1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents a sequence for extracting a 0/1 value from an IPM result: 34 // (((X ^ XORValue) + AddValue) >> Bit) 35 struct IPMConversion { 36 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 37 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 38 39 int64_t XORValue; 40 int64_t AddValue; 41 unsigned Bit; 42 }; 43 44 // Represents information about a comparison. 45 struct Comparison { 46 Comparison(SDValue Op0In, SDValue Op1In) 47 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 48 49 // The operands to the comparison. 50 SDValue Op0, Op1; 51 52 // The opcode that should be used to compare Op0 and Op1. 53 unsigned Opcode; 54 55 // A SystemZICMP value. Only used for integer comparisons. 56 unsigned ICmpType; 57 58 // The mask of CC values that Opcode can produce. 59 unsigned CCValid; 60 61 // The mask of CC values for which the original condition is true. 62 unsigned CCMask; 63 }; 64 } // end anonymous namespace 65 66 // Classify VT as either 32 or 64 bit. 67 static bool is32Bit(EVT VT) { 68 switch (VT.getSimpleVT().SimpleTy) { 69 case MVT::i32: 70 return true; 71 case MVT::i64: 72 return false; 73 default: 74 llvm_unreachable("Unsupported type"); 75 } 76 } 77 78 // Return a version of MachineOperand that can be safely used before the 79 // final use. 80 static MachineOperand earlyUseOperand(MachineOperand Op) { 81 if (Op.isReg()) 82 Op.setIsKill(false); 83 return Op; 84 } 85 86 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 87 const SystemZSubtarget &STI) 88 : TargetLowering(TM), Subtarget(STI) { 89 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 90 91 // Set up the register classes. 92 if (Subtarget.hasHighWord()) 93 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 94 else 95 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 96 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 97 if (Subtarget.hasVector()) { 98 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 99 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 100 } else { 101 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 102 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 103 } 104 if (Subtarget.hasVectorEnhancements1()) 105 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 106 else 107 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 108 109 if (Subtarget.hasVector()) { 110 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 113 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 114 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 115 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 116 } 117 118 // Compute derived properties from the register classes 119 computeRegisterProperties(Subtarget.getRegisterInfo()); 120 121 // Set up special registers. 122 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 123 124 // TODO: It may be better to default to latency-oriented scheduling, however 125 // LLVM's current latency-oriented scheduler can't handle physreg definitions 126 // such as SystemZ has with CC, so set this to the register-pressure 127 // scheduler, because it can. 128 setSchedulingPreference(Sched::RegPressure); 129 130 setBooleanContents(ZeroOrOneBooleanContent); 131 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 132 133 // Instructions are strings of 2-byte aligned 2-byte values. 134 setMinFunctionAlignment(2); 135 136 // Handle operations that are handled in a similar way for all types. 137 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 138 I <= MVT::LAST_FP_VALUETYPE; 139 ++I) { 140 MVT VT = MVT::SimpleValueType(I); 141 if (isTypeLegal(VT)) { 142 // Lower SET_CC into an IPM-based sequence. 143 setOperationAction(ISD::SETCC, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 176 // stores, putting a serialization instruction after the stores. 177 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 178 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 179 180 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 181 // available, or if the operand is constant. 182 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 183 184 // Use POPCNT on z196 and above. 185 if (Subtarget.hasPopulationCount()) 186 setOperationAction(ISD::CTPOP, VT, Custom); 187 else 188 setOperationAction(ISD::CTPOP, VT, Expand); 189 190 // No special instructions for these. 191 setOperationAction(ISD::CTTZ, VT, Expand); 192 setOperationAction(ISD::ROTR, VT, Expand); 193 194 // Use *MUL_LOHI where possible instead of MULH*. 195 setOperationAction(ISD::MULHS, VT, Expand); 196 setOperationAction(ISD::MULHU, VT, Expand); 197 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 198 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 199 200 // Only z196 and above have native support for conversions to unsigned. 201 // On z10, promoting to i64 doesn't generate an inexact condition for 202 // values that are outside the i32 range but in the i64 range, so use 203 // the default expansion. 204 if (!Subtarget.hasFPExtension()) 205 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 206 } 207 } 208 209 // Type legalization will convert 8- and 16-bit atomic operations into 210 // forms that operate on i32s (but still keeping the original memory VT). 211 // Lower them into full i32 operations. 212 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 224 225 // Even though i128 is not a legal type, we still need to custom lower 226 // the atomic operations in order to exploit SystemZ instructions. 227 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 228 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 229 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); 230 231 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 232 233 // Traps are legal, as we will convert them to "j .+2". 234 setOperationAction(ISD::TRAP, MVT::Other, Legal); 235 236 // z10 has instructions for signed but not unsigned FP conversion. 237 // Handle unsigned 32-bit types as signed 64-bit types. 238 if (!Subtarget.hasFPExtension()) { 239 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 240 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 241 } 242 243 // We have native support for a 64-bit CTLZ, via FLOGR. 244 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 245 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 246 247 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 248 setOperationAction(ISD::OR, MVT::i64, Custom); 249 250 // FIXME: Can we support these natively? 251 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 252 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 253 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 254 255 // We have native instructions for i8, i16 and i32 extensions, but not i1. 256 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 257 for (MVT VT : MVT::integer_valuetypes()) { 258 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 259 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 260 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 261 } 262 263 // Handle the various types of symbolic address. 264 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 265 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 266 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 267 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 268 setOperationAction(ISD::JumpTable, PtrVT, Custom); 269 270 // We need to handle dynamic allocations specially because of the 271 // 160-byte area at the bottom of the stack. 272 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 273 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 274 275 // Use custom expanders so that we can force the function to use 276 // a frame pointer. 277 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 278 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 279 280 // Handle prefetches with PFD or PFDRL. 281 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 282 283 for (MVT VT : MVT::vector_valuetypes()) { 284 // Assume by default that all vector operations need to be expanded. 285 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 286 if (getOperationAction(Opcode, VT) == Legal) 287 setOperationAction(Opcode, VT, Expand); 288 289 // Likewise all truncating stores and extending loads. 290 for (MVT InnerVT : MVT::vector_valuetypes()) { 291 setTruncStoreAction(VT, InnerVT, Expand); 292 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 293 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 294 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 295 } 296 297 if (isTypeLegal(VT)) { 298 // These operations are legal for anything that can be stored in a 299 // vector register, even if there is no native support for the format 300 // as such. In particular, we can do these for v4f32 even though there 301 // are no specific instructions for that format. 302 setOperationAction(ISD::LOAD, VT, Legal); 303 setOperationAction(ISD::STORE, VT, Legal); 304 setOperationAction(ISD::VSELECT, VT, Legal); 305 setOperationAction(ISD::BITCAST, VT, Legal); 306 setOperationAction(ISD::UNDEF, VT, Legal); 307 308 // Likewise, except that we need to replace the nodes with something 309 // more specific. 310 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 311 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 312 } 313 } 314 315 // Handle integer vector types. 316 for (MVT VT : MVT::integer_vector_valuetypes()) { 317 if (isTypeLegal(VT)) { 318 // These operations have direct equivalents. 319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 320 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 321 setOperationAction(ISD::ADD, VT, Legal); 322 setOperationAction(ISD::SUB, VT, Legal); 323 if (VT != MVT::v2i64) 324 setOperationAction(ISD::MUL, VT, Legal); 325 setOperationAction(ISD::AND, VT, Legal); 326 setOperationAction(ISD::OR, VT, Legal); 327 setOperationAction(ISD::XOR, VT, Legal); 328 if (Subtarget.hasVectorEnhancements1()) 329 setOperationAction(ISD::CTPOP, VT, Legal); 330 else 331 setOperationAction(ISD::CTPOP, VT, Custom); 332 setOperationAction(ISD::CTTZ, VT, Legal); 333 setOperationAction(ISD::CTLZ, VT, Legal); 334 335 // Convert a GPR scalar to a vector by inserting it into element 0. 336 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 337 338 // Use a series of unpacks for extensions. 339 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 340 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 341 342 // Detect shifts by a scalar amount and convert them into 343 // V*_BY_SCALAR. 344 setOperationAction(ISD::SHL, VT, Custom); 345 setOperationAction(ISD::SRA, VT, Custom); 346 setOperationAction(ISD::SRL, VT, Custom); 347 348 // At present ROTL isn't matched by DAGCombiner. ROTR should be 349 // converted into ROTL. 350 setOperationAction(ISD::ROTL, VT, Expand); 351 setOperationAction(ISD::ROTR, VT, Expand); 352 353 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 354 // and inverting the result as necessary. 355 setOperationAction(ISD::SETCC, VT, Custom); 356 } 357 } 358 359 if (Subtarget.hasVector()) { 360 // There should be no need to check for float types other than v2f64 361 // since <2 x f32> isn't a legal type. 362 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 363 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 364 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 365 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 366 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 367 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 368 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 369 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 370 } 371 372 // Handle floating-point types. 373 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 374 I <= MVT::LAST_FP_VALUETYPE; 375 ++I) { 376 MVT VT = MVT::SimpleValueType(I); 377 if (isTypeLegal(VT)) { 378 // We can use FI for FRINT. 379 setOperationAction(ISD::FRINT, VT, Legal); 380 381 // We can use the extended form of FI for other rounding operations. 382 if (Subtarget.hasFPExtension()) { 383 setOperationAction(ISD::FNEARBYINT, VT, Legal); 384 setOperationAction(ISD::FFLOOR, VT, Legal); 385 setOperationAction(ISD::FCEIL, VT, Legal); 386 setOperationAction(ISD::FTRUNC, VT, Legal); 387 setOperationAction(ISD::FROUND, VT, Legal); 388 } 389 390 // No special instructions for these. 391 setOperationAction(ISD::FSIN, VT, Expand); 392 setOperationAction(ISD::FCOS, VT, Expand); 393 setOperationAction(ISD::FSINCOS, VT, Expand); 394 setOperationAction(ISD::FREM, VT, Expand); 395 setOperationAction(ISD::FPOW, VT, Expand); 396 } 397 } 398 399 // Handle floating-point vector types. 400 if (Subtarget.hasVector()) { 401 // Scalar-to-vector conversion is just a subreg. 402 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 403 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 404 405 // Some insertions and extractions can be done directly but others 406 // need to go via integers. 407 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 408 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 409 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 410 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 411 412 // These operations have direct equivalents. 413 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 414 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 415 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 416 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 417 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 418 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 419 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 420 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 421 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 422 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 423 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 424 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 425 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 426 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 427 } 428 429 // The vector enhancements facility 1 has instructions for these. 430 if (Subtarget.hasVectorEnhancements1()) { 431 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 432 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 433 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 434 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 435 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 436 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 437 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 438 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 439 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 440 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 441 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 442 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 443 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 444 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 445 446 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 447 setOperationAction(ISD::FMAXNAN, MVT::f64, Legal); 448 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 449 setOperationAction(ISD::FMINNAN, MVT::f64, Legal); 450 451 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 452 setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal); 453 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 454 setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal); 455 456 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 457 setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); 458 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 459 setOperationAction(ISD::FMINNAN, MVT::f32, Legal); 460 461 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 462 setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); 463 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 464 setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); 465 466 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 467 setOperationAction(ISD::FMAXNAN, MVT::f128, Legal); 468 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 469 setOperationAction(ISD::FMINNAN, MVT::f128, Legal); 470 } 471 472 // We have fused multiply-addition for f32 and f64 but not f128. 473 setOperationAction(ISD::FMA, MVT::f32, Legal); 474 setOperationAction(ISD::FMA, MVT::f64, Legal); 475 if (Subtarget.hasVectorEnhancements1()) 476 setOperationAction(ISD::FMA, MVT::f128, Legal); 477 else 478 setOperationAction(ISD::FMA, MVT::f128, Expand); 479 480 // We don't have a copysign instruction on vector registers. 481 if (Subtarget.hasVectorEnhancements1()) 482 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 483 484 // Needed so that we don't try to implement f128 constant loads using 485 // a load-and-extend of a f80 constant (in cases where the constant 486 // would fit in an f80). 487 for (MVT VT : MVT::fp_valuetypes()) 488 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 489 490 // We don't have extending load instruction on vector registers. 491 if (Subtarget.hasVectorEnhancements1()) { 492 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 493 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 494 } 495 496 // Floating-point truncation and stores need to be done separately. 497 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 498 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 499 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 500 501 // We have 64-bit FPR<->GPR moves, but need special handling for 502 // 32-bit forms. 503 if (!Subtarget.hasVector()) { 504 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 505 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 506 } 507 508 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 509 // structure, but VAEND is a no-op. 510 setOperationAction(ISD::VASTART, MVT::Other, Custom); 511 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 512 setOperationAction(ISD::VAEND, MVT::Other, Expand); 513 514 // Codes for which we want to perform some z-specific combinations. 515 setTargetDAGCombine(ISD::SIGN_EXTEND); 516 setTargetDAGCombine(ISD::STORE); 517 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 518 setTargetDAGCombine(ISD::FP_ROUND); 519 setTargetDAGCombine(ISD::BSWAP); 520 setTargetDAGCombine(ISD::SHL); 521 setTargetDAGCombine(ISD::SRA); 522 setTargetDAGCombine(ISD::SRL); 523 setTargetDAGCombine(ISD::ROTL); 524 525 // Handle intrinsics. 526 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 527 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 528 529 // We want to use MVC in preference to even a single load/store pair. 530 MaxStoresPerMemcpy = 0; 531 MaxStoresPerMemcpyOptSize = 0; 532 533 // The main memset sequence is a byte store followed by an MVC. 534 // Two STC or MV..I stores win over that, but the kind of fused stores 535 // generated by target-independent code don't when the byte value is 536 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 537 // than "STC;MVC". Handle the choice in target-specific code instead. 538 MaxStoresPerMemset = 0; 539 MaxStoresPerMemsetOptSize = 0; 540 } 541 542 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 543 LLVMContext &, EVT VT) const { 544 if (!VT.isVector()) 545 return MVT::i32; 546 return VT.changeVectorElementTypeToInteger(); 547 } 548 549 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 550 VT = VT.getScalarType(); 551 552 if (!VT.isSimple()) 553 return false; 554 555 switch (VT.getSimpleVT().SimpleTy) { 556 case MVT::f32: 557 case MVT::f64: 558 return true; 559 case MVT::f128: 560 return Subtarget.hasVectorEnhancements1(); 561 default: 562 break; 563 } 564 565 return false; 566 } 567 568 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 569 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 570 return Imm.isZero() || Imm.isNegZero(); 571 } 572 573 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 574 // We can use CGFI or CLGFI. 575 return isInt<32>(Imm) || isUInt<32>(Imm); 576 } 577 578 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 579 // We can use ALGFI or SLGFI. 580 return isUInt<32>(Imm) || isUInt<32>(-Imm); 581 } 582 583 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 584 unsigned, 585 unsigned, 586 bool *Fast) const { 587 // Unaligned accesses should never be slower than the expanded version. 588 // We check specifically for aligned accesses in the few cases where 589 // they are required. 590 if (Fast) 591 *Fast = true; 592 return true; 593 } 594 595 // Information about the addressing mode for a memory access. 596 struct AddressingMode { 597 // True if a long displacement is supported. 598 bool LongDisplacement; 599 600 // True if use of index register is supported. 601 bool IndexReg; 602 603 AddressingMode(bool LongDispl, bool IdxReg) : 604 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 605 }; 606 607 // Return the desired addressing mode for a Load which has only one use (in 608 // the same block) which is a Store. 609 static AddressingMode getLoadStoreAddrMode(bool HasVector, 610 Type *Ty) { 611 // With vector support a Load->Store combination may be combined to either 612 // an MVC or vector operations and it seems to work best to allow the 613 // vector addressing mode. 614 if (HasVector) 615 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 616 617 // Otherwise only the MVC case is special. 618 bool MVC = Ty->isIntegerTy(8); 619 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 620 } 621 622 // Return the addressing mode which seems most desirable given an LLVM 623 // Instruction pointer. 624 static AddressingMode 625 supportedAddressingMode(Instruction *I, bool HasVector) { 626 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 627 switch (II->getIntrinsicID()) { 628 default: break; 629 case Intrinsic::memset: 630 case Intrinsic::memmove: 631 case Intrinsic::memcpy: 632 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 633 } 634 } 635 636 if (isa<LoadInst>(I) && I->hasOneUse()) { 637 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 638 if (SingleUser->getParent() == I->getParent()) { 639 if (isa<ICmpInst>(SingleUser)) { 640 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 641 if (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())) 642 // Comparison of memory with 16 bit signed / unsigned immediate 643 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 644 } else if (isa<StoreInst>(SingleUser)) 645 // Load->Store 646 return getLoadStoreAddrMode(HasVector, I->getType()); 647 } 648 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 649 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 650 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 651 // Load->Store 652 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 653 } 654 655 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 656 657 // * Use LDE instead of LE/LEY for z13 to avoid partial register 658 // dependencies (LDE only supports small offsets). 659 // * Utilize the vector registers to hold floating point 660 // values (vector load / store instructions only support small 661 // offsets). 662 663 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 664 I->getOperand(0)->getType()); 665 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 666 bool IsVectorAccess = MemAccessTy->isVectorTy(); 667 668 // A store of an extracted vector element will be combined into a VSTE type 669 // instruction. 670 if (!IsVectorAccess && isa<StoreInst>(I)) { 671 Value *DataOp = I->getOperand(0); 672 if (isa<ExtractElementInst>(DataOp)) 673 IsVectorAccess = true; 674 } 675 676 // A load which gets inserted into a vector element will be combined into a 677 // VLE type instruction. 678 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 679 User *LoadUser = *I->user_begin(); 680 if (isa<InsertElementInst>(LoadUser)) 681 IsVectorAccess = true; 682 } 683 684 if (IsFPAccess || IsVectorAccess) 685 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 686 } 687 688 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 689 } 690 691 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 692 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 693 // Punt on globals for now, although they can be used in limited 694 // RELATIVE LONG cases. 695 if (AM.BaseGV) 696 return false; 697 698 // Require a 20-bit signed offset. 699 if (!isInt<20>(AM.BaseOffs)) 700 return false; 701 702 AddressingMode SupportedAM(true, true); 703 if (I != nullptr) 704 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 705 706 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 707 return false; 708 709 if (!SupportedAM.IndexReg) 710 // No indexing allowed. 711 return AM.Scale == 0; 712 else 713 // Indexing is OK but no scale factor can be applied. 714 return AM.Scale == 0 || AM.Scale == 1; 715 } 716 717 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 718 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 719 return false; 720 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 721 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 722 return FromBits > ToBits; 723 } 724 725 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 726 if (!FromVT.isInteger() || !ToVT.isInteger()) 727 return false; 728 unsigned FromBits = FromVT.getSizeInBits(); 729 unsigned ToBits = ToVT.getSizeInBits(); 730 return FromBits > ToBits; 731 } 732 733 //===----------------------------------------------------------------------===// 734 // Inline asm support 735 //===----------------------------------------------------------------------===// 736 737 TargetLowering::ConstraintType 738 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 739 if (Constraint.size() == 1) { 740 switch (Constraint[0]) { 741 case 'a': // Address register 742 case 'd': // Data register (equivalent to 'r') 743 case 'f': // Floating-point register 744 case 'h': // High-part register 745 case 'r': // General-purpose register 746 return C_RegisterClass; 747 748 case 'Q': // Memory with base and unsigned 12-bit displacement 749 case 'R': // Likewise, plus an index 750 case 'S': // Memory with base and signed 20-bit displacement 751 case 'T': // Likewise, plus an index 752 case 'm': // Equivalent to 'T'. 753 return C_Memory; 754 755 case 'I': // Unsigned 8-bit constant 756 case 'J': // Unsigned 12-bit constant 757 case 'K': // Signed 16-bit constant 758 case 'L': // Signed 20-bit displacement (on all targets we support) 759 case 'M': // 0x7fffffff 760 return C_Other; 761 762 default: 763 break; 764 } 765 } 766 return TargetLowering::getConstraintType(Constraint); 767 } 768 769 TargetLowering::ConstraintWeight SystemZTargetLowering:: 770 getSingleConstraintMatchWeight(AsmOperandInfo &info, 771 const char *constraint) const { 772 ConstraintWeight weight = CW_Invalid; 773 Value *CallOperandVal = info.CallOperandVal; 774 // If we don't have a value, we can't do a match, 775 // but allow it at the lowest weight. 776 if (!CallOperandVal) 777 return CW_Default; 778 Type *type = CallOperandVal->getType(); 779 // Look at the constraint type. 780 switch (*constraint) { 781 default: 782 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 783 break; 784 785 case 'a': // Address register 786 case 'd': // Data register (equivalent to 'r') 787 case 'h': // High-part register 788 case 'r': // General-purpose register 789 if (CallOperandVal->getType()->isIntegerTy()) 790 weight = CW_Register; 791 break; 792 793 case 'f': // Floating-point register 794 if (type->isFloatingPointTy()) 795 weight = CW_Register; 796 break; 797 798 case 'I': // Unsigned 8-bit constant 799 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 800 if (isUInt<8>(C->getZExtValue())) 801 weight = CW_Constant; 802 break; 803 804 case 'J': // Unsigned 12-bit constant 805 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 806 if (isUInt<12>(C->getZExtValue())) 807 weight = CW_Constant; 808 break; 809 810 case 'K': // Signed 16-bit constant 811 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 812 if (isInt<16>(C->getSExtValue())) 813 weight = CW_Constant; 814 break; 815 816 case 'L': // Signed 20-bit displacement (on all targets we support) 817 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 818 if (isInt<20>(C->getSExtValue())) 819 weight = CW_Constant; 820 break; 821 822 case 'M': // 0x7fffffff 823 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 824 if (C->getZExtValue() == 0x7fffffff) 825 weight = CW_Constant; 826 break; 827 } 828 return weight; 829 } 830 831 // Parse a "{tNNN}" register constraint for which the register type "t" 832 // has already been verified. MC is the class associated with "t" and 833 // Map maps 0-based register numbers to LLVM register numbers. 834 static std::pair<unsigned, const TargetRegisterClass *> 835 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 836 const unsigned *Map) { 837 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 838 if (isdigit(Constraint[2])) { 839 unsigned Index; 840 bool Failed = 841 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 842 if (!Failed && Index < 16 && Map[Index]) 843 return std::make_pair(Map[Index], RC); 844 } 845 return std::make_pair(0U, nullptr); 846 } 847 848 std::pair<unsigned, const TargetRegisterClass *> 849 SystemZTargetLowering::getRegForInlineAsmConstraint( 850 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 851 if (Constraint.size() == 1) { 852 // GCC Constraint Letters 853 switch (Constraint[0]) { 854 default: break; 855 case 'd': // Data register (equivalent to 'r') 856 case 'r': // General-purpose register 857 if (VT == MVT::i64) 858 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 859 else if (VT == MVT::i128) 860 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 861 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 862 863 case 'a': // Address register 864 if (VT == MVT::i64) 865 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 866 else if (VT == MVT::i128) 867 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 868 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 869 870 case 'h': // High-part register (an LLVM extension) 871 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 872 873 case 'f': // Floating-point register 874 if (VT == MVT::f64) 875 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 876 else if (VT == MVT::f128) 877 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 878 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 879 } 880 } 881 if (Constraint.size() > 0 && Constraint[0] == '{') { 882 // We need to override the default register parsing for GPRs and FPRs 883 // because the interpretation depends on VT. The internal names of 884 // the registers are also different from the external names 885 // (F0D and F0S instead of F0, etc.). 