 2716 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2717 } 2718 2719 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2720 SelectionDAG &DAG) const { 2721 SDValue Chain = DAG.getEntryNode(); 2722 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2723 2724 // The high part of the thread pointer is in access register 0. 2725 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2726 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2727 2728 // The low part of the thread pointer is in access register 1. 2729 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2730 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2731 2732 // Merge them into a single 64-bit address. 2733 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2734 DAG.getConstant(32, DL, PtrVT)); 2735 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2736 } 2737 2738 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2739 SelectionDAG &DAG) const { 2740 if (DAG.getTarget().useEmulatedTLS()) 2741 return LowerToTLSEmulatedModel(Node, DAG); 2742 SDLoc DL(Node); 2743 const GlobalValue *GV = Node->getGlobal(); 2744 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2745 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2746 2747 SDValue TP = lowerThreadPointer(DL, DAG); 2748 2749 // Get the offset of GA from the thread pointer, based on the TLS model. 2750 SDValue Offset; 2751 switch (model) { 2752 case TLSModel::GeneralDynamic: { 2753 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2754 SystemZConstantPoolValue *CPV = 2755 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2756 2757 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2758 Offset = DAG.getLoad( 2759 PtrVT, DL, DAG.getEntryNode(), Offset, 2760 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2761 2762 // Call __tls_get_offset to retrieve the offset. 2763 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2764 break; 2765 } 2766 2767 case TLSModel::LocalDynamic: { 2768 // Load the GOT offset of the module ID. 2769 SystemZConstantPoolValue *CPV = 2770 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2771 2772 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2773 Offset = DAG.getLoad( 2774 PtrVT, DL, DAG.getEntryNode(), Offset, 2775 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2776 2777 // Call __tls_get_offset to retrieve the module base offset. 2778 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2779 2780 // Note: The SystemZLDCleanupPass will remove redundant computations 2781 // of the module base offset. Count total number of local-dynamic 2782 // accesses to trigger execution of that pass. 2783 SystemZMachineFunctionInfo* MFI = 2784 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2785 MFI->incNumLocalDynamicTLSAccesses(); 2786 2787 // Add the per-symbol offset. 2788 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2789 2790 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2791 DTPOffset = DAG.getLoad( 2792 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2793 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2794 2795 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2796 break; 2797 } 2798 2799 case TLSModel::InitialExec: { 2800 // Load the offset from the GOT. 2801 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2802 SystemZII::MO_INDNTPOFF); 2803 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2804 Offset = 2805 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2806 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2807 break; 2808 } 2809 2810 case TLSModel::LocalExec: { 2811 // Force the offset into the constant pool and load it from there. 2812 SystemZConstantPoolValue *CPV = 2813 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2814 2815 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2816 Offset = DAG.getLoad( 2817 PtrVT, DL, DAG.getEntryNode(), Offset, 2818 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2819 break; 2820 } 2821 } 2822 2823 // Add the base and offset together. 2824 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2825 } 2826 2827 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2828 SelectionDAG &DAG) const { 2829 SDLoc DL(Node); 2830 const BlockAddress *BA = Node->getBlockAddress(); 2831 int64_t Offset = Node->getOffset(); 2832 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2833 2834 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2835 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2836 return Result; 2837 } 2838 2839 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2840 SelectionDAG &DAG) const { 2841 SDLoc DL(JT); 2842 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2843 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2844 2845 // Use LARL to load the address of the table. 2846 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2847 } 2848 2849 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2850 SelectionDAG &DAG) const { 2851 SDLoc DL(CP); 2852 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2853 2854 SDValue Result; 2855 if (CP->isMachineConstantPoolEntry()) 2856 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2857 CP->getAlignment()); 2858 else 2859 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2860 CP->getAlignment(), CP->getOffset()); 2861 2862 // Use LARL to load the address of the constant pool entry. 2863 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2864 } 2865 2866 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2867 SelectionDAG &DAG) const { 2868 MachineFunction &MF = DAG.getMachineFunction(); 2869 MachineFrameInfo &MFI = MF.getFrameInfo(); 2870 MFI.setFrameAddressIsTaken(true); 2871 2872 SDLoc DL(Op); 2873 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2874 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2875 2876 // If the back chain frame index has not been allocated yet, do so. 2877 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2878 int BackChainIdx = FI->getFramePointerSaveIndex(); 2879 if (!BackChainIdx) { 2880 // By definition, the frame address is the address of the back chain. 2881 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2882 FI->setFramePointerSaveIndex(BackChainIdx); 2883 } 2884 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2885 2886 // FIXME The frontend should detect this case. 2887 if (Depth > 0) { 2888 report_fatal_error("Unsupported stack frame traversal count"); 2889 } 2890 2891 return BackChain; 2892 } 2893 2894 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2895 SelectionDAG &DAG) const { 2896 MachineFunction &MF = DAG.getMachineFunction(); 2897 MachineFrameInfo &MFI = MF.getFrameInfo(); 2898 MFI.setReturnAddressIsTaken(true); 2899 2900 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2901 return SDValue(); 2902 2903 SDLoc DL(Op); 2904 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2905 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2906 2907 // FIXME The frontend should detect this case. 2908 if (Depth > 0) { 2909 report_fatal_error("Unsupported stack frame traversal count"); 2910 } 2911 2912 // Return R14D, which has the return address. Mark it an implicit live-in. 2913 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2914 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2915 } 2916 2917 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2918 SelectionDAG &DAG) const { 2919 SDLoc DL(Op); 2920 SDValue In = Op.getOperand(0); 2921 EVT InVT = In.getValueType(); 2922 EVT ResVT = Op.getValueType(); 2923 2924 // Convert loads directly. This is normally done by DAGCombiner, 2925 // but we need this case for bitcasts that are created during lowering 2926 // and which are then lowered themselves. 2927 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2928 if (ISD::isNormalLoad(LoadN)) { 2929 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 2930 LoadN->getBasePtr(), LoadN->getMemOperand()); 2931 // Update the chain uses. 2932 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 2933 return NewLoad; 2934 } 2935 2936 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2937 SDValue In64; 2938 if (Subtarget.hasHighWord()) { 2939 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2940 MVT::i64); 2941 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2942 MVT::i64, SDValue(U64, 0), In); 2943 } else { 2944 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2945 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2946 DAG.getConstant(32, DL, MVT::i64)); 2947 } 2948 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2949 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 2950 DL, MVT::f32, Out64); 2951 } 2952 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2953 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2954 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2955 MVT::f64, SDValue(U64, 0), In); 2956 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2957 if (Subtarget.hasHighWord()) 2958 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2959 MVT::i32, Out64); 2960 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2961 DAG.getConstant(32, DL, MVT::i64)); 2962 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2963 } 2964 llvm_unreachable("Unexpected bitcast combination"); 2965 } 2966 2967 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2968 SelectionDAG &DAG) const { 2969 MachineFunction &MF = DAG.getMachineFunction(); 2970 SystemZMachineFunctionInfo *FuncInfo = 2971 MF.getInfo<SystemZMachineFunctionInfo>(); 2972 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2973 2974 SDValue Chain = Op.getOperand(0); 2975 SDValue Addr = Op.getOperand(1); 2976 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2977 SDLoc DL(Op); 2978 2979 // The initial values of each field. 2980 const unsigned NumFields = 4; 2981 SDValue Fields[NumFields] = { 2982 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2983 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2984 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2985 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2986 }; 2987 2988 // Store each field into its respective slot. 2989 SDValue MemOps[NumFields]; 2990 unsigned Offset = 0; 2991 for (unsigned I = 0; I < NumFields; ++I) { 2992 SDValue FieldAddr = Addr; 2993 if (Offset != 0) 2994 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2995 DAG.getIntPtrConstant(Offset, DL)); 2996 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2997 MachinePointerInfo(SV, Offset)); 2998 Offset += 8; 2999 } 3000 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3001 } 3002 3003 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3004 SelectionDAG &DAG) const { 3005 SDValue Chain = Op.getOperand(0); 3006 SDValue DstPtr = Op.getOperand(1); 3007 SDValue SrcPtr = Op.getOperand(2); 3008 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3009 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3010 SDLoc DL(Op); 3011 3012 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3013 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3014 /*isTailCall*/false, 3015 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3016 } 3017 3018 SDValue SystemZTargetLowering:: 3019 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3020 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3021 MachineFunction &MF = DAG.getMachineFunction(); 3022 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3023 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3024 3025 SDValue Chain = Op.getOperand(0); 3026 SDValue Size = Op.getOperand(1); 3027 SDValue Align = Op.getOperand(2); 3028 SDLoc DL(Op); 3029 3030 // If user has set the no alignment function attribute, ignore 3031 // alloca alignments. 3032 uint64_t AlignVal = (RealignOpt ? 3033 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3034 3035 uint64_t StackAlign = TFI->getStackAlignment(); 3036 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3037 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3038 3039 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3040 SDValue NeededSpace = Size; 3041 3042 // Get a reference to the stack pointer. 3043 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3044 3045 // If we need a backchain, save it now. 3046 SDValue Backchain; 3047 if (StoreBackchain) 3048 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3049 3050 // Add extra space for alignment if needed. 3051 if (ExtraAlignSpace) 3052 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3053 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3054 3055 // Get the new stack pointer value. 3056 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3057 3058 // Copy the new stack pointer back. 3059 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3060 3061 // The allocated data lives above the 160 bytes allocated for the standard 3062 // frame, plus any outgoing stack arguments. We don't know how much that 3063 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3064 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3065 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3066 3067 // Dynamically realign if needed. 3068 if (RequiredAlign > StackAlign) { 3069 Result = 3070 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3071 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3072 Result = 3073 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3074 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3075 } 3076 3077 if (StoreBackchain) 3078 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3079 3080 SDValue Ops[2] = { Result, Chain }; 3081 return DAG.getMergeValues(Ops, DL); 3082 } 3083 3084 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3085 SDValue Op, SelectionDAG &DAG) const { 3086 SDLoc DL(Op); 3087 3088 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3089 } 3090 3091 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3092 SelectionDAG &DAG) const { 3093 EVT VT = Op.getValueType(); 3094 SDLoc DL(Op); 3095 SDValue Ops[2]; 3096 if (is32Bit(VT)) 3097 // Just do a normal 64-bit multiplication and extract the results. 3098 // We define this so that it can be used for constant division. 3099 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3100 Op.getOperand(1), Ops[1], Ops[0]); 3101 else if (Subtarget.hasMiscellaneousExtensions2()) 3102 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3103 // the high result in the even register. ISD::SMUL_LOHI is defined to 3104 // return the low half first, so the results are in reverse order. 3105 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3106 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3107 else { 3108 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3109 // 3110 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3111 // 3112 // but using the fact that the upper halves are either all zeros 3113 // or all ones: 3114 // 3115 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3116 // 3117 // and grouping the right terms together since they are quicker than the 3118 // multiplication: 3119 // 3120 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3121 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3122 SDValue LL = Op.getOperand(0); 3123 SDValue RL = Op.getOperand(1); 3124 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3125 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3126 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3127 // the high result in the even register. ISD::SMUL_LOHI is defined to 3128 // return the low half first, so the results are in reverse order. 3129 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3130 LL, RL, Ops[1], Ops[0]); 3131 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3132 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3133 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3134 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3135 } 3136 return DAG.getMergeValues(Ops, DL); 3137 } 3138 3139 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3140 SelectionDAG &DAG) const { 3141 EVT VT = Op.getValueType(); 3142 SDLoc DL(Op); 3143 SDValue Ops[2]; 3144 if (is32Bit(VT)) 3145 // Just do a normal 64-bit multiplication and extract the results. 3146 // We define this so that it can be used for constant division. 3147 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3148 Op.getOperand(1), Ops[1], Ops[0]); 3149 else 3150 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3151 // the high result in the even register. ISD::UMUL_LOHI is defined to 3152 // return the low half first, so the results are in reverse order. 3153 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3154 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3155 return DAG.getMergeValues(Ops, DL); 3156 } 3157 3158 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3159 SelectionDAG &DAG) const { 3160 SDValue Op0 = Op.getOperand(0); 3161 SDValue Op1 = Op.getOperand(1); 3162 EVT VT = Op.getValueType(); 3163 SDLoc DL(Op); 3164 3165 // We use DSGF for 32-bit division. This means the first operand must 3166 // always be 64-bit, and the second operand should be 32-bit whenever 3167 // that is possible, to improve performance. 3168 if (is32Bit(VT)) 3169 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3170 else if (DAG.ComputeNumSignBits(Op1) > 32) 3171 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3172 3173 // DSG(F) returns the remainder in the even register and the 3174 // quotient in the odd register. 3175 SDValue Ops[2]; 3176 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3177 return DAG.getMergeValues(Ops, DL); 3178 } 3179 3180 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3181 SelectionDAG &DAG) const { 3182 EVT VT = Op.getValueType(); 3183 SDLoc DL(Op); 3184 3185 // DL(G) returns the remainder in the even register and the 3186 // quotient in the odd register. 3187 SDValue Ops[2]; 3188 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3189 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3190 return DAG.getMergeValues(Ops, DL); 3191 } 3192 3193 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3194 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3195 3196 // Get the known-zero masks for each operand. 3197 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3198 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3199 DAG.computeKnownBits(Ops[1])}; 3200 3201 // See if the upper 32 bits of one operand and the lower 32 bits of the 3202 // other are known zero. They are the low and high operands respectively. 3203 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3204 Known[1].Zero.getZExtValue() }; 3205 unsigned High, Low; 3206 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3207 High = 1, Low = 0; 3208 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3209 High = 0, Low = 1; 3210 else 3211 return Op; 3212 3213 SDValue LowOp = Ops[Low]; 3214 SDValue HighOp = Ops[High]; 3215 3216 // If the high part is a constant, we're better off using IILH. 3217 if (HighOp.getOpcode() == ISD::Constant) 3218 return Op; 3219 3220 // If the low part is a constant that is outside the range of LHI, 3221 // then we're better off using IILF. 3222 if (LowOp.getOpcode() == ISD::Constant) { 3223 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3224 if (!isInt<16>(Value)) 3225 return Op; 3226 } 3227 3228 // Check whether the high part is an AND that doesn't change the 3229 // high 32 bits and just masks out low bits. We can skip it if so. 3230 if (HighOp.getOpcode() == ISD::AND && 3231 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3232 SDValue HighOp0 = HighOp.getOperand(0); 3233 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3234 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3235 HighOp = HighOp0; 3236 } 3237 3238 // Take advantage of the fact that all GR32 operations only change the 3239 // low 32 bits by truncating Low to an i32 and inserting it directly 3240 // using a subreg. The interesting cases are those where the truncation 3241 // can be folded. 3242 SDLoc DL(Op); 3243 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3244 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3245 MVT::i64, HighOp, Low32); 3246 } 3247 3248 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3249 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3250 SelectionDAG &DAG) const { 3251 SDNode *N = Op.getNode(); 3252 SDValue LHS = N->getOperand(0); 3253 SDValue RHS = N->getOperand(1); 3254 SDLoc DL(N); 3255 unsigned BaseOp = 0; 3256 unsigned CCValid = 0; 3257 unsigned CCMask = 0; 3258 3259 switch (Op.getOpcode()) { 3260 default: llvm_unreachable("Unknown instruction!"); 3261 case ISD::SADDO: 3262 BaseOp = SystemZISD::SADDO; 3263 CCValid = SystemZ::CCMASK_ARITH; 3264 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3265 break; 3266 case ISD::SSUBO: 3267 BaseOp = SystemZISD::SSUBO; 3268 CCValid = SystemZ::CCMASK_ARITH; 3269 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3270 break; 3271 case ISD::UADDO: 3272 BaseOp = SystemZISD::UADDO; 3273 CCValid = SystemZ::CCMASK_LOGICAL; 3274 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3275 break; 3276 case ISD::USUBO: 3277 BaseOp = SystemZISD::USUBO; 3278 CCValid = SystemZ::CCMASK_LOGICAL; 3279 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3280 break; 3281 } 3282 3283 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3284 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3285 3286 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3287 if (N->getValueType(1) == MVT::i1) 3288 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3289 3290 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3291 } 3292 3293 // Lower ADDCARRY/SUBCARRY nodes. 