1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZTargetMachine.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "systemz-isel"
24 
25 namespace {
26 // Used to build addressing modes.
27 struct SystemZAddressingMode {
28   // The shape of the address.
29   enum AddrForm {
30     // base+displacement
31     FormBD,
32 
33     // base+displacement+index for load and store operands
34     FormBDXNormal,
35 
36     // base+displacement+index for load address operands
37     FormBDXLA,
38 
39     // base+displacement+index+ADJDYNALLOC
40     FormBDXDynAlloc
41   };
42   AddrForm Form;
43 
44   // The type of displacement.  The enum names here correspond directly
45   // to the definitions in SystemZOperand.td.  We could split them into
46   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47   enum DispRange {
48     Disp12Only,
49     Disp12Pair,
50     Disp20Only,
51     Disp20Only128,
52     Disp20Pair
53   };
54   DispRange DR;
55 
56   // The parts of the address.  The address is equivalent to:
57   //
58   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59   SDValue Base;
60   int64_t Disp;
61   SDValue Index;
62   bool IncludesDynAlloc;
63 
64   SystemZAddressingMode(AddrForm form, DispRange dr)
65     : Form(form), DR(dr), Base(), Disp(0), Index(),
66       IncludesDynAlloc(false) {}
67 
68   // True if the address can have an index register.
69   bool hasIndexField() { return Form != FormBD; }
70 
71   // True if the address can (and must) include ADJDYNALLOC.
72   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73 
74   void dump() {
75     errs() << "SystemZAddressingMode " << this << '\n';
76 
77     errs() << " Base ";
78     if (Base.getNode())
79       Base.getNode()->dump();
80     else
81       errs() << "null\n";
82 
83     if (hasIndexField()) {
84       errs() << " Index ";
85       if (Index.getNode())
86         Index.getNode()->dump();
87       else
88         errs() << "null\n";
89     }
90 
91     errs() << " Disp " << Disp;
92     if (IncludesDynAlloc)
93       errs() << " + ADJDYNALLOC";
94     errs() << '\n';
95   }
96 };
97 
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100   assert(Count <= 64);
101   if (Count > 63)
102     return UINT64_MAX;
103   return (uint64_t(1) << Count) - 1;
104 }
105 
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5).  The combined operand value is effectively:
109 //
110 //   (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 //   (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise.  The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120   RxSBGOperands(unsigned Op, SDValue N)
121     : Opcode(Op), BitSize(N.getValueSizeInBits()),
122       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123       Rotate(0) {}
124 
125   unsigned Opcode;
126   unsigned BitSize;
127   uint64_t Mask;
128   SDValue Input;
129   unsigned Start;
130   unsigned End;
131   unsigned Rotate;
132 };
133 
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135   const SystemZSubtarget *Subtarget;
136 
137   // Used by SystemZOperands.td to create integer constants.
138   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139     return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140   }
141 
142   const SystemZTargetMachine &getTargetMachine() const {
143     return static_cast<const SystemZTargetMachine &>(TM);
144   }
145 
146   const SystemZInstrInfo *getInstrInfo() const {
147     return Subtarget->getInstrInfo();
148   }
149 
150   // Try to fold more of the base or index of AM into AM, where IsBase
151   // selects between the base and index.
152   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153 
154   // Try to describe N in AM, returning true on success.
155   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156 
157   // Extract individual target operands from matched address AM.
158   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159                           SDValue &Base, SDValue &Disp) const;
160   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
162 
163   // Try to match Addr as a FormBD address with displacement type DR.
164   // Return true on success, storing the base and displacement in
165   // Base and Disp respectively.
166   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                     SDValue &Base, SDValue &Disp) const;
168 
169   // Try to match Addr as a FormBDX address with displacement type DR.
170   // Return true on success and if the result had no index.  Store the
171   // base and displacement in Base and Disp respectively.
172   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173                      SDValue &Base, SDValue &Disp) const;
174 
175   // Try to match Addr as a FormBDX* address of form Form with
176   // displacement type DR.  Return true on success, storing the base,
177   // displacement and index in Base, Disp and Index respectively.