886 if (Constraint[1] == 'r') { 887 if (VT == MVT::i32) 888 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 889 SystemZMC::GR32Regs); 890 if (VT == MVT::i128) 891 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 892 SystemZMC::GR128Regs); 893 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 894 SystemZMC::GR64Regs); 895 } 896 if (Constraint[1] == 'f') { 897 if (VT == MVT::f32) 898 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 899 SystemZMC::FP32Regs); 900 if (VT == MVT::f128) 901 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 902 SystemZMC::FP128Regs); 903 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 904 SystemZMC::FP64Regs); 905 } 906 } 907 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 908 } 909 910 void SystemZTargetLowering:: 911 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 912 std::vector<SDValue> &Ops, 913 SelectionDAG &DAG) const { 914 // Only support length 1 constraints for now. 915 if (Constraint.length() == 1) { 916 switch (Constraint[0]) { 917 case 'I': // Unsigned 8-bit constant 918 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 919 if (isUInt<8>(C->getZExtValue())) 920 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 921 Op.getValueType())); 922 return; 923 924 case 'J': // Unsigned 12-bit constant 925 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 926 if (isUInt<12>(C->getZExtValue())) 927 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 928 Op.getValueType())); 929 return; 930 931 case 'K': // Signed 16-bit constant 932 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 933 if (isInt<16>(C->getSExtValue())) 934 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 935 Op.getValueType())); 936 return; 937 938 case 'L': // Signed 20-bit displacement (on all targets we support) 939 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 940 if (isInt<20>(C->getSExtValue())) 941 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 942 Op.getValueType())); 943 return; 944 945 case 'M': // 0x7fffffff 946 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 947 if (C->getZExtValue() == 0x7fffffff) 948 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 949 Op.getValueType())); 950 return; 951 } 952 } 953 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 954 } 955 956 //===----------------------------------------------------------------------===// 957 // Calling conventions 958 //===----------------------------------------------------------------------===// 959 960 #include "SystemZGenCallingConv.inc" 961 962 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 963 Type *ToType) const { 964 return isTruncateFree(FromType, ToType); 965 } 966 967 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 968 return CI->isTailCall(); 969 } 970 971 // We do not yet support 128-bit single-element vector types. If the user 972 // attempts to use such types as function argument or return type, prefer 973 // to error out instead of emitting code violating the ABI. 974 static void VerifyVectorType(MVT VT, EVT ArgVT) { 975 if (ArgVT.isVector() && !VT.isVector()) 976 report_fatal_error("Unsupported vector argument or return type"); 977 } 978 979 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 980 for (unsigned i = 0; i < Ins.size(); ++i) 981 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 982 } 983 984 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 985 for (unsigned i = 0; i < Outs.size(); ++i) 986 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 987 } 988 989 // Value is a value that has been passed to us in the location described by VA 990 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 991 // any loads onto Chain. 992 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 993 CCValAssign &VA, SDValue Chain, 994 SDValue Value) { 995 // If the argument has been promoted from a smaller type, insert an 996 // assertion to capture this. 997 if (VA.getLocInfo() == CCValAssign::SExt) 998 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 999 DAG.getValueType(VA.getValVT())); 1000 else if (VA.getLocInfo() == CCValAssign::ZExt) 1001 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1002 DAG.getValueType(VA.getValVT())); 1003 1004 if (VA.isExtInLoc()) 1005 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1006 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1007 // If this is a short vector argument loaded from the stack, 1008 // extend from i64 to full vector size and then bitcast. 1009 assert(VA.getLocVT() == MVT::i64); 1010 assert(VA.getValVT().isVector()); 1011 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1012 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1013 } else 1014 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1015 return Value; 1016 } 1017 1018 // Value is a value of type VA.getValVT() that we need to copy into 1019 // the location described by VA. Return a copy of Value converted to 1020 // VA.getValVT(). The caller is responsible for handling indirect values. 1021 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1022 CCValAssign &VA, SDValue Value) { 1023 switch (VA.getLocInfo()) { 1024 case CCValAssign::SExt: 1025 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1026 case CCValAssign::ZExt: 1027 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1028 case CCValAssign::AExt: 1029 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1030 case CCValAssign::BCvt: 1031 // If this is a short vector argument to be stored to the stack, 1032 // bitcast to v2i64 and then extract first element. 1033 assert(VA.getLocVT() == MVT::i64); 1034 assert(VA.getValVT().isVector()); 1035 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1036 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1037 DAG.getConstant(0, DL, MVT::i32)); 1038 case CCValAssign::Full: 1039 return Value; 1040 default: 1041 llvm_unreachable("Unhandled getLocInfo()"); 1042 } 1043 } 1044 1045 SDValue SystemZTargetLowering::LowerFormalArguments( 1046 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1047 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1048 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1049 MachineFunction &MF = DAG.getMachineFunction(); 1050 MachineFrameInfo &MFI = MF.getFrameInfo(); 1051 MachineRegisterInfo &MRI = MF.getRegInfo(); 1052 SystemZMachineFunctionInfo *FuncInfo = 1053 MF.getInfo<SystemZMachineFunctionInfo>(); 1054 auto *TFL = 1055 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1056 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1057 1058 // Detect unsupported vector argument types. 1059 if (Subtarget.hasVector()) 1060 VerifyVectorTypes(Ins); 1061 1062 // Assign locations to all of the incoming arguments. 1063 SmallVector<CCValAssign, 16> ArgLocs; 1064 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1065 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1066 1067 unsigned NumFixedGPRs = 0; 1068 unsigned NumFixedFPRs = 0; 1069 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1070 SDValue ArgValue; 1071 CCValAssign &VA = ArgLocs[I]; 1072 EVT LocVT = VA.getLocVT(); 1073 if (VA.isRegLoc()) { 1074 // Arguments passed in registers 1075 const TargetRegisterClass *RC; 1076 switch (LocVT.getSimpleVT().SimpleTy) { 1077 default: 1078 // Integers smaller than i64 should be promoted to i64. 1079 llvm_unreachable("Unexpected argument type"); 1080 case MVT::i32: 1081 NumFixedGPRs += 1; 1082 RC = &SystemZ::GR32BitRegClass; 1083 break; 1084 case MVT::i64: 1085 NumFixedGPRs += 1; 1086 RC = &SystemZ::GR64BitRegClass; 1087 break; 1088 case MVT::f32: 1089 NumFixedFPRs += 1; 1090 RC = &SystemZ::FP32BitRegClass; 1091 break; 1092 case MVT::f64: 1093 NumFixedFPRs += 1; 1094 RC = &SystemZ::FP64BitRegClass; 1095 break; 1096 case MVT::v16i8: 1097 case MVT::v8i16: 1098 case MVT::v4i32: 1099 case MVT::v2i64: 1100 case MVT::v4f32: 1101 case MVT::v2f64: 1102 RC = &SystemZ::VR128BitRegClass; 1103 break; 1104 } 1105 1106 unsigned VReg = MRI.createVirtualRegister(RC); 1107 MRI.addLiveIn(VA.getLocReg(), VReg); 1108 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1109 } else { 1110 assert(VA.isMemLoc() && "Argument not register or memory"); 1111 1112 // Create the frame index object for this incoming parameter. 1113 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1114 VA.getLocMemOffset(), true); 1115 1116 // Create the SelectionDAG nodes corresponding to a load 1117 // from this parameter. Unpromoted ints and floats are 1118 // passed as right-justified 8-byte values. 1119 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1120 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1121 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1122 DAG.getIntPtrConstant(4, DL)); 1123 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1124 MachinePointerInfo::getFixedStack(MF, FI)); 1125 } 1126 1127 // Convert the value of the argument register into the value that's 1128 // being passed. 1129 if (VA.getLocInfo() == CCValAssign::Indirect) { 1130 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1131 MachinePointerInfo())); 1132 // If the original argument was split (e.g. i128), we need 1133 // to load all parts of it here (using the same address). 1134 unsigned ArgIndex = Ins[I].OrigArgIndex; 1135 assert (Ins[I].PartOffset == 0); 1136 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1137 CCValAssign &PartVA = ArgLocs[I + 1]; 1138 unsigned PartOffset = Ins[I + 1].PartOffset; 1139 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1140 DAG.getIntPtrConstant(PartOffset, DL)); 1141 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1142 MachinePointerInfo())); 1143 ++I; 1144 } 1145 } else 1146 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1147 } 1148 1149 if (IsVarArg) { 1150 // Save the number of non-varargs registers for later use by va_start, etc. 1151 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1152 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1153 1154 // Likewise the address (in the form of a frame index) of where the 1155 // first stack vararg would be. The 1-byte size here is arbitrary. 1156 int64_t StackSize = CCInfo.getNextStackOffset(); 1157 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1158 1159 // ...and a similar frame index for the caller-allocated save area 1160 // that will be used to store the incoming registers. 1161 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1162 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1163 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1164 1165 // Store the FPR varargs in the reserved frame slots. (We store the 1166 // GPRs as part of the prologue.) 1167 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1168 SDValue MemOps[SystemZ::NumArgFPRs]; 1169 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1170 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1171 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1172 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1173 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1174 &SystemZ::FP64BitRegClass); 1175 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1176 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1177 MachinePointerInfo::getFixedStack(MF, FI)); 1178 } 1179 // Join the stores, which are independent of one another. 1180 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1181 makeArrayRef(&MemOps[NumFixedFPRs], 1182 SystemZ::NumArgFPRs-NumFixedFPRs)); 1183 } 1184 } 1185 1186 return Chain; 1187 } 1188 1189 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1190 SmallVectorImpl<CCValAssign> &ArgLocs, 1191 SmallVectorImpl<ISD::OutputArg> &Outs) { 1192 // Punt if there are any indirect or stack arguments, or if the call 1193 // needs the callee-saved argument register R6, or if the call uses 1194 // the callee-saved register arguments SwiftSelf and SwiftError. 1195 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1196 CCValAssign &VA = ArgLocs[I]; 1197 if (VA.getLocInfo() == CCValAssign::Indirect) 1198 return false; 1199 if (!VA.isRegLoc()) 1200 return false; 1201 unsigned Reg = VA.getLocReg(); 1202 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1203 return false; 1204 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1205 return false; 1206 } 1207 return true; 1208 } 1209 1210 SDValue 1211 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1212 SmallVectorImpl<SDValue> &InVals) const { 1213 SelectionDAG &DAG = CLI.DAG; 1214 SDLoc &DL = CLI.DL; 1215 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1216 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1217 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1218 SDValue Chain = CLI.Chain; 1219 SDValue Callee = CLI.Callee; 1220 bool &IsTailCall = CLI.IsTailCall; 1221 CallingConv::ID CallConv = CLI.CallConv; 1222 bool IsVarArg = CLI.IsVarArg; 1223 MachineFunction &MF = DAG.getMachineFunction(); 1224 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1225 1226 // Detect unsupported vector argument and return types. 1227 if (Subtarget.hasVector()) { 1228 VerifyVectorTypes(Outs); 1229 VerifyVectorTypes(Ins); 1230 } 1231 1232 // Analyze the operands of the call, assigning locations to each operand. 1233 SmallVector<CCValAssign, 16> ArgLocs; 1234 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1235 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1236 1237 // We don't support GuaranteedTailCallOpt, only automatically-detected 1238 // sibling calls. 1239 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1240 IsTailCall = false; 1241 1242 // Get a count of how many bytes are to be pushed on the stack. 1243 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1244 1245 // Mark the start of the call. 1246 if (!IsTailCall) 1247 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1248 1249 // Copy argument values to their designated locations. 1250 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1251 SmallVector<SDValue, 8> MemOpChains; 1252 SDValue StackPtr; 1253 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1254 CCValAssign &VA = ArgLocs[I]; 1255 SDValue ArgValue = OutVals[I]; 1256 1257 if (VA.getLocInfo() == CCValAssign::Indirect) { 1258 // Store the argument in a stack slot and pass its address. 1259 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1260 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1261 MemOpChains.push_back( 1262 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1263 MachinePointerInfo::getFixedStack(MF, FI))); 1264 // If the original argument was split (e.g. i128), we need 1265 // to store all parts of it here (and pass just one address). 1266 unsigned ArgIndex = Outs[I].OrigArgIndex; 1267 assert (Outs[I].PartOffset == 0); 1268 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1269 SDValue PartValue = OutVals[I + 1]; 1270 unsigned PartOffset = Outs[I + 1].PartOffset; 1271 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1272 DAG.getIntPtrConstant(PartOffset, DL)); 1273 MemOpChains.push_back( 1274 DAG.getStore(Chain, DL, PartValue, Address, 1275 MachinePointerInfo::getFixedStack(MF, FI))); 1276 ++I; 1277 } 1278 ArgValue = SpillSlot; 1279 } else 1280 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1281 1282 if (VA.isRegLoc()) 1283 // Queue up the argument copies and emit them at the end. 1284 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1285 else { 1286 assert(VA.isMemLoc() && "Argument not register or memory"); 1287 1288 // Work out the address of the stack slot. Unpromoted ints and 1289 // floats are passed as right-justified 8-byte values. 1290 if (!StackPtr.getNode()) 1291 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1292 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1293 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1294 Offset += 4; 1295 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1296 DAG.getIntPtrConstant(Offset, DL)); 1297 1298 // Emit the store. 1299 MemOpChains.push_back( 1300 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1301 } 1302 } 1303 1304 // Join the stores, which are independent of one another. 1305 if (!MemOpChains.empty()) 1306 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1307 1308 // Accept direct calls by converting symbolic call addresses to the 1309 // associated Target* opcodes. Force %r1 to be used for indirect 1310 // tail calls. 1311 SDValue Glue; 1312 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1313 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1314 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1315 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1316 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1317 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1318 } else if (IsTailCall) { 1319 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1320 Glue = Chain.getValue(1); 1321 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1322 } 1323 1324 // Build a sequence of copy-to-reg nodes, chained and glued together. 1325 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1326 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1327 RegsToPass[I].second, Glue); 1328 Glue = Chain.getValue(1); 1329 } 1330 1331 // The first call operand is the chain and the second is the target address. 1332 SmallVector<SDValue, 8> Ops; 1333 Ops.push_back(Chain); 1334 Ops.push_back(Callee); 1335 1336 // Add argument registers to the end of the list so that they are 1337 // known live into the call. 1338 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1339 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1340 RegsToPass[I].second.getValueType())); 1341 1342 // Add a register mask operand representing the call-preserved registers. 1343 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1344 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1345 assert(Mask && "Missing call preserved mask for calling convention"); 1346 Ops.push_back(DAG.getRegisterMask(Mask)); 1347 1348 // Glue the call to the argument copies, if any. 1349 if (Glue.getNode()) 1350 Ops.push_back(Glue); 1351 1352 // Emit the call. 1353 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1354 if (IsTailCall) 1355 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1356 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1357 Glue = Chain.getValue(1); 1358 1359 // Mark the end of the call, which is glued to the call itself. 1360 Chain = DAG.getCALLSEQ_END(Chain, 1361 DAG.getConstant(NumBytes, DL, PtrVT, true), 1362 DAG.getConstant(0, DL, PtrVT, true), 1363 Glue, DL); 1364 Glue = Chain.getValue(1); 1365 1366 // Assign locations to each value returned by this call. 1367 SmallVector<CCValAssign, 16> RetLocs; 1368 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1369 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1370 1371 // Copy all of the result registers out of their specified physreg. 1372 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1373 CCValAssign &VA = RetLocs[I]; 1374 1375 // Copy the value out, gluing the copy to the end of the call sequence. 1376 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1377 VA.getLocVT(), Glue); 1378 Chain = RetValue.getValue(1); 1379 Glue = RetValue.getValue(2); 1380 1381 // Convert the value of the return register into the value that's 1382 // being returned. 1383 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1384 } 1385 1386 return Chain; 1387 } 1388 1389 bool SystemZTargetLowering:: 1390 CanLowerReturn(CallingConv::ID CallConv, 1391 MachineFunction &MF, bool isVarArg, 1392 const SmallVectorImpl<ISD::OutputArg> &Outs, 1393 LLVMContext &Context) const { 1394 // Detect unsupported vector return types. 1395 if (Subtarget.hasVector()) 1396 VerifyVectorTypes(Outs); 1397 1398 // Special case that we cannot easily detect in RetCC_SystemZ since 1399 // i128 is not a legal type. 1400 for (auto &Out : Outs) 1401 if (Out.ArgVT == MVT::i128) 1402 return false; 1403 1404 SmallVector<CCValAssign, 16> RetLocs; 1405 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1406 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1407 } 1408 1409 SDValue 1410 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1411 bool IsVarArg, 1412 const SmallVectorImpl<ISD::OutputArg> &Outs, 1413 const SmallVectorImpl<SDValue> &OutVals, 1414 const SDLoc &DL, SelectionDAG &DAG) const { 1415 MachineFunction &MF = DAG.getMachineFunction(); 1416 1417 // Detect unsupported vector return types. 1418 if (Subtarget.hasVector()) 1419 VerifyVectorTypes(Outs); 1420 1421 // Assign locations to each returned value. 1422 SmallVector<CCValAssign, 16> RetLocs; 1423 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1424 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1425 1426 // Quick exit for void returns 1427 if (RetLocs.empty()) 1428 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1429 1430 // Copy the result values into the output registers. 1431 SDValue Glue; 1432 SmallVector<SDValue, 4> RetOps; 1433 RetOps.push_back(Chain); 1434 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1435 CCValAssign &VA = RetLocs[I]; 1436 SDValue RetValue = OutVals[I]; 1437 1438 // Make the return register live on exit. 1439 assert(VA.isRegLoc() && "Can only return in registers!"); 1440 1441 // Promote the value as required. 1442 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1443 1444 // Chain and glue the copies together. 1445 unsigned Reg = VA.getLocReg(); 1446 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1447 Glue = Chain.getValue(1); 1448 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1449 } 1450 1451 // Update chain and glue. 1452 RetOps[0] = Chain; 1453 if (Glue.getNode()) 1454 RetOps.push_back(Glue); 1455 1456 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1457 } 1458 1459 // Return true if Op is an intrinsic node with chain that returns the CC value 1460 // as its only (other) argument. Provide the associated SystemZISD opcode and 1461 // the mask of valid CC values if so. 1462 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1463 unsigned &CCValid) { 1464 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1465 switch (Id) { 1466 case Intrinsic::s390_tbegin: 1467 Opcode = SystemZISD::TBEGIN; 1468 CCValid = SystemZ::CCMASK_TBEGIN; 1469 return true; 1470 1471 case Intrinsic::s390_tbegin_nofloat: 1472 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1473 CCValid = SystemZ::CCMASK_TBEGIN; 1474 return true; 1475 1476 case Intrinsic::s390_tend: 1477 Opcode = SystemZISD::TEND; 1478 CCValid = SystemZ::CCMASK_TEND; 1479 return true; 1480 1481 default: 1482 return false; 1483 } 1484 } 1485 1486 // Return true if Op is an intrinsic node without chain that returns the 1487 // CC value as its final argument. Provide the associated SystemZISD 1488 // opcode and the mask of valid CC values if so. 1489 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1490 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1491 switch (Id) { 1492 case Intrinsic::s390_vpkshs: 1493 case Intrinsic::s390_vpksfs: 1494 case Intrinsic::s390_vpksgs: 1495 Opcode = SystemZISD::PACKS_CC; 1496 CCValid = SystemZ::CCMASK_VCMP; 1497 return true; 1498 1499 case Intrinsic::s390_vpklshs: 1500 case Intrinsic::s390_vpklsfs: 1501 case Intrinsic::s390_vpklsgs: 1502 Opcode = SystemZISD::PACKLS_CC; 1503 CCValid = SystemZ::CCMASK_VCMP; 1504 return true; 1505 1506 case Intrinsic::s390_vceqbs: 1507 case Intrinsic::s390_vceqhs: 1508 case Intrinsic::s390_vceqfs: 1509 case Intrinsic::s390_vceqgs: 1510 Opcode = SystemZISD::VICMPES; 1511 CCValid = SystemZ::CCMASK_VCMP; 1512 return true; 1513 1514 case Intrinsic::s390_vchbs: 1515 case Intrinsic::s390_vchhs: 1516 case Intrinsic::s390_vchfs: 1517 case Intrinsic::s390_vchgs: 1518 Opcode = SystemZISD::VICMPHS; 1519 CCValid = SystemZ::CCMASK_VCMP; 1520 return true; 1521 1522 case Intrinsic::s390_vchlbs: 1523 case Intrinsic::s390_vchlhs: 1524 case Intrinsic::s390_vchlfs: 1525 case Intrinsic::s390_vchlgs: 1526 Opcode = SystemZISD::VICMPHLS; 1527 CCValid = SystemZ::CCMASK_VCMP; 1528 return true; 1529 1530 case Intrinsic::s390_vtm: 1531 Opcode = SystemZISD::VTM; 1532 CCValid = SystemZ::CCMASK_VCMP; 1533 return true; 1534 1535 case Intrinsic::s390_vfaebs: 1536 case Intrinsic::s390_vfaehs: 1537 case Intrinsic::s390_vfaefs: 1538 Opcode = SystemZISD::VFAE_CC; 1539 CCValid = SystemZ::CCMASK_ANY; 1540 return true; 1541 1542 case Intrinsic::s390_vfaezbs: 1543 case Intrinsic::s390_vfaezhs: 1544 case Intrinsic::s390_vfaezfs: 1545 Opcode = SystemZISD::VFAEZ_CC; 1546 CCValid = SystemZ::CCMASK_ANY; 1547 return true; 1548 1549 case Intrinsic::s390_vfeebs: 1550 case Intrinsic::s390_vfeehs: 1551 case Intrinsic::s390_vfeefs: 1552 Opcode = SystemZISD::VFEE_CC; 1553 CCValid = SystemZ::CCMASK_ANY; 1554 return true; 1555 1556 case Intrinsic::s390_vfeezbs: 1557 case Intrinsic::s390_vfeezhs: 1558 case Intrinsic::s390_vfeezfs: 1559 Opcode = SystemZISD::VFEEZ_CC; 1560 CCValid = SystemZ::CCMASK_ANY; 1561 return true; 1562 1563 case Intrinsic::s390_vfenebs: 1564 case Intrinsic::s390_vfenehs: 1565 case Intrinsic::s390_vfenefs: 1566 Opcode = SystemZISD::VFENE_CC; 1567 CCValid = SystemZ::CCMASK_ANY; 1568 return true; 1569 1570 case Intrinsic::s390_vfenezbs: 1571 case Intrinsic::s390_vfenezhs: 1572 case Intrinsic::s390_vfenezfs: 1573 Opcode = SystemZISD::VFENEZ_CC; 1574 CCValid = SystemZ::CCMASK_ANY; 1575 return true; 1576 1577 case Intrinsic::s390_vistrbs: 1578 case Intrinsic::s390_vistrhs: 1579 case Intrinsic::s390_vistrfs: 1580 Opcode = SystemZISD::VISTR_CC; 1581 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1582 return true; 1583 1584 case Intrinsic::s390_vstrcbs: 1585 case Intrinsic::s390_vstrchs: 1586 case Intrinsic::s390_vstrcfs: 1587 Opcode = SystemZISD::VSTRC_CC; 1588 CCValid = SystemZ::CCMASK_ANY; 1589 return true; 1590 1591 case Intrinsic::s390_vstrczbs: 1592 case Intrinsic::s390_vstrczhs: 1593 case Intrinsic::s390_vstrczfs: 1594 Opcode = SystemZISD::VSTRCZ_CC; 1595 CCValid = SystemZ::CCMASK_ANY; 1596 return true; 1597 1598 case Intrinsic::s390_vfcedbs: 1599 case Intrinsic::s390_vfcesbs: 1600 Opcode = SystemZISD::VFCMPES; 1601 CCValid = SystemZ::CCMASK_VCMP; 1602 return true; 1603 1604 case Intrinsic::s390_vfchdbs: 1605 case Intrinsic::s390_vfchsbs: 1606 Opcode = SystemZISD::VFCMPHS; 1607 CCValid = SystemZ::CCMASK_VCMP; 1608 return true; 1609 1610 case Intrinsic::s390_vfchedbs: 1611 case Intrinsic::s390_vfchesbs: 1612 Opcode = SystemZISD::VFCMPHES; 1613 CCValid = SystemZ::CCMASK_VCMP; 1614 return true; 1615 1616 case Intrinsic::s390_vftcidb: 1617 case Intrinsic::s390_vftcisb: 1618 Opcode = SystemZISD::VFTCI; 1619 CCValid = SystemZ::CCMASK_VCMP; 1620 return true; 1621 1622 case Intrinsic::s390_tdc: 1623 Opcode = SystemZISD::TDC; 1624 CCValid = SystemZ::CCMASK_TDC; 1625 return true; 1626 1627 default: 1628 return false; 1629 } 1630 } 1631 1632 // Emit an intrinsic with chain with a glued value instead of its CC result. 1633 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1634 unsigned Opcode) { 1635 // Copy all operands except the intrinsic ID. 1636 unsigned NumOps = Op.getNumOperands(); 1637 SmallVector<SDValue, 6> Ops; 1638 Ops.reserve(NumOps - 1); 1639 Ops.push_back(Op.getOperand(0)); 1640 for (unsigned I = 2; I < NumOps; ++I) 1641 Ops.push_back(Op.getOperand(I)); 1642 1643 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1644 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1645 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1646 SDValue OldChain = SDValue(Op.getNode(), 1); 1647 SDValue NewChain = SDValue(Intr.getNode(), 0); 1648 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1649 return Intr; 1650 } 1651 1652 // Emit an intrinsic with a glued value instead of its CC result. 1653 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1654 unsigned Opcode) { 1655 // Copy all operands except the intrinsic ID. 1656 unsigned NumOps = Op.getNumOperands(); 1657 SmallVector<SDValue, 6> Ops; 1658 Ops.reserve(NumOps - 1); 1659 for (unsigned I = 1; I < NumOps; ++I) 1660 Ops.push_back(Op.getOperand(I)); 1661 1662 if (Op->getNumValues() == 1) 1663 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1664 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1665 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1666 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1667 } 1668 1669 // CC is a comparison that will be implemented using an integer or 1670 // floating-point comparison. Return the condition code mask for 1671 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1672 // unsigned comparisons and clear for signed ones. In the floating-point 1673 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1674 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1675 #define CONV(X) \ 1676 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1677 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1678 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1679 1680 switch (CC) { 1681 default: 1682 llvm_unreachable("Invalid integer condition!"); 1683 1684 CONV(EQ); 1685 CONV(NE); 1686 CONV(GT); 1687 CONV(GE); 1688 CONV(LT); 1689 CONV(LE); 1690 1691 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1692 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1693 } 1694 #undef CONV 1695 } 1696 1697 // Return a sequence for getting a 1 from an IPM result when CC has a 1698 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1699 // The handling of CC values outside CCValid doesn't matter. 1700 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1701 // Deal with cases where the result can be taken directly from a bit 1702 // of the IPM result. 1703 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1704 return IPMConversion(0, 0, SystemZ::IPM_CC); 1705 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1706 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1707 1708 // Deal with cases where we can add a value to force the sign bit 1709 // to contain the right value. Putting the bit in 31 means we can 1710 // use SRL rather than RISBG(L), and also makes it easier to get a 1711 // 0/-1 value, so it has priority over the other tests below. 1712 // 1713 // These sequences rely on the fact that the upper two bits of the 1714 // IPM result are zero. 1715 uint64_t TopBit = uint64_t(1) << 31; 1716 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1717 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1718 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1719 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1720 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1721 | SystemZ::CCMASK_1 1722 | SystemZ::CCMASK_2))) 1723 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1724 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1725 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1726 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1727 | SystemZ::CCMASK_2 1728 | SystemZ::CCMASK_3))) 1729 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1730 1731 // Next try inverting the value and testing a bit. 0/1 could be 1732 // handled this way too, but we dealt with that case above. 1733 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1734 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1735 1736 // Handle cases where adding a value forces a non-sign bit to contain 1737 // the right value. 1738 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1739 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1740 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1741 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1742 1743 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1744 // can be done by inverting the low CC bit and applying one of the 1745 // sign-based extractions above. 