3294 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3295 SelectionDAG &DAG) const { 3296 3297 SDNode *N = Op.getNode(); 3298 MVT VT = N->getSimpleValueType(0); 3299 3300 // Let legalize expand this if it isn't a legal type yet. 3301 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3302 return SDValue(); 3303 3304 SDValue LHS = N->getOperand(0); 3305 SDValue RHS = N->getOperand(1); 3306 SDValue Carry = Op.getOperand(2); 3307 SDLoc DL(N); 3308 unsigned BaseOp = 0; 3309 unsigned CCValid = 0; 3310 unsigned CCMask = 0; 3311 3312 switch (Op.getOpcode()) { 3313 default: llvm_unreachable("Unknown instruction!"); 3314 case ISD::ADDCARRY: 3315 BaseOp = SystemZISD::ADDCARRY; 3316 CCValid = SystemZ::CCMASK_LOGICAL; 3317 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3318 break; 3319 case ISD::SUBCARRY: 3320 BaseOp = SystemZISD::SUBCARRY; 3321 CCValid = SystemZ::CCMASK_LOGICAL; 3322 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3323 break; 3324 } 3325 3326 // Set the condition code from the carry flag. 3327 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3328 DAG.getConstant(CCValid, DL, MVT::i32), 3329 DAG.getConstant(CCMask, DL, MVT::i32)); 3330 3331 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3332 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3333 3334 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3335 if (N->getValueType(1) == MVT::i1) 3336 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3337 3338 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3339 } 3340 3341 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3342 SelectionDAG &DAG) const { 3343 EVT VT = Op.getValueType(); 3344 SDLoc DL(Op); 3345 Op = Op.getOperand(0); 3346 3347 // Handle vector types via VPOPCT. 3348 if (VT.isVector()) { 3349 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3350 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3351 switch (VT.getScalarSizeInBits()) { 3352 case 8: 3353 break; 3354 case 16: { 3355 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3356 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3357 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3358 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3359 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3360 break; 3361 } 3362 case 32: { 3363 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3364 DAG.getConstant(0, DL, MVT::i32)); 3365 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3366 break; 3367 } 3368 case 64: { 3369 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3370 DAG.getConstant(0, DL, MVT::i32)); 3371 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3372 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3373 break; 3374 } 3375 default: 3376 llvm_unreachable("Unexpected type"); 3377 } 3378 return Op; 3379 } 3380 3381 // Get the known-zero mask for the operand. 3382 KnownBits Known = DAG.computeKnownBits(Op); 3383 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3384 if (NumSignificantBits == 0) 3385 return DAG.getConstant(0, DL, VT); 3386 3387 // Skip known-zero high parts of the operand. 3388 int64_t OrigBitSize = VT.getSizeInBits(); 3389 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3390 BitSize = std::min(BitSize, OrigBitSize); 3391 3392 // The POPCNT instruction counts the number of bits in each byte. 3393 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3394 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3395 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3396 3397 // Add up per-byte counts in a binary tree. All bits of Op at 3398 // position larger than BitSize remain zero throughout. 3399 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3400 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3401 if (BitSize != OrigBitSize) 3402 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3403 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3404 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3405 } 3406 3407 // Extract overall result from high byte. 3408 if (BitSize > 8) 3409 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3410 DAG.getConstant(BitSize - 8, DL, VT)); 3411 3412 return Op; 3413 } 3414 3415 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3416 SelectionDAG &DAG) const { 3417 SDLoc DL(Op); 3418 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3419 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3420 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3421 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3422 3423 // The only fence that needs an instruction is a sequentially-consistent 3424 // cross-thread fence. 3425 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3426 FenceSSID == SyncScope::System) { 3427 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3428 Op.getOperand(0)), 3429 0); 3430 } 3431 3432 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3433 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3434 } 3435 3436 // Op is an atomic load. Lower it into a normal volatile load. 3437 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3438 SelectionDAG &DAG) const { 3439 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3440 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3441 Node->getChain(), Node->getBasePtr(), 3442 Node->getMemoryVT(), Node->getMemOperand()); 3443 } 3444 3445 // Op is an atomic store. Lower it into a normal volatile store. 3446 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3447 SelectionDAG &DAG) const { 3448 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3449 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3450 Node->getBasePtr(), Node->getMemoryVT(), 3451 Node->getMemOperand()); 3452 // We have to enforce sequential consistency by performing a 3453 // serialization operation after the store. 3454 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3455 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3456 MVT::Other, Chain), 0); 3457 return Chain; 3458 } 3459 3460 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3461 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3462 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3463 SelectionDAG &DAG, 3464 unsigned Opcode) const { 3465 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3466 3467 // 32-bit operations need no code outside the main loop. 3468 EVT NarrowVT = Node->getMemoryVT(); 3469 EVT WideVT = MVT::i32; 3470 if (NarrowVT == WideVT) 3471 return Op; 3472 3473 int64_t BitSize = NarrowVT.getSizeInBits(); 3474 SDValue ChainIn = Node->getChain(); 3475 SDValue Addr = Node->getBasePtr(); 3476 SDValue Src2 = Node->getVal(); 3477 MachineMemOperand *MMO = Node->getMemOperand(); 3478 SDLoc DL(Node); 3479 EVT PtrVT = Addr.getValueType(); 3480 3481 // Convert atomic subtracts of constants into additions. 3482 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3483 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3484 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3485 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3486 } 3487 3488 // Get the address of the containing word. 3489 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3490 DAG.getConstant(-4, DL, PtrVT)); 3491 3492 // Get the number of bits that the word must be rotated left in order 3493 // to bring the field to the top bits of a GR32. 3494 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3495 DAG.getConstant(3, DL, PtrVT)); 3496 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3497 3498 // Get the complementing shift amount, for rotating a field in the top 3499 // bits back to its proper position. 3500 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3501 DAG.getConstant(0, DL, WideVT), BitShift); 3502 3503 // Extend the source operand to 32 bits and prepare it for the inner loop. 3504 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3505 // operations require the source to be shifted in advance. (This shift 3506 // can be folded if the source is constant.) For AND and NAND, the lower 3507 // bits must be set, while for other opcodes they should be left clear. 3508 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3509 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3510 DAG.getConstant(32 - BitSize, DL, WideVT)); 3511 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3512 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3513 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3514 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3515 3516 // Construct the ATOMIC_LOADW_* node. 3517 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3518 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3519 DAG.getConstant(BitSize, DL, WideVT) }; 3520 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3521 NarrowVT, MMO); 3522 3523 // Rotate the result of the final CS so that the field is in the lower 3524 // bits of a GR32, then truncate it. 3525 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3526 DAG.getConstant(BitSize, DL, WideVT)); 3527 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3528 3529 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3530 return DAG.getMergeValues(RetOps, DL); 3531 } 3532 3533 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3534 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3535 // operations into additions. 3536 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3537 SelectionDAG &DAG) const { 3538 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3539 EVT MemVT = Node->getMemoryVT(); 3540 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3541 // A full-width operation. 3542 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3543 SDValue Src2 = Node->getVal(); 3544 SDValue NegSrc2; 3545 SDLoc DL(Src2); 3546 3547 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3548 // Use an addition if the operand is constant and either LAA(G) is 3549 // available or the negative value is in the range of A(G)FHI. 3550 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3551 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3552 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3553 } else if (Subtarget.hasInterlockedAccess1()) 3554 // Use LAA(G) if available. 3555 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3556 Src2); 3557 3558 if (NegSrc2.getNode()) 3559 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3560 Node->getChain(), Node->getBasePtr(), NegSrc2, 3561 Node->getMemOperand()); 3562 3563 // Use the node as-is. 3564 return Op; 3565 } 3566 3567 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3568 } 3569 3570 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3571 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3572 SelectionDAG &DAG) const { 3573 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3574 SDValue ChainIn = Node->getOperand(0); 3575 SDValue Addr = Node->getOperand(1); 3576 SDValue CmpVal = Node->getOperand(2); 3577 SDValue SwapVal = Node->getOperand(3); 3578 MachineMemOperand *MMO = Node->getMemOperand(); 3579 SDLoc DL(Node); 3580 3581 // We have native support for 32-bit and 64-bit compare and swap, but we 3582 // still need to expand extracting the "success" result from the CC. 3583 EVT NarrowVT = Node->getMemoryVT(); 3584 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3585 if (NarrowVT == WideVT) { 3586 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3587 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3588 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3589 DL, Tys, Ops, NarrowVT, MMO); 3590 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3591 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3592 3593 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3594 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3595 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3596 return SDValue(); 3597 } 3598 3599 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3600 // via a fullword ATOMIC_CMP_SWAPW operation. 3601 int64_t BitSize = NarrowVT.getSizeInBits(); 3602 EVT PtrVT = Addr.getValueType(); 3603 3604 // Get the address of the containing word. 3605 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3606 DAG.getConstant(-4, DL, PtrVT)); 3607 3608 // Get the number of bits that the word must be rotated left in order 3609 // to bring the field to the top bits of a GR32. 3610 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3611 DAG.getConstant(3, DL, PtrVT)); 3612 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3613 3614 // Get the complementing shift amount, for rotating a field in the top 3615 // bits back to its proper position. 3616 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3617 DAG.getConstant(0, DL, WideVT), BitShift); 3618 3619 // Construct the ATOMIC_CMP_SWAPW node. 3620 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3621 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3622 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3623 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3624 VTList, Ops, NarrowVT, MMO); 3625 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3626 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3627 3628 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3629 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3630 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3631 return SDValue(); 3632 } 3633 3634 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3635 SelectionDAG &DAG) const { 3636 MachineFunction &MF = DAG.getMachineFunction(); 3637 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3638 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3639 SystemZ::R15D, Op.getValueType()); 3640 } 3641 3642 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3643 SelectionDAG &DAG) const { 3644 MachineFunction &MF = DAG.getMachineFunction(); 3645 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3646 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3647 3648 SDValue Chain = Op.getOperand(0); 3649 SDValue NewSP = Op.getOperand(1); 3650 SDValue Backchain; 3651 SDLoc DL(Op); 3652 3653 if (StoreBackchain) { 3654 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3655 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3656 } 3657 3658 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3659 3660 if (StoreBackchain) 3661 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3662 3663 return Chain; 3664 } 3665 3666 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3667 SelectionDAG &DAG) const { 3668 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3669 if (!IsData) 3670 // Just preserve the chain. 3671 return Op.getOperand(0); 3672 3673 SDLoc DL(Op); 3674 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3675 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3676 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3677 SDValue Ops[] = { 3678 Op.getOperand(0), 3679 DAG.getConstant(Code, DL, MVT::i32), 3680 Op.getOperand(1) 3681 }; 3682 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3683 Node->getVTList(), Ops, 3684 Node->getMemoryVT(), Node->getMemOperand()); 3685 } 3686 3687 // Convert condition code in CCReg to an i32 value. 3688 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3689 SDLoc DL(CCReg); 3690 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3691 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3692 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3693 } 3694 3695 SDValue 3696 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3697 SelectionDAG &DAG) const { 3698 unsigned Opcode, CCValid; 3699 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3700 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3701 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3702 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3703 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3704 return SDValue(); 3705 } 3706 3707 return SDValue(); 3708 } 3709 3710 SDValue 3711 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3712 SelectionDAG &DAG) const { 3713 unsigned Opcode, CCValid; 3714 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3715 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3716 if (Op->getNumValues() == 1) 3717 return getCCResult(DAG, SDValue(Node, 0)); 3718 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3719 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3720 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3721 } 3722 3723 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3724 switch (Id) { 3725 case Intrinsic::thread_pointer: 3726 return lowerThreadPointer(SDLoc(Op), DAG); 3727 3728 case Intrinsic::s390_vpdi: 3729 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3730 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3731 3732 case Intrinsic::s390_vperm: 3733 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3734 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3735 3736 case Intrinsic::s390_vuphb: 3737 case Intrinsic::s390_vuphh: 3738 case Intrinsic::s390_vuphf: 3739 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3740 Op.getOperand(1)); 3741 3742 case Intrinsic::s390_vuplhb: 3743 case Intrinsic::s390_vuplhh: 3744 case Intrinsic::s390_vuplhf: 3745 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3746 Op.getOperand(1)); 3747 3748 case Intrinsic::s390_vuplb: 3749 case Intrinsic::s390_vuplhw: 3750 case Intrinsic::s390_vuplf: 3751 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3752 Op.getOperand(1)); 3753 3754 case Intrinsic::s390_vupllb: 3755 case Intrinsic::s390_vupllh: 3756 case Intrinsic::s390_vupllf: 3757 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3758 Op.getOperand(1)); 3759 3760 case Intrinsic::s390_vsumb: 3761 case Intrinsic::s390_vsumh: 3762 case Intrinsic::s390_vsumgh: 3763 case Intrinsic::s390_vsumgf: 3764 case Intrinsic::s390_vsumqf: 3765 case Intrinsic::s390_vsumqg: 3766 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3767 Op.getOperand(1), Op.getOperand(2)); 3768 } 3769 3770 return SDValue(); 3771 } 3772 3773 namespace { 3774 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3775 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3776 // Operand is the constant third operand, otherwise it is the number of 3777 // bytes in each element of the result. 3778 struct Permute { 3779 unsigned Opcode; 3780 unsigned Operand; 3781 unsigned char Bytes[SystemZ::VectorBytes]; 3782 }; 3783 } 3784 3785 static const Permute PermuteForms[] = { 3786 // VMRHG 3787 { SystemZISD::MERGE_HIGH, 8, 3788 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3789 // VMRHF 3790 { SystemZISD::MERGE_HIGH, 4, 3791 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3792 // VMRHH 3793 { SystemZISD::MERGE_HIGH, 2, 3794 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3795 // VMRHB 3796 { SystemZISD::MERGE_HIGH, 1, 3797 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3798 // VMRLG 3799 { SystemZISD::MERGE_LOW, 8, 3800 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3801 // VMRLF 3802 { SystemZISD::MERGE_LOW, 4, 3803 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3804 // VMRLH 3805 { SystemZISD::MERGE_LOW, 2, 3806 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3807 // VMRLB 3808 { SystemZISD::MERGE_LOW, 1, 3809 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3810 // VPKG 3811 { SystemZISD::PACK, 4, 3812 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3813 // VPKF 3814 { SystemZISD::PACK, 2, 3815 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3816 // VPKH 3817 { SystemZISD::PACK, 1, 3818 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3819 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3820 { SystemZISD::PERMUTE_DWORDS, 4, 3821 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3822 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3823 { SystemZISD::PERMUTE_DWORDS, 1, 3824 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3825 }; 3826 3827 // Called after matching a vector shuffle against a particular pattern. 3828 // Both the original shuffle and the pattern have two vector operands. 3829 // OpNos[0] is the operand of the original shuffle that should be used for 3830 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3831 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3832 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3833 // for operands 0 and 1 of the pattern. 3834 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3835 if (OpNos[0] < 0) { 3836 if (OpNos[1] < 0) 3837 return false; 3838 OpNo0 = OpNo1 = OpNos[1]; 3839 } else if (OpNos[1] < 0) { 3840 OpNo0 = OpNo1 = OpNos[0]; 3841 } else { 3842 OpNo0 = OpNos[0]; 3843 OpNo1 = OpNos[1]; 3844 } 3845 return true; 3846 } 3847 3848 // Bytes is a VPERM-like permute vector, except that -1 is used for 3849 // undefined bytes. Return true if the VPERM can be implemented using P. 3850 // When returning true set OpNo0 to the VPERM operand that should be 3851 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3852 // 3853 // For example, if swapping the VPERM operands allows P to match, OpNo0 3854 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3855 // operand, but rewriting it to use two duplicated operands allows it to 3856 // match P, then OpNo0 and OpNo1 will be the same. 3857 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3858 unsigned &OpNo0, unsigned &OpNo1) { 3859 int OpNos[] = { -1, -1 }; 3860 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3861 int Elt = Bytes[I]; 3862 if (Elt >= 0) { 3863 // Make sure that the two permute vectors use the same suboperand 3864 // byte number. Only the operand numbers (the high bits) are 3865 // allowed to differ. 3866 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3867 return false; 3868 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3869 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3870 // Make sure that the operand mappings are consistent with previous 3871 // elements. 3872 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3873 return false; 3874 OpNos[ModelOpNo] = RealOpNo; 3875 } 3876 } 3877 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3878 } 3879 3880 // As above, but search for a matching permute. 3881 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3882 unsigned &OpNo0, unsigned &OpNo1) { 3883 for (auto &P : PermuteForms) 3884 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3885 return &P; 3886 return nullptr; 3887 } 3888 3889 // Bytes is a VPERM-like permute vector, except that -1 is used for 3890 // undefined bytes. This permute is an operand of an outer permute. 3891 // See whether redistributing the -1 bytes gives a shuffle that can be 3892 // implemented using P. If so, set Transform to a VPERM-like permute vector 3893 // that, when applied to the result of P, gives the original permute in Bytes. 3894 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3895 const Permute &P, 3896 SmallVectorImpl<int> &Transform) { 3897 unsigned To = 0; 3898 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3899 int Elt = Bytes[From]; 3900 if (Elt < 0) 3901 // Byte number From of the result is undefined. 3902 Transform[From] = -1; 3903 else { 3904 while (P.Bytes[To] != Elt) { 3905 To += 1; 3906 if (To == SystemZ::VectorBytes) 3907 return false; 3908 } 3909 Transform[From] = To; 3910 } 3911 } 3912 return true; 3913 } 3914 3915 // As above, but search for a matching permute. 