178   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179                      SystemZAddressingMode::DispRange DR, SDValue Addr,
180                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
181 
182   // PC-relative address matching routines used by SystemZOperands.td.
183   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184     if (SystemZISD::isPCREL(Addr.getOpcode())) {
185       Target = Addr.getOperand(0);
186       return true;
187     }
188     return false;
189   }
190 
191   // BD matching routines used by SystemZOperands.td.
192   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194   }
195   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197   }
198   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200   }
201   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203   }
204 
205   // MVI matching routines used by SystemZOperands.td.
206   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208   }
209   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211   }
212 
213   // BDX matching routines used by SystemZOperands.td.
214   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215                            SDValue &Index) const {
216     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                          SystemZAddressingMode::Disp12Only,
218                          Addr, Base, Disp, Index);
219   }
220   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221                            SDValue &Index) const {
222     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223                          SystemZAddressingMode::Disp12Pair,
224                          Addr, Base, Disp, Index);
225   }
226   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                             SDValue &Index) const {
228     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229                          SystemZAddressingMode::Disp12Only,
230                          Addr, Base, Disp, Index);
231   }
232   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233                            SDValue &Index) const {
234     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                          SystemZAddressingMode::Disp20Only,
236                          Addr, Base, Disp, Index);
237   }
238   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239                               SDValue &Index) const {
240     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                          SystemZAddressingMode::Disp20Only128,
242                          Addr, Base, Disp, Index);
243   }
244   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                            SDValue &Index) const {
246     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247                          SystemZAddressingMode::Disp20Pair,
248                          Addr, Base, Disp, Index);
249   }
250   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                           SDValue &Index) const {
252     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                          SystemZAddressingMode::Disp12Pair,
254                          Addr, Base, Disp, Index);
255   }
256   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257                           SDValue &Index) const {
258     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259                          SystemZAddressingMode::Disp20Pair,
260                          Addr, Base, Disp, Index);
261   }
262 
263   // Try to match Addr as an address with a base, 12-bit displacement
264   // and index, where the index is element Elem of a vector.
265   // Return true on success, storing the base, displacement and vector
266   // in Base, Disp and Index respectively.
267   bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268                            SDValue &Disp, SDValue &Index) const;
269 
270   // Check whether (or Op (and X InsertMask)) is effectively an insertion
271   // of X into bits InsertMask of some Y != Op.  Return true if so and
272   // set Op to that Y.
273   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274 
275   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276   // Return true on success.
277   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278 
279   // Try to fold some of RxSBG.Input into other fields of RxSBG.
280   // Return true on success.
281   bool expandRxSBG(RxSBGOperands &RxSBG) const;
282 
283   // Return an undefined value of type VT.
284   SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285 
286   // Convert N to VT, if it isn't already.
287   SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288 
289   // Try to implement AND or shift node N using RISBG with the zero flag set.
290   // Return the selected node on success, otherwise return null.
291   bool tryRISBGZero(SDNode *N);
292 
293   // Try to use RISBG or Opcode to implement OR or XOR node N.
294   // Return the selected node on success, otherwise return null.
295   bool tryRxSBG(SDNode *N, unsigned Opcode);
296 
297   // If Op0 is null, then Node is a constant that can be loaded using:
298   //
299   //   (Opcode UpperVal LowerVal)
300   //
301   // If Op0 is nonnull, then Node can be implemented using:
302   //
303   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
304   void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305                            uint64_t UpperVal, uint64_t LowerVal);
306 
307   // Try to use gather instruction Opcode to implement vector insertion N.
308   bool tryGather(SDNode *N, unsigned Opcode);
309 
310   // Try to use scatter instruction Opcode to implement store Store.
311   bool tryScatter(StoreSDNode *Store, unsigned Opcode);
312 
313   // Return true if Load and Store are loads and stores of the same size
314   // and are guaranteed not to overlap.  Such operations can be implemented
315   // using block (SS-format) instructions.