1746 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1747 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1748 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1749 return IPMConversion(1 << SystemZ::IPM_CC, 1750 TopBit - (3 << SystemZ::IPM_CC), 31); 1751 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1752 | SystemZ::CCMASK_1 1753 | SystemZ::CCMASK_3))) 1754 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1755 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1756 | SystemZ::CCMASK_2 1757 | SystemZ::CCMASK_3))) 1758 return IPMConversion(1 << SystemZ::IPM_CC, 1759 TopBit - (1 << SystemZ::IPM_CC), 31); 1760 1761 llvm_unreachable("Unexpected CC combination"); 1762 } 1763 1764 // If C can be converted to a comparison against zero, adjust the operands 1765 // as necessary. 1766 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1767 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1768 return; 1769 1770 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1771 if (!ConstOp1) 1772 return; 1773 1774 int64_t Value = ConstOp1->getSExtValue(); 1775 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1776 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1777 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1778 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1779 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1780 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1781 } 1782 } 1783 1784 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1785 // adjust the operands as necessary. 1786 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1787 Comparison &C) { 1788 // For us to make any changes, it must a comparison between a single-use 1789 // load and a constant. 1790 if (!C.Op0.hasOneUse() || 1791 C.Op0.getOpcode() != ISD::LOAD || 1792 C.Op1.getOpcode() != ISD::Constant) 1793 return; 1794 1795 // We must have an 8- or 16-bit load. 1796 auto *Load = cast<LoadSDNode>(C.Op0); 1797 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1798 if (NumBits != 8 && NumBits != 16) 1799 return; 1800 1801 // The load must be an extending one and the constant must be within the 1802 // range of the unextended value. 1803 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1804 uint64_t Value = ConstOp1->getZExtValue(); 1805 uint64_t Mask = (1 << NumBits) - 1; 1806 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1807 // Make sure that ConstOp1 is in range of C.Op0. 1808 int64_t SignedValue = ConstOp1->getSExtValue(); 1809 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1810 return; 1811 if (C.ICmpType != SystemZICMP::SignedOnly) { 1812 // Unsigned comparison between two sign-extended values is equivalent 1813 // to unsigned comparison between two zero-extended values. 1814 Value &= Mask; 1815 } else if (NumBits == 8) { 1816 // Try to treat the comparison as unsigned, so that we can use CLI. 1817 // Adjust CCMask and Value as necessary. 1818 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1819 // Test whether the high bit of the byte is set. 1820 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1821 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1822 // Test whether the high bit of the byte is clear. 1823 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1824 else 1825 // No instruction exists for this combination. 1826 return; 1827 C.ICmpType = SystemZICMP::UnsignedOnly; 1828 } 1829 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1830 if (Value > Mask) 1831 return; 1832 // If the constant is in range, we can use any comparison. 1833 C.ICmpType = SystemZICMP::Any; 1834 } else 1835 return; 1836 1837 // Make sure that the first operand is an i32 of the right extension type. 1838 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1839 ISD::SEXTLOAD : 1840 ISD::ZEXTLOAD); 1841 if (C.Op0.getValueType() != MVT::i32 || 1842 Load->getExtensionType() != ExtType) 1843 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1844 Load->getBasePtr(), Load->getPointerInfo(), 1845 Load->getMemoryVT(), Load->getAlignment(), 1846 Load->getMemOperand()->getFlags()); 1847 1848 // Make sure that the second operand is an i32 with the right value. 1849 if (C.Op1.getValueType() != MVT::i32 || 1850 Value != ConstOp1->getZExtValue()) 1851 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1852 } 1853 1854 // Return true if Op is either an unextended load, or a load suitable 1855 // for integer register-memory comparisons of type ICmpType. 1856 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1857 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1858 if (Load) { 1859 // There are no instructions to compare a register with a memory byte. 1860 if (Load->getMemoryVT() == MVT::i8) 1861 return false; 1862 // Otherwise decide on extension type. 1863 switch (Load->getExtensionType()) { 1864 case ISD::NON_EXTLOAD: 1865 return true; 1866 case ISD::SEXTLOAD: 1867 return ICmpType != SystemZICMP::UnsignedOnly; 1868 case ISD::ZEXTLOAD: 1869 return ICmpType != SystemZICMP::SignedOnly; 1870 default: 1871 break; 1872 } 1873 } 1874 return false; 1875 } 1876 1877 // Return true if it is better to swap the operands of C. 1878 static bool shouldSwapCmpOperands(const Comparison &C) { 1879 // Leave f128 comparisons alone, since they have no memory forms. 1880 if (C.Op0.getValueType() == MVT::f128) 1881 return false; 1882 1883 // Always keep a floating-point constant second, since comparisons with 1884 // zero can use LOAD TEST and comparisons with other constants make a 1885 // natural memory operand. 1886 if (isa<ConstantFPSDNode>(C.Op1)) 1887 return false; 1888 1889 // Never swap comparisons with zero since there are many ways to optimize 1890 // those later. 1891 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1892 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1893 return false; 1894 1895 // Also keep natural memory operands second if the loaded value is 1896 // only used here. Several comparisons have memory forms. 1897 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1898 return false; 1899 1900 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1901 // In that case we generally prefer the memory to be second. 1902 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1903 // The only exceptions are when the second operand is a constant and 1904 // we can use things like CHHSI. 1905 if (!ConstOp1) 1906 return true; 1907 // The unsigned memory-immediate instructions can handle 16-bit 1908 // unsigned integers. 1909 if (C.ICmpType != SystemZICMP::SignedOnly && 1910 isUInt<16>(ConstOp1->getZExtValue())) 1911 return false; 1912 // The signed memory-immediate instructions can handle 16-bit 1913 // signed integers. 1914 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1915 isInt<16>(ConstOp1->getSExtValue())) 1916 return false; 1917 return true; 1918 } 1919 1920 // Try to promote the use of CGFR and CLGFR. 1921 unsigned Opcode0 = C.Op0.getOpcode(); 1922 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1923 return true; 1924 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1925 return true; 1926 if (C.ICmpType != SystemZICMP::SignedOnly && 1927 Opcode0 == ISD::AND && 1928 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1929 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1930 return true; 1931 1932 return false; 1933 } 1934 1935 // Return a version of comparison CC mask CCMask in which the LT and GT 1936 // actions are swapped. 1937 static unsigned reverseCCMask(unsigned CCMask) { 1938 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1939 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1940 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1941 (CCMask & SystemZ::CCMASK_CMP_UO)); 1942 } 1943 1944 // Check whether C tests for equality between X and Y and whether X - Y 1945 // or Y - X is also computed. In that case it's better to compare the 1946 // result of the subtraction against zero. 1947 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1948 Comparison &C) { 1949 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1950 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1951 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1952 SDNode *N = *I; 1953 if (N->getOpcode() == ISD::SUB && 1954 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1955 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1956 C.Op0 = SDValue(N, 0); 1957 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1958 return; 1959 } 1960 } 1961 } 1962 } 1963 1964 // Check whether C compares a floating-point value with zero and if that 1965 // floating-point value is also negated. In this case we can use the 1966 // negation to set CC, so avoiding separate LOAD AND TEST and 1967 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1968 static void adjustForFNeg(Comparison &C) { 1969 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1970 if (C1 && C1->isZero()) { 1971 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1972 SDNode *N = *I; 1973 if (N->getOpcode() == ISD::FNEG) { 1974 C.Op0 = SDValue(N, 0); 1975 C.CCMask = reverseCCMask(C.CCMask); 1976 return; 1977 } 1978 } 1979 } 1980 } 1981 1982 // Check whether C compares (shl X, 32) with 0 and whether X is 1983 // also sign-extended. In that case it is better to test the result 1984 // of the sign extension using LTGFR. 1985 // 1986 // This case is important because InstCombine transforms a comparison 1987 // with (sext (trunc X)) into a comparison with (shl X, 32). 1988 static void adjustForLTGFR(Comparison &C) { 1989 // Check for a comparison between (shl X, 32) and 0. 1990 if (C.Op0.getOpcode() == ISD::SHL && 1991 C.Op0.getValueType() == MVT::i64 && 1992 C.Op1.getOpcode() == ISD::Constant && 1993 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1994 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1995 if (C1 && C1->getZExtValue() == 32) { 1996 SDValue ShlOp0 = C.Op0.getOperand(0); 1997 // See whether X has any SIGN_EXTEND_INREG uses. 1998 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1999 SDNode *N = *I; 2000 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2001 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2002 C.Op0 = SDValue(N, 0); 2003 return; 2004 } 2005 } 2006 } 2007 } 2008 } 2009 2010 // If C compares the truncation of an extending load, try to compare 2011 // the untruncated value instead. This exposes more opportunities to 2012 // reuse CC. 2013 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2014 Comparison &C) { 2015 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2016 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2017 C.Op1.getOpcode() == ISD::Constant && 2018 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2019 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2020 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2021 unsigned Type = L->getExtensionType(); 2022 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2023 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2024 C.Op0 = C.Op0.getOperand(0); 2025 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2026 } 2027 } 2028 } 2029 } 2030 2031 // Return true if shift operation N has an in-range constant shift value. 2032 // Store it in ShiftVal if so. 2033 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2034 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2035 if (!Shift) 2036 return false; 2037 2038 uint64_t Amount = Shift->getZExtValue(); 2039 if (Amount >= N.getValueSizeInBits()) 2040 return false; 2041 2042 ShiftVal = Amount; 2043 return true; 2044 } 2045 2046 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2047 // instruction and whether the CC value is descriptive enough to handle 2048 // a comparison of type Opcode between the AND result and CmpVal. 2049 // CCMask says which comparison result is being tested and BitSize is 2050 // the number of bits in the operands. If TEST UNDER MASK can be used, 2051 // return the corresponding CC mask, otherwise return 0. 2052 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2053 uint64_t Mask, uint64_t CmpVal, 2054 unsigned ICmpType) { 2055 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2056 2057 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2058 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2059 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2060 return 0; 2061 2062 // Work out the masks for the lowest and highest bits. 2063 unsigned HighShift = 63 - countLeadingZeros(Mask); 2064 uint64_t High = uint64_t(1) << HighShift; 2065 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2066 2067 // Signed ordered comparisons are effectively unsigned if the sign 2068 // bit is dropped. 2069 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2070 2071 // Check for equality comparisons with 0, or the equivalent. 2072 if (CmpVal == 0) { 2073 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2074 return SystemZ::CCMASK_TM_ALL_0; 2075 if (CCMask == SystemZ::CCMASK_CMP_NE) 2076 return SystemZ::CCMASK_TM_SOME_1; 2077 } 2078 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2079 if (CCMask == SystemZ::CCMASK_CMP_LT) 2080 return SystemZ::CCMASK_TM_ALL_0; 2081 if (CCMask == SystemZ::CCMASK_CMP_GE) 2082 return SystemZ::CCMASK_TM_SOME_1; 2083 } 2084 if (EffectivelyUnsigned && CmpVal < Low) { 2085 if (CCMask == SystemZ::CCMASK_CMP_LE) 2086 return SystemZ::CCMASK_TM_ALL_0; 2087 if (CCMask == SystemZ::CCMASK_CMP_GT) 2088 return SystemZ::CCMASK_TM_SOME_1; 2089 } 2090 2091 // Check for equality comparisons with the mask, or the equivalent. 2092 if (CmpVal == Mask) { 2093 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2094 return SystemZ::CCMASK_TM_ALL_1; 2095 if (CCMask == SystemZ::CCMASK_CMP_NE) 2096 return SystemZ::CCMASK_TM_SOME_0; 2097 } 2098 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2099 if (CCMask == SystemZ::CCMASK_CMP_GT) 2100 return SystemZ::CCMASK_TM_ALL_1; 2101 if (CCMask == SystemZ::CCMASK_CMP_LE) 2102 return SystemZ::CCMASK_TM_SOME_0; 2103 } 2104 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2105 if (CCMask == SystemZ::CCMASK_CMP_GE) 2106 return SystemZ::CCMASK_TM_ALL_1; 2107 if (CCMask == SystemZ::CCMASK_CMP_LT) 2108 return SystemZ::CCMASK_TM_SOME_0; 2109 } 2110 2111 // Check for ordered comparisons with the top bit. 2112 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2113 if (CCMask == SystemZ::CCMASK_CMP_LE) 2114 return SystemZ::CCMASK_TM_MSB_0; 2115 if (CCMask == SystemZ::CCMASK_CMP_GT) 2116 return SystemZ::CCMASK_TM_MSB_1; 2117 } 2118 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2119 if (CCMask == SystemZ::CCMASK_CMP_LT) 2120 return SystemZ::CCMASK_TM_MSB_0; 2121 if (CCMask == SystemZ::CCMASK_CMP_GE) 2122 return SystemZ::CCMASK_TM_MSB_1; 2123 } 2124 2125 // If there are just two bits, we can do equality checks for Low and High 2126 // as well. 2127 if (Mask == Low + High) { 2128 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2129 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2130 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2131 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2132 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2133 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2134 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2135 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2136 } 2137 2138 // Looks like we've exhausted our options. 2139 return 0; 2140 } 2141 2142 // See whether C can be implemented as a TEST UNDER MASK instruction. 2143 // Update the arguments with the TM version if so. 2144 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2145 Comparison &C) { 2146 // Check that we have a comparison with a constant. 2147 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2148 if (!ConstOp1) 2149 return; 2150 uint64_t CmpVal = ConstOp1->getZExtValue(); 2151 2152 // Check whether the nonconstant input is an AND with a constant mask. 2153 Comparison NewC(C); 2154 uint64_t MaskVal; 2155 ConstantSDNode *Mask = nullptr; 2156 if (C.Op0.getOpcode() == ISD::AND) { 2157 NewC.Op0 = C.Op0.getOperand(0); 2158 NewC.Op1 = C.Op0.getOperand(1); 2159 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2160 if (!Mask) 2161 return; 2162 MaskVal = Mask->getZExtValue(); 2163 } else { 2164 // There is no instruction to compare with a 64-bit immediate 2165 // so use TMHH instead if possible. We need an unsigned ordered 2166 // comparison with an i64 immediate. 2167 if (NewC.Op0.getValueType() != MVT::i64 || 2168 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2169 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2170 NewC.ICmpType == SystemZICMP::SignedOnly) 2171 return; 2172 // Convert LE and GT comparisons into LT and GE. 2173 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2174 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2175 if (CmpVal == uint64_t(-1)) 2176 return; 2177 CmpVal += 1; 2178 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2179 } 2180 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2181 // be masked off without changing the result. 2182 MaskVal = -(CmpVal & -CmpVal); 2183 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2184 } 2185 if (!MaskVal) 2186 return; 2187 2188 // Check whether the combination of mask, comparison value and comparison 2189 // type are suitable. 2190 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2191 unsigned NewCCMask, ShiftVal; 2192 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2193 NewC.Op0.getOpcode() == ISD::SHL && 2194 isSimpleShift(NewC.Op0, ShiftVal) && 2195 (MaskVal >> ShiftVal != 0) && 2196 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2197 MaskVal >> ShiftVal, 2198 CmpVal >> ShiftVal, 2199 SystemZICMP::Any))) { 2200 NewC.Op0 = NewC.Op0.getOperand(0); 2201 MaskVal >>= ShiftVal; 2202 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2203 NewC.Op0.getOpcode() == ISD::SRL && 2204 isSimpleShift(NewC.Op0, ShiftVal) && 2205 (MaskVal << ShiftVal != 0) && 2206 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2207 MaskVal << ShiftVal, 2208 CmpVal << ShiftVal, 2209 SystemZICMP::UnsignedOnly))) { 2210 NewC.Op0 = NewC.Op0.getOperand(0); 2211 MaskVal <<= ShiftVal; 2212 } else { 2213 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2214 NewC.ICmpType); 2215 if (!NewCCMask) 2216 return; 2217 } 2218 2219 // Go ahead and make the change. 2220 C.Opcode = SystemZISD::TM; 2221 C.Op0 = NewC.Op0; 2222 if (Mask && Mask->getZExtValue() == MaskVal) 2223 C.Op1 = SDValue(Mask, 0); 2224 else 2225 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2226 C.CCValid = SystemZ::CCMASK_TM; 2227 C.CCMask = NewCCMask; 2228 } 2229 2230 // Return a Comparison that tests the condition-code result of intrinsic 2231 // node Call against constant integer CC using comparison code Cond. 2232 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2233 // and CCValid is the set of possible condition-code results. 2234 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2235 SDValue Call, unsigned CCValid, uint64_t CC, 2236 ISD::CondCode Cond) { 2237 Comparison C(Call, SDValue()); 2238 C.Opcode = Opcode; 2239 C.CCValid = CCValid; 2240 if (Cond == ISD::SETEQ) 2241 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2242 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2243 else if (Cond == ISD::SETNE) 2244 // ...and the inverse of that. 2245 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2246 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2247 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2248 // always true for CC>3. 2249 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2250 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2251 // ...and the inverse of that. 2252 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2253 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2254 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2255 // always true for CC>3. 2256 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2257 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2258 // ...and the inverse of that. 2259 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2260 else 2261 llvm_unreachable("Unexpected integer comparison type"); 2262 C.CCMask &= CCValid; 2263 return C; 2264 } 2265 2266 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2267 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2268 ISD::CondCode Cond, const SDLoc &DL) { 2269 if (CmpOp1.getOpcode() == ISD::Constant) { 2270 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2271 unsigned Opcode, CCValid; 2272 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2273 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2274 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2275 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2276 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2277 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2278 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2279 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2280 } 2281 Comparison C(CmpOp0, CmpOp1); 2282 C.CCMask = CCMaskForCondCode(Cond); 2283 if (C.Op0.getValueType().isFloatingPoint()) { 2284 C.CCValid = SystemZ::CCMASK_FCMP; 2285 C.Opcode = SystemZISD::FCMP; 2286 adjustForFNeg(C); 2287 } else { 2288 C.CCValid = SystemZ::CCMASK_ICMP; 2289 C.Opcode = SystemZISD::ICMP; 2290 // Choose the type of comparison. Equality and inequality tests can 2291 // use either signed or unsigned comparisons. The choice also doesn't 2292 // matter if both sign bits are known to be clear. In those cases we 2293 // want to give the main isel code the freedom to choose whichever 2294 // form fits best. 2295 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2296 C.CCMask == SystemZ::CCMASK_CMP_NE || 2297 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2298 C.ICmpType = SystemZICMP::Any; 2299 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2300 C.ICmpType = SystemZICMP::UnsignedOnly; 2301 else 2302 C.ICmpType = SystemZICMP::SignedOnly; 2303 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2304 adjustZeroCmp(DAG, DL, C); 2305 adjustSubwordCmp(DAG, DL, C); 2306 adjustForSubtraction(DAG, DL, C); 2307 adjustForLTGFR(C); 2308 adjustICmpTruncate(DAG, DL, C); 2309 } 2310 2311 if (shouldSwapCmpOperands(C)) { 2312 std::swap(C.Op0, C.Op1); 2313 C.CCMask = reverseCCMask(C.CCMask); 2314 } 2315 2316 adjustForTestUnderMask(DAG, DL, C); 2317 return C; 2318 } 2319 2320 // Emit the comparison instruction described by C. 2321 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2322 if (!C.Op1.getNode()) { 2323 SDValue Op; 2324 switch (C.Op0.getOpcode()) { 2325 case ISD::INTRINSIC_W_CHAIN: 2326 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2327 break; 2328 case ISD::INTRINSIC_WO_CHAIN: 2329 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2330 break; 2331 default: 2332 llvm_unreachable("Invalid comparison operands"); 2333 } 2334 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2335 } 2336 if (C.Opcode == SystemZISD::ICMP) 2337 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2338 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2339 if (C.Opcode == SystemZISD::TM) { 2340 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2341 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2342 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2343 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2344 } 2345 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2346 } 2347 2348 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2349 // 64 bits. Extend is the extension type to use. Store the high part 2350 // in Hi and the low part in Lo. 2351 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2352 SDValue Op0, SDValue Op1, SDValue &Hi, 2353 SDValue &Lo) { 2354 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2355 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2356 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2357 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2358 DAG.getConstant(32, DL, MVT::i64)); 2359 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2360 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2361 } 2362 2363 // Lower a binary operation that produces two VT results, one in each 2364 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2365 // and Opcode performs the GR128 operation. Store the even register result 2366 // in Even and the odd register result in Odd. 2367 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2368 unsigned Opcode, SDValue Op0, SDValue Op1, 2369 SDValue &Even, SDValue &Odd) { 2370 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2371 bool Is32Bit = is32Bit(VT); 2372 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2373 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2374 } 2375 2376 // Return an i32 value that is 1 if the CC value produced by Glue is 2377 // in the mask CCMask and 0 otherwise. CC is known to have a value 2378 // in CCValid, so other values can be ignored. 2379 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, 2380 unsigned CCValid, unsigned CCMask) { 2381 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2382 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2383 2384 if (Conversion.XORValue) 2385 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2386 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2387 2388 if (Conversion.AddValue) 2389 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2390 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2391 2392 // The SHR/AND sequence should get optimized to an RISBG. 2393 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2394 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2395 if (Conversion.Bit != 31) 2396 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2397 DAG.getConstant(1, DL, MVT::i32)); 2398 return Result; 2399 } 2400 2401 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2402 // be done directly. IsFP is true if CC is for a floating-point rather than 2403 // integer comparison. 2404 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2405 switch (CC) { 2406 case ISD::SETOEQ: 2407 case ISD::SETEQ: 2408 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2409 2410 case ISD::SETOGE: 2411 case ISD::SETGE: 2412 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2413 2414 case ISD::SETOGT: 2415 case ISD::SETGT: 2416 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2417 2418 case ISD::SETUGT: 2419 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2420 2421 default: 2422 return 0; 2423 } 2424 } 2425 2426 // Return the SystemZISD vector comparison operation for CC or its inverse, 2427 // or 0 if neither can be done directly. Indicate in Invert whether the 2428 // result is for the inverse of CC. IsFP is true if CC is for a 2429 // floating-point rather than integer comparison. 2430 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2431 bool &Invert) { 2432 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2433 Invert = false; 2434 return Opcode; 2435 } 2436 2437 CC = ISD::getSetCCInverse(CC, !IsFP); 2438 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2439 Invert = true; 2440 return Opcode; 2441 } 2442 2443 return 0; 2444 } 2445 2446 // Return a v2f64 that contains the extended form of elements Start and Start+1 2447 // of v4f32 value Op. 2448 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2449 SDValue Op) { 2450 int Mask[] = { Start, -1, Start + 1, -1 }; 2451 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2452 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2453 } 2454 2455 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2456 // producing a result of type VT. 2457 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2458 const SDLoc &DL, EVT VT, 2459 SDValue CmpOp0, 2460 SDValue CmpOp1) const { 2461 // There is no hardware support for v4f32 (unless we have the vector 2462 // enhancements facility 1), so extend the vector into two v2f64s 2463 // and compare those. 2464 if (CmpOp0.getValueType() == MVT::v4f32 && 2465 !Subtarget.hasVectorEnhancements1()) { 2466 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2467 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2468 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2469 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2470 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2471 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2472 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2473 } 2474 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2475 } 2476 2477 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2478 // an integer mask of type VT. 2479 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2480 const SDLoc &DL, EVT VT, 2481 ISD::CondCode CC, 2482 SDValue CmpOp0, 2483 SDValue CmpOp1) const { 2484 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2485 bool Invert = false; 2486 SDValue Cmp; 2487 switch (CC) { 2488 // Handle tests for order using (or (ogt y x) (oge x y)). 2489 case ISD::SETUO: 2490 Invert = true; 2491 LLVM_FALLTHROUGH; 2492 case ISD::SETO: { 2493 assert(IsFP && "Unexpected integer comparison"); 2494 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2495 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2496 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2497 break; 2498 } 2499 2500 // Handle <> tests using (or (ogt y x) (ogt x y)). 2501 case ISD::SETUEQ: 2502 Invert = true; 2503 LLVM_FALLTHROUGH; 2504 case ISD::SETONE: { 2505 assert(IsFP && "Unexpected integer comparison"); 2506 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2507 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2508 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2509 break; 2510 } 2511 2512 // Otherwise a single comparison is enough. It doesn't really 2513 // matter whether we try the inversion or the swap first, since 2514 // there are no cases where both work. 2515 default: 2516 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2517 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2518 else { 2519 CC = ISD::getSetCCSwappedOperands(CC); 2520 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2521 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2522 else 2523 llvm_unreachable("Unhandled comparison"); 2524 } 2525 break; 2526 } 2527 if (Invert) { 2528 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2529 DAG.getConstant(65535, DL, MVT::i32)); 2530 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2531 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2532 } 2533 return Cmp; 2534 } 2535 2536 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2537 SelectionDAG &DAG) const { 2538 SDValue CmpOp0 = Op.getOperand(0); 2539 SDValue CmpOp1 = Op.getOperand(1); 2540 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2541 SDLoc DL(Op); 2542 EVT VT = Op.getValueType(); 2543 if (VT.isVector()) 2544 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2545 2546 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2547 SDValue Glue = emitCmp(DAG, DL, C); 2548 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2549 } 2550 2551 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2552 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2553 SDValue CmpOp0 = Op.getOperand(2); 2554 SDValue CmpOp1 = Op.getOperand(3); 2555 SDValue Dest = Op.getOperand(4); 2556 SDLoc DL(Op); 2557 2558 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2559 SDValue Glue = emitCmp(DAG, DL, C); 2560 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2561 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2562 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2563 } 2564 2565 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2566 // allowing Pos and Neg to be wider than CmpOp. 