3916 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3917 SmallVectorImpl<int> &Transform) { 3918 for (auto &P : PermuteForms) 3919 if (matchDoublePermute(Bytes, P, Transform)) 3920 return &P; 3921 return nullptr; 3922 } 3923 3924 // Convert the mask of the given shuffle op into a byte-level mask, 3925 // as if it had type vNi8. 3926 static bool getVPermMask(SDValue ShuffleOp, 3927 SmallVectorImpl<int> &Bytes) { 3928 EVT VT = ShuffleOp.getValueType(); 3929 unsigned NumElements = VT.getVectorNumElements(); 3930 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3931 3932 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 3933 Bytes.resize(NumElements * BytesPerElement, -1); 3934 for (unsigned I = 0; I < NumElements; ++I) { 3935 int Index = VSN->getMaskElt(I); 3936 if (Index >= 0) 3937 for (unsigned J = 0; J < BytesPerElement; ++J) 3938 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3939 } 3940 return true; 3941 } 3942 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 3943 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 3944 unsigned Index = ShuffleOp.getConstantOperandVal(1); 3945 Bytes.resize(NumElements * BytesPerElement, -1); 3946 for (unsigned I = 0; I < NumElements; ++I) 3947 for (unsigned J = 0; J < BytesPerElement; ++J) 3948 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3949 return true; 3950 } 3951 return false; 3952 } 3953 3954 // Bytes is a VPERM-like permute vector, except that -1 is used for 3955 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3956 // the result come from a contiguous sequence of bytes from one input. 3957 // Set Base to the selector for the first byte if so. 3958 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3959 unsigned BytesPerElement, int &Base) { 3960 Base = -1; 3961 for (unsigned I = 0; I < BytesPerElement; ++I) { 3962 if (Bytes[Start + I] >= 0) { 3963 unsigned Elem = Bytes[Start + I]; 3964 if (Base < 0) { 3965 Base = Elem - I; 3966 // Make sure the bytes would come from one input operand. 3967 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3968 return false; 3969 } else if (unsigned(Base) != Elem - I) 3970 return false; 3971 } 3972 } 3973 return true; 3974 } 3975 3976 // Bytes is a VPERM-like permute vector, except that -1 is used for 3977 // undefined bytes. Return true if it can be performed using VSLDI. 3978 // When returning true, set StartIndex to the shift amount and OpNo0 3979 // and OpNo1 to the VPERM operands that should be used as the first 3980 // and second shift operand respectively. 3981 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3982 unsigned &StartIndex, unsigned &OpNo0, 3983 unsigned &OpNo1) { 3984 int OpNos[] = { -1, -1 }; 3985 int Shift = -1; 3986 for (unsigned I = 0; I < 16; ++I) { 3987 int Index = Bytes[I]; 3988 if (Index >= 0) { 3989 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3990 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3991 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3992 if (Shift < 0) 3993 Shift = ExpectedShift; 3994 else if (Shift != ExpectedShift) 3995 return false; 3996 // Make sure that the operand mappings are consistent with previous 3997 // elements. 3998 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3999 return false; 4000 OpNos[ModelOpNo] = RealOpNo; 4001 } 4002 } 4003 StartIndex = Shift; 4004 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4005 } 4006 4007 // Create a node that performs P on operands Op0 and Op1, casting the 4008 // operands to the appropriate type. The type of the result is determined by P. 4009 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4010 const Permute &P, SDValue Op0, SDValue Op1) { 4011 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4012 // elements of a PACK are twice as wide as the outputs. 4013 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4014 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4015 P.Operand); 4016 // Cast both operands to the appropriate type. 4017 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4018 SystemZ::VectorBytes / InBytes); 4019 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4020 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4021 SDValue Op; 4022 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4023 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 4024 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4025 } else if (P.Opcode == SystemZISD::PACK) { 4026 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4027 SystemZ::VectorBytes / P.Operand); 4028 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4029 } else { 4030 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4031 } 4032 return Op; 4033 } 4034 4035 // Bytes is a VPERM-like permute vector, except that -1 is used for 4036 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4037 // VSLDI or VPERM. 4038 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4039 SDValue *Ops, 4040 const SmallVectorImpl<int> &Bytes) { 4041 for (unsigned I = 0; I < 2; ++I) 4042 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4043 4044 // First see whether VSLDI can be used. 4045 unsigned StartIndex, OpNo0, OpNo1; 4046 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4047 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4048 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 4049 4050 // Fall back on VPERM. Construct an SDNode for the permute vector. 4051 SDValue IndexNodes[SystemZ::VectorBytes]; 4052 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4053 if (Bytes[I] >= 0) 4054 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4055 else 4056 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4057 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4058 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4059 } 4060 4061 namespace { 4062 // Describes a general N-operand vector shuffle. 4063 struct GeneralShuffle { 4064 GeneralShuffle(EVT vt) : VT(vt) {} 4065 void addUndef(); 4066 bool add(SDValue, unsigned); 4067 SDValue getNode(SelectionDAG &, const SDLoc &); 4068 4069 // The operands of the shuffle. 4070 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4071 4072 // Index I is -1 if byte I of the result is undefined. Otherwise the 4073 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4074 // Bytes[I] / SystemZ::VectorBytes. 4075 SmallVector<int, SystemZ::VectorBytes> Bytes; 4076 4077 // The type of the shuffle result. 4078 EVT VT; 4079 }; 4080 } 4081 4082 // Add an extra undefined element to the shuffle. 4083 void GeneralShuffle::addUndef() { 4084 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4085 for (unsigned I = 0; I < BytesPerElement; ++I) 4086 Bytes.push_back(-1); 4087 } 4088 4089 // Add an extra element to the shuffle, taking it from element Elem of Op. 4090 // A null Op indicates a vector input whose value will be calculated later; 4091 // there is at most one such input per shuffle and it always has the same 4092 // type as the result. Aborts and returns false if the source vector elements 4093 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4094 // LLVM they become implicitly extended, but this is rare and not optimized. 4095 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4096 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4097 4098 // The source vector can have wider elements than the result, 4099 // either through an explicit TRUNCATE or because of type legalization. 4100 // We want the least significant part. 4101 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4102 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4103 4104 // Return false if the source elements are smaller than their destination 4105 // elements. 4106 if (FromBytesPerElement < BytesPerElement) 4107 return false; 4108 4109 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4110 (FromBytesPerElement - BytesPerElement)); 4111 4112 // Look through things like shuffles and bitcasts. 4113 while (Op.getNode()) { 4114 if (Op.getOpcode() == ISD::BITCAST) 4115 Op = Op.getOperand(0); 4116 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4117 // See whether the bytes we need come from a contiguous part of one 4118 // operand. 4119 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4120 if (!getVPermMask(Op, OpBytes)) 4121 break; 4122 int NewByte; 4123 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4124 break; 4125 if (NewByte < 0) { 4126 addUndef(); 4127 return true; 4128 } 4129 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4130 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4131 } else if (Op.isUndef()) { 4132 addUndef(); 4133 return true; 4134 } else 4135 break; 4136 } 4137 4138 // Make sure that the source of the extraction is in Ops. 4139 unsigned OpNo = 0; 4140 for (; OpNo < Ops.size(); ++OpNo) 4141 if (Ops[OpNo] == Op) 4142 break; 4143 if (OpNo == Ops.size()) 4144 Ops.push_back(Op); 4145 4146 // Add the element to Bytes. 4147 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4148 for (unsigned I = 0; I < BytesPerElement; ++I) 4149 Bytes.push_back(Base + I); 4150 4151 return true; 4152 } 4153 4154 // Return SDNodes for the completed shuffle. 4155 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4156 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4157 4158 if (Ops.size() == 0) 4159 return DAG.getUNDEF(VT); 4160 4161 // Make sure that there are at least two shuffle operands. 4162 if (Ops.size() == 1) 4163 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4164 4165 // Create a tree of shuffles, deferring root node until after the loop. 4166 // Try to redistribute the undefined elements of non-root nodes so that 4167 // the non-root shuffles match something like a pack or merge, then adjust 4168 // the parent node's permute vector to compensate for the new order. 4169 // Among other things, this copes with vectors like <2 x i16> that were 4170 // padded with undefined elements during type legalization. 4171 // 4172 // In the best case this redistribution will lead to the whole tree 4173 // using packs and merges. It should rarely be a loss in other cases. 4174 unsigned Stride = 1; 4175 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4176 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4177 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4178 4179 // Create a mask for just these two operands. 4180 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4181 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4182 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4183 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4184 if (OpNo == I) 4185 NewBytes[J] = Byte; 4186 else if (OpNo == I + Stride) 4187 NewBytes[J] = SystemZ::VectorBytes + Byte; 4188 else 4189 NewBytes[J] = -1; 4190 } 4191 // See if it would be better to reorganize NewMask to avoid using VPERM. 4192 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4193 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4194 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4195 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4196 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4197 if (NewBytes[J] >= 0) { 4198 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4199 "Invalid double permute"); 4200 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4201 } else 4202 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4203 } 4204 } else { 4205 // Just use NewBytes on the operands. 4206 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4207 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4208 if (NewBytes[J] >= 0) 4209 Bytes[J] = I * SystemZ::VectorBytes + J; 4210 } 4211 } 4212 } 4213 4214 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4215 if (Stride > 1) { 4216 Ops[1] = Ops[Stride]; 4217 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4218 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4219 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4220 } 4221 4222 // Look for an instruction that can do the permute without resorting 4223 // to VPERM. 4224 unsigned OpNo0, OpNo1; 4225 SDValue Op; 4226 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4227 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4228 else 4229 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4230 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4231 } 4232 4233 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4234 static bool isScalarToVector(SDValue Op) { 4235 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4236 if (!Op.getOperand(I).isUndef()) 4237 return false; 4238 return true; 4239 } 4240 4241 // Return a vector of type VT that contains Value in the first element. 4242 // The other elements don't matter. 4243 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4244 SDValue Value) { 4245 // If we have a constant, replicate it to all elements and let the 4246 // BUILD_VECTOR lowering take care of it. 4247 if (Value.getOpcode() == ISD::Constant || 4248 Value.getOpcode() == ISD::ConstantFP) { 4249 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4250 return DAG.getBuildVector(VT, DL, Ops); 4251 } 4252 if (Value.isUndef()) 4253 return DAG.getUNDEF(VT); 4254 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4255 } 4256 4257 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4258 // element 1. Used for cases in which replication is cheap. 4259 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4260 SDValue Op0, SDValue Op1) { 4261 if (Op0.isUndef()) { 4262 if (Op1.isUndef()) 4263 return DAG.getUNDEF(VT); 4264 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4265 } 4266 if (Op1.isUndef()) 4267 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4268 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4269 buildScalarToVector(DAG, DL, VT, Op0), 4270 buildScalarToVector(DAG, DL, VT, Op1)); 4271 } 4272 4273 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4274 // vector for them. 4275 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4276 SDValue Op1) { 4277 if (Op0.isUndef() && Op1.isUndef()) 4278 return DAG.getUNDEF(MVT::v2i64); 4279 // If one of the two inputs is undefined then replicate the other one, 4280 // in order to avoid using another register unnecessarily. 4281 if (Op0.isUndef()) 4282 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4283 else if (Op1.isUndef()) 4284 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4285 else { 4286 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4287 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4288 } 4289 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4290 } 4291 4292 // Try to represent constant BUILD_VECTOR node BVN using a BYTE MASK style 4293 // mask. Store the mask value in Mask on success. 4294 bool SystemZTargetLowering:: 4295 tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4296 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4297 unsigned BytesPerElement = ElemVT.getStoreSize(); 4298 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4299 SDValue Op = BVN->getOperand(I); 4300 if (!Op.isUndef()) { 4301 uint64_t Value; 4302 if (Op.getOpcode() == ISD::Constant) 4303 Value = cast<ConstantSDNode>(Op)->getZExtValue(); 4304 else if (Op.getOpcode() == ISD::ConstantFP) 4305 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4306 .getZExtValue()); 4307 else 4308 return false; 4309 for (unsigned J = 0; J < BytesPerElement; ++J) { 4310 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4311 if (Byte == 0xff) 4312 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4313 else if (Byte != 0) 4314 return false; 4315 } 4316 } 4317 } 4318 return true; 4319 } 4320 4321 // Try to load a vector constant in which BitsPerElement-bit value Value 4322 // is replicated to fill the vector. VT is the type of the resulting 4323 // constant, which may have elements of a different size from BitsPerElement. 4324 // Return the SDValue of the constant on success, otherwise return 4325 // an empty value. 4326 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4327 const SystemZInstrInfo *TII, 4328 const SDLoc &DL, EVT VT, uint64_t Value, 4329 unsigned BitsPerElement) { 4330 // Signed 16-bit values can be replicated using VREPI. 4331 // Mark the constants as opaque or DAGCombiner will convert back to 4332 // BUILD_VECTOR. 4333 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4334 if (isInt<16>(SignedValue)) { 4335 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4336 SystemZ::VectorBits / BitsPerElement); 4337 SDValue Op = DAG.getNode( 4338 SystemZISD::REPLICATE, DL, VecVT, 4339 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/)); 4340 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4341 } 4342 // See whether rotating the constant left some N places gives a value that 4343 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4344 // If so we can use VGM. 4345 unsigned Start, End; 4346 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4347 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4348 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4349 // bit numbers for an BitsPerElement value, so that 0 denotes 4350 // 1 << (BitsPerElement-1). 4351 Start -= 64 - BitsPerElement; 4352 End -= 64 - BitsPerElement; 4353 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4354 SystemZ::VectorBits / BitsPerElement); 4355 SDValue Op = DAG.getNode( 4356 SystemZISD::ROTATE_MASK, DL, VecVT, 4357 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/), 4358 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/)); 4359 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4360 } 4361 return SDValue(); 4362 } 4363 4364 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4365 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4366 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4367 // would benefit from this representation and return it if so. 4368 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4369 BuildVectorSDNode *BVN) { 4370 EVT VT = BVN->getValueType(0); 4371 unsigned NumElements = VT.getVectorNumElements(); 4372 4373 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4374 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4375 // need a BUILD_VECTOR, add an additional placeholder operand for that 4376 // BUILD_VECTOR and store its operands in ResidueOps. 4377 GeneralShuffle GS(VT); 4378 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4379 bool FoundOne = false; 4380 for (unsigned I = 0; I < NumElements; ++I) { 4381 SDValue Op = BVN->getOperand(I); 4382 if (Op.getOpcode() == ISD::TRUNCATE) 4383 Op = Op.getOperand(0); 4384 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4385 Op.getOperand(1).getOpcode() == ISD::Constant) { 4386 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4387 if (!GS.add(Op.getOperand(0), Elem)) 4388 return SDValue(); 4389 FoundOne = true; 4390 } else if (Op.isUndef()) { 4391 GS.addUndef(); 4392 } else { 4393 if (!GS.add(SDValue(), ResidueOps.size())) 4394 return SDValue(); 4395 ResidueOps.push_back(BVN->getOperand(I)); 4396 } 4397 } 4398 4399 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4400 if (!FoundOne) 4401 return SDValue(); 4402 4403 // Create the BUILD_VECTOR for the remaining elements, if any. 4404 if (!ResidueOps.empty()) { 4405 while (ResidueOps.size() < NumElements) 4406 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4407 for (auto &Op : GS.Ops) { 4408 if (!Op.getNode()) { 4409 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4410 break; 4411 } 4412 } 4413 } 4414 return GS.getNode(DAG, SDLoc(BVN)); 4415 } 4416 4417 // Combine GPR scalar values Elems into a vector of type VT. 4418 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4419 SmallVectorImpl<SDValue> &Elems) { 4420 // See whether there is a single replicated value. 4421 SDValue Single; 4422 unsigned int NumElements = Elems.size(); 4423 unsigned int Count = 0; 4424 for (auto Elem : Elems) { 4425 if (!Elem.isUndef()) { 4426 if (!Single.getNode()) 4427 Single = Elem; 4428 else if (Elem != Single) { 4429 Single = SDValue(); 4430 break; 4431 } 4432 Count += 1; 4433 } 4434 } 4435 // There are three cases here: 4436 // 4437 // - if the only defined element is a loaded one, the best sequence 4438 // is a replicating load. 4439 // 4440 // - otherwise, if the only defined element is an i64 value, we will 4441 // end up with the same VLVGP sequence regardless of whether we short-cut 4442 // for replication or fall through to the later code. 4443 // 4444 // - otherwise, if the only defined element is an i32 or smaller value, 4445 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4446 // This is only a win if the single defined element is used more than once. 4447 // In other cases we're better off using a single VLVGx. 4448 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4449 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4450 4451 // If all elements are loads, use VLREP/VLEs (below). 4452 bool AllLoads = true; 4453 for (auto Elem : Elems) 4454 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4455 AllLoads = false; 4456 break; 4457 } 4458 4459 // The best way of building a v2i64 from two i64s is to use VLVGP. 4460 if (VT == MVT::v2i64 && !AllLoads) 4461 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4462 4463 // Use a 64-bit merge high to combine two doubles. 4464 if (VT == MVT::v2f64 && !AllLoads) 4465 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4466 4467 // Build v4f32 values directly from the FPRs: 4468 // 4469 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4470 // V V VMRHF 4471 // <ABxx> <CDxx> 4472 // V VMRHG 4473 // <ABCD> 4474 if (VT == MVT::v4f32 && !AllLoads) { 4475 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4476 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4477 // Avoid unnecessary undefs by reusing the other operand. 4478 if (Op01.isUndef()) 4479 Op01 = Op23; 4480 else if (Op23.isUndef()) 4481 Op23 = Op01; 4482 // Merging identical replications is a no-op. 4483 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4484 return Op01; 4485 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4486 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4487 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4488 DL, MVT::v2i64, Op01, Op23); 4489 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4490 } 4491 4492 // Collect the constant terms. 