316   //
317   // Partial overlap would lead to incorrect code, since the block operations
318   // are logically bytewise, even though they have a fast path for the
319   // non-overlapping case.  We also need to avoid full overlap (i.e. two
320   // addresses that might be equal at run time) because although that case
321   // would be handled correctly, it might be implemented by millicode.
322   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
323 
324   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
325   // from Y to X.
326   bool storeLoadCanUseMVC(SDNode *N) const;
327 
328   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
329   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
330   // to X.
331   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
332 
333   // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
334   SDValue expandSelectBoolean(SDNode *Node);
335 
336 public:
337   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
338       : SelectionDAGISel(TM, OptLevel) {}
339 
340   bool runOnMachineFunction(MachineFunction &MF) override {
341     Subtarget = &MF.getSubtarget<SystemZSubtarget>();
342     return SelectionDAGISel::runOnMachineFunction(MF);
343   }
344 
345   // Override MachineFunctionPass.
346   StringRef getPassName() const override {
347     return "SystemZ DAG->DAG Pattern Instruction Selection";
348   }
349 
350   // Override SelectionDAGISel.
351   void Select(SDNode *Node) override;
352   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
353                                     std::vector<SDValue> &OutOps) override;
354   void PreprocessISelDAG() override;
355 
356   // Include the pieces autogenerated from the target description.
357   #include "SystemZGenDAGISel.inc"
358 };
359 } // end anonymous namespace
360 
361 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
362                                          CodeGenOpt::Level OptLevel) {
363   return new SystemZDAGToDAGISel(TM, OptLevel);
364 }
365 
366 // Return true if Val should be selected as a displacement for an address
367 // with range DR.  Here we're interested in the range of both the instruction
368 // described by DR and of any pairing instruction.
369 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
370   switch (DR) {
371   case SystemZAddressingMode::Disp12Only:
372     return isUInt<12>(Val);
373 
374   case SystemZAddressingMode::Disp12Pair:
375   case SystemZAddressingMode::Disp20Only:
376   case SystemZAddressingMode::Disp20Pair:
377     return isInt<20>(Val);
378 
379   case SystemZAddressingMode::Disp20Only128:
380     return isInt<20>(Val) && isInt<20>(Val + 8);
381   }
382   llvm_unreachable("Unhandled displacement range");
383 }
384 
385 // Change the base or index in AM to Value, where IsBase selects
386 // between the base and index.
387 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
388                             SDValue Value) {
389   if (IsBase)
390     AM.Base = Value;
391   else
392     AM.Index = Value;
393 }
394 
395 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
396 // where IsBase selects between the base and index.  Try to fold the
397 // ADJDYNALLOC into AM.
398 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
399                               SDValue Value) {
400   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
401     changeComponent(AM, IsBase, Value);
402     AM.IncludesDynAlloc = true;
403     return true;
404   }
405   return false;
406 }
407 
408 // The base of AM is equivalent to Base + Index.  Try to use Index as
409 // the index register.
410 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
411                         SDValue Index) {
412   if (AM.hasIndexField() && !AM.Index.getNode()) {
413     AM.Base = Base;
414     AM.Index = Index;
415     return true;
416   }
417   return false;
418 }
419 
420 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
421 // between the base and index.  Try to fold Op1 into AM's displacement.
422 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
423                        SDValue Op0, uint64_t Op1) {
424   // First try adjusting the displacement.
425   int64_t TestDisp = AM.Disp + Op1;
426   if (selectDisp(AM.DR, TestDisp)) {
427     changeComponent(AM, IsBase, Op0);
428     AM.Disp = TestDisp;
429     return true;
430   }
431 
432   // We could consider forcing the displacement into a register and
433   // using it as an index, but it would need to be carefully tuned.