2567 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2568 return (Neg.getOpcode() == ISD::SUB && 2569 Neg.getOperand(0).getOpcode() == ISD::Constant && 2570 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2571 Neg.getOperand(1) == Pos && 2572 (Pos == CmpOp || 2573 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2574 Pos.getOperand(0) == CmpOp))); 2575 } 2576 2577 // Return the absolute or negative absolute of Op; IsNegative decides which. 2578 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2579 bool IsNegative) { 2580 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2581 if (IsNegative) 2582 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2583 DAG.getConstant(0, DL, Op.getValueType()), Op); 2584 return Op; 2585 } 2586 2587 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2588 SelectionDAG &DAG) const { 2589 SDValue CmpOp0 = Op.getOperand(0); 2590 SDValue CmpOp1 = Op.getOperand(1); 2591 SDValue TrueOp = Op.getOperand(2); 2592 SDValue FalseOp = Op.getOperand(3); 2593 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2594 SDLoc DL(Op); 2595 2596 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2597 2598 // Check for absolute and negative-absolute selections, including those 2599 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2600 // This check supplements the one in DAGCombiner. 2601 if (C.Opcode == SystemZISD::ICMP && 2602 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2603 C.CCMask != SystemZ::CCMASK_CMP_NE && 2604 C.Op1.getOpcode() == ISD::Constant && 2605 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2606 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2607 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2608 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2609 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2610 } 2611 2612 SDValue Glue = emitCmp(DAG, DL, C); 2613 2614 // Special case for handling -1/0 results. The shifts we use here 2615 // should get optimized with the IPM conversion sequence. 2616 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2617 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2618 if (TrueC && FalseC) { 2619 int64_t TrueVal = TrueC->getSExtValue(); 2620 int64_t FalseVal = FalseC->getSExtValue(); 2621 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2622 // Invert the condition if we want -1 on false. 2623 if (TrueVal == 0) 2624 C.CCMask ^= C.CCValid; 2625 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2626 EVT VT = Op.getValueType(); 2627 // Extend the result to VT. Upper bits are ignored. 2628 if (!is32Bit(VT)) 2629 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2630 // Sign-extend from the low bit. 2631 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2632 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2633 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2634 } 2635 } 2636 2637 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2638 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2639 2640 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2641 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2642 } 2643 2644 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2645 SelectionDAG &DAG) const { 2646 SDLoc DL(Node); 2647 const GlobalValue *GV = Node->getGlobal(); 2648 int64_t Offset = Node->getOffset(); 2649 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2650 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2651 2652 SDValue Result; 2653 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2654 // Assign anchors at 1<<12 byte boundaries. 2655 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2656 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2657 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2658 2659 // The offset can be folded into the address if it is aligned to a halfword. 2660 Offset -= Anchor; 2661 if (Offset != 0 && (Offset & 1) == 0) { 2662 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2663 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2664 Offset = 0; 2665 } 2666 } else { 2667 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2668 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2669 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2670 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2671 } 2672 2673 // If there was a non-zero offset that we didn't fold, create an explicit 2674 // addition for it. 2675 if (Offset != 0) 2676 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2677 DAG.getConstant(Offset, DL, PtrVT)); 2678 2679 return Result; 2680 } 2681 2682 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2683 SelectionDAG &DAG, 2684 unsigned Opcode, 2685 SDValue GOTOffset) const { 2686 SDLoc DL(Node); 2687 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2688 SDValue Chain = DAG.getEntryNode(); 2689 SDValue Glue; 2690 2691 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2692 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2693 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2694 Glue = Chain.getValue(1); 2695 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2696 Glue = Chain.getValue(1); 2697 2698 // The first call operand is the chain and the second is the TLS symbol. 2699 SmallVector<SDValue, 8> Ops; 2700 Ops.push_back(Chain); 2701 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2702 Node->getValueType(0), 2703 0, 0)); 2704 2705 // Add argument registers to the end of the list so that they are 2706 // known live into the call. 2707 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2708 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2709 2710 // Add a register mask operand representing the call-preserved registers. 2711 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2712 const uint32_t *Mask = 2713 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2714 assert(Mask && "Missing call preserved mask for calling convention"); 2715 Ops.push_back(DAG.getRegisterMask(Mask)); 2716 2717 // Glue the call to the argument copies. 2718 Ops.push_back(Glue); 2719 2720 // Emit the call. 2721 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2722 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2723 Glue = Chain.getValue(1); 2724 2725 // Copy the return value from %r2. 2726 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2727 } 2728 2729 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2730 SelectionDAG &DAG) const { 2731 SDValue Chain = DAG.getEntryNode(); 2732 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2733 2734 // The high part of the thread pointer is in access register 0. 2735 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2736 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2737 2738 // The low part of the thread pointer is in access register 1. 2739 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2740 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2741 2742 // Merge them into a single 64-bit address. 2743 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2744 DAG.getConstant(32, DL, PtrVT)); 2745 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2746 } 2747 2748 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2749 SelectionDAG &DAG) const { 2750 if (DAG.getTarget().Options.EmulatedTLS) 2751 return LowerToTLSEmulatedModel(Node, DAG); 2752 SDLoc DL(Node); 2753 const GlobalValue *GV = Node->getGlobal(); 2754 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2755 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2756 2757 SDValue TP = lowerThreadPointer(DL, DAG); 2758 2759 // Get the offset of GA from the thread pointer, based on the TLS model. 2760 SDValue Offset; 2761 switch (model) { 2762 case TLSModel::GeneralDynamic: { 2763 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2764 SystemZConstantPoolValue *CPV = 2765 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2766 2767 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2768 Offset = DAG.getLoad( 2769 PtrVT, DL, DAG.getEntryNode(), Offset, 2770 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2771 2772 // Call __tls_get_offset to retrieve the offset. 2773 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2774 break; 2775 } 2776 2777 case TLSModel::LocalDynamic: { 2778 // Load the GOT offset of the module ID. 2779 SystemZConstantPoolValue *CPV = 2780 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2781 2782 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2783 Offset = DAG.getLoad( 2784 PtrVT, DL, DAG.getEntryNode(), Offset, 2785 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2786 2787 // Call __tls_get_offset to retrieve the module base offset. 2788 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2789 2790 // Note: The SystemZLDCleanupPass will remove redundant computations 2791 // of the module base offset. Count total number of local-dynamic 2792 // accesses to trigger execution of that pass. 2793 SystemZMachineFunctionInfo* MFI = 2794 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2795 MFI->incNumLocalDynamicTLSAccesses(); 2796 2797 // Add the per-symbol offset. 2798 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2799 2800 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2801 DTPOffset = DAG.getLoad( 2802 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2803 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2804 2805 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2806 break; 2807 } 2808 2809 case TLSModel::InitialExec: { 2810 // Load the offset from the GOT. 2811 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2812 SystemZII::MO_INDNTPOFF); 2813 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2814 Offset = 2815 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2816 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2817 break; 2818 } 2819 2820 case TLSModel::LocalExec: { 2821 // Force the offset into the constant pool and load it from there. 2822 SystemZConstantPoolValue *CPV = 2823 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2824 2825 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2826 Offset = DAG.getLoad( 2827 PtrVT, DL, DAG.getEntryNode(), Offset, 2828 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2829 break; 2830 } 2831 } 2832 2833 // Add the base and offset together. 2834 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2835 } 2836 2837 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2838 SelectionDAG &DAG) const { 2839 SDLoc DL(Node); 2840 const BlockAddress *BA = Node->getBlockAddress(); 2841 int64_t Offset = Node->getOffset(); 2842 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2843 2844 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2845 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2846 return Result; 2847 } 2848 2849 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2850 SelectionDAG &DAG) const { 2851 SDLoc DL(JT); 2852 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2853 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2854 2855 // Use LARL to load the address of the table. 2856 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2857 } 2858 2859 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2860 SelectionDAG &DAG) const { 2861 SDLoc DL(CP); 2862 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2863 2864 SDValue Result; 2865 if (CP->isMachineConstantPoolEntry()) 2866 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2867 CP->getAlignment()); 2868 else 2869 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2870 CP->getAlignment(), CP->getOffset()); 2871 2872 // Use LARL to load the address of the constant pool entry. 2873 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2874 } 2875 2876 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2877 SelectionDAG &DAG) const { 2878 MachineFunction &MF = DAG.getMachineFunction(); 2879 MachineFrameInfo &MFI = MF.getFrameInfo(); 2880 MFI.setFrameAddressIsTaken(true); 2881 2882 SDLoc DL(Op); 2883 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2884 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2885 2886 // If the back chain frame index has not been allocated yet, do so. 2887 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2888 int BackChainIdx = FI->getFramePointerSaveIndex(); 2889 if (!BackChainIdx) { 2890 // By definition, the frame address is the address of the back chain. 2891 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2892 FI->setFramePointerSaveIndex(BackChainIdx); 2893 } 2894 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2895 2896 // FIXME The frontend should detect this case. 2897 if (Depth > 0) { 2898 report_fatal_error("Unsupported stack frame traversal count"); 2899 } 2900 2901 return BackChain; 2902 } 2903 2904 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2905 SelectionDAG &DAG) const { 2906 MachineFunction &MF = DAG.getMachineFunction(); 2907 MachineFrameInfo &MFI = MF.getFrameInfo(); 2908 MFI.setReturnAddressIsTaken(true); 2909 2910 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2911 return SDValue(); 2912 2913 SDLoc DL(Op); 2914 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2915 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2916 2917 // FIXME The frontend should detect this case. 2918 if (Depth > 0) { 2919 report_fatal_error("Unsupported stack frame traversal count"); 2920 } 2921 2922 // Return R14D, which has the return address. Mark it an implicit live-in. 2923 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2924 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2925 } 2926 2927 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2928 SelectionDAG &DAG) const { 2929 SDLoc DL(Op); 2930 SDValue In = Op.getOperand(0); 2931 EVT InVT = In.getValueType(); 2932 EVT ResVT = Op.getValueType(); 2933 2934 // Convert loads directly. This is normally done by DAGCombiner, 2935 // but we need this case for bitcasts that are created during lowering 2936 // and which are then lowered themselves. 2937 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2938 if (ISD::isNormalLoad(LoadN)) 2939 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2940 LoadN->getMemOperand()); 2941 2942 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2943 SDValue In64; 2944 if (Subtarget.hasHighWord()) { 2945 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2946 MVT::i64); 2947 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2948 MVT::i64, SDValue(U64, 0), In); 2949 } else { 2950 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2951 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2952 DAG.getConstant(32, DL, MVT::i64)); 2953 } 2954 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2955 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2956 DL, MVT::f32, Out64); 2957 } 2958 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2959 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2960 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2961 MVT::f64, SDValue(U64, 0), In); 2962 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2963 if (Subtarget.hasHighWord()) 2964 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2965 MVT::i32, Out64); 2966 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2967 DAG.getConstant(32, DL, MVT::i64)); 2968 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2969 } 2970 llvm_unreachable("Unexpected bitcast combination"); 2971 } 2972 2973 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2974 SelectionDAG &DAG) const { 2975 MachineFunction &MF = DAG.getMachineFunction(); 2976 SystemZMachineFunctionInfo *FuncInfo = 2977 MF.getInfo<SystemZMachineFunctionInfo>(); 2978 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2979 2980 SDValue Chain = Op.getOperand(0); 2981 SDValue Addr = Op.getOperand(1); 2982 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2983 SDLoc DL(Op); 2984 2985 // The initial values of each field. 2986 const unsigned NumFields = 4; 2987 SDValue Fields[NumFields] = { 2988 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2989 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2990 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2991 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2992 }; 2993 2994 // Store each field into its respective slot. 2995 SDValue MemOps[NumFields]; 2996 unsigned Offset = 0; 2997 for (unsigned I = 0; I < NumFields; ++I) { 2998 SDValue FieldAddr = Addr; 2999 if (Offset != 0) 3000 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3001 DAG.getIntPtrConstant(Offset, DL)); 3002 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3003 MachinePointerInfo(SV, Offset)); 3004 Offset += 8; 3005 } 3006 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3007 } 3008 3009 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3010 SelectionDAG &DAG) const { 3011 SDValue Chain = Op.getOperand(0); 3012 SDValue DstPtr = Op.getOperand(1); 3013 SDValue SrcPtr = Op.getOperand(2); 3014 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3015 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3016 SDLoc DL(Op); 3017 3018 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3019 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3020 /*isTailCall*/false, 3021 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3022 } 3023 3024 SDValue SystemZTargetLowering:: 3025 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3026 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3027 MachineFunction &MF = DAG.getMachineFunction(); 3028 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 3029 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3030 3031 SDValue Chain = Op.getOperand(0); 3032 SDValue Size = Op.getOperand(1); 3033 SDValue Align = Op.getOperand(2); 3034 SDLoc DL(Op); 3035 3036 // If user has set the no alignment function attribute, ignore 3037 // alloca alignments. 3038 uint64_t AlignVal = (RealignOpt ? 3039 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3040 3041 uint64_t StackAlign = TFI->getStackAlignment(); 3042 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3043 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3044 3045 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3046 SDValue NeededSpace = Size; 3047 3048 // Get a reference to the stack pointer. 3049 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3050 3051 // If we need a backchain, save it now. 3052 SDValue Backchain; 3053 if (StoreBackchain) 3054 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3055 3056 // Add extra space for alignment if needed. 3057 if (ExtraAlignSpace) 3058 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3059 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3060 3061 // Get the new stack pointer value. 3062 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3063 3064 // Copy the new stack pointer back. 3065 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3066 3067 // The allocated data lives above the 160 bytes allocated for the standard 3068 // frame, plus any outgoing stack arguments. We don't know how much that 3069 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3070 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3071 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3072 3073 // Dynamically realign if needed. 3074 if (RequiredAlign > StackAlign) { 3075 Result = 3076 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3077 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3078 Result = 3079 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3080 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3081 } 3082 3083 if (StoreBackchain) 3084 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3085 3086 SDValue Ops[2] = { Result, Chain }; 3087 return DAG.getMergeValues(Ops, DL); 3088 } 3089 3090 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3091 SDValue Op, SelectionDAG &DAG) const { 3092 SDLoc DL(Op); 3093 3094 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3095 } 3096 3097 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3098 SelectionDAG &DAG) const { 3099 EVT VT = Op.getValueType(); 3100 SDLoc DL(Op); 3101 SDValue Ops[2]; 3102 if (is32Bit(VT)) 3103 // Just do a normal 64-bit multiplication and extract the results. 3104 // We define this so that it can be used for constant division. 3105 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3106 Op.getOperand(1), Ops[1], Ops[0]); 3107 else if (Subtarget.hasMiscellaneousExtensions2()) 3108 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3109 // the high result in the even register. ISD::SMUL_LOHI is defined to 3110 // return the low half first, so the results are in reverse order. 3111 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3112 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3113 else { 3114 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3115 // 3116 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3117 // 3118 // but using the fact that the upper halves are either all zeros 3119 // or all ones: 3120 // 3121 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3122 // 3123 // and grouping the right terms together since they are quicker than the 3124 // multiplication: 3125 // 3126 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3127 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3128 SDValue LL = Op.getOperand(0); 3129 SDValue RL = Op.getOperand(1); 3130 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3131 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3132 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3133 // the high result in the even register. ISD::SMUL_LOHI is defined to 3134 // return the low half first, so the results are in reverse order. 3135 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3136 LL, RL, Ops[1], Ops[0]); 3137 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3138 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3139 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3140 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3141 } 3142 return DAG.getMergeValues(Ops, DL); 3143 } 3144 3145 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3146 SelectionDAG &DAG) const { 3147 EVT VT = Op.getValueType(); 3148 SDLoc DL(Op); 3149 SDValue Ops[2]; 3150 if (is32Bit(VT)) 3151 // Just do a normal 64-bit multiplication and extract the results. 3152 // We define this so that it can be used for constant division. 3153 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3154 Op.getOperand(1), Ops[1], Ops[0]); 3155 else 3156 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3157 // the high result in the even register. ISD::UMUL_LOHI is defined to 3158 // return the low half first, so the results are in reverse order. 3159 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3160 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3161 return DAG.getMergeValues(Ops, DL); 3162 } 3163 3164 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3165 SelectionDAG &DAG) const { 3166 SDValue Op0 = Op.getOperand(0); 3167 SDValue Op1 = Op.getOperand(1); 3168 EVT VT = Op.getValueType(); 3169 SDLoc DL(Op); 3170 3171 // We use DSGF for 32-bit division. This means the first operand must 3172 // always be 64-bit, and the second operand should be 32-bit whenever 3173 // that is possible, to improve performance. 3174 if (is32Bit(VT)) 3175 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3176 else if (DAG.ComputeNumSignBits(Op1) > 32) 3177 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3178 3179 // DSG(F) returns the remainder in the even register and the 3180 // quotient in the odd register. 3181 SDValue Ops[2]; 3182 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3183 return DAG.getMergeValues(Ops, DL); 3184 } 3185 3186 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3187 SelectionDAG &DAG) const { 3188 EVT VT = Op.getValueType(); 3189 SDLoc DL(Op); 3190 3191 // DL(G) returns the remainder in the even register and the 3192 // quotient in the odd register. 3193 SDValue Ops[2]; 3194 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3195 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3196 return DAG.getMergeValues(Ops, DL); 3197 } 3198 3199 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3200 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3201 3202 // Get the known-zero masks for each operand. 3203 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3204 KnownBits Known[2]; 3205 DAG.computeKnownBits(Ops[0], Known[0]); 3206 DAG.computeKnownBits(Ops[1], Known[1]); 3207 3208 // See if the upper 32 bits of one operand and the lower 32 bits of the 3209 // other are known zero. They are the low and high operands respectively. 3210 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3211 Known[1].Zero.getZExtValue() }; 3212 unsigned High, Low; 3213 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3214 High = 1, Low = 0; 3215 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3216 High = 0, Low = 1; 3217 else 3218 return Op; 3219 3220 SDValue LowOp = Ops[Low]; 3221 SDValue HighOp = Ops[High]; 3222 3223 // If the high part is a constant, we're better off using IILH. 3224 if (HighOp.getOpcode() == ISD::Constant) 3225 return Op; 3226 3227 // If the low part is a constant that is outside the range of LHI, 3228 // then we're better off using IILF. 3229 if (LowOp.getOpcode() == ISD::Constant) { 3230 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3231 if (!isInt<16>(Value)) 3232 return Op; 3233 } 3234 3235 // Check whether the high part is an AND that doesn't change the 3236 // high 32 bits and just masks out low bits. We can skip it if so. 3237 if (HighOp.getOpcode() == ISD::AND && 3238 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3239 SDValue HighOp0 = HighOp.getOperand(0); 3240 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3241 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3242 HighOp = HighOp0; 3243 } 3244 3245 // Take advantage of the fact that all GR32 operations only change the 3246 // low 32 bits by truncating Low to an i32 and inserting it directly 3247 // using a subreg. The interesting cases are those where the truncation 3248 // can be folded. 3249 SDLoc DL(Op); 3250 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3251 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3252 MVT::i64, HighOp, Low32); 3253 } 3254 3255 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3256 SelectionDAG &DAG) const { 3257 EVT VT = Op.getValueType(); 3258 SDLoc DL(Op); 3259 Op = Op.getOperand(0); 3260 3261 // Handle vector types via VPOPCT. 3262 if (VT.isVector()) { 3263 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3264 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3265 switch (VT.getScalarSizeInBits()) { 3266 case 8: 3267 break; 3268 case 16: { 3269 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3270 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3271 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3272 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3273 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3274 break; 3275 } 3276 case 32: { 3277 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3278 DAG.getConstant(0, DL, MVT::i32)); 3279 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3280 break; 3281 } 3282 case 64: { 3283 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3284 DAG.getConstant(0, DL, MVT::i32)); 3285 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3286 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3287 break; 3288 } 3289 default: 3290 llvm_unreachable("Unexpected type"); 3291 } 3292 return Op; 3293 } 3294 3295 // Get the known-zero mask for the operand. 3296 KnownBits Known; 3297 DAG.computeKnownBits(Op, Known); 3298 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3299 if (NumSignificantBits == 0) 3300 return DAG.getConstant(0, DL, VT); 3301 3302 // Skip known-zero high parts of the operand. 3303 int64_t OrigBitSize = VT.getSizeInBits(); 3304 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3305 BitSize = std::min(BitSize, OrigBitSize); 3306 3307 // The POPCNT instruction counts the number of bits in each byte. 3308 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3309 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3310 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3311 3312 // Add up per-byte counts in a binary tree. All bits of Op at 3313 // position larger than BitSize remain zero throughout. 3314 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3315 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3316 if (BitSize != OrigBitSize) 3317 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3318 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3319 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3320 } 3321 3322 // Extract overall result from high byte. 3323 if (BitSize > 8) 3324 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3325 DAG.getConstant(BitSize - 8, DL, VT)); 3326 3327 return Op; 3328 } 3329 3330 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3331 SelectionDAG &DAG) const { 3332 SDLoc DL(Op); 3333 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3334 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3335 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3336 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3337 3338 // The only fence that needs an instruction is a sequentially-consistent 3339 // cross-thread fence. 3340 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3341 FenceSSID == SyncScope::System) { 3342 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3343 Op.getOperand(0)), 3344 0); 3345 } 3346 3347 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3348 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3349 } 3350 3351 // Op is an atomic load. Lower it into a normal volatile load. 3352 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3353 SelectionDAG &DAG) const { 3354 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3355 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3356 Node->getChain(), Node->getBasePtr(), 3357 Node->getMemoryVT(), Node->getMemOperand()); 3358 } 3359 3360 // Op is an atomic store. Lower it into a normal volatile store. 