4493 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4494 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4495 4496 unsigned NumConstants = 0; 4497 for (unsigned I = 0; I < NumElements; ++I) { 4498 SDValue Elem = Elems[I]; 4499 if (Elem.getOpcode() == ISD::Constant || 4500 Elem.getOpcode() == ISD::ConstantFP) { 4501 NumConstants += 1; 4502 Constants[I] = Elem; 4503 Done[I] = true; 4504 } 4505 } 4506 // If there was at least one constant, fill in the other elements of 4507 // Constants with undefs to get a full vector constant and use that 4508 // as the starting point. 4509 SDValue Result; 4510 SDValue ReplicatedVal; 4511 if (NumConstants > 0) { 4512 for (unsigned I = 0; I < NumElements; ++I) 4513 if (!Constants[I].getNode()) 4514 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4515 Result = DAG.getBuildVector(VT, DL, Constants); 4516 } else { 4517 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4518 // avoid a false dependency on any previous contents of the vector 4519 // register. 4520 4521 // Use a VLREP if at least one element is a load. Make sure to replicate 4522 // the load with the most elements having its value. 4523 std::map<const SDNode*, unsigned> UseCounts; 4524 SDNode *LoadMaxUses = nullptr; 4525 for (unsigned I = 0; I < NumElements; ++I) 4526 if (Elems[I].getOpcode() == ISD::LOAD && 4527 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4528 SDNode *Ld = Elems[I].getNode(); 4529 UseCounts[Ld]++; 4530 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4531 LoadMaxUses = Ld; 4532 } 4533 if (LoadMaxUses != nullptr) { 4534 ReplicatedVal = SDValue(LoadMaxUses, 0); 4535 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4536 } else { 4537 // Try to use VLVGP. 4538 unsigned I1 = NumElements / 2 - 1; 4539 unsigned I2 = NumElements - 1; 4540 bool Def1 = !Elems[I1].isUndef(); 4541 bool Def2 = !Elems[I2].isUndef(); 4542 if (Def1 || Def2) { 4543 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4544 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4545 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4546 joinDwords(DAG, DL, Elem1, Elem2)); 4547 Done[I1] = true; 4548 Done[I2] = true; 4549 } else 4550 Result = DAG.getUNDEF(VT); 4551 } 4552 } 4553 4554 // Use VLVGx to insert the other elements. 4555 for (unsigned I = 0; I < NumElements; ++I) 4556 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4557 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4558 DAG.getConstant(I, DL, MVT::i32)); 4559 return Result; 4560 } 4561 4562 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4563 SelectionDAG &DAG) const { 4564 const SystemZInstrInfo *TII = 4565 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4566 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4567 SDLoc DL(Op); 4568 EVT VT = Op.getValueType(); 4569 4570 if (BVN->isConstant()) { 4571 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4572 // preferred way of creating all-zero and all-one vectors so give it 4573 // priority over other methods below. 4574 uint64_t Mask; 4575 if (ISD::isBuildVectorAllZeros(Op.getNode()) || 4576 ISD::isBuildVectorAllOnes(Op.getNode()) || 4577 (VT.isInteger() && tryBuildVectorByteMask(BVN, Mask))) 4578 return Op; 4579 4580 // Try using some form of replication. 4581 APInt SplatBits, SplatUndef; 4582 unsigned SplatBitSize; 4583 bool HasAnyUndefs; 4584 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4585 8, true) && 4586 SplatBitSize <= 64) { 4587 // First try assuming that any undefined bits above the highest set bit 4588 // and below the lowest set bit are 1s. This increases the likelihood of 4589 // being able to use a sign-extended element value in VECTOR REPLICATE 4590 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4591 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4592 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4593 uint64_t Lower = (SplatUndefZ 4594 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4595 uint64_t Upper = (SplatUndefZ 4596 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4597 uint64_t Value = SplatBitsZ | Upper | Lower; 4598 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4599 SplatBitSize); 4600 if (Op.getNode()) 4601 return Op; 4602 4603 // Now try assuming that any undefined bits between the first and 4604 // last defined set bits are set. This increases the chances of 4605 // using a non-wraparound mask. 4606 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4607 Value = SplatBitsZ | Middle; 4608 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4609 if (Op.getNode()) 4610 return Op; 4611 } 4612 4613 // Fall back to loading it from memory. 4614 return SDValue(); 4615 } 4616 4617 // See if we should use shuffles to construct the vector from other vectors. 4618 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4619 return Res; 4620 4621 // Detect SCALAR_TO_VECTOR conversions. 4622 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4623 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4624 4625 // Otherwise use buildVector to build the vector up from GPRs. 4626 unsigned NumElements = Op.getNumOperands(); 4627 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4628 for (unsigned I = 0; I < NumElements; ++I) 4629 Ops[I] = Op.getOperand(I); 4630 return buildVector(DAG, DL, VT, Ops); 4631 } 4632 4633 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4634 SelectionDAG &DAG) const { 4635 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4636 SDLoc DL(Op); 4637 EVT VT = Op.getValueType(); 4638 unsigned NumElements = VT.getVectorNumElements(); 4639 4640 if (VSN->isSplat()) { 4641 SDValue Op0 = Op.getOperand(0); 4642 unsigned Index = VSN->getSplatIndex(); 4643 assert(Index < VT.getVectorNumElements() && 4644 "Splat index should be defined and in first operand"); 4645 // See whether the value we're splatting is directly available as a scalar. 4646 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4647 Op0.getOpcode() == ISD::BUILD_VECTOR) 4648 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4649 // Otherwise keep it as a vector-to-vector operation. 4650 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4651 DAG.getConstant(Index, DL, MVT::i32)); 4652 } 4653 4654 GeneralShuffle GS(VT); 4655 for (unsigned I = 0; I < NumElements; ++I) { 4656 int Elt = VSN->getMaskElt(I); 4657 if (Elt < 0) 4658 GS.addUndef(); 4659 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4660 unsigned(Elt) % NumElements)) 4661 return SDValue(); 4662 } 4663 return GS.getNode(DAG, SDLoc(VSN)); 4664 } 4665 4666 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4667 SelectionDAG &DAG) const { 4668 SDLoc DL(Op); 4669 // Just insert the scalar into element 0 of an undefined vector. 4670 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4671 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4672 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4673 } 4674 4675 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4676 SelectionDAG &DAG) const { 4677 // Handle insertions of floating-point values. 4678 SDLoc DL(Op); 4679 SDValue Op0 = Op.getOperand(0); 4680 SDValue Op1 = Op.getOperand(1); 4681 SDValue Op2 = Op.getOperand(2); 4682 EVT VT = Op.getValueType(); 4683 4684 // Insertions into constant indices of a v2f64 can be done using VPDI. 4685 // However, if the inserted value is a bitcast or a constant then it's 4686 // better to use GPRs, as below. 4687 if (VT == MVT::v2f64 && 4688 Op1.getOpcode() != ISD::BITCAST && 4689 Op1.getOpcode() != ISD::ConstantFP && 4690 Op2.getOpcode() == ISD::Constant) { 4691 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4692 unsigned Mask = VT.getVectorNumElements() - 1; 4693 if (Index <= Mask) 4694 return Op; 4695 } 4696 4697 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4698 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4699 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4700 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4701 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4702 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4703 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4704 } 4705 4706 SDValue 4707 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4708 SelectionDAG &DAG) const { 4709 // Handle extractions of floating-point values. 4710 SDLoc DL(Op); 4711 SDValue Op0 = Op.getOperand(0); 4712 SDValue Op1 = Op.getOperand(1); 4713 EVT VT = Op.getValueType(); 4714 EVT VecVT = Op0.getValueType(); 4715 4716 // Extractions of constant indices can be done directly. 4717 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4718 uint64_t Index = CIndexN->getZExtValue(); 4719 unsigned Mask = VecVT.getVectorNumElements() - 1; 4720 if (Index <= Mask) 4721 return Op; 4722 } 4723 4724 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4725 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4726 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4727 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4728 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4729 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4730 } 4731 4732 SDValue 4733 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4734 unsigned UnpackHigh) const { 4735 SDValue PackedOp = Op.getOperand(0); 4736 EVT OutVT = Op.getValueType(); 4737 EVT InVT = PackedOp.getValueType(); 4738 unsigned ToBits = OutVT.getScalarSizeInBits(); 4739 unsigned FromBits = InVT.getScalarSizeInBits(); 4740 do { 4741 FromBits *= 2; 4742 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4743 SystemZ::VectorBits / FromBits); 4744 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4745 } while (FromBits != ToBits); 4746 return PackedOp; 4747 } 4748 4749 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4750 unsigned ByScalar) const { 4751 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4752 SDValue Op0 = Op.getOperand(0); 4753 SDValue Op1 = Op.getOperand(1); 4754 SDLoc DL(Op); 4755 EVT VT = Op.getValueType(); 4756 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4757 4758 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4759 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4760 APInt SplatBits, SplatUndef; 4761 unsigned SplatBitSize; 4762 bool HasAnyUndefs; 4763 // Check for constant splats. Use ElemBitSize as the minimum element 4764 // width and reject splats that need wider elements. 4765 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4766 ElemBitSize, true) && 4767 SplatBitSize == ElemBitSize) { 4768 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4769 DL, MVT::i32); 4770 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4771 } 4772 // Check for variable splats. 4773 BitVector UndefElements; 4774 SDValue Splat = BVN->getSplatValue(&UndefElements); 4775 if (Splat) { 4776 // Since i32 is the smallest legal type, we either need a no-op 4777 // or a truncation. 4778 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4779 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4780 } 4781 } 4782 4783 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4784 // and the shift amount is directly available in a GPR. 4785 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4786 if (VSN->isSplat()) { 4787 SDValue VSNOp0 = VSN->getOperand(0); 4788 unsigned Index = VSN->getSplatIndex(); 4789 assert(Index < VT.getVectorNumElements() && 4790 "Splat index should be defined and in first operand"); 4791 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4792 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4793 // Since i32 is the smallest legal type, we either need a no-op 4794 // or a truncation. 4795 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4796 VSNOp0.getOperand(Index)); 4797 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4798 } 4799 } 4800 } 4801 4802 // Otherwise just treat the current form as legal. 4803 return Op; 4804 } 4805 4806 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4807 SelectionDAG &DAG) const { 4808 switch (Op.getOpcode()) { 4809 case ISD::FRAMEADDR: 4810 return lowerFRAMEADDR(Op, DAG); 4811 case ISD::RETURNADDR: 4812 return lowerRETURNADDR(Op, DAG); 4813 case ISD::BR_CC: 4814 return lowerBR_CC(Op, DAG); 4815 case ISD::SELECT_CC: 4816 return lowerSELECT_CC(Op, DAG); 4817 case ISD::SETCC: 4818 return lowerSETCC(Op, DAG); 4819 case ISD::GlobalAddress: 4820 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4821 case ISD::GlobalTLSAddress: 4822 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4823 case ISD::BlockAddress: 4824 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4825 case ISD::JumpTable: 4826 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4827 case ISD::ConstantPool: 4828 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4829 case ISD::BITCAST: 4830 return lowerBITCAST(Op, DAG); 4831 case ISD::VASTART: 4832 return lowerVASTART(Op, DAG); 4833 case ISD::VACOPY: 4834 return lowerVACOPY(Op, DAG); 4835 case ISD::DYNAMIC_STACKALLOC: 4836 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4837 case ISD::GET_DYNAMIC_AREA_OFFSET: 4838 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4839 case ISD::SMUL_LOHI: 4840 return lowerSMUL_LOHI(Op, DAG); 4841 case ISD::UMUL_LOHI: 4842 return lowerUMUL_LOHI(Op, DAG); 4843 case ISD::SDIVREM: 4844 return lowerSDIVREM(Op, DAG); 4845 case ISD::UDIVREM: 4846 return lowerUDIVREM(Op, DAG); 4847 case ISD::SADDO: 4848 case ISD::SSUBO: 4849 case ISD::UADDO: 4850 case ISD::USUBO: 4851 return lowerXALUO(Op, DAG); 4852 case ISD::ADDCARRY: 4853 case ISD::SUBCARRY: 4854 return lowerADDSUBCARRY(Op, DAG); 4855 case ISD::OR: 4856 return lowerOR(Op, DAG); 4857 case ISD::CTPOP: 4858 return lowerCTPOP(Op, DAG); 4859 case ISD::ATOMIC_FENCE: 4860 return lowerATOMIC_FENCE(Op, DAG); 4861 case ISD::ATOMIC_SWAP: 4862 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4863 case ISD::ATOMIC_STORE: 4864 return lowerATOMIC_STORE(Op, DAG); 4865 case ISD::ATOMIC_LOAD: 4866 return lowerATOMIC_LOAD(Op, DAG); 4867 case ISD::ATOMIC_LOAD_ADD: 4868 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4869 case ISD::ATOMIC_LOAD_SUB: 4870 return lowerATOMIC_LOAD_SUB(Op, DAG); 4871 case ISD::ATOMIC_LOAD_AND: 4872 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4873 case ISD::ATOMIC_LOAD_OR: 4874 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4875 case ISD::ATOMIC_LOAD_XOR: 4876 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4877 case ISD::ATOMIC_LOAD_NAND: 4878 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4879 case ISD::ATOMIC_LOAD_MIN: 4880 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4881 case ISD::ATOMIC_LOAD_MAX: 4882 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4883 case ISD::ATOMIC_LOAD_UMIN: 4884 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4885 case ISD::ATOMIC_LOAD_UMAX: 4886 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4887 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4888 return lowerATOMIC_CMP_SWAP(Op, DAG); 4889 case ISD::STACKSAVE: 4890 return lowerSTACKSAVE(Op, DAG); 4891 case ISD::STACKRESTORE: 4892 return lowerSTACKRESTORE(Op, DAG); 4893 case ISD::PREFETCH: 4894 return lowerPREFETCH(Op, DAG); 4895 case ISD::INTRINSIC_W_CHAIN: 4896 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4897 case ISD::INTRINSIC_WO_CHAIN: 4898 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4899 case ISD::BUILD_VECTOR: 4900 return lowerBUILD_VECTOR(Op, DAG); 4901 case ISD::VECTOR_SHUFFLE: 4902 return lowerVECTOR_SHUFFLE(Op, DAG); 4903 case ISD::SCALAR_TO_VECTOR: 4904 return lowerSCALAR_TO_VECTOR(Op, DAG); 4905 case ISD::INSERT_VECTOR_ELT: 4906 return lowerINSERT_VECTOR_ELT(Op, DAG); 4907 case ISD::EXTRACT_VECTOR_ELT: 4908 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4909 case ISD::SIGN_EXTEND_VECTOR_INREG: 4910 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4911 case ISD::ZERO_EXTEND_VECTOR_INREG: 4912 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4913 case ISD::SHL: 4914 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4915 case ISD::SRL: 4916 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4917 case ISD::SRA: 4918 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4919 default: 4920 llvm_unreachable("Unexpected node to lower"); 4921 } 4922 } 4923 4924 // Lower operations with invalid operand or result types (currently used 4925 // only for 128-bit integer types). 4926 4927 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4928 SDLoc DL(In); 4929 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4930 DAG.getIntPtrConstant(0, DL)); 4931 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4932 DAG.getIntPtrConstant(1, DL)); 4933 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4934 MVT::Untyped, Hi, Lo); 4935 return SDValue(Pair, 0); 4936 } 4937 4938 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4939 SDLoc DL(In); 4940 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4941 DL, MVT::i64, In); 4942 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4943 DL, MVT::i64, In); 4944 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4945 } 4946 4947 void 4948 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4949 SmallVectorImpl<SDValue> &Results, 4950 SelectionDAG &DAG) const { 4951 switch (N->getOpcode()) { 4952 case ISD::ATOMIC_LOAD: { 4953 SDLoc DL(N); 4954 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4955 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4956 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4957 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4958 DL, Tys, Ops, MVT::i128, MMO); 4959 Results.push_back(lowerGR128ToI128(DAG, Res)); 4960 Results.push_back(Res.getValue(1)); 4961 break; 4962 } 4963 case ISD::ATOMIC_STORE: { 4964 SDLoc DL(N); 4965 SDVTList Tys = DAG.getVTList(MVT::Other); 4966 SDValue Ops[] = { N->getOperand(0), 4967 lowerI128ToGR128(DAG, N->getOperand(2)), 4968 N->getOperand(1) }; 4969 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4970 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4971 DL, Tys, Ops, MVT::i128, MMO); 4972 // We have to enforce sequential consistency by performing a 4973 // serialization operation after the store. 4974 if (cast<AtomicSDNode>(N)->getOrdering() == 4975 AtomicOrdering::SequentiallyConsistent) 4976 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4977 MVT::Other, Res), 0); 4978 Results.push_back(Res); 4979 break; 4980 } 4981 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 4982 SDLoc DL(N); 4983 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 4984 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4985 lowerI128ToGR128(DAG, N->getOperand(2)), 4986 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4987 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4988 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4989 DL, Tys, Ops, MVT::i128, MMO); 4990 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 4991 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4992 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 4993 Results.push_back(lowerGR128ToI128(DAG, Res)); 4994 Results.push_back(Success); 4995 Results.push_back(Res.getValue(2)); 4996 break; 4997 } 4998 default: 4999 llvm_unreachable("Unexpected node to lower"); 5000 } 5001 } 5002 5003 void 5004 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5005 SmallVectorImpl<SDValue> &Results, 5006 SelectionDAG &DAG) const { 5007 return LowerOperationWrapper(N, Results, DAG); 5008 } 5009 5010 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5011 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5012 switch ((SystemZISD::NodeType)Opcode) { 5013 case SystemZISD::FIRST_NUMBER: break; 5014 OPCODE(RET_FLAG); 5015 OPCODE(CALL); 5016 OPCODE(SIBCALL); 5017 OPCODE(TLS_GDCALL); 5018 OPCODE(TLS_LDCALL); 5019 OPCODE(PCREL_WRAPPER); 5020 OPCODE(PCREL_OFFSET); 5021 OPCODE(IABS); 5022 OPCODE(ICMP); 5023 OPCODE(FCMP); 5024 OPCODE(TM); 5025 OPCODE(BR_CCMASK); 5026 OPCODE(SELECT_CCMASK); 5027 OPCODE(ADJDYNALLOC); 5028 OPCODE(POPCNT); 5029 OPCODE(SMUL_LOHI); 5030 OPCODE(UMUL_LOHI); 5031 OPCODE(SDIVREM); 5032 OPCODE(UDIVREM); 5033 OPCODE(SADDO); 5034 OPCODE(SSUBO); 5035 OPCODE(UADDO); 5036 OPCODE(USUBO); 5037 OPCODE(ADDCARRY); 5038 OPCODE(SUBCARRY); 5039 OPCODE(GET_CCMASK); 5040 OPCODE(MVC); 5041 OPCODE(MVC_LOOP); 5042 OPCODE(NC); 5043 OPCODE(NC_LOOP); 5044 OPCODE(OC); 5045 OPCODE(OC_LOOP); 5046 OPCODE(XC); 5047 OPCODE(XC_LOOP); 5048 OPCODE(CLC); 5049 OPCODE(CLC_LOOP); 5050 OPCODE(STPCPY); 5051 OPCODE(STRCMP); 5052 OPCODE(SEARCH_STRING); 5053 OPCODE(IPM); 5054 OPCODE(MEMBARRIER); 5055 OPCODE(TBEGIN); 5056 OPCODE(TBEGIN_NOFLOAT); 5057 OPCODE(TEND); 5058 OPCODE(ROTATE_MASK); 5059 OPCODE(REPLICATE); 5060 OPCODE(JOIN_DWORDS); 5061 OPCODE(SPLAT); 5062 OPCODE(MERGE_HIGH); 5063 OPCODE(MERGE_LOW); 5064 OPCODE(SHL_DOUBLE); 5065 OPCODE(PERMUTE_DWORDS); 5066 OPCODE(PERMUTE); 5067 OPCODE(PACK); 5068 OPCODE(PACKS_CC); 5069 OPCODE(PACKLS_CC); 5070 OPCODE(UNPACK_HIGH); 5071 OPCODE(UNPACKL_HIGH); 5072 OPCODE(UNPACK_LOW); 5073 OPCODE(UNPACKL_LOW); 5074 OPCODE(VSHL_BY_SCALAR); 5075 OPCODE(VSRL_BY_SCALAR); 5076 OPCODE(VSRA_BY_SCALAR); 5077 OPCODE(VSUM); 5078 OPCODE(VICMPE); 5079 OPCODE(VICMPH); 5080 OPCODE(VICMPHL); 5081 OPCODE(VICMPES); 5082 OPCODE(VICMPHS); 5083 OPCODE(VICMPHLS); 5084 OPCODE(VFCMPE); 5085 OPCODE(VFCMPH); 5086 OPCODE(VFCMPHE); 5087 OPCODE(VFCMPES); 5088 OPCODE(VFCMPHS); 5089 OPCODE(VFCMPHES); 5090 OPCODE(VFTCI); 5091 OPCODE(VEXTEND); 5092 OPCODE(VROUND); 5093 OPCODE(VTM); 5094 OPCODE(VFAE_CC); 5095 OPCODE(VFAEZ_CC); 5096 OPCODE(VFEE_CC); 5097 OPCODE(VFEEZ_CC); 5098 OPCODE(VFENE_CC); 5099 OPCODE(VFENEZ_CC); 5100 OPCODE(VISTR_CC); 5101 OPCODE(VSTRC_CC); 5102 OPCODE(VSTRCZ_CC); 5103 OPCODE(TDC); 5104 OPCODE(ATOMIC_SWAPW); 5105 OPCODE(ATOMIC_LOADW_ADD); 5106 OPCODE(ATOMIC_LOADW_SUB); 5107 OPCODE(ATOMIC_LOADW_AND); 5108 OPCODE(ATOMIC_LOADW_OR); 5109 OPCODE(ATOMIC_LOADW_XOR); 5110 OPCODE(ATOMIC_LOADW_NAND); 5111 OPCODE(ATOMIC_LOADW_MIN); 5112 OPCODE(ATOMIC_LOADW_MAX); 5113 OPCODE(ATOMIC_LOADW_UMIN); 5114 OPCODE(ATOMIC_LOADW_UMAX); 5115 OPCODE(ATOMIC_CMP_SWAPW); 5116 OPCODE(ATOMIC_CMP_SWAP); 5117 OPCODE(ATOMIC_LOAD_128); 5118 OPCODE(ATOMIC_STORE_128); 5119 OPCODE(ATOMIC_CMP_SWAP_128); 5120 OPCODE(LRV); 5121 OPCODE(STRV); 5122 OPCODE(PREFETCH); 5123 } 5124 return nullptr; 5125 #undef OPCODE 5126 } 5127 5128 // Return true if VT is a vector whose elements are a whole number of bytes 5129 // in width. Also check for presence of vector support. 