434   return false;
435 }
436 
437 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
438                                         bool IsBase) const {
439   SDValue N = IsBase ? AM.Base : AM.Index;
440   unsigned Opcode = N.getOpcode();
441   if (Opcode == ISD::TRUNCATE) {
442     N = N.getOperand(0);
443     Opcode = N.getOpcode();
444   }
445   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
446     SDValue Op0 = N.getOperand(0);
447     SDValue Op1 = N.getOperand(1);
448 
449     unsigned Op0Code = Op0->getOpcode();
450     unsigned Op1Code = Op1->getOpcode();
451 
452     if (Op0Code == SystemZISD::ADJDYNALLOC)
453       return expandAdjDynAlloc(AM, IsBase, Op1);
454     if (Op1Code == SystemZISD::ADJDYNALLOC)
455       return expandAdjDynAlloc(AM, IsBase, Op0);
456 
457     if (Op0Code == ISD::Constant)
458       return expandDisp(AM, IsBase, Op1,
459                         cast<ConstantSDNode>(Op0)->getSExtValue());
460     if (Op1Code == ISD::Constant)
461       return expandDisp(AM, IsBase, Op0,
462                         cast<ConstantSDNode>(Op1)->getSExtValue());
463 
464     if (IsBase && expandIndex(AM, Op0, Op1))
465       return true;
466   }
467   if (Opcode == SystemZISD::PCREL_OFFSET) {
468     SDValue Full = N.getOperand(0);
469     SDValue Base = N.getOperand(1);
470     SDValue Anchor = Base.getOperand(0);
471     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
472                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
473     return expandDisp(AM, IsBase, Base, Offset);
474   }
475   return false;
476 }
477 
478 // Return true if an instruction with displacement range DR should be
479 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
480 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
481   assert(selectDisp(DR, Val) && "Invalid displacement");
482   switch (DR) {
483   case SystemZAddressingMode::Disp12Only:
484   case SystemZAddressingMode::Disp20Only:
485   case SystemZAddressingMode::Disp20Only128:
486     return true;
487 
488   case SystemZAddressingMode::Disp12Pair:
489     // Use the other instruction if the displacement is too large.
490     return isUInt<12>(Val);
491 
492   case SystemZAddressingMode::Disp20Pair:
493     // Use the other instruction if the displacement is small enough.
494     return !isUInt<12>(Val);
495   }
496   llvm_unreachable("Unhandled displacement range");
497 }
498 
499 // Return true if Base + Disp + Index should be performed by LA(Y).
500 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
501   // Don't use LA(Y) for constants.
502   if (!Base)
503     return false;
504 
505   // Always use LA(Y) for frame addresses, since we know that the destination
506   // register is almost always (perhaps always) going to be different from
507   // the frame register.
508   if (Base->getOpcode() == ISD::FrameIndex)
509     return true;
510 
511   if (Disp) {
512     // Always use LA(Y) if there is a base, displacement and index.
513     if (Index)
514       return true;
515 
516     // Always use LA if the displacement is small enough.  It should always
517     // be no worse than AGHI (and better if it avoids a move).
518     if (isUInt<12>(Disp))
519       return true;
520 
521     // For similar reasons, always use LAY if the constant is too big for AGHI.
522     // LAY should be no worse than AGFI.
523     if (!isInt<16>(Disp))
524       return true;
525   } else {
526     // Don't use LA for plain registers.
527     if (!Index)
528       return false;
529 
530     // Don't use LA for plain addition if the index operand is only used
531     // once.  It should be a natural two-operand addition in that case.
532     if (Index->hasOneUse())
533       return false;
534 
535     // Prefer addition if the second operation is sign-extended, in the
536     // hope of using AGF.
537     unsigned IndexOpcode = Index->getOpcode();
538     if (IndexOpcode == ISD::SIGN_EXTEND ||
539         IndexOpcode == ISD::SIGN_EXTEND_INREG)
540       return false;
541   }
542 
543   // Don't use LA for two-operand addition if either operand is only
544   // used once.  The addition instructions are better in that case.
545   if (Base->hasOneUse())
546     return false;
547 
548   return true;
549 }
550 
551 // Return true if Addr is suitable for AM, updating AM if so.
552 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
553                                         SystemZAddressingMode &AM) const {
554   // Start out assuming that the address will need to be loaded separately,
555   // then try to extend it as much as we can.
556   AM.Base = Addr;
557 
558   // First try treating the address as a constant.