3361 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3362 SelectionDAG &DAG) const { 3363 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3364 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3365 Node->getBasePtr(), Node->getMemoryVT(), 3366 Node->getMemOperand()); 3367 // We have to enforce sequential consistency by performing a 3368 // serialization operation after the store. 3369 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3370 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3371 MVT::Other, Chain), 0); 3372 return Chain; 3373 } 3374 3375 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3376 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3377 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3378 SelectionDAG &DAG, 3379 unsigned Opcode) const { 3380 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3381 3382 // 32-bit operations need no code outside the main loop. 3383 EVT NarrowVT = Node->getMemoryVT(); 3384 EVT WideVT = MVT::i32; 3385 if (NarrowVT == WideVT) 3386 return Op; 3387 3388 int64_t BitSize = NarrowVT.getSizeInBits(); 3389 SDValue ChainIn = Node->getChain(); 3390 SDValue Addr = Node->getBasePtr(); 3391 SDValue Src2 = Node->getVal(); 3392 MachineMemOperand *MMO = Node->getMemOperand(); 3393 SDLoc DL(Node); 3394 EVT PtrVT = Addr.getValueType(); 3395 3396 // Convert atomic subtracts of constants into additions. 3397 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3398 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3399 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3400 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3401 } 3402 3403 // Get the address of the containing word. 3404 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3405 DAG.getConstant(-4, DL, PtrVT)); 3406 3407 // Get the number of bits that the word must be rotated left in order 3408 // to bring the field to the top bits of a GR32. 3409 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3410 DAG.getConstant(3, DL, PtrVT)); 3411 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3412 3413 // Get the complementing shift amount, for rotating a field in the top 3414 // bits back to its proper position. 3415 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3416 DAG.getConstant(0, DL, WideVT), BitShift); 3417 3418 // Extend the source operand to 32 bits and prepare it for the inner loop. 3419 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3420 // operations require the source to be shifted in advance. (This shift 3421 // can be folded if the source is constant.) For AND and NAND, the lower 3422 // bits must be set, while for other opcodes they should be left clear. 3423 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3424 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3425 DAG.getConstant(32 - BitSize, DL, WideVT)); 3426 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3427 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3428 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3429 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3430 3431 // Construct the ATOMIC_LOADW_* node. 3432 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3433 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3434 DAG.getConstant(BitSize, DL, WideVT) }; 3435 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3436 NarrowVT, MMO); 3437 3438 // Rotate the result of the final CS so that the field is in the lower 3439 // bits of a GR32, then truncate it. 3440 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3441 DAG.getConstant(BitSize, DL, WideVT)); 3442 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3443 3444 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3445 return DAG.getMergeValues(RetOps, DL); 3446 } 3447 3448 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3449 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3450 // operations into additions. 3451 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3452 SelectionDAG &DAG) const { 3453 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3454 EVT MemVT = Node->getMemoryVT(); 3455 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3456 // A full-width operation. 3457 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3458 SDValue Src2 = Node->getVal(); 3459 SDValue NegSrc2; 3460 SDLoc DL(Src2); 3461 3462 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3463 // Use an addition if the operand is constant and either LAA(G) is 3464 // available or the negative value is in the range of A(G)FHI. 3465 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3466 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3467 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3468 } else if (Subtarget.hasInterlockedAccess1()) 3469 // Use LAA(G) if available. 3470 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3471 Src2); 3472 3473 if (NegSrc2.getNode()) 3474 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3475 Node->getChain(), Node->getBasePtr(), NegSrc2, 3476 Node->getMemOperand()); 3477 3478 // Use the node as-is. 3479 return Op; 3480 } 3481 3482 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3483 } 3484 3485 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3486 // into a fullword ATOMIC_CMP_SWAPW operation. 3487 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3488 SelectionDAG &DAG) const { 3489 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3490 3491 // We have native support for 32-bit compare and swap. 3492 EVT NarrowVT = Node->getMemoryVT(); 3493 EVT WideVT = MVT::i32; 3494 if (NarrowVT == WideVT) 3495 return Op; 3496 3497 int64_t BitSize = NarrowVT.getSizeInBits(); 3498 SDValue ChainIn = Node->getOperand(0); 3499 SDValue Addr = Node->getOperand(1); 3500 SDValue CmpVal = Node->getOperand(2); 3501 SDValue SwapVal = Node->getOperand(3); 3502 MachineMemOperand *MMO = Node->getMemOperand(); 3503 SDLoc DL(Node); 3504 EVT PtrVT = Addr.getValueType(); 3505 3506 // Get the address of the containing word. 3507 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3508 DAG.getConstant(-4, DL, PtrVT)); 3509 3510 // Get the number of bits that the word must be rotated left in order 3511 // to bring the field to the top bits of a GR32. 3512 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3513 DAG.getConstant(3, DL, PtrVT)); 3514 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3515 3516 // Get the complementing shift amount, for rotating a field in the top 3517 // bits back to its proper position. 3518 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3519 DAG.getConstant(0, DL, WideVT), BitShift); 3520 3521 // Construct the ATOMIC_CMP_SWAPW node. 3522 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3523 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3524 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3525 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3526 VTList, Ops, NarrowVT, MMO); 3527 return AtomicOp; 3528 } 3529 3530 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3531 SelectionDAG &DAG) const { 3532 MachineFunction &MF = DAG.getMachineFunction(); 3533 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3534 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3535 SystemZ::R15D, Op.getValueType()); 3536 } 3537 3538 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3539 SelectionDAG &DAG) const { 3540 MachineFunction &MF = DAG.getMachineFunction(); 3541 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3542 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3543 3544 SDValue Chain = Op.getOperand(0); 3545 SDValue NewSP = Op.getOperand(1); 3546 SDValue Backchain; 3547 SDLoc DL(Op); 3548 3549 if (StoreBackchain) { 3550 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3551 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3552 } 3553 3554 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3555 3556 if (StoreBackchain) 3557 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3558 3559 return Chain; 3560 } 3561 3562 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3563 SelectionDAG &DAG) const { 3564 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3565 if (!IsData) 3566 // Just preserve the chain. 3567 return Op.getOperand(0); 3568 3569 SDLoc DL(Op); 3570 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3571 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3572 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3573 SDValue Ops[] = { 3574 Op.getOperand(0), 3575 DAG.getConstant(Code, DL, MVT::i32), 3576 Op.getOperand(1) 3577 }; 3578 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3579 Node->getVTList(), Ops, 3580 Node->getMemoryVT(), Node->getMemOperand()); 3581 } 3582 3583 // Return an i32 that contains the value of CC immediately after After, 3584 // whose final operand must be MVT::Glue. 3585 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3586 SDLoc DL(After); 3587 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3588 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3589 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3590 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3591 } 3592 3593 SDValue 3594 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3595 SelectionDAG &DAG) const { 3596 unsigned Opcode, CCValid; 3597 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3598 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3599 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3600 SDValue CC = getCCResult(DAG, Glued.getNode()); 3601 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3602 return SDValue(); 3603 } 3604 3605 return SDValue(); 3606 } 3607 3608 SDValue 3609 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3610 SelectionDAG &DAG) const { 3611 unsigned Opcode, CCValid; 3612 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3613 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3614 SDValue CC = getCCResult(DAG, Glued.getNode()); 3615 if (Op->getNumValues() == 1) 3616 return CC; 3617 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3618 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3619 CC); 3620 } 3621 3622 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3623 switch (Id) { 3624 case Intrinsic::thread_pointer: 3625 return lowerThreadPointer(SDLoc(Op), DAG); 3626 3627 case Intrinsic::s390_vpdi: 3628 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3629 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3630 3631 case Intrinsic::s390_vperm: 3632 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3633 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3634 3635 case Intrinsic::s390_vuphb: 3636 case Intrinsic::s390_vuphh: 3637 case Intrinsic::s390_vuphf: 3638 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3639 Op.getOperand(1)); 3640 3641 case Intrinsic::s390_vuplhb: 3642 case Intrinsic::s390_vuplhh: 3643 case Intrinsic::s390_vuplhf: 3644 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3645 Op.getOperand(1)); 3646 3647 case Intrinsic::s390_vuplb: 3648 case Intrinsic::s390_vuplhw: 3649 case Intrinsic::s390_vuplf: 3650 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3651 Op.getOperand(1)); 3652 3653 case Intrinsic::s390_vupllb: 3654 case Intrinsic::s390_vupllh: 3655 case Intrinsic::s390_vupllf: 3656 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3657 Op.getOperand(1)); 3658 3659 case Intrinsic::s390_vsumb: 3660 case Intrinsic::s390_vsumh: 3661 case Intrinsic::s390_vsumgh: 3662 case Intrinsic::s390_vsumgf: 3663 case Intrinsic::s390_vsumqf: 3664 case Intrinsic::s390_vsumqg: 3665 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3666 Op.getOperand(1), Op.getOperand(2)); 3667 } 3668 3669 return SDValue(); 3670 } 3671 3672 namespace { 3673 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3674 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3675 // Operand is the constant third operand, otherwise it is the number of 3676 // bytes in each element of the result. 3677 struct Permute { 3678 unsigned Opcode; 3679 unsigned Operand; 3680 unsigned char Bytes[SystemZ::VectorBytes]; 3681 }; 3682 } 3683 3684 static const Permute PermuteForms[] = { 3685 // VMRHG 3686 { SystemZISD::MERGE_HIGH, 8, 3687 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3688 // VMRHF 3689 { SystemZISD::MERGE_HIGH, 4, 3690 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3691 // VMRHH 3692 { SystemZISD::MERGE_HIGH, 2, 3693 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3694 // VMRHB 3695 { SystemZISD::MERGE_HIGH, 1, 3696 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3697 // VMRLG 3698 { SystemZISD::MERGE_LOW, 8, 3699 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3700 // VMRLF 3701 { SystemZISD::MERGE_LOW, 4, 3702 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3703 // VMRLH 3704 { SystemZISD::MERGE_LOW, 2, 3705 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3706 // VMRLB 3707 { SystemZISD::MERGE_LOW, 1, 3708 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3709 // VPKG 3710 { SystemZISD::PACK, 4, 3711 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3712 // VPKF 3713 { SystemZISD::PACK, 2, 3714 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3715 // VPKH 3716 { SystemZISD::PACK, 1, 3717 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3718 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3719 { SystemZISD::PERMUTE_DWORDS, 4, 3720 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3721 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3722 { SystemZISD::PERMUTE_DWORDS, 1, 3723 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3724 }; 3725 3726 // Called after matching a vector shuffle against a particular pattern. 3727 // Both the original shuffle and the pattern have two vector operands. 3728 // OpNos[0] is the operand of the original shuffle that should be used for 3729 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3730 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3731 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3732 // for operands 0 and 1 of the pattern. 3733 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3734 if (OpNos[0] < 0) { 3735 if (OpNos[1] < 0) 3736 return false; 3737 OpNo0 = OpNo1 = OpNos[1]; 3738 } else if (OpNos[1] < 0) { 3739 OpNo0 = OpNo1 = OpNos[0]; 3740 } else { 3741 OpNo0 = OpNos[0]; 3742 OpNo1 = OpNos[1]; 3743 } 3744 return true; 3745 } 3746 3747 // Bytes is a VPERM-like permute vector, except that -1 is used for 3748 // undefined bytes. Return true if the VPERM can be implemented using P. 3749 // When returning true set OpNo0 to the VPERM operand that should be 3750 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3751 // 3752 // For example, if swapping the VPERM operands allows P to match, OpNo0 3753 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3754 // operand, but rewriting it to use two duplicated operands allows it to 3755 // match P, then OpNo0 and OpNo1 will be the same. 3756 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3757 unsigned &OpNo0, unsigned &OpNo1) { 3758 int OpNos[] = { -1, -1 }; 3759 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3760 int Elt = Bytes[I]; 3761 if (Elt >= 0) { 3762 // Make sure that the two permute vectors use the same suboperand 3763 // byte number. Only the operand numbers (the high bits) are 3764 // allowed to differ. 3765 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3766 return false; 3767 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3768 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3769 // Make sure that the operand mappings are consistent with previous 3770 // elements. 3771 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3772 return false; 3773 OpNos[ModelOpNo] = RealOpNo; 3774 } 3775 } 3776 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3777 } 3778 3779 // As above, but search for a matching permute. 3780 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3781 unsigned &OpNo0, unsigned &OpNo1) { 3782 for (auto &P : PermuteForms) 3783 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3784 return &P; 3785 return nullptr; 3786 } 3787 3788 // Bytes is a VPERM-like permute vector, except that -1 is used for 3789 // undefined bytes. This permute is an operand of an outer permute. 3790 // See whether redistributing the -1 bytes gives a shuffle that can be 3791 // implemented using P. If so, set Transform to a VPERM-like permute vector 3792 // that, when applied to the result of P, gives the original permute in Bytes. 3793 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3794 const Permute &P, 3795 SmallVectorImpl<int> &Transform) { 3796 unsigned To = 0; 3797 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3798 int Elt = Bytes[From]; 3799 if (Elt < 0) 3800 // Byte number From of the result is undefined. 3801 Transform[From] = -1; 3802 else { 3803 while (P.Bytes[To] != Elt) { 3804 To += 1; 3805 if (To == SystemZ::VectorBytes) 3806 return false; 3807 } 3808 Transform[From] = To; 3809 } 3810 } 3811 return true; 3812 } 3813 3814 // As above, but search for a matching permute. 3815 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3816 SmallVectorImpl<int> &Transform) { 3817 for (auto &P : PermuteForms) 3818 if (matchDoublePermute(Bytes, P, Transform)) 3819 return &P; 3820 return nullptr; 3821 } 3822 3823 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3824 // as if it had type vNi8. 3825 static void getVPermMask(ShuffleVectorSDNode *VSN, 3826 SmallVectorImpl<int> &Bytes) { 3827 EVT VT = VSN->getValueType(0); 3828 unsigned NumElements = VT.getVectorNumElements(); 3829 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3830 Bytes.resize(NumElements * BytesPerElement, -1); 3831 for (unsigned I = 0; I < NumElements; ++I) { 3832 int Index = VSN->getMaskElt(I); 3833 if (Index >= 0) 3834 for (unsigned J = 0; J < BytesPerElement; ++J) 3835 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3836 } 3837 } 3838 3839 // Bytes is a VPERM-like permute vector, except that -1 is used for 3840 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3841 // the result come from a contiguous sequence of bytes from one input. 3842 // Set Base to the selector for the first byte if so. 3843 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3844 unsigned BytesPerElement, int &Base) { 3845 Base = -1; 3846 for (unsigned I = 0; I < BytesPerElement; ++I) { 3847 if (Bytes[Start + I] >= 0) { 3848 unsigned Elem = Bytes[Start + I]; 3849 if (Base < 0) { 3850 Base = Elem - I; 3851 // Make sure the bytes would come from one input operand. 3852 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3853 return false; 3854 } else if (unsigned(Base) != Elem - I) 3855 return false; 3856 } 3857 } 3858 return true; 3859 } 3860 3861 // Bytes is a VPERM-like permute vector, except that -1 is used for 3862 // undefined bytes. Return true if it can be performed using VSLDI. 3863 // When returning true, set StartIndex to the shift amount and OpNo0 3864 // and OpNo1 to the VPERM operands that should be used as the first 3865 // and second shift operand respectively. 3866 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3867 unsigned &StartIndex, unsigned &OpNo0, 3868 unsigned &OpNo1) { 3869 int OpNos[] = { -1, -1 }; 3870 int Shift = -1; 3871 for (unsigned I = 0; I < 16; ++I) { 3872 int Index = Bytes[I]; 3873 if (Index >= 0) { 3874 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3875 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3876 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3877 if (Shift < 0) 3878 Shift = ExpectedShift; 3879 else if (Shift != ExpectedShift) 3880 return false; 3881 // Make sure that the operand mappings are consistent with previous 3882 // elements. 3883 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3884 return false; 3885 OpNos[ModelOpNo] = RealOpNo; 3886 } 3887 } 3888 StartIndex = Shift; 3889 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3890 } 3891 3892 // Create a node that performs P on operands Op0 and Op1, casting the 3893 // operands to the appropriate type. The type of the result is determined by P. 3894 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3895 const Permute &P, SDValue Op0, SDValue Op1) { 3896 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3897 // elements of a PACK are twice as wide as the outputs. 3898 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3899 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3900 P.Operand); 3901 // Cast both operands to the appropriate type. 3902 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3903 SystemZ::VectorBytes / InBytes); 3904 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3905 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3906 SDValue Op; 3907 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3908 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3909 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3910 } else if (P.Opcode == SystemZISD::PACK) { 3911 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3912 SystemZ::VectorBytes / P.Operand); 3913 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3914 } else { 3915 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3916 } 3917 return Op; 3918 } 3919 3920 // Bytes is a VPERM-like permute vector, except that -1 is used for 3921 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3922 // VSLDI or VPERM. 3923 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3924 SDValue *Ops, 3925 const SmallVectorImpl<int> &Bytes) { 3926 for (unsigned I = 0; I < 2; ++I) 3927 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3928 3929 // First see whether VSLDI can be used. 3930 unsigned StartIndex, OpNo0, OpNo1; 3931 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3932 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3933 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3934 3935 // Fall back on VPERM. Construct an SDNode for the permute vector. 3936 SDValue IndexNodes[SystemZ::VectorBytes]; 3937 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3938 if (Bytes[I] >= 0) 3939 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3940 else 3941 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3942 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3943 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3944 } 3945 3946 namespace { 3947 // Describes a general N-operand vector shuffle. 3948 struct GeneralShuffle { 3949 GeneralShuffle(EVT vt) : VT(vt) {} 3950 void addUndef(); 3951 bool add(SDValue, unsigned); 3952 SDValue getNode(SelectionDAG &, const SDLoc &); 3953 3954 // The operands of the shuffle. 3955 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3956 3957 // Index I is -1 if byte I of the result is undefined. Otherwise the 3958 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3959 // Bytes[I] / SystemZ::VectorBytes. 3960 SmallVector<int, SystemZ::VectorBytes> Bytes; 3961 3962 // The type of the shuffle result. 3963 EVT VT; 3964 }; 3965 } 3966 3967 // Add an extra undefined element to the shuffle. 3968 void GeneralShuffle::addUndef() { 3969 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3970 for (unsigned I = 0; I < BytesPerElement; ++I) 3971 Bytes.push_back(-1); 3972 } 3973 3974 // Add an extra element to the shuffle, taking it from element Elem of Op. 3975 // A null Op indicates a vector input whose value will be calculated later; 3976 // there is at most one such input per shuffle and it always has the same 3977 // type as the result. Aborts and returns false if the source vector elements 3978 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 3979 // LLVM they become implicitly extended, but this is rare and not optimized. 3980 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 3981 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3982 3983 // The source vector can have wider elements than the result, 3984 // either through an explicit TRUNCATE or because of type legalization. 3985 // We want the least significant part. 3986 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3987 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3988 3989 // Return false if the source elements are smaller than their destination 3990 // elements. 3991 if (FromBytesPerElement < BytesPerElement) 3992 return false; 3993 3994 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3995 (FromBytesPerElement - BytesPerElement)); 3996 3997 // Look through things like shuffles and bitcasts. 3998 while (Op.getNode()) { 3999 if (Op.getOpcode() == ISD::BITCAST) 4000 Op = Op.getOperand(0); 4001 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4002 // See whether the bytes we need come from a contiguous part of one 4003 // operand. 4004 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4005 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 4006 int NewByte; 4007 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4008 break; 4009 if (NewByte < 0) { 4010 addUndef(); 4011 return true; 4012 } 4013 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4014 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4015 } else if (Op.isUndef()) { 4016 addUndef(); 4017 return true; 4018 } else 4019 break; 4020 } 4021 4022 // Make sure that the source of the extraction is in Ops. 4023 unsigned OpNo = 0; 4024 for (; OpNo < Ops.size(); ++OpNo) 4025 if (Ops[OpNo] == Op) 4026 break; 4027 if (OpNo == Ops.size()) 4028 Ops.push_back(Op); 4029 4030 // Add the element to Bytes. 4031 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4032 for (unsigned I = 0; I < BytesPerElement; ++I) 4033 Bytes.push_back(Base + I); 4034 4035 return true; 4036 } 4037 4038 // Return SDNodes for the completed shuffle. 4039 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4040 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4041 4042 if (Ops.size() == 0) 4043 return DAG.getUNDEF(VT); 4044 4045 // Make sure that there are at least two shuffle operands. 4046 if (Ops.size() == 1) 4047 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4048 4049 // Create a tree of shuffles, deferring root node until after the loop. 4050 // Try to redistribute the undefined elements of non-root nodes so that 4051 // the non-root shuffles match something like a pack or merge, then adjust 4052 // the parent node's permute vector to compensate for the new order. 4053 // Among other things, this copes with vectors like <2 x i16> that were 4054 // padded with undefined elements during type legalization. 4055 // 4056 // In the best case this redistribution will lead to the whole tree 4057 // using packs and merges. It should rarely be a loss in other cases. 4058 unsigned Stride = 1; 4059 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4060 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4061 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4062 4063 // Create a mask for just these two operands. 4064 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4065 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4066 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4067 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4068 if (OpNo == I) 4069 NewBytes[J] = Byte; 4070 else if (OpNo == I + Stride) 4071 NewBytes[J] = SystemZ::VectorBytes + Byte; 4072 else 4073 NewBytes[J] = -1; 4074 } 4075 // See if it would be better to reorganize NewMask to avoid using VPERM. 4076 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4077 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4078 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4079 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4080 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4081 if (NewBytes[J] >= 0) { 4082 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4083 "Invalid double permute"); 4084 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4085 } else 4086 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4087 } 4088 } else { 4089 // Just use NewBytes on the operands. 4090 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4091 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4092 if (NewBytes[J] >= 0) 4093 Bytes[J] = I * SystemZ::VectorBytes + J; 4094 } 4095 } 4096 } 4097 4098 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4099 if (Stride > 1) { 4100 Ops[1] = Ops[Stride]; 4101 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4102 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4103 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4104 } 4105 4106 // Look for an instruction that can do the permute without resorting 4107 // to VPERM. 4108 unsigned OpNo0, OpNo1; 4109 SDValue Op; 4110 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4111 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4112 else 4113 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4114 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4115 } 4116 4117 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4118 static bool isScalarToVector(SDValue Op) { 4119 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4120 if (!Op.getOperand(I).isUndef()) 4121 return false; 4122 return true; 4123 } 4124 4125 // Return a vector of type VT that contains Value in the first element. 4126 // The other elements don't matter. 4127 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4128 SDValue Value) { 4129 // If we have a constant, replicate it to all elements and let the 4130 // BUILD_VECTOR lowering take care of it. 4131 if (Value.getOpcode() == ISD::Constant || 4132 Value.getOpcode() == ISD::ConstantFP) { 4133 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4134 return DAG.getBuildVector(VT, DL, Ops); 4135 } 4136 if (Value.isUndef()) 4137 return DAG.getUNDEF(VT); 4138 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4139 } 4140 4141 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4142 // element 1. Used for cases in which replication is cheap. 4143 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4144 SDValue Op0, SDValue Op1) { 4145 if (Op0.isUndef()) { 4146 if (Op1.isUndef()) 4147 return DAG.getUNDEF(VT); 4148 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4149 } 4150 if (Op1.isUndef()) 4151 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4152 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4153 buildScalarToVector(DAG, DL, VT, Op0), 4154 buildScalarToVector(DAG, DL, VT, Op1)); 4155 } 4156 4157 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4158 // vector for them. 4159 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4160 SDValue Op1) { 4161 if (Op0.isUndef() && Op1.isUndef()) 4162 return DAG.getUNDEF(MVT::v2i64); 4163 // If one of the two inputs is undefined then replicate the other one, 4164 // in order to avoid using another register unnecessarily. 4165 if (Op0.isUndef()) 4166 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4167 else if (Op1.isUndef()) 4168 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4169 else { 4170 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4171 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4172 } 4173 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4174 } 4175 4176 // Try to represent constant BUILD_VECTOR node BVN using a 4177 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4178 // on success. 