5130 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5131 if (!Subtarget.hasVector()) 5132 return false; 5133 5134 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5135 } 5136 5137 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5138 // producing a result of type ResVT. Op is a possibly bitcast version 5139 // of the input vector and Index is the index (based on type VecVT) that 5140 // should be extracted. Return the new extraction if a simplification 5141 // was possible or if Force is true. 5142 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5143 EVT VecVT, SDValue Op, 5144 unsigned Index, 5145 DAGCombinerInfo &DCI, 5146 bool Force) const { 5147 SelectionDAG &DAG = DCI.DAG; 5148 5149 // The number of bytes being extracted. 5150 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5151 5152 for (;;) { 5153 unsigned Opcode = Op.getOpcode(); 5154 if (Opcode == ISD::BITCAST) 5155 // Look through bitcasts. 5156 Op = Op.getOperand(0); 5157 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5158 canTreatAsByteVector(Op.getValueType())) { 5159 // Get a VPERM-like permute mask and see whether the bytes covered 5160 // by the extracted element are a contiguous sequence from one 5161 // source operand. 5162 SmallVector<int, SystemZ::VectorBytes> Bytes; 5163 if (!getVPermMask(Op, Bytes)) 5164 break; 5165 int First; 5166 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5167 BytesPerElement, First)) 5168 break; 5169 if (First < 0) 5170 return DAG.getUNDEF(ResVT); 5171 // Make sure the contiguous sequence starts at a multiple of the 5172 // original element size. 5173 unsigned Byte = unsigned(First) % Bytes.size(); 5174 if (Byte % BytesPerElement != 0) 5175 break; 5176 // We can get the extracted value directly from an input. 5177 Index = Byte / BytesPerElement; 5178 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5179 Force = true; 5180 } else if (Opcode == ISD::BUILD_VECTOR && 5181 canTreatAsByteVector(Op.getValueType())) { 5182 // We can only optimize this case if the BUILD_VECTOR elements are 5183 // at least as wide as the extracted value. 5184 EVT OpVT = Op.getValueType(); 5185 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5186 if (OpBytesPerElement < BytesPerElement) 5187 break; 5188 // Make sure that the least-significant bit of the extracted value 5189 // is the least significant bit of an input. 5190 unsigned End = (Index + 1) * BytesPerElement; 5191 if (End % OpBytesPerElement != 0) 5192 break; 5193 // We're extracting the low part of one operand of the BUILD_VECTOR. 5194 Op = Op.getOperand(End / OpBytesPerElement - 1); 5195 if (!Op.getValueType().isInteger()) { 5196 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5197 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5198 DCI.AddToWorklist(Op.getNode()); 5199 } 5200 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5201 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5202 if (VT != ResVT) { 5203 DCI.AddToWorklist(Op.getNode()); 5204 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5205 } 5206 return Op; 5207 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5208 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5209 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5210 canTreatAsByteVector(Op.getValueType()) && 5211 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5212 // Make sure that only the unextended bits are significant. 5213 EVT ExtVT = Op.getValueType(); 5214 EVT OpVT = Op.getOperand(0).getValueType(); 5215 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5216 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5217 unsigned Byte = Index * BytesPerElement; 5218 unsigned SubByte = Byte % ExtBytesPerElement; 5219 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5220 if (SubByte < MinSubByte || 5221 SubByte + BytesPerElement > ExtBytesPerElement) 5222 break; 5223 // Get the byte offset of the unextended element 5224 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5225 // ...then add the byte offset relative to that element. 5226 Byte += SubByte - MinSubByte; 5227 if (Byte % BytesPerElement != 0) 5228 break; 5229 Op = Op.getOperand(0); 5230 Index = Byte / BytesPerElement; 5231 Force = true; 5232 } else 5233 break; 5234 } 5235 if (Force) { 5236 if (Op.getValueType() != VecVT) { 5237 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5238 DCI.AddToWorklist(Op.getNode()); 5239 } 5240 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5241 DAG.getConstant(Index, DL, MVT::i32)); 5242 } 5243 return SDValue(); 5244 } 5245 5246 // Optimize vector operations in scalar value Op on the basis that Op 5247 // is truncated to TruncVT. 5248 SDValue SystemZTargetLowering::combineTruncateExtract( 5249 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5250 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5251 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5252 // of type TruncVT. 5253 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5254 TruncVT.getSizeInBits() % 8 == 0) { 5255 SDValue Vec = Op.getOperand(0); 5256 EVT VecVT = Vec.getValueType(); 5257 if (canTreatAsByteVector(VecVT)) { 5258 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5259 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5260 unsigned TruncBytes = TruncVT.getStoreSize(); 5261 if (BytesPerElement % TruncBytes == 0) { 5262 // Calculate the value of Y' in the above description. We are 5263 // splitting the original elements into Scale equal-sized pieces 5264 // and for truncation purposes want the last (least-significant) 5265 // of these pieces for IndexN. This is easiest to do by calculating 5266 // the start index of the following element and then subtracting 1. 5267 unsigned Scale = BytesPerElement / TruncBytes; 5268 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5269 5270 // Defer the creation of the bitcast from X to combineExtract, 5271 // which might be able to optimize the extraction. 5272 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5273 VecVT.getStoreSize() / TruncBytes); 5274 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5275 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5276 } 5277 } 5278 } 5279 } 5280 return SDValue(); 5281 } 5282 5283 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5284 SDNode *N, DAGCombinerInfo &DCI) const { 5285 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5286 SelectionDAG &DAG = DCI.DAG; 5287 SDValue N0 = N->getOperand(0); 5288 EVT VT = N->getValueType(0); 5289 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5290 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5291 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5292 if (TrueOp && FalseOp) { 5293 SDLoc DL(N0); 5294 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5295 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5296 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5297 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5298 // If N0 has multiple uses, change other uses as well. 5299 if (!N0.hasOneUse()) { 5300 SDValue TruncSelect = 5301 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5302 DCI.CombineTo(N0.getNode(), TruncSelect); 5303 } 5304 return NewSelect; 5305 } 5306 } 5307 return SDValue(); 5308 } 5309 5310 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5311 SDNode *N, DAGCombinerInfo &DCI) const { 5312 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5313 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5314 // into (select_cc LHS, RHS, -1, 0, COND) 5315 SelectionDAG &DAG = DCI.DAG; 5316 SDValue N0 = N->getOperand(0); 5317 EVT VT = N->getValueType(0); 5318 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5319 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5320 N0 = N0.getOperand(0); 5321 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5322 SDLoc DL(N0); 5323 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5324 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5325 N0.getOperand(2) }; 5326 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5327 } 5328 return SDValue(); 5329 } 5330 5331 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5332 SDNode *N, DAGCombinerInfo &DCI) const { 5333 // Convert (sext (ashr (shl X, C1), C2)) to 5334 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5335 // cheap as narrower ones. 5336 SelectionDAG &DAG = DCI.DAG; 5337 SDValue N0 = N->getOperand(0); 5338 EVT VT = N->getValueType(0); 5339 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5340 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5341 SDValue Inner = N0.getOperand(0); 5342 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5343 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5344 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5345 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5346 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5347 EVT ShiftVT = N0.getOperand(1).getValueType(); 5348 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5349 Inner.getOperand(0)); 5350 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5351 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5352 ShiftVT)); 5353 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5354 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5355 } 5356 } 5357 } 5358 return SDValue(); 5359 } 5360 5361 SDValue SystemZTargetLowering::combineMERGE( 5362 SDNode *N, DAGCombinerInfo &DCI) const { 5363 SelectionDAG &DAG = DCI.DAG; 5364 unsigned Opcode = N->getOpcode(); 5365 SDValue Op0 = N->getOperand(0); 5366 SDValue Op1 = N->getOperand(1); 5367 if (Op0.getOpcode() == ISD::BITCAST) 5368 Op0 = Op0.getOperand(0); 5369 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5370 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5371 // for v4f32. 5372 if (Op1 == N->getOperand(0)) 5373 return Op1; 5374 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5375 EVT VT = Op1.getValueType(); 5376 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5377 if (ElemBytes <= 4) { 5378 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5379 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5380 EVT InVT = VT.changeVectorElementTypeToInteger(); 5381 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5382 SystemZ::VectorBytes / ElemBytes / 2); 5383 if (VT != InVT) { 5384 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5385 DCI.AddToWorklist(Op1.getNode()); 5386 } 5387 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5388 DCI.AddToWorklist(Op.getNode()); 5389 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5390 } 5391 } 5392 return SDValue(); 5393 } 5394 5395 SDValue SystemZTargetLowering::combineLOAD( 5396 SDNode *N, DAGCombinerInfo &DCI) const { 5397 SelectionDAG &DAG = DCI.DAG; 5398 EVT LdVT = N->getValueType(0); 5399 if (LdVT.isVector() || LdVT.isInteger()) 5400 return SDValue(); 5401 // Transform a scalar load that is REPLICATEd as well as having other 5402 // use(s) to the form where the other use(s) use the first element of the 5403 // REPLICATE instead of the load. Otherwise instruction selection will not 5404 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5405 // point loads. 5406 5407 SDValue Replicate; 5408 SmallVector<SDNode*, 8> OtherUses; 5409 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5410 UI != UE; ++UI) { 5411 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5412 if (Replicate) 5413 return SDValue(); // Should never happen 5414 Replicate = SDValue(*UI, 0); 5415 } 5416 else if (UI.getUse().getResNo() == 0) 5417 OtherUses.push_back(*UI); 5418 } 5419 if (!Replicate || OtherUses.empty()) 5420 return SDValue(); 5421 5422 SDLoc DL(N); 5423 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5424 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5425 // Update uses of the loaded Value while preserving old chains. 5426 for (SDNode *U : OtherUses) { 5427 SmallVector<SDValue, 8> Ops; 5428 for (SDValue Op : U->ops()) 5429 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5430 DAG.UpdateNodeOperands(U, Ops); 5431 } 5432 return SDValue(N, 0); 5433 } 5434 5435 SDValue SystemZTargetLowering::combineSTORE( 5436 SDNode *N, DAGCombinerInfo &DCI) const { 5437 SelectionDAG &DAG = DCI.DAG; 5438 auto *SN = cast<StoreSDNode>(N); 5439 auto &Op1 = N->getOperand(1); 5440 EVT MemVT = SN->getMemoryVT(); 5441 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5442 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5443 // If X has wider elements then convert it to: 5444 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5445 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5446 if (SDValue Value = 5447 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5448 DCI.AddToWorklist(Value.getNode()); 5449 5450 // Rewrite the store with the new form of stored value. 5451 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5452 SN->getBasePtr(), SN->getMemoryVT(), 5453 SN->getMemOperand()); 5454 } 5455 } 5456 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5457 if (!SN->isTruncatingStore() && 5458 Op1.getOpcode() == ISD::BSWAP && 5459 Op1.getNode()->hasOneUse() && 5460 (Op1.getValueType() == MVT::i16 || 5461 Op1.getValueType() == MVT::i32 || 5462 Op1.getValueType() == MVT::i64)) { 5463 5464 SDValue BSwapOp = Op1.getOperand(0); 5465 5466 if (BSwapOp.getValueType() == MVT::i16) 5467 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5468 5469 SDValue Ops[] = { 5470 N->getOperand(0), BSwapOp, N->getOperand(2) 5471 }; 5472 5473 return 5474 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5475 Ops, MemVT, SN->getMemOperand()); 5476 } 5477 return SDValue(); 5478 } 5479 5480 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5481 SDNode *N, DAGCombinerInfo &DCI) const { 5482 5483 if (!Subtarget.hasVector()) 5484 return SDValue(); 5485 5486 // Try to simplify a vector extraction. 5487 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5488 SDValue Op0 = N->getOperand(0); 5489 EVT VecVT = Op0.getValueType(); 5490 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5491 IndexN->getZExtValue(), DCI, false); 5492 } 5493 return SDValue(); 5494 } 5495 5496 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5497 SDNode *N, DAGCombinerInfo &DCI) const { 5498 SelectionDAG &DAG = DCI.DAG; 5499 // (join_dwords X, X) == (replicate X) 5500 if (N->getOperand(0) == N->getOperand(1)) 5501 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5502 N->getOperand(0)); 5503 return SDValue(); 5504 } 5505 5506 SDValue SystemZTargetLowering::combineFP_ROUND( 5507 SDNode *N, DAGCombinerInfo &DCI) const { 5508 // (fpround (extract_vector_elt X 0)) 5509 // (fpround (extract_vector_elt X 1)) -> 5510 // (extract_vector_elt (VROUND X) 0) 5511 // (extract_vector_elt (VROUND X) 2) 5512 // 5513 // This is a special case since the target doesn't really support v2f32s. 5514 SelectionDAG &DAG = DCI.DAG; 5515 SDValue Op0 = N->getOperand(0); 5516 if (N->getValueType(0) == MVT::f32 && 5517 Op0.hasOneUse() && 5518 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5519 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5520 Op0.getOperand(1).getOpcode() == ISD::Constant && 5521 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5522 SDValue Vec = Op0.getOperand(0); 5523 for (auto *U : Vec->uses()) { 5524 if (U != Op0.getNode() && 5525 U->hasOneUse() && 5526 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5527 U->getOperand(0) == Vec && 5528 U->getOperand(1).getOpcode() == ISD::Constant && 5529 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5530 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5531 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5532 OtherRound.getOperand(0) == SDValue(U, 0) && 5533 OtherRound.getValueType() == MVT::f32) { 5534 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5535 MVT::v4f32, Vec); 5536 DCI.AddToWorklist(VRound.getNode()); 5537 SDValue Extract1 = 5538 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5539 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5540 DCI.AddToWorklist(Extract1.getNode()); 5541 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5542 SDValue Extract0 = 5543 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5544 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5545 return Extract0; 5546 } 5547 } 5548 } 5549 } 5550 return SDValue(); 5551 } 5552 5553 SDValue SystemZTargetLowering::combineFP_EXTEND( 5554 SDNode *N, DAGCombinerInfo &DCI) const { 5555 // (fpextend (extract_vector_elt X 0)) 5556 // (fpextend (extract_vector_elt X 2)) -> 5557 // (extract_vector_elt (VEXTEND X) 0) 5558 // (extract_vector_elt (VEXTEND X) 1) 5559 // 5560 // This is a special case since the target doesn't really support v2f32s. 5561 SelectionDAG &DAG = DCI.DAG; 5562 SDValue Op0 = N->getOperand(0); 5563 if (N->getValueType(0) == MVT::f64 && 5564 Op0.hasOneUse() && 5565 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5566 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5567 Op0.getOperand(1).getOpcode() == ISD::Constant && 5568 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5569 SDValue Vec = Op0.getOperand(0); 5570 for (auto *U : Vec->uses()) { 5571 if (U != Op0.getNode() && 5572 U->hasOneUse() && 5573 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5574 U->getOperand(0) == Vec && 5575 U->getOperand(1).getOpcode() == ISD::Constant && 5576 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5577 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5578 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5579 OtherExtend.getOperand(0) == SDValue(U, 0) && 5580 OtherExtend.getValueType() == MVT::f64) { 5581 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5582 MVT::v2f64, Vec); 5583 DCI.AddToWorklist(VExtend.getNode()); 5584 SDValue Extract1 = 5585 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5586 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5587 DCI.AddToWorklist(Extract1.getNode()); 5588 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5589 SDValue Extract0 = 5590 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5591 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5592 return Extract0; 5593 } 5594 } 5595 } 5596 } 5597 return SDValue(); 5598 } 5599 5600 SDValue SystemZTargetLowering::combineBSWAP( 5601 SDNode *N, DAGCombinerInfo &DCI) const { 5602 SelectionDAG &DAG = DCI.DAG; 5603 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5604 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5605 N->getOperand(0).hasOneUse() && 5606 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5607 N->getValueType(0) == MVT::i64)) { 5608 SDValue Load = N->getOperand(0); 5609 LoadSDNode *LD = cast<LoadSDNode>(Load); 5610 5611 // Create the byte-swapping load. 5612 SDValue Ops[] = { 5613 LD->getChain(), // Chain 5614 LD->getBasePtr() // Ptr 5615 }; 5616 EVT LoadVT = N->getValueType(0); 5617 if (LoadVT == MVT::i16) 5618 LoadVT = MVT::i32; 5619 SDValue BSLoad = 5620 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5621 DAG.getVTList(LoadVT, MVT::Other), 5622 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5623 5624 // If this is an i16 load, insert the truncate. 5625 SDValue ResVal = BSLoad; 5626 if (N->getValueType(0) == MVT::i16) 5627 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5628 5629 // First, combine the bswap away. This makes the value produced by the 5630 // load dead. 5631 DCI.CombineTo(N, ResVal); 5632 5633 // Next, combine the load away, we give it a bogus result value but a real 5634 // chain result. The result value is dead because the bswap is dead. 5635 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5636 5637 // Return N so it doesn't get rechecked! 5638 return SDValue(N, 0); 5639 } 5640 return SDValue(); 5641 } 5642 5643 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5644 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5645 // set by the CCReg instruction using the CCValid / CCMask masks, 5646 // If the CCReg instruction is itself a ICMP testing the condition 5647 // code set by some other instruction, see whether we can directly 5648 // use that condition code. 5649 5650 // Verify that we have an ICMP against some constant. 5651 if (CCValid != SystemZ::CCMASK_ICMP) 5652 return false; 5653 auto *ICmp = CCReg.getNode(); 5654 if (ICmp->getOpcode() != SystemZISD::ICMP) 5655 return false; 5656 auto *CompareLHS = ICmp->getOperand(0).getNode(); 5657 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5658 if (!CompareRHS) 5659 return false; 5660 5661 // Optimize the case where CompareLHS is a SELECT_CCMASK. 5662 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 5663 // Verify that we have an appropriate mask for a EQ or NE comparison. 5664 bool Invert = false; 5665 if (CCMask == SystemZ::CCMASK_CMP_NE) 5666 Invert = !Invert; 5667 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5668 return false; 5669 5670 // Verify that the ICMP compares against one of select values. 5671 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 5672 if (!TrueVal) 5673 return false; 5674 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 5675 if (!FalseVal) 5676 return false; 5677 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 5678 Invert = !Invert; 5679 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 5680 return false; 5681 5682 // Compute the effective CC mask for the new branch or select. 5683 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 5684 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 5685 if (!NewCCValid || !NewCCMask) 5686 return false; 5687 CCValid = NewCCValid->getZExtValue(); 5688 CCMask = NewCCMask->getZExtValue(); 5689 if (Invert) 5690 CCMask ^= CCValid; 5691 5692 // Return the updated CCReg link. 5693 CCReg = CompareLHS->getOperand(4); 5694 return true; 5695 } 5696 5697 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 5698 if (CompareLHS->getOpcode() == ISD::SRA) { 5699 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 5700 if (!SRACount || SRACount->getZExtValue() != 30) 5701 return false; 5702 auto *SHL = CompareLHS->getOperand(0).getNode(); 5703 if (SHL->getOpcode() != ISD::SHL) 5704 return false; 5705 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 5706 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 5707 return false; 5708 auto *IPM = SHL->getOperand(0).getNode(); 5709 if (IPM->getOpcode() != SystemZISD::IPM) 5710 return false; 5711 5712 // Avoid introducing CC spills (because SRA would clobber CC). 5713 if (!CompareLHS->hasOneUse()) 5714 return false; 5715 // Verify that the ICMP compares against zero. 5716 if (CompareRHS->getZExtValue() != 0) 5717 return false; 5718 5719 // Compute the effective CC mask for the new branch or select. 5720 switch (CCMask) { 5721 case SystemZ::CCMASK_CMP_EQ: break; 5722 case SystemZ::CCMASK_CMP_NE: break; 5723 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 5724 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 5725 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 5726 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 5727 default: return false; 5728 } 5729 5730 // Return the updated CCReg link. 5731 CCReg = IPM->getOperand(0); 5732 return true; 5733 } 5734 5735 return false; 5736 } 5737 5738 SDValue SystemZTargetLowering::combineBR_CCMASK( 5739 SDNode *N, DAGCombinerInfo &DCI) const { 5740 SelectionDAG &DAG = DCI.DAG; 5741 5742 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 5743 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5744 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5745 if (!CCValid || !CCMask) 5746 return SDValue(); 5747 5748 int CCValidVal = CCValid->getZExtValue(); 5749 int CCMaskVal = CCMask->getZExtValue(); 5750 SDValue Chain = N->getOperand(0); 5751 SDValue CCReg = N->getOperand(4); 5752 5753 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5754 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 5755 Chain, 5756 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5757 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5758 N->getOperand(3), CCReg); 5759 return SDValue(); 5760 } 5761 5762 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 5763 SDNode *N, DAGCombinerInfo &DCI) const { 5764 SelectionDAG &DAG = DCI.DAG; 5765 5766 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 5767 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5768 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 5769 if (!CCValid || !CCMask) 5770 return SDValue(); 5771 5772 int CCValidVal = CCValid->getZExtValue(); 5773 int CCMaskVal = CCMask->getZExtValue(); 5774 SDValue CCReg = N->getOperand(4); 5775 5776 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5777 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 5778 N->getOperand(0), 5779 N->getOperand(1), 5780 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5781 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5782 CCReg); 5783 return SDValue(); 5784 } 5785 5786 5787 SDValue SystemZTargetLowering::combineGET_CCMASK( 5788 SDNode *N, DAGCombinerInfo &DCI) const { 5789 5790 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 5791 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5792 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5793 if (!CCValid || !CCMask) 5794 return SDValue(); 5795 int CCValidVal = CCValid->getZExtValue(); 5796 int CCMaskVal = CCMask->getZExtValue(); 5797 5798 SDValue Select = N->getOperand(0); 5799 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5800 return SDValue(); 5801 5802 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5803 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5804 if (!SelectCCValid || !SelectCCMask) 5805 return SDValue(); 5806 int SelectCCValidVal = SelectCCValid->getZExtValue(); 5807 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 5808 5809 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5810 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5811 if (!TrueVal || !FalseVal) 5812 return SDValue(); 5813 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 5814 ; 5815 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 5816 SelectCCMaskVal ^= SelectCCValidVal; 5817 else 5818 return SDValue(); 5819 5820 if (SelectCCValidVal & ~CCValidVal) 5821 return SDValue(); 5822 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 5823 return SDValue(); 5824 5825 return Select->getOperand(4); 5826 } 5827 5828 SDValue SystemZTargetLowering::combineIntDIVREM( 5829 SDNode *N, DAGCombinerInfo &DCI) const { 5830 SelectionDAG &DAG = DCI.DAG; 5831 EVT VT = N->getValueType(0); 5832 // In the case where the divisor is a vector of constants a cheaper 5833 // sequence of instructions can replace the divide. BuildSDIV is called to 5834 // do this during DAG combining, but it only succeeds when it can build a 5835 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 5836 // since it is not Legal but Custom it can only happen before 5837 // legalization. Therefore we must scalarize this early before Combine 5838 // 1. For widened vectors, this is already the result of type legalization. 5839 if (VT.isVector() && isTypeLegal(VT) && 5840 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 5841 return DAG.UnrollVectorOp(N); 5842 return SDValue(); 5843 } 5844 5845 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 5846 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 5847 return N->getOperand(0); 5848 return N; 5849 } 5850 5851 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5852 DAGCombinerInfo &DCI) const { 5853 switch(N->getOpcode()) { 5854 default: break; 5855 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 5856 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5857 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 5858 case SystemZISD::MERGE_HIGH: 5859 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5860 case ISD::LOAD: return combineLOAD(N, DCI); 5861 case ISD::STORE: return combineSTORE(N, DCI); 5862 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5863 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5864 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5865 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 5866 case ISD::BSWAP: return combineBSWAP(N, DCI); 5867 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 5868 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 5869 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 5870 case ISD::SDIV: 5871 case ISD::UDIV: 5872 case ISD::SREM: 5873 case ISD::UREM: return combineIntDIVREM(N, DCI); 5874 } 5875 5876 return SDValue(); 5877 } 5878 5879 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 5880 // are for Op. 5881 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 5882 unsigned OpNo) { 5883 EVT VT = Op.getValueType(); 5884 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 5885 APInt SrcDemE; 5886 unsigned Opcode = Op.getOpcode(); 5887 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5888 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5889 switch (Id) { 5890 case Intrinsic::s390_vpksh: // PACKS 5891 case Intrinsic::s390_vpksf: 5892 case Intrinsic::s390_vpksg: 5893 case Intrinsic::s390_vpkshs: // PACKS_CC 5894 case Intrinsic::s390_vpksfs: 5895 case Intrinsic::s390_vpksgs: 5896 case Intrinsic::s390_vpklsh: // PACKLS 5897 case Intrinsic::s390_vpklsf: 5898 case Intrinsic::s390_vpklsg: 5899 case Intrinsic::s390_vpklshs: // PACKLS_CC 5900 case Intrinsic::s390_vpklsfs: 5901 case Intrinsic::s390_vpklsgs: 5902 // VECTOR PACK truncates the elements of two source vectors into one. 5903 SrcDemE = DemandedElts; 5904 if (OpNo == 2) 5905 SrcDemE.lshrInPlace(NumElts / 2); 5906 SrcDemE = SrcDemE.trunc(NumElts / 2); 5907 break; 5908 // VECTOR UNPACK extends half the elements of the source vector. 5909 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5910 case Intrinsic::s390_vuphh: 5911 case Intrinsic::s390_vuphf: 5912 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5913 case Intrinsic::s390_vuplhh: 5914 case Intrinsic::s390_vuplhf: 5915 SrcDemE = APInt(NumElts * 2, 0); 5916 SrcDemE.insertBits(DemandedElts, 0); 5917 break; 5918 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5919 case Intrinsic::s390_vuplhw: 5920 case Intrinsic::s390_vuplf: 5921 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5922 case Intrinsic::s390_vupllh: 5923 case Intrinsic::s390_vupllf: 5924 SrcDemE = APInt(NumElts * 2, 0); 5925 SrcDemE.insertBits(DemandedElts, NumElts); 5926 break; 5927 case Intrinsic::s390_vpdi: { 5928 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 5929 SrcDemE = APInt(NumElts, 0); 5930 if (!DemandedElts[OpNo - 1]) 5931 break; 5932 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5933 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 5934 // Demand input element 0 or 1, given by the mask bit value. 5935 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 5936 break; 5937 } 5938 case Intrinsic::s390_vsldb: { 5939 // VECTOR SHIFT LEFT DOUBLE BY BYTE 5940 assert(VT == MVT::v16i8 && "Unexpected type."); 5941 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5942 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 5943 unsigned NumSrc0Els = 16 - FirstIdx; 5944 SrcDemE = APInt(NumElts, 0); 5945 if (OpNo == 1) { 5946 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 5947 SrcDemE.insertBits(DemEls, FirstIdx); 5948 } else { 5949 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 5950 SrcDemE.insertBits(DemEls, 0); 5951 } 5952 break; 5953 } 5954 case Intrinsic::s390_vperm: 5955 SrcDemE = APInt(NumElts, 1); 5956 break; 5957 default: 5958 llvm_unreachable("Unhandled intrinsic."); 5959 break; 5960 } 5961 } else { 5962 switch (Opcode) { 5963 case SystemZISD::JOIN_DWORDS: 5964 // Scalar operand. 5965 SrcDemE = APInt(1, 1); 5966 break; 5967 case SystemZISD::SELECT_CCMASK: 5968 SrcDemE = DemandedElts; 5969 break; 5970 default: 5971 llvm_unreachable("Unhandled opcode."); 5972 break; 5973 } 5974 } 5975 return SrcDemE; 5976 } 5977 5978 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 5979 const APInt &DemandedElts, 5980 const SelectionDAG &DAG, unsigned Depth, 5981 unsigned OpNo) { 5982 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5983 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5984 KnownBits LHSKnown = 5985 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 5986 KnownBits RHSKnown = 5987 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 5988 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 5989 Known.One = LHSKnown.One & RHSKnown.One; 5990 } 5991 5992 void 5993 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5994 KnownBits &Known, 5995 const APInt &DemandedElts, 5996 const SelectionDAG &DAG, 5997 unsigned Depth) const { 5998 Known.resetAll(); 5999 6000 // Intrinsic CC result is returned in the two low bits. 6001 unsigned tmp0, tmp1; // not used 6002 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6003 Known.Zero.setBitsFrom(2); 6004 return; 6005 } 6006 EVT VT = Op.getValueType(); 6007 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6008 return; 6009 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6010 "KnownBits does not match VT in bitwidth"); 6011 assert ((!VT.isVector() || 6012 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6013 "DemandedElts does not match VT number of elements"); 6014 unsigned BitWidth = Known.getBitWidth(); 6015 unsigned Opcode = Op.getOpcode(); 6016 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6017 bool IsLogical = false; 6018 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6019 switch (Id) { 6020 case Intrinsic::s390_vpksh: // PACKS 6021 case Intrinsic::s390_vpksf: 6022 case Intrinsic::s390_vpksg: 6023 case Intrinsic::s390_vpkshs: // PACKS_CC 6024 case Intrinsic::s390_vpksfs: 6025 case Intrinsic::s390_vpksgs: 6026 case Intrinsic::s390_vpklsh: // PACKLS 6027 case Intrinsic::s390_vpklsf: 6028 case Intrinsic::s390_vpklsg: 6029 case Intrinsic::s390_vpklshs: // PACKLS_CC 6030 case Intrinsic::s390_vpklsfs: 6031 case Intrinsic::s390_vpklsgs: 6032 case Intrinsic::s390_vpdi: 6033 case Intrinsic::s390_vsldb: 6034 case Intrinsic::s390_vperm: 6035 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6036 break; 6037 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6038 case Intrinsic::s390_vuplhh: 6039 case Intrinsic::s390_vuplhf: 6040 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6041 case Intrinsic::s390_vupllh: 6042 case Intrinsic::s390_vupllf: 6043 IsLogical = true; 6044 LLVM_FALLTHROUGH; 6045 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6046 case Intrinsic::s390_vuphh: 6047 case Intrinsic::s390_vuphf: 6048 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6049 case Intrinsic::s390_vuplhw: 6050 case Intrinsic::s390_vuplf: { 6051 SDValue SrcOp = Op.getOperand(1); 6052 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits(); 6053 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6054 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6055 if (IsLogical) { 6056 Known = Known.zext(BitWidth); 6057 Known.Zero.setBitsFrom(SrcBitWidth); 6058 } else 6059 Known = Known.sext(BitWidth); 6060 break; 6061 } 6062 default: 6063 break; 6064 } 6065 } else { 6066 switch (Opcode) { 6067 case SystemZISD::JOIN_DWORDS: 6068 case SystemZISD::SELECT_CCMASK: 6069 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6070 break; 6071 case SystemZISD::REPLICATE: { 6072 SDValue SrcOp = Op.getOperand(0); 6073 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6074 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6075 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6076 break; 6077 } 6078 default: 6079 break; 6080 } 6081 } 6082 6083 // Known has the width of the source operand(s). Adjust if needed to match 6084 // the passed bitwidth. 6085 if (Known.getBitWidth() != BitWidth) 6086 Known = Known.zextOrTrunc(BitWidth); 6087 } 6088 6089 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6090 const SelectionDAG &DAG, unsigned Depth, 6091 unsigned OpNo) { 6092 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6093 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6094 if (LHS == 1) return 1; // Early out. 6095 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6096 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6097 if (RHS == 1) return 1; // Early out. 6098 unsigned Common = std::min(LHS, RHS); 6099 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6100 EVT VT = Op.getValueType(); 6101 unsigned VTBits = VT.getScalarSizeInBits(); 6102 if (SrcBitWidth > VTBits) { // PACK 6103 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6104 if (Common > SrcExtraBits) 6105 return (Common - SrcExtraBits); 6106 return 1; 6107 } 6108 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6109 return Common; 6110 } 6111 6112 unsigned 6113 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6114 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6115 unsigned Depth) const { 6116 if (Op.getResNo() != 0) 6117 return 1; 6118 unsigned Opcode = Op.getOpcode(); 6119 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6120 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6121 switch (Id) { 6122 case Intrinsic::s390_vpksh: // PACKS 6123 case Intrinsic::s390_vpksf: 6124 case Intrinsic::s390_vpksg: 6125 case Intrinsic::s390_vpkshs: // PACKS_CC 6126 case Intrinsic::s390_vpksfs: 6127 case Intrinsic::s390_vpksgs: 6128 case Intrinsic::s390_vpklsh: // PACKLS 6129 case Intrinsic::s390_vpklsf: 6130 case Intrinsic::s390_vpklsg: 6131 case Intrinsic::s390_vpklshs: // PACKLS_CC 6132 case Intrinsic::s390_vpklsfs: 6133 case Intrinsic::s390_vpklsgs: 6134 case Intrinsic::s390_vpdi: 6135 case Intrinsic::s390_vsldb: 6136 case Intrinsic::s390_vperm: 6137 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6138 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6139 case Intrinsic::s390_vuphh: 6140 case Intrinsic::s390_vuphf: 6141 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6142 case Intrinsic::s390_vuplhw: 6143 case Intrinsic::s390_vuplf: { 6144 SDValue PackedOp = Op.getOperand(1); 6145 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6146 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6147 EVT VT = Op.getValueType(); 6148 unsigned VTBits = VT.getScalarSizeInBits(); 6149 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6150 return Tmp; 6151 } 6152 default: 6153 break; 6154 } 6155 } else { 6156 switch (Opcode) { 6157 case SystemZISD::SELECT_CCMASK: 6158 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6159 default: 6160 break; 6161 } 6162 } 6163 6164 return 1; 6165 } 6166 6167 //===----------------------------------------------------------------------===// 6168 // Custom insertion 6169 //===----------------------------------------------------------------------===// 6170 6171 // Create a new basic block after MBB. 6172 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6173 MachineFunction &MF = *MBB->getParent(); 6174 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6175 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6176 return NewMBB; 6177 } 6178 6179 // Split MBB after MI and return the new block (the one that contains 6180 // instructions after MI). 6181 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6182 MachineBasicBlock *MBB) { 6183 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6184 NewMBB->splice(NewMBB->begin(), MBB, 6185 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6186 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6187 return NewMBB; 6188 } 6189 6190 // Split MBB before MI and return the new block (the one that contains MI). 6191 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6192 MachineBasicBlock *MBB) { 6193 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6194 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6195 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6196 return NewMBB; 6197 } 6198 6199 // Force base value Base into a register before MI. Return the register. 6200 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 6201 const SystemZInstrInfo *TII) { 6202 if (Base.isReg()) 6203 return Base.getReg(); 6204 6205 MachineBasicBlock *MBB = MI.getParent(); 6206 MachineFunction &MF = *MBB->getParent(); 6207 MachineRegisterInfo &MRI = MF.getRegInfo(); 6208 6209 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6210 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6211 .add(Base) 6212 .addImm(0) 6213 .addReg(0); 6214 return Reg; 6215 } 6216 6217 // The CC operand of MI might be missing a kill marker because there 6218 // were multiple uses of CC, and ISel didn't know which to mark. 6219 // Figure out whether MI should have had a kill marker. 6220 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6221 // Scan forward through BB for a use/def of CC. 6222 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6223 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6224 const MachineInstr& mi = *miI; 6225 if (mi.readsRegister(SystemZ::CC)) 6226 return false; 6227 if (mi.definesRegister(SystemZ::CC)) 6228 break; // Should have kill-flag - update below. 6229 } 6230 6231 // If we hit the end of the block, check whether CC is live into a 6232 // successor. 6233 if (miI == MBB->end()) { 6234 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6235 if ((*SI)->isLiveIn(SystemZ::CC)) 6236 return false; 6237 } 6238 6239 return true; 6240 } 6241 6242 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6243 // together with other Select pseudo-opcodes into a single basic-block with 6244 // a conditional jump around it. 6245 static bool isSelectPseudo(MachineInstr &MI) { 6246 switch (MI.getOpcode()) { 6247 case SystemZ::Select32: 6248 case SystemZ::Select64: 6249 case SystemZ::SelectF32: 6250 case SystemZ::SelectF64: 6251 case SystemZ::SelectF128: 6252 case SystemZ::SelectVR32: 6253 case SystemZ::SelectVR64: 6254 case SystemZ::SelectVR128: 6255 return true; 6256 6257 default: 6258 return false; 6259 } 6260 } 6261 6262 // Helper function, which inserts PHI functions into SinkMBB: 6263 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6264 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects 6265 // in [MIItBegin, MIItEnd) range. 6266 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin, 6267 MachineBasicBlock::iterator MIItEnd, 6268 MachineBasicBlock *TrueMBB, 6269 MachineBasicBlock *FalseMBB, 6270 MachineBasicBlock *SinkMBB) { 6271 MachineFunction *MF = TrueMBB->getParent(); 6272 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6273 6274 unsigned CCValid = MIItBegin->getOperand(3).getImm(); 6275 unsigned CCMask = MIItBegin->getOperand(4).getImm(); 6276 DebugLoc DL = MIItBegin->getDebugLoc(); 6277 6278 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6279 6280 // As we are creating the PHIs, we have to be careful if there is more than 6281 // one. Later Selects may reference the results of earlier Selects, but later 6282 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6283 // That also means that PHI construction must work forward from earlier to 6284 // later, and that the code must maintain a mapping from earlier PHI's 6285 // destination registers, and the registers that went into the PHI. 6286 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6287 6288 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; 6289 MIIt = skipDebugInstructionsForward(++MIIt, MIItEnd)) { 6290 unsigned DestReg = MIIt->getOperand(0).getReg(); 6291 unsigned TrueReg = MIIt->getOperand(1).getReg(); 6292 unsigned FalseReg = MIIt->getOperand(2).getReg(); 6293 6294 // If this Select we are generating is the opposite condition from 6295 // the jump we generated, then we have to swap the operands for the 6296 // PHI that is going to be generated. 6297 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) 6298 std::swap(TrueReg, FalseReg); 6299 6300 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6301 TrueReg = RegRewriteTable[TrueReg].first; 6302 6303 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6304 FalseReg = RegRewriteTable[FalseReg].second; 6305 6306 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6307 .addReg(TrueReg).addMBB(TrueMBB) 6308 .addReg(FalseReg).addMBB(FalseMBB); 6309 6310 // Add this PHI to the rewrite table. 6311 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6312 } 6313 6314 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6315 } 6316 6317 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6318 MachineBasicBlock * 6319 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6320 MachineBasicBlock *MBB) const { 6321 const SystemZInstrInfo *TII = 6322 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6323 6324 unsigned CCValid = MI.getOperand(3).getImm(); 6325 unsigned CCMask = MI.getOperand(4).getImm(); 6326 DebugLoc DL = MI.getDebugLoc(); 6327 6328 // If we have a sequence of Select* pseudo instructions using the 6329 // same condition code value, we want to expand all of them into 6330 // a single pair of basic blocks using the same condition. 