4179 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4180 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4181 unsigned BytesPerElement = ElemVT.getStoreSize(); 4182 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4183 SDValue Op = BVN->getOperand(I); 4184 if (!Op.isUndef()) { 4185 uint64_t Value; 4186 if (Op.getOpcode() == ISD::Constant) 4187 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 4188 else if (Op.getOpcode() == ISD::ConstantFP) 4189 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4190 .getZExtValue()); 4191 else 4192 return false; 4193 for (unsigned J = 0; J < BytesPerElement; ++J) { 4194 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4195 if (Byte == 0xff) 4196 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4197 else if (Byte != 0) 4198 return false; 4199 } 4200 } 4201 } 4202 return true; 4203 } 4204 4205 // Try to load a vector constant in which BitsPerElement-bit value Value 4206 // is replicated to fill the vector. VT is the type of the resulting 4207 // constant, which may have elements of a different size from BitsPerElement. 4208 // Return the SDValue of the constant on success, otherwise return 4209 // an empty value. 4210 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4211 const SystemZInstrInfo *TII, 4212 const SDLoc &DL, EVT VT, uint64_t Value, 4213 unsigned BitsPerElement) { 4214 // Signed 16-bit values can be replicated using VREPI. 4215 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4216 if (isInt<16>(SignedValue)) { 4217 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4218 SystemZ::VectorBits / BitsPerElement); 4219 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4220 DAG.getConstant(SignedValue, DL, MVT::i32)); 4221 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4222 } 4223 // See whether rotating the constant left some N places gives a value that 4224 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4225 // If so we can use VGM. 4226 unsigned Start, End; 4227 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4228 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4229 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4230 // bit numbers for an BitsPerElement value, so that 0 denotes 4231 // 1 << (BitsPerElement-1). 4232 Start -= 64 - BitsPerElement; 4233 End -= 64 - BitsPerElement; 4234 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4235 SystemZ::VectorBits / BitsPerElement); 4236 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4237 DAG.getConstant(Start, DL, MVT::i32), 4238 DAG.getConstant(End, DL, MVT::i32)); 4239 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4240 } 4241 return SDValue(); 4242 } 4243 4244 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4245 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4246 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4247 // would benefit from this representation and return it if so. 4248 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4249 BuildVectorSDNode *BVN) { 4250 EVT VT = BVN->getValueType(0); 4251 unsigned NumElements = VT.getVectorNumElements(); 4252 4253 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4254 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4255 // need a BUILD_VECTOR, add an additional placeholder operand for that 4256 // BUILD_VECTOR and store its operands in ResidueOps. 4257 GeneralShuffle GS(VT); 4258 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4259 bool FoundOne = false; 4260 for (unsigned I = 0; I < NumElements; ++I) { 4261 SDValue Op = BVN->getOperand(I); 4262 if (Op.getOpcode() == ISD::TRUNCATE) 4263 Op = Op.getOperand(0); 4264 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4265 Op.getOperand(1).getOpcode() == ISD::Constant) { 4266 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4267 if (!GS.add(Op.getOperand(0), Elem)) 4268 return SDValue(); 4269 FoundOne = true; 4270 } else if (Op.isUndef()) { 4271 GS.addUndef(); 4272 } else { 4273 if (!GS.add(SDValue(), ResidueOps.size())) 4274 return SDValue(); 4275 ResidueOps.push_back(BVN->getOperand(I)); 4276 } 4277 } 4278 4279 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4280 if (!FoundOne) 4281 return SDValue(); 4282 4283 // Create the BUILD_VECTOR for the remaining elements, if any. 4284 if (!ResidueOps.empty()) { 4285 while (ResidueOps.size() < NumElements) 4286 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4287 for (auto &Op : GS.Ops) { 4288 if (!Op.getNode()) { 4289 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4290 break; 4291 } 4292 } 4293 } 4294 return GS.getNode(DAG, SDLoc(BVN)); 4295 } 4296 4297 // Combine GPR scalar values Elems into a vector of type VT. 4298 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4299 SmallVectorImpl<SDValue> &Elems) { 4300 // See whether there is a single replicated value. 4301 SDValue Single; 4302 unsigned int NumElements = Elems.size(); 4303 unsigned int Count = 0; 4304 for (auto Elem : Elems) { 4305 if (!Elem.isUndef()) { 4306 if (!Single.getNode()) 4307 Single = Elem; 4308 else if (Elem != Single) { 4309 Single = SDValue(); 4310 break; 4311 } 4312 Count += 1; 4313 } 4314 } 4315 // There are three cases here: 4316 // 4317 // - if the only defined element is a loaded one, the best sequence 4318 // is a replicating load. 4319 // 4320 // - otherwise, if the only defined element is an i64 value, we will 4321 // end up with the same VLVGP sequence regardless of whether we short-cut 4322 // for replication or fall through to the later code. 4323 // 4324 // - otherwise, if the only defined element is an i32 or smaller value, 4325 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4326 // This is only a win if the single defined element is used more than once. 4327 // In other cases we're better off using a single VLVGx. 4328 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4329 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4330 4331 // If all elements are loads, use VLREP/VLEs (below). 4332 bool AllLoads = true; 4333 for (auto Elem : Elems) 4334 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4335 AllLoads = false; 4336 break; 4337 } 4338 4339 // The best way of building a v2i64 from two i64s is to use VLVGP. 4340 if (VT == MVT::v2i64 && !AllLoads) 4341 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4342 4343 // Use a 64-bit merge high to combine two doubles. 4344 if (VT == MVT::v2f64 && !AllLoads) 4345 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4346 4347 // Build v4f32 values directly from the FPRs: 4348 // 4349 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4350 // V V VMRHF 4351 // <ABxx> <CDxx> 4352 // V VMRHG 4353 // <ABCD> 4354 if (VT == MVT::v4f32 && !AllLoads) { 4355 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4356 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4357 // Avoid unnecessary undefs by reusing the other operand. 4358 if (Op01.isUndef()) 4359 Op01 = Op23; 4360 else if (Op23.isUndef()) 4361 Op23 = Op01; 4362 // Merging identical replications is a no-op. 4363 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4364 return Op01; 4365 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4366 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4367 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4368 DL, MVT::v2i64, Op01, Op23); 4369 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4370 } 4371 4372 // Collect the constant terms. 4373 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4374 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4375 4376 unsigned NumConstants = 0; 4377 for (unsigned I = 0; I < NumElements; ++I) { 4378 SDValue Elem = Elems[I]; 4379 if (Elem.getOpcode() == ISD::Constant || 4380 Elem.getOpcode() == ISD::ConstantFP) { 4381 NumConstants += 1; 4382 Constants[I] = Elem; 4383 Done[I] = true; 4384 } 4385 } 4386 // If there was at least one constant, fill in the other elements of 4387 // Constants with undefs to get a full vector constant and use that 4388 // as the starting point. 4389 SDValue Result; 4390 if (NumConstants > 0) { 4391 for (unsigned I = 0; I < NumElements; ++I) 4392 if (!Constants[I].getNode()) 4393 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4394 Result = DAG.getBuildVector(VT, DL, Constants); 4395 } else { 4396 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4397 // avoid a false dependency on any previous contents of the vector 4398 // register. 4399 4400 // Use a VLREP if at least one element is a load. 4401 unsigned LoadElIdx = UINT_MAX; 4402 for (unsigned I = 0; I < NumElements; ++I) 4403 if (Elems[I].getOpcode() == ISD::LOAD && 4404 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4405 LoadElIdx = I; 4406 break; 4407 } 4408 if (LoadElIdx != UINT_MAX) { 4409 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]); 4410 Done[LoadElIdx] = true; 4411 } else { 4412 // Try to use VLVGP. 4413 unsigned I1 = NumElements / 2 - 1; 4414 unsigned I2 = NumElements - 1; 4415 bool Def1 = !Elems[I1].isUndef(); 4416 bool Def2 = !Elems[I2].isUndef(); 4417 if (Def1 || Def2) { 4418 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4419 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4420 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4421 joinDwords(DAG, DL, Elem1, Elem2)); 4422 Done[I1] = true; 4423 Done[I2] = true; 4424 } else 4425 Result = DAG.getUNDEF(VT); 4426 } 4427 } 4428 4429 // Use VLVGx to insert the other elements. 4430 for (unsigned I = 0; I < NumElements; ++I) 4431 if (!Done[I] && !Elems[I].isUndef()) 4432 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4433 DAG.getConstant(I, DL, MVT::i32)); 4434 return Result; 4435 } 4436 4437 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4438 SelectionDAG &DAG) const { 4439 const SystemZInstrInfo *TII = 4440 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4441 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4442 SDLoc DL(Op); 4443 EVT VT = Op.getValueType(); 4444 4445 if (BVN->isConstant()) { 4446 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4447 // preferred way of creating all-zero and all-one vectors so give it 4448 // priority over other methods below. 4449 uint64_t Mask = 0; 4450 if (tryBuildVectorByteMask(BVN, Mask)) { 4451 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4452 DAG.getConstant(Mask, DL, MVT::i32)); 4453 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4454 } 4455 4456 // Try using some form of replication. 4457 APInt SplatBits, SplatUndef; 4458 unsigned SplatBitSize; 4459 bool HasAnyUndefs; 4460 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4461 8, true) && 4462 SplatBitSize <= 64) { 4463 // First try assuming that any undefined bits above the highest set bit 4464 // and below the lowest set bit are 1s. This increases the likelihood of 4465 // being able to use a sign-extended element value in VECTOR REPLICATE 4466 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4467 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4468 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4469 uint64_t Lower = (SplatUndefZ 4470 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4471 uint64_t Upper = (SplatUndefZ 4472 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4473 uint64_t Value = SplatBitsZ | Upper | Lower; 4474 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4475 SplatBitSize); 4476 if (Op.getNode()) 4477 return Op; 4478 4479 // Now try assuming that any undefined bits between the first and 4480 // last defined set bits are set. This increases the chances of 4481 // using a non-wraparound mask. 4482 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4483 Value = SplatBitsZ | Middle; 4484 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4485 if (Op.getNode()) 4486 return Op; 4487 } 4488 4489 // Fall back to loading it from memory. 4490 return SDValue(); 4491 } 4492 4493 // See if we should use shuffles to construct the vector from other vectors. 4494 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4495 return Res; 4496 4497 // Detect SCALAR_TO_VECTOR conversions. 4498 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4499 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4500 4501 // Otherwise use buildVector to build the vector up from GPRs. 4502 unsigned NumElements = Op.getNumOperands(); 4503 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4504 for (unsigned I = 0; I < NumElements; ++I) 4505 Ops[I] = Op.getOperand(I); 4506 return buildVector(DAG, DL, VT, Ops); 4507 } 4508 4509 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4510 SelectionDAG &DAG) const { 4511 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4512 SDLoc DL(Op); 4513 EVT VT = Op.getValueType(); 4514 unsigned NumElements = VT.getVectorNumElements(); 4515 4516 if (VSN->isSplat()) { 4517 SDValue Op0 = Op.getOperand(0); 4518 unsigned Index = VSN->getSplatIndex(); 4519 assert(Index < VT.getVectorNumElements() && 4520 "Splat index should be defined and in first operand"); 4521 // See whether the value we're splatting is directly available as a scalar. 4522 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4523 Op0.getOpcode() == ISD::BUILD_VECTOR) 4524 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4525 // Otherwise keep it as a vector-to-vector operation. 4526 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4527 DAG.getConstant(Index, DL, MVT::i32)); 4528 } 4529 4530 GeneralShuffle GS(VT); 4531 for (unsigned I = 0; I < NumElements; ++I) { 4532 int Elt = VSN->getMaskElt(I); 4533 if (Elt < 0) 4534 GS.addUndef(); 4535 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4536 unsigned(Elt) % NumElements)) 4537 return SDValue(); 4538 } 4539 return GS.getNode(DAG, SDLoc(VSN)); 4540 } 4541 4542 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4543 SelectionDAG &DAG) const { 4544 SDLoc DL(Op); 4545 // Just insert the scalar into element 0 of an undefined vector. 4546 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4547 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4548 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4549 } 4550 4551 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4552 SelectionDAG &DAG) const { 4553 // Handle insertions of floating-point values. 4554 SDLoc DL(Op); 4555 SDValue Op0 = Op.getOperand(0); 4556 SDValue Op1 = Op.getOperand(1); 4557 SDValue Op2 = Op.getOperand(2); 4558 EVT VT = Op.getValueType(); 4559 4560 // Insertions into constant indices of a v2f64 can be done using VPDI. 4561 // However, if the inserted value is a bitcast or a constant then it's 4562 // better to use GPRs, as below. 4563 if (VT == MVT::v2f64 && 4564 Op1.getOpcode() != ISD::BITCAST && 4565 Op1.getOpcode() != ISD::ConstantFP && 4566 Op2.getOpcode() == ISD::Constant) { 4567 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4568 unsigned Mask = VT.getVectorNumElements() - 1; 4569 if (Index <= Mask) 4570 return Op; 4571 } 4572 4573 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4574 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4575 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4576 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4577 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4578 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4579 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4580 } 4581 4582 SDValue 4583 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4584 SelectionDAG &DAG) const { 4585 // Handle extractions of floating-point values. 4586 SDLoc DL(Op); 4587 SDValue Op0 = Op.getOperand(0); 4588 SDValue Op1 = Op.getOperand(1); 4589 EVT VT = Op.getValueType(); 4590 EVT VecVT = Op0.getValueType(); 4591 4592 // Extractions of constant indices can be done directly. 4593 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4594 uint64_t Index = CIndexN->getZExtValue(); 4595 unsigned Mask = VecVT.getVectorNumElements() - 1; 4596 if (Index <= Mask) 4597 return Op; 4598 } 4599 4600 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4601 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4602 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4603 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4604 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4605 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4606 } 4607 4608 SDValue 4609 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4610 unsigned UnpackHigh) const { 4611 SDValue PackedOp = Op.getOperand(0); 4612 EVT OutVT = Op.getValueType(); 4613 EVT InVT = PackedOp.getValueType(); 4614 unsigned ToBits = OutVT.getScalarSizeInBits(); 4615 unsigned FromBits = InVT.getScalarSizeInBits(); 4616 do { 4617 FromBits *= 2; 4618 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4619 SystemZ::VectorBits / FromBits); 4620 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4621 } while (FromBits != ToBits); 4622 return PackedOp; 4623 } 4624 4625 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4626 unsigned ByScalar) const { 4627 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4628 SDValue Op0 = Op.getOperand(0); 4629 SDValue Op1 = Op.getOperand(1); 4630 SDLoc DL(Op); 4631 EVT VT = Op.getValueType(); 4632 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4633 4634 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4635 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4636 APInt SplatBits, SplatUndef; 4637 unsigned SplatBitSize; 4638 bool HasAnyUndefs; 4639 // Check for constant splats. Use ElemBitSize as the minimum element 4640 // width and reject splats that need wider elements. 4641 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4642 ElemBitSize, true) && 4643 SplatBitSize == ElemBitSize) { 4644 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4645 DL, MVT::i32); 4646 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4647 } 4648 // Check for variable splats. 4649 BitVector UndefElements; 4650 SDValue Splat = BVN->getSplatValue(&UndefElements); 4651 if (Splat) { 4652 // Since i32 is the smallest legal type, we either need a no-op 4653 // or a truncation. 4654 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4655 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4656 } 4657 } 4658 4659 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4660 // and the shift amount is directly available in a GPR. 4661 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4662 if (VSN->isSplat()) { 4663 SDValue VSNOp0 = VSN->getOperand(0); 4664 unsigned Index = VSN->getSplatIndex(); 4665 assert(Index < VT.getVectorNumElements() && 4666 "Splat index should be defined and in first operand"); 4667 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4668 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4669 // Since i32 is the smallest legal type, we either need a no-op 4670 // or a truncation. 4671 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4672 VSNOp0.getOperand(Index)); 4673 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4674 } 4675 } 4676 } 4677 4678 // Otherwise just treat the current form as legal. 4679 return Op; 4680 } 4681 4682 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4683 SelectionDAG &DAG) const { 4684 switch (Op.getOpcode()) { 4685 case ISD::FRAMEADDR: 4686 return lowerFRAMEADDR(Op, DAG); 4687 case ISD::RETURNADDR: 4688 return lowerRETURNADDR(Op, DAG); 4689 case ISD::BR_CC: 4690 return lowerBR_CC(Op, DAG); 4691 case ISD::SELECT_CC: 4692 return lowerSELECT_CC(Op, DAG); 4693 case ISD::SETCC: 4694 return lowerSETCC(Op, DAG); 4695 case ISD::GlobalAddress: 4696 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4697 case ISD::GlobalTLSAddress: 4698 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4699 case ISD::BlockAddress: 4700 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4701 case ISD::JumpTable: 4702 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4703 case ISD::ConstantPool: 4704 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4705 case ISD::BITCAST: 4706 return lowerBITCAST(Op, DAG); 4707 case ISD::VASTART: 4708 return lowerVASTART(Op, DAG); 4709 case ISD::VACOPY: 4710 return lowerVACOPY(Op, DAG); 4711 case ISD::DYNAMIC_STACKALLOC: 4712 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4713 case ISD::GET_DYNAMIC_AREA_OFFSET: 4714 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4715 case ISD::SMUL_LOHI: 4716 return lowerSMUL_LOHI(Op, DAG); 4717 case ISD::UMUL_LOHI: 4718 return lowerUMUL_LOHI(Op, DAG); 4719 case ISD::SDIVREM: 4720 return lowerSDIVREM(Op, DAG); 4721 case ISD::UDIVREM: 4722 return lowerUDIVREM(Op, DAG); 4723 case ISD::OR: 4724 return lowerOR(Op, DAG); 4725 case ISD::CTPOP: 4726 return lowerCTPOP(Op, DAG); 4727 case ISD::ATOMIC_FENCE: 4728 return lowerATOMIC_FENCE(Op, DAG); 4729 case ISD::ATOMIC_SWAP: 4730 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4731 case ISD::ATOMIC_STORE: 4732 return lowerATOMIC_STORE(Op, DAG); 4733 case ISD::ATOMIC_LOAD: 4734 return lowerATOMIC_LOAD(Op, DAG); 4735 case ISD::ATOMIC_LOAD_ADD: 4736 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4737 case ISD::ATOMIC_LOAD_SUB: 4738 return lowerATOMIC_LOAD_SUB(Op, DAG); 4739 case ISD::ATOMIC_LOAD_AND: 4740 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4741 case ISD::ATOMIC_LOAD_OR: 4742 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4743 case ISD::ATOMIC_LOAD_XOR: 4744 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4745 case ISD::ATOMIC_LOAD_NAND: 4746 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4747 case ISD::ATOMIC_LOAD_MIN: 4748 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4749 case ISD::ATOMIC_LOAD_MAX: 4750 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4751 case ISD::ATOMIC_LOAD_UMIN: 4752 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4753 case ISD::ATOMIC_LOAD_UMAX: 4754 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4755 case ISD::ATOMIC_CMP_SWAP: 4756 return lowerATOMIC_CMP_SWAP(Op, DAG); 4757 case ISD::STACKSAVE: 4758 return lowerSTACKSAVE(Op, DAG); 4759 case ISD::STACKRESTORE: 4760 return lowerSTACKRESTORE(Op, DAG); 4761 case ISD::PREFETCH: 4762 return lowerPREFETCH(Op, DAG); 4763 case ISD::INTRINSIC_W_CHAIN: 4764 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4765 case ISD::INTRINSIC_WO_CHAIN: 4766 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4767 case ISD::BUILD_VECTOR: 4768 return lowerBUILD_VECTOR(Op, DAG); 4769 case ISD::VECTOR_SHUFFLE: 4770 return lowerVECTOR_SHUFFLE(Op, DAG); 4771 case ISD::SCALAR_TO_VECTOR: 4772 return lowerSCALAR_TO_VECTOR(Op, DAG); 4773 case ISD::INSERT_VECTOR_ELT: 4774 return lowerINSERT_VECTOR_ELT(Op, DAG); 4775 case ISD::EXTRACT_VECTOR_ELT: 4776 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4777 case ISD::SIGN_EXTEND_VECTOR_INREG: 4778 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4779 case ISD::ZERO_EXTEND_VECTOR_INREG: 4780 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4781 case ISD::SHL: 4782 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4783 case ISD::SRL: 4784 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4785 case ISD::SRA: 4786 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4787 default: 4788 llvm_unreachable("Unexpected node to lower"); 4789 } 4790 } 4791 4792 // Lower operations with invalid operand or result types (currently used 4793 // only for 128-bit integer types). 4794 4795 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4796 SDLoc DL(In); 4797 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4798 DAG.getIntPtrConstant(0, DL)); 4799 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4800 DAG.getIntPtrConstant(1, DL)); 4801 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4802 MVT::Untyped, Hi, Lo); 4803 return SDValue(Pair, 0); 4804 } 4805 4806 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4807 SDLoc DL(In); 4808 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4809 DL, MVT::i64, In); 4810 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4811 DL, MVT::i64, In); 4812 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4813 } 4814 4815 void 4816 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4817 SmallVectorImpl<SDValue> &Results, 4818 SelectionDAG &DAG) const { 4819 switch (N->getOpcode()) { 4820 case ISD::ATOMIC_LOAD: { 4821 SDLoc DL(N); 4822 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4823 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4824 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4825 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4826 DL, Tys, Ops, MVT::i128, MMO); 4827 Results.push_back(lowerGR128ToI128(DAG, Res)); 4828 Results.push_back(Res.getValue(1)); 4829 break; 4830 } 4831 case ISD::ATOMIC_STORE: { 4832 SDLoc DL(N); 4833 SDVTList Tys = DAG.getVTList(MVT::Other); 4834 SDValue Ops[] = { N->getOperand(0), 4835 lowerI128ToGR128(DAG, N->getOperand(2)), 4836 N->getOperand(1) }; 4837 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4838 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4839 DL, Tys, Ops, MVT::i128, MMO); 4840 // We have to enforce sequential consistency by performing a 4841 // serialization operation after the store. 4842 if (cast<AtomicSDNode>(N)->getOrdering() == 4843 AtomicOrdering::SequentiallyConsistent) 4844 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4845 MVT::Other, Res), 0); 4846 Results.push_back(Res); 4847 break; 4848 } 4849 case ISD::ATOMIC_CMP_SWAP: { 4850 SDLoc DL(N); 4851 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4852 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4853 lowerI128ToGR128(DAG, N->getOperand(2)), 4854 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4855 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4856 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4857 DL, Tys, Ops, MVT::i128, MMO); 4858 Results.push_back(lowerGR128ToI128(DAG, Res)); 4859 Results.push_back(Res.getValue(1)); 4860 break; 4861 } 4862 default: 4863 llvm_unreachable("Unexpected node to lower"); 4864 } 4865 } 4866 4867 void 4868 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 4869 SmallVectorImpl<SDValue> &Results, 4870 SelectionDAG &DAG) const { 4871 return LowerOperationWrapper(N, Results, DAG); 4872 } 4873 4874 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4875 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4876 switch ((SystemZISD::NodeType)Opcode) { 4877 case SystemZISD::FIRST_NUMBER: break; 4878 OPCODE(RET_FLAG); 4879 OPCODE(CALL); 4880 OPCODE(SIBCALL); 4881 OPCODE(TLS_GDCALL); 4882 OPCODE(TLS_LDCALL); 4883 OPCODE(PCREL_WRAPPER); 4884 OPCODE(PCREL_OFFSET); 4885 OPCODE(IABS); 4886 OPCODE(ICMP); 4887 OPCODE(FCMP); 4888 OPCODE(TM); 4889 OPCODE(BR_CCMASK); 4890 OPCODE(SELECT_CCMASK); 4891 OPCODE(ADJDYNALLOC); 4892 OPCODE(POPCNT); 4893 OPCODE(SMUL_LOHI); 4894 OPCODE(UMUL_LOHI); 4895 OPCODE(SDIVREM); 4896 OPCODE(UDIVREM); 4897 OPCODE(MVC); 4898 OPCODE(MVC_LOOP); 4899 OPCODE(NC); 4900 OPCODE(NC_LOOP); 4901 OPCODE(OC); 4902 OPCODE(OC_LOOP); 4903 OPCODE(XC); 4904 OPCODE(XC_LOOP); 4905 OPCODE(CLC); 4906 OPCODE(CLC_LOOP); 4907 OPCODE(STPCPY); 4908 OPCODE(STRCMP); 4909 OPCODE(SEARCH_STRING); 4910 OPCODE(IPM); 4911 OPCODE(MEMBARRIER); 4912 OPCODE(TBEGIN); 4913 OPCODE(TBEGIN_NOFLOAT); 4914 OPCODE(TEND); 4915 OPCODE(BYTE_MASK); 4916 OPCODE(ROTATE_MASK); 4917 OPCODE(REPLICATE); 4918 OPCODE(JOIN_DWORDS); 4919 OPCODE(SPLAT); 4920 OPCODE(MERGE_HIGH); 4921 OPCODE(MERGE_LOW); 4922 OPCODE(SHL_DOUBLE); 4923 OPCODE(PERMUTE_DWORDS); 4924 OPCODE(PERMUTE); 4925 OPCODE(PACK); 4926 OPCODE(PACKS_CC); 4927 OPCODE(PACKLS_CC); 4928 OPCODE(UNPACK_HIGH); 4929 OPCODE(UNPACKL_HIGH); 4930 OPCODE(UNPACK_LOW); 4931 OPCODE(UNPACKL_LOW); 4932 OPCODE(VSHL_BY_SCALAR); 4933 OPCODE(VSRL_BY_SCALAR); 4934 OPCODE(VSRA_BY_SCALAR); 4935 OPCODE(VSUM); 4936 OPCODE(VICMPE); 4937 OPCODE(VICMPH); 4938 OPCODE(VICMPHL); 4939 OPCODE(VICMPES); 4940 OPCODE(VICMPHS); 4941 OPCODE(VICMPHLS); 4942 OPCODE(VFCMPE); 4943 OPCODE(VFCMPH); 4944 OPCODE(VFCMPHE); 4945 OPCODE(VFCMPES); 4946 OPCODE(VFCMPHS); 4947 OPCODE(VFCMPHES); 4948 OPCODE(VFTCI); 4949 OPCODE(VEXTEND); 4950 OPCODE(VROUND); 4951 OPCODE(VTM); 4952 OPCODE(VFAE_CC); 4953 OPCODE(VFAEZ_CC); 4954 OPCODE(VFEE_CC); 4955 OPCODE(VFEEZ_CC); 4956 OPCODE(VFENE_CC); 4957 OPCODE(VFENEZ_CC); 4958 OPCODE(VISTR_CC); 4959 OPCODE(VSTRC_CC); 4960 OPCODE(VSTRCZ_CC); 4961 OPCODE(TDC); 4962 OPCODE(ATOMIC_SWAPW); 4963 OPCODE(ATOMIC_LOADW_ADD); 4964 OPCODE(ATOMIC_LOADW_SUB); 4965 OPCODE(ATOMIC_LOADW_AND); 4966 OPCODE(ATOMIC_LOADW_OR); 4967 OPCODE(ATOMIC_LOADW_XOR); 4968 OPCODE(ATOMIC_LOADW_NAND); 4969 OPCODE(ATOMIC_LOADW_MIN); 4970 OPCODE(ATOMIC_LOADW_MAX); 4971 OPCODE(ATOMIC_LOADW_UMIN); 4972 OPCODE(ATOMIC_LOADW_UMAX); 4973 OPCODE(ATOMIC_CMP_SWAPW); 4974 OPCODE(ATOMIC_LOAD_128); 4975 OPCODE(ATOMIC_STORE_128); 4976 OPCODE(ATOMIC_CMP_SWAP_128); 4977 OPCODE(LRV); 4978 OPCODE(STRV); 4979 OPCODE(PREFETCH); 4980 } 4981 return nullptr; 4982 #undef OPCODE 4983 } 4984 4985 // Return true if VT is a vector whose elements are a whole number of bytes 4986 // in width. Also check for presence of vector support. 4987 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 4988 if (!Subtarget.hasVector()) 4989 return false; 4990 4991 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 4992 } 4993 4994 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4995 // producing a result of type ResVT. Op is a possibly bitcast version 4996 // of the input vector and Index is the index (based on type VecVT) that 4997 // should be extracted. Return the new extraction if a simplification 4998 // was possible or if Force is true. 4999 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5000 EVT VecVT, SDValue Op, 5001 unsigned Index, 5002 DAGCombinerInfo &DCI, 5003 bool Force) const { 5004 SelectionDAG &DAG = DCI.DAG; 5005 5006 // The number of bytes being extracted. 5007 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5008 5009 for (;;) { 5010 unsigned Opcode = Op.getOpcode(); 5011 if (Opcode == ISD::BITCAST) 5012 // Look through bitcasts. 5013 Op = Op.getOperand(0); 5014 else if (Opcode == ISD::VECTOR_SHUFFLE && 5015 canTreatAsByteVector(Op.getValueType())) { 5016 // Get a VPERM-like permute mask and see whether the bytes covered 5017 // by the extracted element are a contiguous sequence from one 5018 // source operand. 5019 SmallVector<int, SystemZ::VectorBytes> Bytes; 5020 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 5021 int First; 5022 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5023 BytesPerElement, First)) 5024 break; 5025 if (First < 0) 5026 return DAG.getUNDEF(ResVT); 5027 // Make sure the contiguous sequence starts at a multiple of the 5028 // original element size. 5029 unsigned Byte = unsigned(First) % Bytes.size(); 5030 if (Byte % BytesPerElement != 0) 5031 break; 5032 // We can get the extracted value directly from an input. 5033 Index = Byte / BytesPerElement; 5034 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5035 Force = true; 5036 } else if (Opcode == ISD::BUILD_VECTOR && 5037 canTreatAsByteVector(Op.getValueType())) { 5038 // We can only optimize this case if the BUILD_VECTOR elements are 5039 // at least as wide as the extracted value. 5040 EVT OpVT = Op.getValueType(); 5041 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5042 if (OpBytesPerElement < BytesPerElement) 5043 break; 5044 // Make sure that the least-significant bit of the extracted value 5045 // is the least significant bit of an input. 