6331 MachineInstr *LastMI = &MI; 6332 MachineBasicBlock::iterator NextMIIt = skipDebugInstructionsForward( 6333 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6334 6335 if (isSelectPseudo(MI)) 6336 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) && 6337 NextMIIt->getOperand(3).getImm() == CCValid && 6338 (NextMIIt->getOperand(4).getImm() == CCMask || 6339 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) { 6340 LastMI = &*NextMIIt; 6341 NextMIIt = skipDebugInstructionsForward(++NextMIIt, MBB->end()); 6342 } 6343 6344 MachineBasicBlock *StartMBB = MBB; 6345 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6346 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6347 6348 // Unless CC was killed in the last Select instruction, mark it as 6349 // live-in to both FalseMBB and JoinMBB. 6350 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) { 6351 FalseMBB->addLiveIn(SystemZ::CC); 6352 JoinMBB->addLiveIn(SystemZ::CC); 6353 } 6354 6355 // StartMBB: 6356 // BRC CCMask, JoinMBB 6357 // # fallthrough to FalseMBB 6358 MBB = StartMBB; 6359 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6360 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6361 MBB->addSuccessor(JoinMBB); 6362 MBB->addSuccessor(FalseMBB); 6363 6364 // FalseMBB: 6365 // # fallthrough to JoinMBB 6366 MBB = FalseMBB; 6367 MBB->addSuccessor(JoinMBB); 6368 6369 // JoinMBB: 6370 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6371 // ... 6372 MBB = JoinMBB; 6373 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 6374 MachineBasicBlock::iterator MIItEnd = skipDebugInstructionsForward( 6375 std::next(MachineBasicBlock::iterator(LastMI)), MBB->end()); 6376 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB); 6377 6378 StartMBB->erase(MIItBegin, MIItEnd); 6379 return JoinMBB; 6380 } 6381 6382 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6383 // StoreOpcode is the store to use and Invert says whether the store should 6384 // happen when the condition is false rather than true. If a STORE ON 6385 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6386 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6387 MachineBasicBlock *MBB, 6388 unsigned StoreOpcode, 6389 unsigned STOCOpcode, 6390 bool Invert) const { 6391 const SystemZInstrInfo *TII = 6392 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6393 6394 unsigned SrcReg = MI.getOperand(0).getReg(); 6395 MachineOperand Base = MI.getOperand(1); 6396 int64_t Disp = MI.getOperand(2).getImm(); 6397 unsigned IndexReg = MI.getOperand(3).getReg(); 6398 unsigned CCValid = MI.getOperand(4).getImm(); 6399 unsigned CCMask = MI.getOperand(5).getImm(); 6400 DebugLoc DL = MI.getDebugLoc(); 6401 6402 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6403 6404 // Use STOCOpcode if possible. We could use different store patterns in 6405 // order to avoid matching the index register, but the performance trade-offs 6406 // might be more complicated in that case. 6407 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6408 if (Invert) 6409 CCMask ^= CCValid; 6410 6411 // ISel pattern matching also adds a load memory operand of the same 6412 // address, so take special care to find the storing memory operand. 6413 MachineMemOperand *MMO = nullptr; 6414 for (auto *I : MI.memoperands()) 6415 if (I->isStore()) { 6416 MMO = I; 6417 break; 6418 } 6419 6420 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6421 .addReg(SrcReg) 6422 .add(Base) 6423 .addImm(Disp) 6424 .addImm(CCValid) 6425 .addImm(CCMask) 6426 .addMemOperand(MMO); 6427 6428 MI.eraseFromParent(); 6429 return MBB; 6430 } 6431 6432 // Get the condition needed to branch around the store. 6433 if (!Invert) 6434 CCMask ^= CCValid; 6435 6436 MachineBasicBlock *StartMBB = MBB; 6437 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6438 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6439 6440 // Unless CC was killed in the CondStore instruction, mark it as 6441 // live-in to both FalseMBB and JoinMBB. 6442 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6443 FalseMBB->addLiveIn(SystemZ::CC); 6444 JoinMBB->addLiveIn(SystemZ::CC); 6445 } 6446 6447 // StartMBB: 6448 // BRC CCMask, JoinMBB 6449 // # fallthrough to FalseMBB 6450 MBB = StartMBB; 6451 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6452 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6453 MBB->addSuccessor(JoinMBB); 6454 MBB->addSuccessor(FalseMBB); 6455 6456 // FalseMBB: 6457 // store %SrcReg, %Disp(%Index,%Base) 6458 // # fallthrough to JoinMBB 6459 MBB = FalseMBB; 6460 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6461 .addReg(SrcReg) 6462 .add(Base) 6463 .addImm(Disp) 6464 .addReg(IndexReg); 6465 MBB->addSuccessor(JoinMBB); 6466 6467 MI.eraseFromParent(); 6468 return JoinMBB; 6469 } 6470 6471 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6472 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6473 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6474 // BitSize is the width of the field in bits, or 0 if this is a partword 6475 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6476 // is one of the operands. Invert says whether the field should be 6477 // inverted after performing BinOpcode (e.g. for NAND). 6478 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6479 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6480 unsigned BitSize, bool Invert) const { 6481 MachineFunction &MF = *MBB->getParent(); 6482 const SystemZInstrInfo *TII = 6483 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6484 MachineRegisterInfo &MRI = MF.getRegInfo(); 6485 bool IsSubWord = (BitSize < 32); 6486 6487 // Extract the operands. Base can be a register or a frame index. 6488 // Src2 can be a register or immediate. 6489 unsigned Dest = MI.getOperand(0).getReg(); 6490 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6491 int64_t Disp = MI.getOperand(2).getImm(); 6492 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6493 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6494 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6495 DebugLoc DL = MI.getDebugLoc(); 6496 if (IsSubWord) 6497 BitSize = MI.getOperand(6).getImm(); 6498 6499 // Subword operations use 32-bit registers. 6500 const TargetRegisterClass *RC = (BitSize <= 32 ? 6501 &SystemZ::GR32BitRegClass : 6502 &SystemZ::GR64BitRegClass); 6503 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6504 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6505 6506 // Get the right opcodes for the displacement. 6507 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6508 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6509 assert(LOpcode && CSOpcode && "Displacement out of range"); 6510 6511 // Create virtual registers for temporary results. 6512 unsigned OrigVal = MRI.createVirtualRegister(RC); 6513 unsigned OldVal = MRI.createVirtualRegister(RC); 6514 unsigned NewVal = (BinOpcode || IsSubWord ? 6515 MRI.createVirtualRegister(RC) : Src2.getReg()); 6516 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6517 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6518 6519 // Insert a basic block for the main loop. 6520 MachineBasicBlock *StartMBB = MBB; 6521 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6522 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6523 6524 // StartMBB: 6525 // ... 6526 // %OrigVal = L Disp(%Base) 6527 // # fall through to LoopMMB 6528 MBB = StartMBB; 6529 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6530 MBB->addSuccessor(LoopMBB); 6531 6532 // LoopMBB: 6533 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6534 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6535 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6536 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6537 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6538 // JNE LoopMBB 6539 // # fall through to DoneMMB 6540 MBB = LoopMBB; 6541 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6542 .addReg(OrigVal).addMBB(StartMBB) 6543 .addReg(Dest).addMBB(LoopMBB); 6544 if (IsSubWord) 6545 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6546 .addReg(OldVal).addReg(BitShift).addImm(0); 6547 if (Invert) { 6548 // Perform the operation normally and then invert every bit of the field. 6549 unsigned Tmp = MRI.createVirtualRegister(RC); 6550 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6551 if (BitSize <= 32) 6552 // XILF with the upper BitSize bits set. 6553 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6554 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6555 else { 6556 // Use LCGR and add -1 to the result, which is more compact than 6557 // an XILF, XILH pair. 6558 unsigned Tmp2 = MRI.createVirtualRegister(RC); 6559 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6560 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6561 .addReg(Tmp2).addImm(-1); 6562 } 6563 } else if (BinOpcode) 6564 // A simply binary operation. 6565 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6566 .addReg(RotatedOldVal) 6567 .add(Src2); 6568 else if (IsSubWord) 6569 // Use RISBG to rotate Src2 into position and use it to replace the 6570 // field in RotatedOldVal. 6571 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6572 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6573 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6574 if (IsSubWord) 6575 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6576 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6577 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6578 .addReg(OldVal) 6579 .addReg(NewVal) 6580 .add(Base) 6581 .addImm(Disp); 6582 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6583 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6584 MBB->addSuccessor(LoopMBB); 6585 MBB->addSuccessor(DoneMBB); 6586 6587 MI.eraseFromParent(); 6588 return DoneMBB; 6589 } 6590 6591 // Implement EmitInstrWithCustomInserter for pseudo 6592 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6593 // instruction that should be used to compare the current field with the 6594 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6595 // for when the current field should be kept. BitSize is the width of 6596 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6597 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6598 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6599 unsigned KeepOldMask, unsigned BitSize) const { 6600 MachineFunction &MF = *MBB->getParent(); 6601 const SystemZInstrInfo *TII = 6602 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6603 MachineRegisterInfo &MRI = MF.getRegInfo(); 6604 bool IsSubWord = (BitSize < 32); 6605 6606 // Extract the operands. Base can be a register or a frame index. 6607 unsigned Dest = MI.getOperand(0).getReg(); 6608 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6609 int64_t Disp = MI.getOperand(2).getImm(); 6610 unsigned Src2 = MI.getOperand(3).getReg(); 6611 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6612 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6613 DebugLoc DL = MI.getDebugLoc(); 6614 if (IsSubWord) 6615 BitSize = MI.getOperand(6).getImm(); 6616 6617 // Subword operations use 32-bit registers. 6618 const TargetRegisterClass *RC = (BitSize <= 32 ? 6619 &SystemZ::GR32BitRegClass : 6620 &SystemZ::GR64BitRegClass); 6621 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6622 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6623 6624 // Get the right opcodes for the displacement. 6625 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6626 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6627 assert(LOpcode && CSOpcode && "Displacement out of range"); 6628 6629 // Create virtual registers for temporary results. 6630 unsigned OrigVal = MRI.createVirtualRegister(RC); 6631 unsigned OldVal = MRI.createVirtualRegister(RC); 6632 unsigned NewVal = MRI.createVirtualRegister(RC); 6633 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6634 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6635 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6636 6637 // Insert 3 basic blocks for the loop. 6638 MachineBasicBlock *StartMBB = MBB; 6639 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6640 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6641 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6642 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6643 6644 // StartMBB: 6645 // ... 6646 // %OrigVal = L Disp(%Base) 6647 // # fall through to LoopMMB 6648 MBB = StartMBB; 6649 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6650 MBB->addSuccessor(LoopMBB); 6651 6652 // LoopMBB: 6653 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 6654 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6655 // CompareOpcode %RotatedOldVal, %Src2 6656 // BRC KeepOldMask, UpdateMBB 6657 MBB = LoopMBB; 6658 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6659 .addReg(OrigVal).addMBB(StartMBB) 6660 .addReg(Dest).addMBB(UpdateMBB); 6661 if (IsSubWord) 6662 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6663 .addReg(OldVal).addReg(BitShift).addImm(0); 6664 BuildMI(MBB, DL, TII->get(CompareOpcode)) 6665 .addReg(RotatedOldVal).addReg(Src2); 6666 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6667 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 6668 MBB->addSuccessor(UpdateMBB); 6669 MBB->addSuccessor(UseAltMBB); 6670 6671 // UseAltMBB: 6672 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 6673 // # fall through to UpdateMMB 6674 MBB = UseAltMBB; 6675 if (IsSubWord) 6676 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 6677 .addReg(RotatedOldVal).addReg(Src2) 6678 .addImm(32).addImm(31 + BitSize).addImm(0); 6679 MBB->addSuccessor(UpdateMBB); 6680 6681 // UpdateMBB: 6682 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 6683 // [ %RotatedAltVal, UseAltMBB ] 6684 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6685 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6686 // JNE LoopMBB 6687 // # fall through to DoneMMB 6688 MBB = UpdateMBB; 6689 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 6690 .addReg(RotatedOldVal).addMBB(LoopMBB) 6691 .addReg(RotatedAltVal).addMBB(UseAltMBB); 6692 if (IsSubWord) 6693 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6694 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6695 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6696 .addReg(OldVal) 6697 .addReg(NewVal) 6698 .add(Base) 6699 .addImm(Disp); 6700 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6701 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6702 MBB->addSuccessor(LoopMBB); 6703 MBB->addSuccessor(DoneMBB); 6704 6705 MI.eraseFromParent(); 6706 return DoneMBB; 6707 } 6708 6709 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 6710 // instruction MI. 6711 MachineBasicBlock * 6712 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 6713 MachineBasicBlock *MBB) const { 6714 6715 MachineFunction &MF = *MBB->getParent(); 6716 const SystemZInstrInfo *TII = 6717 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6718 MachineRegisterInfo &MRI = MF.getRegInfo(); 6719 6720 // Extract the operands. Base can be a register or a frame index. 6721 unsigned Dest = MI.getOperand(0).getReg(); 6722 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6723 int64_t Disp = MI.getOperand(2).getImm(); 6724 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 6725 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 6726 unsigned BitShift = MI.getOperand(5).getReg(); 6727 unsigned NegBitShift = MI.getOperand(6).getReg(); 6728 int64_t BitSize = MI.getOperand(7).getImm(); 6729 DebugLoc DL = MI.getDebugLoc(); 6730 6731 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 6732 6733 // Get the right opcodes for the displacement. 6734 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 6735 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 6736 assert(LOpcode && CSOpcode && "Displacement out of range"); 6737 6738 // Create virtual registers for temporary results. 6739 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 6740 unsigned OldVal = MRI.createVirtualRegister(RC); 6741 unsigned CmpVal = MRI.createVirtualRegister(RC); 6742 unsigned SwapVal = MRI.createVirtualRegister(RC); 6743 unsigned StoreVal = MRI.createVirtualRegister(RC); 6744 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 6745 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 6746 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 6747 6748 // Insert 2 basic blocks for the loop. 6749 MachineBasicBlock *StartMBB = MBB; 6750 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6751 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6752 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 6753 6754 // StartMBB: 6755 // ... 6756 // %OrigOldVal = L Disp(%Base) 6757 // # fall through to LoopMMB 6758 MBB = StartMBB; 6759 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 6760 .add(Base) 6761 .addImm(Disp) 6762 .addReg(0); 6763 MBB->addSuccessor(LoopMBB); 6764 6765 // LoopMBB: 6766 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 6767 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 6768 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 6769 // %Dest = RLL %OldVal, BitSize(%BitShift) 6770 // ^^ The low BitSize bits contain the field 6771 // of interest. 6772 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 6773 // ^^ Replace the upper 32-BitSize bits of the 6774 // comparison value with those that we loaded, 6775 // so that we can use a full word comparison. 6776 // CR %Dest, %RetryCmpVal 6777 // JNE DoneMBB 6778 // # Fall through to SetMBB 6779 MBB = LoopMBB; 6780 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6781 .addReg(OrigOldVal).addMBB(StartMBB) 6782 .addReg(RetryOldVal).addMBB(SetMBB); 6783 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 6784 .addReg(OrigCmpVal).addMBB(StartMBB) 6785 .addReg(RetryCmpVal).addMBB(SetMBB); 6786 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 6787 .addReg(OrigSwapVal).addMBB(StartMBB) 6788 .addReg(RetrySwapVal).addMBB(SetMBB); 6789 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 6790 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 6791 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 6792 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6793 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 6794 .addReg(Dest).addReg(RetryCmpVal); 6795 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6796 .addImm(SystemZ::CCMASK_ICMP) 6797 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 6798 MBB->addSuccessor(DoneMBB); 6799 MBB->addSuccessor(SetMBB); 6800 6801 // SetMBB: 6802 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 6803 // ^^ Replace the upper 32-BitSize bits of the new 6804 // value with those that we loaded. 6805 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 6806 // ^^ Rotate the new field to its proper position. 6807 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 6808 // JNE LoopMBB 6809 // # fall through to ExitMMB 6810 MBB = SetMBB; 6811 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 6812 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6813 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 6814 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 6815 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 6816 .addReg(OldVal) 6817 .addReg(StoreVal) 6818 .add(Base) 6819 .addImm(Disp); 6820 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6821 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6822 MBB->addSuccessor(LoopMBB); 6823 MBB->addSuccessor(DoneMBB); 6824 6825 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 6826 // to the block after the loop. At this point, CC may have been defined 6827 // either by the CR in LoopMBB or by the CS in SetMBB. 6828 if (!MI.registerDefIsDead(SystemZ::CC)) 6829 DoneMBB->addLiveIn(SystemZ::CC); 6830 6831 MI.eraseFromParent(); 6832 return DoneMBB; 6833 } 6834 6835 // Emit a move from two GR64s to a GR128. 6836 MachineBasicBlock * 6837 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6838 MachineBasicBlock *MBB) const { 6839 MachineFunction &MF = *MBB->getParent(); 6840 const SystemZInstrInfo *TII = 6841 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6842 MachineRegisterInfo &MRI = MF.getRegInfo(); 6843 DebugLoc DL = MI.getDebugLoc(); 6844 6845 unsigned Dest = MI.getOperand(0).getReg(); 6846 unsigned Hi = MI.getOperand(1).getReg(); 6847 unsigned Lo = MI.getOperand(2).getReg(); 6848 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6849 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6850 6851 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6852 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6853 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6854 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6855 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6856 6857 MI.eraseFromParent(); 6858 return MBB; 6859 } 6860 6861 // Emit an extension from a GR64 to a GR128. ClearEven is true 6862 // if the high register of the GR128 value must be cleared or false if 6863 // it's "don't care". 6864 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6865 MachineBasicBlock *MBB, 6866 bool ClearEven) const { 6867 MachineFunction &MF = *MBB->getParent(); 6868 const SystemZInstrInfo *TII = 6869 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6870 MachineRegisterInfo &MRI = MF.getRegInfo(); 6871 DebugLoc DL = MI.getDebugLoc(); 6872 6873 unsigned Dest = MI.getOperand(0).getReg(); 6874 unsigned Src = MI.getOperand(1).getReg(); 6875 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6876 6877 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6878 if (ClearEven) { 6879 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6880 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6881 6882 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6883 .addImm(0); 6884 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6885 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6886 In128 = NewIn128; 6887 } 6888 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6889 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6890 6891 MI.eraseFromParent(); 6892 return MBB; 6893 } 6894 6895 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6896 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6897 MachineFunction &MF = *MBB->getParent(); 6898 const SystemZInstrInfo *TII = 6899 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6900 MachineRegisterInfo &MRI = MF.getRegInfo(); 6901 DebugLoc DL = MI.getDebugLoc(); 6902 6903 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6904 uint64_t DestDisp = MI.getOperand(1).getImm(); 6905 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6906 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6907 uint64_t Length = MI.getOperand(4).getImm(); 6908 6909 // When generating more than one CLC, all but the last will need to 6910 // branch to the end when a difference is found. 