5046 unsigned End = (Index + 1) * BytesPerElement; 5047 if (End % OpBytesPerElement != 0) 5048 break; 5049 // We're extracting the low part of one operand of the BUILD_VECTOR. 5050 Op = Op.getOperand(End / OpBytesPerElement - 1); 5051 if (!Op.getValueType().isInteger()) { 5052 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5053 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5054 DCI.AddToWorklist(Op.getNode()); 5055 } 5056 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5057 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5058 if (VT != ResVT) { 5059 DCI.AddToWorklist(Op.getNode()); 5060 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5061 } 5062 return Op; 5063 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5064 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5065 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5066 canTreatAsByteVector(Op.getValueType()) && 5067 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5068 // Make sure that only the unextended bits are significant. 5069 EVT ExtVT = Op.getValueType(); 5070 EVT OpVT = Op.getOperand(0).getValueType(); 5071 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5072 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5073 unsigned Byte = Index * BytesPerElement; 5074 unsigned SubByte = Byte % ExtBytesPerElement; 5075 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5076 if (SubByte < MinSubByte || 5077 SubByte + BytesPerElement > ExtBytesPerElement) 5078 break; 5079 // Get the byte offset of the unextended element 5080 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5081 // ...then add the byte offset relative to that element. 5082 Byte += SubByte - MinSubByte; 5083 if (Byte % BytesPerElement != 0) 5084 break; 5085 Op = Op.getOperand(0); 5086 Index = Byte / BytesPerElement; 5087 Force = true; 5088 } else 5089 break; 5090 } 5091 if (Force) { 5092 if (Op.getValueType() != VecVT) { 5093 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5094 DCI.AddToWorklist(Op.getNode()); 5095 } 5096 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5097 DAG.getConstant(Index, DL, MVT::i32)); 5098 } 5099 return SDValue(); 5100 } 5101 5102 // Optimize vector operations in scalar value Op on the basis that Op 5103 // is truncated to TruncVT. 5104 SDValue SystemZTargetLowering::combineTruncateExtract( 5105 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5106 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5107 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5108 // of type TruncVT. 5109 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5110 TruncVT.getSizeInBits() % 8 == 0) { 5111 SDValue Vec = Op.getOperand(0); 5112 EVT VecVT = Vec.getValueType(); 5113 if (canTreatAsByteVector(VecVT)) { 5114 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5115 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5116 unsigned TruncBytes = TruncVT.getStoreSize(); 5117 if (BytesPerElement % TruncBytes == 0) { 5118 // Calculate the value of Y' in the above description. We are 5119 // splitting the original elements into Scale equal-sized pieces 5120 // and for truncation purposes want the last (least-significant) 5121 // of these pieces for IndexN. This is easiest to do by calculating 5122 // the start index of the following element and then subtracting 1. 5123 unsigned Scale = BytesPerElement / TruncBytes; 5124 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5125 5126 // Defer the creation of the bitcast from X to combineExtract, 5127 // which might be able to optimize the extraction. 5128 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5129 VecVT.getStoreSize() / TruncBytes); 5130 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5131 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5132 } 5133 } 5134 } 5135 } 5136 return SDValue(); 5137 } 5138 5139 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5140 SDNode *N, DAGCombinerInfo &DCI) const { 5141 // Convert (sext (ashr (shl X, C1), C2)) to 5142 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5143 // cheap as narrower ones. 5144 SelectionDAG &DAG = DCI.DAG; 5145 SDValue N0 = N->getOperand(0); 5146 EVT VT = N->getValueType(0); 5147 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5148 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5149 SDValue Inner = N0.getOperand(0); 5150 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5151 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5152 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5153 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5154 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5155 EVT ShiftVT = N0.getOperand(1).getValueType(); 5156 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5157 Inner.getOperand(0)); 5158 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5159 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5160 ShiftVT)); 5161 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5162 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5163 } 5164 } 5165 } 5166 return SDValue(); 5167 } 5168 5169 SDValue SystemZTargetLowering::combineMERGE( 5170 SDNode *N, DAGCombinerInfo &DCI) const { 5171 SelectionDAG &DAG = DCI.DAG; 5172 unsigned Opcode = N->getOpcode(); 5173 SDValue Op0 = N->getOperand(0); 5174 SDValue Op1 = N->getOperand(1); 5175 if (Op0.getOpcode() == ISD::BITCAST) 5176 Op0 = Op0.getOperand(0); 5177 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 5178 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 5179 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5180 // for v4f32. 5181 if (Op1 == N->getOperand(0)) 5182 return Op1; 5183 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5184 EVT VT = Op1.getValueType(); 5185 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5186 if (ElemBytes <= 4) { 5187 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5188 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5189 EVT InVT = VT.changeVectorElementTypeToInteger(); 5190 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5191 SystemZ::VectorBytes / ElemBytes / 2); 5192 if (VT != InVT) { 5193 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5194 DCI.AddToWorklist(Op1.getNode()); 5195 } 5196 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5197 DCI.AddToWorklist(Op.getNode()); 5198 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5199 } 5200 } 5201 return SDValue(); 5202 } 5203 5204 SDValue SystemZTargetLowering::combineSTORE( 5205 SDNode *N, DAGCombinerInfo &DCI) const { 5206 SelectionDAG &DAG = DCI.DAG; 5207 auto *SN = cast<StoreSDNode>(N); 5208 auto &Op1 = N->getOperand(1); 5209 EVT MemVT = SN->getMemoryVT(); 5210 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5211 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5212 // If X has wider elements then convert it to: 5213 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5214 if (MemVT.isInteger()) { 5215 if (SDValue Value = 5216 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5217 DCI.AddToWorklist(Value.getNode()); 5218 5219 // Rewrite the store with the new form of stored value. 5220 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5221 SN->getBasePtr(), SN->getMemoryVT(), 5222 SN->getMemOperand()); 5223 } 5224 } 5225 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5226 // See comment in combineBSWAP about volatile accesses. 5227 if (!SN->isVolatile() && 5228 Op1.getOpcode() == ISD::BSWAP && 5229 Op1.getNode()->hasOneUse() && 5230 (Op1.getValueType() == MVT::i16 || 5231 Op1.getValueType() == MVT::i32 || 5232 Op1.getValueType() == MVT::i64)) { 5233 5234 SDValue BSwapOp = Op1.getOperand(0); 5235 5236 if (BSwapOp.getValueType() == MVT::i16) 5237 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5238 5239 SDValue Ops[] = { 5240 N->getOperand(0), BSwapOp, N->getOperand(2), 5241 DAG.getValueType(Op1.getValueType()) 5242 }; 5243 5244 return 5245 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5246 Ops, MemVT, SN->getMemOperand()); 5247 } 5248 return SDValue(); 5249 } 5250 5251 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5252 SDNode *N, DAGCombinerInfo &DCI) const { 5253 5254 if (!Subtarget.hasVector()) 5255 return SDValue(); 5256 5257 // Try to simplify a vector extraction. 5258 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5259 SDValue Op0 = N->getOperand(0); 5260 EVT VecVT = Op0.getValueType(); 5261 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5262 IndexN->getZExtValue(), DCI, false); 5263 } 5264 return SDValue(); 5265 } 5266 5267 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5268 SDNode *N, DAGCombinerInfo &DCI) const { 5269 SelectionDAG &DAG = DCI.DAG; 5270 // (join_dwords X, X) == (replicate X) 5271 if (N->getOperand(0) == N->getOperand(1)) 5272 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5273 N->getOperand(0)); 5274 return SDValue(); 5275 } 5276 5277 SDValue SystemZTargetLowering::combineFP_ROUND( 5278 SDNode *N, DAGCombinerInfo &DCI) const { 5279 // (fpround (extract_vector_elt X 0)) 5280 // (fpround (extract_vector_elt X 1)) -> 5281 // (extract_vector_elt (VROUND X) 0) 5282 // (extract_vector_elt (VROUND X) 1) 5283 // 5284 // This is a special case since the target doesn't really support v2f32s. 5285 SelectionDAG &DAG = DCI.DAG; 5286 SDValue Op0 = N->getOperand(0); 5287 if (N->getValueType(0) == MVT::f32 && 5288 Op0.hasOneUse() && 5289 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5290 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5291 Op0.getOperand(1).getOpcode() == ISD::Constant && 5292 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5293 SDValue Vec = Op0.getOperand(0); 5294 for (auto *U : Vec->uses()) { 5295 if (U != Op0.getNode() && 5296 U->hasOneUse() && 5297 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5298 U->getOperand(0) == Vec && 5299 U->getOperand(1).getOpcode() == ISD::Constant && 5300 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5301 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5302 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5303 OtherRound.getOperand(0) == SDValue(U, 0) && 5304 OtherRound.getValueType() == MVT::f32) { 5305 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5306 MVT::v4f32, Vec); 5307 DCI.AddToWorklist(VRound.getNode()); 5308 SDValue Extract1 = 5309 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5310 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5311 DCI.AddToWorklist(Extract1.getNode()); 5312 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5313 SDValue Extract0 = 5314 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5315 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5316 return Extract0; 5317 } 5318 } 5319 } 5320 } 5321 return SDValue(); 5322 } 5323 5324 SDValue SystemZTargetLowering::combineBSWAP( 5325 SDNode *N, DAGCombinerInfo &DCI) const { 5326 SelectionDAG &DAG = DCI.DAG; 5327 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5328 // These loads are allowed to access memory multiple times, and so we must check 5329 // that the loads are not volatile before performing the combine. 5330 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5331 N->getOperand(0).hasOneUse() && 5332 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5333 N->getValueType(0) == MVT::i64) && 5334 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 5335 SDValue Load = N->getOperand(0); 5336 LoadSDNode *LD = cast<LoadSDNode>(Load); 5337 5338 // Create the byte-swapping load. 5339 SDValue Ops[] = { 5340 LD->getChain(), // Chain 5341 LD->getBasePtr(), // Ptr 5342 DAG.getValueType(N->getValueType(0)) // VT 5343 }; 5344 SDValue BSLoad = 5345 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5346 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5347 MVT::i64 : MVT::i32, MVT::Other), 5348 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5349 5350 // If this is an i16 load, insert the truncate. 5351 SDValue ResVal = BSLoad; 5352 if (N->getValueType(0) == MVT::i16) 5353 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5354 5355 // First, combine the bswap away. This makes the value produced by the 5356 // load dead. 5357 DCI.CombineTo(N, ResVal); 5358 5359 // Next, combine the load away, we give it a bogus result value but a real 5360 // chain result. The result value is dead because the bswap is dead. 5361 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5362 5363 // Return N so it doesn't get rechecked! 5364 return SDValue(N, 0); 5365 } 5366 return SDValue(); 5367 } 5368 5369 SDValue SystemZTargetLowering::combineSHIFTROT( 5370 SDNode *N, DAGCombinerInfo &DCI) const { 5371 5372 SelectionDAG &DAG = DCI.DAG; 5373 5374 // Shift/rotate instructions only use the last 6 bits of the second operand 5375 // register. If the second operand is the result of an AND with an immediate 5376 // value that has its last 6 bits set, we can safely remove the AND operation. 5377 // 5378 // If the AND operation doesn't have the last 6 bits set, we can't remove it 5379 // entirely, but we can still truncate it to a 16-bit value. This prevents 5380 // us from ending up with a NILL with a signed operand, which will cause the 5381 // instruction printer to abort. 5382 SDValue N1 = N->getOperand(1); 5383 if (N1.getOpcode() == ISD::AND) { 5384 SDValue AndMaskOp = N1->getOperand(1); 5385 auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp); 5386 5387 // The AND mask is constant 5388 if (AndMask) { 5389 auto AmtVal = AndMask->getZExtValue(); 5390 5391 // Bottom 6 bits are set 5392 if ((AmtVal & 0x3f) == 0x3f) { 5393 SDValue AndOp = N1->getOperand(0); 5394 5395 // This is the only use, so remove the node 5396 if (N1.hasOneUse()) { 5397 // Combine the AND away 5398 DCI.CombineTo(N1.getNode(), AndOp); 5399 5400 // Return N so it isn't rechecked 5401 return SDValue(N, 0); 5402 5403 // The node will be reused, so create a new node for this one use 5404 } else { 5405 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5406 N->getValueType(0), N->getOperand(0), 5407 AndOp); 5408 DCI.AddToWorklist(Replace.getNode()); 5409 5410 return Replace; 5411 } 5412 5413 // We can't remove the AND, but we can use NILL here (normally we would 5414 // use NILF). Only keep the last 16 bits of the mask. The actual 5415 // transformation will be handled by .td definitions. 5416 } else if (AmtVal >> 16 != 0) { 5417 SDValue AndOp = N1->getOperand(0); 5418 5419 auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, 5420 SDLoc(AndMaskOp), 5421 AndMaskOp.getValueType()); 5422 5423 auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), 5424 AndOp, NewMask); 5425 5426 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5427 N->getValueType(0), N->getOperand(0), 5428 NewAnd); 5429 DCI.AddToWorklist(Replace.getNode()); 5430 5431 return Replace; 5432 } 5433 } 5434 } 5435 5436 return SDValue(); 5437 } 5438 5439 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5440 DAGCombinerInfo &DCI) const { 5441 switch(N->getOpcode()) { 5442 default: break; 5443 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5444 case SystemZISD::MERGE_HIGH: 5445 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5446 case ISD::STORE: return combineSTORE(N, DCI); 5447 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5448 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5449 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5450 case ISD::BSWAP: return combineBSWAP(N, DCI); 5451 case ISD::SHL: 5452 case ISD::SRA: 5453 case ISD::SRL: 5454 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5455 } 5456 5457 return SDValue(); 5458 } 5459 5460 //===----------------------------------------------------------------------===// 5461 // Custom insertion 5462 //===----------------------------------------------------------------------===// 5463 5464 // Create a new basic block after MBB. 5465 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5466 MachineFunction &MF = *MBB->getParent(); 5467 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5468 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5469 return NewMBB; 5470 } 5471 5472 // Split MBB after MI and return the new block (the one that contains 5473 // instructions after MI). 5474 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5475 MachineBasicBlock *MBB) { 5476 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5477 NewMBB->splice(NewMBB->begin(), MBB, 5478 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5479 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5480 return NewMBB; 5481 } 5482 5483 // Split MBB before MI and return the new block (the one that contains MI). 5484 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 5485 MachineBasicBlock *MBB) { 5486 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5487 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5488 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5489 return NewMBB; 5490 } 5491 5492 // Force base value Base into a register before MI. Return the register. 5493 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 5494 const SystemZInstrInfo *TII) { 5495 if (Base.isReg()) 5496 return Base.getReg(); 5497 5498 MachineBasicBlock *MBB = MI.getParent(); 5499 MachineFunction &MF = *MBB->getParent(); 5500 MachineRegisterInfo &MRI = MF.getRegInfo(); 5501 5502 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5503 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 5504 .add(Base) 5505 .addImm(0) 5506 .addReg(0); 5507 return Reg; 5508 } 5509 5510 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5511 MachineBasicBlock * 5512 SystemZTargetLowering::emitSelect(MachineInstr &MI, 5513 MachineBasicBlock *MBB, 5514 unsigned LOCROpcode) const { 5515 const SystemZInstrInfo *TII = 5516 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5517 5518 unsigned DestReg = MI.getOperand(0).getReg(); 5519 unsigned TrueReg = MI.getOperand(1).getReg(); 5520 unsigned FalseReg = MI.getOperand(2).getReg(); 5521 unsigned CCValid = MI.getOperand(3).getImm(); 5522 unsigned CCMask = MI.getOperand(4).getImm(); 5523 DebugLoc DL = MI.getDebugLoc(); 5524 5525 // Use LOCROpcode if possible. 5526 if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) { 5527 BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg) 5528 .addReg(FalseReg).addReg(TrueReg) 5529 .addImm(CCValid).addImm(CCMask); 5530 MI.eraseFromParent(); 5531 return MBB; 5532 } 5533 5534 MachineBasicBlock *StartMBB = MBB; 5535 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5536 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5537 5538 // StartMBB: 5539 // BRC CCMask, JoinMBB 5540 // # fallthrough to FalseMBB 5541 MBB = StartMBB; 5542 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5543 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5544 MBB->addSuccessor(JoinMBB); 5545 MBB->addSuccessor(FalseMBB); 5546 5547 // FalseMBB: 5548 // # fallthrough to JoinMBB 5549 MBB = FalseMBB; 5550 MBB->addSuccessor(JoinMBB); 5551 5552 // JoinMBB: 5553 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5554 // ... 5555 MBB = JoinMBB; 5556 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5557 .addReg(TrueReg).addMBB(StartMBB) 5558 .addReg(FalseReg).addMBB(FalseMBB); 5559 5560 MI.eraseFromParent(); 5561 return JoinMBB; 5562 } 5563 5564 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5565 // StoreOpcode is the store to use and Invert says whether the store should 5566 // happen when the condition is false rather than true. If a STORE ON 5567 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5568 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 5569 MachineBasicBlock *MBB, 5570 unsigned StoreOpcode, 5571 unsigned STOCOpcode, 5572 bool Invert) const { 5573 const SystemZInstrInfo *TII = 5574 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5575 5576 unsigned SrcReg = MI.getOperand(0).getReg(); 5577 MachineOperand Base = MI.getOperand(1); 5578 int64_t Disp = MI.getOperand(2).getImm(); 5579 unsigned IndexReg = MI.getOperand(3).getReg(); 5580 unsigned CCValid = MI.getOperand(4).getImm(); 5581 unsigned CCMask = MI.getOperand(5).getImm(); 5582 DebugLoc DL = MI.getDebugLoc(); 5583 5584 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5585 5586 // Use STOCOpcode if possible. We could use different store patterns in 5587 // order to avoid matching the index register, but the performance trade-offs 5588 // might be more complicated in that case. 5589 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5590 if (Invert) 5591 CCMask ^= CCValid; 5592 5593 // ISel pattern matching also adds a load memory operand of the same 5594 // address, so take special care to find the storing memory operand. 5595 MachineMemOperand *MMO = nullptr; 5596 for (auto *I : MI.memoperands()) 5597 if (I->isStore()) { 5598 MMO = I; 5599 break; 5600 } 5601 5602 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5603 .addReg(SrcReg) 5604 .add(Base) 5605 .addImm(Disp) 5606 .addImm(CCValid) 5607 .addImm(CCMask) 5608 .addMemOperand(MMO); 5609 5610 MI.eraseFromParent(); 5611 return MBB; 5612 } 5613 5614 // Get the condition needed to branch around the store. 5615 if (!Invert) 5616 CCMask ^= CCValid; 5617 5618 MachineBasicBlock *StartMBB = MBB; 5619 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5620 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5621 5622 // StartMBB: 5623 // BRC CCMask, JoinMBB 5624 // # fallthrough to FalseMBB 5625 MBB = StartMBB; 5626 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5627 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5628 MBB->addSuccessor(JoinMBB); 5629 MBB->addSuccessor(FalseMBB); 5630 5631 // FalseMBB: 5632 // store %SrcReg, %Disp(%Index,%Base) 5633 // # fallthrough to JoinMBB 5634 MBB = FalseMBB; 5635 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5636 .addReg(SrcReg) 5637 .add(Base) 5638 .addImm(Disp) 5639 .addReg(IndexReg); 5640 MBB->addSuccessor(JoinMBB); 5641 5642 MI.eraseFromParent(); 5643 return JoinMBB; 5644 } 5645 5646 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5647 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5648 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5649 // BitSize is the width of the field in bits, or 0 if this is a partword 5650 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5651 // is one of the operands. Invert says whether the field should be 5652 // inverted after performing BinOpcode (e.g. for NAND). 5653 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 5654 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 5655 unsigned BitSize, bool Invert) const { 5656 MachineFunction &MF = *MBB->getParent(); 5657 const SystemZInstrInfo *TII = 5658 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5659 MachineRegisterInfo &MRI = MF.getRegInfo(); 5660 bool IsSubWord = (BitSize < 32); 5661 5662 // Extract the operands. Base can be a register or a frame index. 5663 // Src2 can be a register or immediate. 5664 unsigned Dest = MI.getOperand(0).getReg(); 5665 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5666 int64_t Disp = MI.getOperand(2).getImm(); 5667 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 5668 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5669 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5670 DebugLoc DL = MI.getDebugLoc(); 5671 if (IsSubWord) 5672 BitSize = MI.getOperand(6).getImm(); 5673 5674 // Subword operations use 32-bit registers. 5675 const TargetRegisterClass *RC = (BitSize <= 32 ? 5676 &SystemZ::GR32BitRegClass : 5677 &SystemZ::GR64BitRegClass); 5678 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5679 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5680 5681 // Get the right opcodes for the displacement. 5682 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5683 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5684 assert(LOpcode && CSOpcode && "Displacement out of range"); 5685 5686 // Create virtual registers for temporary results. 5687 unsigned OrigVal = MRI.createVirtualRegister(RC); 5688 unsigned OldVal = MRI.createVirtualRegister(RC); 5689 unsigned NewVal = (BinOpcode || IsSubWord ? 5690 MRI.createVirtualRegister(RC) : Src2.getReg()); 5691 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5692 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5693 5694 // Insert a basic block for the main loop. 5695 MachineBasicBlock *StartMBB = MBB; 5696 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5697 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5698 5699 // StartMBB: 5700 // ... 5701 // %OrigVal = L Disp(%Base) 5702 // # fall through to LoopMMB 5703 MBB = StartMBB; 5704 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5705 MBB->addSuccessor(LoopMBB); 5706 5707 // LoopMBB: 5708 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5709 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5710 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5711 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5712 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5713 // JNE LoopMBB 5714 // # fall through to DoneMMB 5715 MBB = LoopMBB; 5716 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5717 .addReg(OrigVal).addMBB(StartMBB) 5718 .addReg(Dest).addMBB(LoopMBB); 5719 if (IsSubWord) 5720 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5721 .addReg(OldVal).addReg(BitShift).addImm(0); 5722 if (Invert) { 5723 // Perform the operation normally and then invert every bit of the field. 5724 unsigned Tmp = MRI.createVirtualRegister(RC); 5725 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 5726 if (BitSize <= 32) 5727 // XILF with the upper BitSize bits set. 5728 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5729 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5730 else { 5731 // Use LCGR and add -1 to the result, which is more compact than 5732 // an XILF, XILH pair. 5733 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5734 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5735 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5736 .addReg(Tmp2).addImm(-1); 5737 } 5738 } else if (BinOpcode) 5739 // A simply binary operation. 5740 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5741 .addReg(RotatedOldVal) 5742 .add(Src2); 5743 else if (IsSubWord) 5744 // Use RISBG to rotate Src2 into position and use it to replace the 5745 // field in RotatedOldVal. 5746 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5747 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5748 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5749 if (IsSubWord) 5750 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5751 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5752 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5753 .addReg(OldVal) 5754 .addReg(NewVal) 5755 .add(Base) 5756 .addImm(Disp); 5757 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5758 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5759 MBB->addSuccessor(LoopMBB); 5760 MBB->addSuccessor(DoneMBB); 5761 5762 MI.eraseFromParent(); 5763 return DoneMBB; 5764 } 5765 5766 // Implement EmitInstrWithCustomInserter for pseudo 5767 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5768 // instruction that should be used to compare the current field with the 5769 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5770 // for when the current field should be kept. BitSize is the width of 5771 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5772 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 5773 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 5774 unsigned KeepOldMask, unsigned BitSize) const { 5775 MachineFunction &MF = *MBB->getParent(); 5776 const SystemZInstrInfo *TII = 5777 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5778 MachineRegisterInfo &MRI = MF.getRegInfo(); 5779 bool IsSubWord = (BitSize < 32); 5780 5781 // Extract the operands. Base can be a register or a frame index. 5782 unsigned Dest = MI.getOperand(0).getReg(); 5783 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5784 int64_t Disp = MI.getOperand(2).getImm(); 5785 unsigned Src2 = MI.getOperand(3).getReg(); 5786 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5787 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5788 DebugLoc DL = MI.getDebugLoc(); 5789 if (IsSubWord) 5790 BitSize = MI.getOperand(6).getImm(); 5791 5792 // Subword operations use 32-bit registers. 5793 const TargetRegisterClass *RC = (BitSize <= 32 ? 5794 &SystemZ::GR32BitRegClass : 5795 &SystemZ::GR64BitRegClass); 5796 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5797 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5798 5799 // Get the right opcodes for the displacement. 5800 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5801 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5802 assert(LOpcode && CSOpcode && "Displacement out of range"); 5803 5804 // Create virtual registers for temporary results. 5805 unsigned OrigVal = MRI.createVirtualRegister(RC); 5806 unsigned OldVal = MRI.createVirtualRegister(RC); 5807 unsigned NewVal = MRI.createVirtualRegister(RC); 5808 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5809 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5810 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5811 5812 // Insert 3 basic blocks for the loop. 5813 MachineBasicBlock *StartMBB = MBB; 5814 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5815 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5816 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5817 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5818 5819 // StartMBB: 5820 // ... 5821 // %OrigVal = L Disp(%Base) 5822 // # fall through to LoopMMB 5823 MBB = StartMBB; 5824 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5825 MBB->addSuccessor(LoopMBB); 5826 5827 // LoopMBB: 5828 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5829 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5830 // CompareOpcode %RotatedOldVal, %Src2 5831 // BRC KeepOldMask, UpdateMBB 5832 MBB = LoopMBB; 5833 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5834 .addReg(OrigVal).addMBB(StartMBB) 5835 .addReg(Dest).addMBB(UpdateMBB); 5836 if (IsSubWord) 5837 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5838 .addReg(OldVal).addReg(BitShift).addImm(0); 5839 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5840 .addReg(RotatedOldVal).addReg(Src2); 5841 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5842 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5843 MBB->addSuccessor(UpdateMBB); 5844 MBB->addSuccessor(UseAltMBB); 5845 5846 // UseAltMBB: 5847 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5848 // # fall through to UpdateMMB 5849 MBB = UseAltMBB; 5850 if (IsSubWord) 5851 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5852 .addReg(RotatedOldVal).addReg(Src2) 5853 .addImm(32).addImm(31 + BitSize).addImm(0); 5854 MBB->addSuccessor(UpdateMBB); 5855 5856 // UpdateMBB: 5857 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5858 // [ %RotatedAltVal, UseAltMBB ] 5859 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5860 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5861 // JNE LoopMBB 5862 // # fall through to DoneMMB 5863 MBB = UpdateMBB; 5864 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5865 .addReg(RotatedOldVal).addMBB(LoopMBB) 5866 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5867 if (IsSubWord) 5868 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5869 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5870 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5871 .addReg(OldVal) 5872 .addReg(NewVal) 5873 .add(Base) 5874 .addImm(Disp); 5875 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5876 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5877 MBB->addSuccessor(LoopMBB); 5878 MBB->addSuccessor(DoneMBB); 5879 5880 MI.eraseFromParent(); 5881 return DoneMBB; 5882 } 5883 5884 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5885 // instruction MI. 5886 MachineBasicBlock * 5887 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 5888 MachineBasicBlock *MBB) const { 5889 5890 MachineFunction &MF = *MBB->getParent(); 5891 const SystemZInstrInfo *TII = 5892 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5893 MachineRegisterInfo &MRI = MF.getRegInfo(); 5894 5895 // Extract the operands. Base can be a register or a frame index. 