6911 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6912 splitBlockAfter(MI, MBB) : nullptr); 6913 6914 // Check for the loop form, in which operand 5 is the trip count. 6915 if (MI.getNumExplicitOperands() > 5) { 6916 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6917 6918 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6919 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6920 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6921 forceReg(MI, DestBase, TII)); 6922 6923 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6924 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6925 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6926 MRI.createVirtualRegister(RC)); 6927 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6928 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6929 MRI.createVirtualRegister(RC)); 6930 6931 RC = &SystemZ::GR64BitRegClass; 6932 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6933 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6934 6935 MachineBasicBlock *StartMBB = MBB; 6936 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6937 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6938 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6939 6940 // StartMBB: 6941 // # fall through to LoopMMB 6942 MBB->addSuccessor(LoopMBB); 6943 6944 // LoopMBB: 6945 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6946 // [ %NextDestReg, NextMBB ] 6947 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6948 // [ %NextSrcReg, NextMBB ] 6949 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6950 // [ %NextCountReg, NextMBB ] 6951 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6952 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6953 // ( JLH EndMBB ) 6954 // 6955 // The prefetch is used only for MVC. The JLH is used only for CLC. 6956 MBB = LoopMBB; 6957 6958 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6959 .addReg(StartDestReg).addMBB(StartMBB) 6960 .addReg(NextDestReg).addMBB(NextMBB); 6961 if (!HaveSingleBase) 6962 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6963 .addReg(StartSrcReg).addMBB(StartMBB) 6964 .addReg(NextSrcReg).addMBB(NextMBB); 6965 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6966 .addReg(StartCountReg).addMBB(StartMBB) 6967 .addReg(NextCountReg).addMBB(NextMBB); 6968 if (Opcode == SystemZ::MVC) 6969 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6970 .addImm(SystemZ::PFD_WRITE) 6971 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6972 BuildMI(MBB, DL, TII->get(Opcode)) 6973 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6974 .addReg(ThisSrcReg).addImm(SrcDisp); 6975 if (EndMBB) { 6976 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6977 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6978 .addMBB(EndMBB); 6979 MBB->addSuccessor(EndMBB); 6980 MBB->addSuccessor(NextMBB); 6981 } 6982 6983 // NextMBB: 6984 // %NextDestReg = LA 256(%ThisDestReg) 6985 // %NextSrcReg = LA 256(%ThisSrcReg) 6986 // %NextCountReg = AGHI %ThisCountReg, -1 6987 // CGHI %NextCountReg, 0 6988 // JLH LoopMBB 6989 // # fall through to DoneMMB 6990 // 6991 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6992 MBB = NextMBB; 6993 6994 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6995 .addReg(ThisDestReg).addImm(256).addReg(0); 6996 if (!HaveSingleBase) 6997 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6998 .addReg(ThisSrcReg).addImm(256).addReg(0); 6999 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7000 .addReg(ThisCountReg).addImm(-1); 7001 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7002 .addReg(NextCountReg).addImm(0); 7003 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7004 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7005 .addMBB(LoopMBB); 7006 MBB->addSuccessor(LoopMBB); 7007 MBB->addSuccessor(DoneMBB); 7008 7009 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7010 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7011 Length &= 255; 7012 if (EndMBB && !Length) 7013 // If the loop handled the whole CLC range, DoneMBB will be empty with 7014 // CC live-through into EndMBB, so add it as live-in. 7015 DoneMBB->addLiveIn(SystemZ::CC); 7016 MBB = DoneMBB; 7017 } 7018 // Handle any remaining bytes with straight-line code. 7019 while (Length > 0) { 7020 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7021 // The previous iteration might have created out-of-range displacements. 7022 // Apply them using LAY if so. 7023 if (!isUInt<12>(DestDisp)) { 7024 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7025 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7026 .add(DestBase) 7027 .addImm(DestDisp) 7028 .addReg(0); 7029 DestBase = MachineOperand::CreateReg(Reg, false); 7030 DestDisp = 0; 7031 } 7032 if (!isUInt<12>(SrcDisp)) { 7033 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7034 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7035 .add(SrcBase) 7036 .addImm(SrcDisp) 7037 .addReg(0); 7038 SrcBase = MachineOperand::CreateReg(Reg, false); 7039 SrcDisp = 0; 7040 } 7041 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7042 .add(DestBase) 7043 .addImm(DestDisp) 7044 .addImm(ThisLength) 7045 .add(SrcBase) 7046 .addImm(SrcDisp) 7047 .setMemRefs(MI.memoperands()); 7048 DestDisp += ThisLength; 7049 SrcDisp += ThisLength; 7050 Length -= ThisLength; 7051 // If there's another CLC to go, branch to the end if a difference 7052 // was found. 7053 if (EndMBB && Length > 0) { 7054 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7055 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7056 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7057 .addMBB(EndMBB); 7058 MBB->addSuccessor(EndMBB); 7059 MBB->addSuccessor(NextMBB); 7060 MBB = NextMBB; 7061 } 7062 } 7063 if (EndMBB) { 7064 MBB->addSuccessor(EndMBB); 7065 MBB = EndMBB; 7066 MBB->addLiveIn(SystemZ::CC); 7067 } 7068 7069 MI.eraseFromParent(); 7070 return MBB; 7071 } 7072 7073 // Decompose string pseudo-instruction MI into a loop that continually performs 7074 // Opcode until CC != 3. 7075 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7076 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7077 MachineFunction &MF = *MBB->getParent(); 7078 const SystemZInstrInfo *TII = 7079 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7080 MachineRegisterInfo &MRI = MF.getRegInfo(); 7081 DebugLoc DL = MI.getDebugLoc(); 7082 7083 uint64_t End1Reg = MI.getOperand(0).getReg(); 7084 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7085 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7086 uint64_t CharReg = MI.getOperand(3).getReg(); 7087 7088 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7089 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7090 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7091 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7092 7093 MachineBasicBlock *StartMBB = MBB; 7094 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7095 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7096 7097 // StartMBB: 7098 // # fall through to LoopMMB 7099 MBB->addSuccessor(LoopMBB); 7100 7101 // LoopMBB: 7102 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7103 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7104 // R0L = %CharReg 7105 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7106 // JO LoopMBB 7107 // # fall through to DoneMMB 7108 // 7109 // The load of R0L can be hoisted by post-RA LICM. 7110 MBB = LoopMBB; 7111 7112 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7113 .addReg(Start1Reg).addMBB(StartMBB) 7114 .addReg(End1Reg).addMBB(LoopMBB); 7115 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7116 .addReg(Start2Reg).addMBB(StartMBB) 7117 .addReg(End2Reg).addMBB(LoopMBB); 7118 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7119 BuildMI(MBB, DL, TII->get(Opcode)) 7120 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7121 .addReg(This1Reg).addReg(This2Reg); 7122 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7123 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7124 MBB->addSuccessor(LoopMBB); 7125 MBB->addSuccessor(DoneMBB); 7126 7127 DoneMBB->addLiveIn(SystemZ::CC); 7128 7129 MI.eraseFromParent(); 7130 return DoneMBB; 7131 } 7132 7133 // Update TBEGIN instruction with final opcode and register clobbers. 7134 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7135 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7136 bool NoFloat) const { 7137 MachineFunction &MF = *MBB->getParent(); 7138 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7139 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7140 7141 // Update opcode. 7142 MI.setDesc(TII->get(Opcode)); 7143 7144 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7145 // Make sure to add the corresponding GRSM bits if they are missing. 7146 uint64_t Control = MI.getOperand(2).getImm(); 7147 static const unsigned GPRControlBit[16] = { 7148 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7149 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7150 }; 7151 Control |= GPRControlBit[15]; 7152 if (TFI->hasFP(MF)) 7153 Control |= GPRControlBit[11]; 7154 MI.getOperand(2).setImm(Control); 7155 7156 // Add GPR clobbers. 7157 for (int I = 0; I < 16; I++) { 7158 if ((Control & GPRControlBit[I]) == 0) { 7159 unsigned Reg = SystemZMC::GR64Regs[I]; 7160 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7161 } 7162 } 7163 7164 // Add FPR/VR clobbers. 7165 if (!NoFloat && (Control & 4) != 0) { 7166 if (Subtarget.hasVector()) { 7167 for (int I = 0; I < 32; I++) { 7168 unsigned Reg = SystemZMC::VR128Regs[I]; 7169 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7170 } 7171 } else { 7172 for (int I = 0; I < 16; I++) { 7173 unsigned Reg = SystemZMC::FP64Regs[I]; 7174 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7175 } 7176 } 7177 } 7178 7179 return MBB; 7180 } 7181 7182 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7183 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7184 MachineFunction &MF = *MBB->getParent(); 7185 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7186 const SystemZInstrInfo *TII = 7187 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7188 DebugLoc DL = MI.getDebugLoc(); 7189 7190 unsigned SrcReg = MI.getOperand(0).getReg(); 7191 7192 // Create new virtual register of the same class as source. 7193 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7194 unsigned DstReg = MRI->createVirtualRegister(RC); 7195 7196 // Replace pseudo with a normal load-and-test that models the def as 7197 // well. 7198 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7199 .addReg(SrcReg); 7200 MI.eraseFromParent(); 7201 7202 return MBB; 7203 } 7204 7205 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7206 MachineInstr &MI, MachineBasicBlock *MBB) const { 7207 switch (MI.getOpcode()) { 7208 case SystemZ::Select32: 7209 case SystemZ::Select64: 7210 case SystemZ::SelectF32: 7211 case SystemZ::SelectF64: 7212 case SystemZ::SelectF128: 7213 case SystemZ::SelectVR32: 7214 case SystemZ::SelectVR64: 7215 case SystemZ::SelectVR128: 7216 return emitSelect(MI, MBB); 7217 7218 case SystemZ::CondStore8Mux: 7219 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7220 case SystemZ::CondStore8MuxInv: 7221 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7222 case SystemZ::CondStore16Mux: 7223 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7224 case SystemZ::CondStore16MuxInv: 7225 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7226 case SystemZ::CondStore32Mux: 7227 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7228 case SystemZ::CondStore32MuxInv: 7229 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7230 case SystemZ::CondStore8: 7231 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7232 case SystemZ::CondStore8Inv: 7233 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7234 case SystemZ::CondStore16: 7235 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7236 case SystemZ::CondStore16Inv: 7237 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7238 case SystemZ::CondStore32: 7239 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7240 case SystemZ::CondStore32Inv: 7241 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7242 case SystemZ::CondStore64: 7243 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7244 case SystemZ::CondStore64Inv: 7245 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7246 case SystemZ::CondStoreF32: 7247 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7248 case SystemZ::CondStoreF32Inv: 7249 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7250 case SystemZ::CondStoreF64: 7251 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7252 case SystemZ::CondStoreF64Inv: 7253 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7254 7255 case SystemZ::PAIR128: 7256 return emitPair128(MI, MBB); 7257 case SystemZ::AEXT128: 7258 return emitExt128(MI, MBB, false); 7259 case SystemZ::ZEXT128: 7260 return emitExt128(MI, MBB, true); 7261 7262 case SystemZ::ATOMIC_SWAPW: 7263 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7264 case SystemZ::ATOMIC_SWAP_32: 7265 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7266 case SystemZ::ATOMIC_SWAP_64: 7267 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7268 7269 case SystemZ::ATOMIC_LOADW_AR: 7270 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7271 case SystemZ::ATOMIC_LOADW_AFI: 7272 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7273 case SystemZ::ATOMIC_LOAD_AR: 7274 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7275 case SystemZ::ATOMIC_LOAD_AHI: 7276 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7277 case SystemZ::ATOMIC_LOAD_AFI: 7278 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7279 case SystemZ::ATOMIC_LOAD_AGR: 7280 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7281 case SystemZ::ATOMIC_LOAD_AGHI: 7282 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7283 case SystemZ::ATOMIC_LOAD_AGFI: 7284 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7285 7286 case SystemZ::ATOMIC_LOADW_SR: 7287 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7288 case SystemZ::ATOMIC_LOAD_SR: 7289 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7290 case SystemZ::ATOMIC_LOAD_SGR: 7291 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7292 7293 case SystemZ::ATOMIC_LOADW_NR: 7294 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7295 case SystemZ::ATOMIC_LOADW_NILH: 7296 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7297 case SystemZ::ATOMIC_LOAD_NR: 7298 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7299 case SystemZ::ATOMIC_LOAD_NILL: 7300 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7301 case SystemZ::ATOMIC_LOAD_NILH: 7302 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7303 case SystemZ::ATOMIC_LOAD_NILF: 7304 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7305 case SystemZ::ATOMIC_LOAD_NGR: 7306 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7307 case SystemZ::ATOMIC_LOAD_NILL64: 7308 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7309 case SystemZ::ATOMIC_LOAD_NILH64: 7310 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7311 case SystemZ::ATOMIC_LOAD_NIHL64: 7312 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7313 case SystemZ::ATOMIC_LOAD_NIHH64: 7314 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7315 case SystemZ::ATOMIC_LOAD_NILF64: 7316 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7317 case SystemZ::ATOMIC_LOAD_NIHF64: 7318 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7319 7320 case SystemZ::ATOMIC_LOADW_OR: 7321 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7322 case SystemZ::ATOMIC_LOADW_OILH: 7323 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7324 case SystemZ::ATOMIC_LOAD_OR: 7325 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7326 case SystemZ::ATOMIC_LOAD_OILL: 7327 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7328 case SystemZ::ATOMIC_LOAD_OILH: 7329 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7330 case SystemZ::ATOMIC_LOAD_OILF: 7331 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7332 case SystemZ::ATOMIC_LOAD_OGR: 7333 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7334 case SystemZ::ATOMIC_LOAD_OILL64: 7335 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7336 case SystemZ::ATOMIC_LOAD_OILH64: 7337 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7338 case SystemZ::ATOMIC_LOAD_OIHL64: 7339 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7340 case SystemZ::ATOMIC_LOAD_OIHH64: 7341 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7342 case SystemZ::ATOMIC_LOAD_OILF64: 7343 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7344 case SystemZ::ATOMIC_LOAD_OIHF64: 7345 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7346 7347 case SystemZ::ATOMIC_LOADW_XR: 7348 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7349 case SystemZ::ATOMIC_LOADW_XILF: 7350 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7351 case SystemZ::ATOMIC_LOAD_XR: 7352 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7353 case SystemZ::ATOMIC_LOAD_XILF: 7354 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7355 case SystemZ::ATOMIC_LOAD_XGR: 7356 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7357 case SystemZ::ATOMIC_LOAD_XILF64: 7358 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7359 case SystemZ::ATOMIC_LOAD_XIHF64: 7360 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7361 7362 case SystemZ::ATOMIC_LOADW_NRi: 7363 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7364 case SystemZ::ATOMIC_LOADW_NILHi: 7365 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7366 case SystemZ::ATOMIC_LOAD_NRi: 7367 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7368 case SystemZ::ATOMIC_LOAD_NILLi: 7369 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7370 case SystemZ::ATOMIC_LOAD_NILHi: 7371 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7372 case SystemZ::ATOMIC_LOAD_NILFi: 7373 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7374 case SystemZ::ATOMIC_LOAD_NGRi: 7375 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7376 case SystemZ::ATOMIC_LOAD_NILL64i: 7377 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7378 case SystemZ::ATOMIC_LOAD_NILH64i: 7379 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7380 case SystemZ::ATOMIC_LOAD_NIHL64i: 7381 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7382 case SystemZ::ATOMIC_LOAD_NIHH64i: 7383 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7384 case SystemZ::ATOMIC_LOAD_NILF64i: 7385 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7386 case SystemZ::ATOMIC_LOAD_NIHF64i: 7387 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7388 7389 case SystemZ::ATOMIC_LOADW_MIN: 7390 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7391 SystemZ::CCMASK_CMP_LE, 0); 7392 case SystemZ::ATOMIC_LOAD_MIN_32: 7393 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7394 SystemZ::CCMASK_CMP_LE, 32); 7395 case SystemZ::ATOMIC_LOAD_MIN_64: 7396 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7397 SystemZ::CCMASK_CMP_LE, 64); 7398 7399 case SystemZ::ATOMIC_LOADW_MAX: 7400 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7401 SystemZ::CCMASK_CMP_GE, 0); 7402 case SystemZ::ATOMIC_LOAD_MAX_32: 7403 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7404 SystemZ::CCMASK_CMP_GE, 32); 7405 case SystemZ::ATOMIC_LOAD_MAX_64: 7406 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7407 SystemZ::CCMASK_CMP_GE, 64); 7408 7409 case SystemZ::ATOMIC_LOADW_UMIN: 7410 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7411 SystemZ::CCMASK_CMP_LE, 0); 7412 case SystemZ::ATOMIC_LOAD_UMIN_32: 7413 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7414 SystemZ::CCMASK_CMP_LE, 32); 7415 case SystemZ::ATOMIC_LOAD_UMIN_64: 7416 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7417 SystemZ::CCMASK_CMP_LE, 64); 7418 7419 case SystemZ::ATOMIC_LOADW_UMAX: 7420 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7421 SystemZ::CCMASK_CMP_GE, 0); 7422 case SystemZ::ATOMIC_LOAD_UMAX_32: 7423 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7424 SystemZ::CCMASK_CMP_GE, 32); 7425 case SystemZ::ATOMIC_LOAD_UMAX_64: 7426 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7427 SystemZ::CCMASK_CMP_GE, 64); 7428 7429 case SystemZ::ATOMIC_CMP_SWAPW: 7430 return emitAtomicCmpSwapW(MI, MBB); 7431 case SystemZ::MVCSequence: 7432 case SystemZ::MVCLoop: 7433 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7434 case SystemZ::NCSequence: 7435 case SystemZ::NCLoop: 7436 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7437 case SystemZ::OCSequence: 7438 case SystemZ::OCLoop: 7439 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7440 case SystemZ::XCSequence: 7441 case SystemZ::XCLoop: 7442 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7443 case SystemZ::CLCSequence: 7444 case SystemZ::CLCLoop: 7445 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7446 case SystemZ::CLSTLoop: 7447 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7448 case SystemZ::MVSTLoop: 7449 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7450 case SystemZ::SRSTLoop: 7451 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7452 case SystemZ::TBEGIN: 7453 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7454 case SystemZ::TBEGIN_nofloat: 7455 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7456 case SystemZ::TBEGINC: 7457 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7458 case SystemZ::LTEBRCompare_VecPseudo: 7459 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7460 case SystemZ::LTDBRCompare_VecPseudo: 7461 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7462 case SystemZ::LTXBRCompare_VecPseudo: 7463 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7464 7465 case TargetOpcode::STACKMAP: 7466 case TargetOpcode::PATCHPOINT: 7467 return emitPatchPoint(MI, MBB); 7468 7469 default: 7470 llvm_unreachable("Unexpected instr type to insert"); 7471 } 7472 } 7473 7474 // This is only used by the isel schedulers, and is needed only to prevent 7475 // compiler from crashing when list-ilp is used. 7476 const TargetRegisterClass * 7477 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7478 if (VT == MVT::Untyped) 7479 return &SystemZ::ADDR128BitRegClass; 7480 return TargetLowering::getRepRegClassFor(VT); 7481 } 7482