5896 unsigned Dest = MI.getOperand(0).getReg(); 5897 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5898 int64_t Disp = MI.getOperand(2).getImm(); 5899 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 5900 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 5901 unsigned BitShift = MI.getOperand(5).getReg(); 5902 unsigned NegBitShift = MI.getOperand(6).getReg(); 5903 int64_t BitSize = MI.getOperand(7).getImm(); 5904 DebugLoc DL = MI.getDebugLoc(); 5905 5906 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5907 5908 // Get the right opcodes for the displacement. 5909 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5910 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5911 assert(LOpcode && CSOpcode && "Displacement out of range"); 5912 5913 // Create virtual registers for temporary results. 5914 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5915 unsigned OldVal = MRI.createVirtualRegister(RC); 5916 unsigned CmpVal = MRI.createVirtualRegister(RC); 5917 unsigned SwapVal = MRI.createVirtualRegister(RC); 5918 unsigned StoreVal = MRI.createVirtualRegister(RC); 5919 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5920 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5921 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5922 5923 // Insert 2 basic blocks for the loop. 5924 MachineBasicBlock *StartMBB = MBB; 5925 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5926 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5927 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5928 5929 // StartMBB: 5930 // ... 5931 // %OrigOldVal = L Disp(%Base) 5932 // # fall through to LoopMMB 5933 MBB = StartMBB; 5934 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5935 .add(Base) 5936 .addImm(Disp) 5937 .addReg(0); 5938 MBB->addSuccessor(LoopMBB); 5939 5940 // LoopMBB: 5941 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5942 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5943 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5944 // %Dest = RLL %OldVal, BitSize(%BitShift) 5945 // ^^ The low BitSize bits contain the field 5946 // of interest. 5947 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5948 // ^^ Replace the upper 32-BitSize bits of the 5949 // comparison value with those that we loaded, 5950 // so that we can use a full word comparison. 5951 // CR %Dest, %RetryCmpVal 5952 // JNE DoneMBB 5953 // # Fall through to SetMBB 5954 MBB = LoopMBB; 5955 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5956 .addReg(OrigOldVal).addMBB(StartMBB) 5957 .addReg(RetryOldVal).addMBB(SetMBB); 5958 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5959 .addReg(OrigCmpVal).addMBB(StartMBB) 5960 .addReg(RetryCmpVal).addMBB(SetMBB); 5961 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5962 .addReg(OrigSwapVal).addMBB(StartMBB) 5963 .addReg(RetrySwapVal).addMBB(SetMBB); 5964 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5965 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5966 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5967 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5968 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5969 .addReg(Dest).addReg(RetryCmpVal); 5970 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5971 .addImm(SystemZ::CCMASK_ICMP) 5972 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5973 MBB->addSuccessor(DoneMBB); 5974 MBB->addSuccessor(SetMBB); 5975 5976 // SetMBB: 5977 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5978 // ^^ Replace the upper 32-BitSize bits of the new 5979 // value with those that we loaded. 5980 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5981 // ^^ Rotate the new field to its proper position. 5982 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5983 // JNE LoopMBB 5984 // # fall through to ExitMMB 5985 MBB = SetMBB; 5986 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5987 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5988 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5989 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5990 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5991 .addReg(OldVal) 5992 .addReg(StoreVal) 5993 .add(Base) 5994 .addImm(Disp); 5995 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5996 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5997 MBB->addSuccessor(LoopMBB); 5998 MBB->addSuccessor(DoneMBB); 5999 6000 MI.eraseFromParent(); 6001 return DoneMBB; 6002 } 6003 6004 // Emit a move from two GR64s to a GR128. 6005 MachineBasicBlock * 6006 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6007 MachineBasicBlock *MBB) const { 6008 MachineFunction &MF = *MBB->getParent(); 6009 const SystemZInstrInfo *TII = 6010 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6011 MachineRegisterInfo &MRI = MF.getRegInfo(); 6012 DebugLoc DL = MI.getDebugLoc(); 6013 6014 unsigned Dest = MI.getOperand(0).getReg(); 6015 unsigned Hi = MI.getOperand(1).getReg(); 6016 unsigned Lo = MI.getOperand(2).getReg(); 6017 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6018 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6019 6020 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6021 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6022 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6023 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6024 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6025 6026 MI.eraseFromParent(); 6027 return MBB; 6028 } 6029 6030 // Emit an extension from a GR64 to a GR128. ClearEven is true 6031 // if the high register of the GR128 value must be cleared or false if 6032 // it's "don't care". 6033 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6034 MachineBasicBlock *MBB, 6035 bool ClearEven) const { 6036 MachineFunction &MF = *MBB->getParent(); 6037 const SystemZInstrInfo *TII = 6038 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6039 MachineRegisterInfo &MRI = MF.getRegInfo(); 6040 DebugLoc DL = MI.getDebugLoc(); 6041 6042 unsigned Dest = MI.getOperand(0).getReg(); 6043 unsigned Src = MI.getOperand(1).getReg(); 6044 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6045 6046 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6047 if (ClearEven) { 6048 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6049 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6050 6051 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6052 .addImm(0); 6053 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6054 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6055 In128 = NewIn128; 6056 } 6057 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6058 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6059 6060 MI.eraseFromParent(); 6061 return MBB; 6062 } 6063 6064 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6065 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6066 MachineFunction &MF = *MBB->getParent(); 6067 const SystemZInstrInfo *TII = 6068 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6069 MachineRegisterInfo &MRI = MF.getRegInfo(); 6070 DebugLoc DL = MI.getDebugLoc(); 6071 6072 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6073 uint64_t DestDisp = MI.getOperand(1).getImm(); 6074 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6075 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6076 uint64_t Length = MI.getOperand(4).getImm(); 6077 6078 // When generating more than one CLC, all but the last will need to 6079 // branch to the end when a difference is found. 6080 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6081 splitBlockAfter(MI, MBB) : nullptr); 6082 6083 // Check for the loop form, in which operand 5 is the trip count. 6084 if (MI.getNumExplicitOperands() > 5) { 6085 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6086 6087 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6088 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6089 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6090 forceReg(MI, DestBase, TII)); 6091 6092 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6093 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6094 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6095 MRI.createVirtualRegister(RC)); 6096 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6097 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6098 MRI.createVirtualRegister(RC)); 6099 6100 RC = &SystemZ::GR64BitRegClass; 6101 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6102 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6103 6104 MachineBasicBlock *StartMBB = MBB; 6105 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6106 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6107 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6108 6109 // StartMBB: 6110 // # fall through to LoopMMB 6111 MBB->addSuccessor(LoopMBB); 6112 6113 // LoopMBB: 6114 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6115 // [ %NextDestReg, NextMBB ] 6116 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6117 // [ %NextSrcReg, NextMBB ] 6118 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6119 // [ %NextCountReg, NextMBB ] 6120 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6121 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6122 // ( JLH EndMBB ) 6123 // 6124 // The prefetch is used only for MVC. The JLH is used only for CLC. 6125 MBB = LoopMBB; 6126 6127 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6128 .addReg(StartDestReg).addMBB(StartMBB) 6129 .addReg(NextDestReg).addMBB(NextMBB); 6130 if (!HaveSingleBase) 6131 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6132 .addReg(StartSrcReg).addMBB(StartMBB) 6133 .addReg(NextSrcReg).addMBB(NextMBB); 6134 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6135 .addReg(StartCountReg).addMBB(StartMBB) 6136 .addReg(NextCountReg).addMBB(NextMBB); 6137 if (Opcode == SystemZ::MVC) 6138 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6139 .addImm(SystemZ::PFD_WRITE) 6140 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6141 BuildMI(MBB, DL, TII->get(Opcode)) 6142 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6143 .addReg(ThisSrcReg).addImm(SrcDisp); 6144 if (EndMBB) { 6145 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6146 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6147 .addMBB(EndMBB); 6148 MBB->addSuccessor(EndMBB); 6149 MBB->addSuccessor(NextMBB); 6150 } 6151 6152 // NextMBB: 6153 // %NextDestReg = LA 256(%ThisDestReg) 6154 // %NextSrcReg = LA 256(%ThisSrcReg) 6155 // %NextCountReg = AGHI %ThisCountReg, -1 6156 // CGHI %NextCountReg, 0 6157 // JLH LoopMBB 6158 // # fall through to DoneMMB 6159 // 6160 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6161 MBB = NextMBB; 6162 6163 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6164 .addReg(ThisDestReg).addImm(256).addReg(0); 6165 if (!HaveSingleBase) 6166 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6167 .addReg(ThisSrcReg).addImm(256).addReg(0); 6168 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 6169 .addReg(ThisCountReg).addImm(-1); 6170 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 6171 .addReg(NextCountReg).addImm(0); 6172 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6173 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6174 .addMBB(LoopMBB); 6175 MBB->addSuccessor(LoopMBB); 6176 MBB->addSuccessor(DoneMBB); 6177 6178 DestBase = MachineOperand::CreateReg(NextDestReg, false); 6179 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 6180 Length &= 255; 6181 MBB = DoneMBB; 6182 } 6183 // Handle any remaining bytes with straight-line code. 6184 while (Length > 0) { 6185 uint64_t ThisLength = std::min(Length, uint64_t(256)); 6186 // The previous iteration might have created out-of-range displacements. 6187 // Apply them using LAY if so. 6188 if (!isUInt<12>(DestDisp)) { 6189 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6190 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6191 .add(DestBase) 6192 .addImm(DestDisp) 6193 .addReg(0); 6194 DestBase = MachineOperand::CreateReg(Reg, false); 6195 DestDisp = 0; 6196 } 6197 if (!isUInt<12>(SrcDisp)) { 6198 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6199 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6200 .add(SrcBase) 6201 .addImm(SrcDisp) 6202 .addReg(0); 6203 SrcBase = MachineOperand::CreateReg(Reg, false); 6204 SrcDisp = 0; 6205 } 6206 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 6207 .add(DestBase) 6208 .addImm(DestDisp) 6209 .addImm(ThisLength) 6210 .add(SrcBase) 6211 .addImm(SrcDisp) 6212 ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 6213 DestDisp += ThisLength; 6214 SrcDisp += ThisLength; 6215 Length -= ThisLength; 6216 // If there's another CLC to go, branch to the end if a difference 6217 // was found. 6218 if (EndMBB && Length > 0) { 6219 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 6220 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6221 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6222 .addMBB(EndMBB); 6223 MBB->addSuccessor(EndMBB); 6224 MBB->addSuccessor(NextMBB); 6225 MBB = NextMBB; 6226 } 6227 } 6228 if (EndMBB) { 6229 MBB->addSuccessor(EndMBB); 6230 MBB = EndMBB; 6231 MBB->addLiveIn(SystemZ::CC); 6232 } 6233 6234 MI.eraseFromParent(); 6235 return MBB; 6236 } 6237 6238 // Decompose string pseudo-instruction MI into a loop that continually performs 6239 // Opcode until CC != 3. 6240 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 6241 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6242 MachineFunction &MF = *MBB->getParent(); 6243 const SystemZInstrInfo *TII = 6244 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6245 MachineRegisterInfo &MRI = MF.getRegInfo(); 6246 DebugLoc DL = MI.getDebugLoc(); 6247 6248 uint64_t End1Reg = MI.getOperand(0).getReg(); 6249 uint64_t Start1Reg = MI.getOperand(1).getReg(); 6250 uint64_t Start2Reg = MI.getOperand(2).getReg(); 6251 uint64_t CharReg = MI.getOperand(3).getReg(); 6252 6253 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 6254 uint64_t This1Reg = MRI.createVirtualRegister(RC); 6255 uint64_t This2Reg = MRI.createVirtualRegister(RC); 6256 uint64_t End2Reg = MRI.createVirtualRegister(RC); 6257 6258 MachineBasicBlock *StartMBB = MBB; 6259 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6260 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6261 6262 // StartMBB: 6263 // # fall through to LoopMMB 6264 MBB->addSuccessor(LoopMBB); 6265 6266 // LoopMBB: 6267 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 6268 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 6269 // R0L = %CharReg 6270 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 6271 // JO LoopMBB 6272 // # fall through to DoneMMB 6273 // 6274 // The load of R0L can be hoisted by post-RA LICM. 6275 MBB = LoopMBB; 6276 6277 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 6278 .addReg(Start1Reg).addMBB(StartMBB) 6279 .addReg(End1Reg).addMBB(LoopMBB); 6280 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 6281 .addReg(Start2Reg).addMBB(StartMBB) 6282 .addReg(End2Reg).addMBB(LoopMBB); 6283 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 6284 BuildMI(MBB, DL, TII->get(Opcode)) 6285 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 6286 .addReg(This1Reg).addReg(This2Reg); 6287 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6288 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 6289 MBB->addSuccessor(LoopMBB); 6290 MBB->addSuccessor(DoneMBB); 6291 6292 DoneMBB->addLiveIn(SystemZ::CC); 6293 6294 MI.eraseFromParent(); 6295 return DoneMBB; 6296 } 6297 6298 // Update TBEGIN instruction with final opcode and register clobbers. 6299 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 6300 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 6301 bool NoFloat) const { 6302 MachineFunction &MF = *MBB->getParent(); 6303 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6304 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 6305 6306 // Update opcode. 6307 MI.setDesc(TII->get(Opcode)); 6308 6309 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 6310 // Make sure to add the corresponding GRSM bits if they are missing. 6311 uint64_t Control = MI.getOperand(2).getImm(); 6312 static const unsigned GPRControlBit[16] = { 6313 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 6314 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 6315 }; 6316 Control |= GPRControlBit[15]; 6317 if (TFI->hasFP(MF)) 6318 Control |= GPRControlBit[11]; 6319 MI.getOperand(2).setImm(Control); 6320 6321 // Add GPR clobbers. 6322 for (int I = 0; I < 16; I++) { 6323 if ((Control & GPRControlBit[I]) == 0) { 6324 unsigned Reg = SystemZMC::GR64Regs[I]; 6325 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6326 } 6327 } 6328 6329 // Add FPR/VR clobbers. 6330 if (!NoFloat && (Control & 4) != 0) { 6331 if (Subtarget.hasVector()) { 6332 for (int I = 0; I < 32; I++) { 6333 unsigned Reg = SystemZMC::VR128Regs[I]; 6334 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6335 } 6336 } else { 6337 for (int I = 0; I < 16; I++) { 6338 unsigned Reg = SystemZMC::FP64Regs[I]; 6339 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6340 } 6341 } 6342 } 6343 6344 return MBB; 6345 } 6346 6347 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 6348 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6349 MachineFunction &MF = *MBB->getParent(); 6350 MachineRegisterInfo *MRI = &MF.getRegInfo(); 6351 const SystemZInstrInfo *TII = 6352 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6353 DebugLoc DL = MI.getDebugLoc(); 6354 6355 unsigned SrcReg = MI.getOperand(0).getReg(); 6356 6357 // Create new virtual register of the same class as source. 6358 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 6359 unsigned DstReg = MRI->createVirtualRegister(RC); 6360 6361 // Replace pseudo with a normal load-and-test that models the def as 6362 // well. 6363 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 6364 .addReg(SrcReg); 6365 MI.eraseFromParent(); 6366 6367 return MBB; 6368 } 6369 6370 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 6371 MachineInstr &MI, MachineBasicBlock *MBB) const { 6372 switch (MI.getOpcode()) { 6373 case SystemZ::Select32Mux: 6374 return emitSelect(MI, MBB, 6375 Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0); 6376 case SystemZ::Select32: 6377 return emitSelect(MI, MBB, SystemZ::LOCR); 6378 case SystemZ::Select64: 6379 return emitSelect(MI, MBB, SystemZ::LOCGR); 6380 case SystemZ::SelectF32: 6381 case SystemZ::SelectF64: 6382 case SystemZ::SelectF128: 6383 case SystemZ::SelectVR128: 6384 return emitSelect(MI, MBB, 0); 6385 6386 case SystemZ::CondStore8Mux: 6387 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 6388 case SystemZ::CondStore8MuxInv: 6389 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 6390 case SystemZ::CondStore16Mux: 6391 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 6392 case SystemZ::CondStore16MuxInv: 6393 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 6394 case SystemZ::CondStore32Mux: 6395 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 6396 case SystemZ::CondStore32MuxInv: 6397 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 6398 case SystemZ::CondStore8: 6399 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 6400 case SystemZ::CondStore8Inv: 6401 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 6402 case SystemZ::CondStore16: 6403 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 6404 case SystemZ::CondStore16Inv: 6405 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 6406 case SystemZ::CondStore32: 6407 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 6408 case SystemZ::CondStore32Inv: 6409 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 6410 case SystemZ::CondStore64: 6411 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 6412 case SystemZ::CondStore64Inv: 6413 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 6414 case SystemZ::CondStoreF32: 6415 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 6416 case SystemZ::CondStoreF32Inv: 6417 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 6418 case SystemZ::CondStoreF64: 6419 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 6420 case SystemZ::CondStoreF64Inv: 6421 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 6422 6423 case SystemZ::PAIR128: 6424 return emitPair128(MI, MBB); 6425 case SystemZ::AEXT128: 6426 return emitExt128(MI, MBB, false); 6427 case SystemZ::ZEXT128: 6428 return emitExt128(MI, MBB, true); 6429 6430 case SystemZ::ATOMIC_SWAPW: 6431 return emitAtomicLoadBinary(MI, MBB, 0, 0); 6432 case SystemZ::ATOMIC_SWAP_32: 6433 return emitAtomicLoadBinary(MI, MBB, 0, 32); 6434 case SystemZ::ATOMIC_SWAP_64: 6435 return emitAtomicLoadBinary(MI, MBB, 0, 64); 6436 6437 case SystemZ::ATOMIC_LOADW_AR: 6438 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 6439 case SystemZ::ATOMIC_LOADW_AFI: 6440 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 6441 case SystemZ::ATOMIC_LOAD_AR: 6442 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 6443 case SystemZ::ATOMIC_LOAD_AHI: 6444 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 6445 case SystemZ::ATOMIC_LOAD_AFI: 6446 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 6447 case SystemZ::ATOMIC_LOAD_AGR: 6448 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 6449 case SystemZ::ATOMIC_LOAD_AGHI: 6450 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 6451 case SystemZ::ATOMIC_LOAD_AGFI: 6452 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 6453 6454 case SystemZ::ATOMIC_LOADW_SR: 6455 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 6456 case SystemZ::ATOMIC_LOAD_SR: 6457 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 6458 case SystemZ::ATOMIC_LOAD_SGR: 6459 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 6460 6461 case SystemZ::ATOMIC_LOADW_NR: 6462 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 6463 case SystemZ::ATOMIC_LOADW_NILH: 6464 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 6465 case SystemZ::ATOMIC_LOAD_NR: 6466 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 6467 case SystemZ::ATOMIC_LOAD_NILL: 6468 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 6469 case SystemZ::ATOMIC_LOAD_NILH: 6470 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 6471 case SystemZ::ATOMIC_LOAD_NILF: 6472 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 6473 case SystemZ::ATOMIC_LOAD_NGR: 6474 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 6475 case SystemZ::ATOMIC_LOAD_NILL64: 6476 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 6477 case SystemZ::ATOMIC_LOAD_NILH64: 6478 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6479 case SystemZ::ATOMIC_LOAD_NIHL64: 6480 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6481 case SystemZ::ATOMIC_LOAD_NIHH64: 6482 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6483 case SystemZ::ATOMIC_LOAD_NILF64: 6484 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6485 case SystemZ::ATOMIC_LOAD_NIHF64: 6486 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6487 6488 case SystemZ::ATOMIC_LOADW_OR: 6489 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6490 case SystemZ::ATOMIC_LOADW_OILH: 6491 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6492 case SystemZ::ATOMIC_LOAD_OR: 6493 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6494 case SystemZ::ATOMIC_LOAD_OILL: 6495 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6496 case SystemZ::ATOMIC_LOAD_OILH: 6497 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6498 case SystemZ::ATOMIC_LOAD_OILF: 6499 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6500 case SystemZ::ATOMIC_LOAD_OGR: 6501 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6502 case SystemZ::ATOMIC_LOAD_OILL64: 6503 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6504 case SystemZ::ATOMIC_LOAD_OILH64: 6505 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6506 case SystemZ::ATOMIC_LOAD_OIHL64: 6507 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6508 case SystemZ::ATOMIC_LOAD_OIHH64: 6509 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6510 case SystemZ::ATOMIC_LOAD_OILF64: 6511 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6512 case SystemZ::ATOMIC_LOAD_OIHF64: 6513 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6514 6515 case SystemZ::ATOMIC_LOADW_XR: 6516 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6517 case SystemZ::ATOMIC_LOADW_XILF: 6518 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6519 case SystemZ::ATOMIC_LOAD_XR: 6520 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6521 case SystemZ::ATOMIC_LOAD_XILF: 6522 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6523 case SystemZ::ATOMIC_LOAD_XGR: 6524 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6525 case SystemZ::ATOMIC_LOAD_XILF64: 6526 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6527 case SystemZ::ATOMIC_LOAD_XIHF64: 6528 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6529 6530 case SystemZ::ATOMIC_LOADW_NRi: 6531 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6532 case SystemZ::ATOMIC_LOADW_NILHi: 6533 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6534 case SystemZ::ATOMIC_LOAD_NRi: 6535 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6536 case SystemZ::ATOMIC_LOAD_NILLi: 6537 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6538 case SystemZ::ATOMIC_LOAD_NILHi: 6539 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6540 case SystemZ::ATOMIC_LOAD_NILFi: 6541 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6542 case SystemZ::ATOMIC_LOAD_NGRi: 6543 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6544 case SystemZ::ATOMIC_LOAD_NILL64i: 6545 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6546 case SystemZ::ATOMIC_LOAD_NILH64i: 6547 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6548 case SystemZ::ATOMIC_LOAD_NIHL64i: 6549 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6550 case SystemZ::ATOMIC_LOAD_NIHH64i: 6551 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6552 case SystemZ::ATOMIC_LOAD_NILF64i: 6553 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6554 case SystemZ::ATOMIC_LOAD_NIHF64i: 6555 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6556 6557 case SystemZ::ATOMIC_LOADW_MIN: 6558 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6559 SystemZ::CCMASK_CMP_LE, 0); 6560 case SystemZ::ATOMIC_LOAD_MIN_32: 6561 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6562 SystemZ::CCMASK_CMP_LE, 32); 6563 case SystemZ::ATOMIC_LOAD_MIN_64: 6564 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6565 SystemZ::CCMASK_CMP_LE, 64); 6566 6567 case SystemZ::ATOMIC_LOADW_MAX: 6568 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6569 SystemZ::CCMASK_CMP_GE, 0); 6570 case SystemZ::ATOMIC_LOAD_MAX_32: 6571 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6572 SystemZ::CCMASK_CMP_GE, 32); 6573 case SystemZ::ATOMIC_LOAD_MAX_64: 6574 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6575 SystemZ::CCMASK_CMP_GE, 64); 6576 6577 case SystemZ::ATOMIC_LOADW_UMIN: 6578 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6579 SystemZ::CCMASK_CMP_LE, 0); 6580 case SystemZ::ATOMIC_LOAD_UMIN_32: 6581 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6582 SystemZ::CCMASK_CMP_LE, 32); 6583 case SystemZ::ATOMIC_LOAD_UMIN_64: 6584 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6585 SystemZ::CCMASK_CMP_LE, 64); 6586 6587 case SystemZ::ATOMIC_LOADW_UMAX: 6588 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6589 SystemZ::CCMASK_CMP_GE, 0); 6590 case SystemZ::ATOMIC_LOAD_UMAX_32: 6591 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6592 SystemZ::CCMASK_CMP_GE, 32); 6593 case SystemZ::ATOMIC_LOAD_UMAX_64: 6594 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6595 SystemZ::CCMASK_CMP_GE, 64); 6596 6597 case SystemZ::ATOMIC_CMP_SWAPW: 6598 return emitAtomicCmpSwapW(MI, MBB); 6599 case SystemZ::MVCSequence: 6600 case SystemZ::MVCLoop: 6601 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6602 case SystemZ::NCSequence: 6603 case SystemZ::NCLoop: 6604 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6605 case SystemZ::OCSequence: 6606 case SystemZ::OCLoop: 6607 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6608 case SystemZ::XCSequence: 6609 case SystemZ::XCLoop: 6610 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6611 case SystemZ::CLCSequence: 6612 case SystemZ::CLCLoop: 6613 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6614 case SystemZ::CLSTLoop: 6615 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6616 case SystemZ::MVSTLoop: 6617 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6618 case SystemZ::SRSTLoop: 6619 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6620 case SystemZ::TBEGIN: 6621 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6622 case SystemZ::TBEGIN_nofloat: 6623 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6624 case SystemZ::TBEGINC: 6625 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6626 case SystemZ::LTEBRCompare_VecPseudo: 6627 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6628 case SystemZ::LTDBRCompare_VecPseudo: 6629 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6630 case SystemZ::LTXBRCompare_VecPseudo: 6631 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6632 6633 default: 6634 llvm_unreachable("Unexpected instr type to insert"); 6635 } 6636 } 6637 6638 // This is only used by the isel schedulers, and is needed only to prevent 6639 // compiler from crashing when list-ilp is used. 6640 const TargetRegisterClass * 6641 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 6642 if (VT == MVT::Untyped) 6643 return &SystemZ::ADDR128BitRegClass; 6644 return TargetLowering::getRepRegClassFor(VT); 6645 } 6646