559   if (Addr.getOpcode() == ISD::Constant &&
560       expandDisp(AM, true, SDValue(),
561                  cast<ConstantSDNode>(Addr)->getSExtValue()))
562     ;
563   // Also see if it's a bare ADJDYNALLOC.
564   else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
565            expandAdjDynAlloc(AM, true, SDValue()))
566     ;
567   else
568     // Otherwise try expanding each component.
569     while (expandAddress(AM, true) ||
570            (AM.Index.getNode() && expandAddress(AM, false)))
571       continue;
572 
573   // Reject cases where it isn't profitable to use LA(Y).
574   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
575       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
576     return false;
577 
578   // Reject cases where the other instruction in a pair should be used.
579   if (!isValidDisp(AM.DR, AM.Disp))
580     return false;
581 
582   // Make sure that ADJDYNALLOC is included where necessary.
583   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
584     return false;
585 
586   DEBUG(AM.dump());
587   return true;
588 }
589 
590 // Insert a node into the DAG at least before Pos.  This will reposition
591 // the node as needed, and will assign it a node ID that is <= Pos's ID.
592 // Note that this does *not* preserve the uniqueness of node IDs!
593 // The selection DAG must no longer depend on their uniqueness when this
594 // function is used.
595 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
596   if (N->getNodeId() == -1 ||
597       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
598        SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
599     DAG->RepositionNode(Pos->getIterator(), N.getNode());
600     // Mark Node as invalid for pruning as after this it may be a successor to a
601     // selected node but otherwise be in the same position of Pos.
602     // Conservatively mark it with the same -abs(Id) to assure node id
603     // invariant is preserved.
604     N->setNodeId(Pos->getNodeId());
605     SelectionDAGISel::InvalidateNodeId(N.getNode());
606   }
607 }
608 
609 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
610                                              EVT VT, SDValue &Base,
611                                              SDValue &Disp) const {
612   Base = AM.Base;
613   if (!Base.getNode())
614     // Register 0 means "no base".  This is mostly useful for shifts.
615     Base = CurDAG->getRegister(0, VT);
616   else if (Base.getOpcode() == ISD::FrameIndex) {
617     // Lower a FrameIndex to a TargetFrameIndex.
618     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
619     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
620   } else if (Base.getValueType() != VT) {
621     // Truncate values from i64 to i32, for shifts.
622     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
623            "Unexpected truncation");
624     SDLoc DL(Base);
625     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
626     insertDAGNode(CurDAG, Base.getNode(), Trunc);
627     Base = Trunc;
628   }
629 
630   // Lower the displacement to a TargetConstant.
631   Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
632 }
633 
634 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
635                                              EVT VT, SDValue &Base,
636                                              SDValue &Disp,
637                                              SDValue &Index) const {
638   getAddressOperands(AM, VT, Base, Disp);
639 
640   Index = AM.Index;
641   if (!Index.getNode())
642     // Register 0 means "no index".
643     Index = CurDAG->getRegister(0, VT);
644 }
645 
646 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
647                                        SDValue Addr, SDValue &Base,
648                                        SDValue &Disp) const {
649   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
650   if (!selectAddress(Addr, AM))
651     return false;
652 
653   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
654   return true;
655 }
656 
657 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
658                                         SDValue Addr, SDValue &Base,
659                                         SDValue &Disp) const {
660   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
661   if (!selectAddress(Addr, AM) || AM.Index.getNode())
662     return false;
663 
664   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
665   return true;
666 }
667 
668 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
669                                         SystemZAddressingMode::DispRange DR,
670                                         SDValue Addr, SDValue &Base,
671                                         SDValue &Disp, SDValue &Index) const {
672   SystemZAddressingMode AM(Form, DR);
673   if (!selectAddress(Addr, AM))
674     return false;
675 
676   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
677   return true;
678 }
679 
680 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
681                                               SDValue &Base,
682                                               SDValue &Disp,
683                                               SDValue &Index) const {
684   SDValue Regs[2];
685   if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
686       Regs[0].getNode() && Regs[1].getNode()) {
687     for (unsigned int I = 0; I < 2; ++I) {
688       Base = Regs[I];
689       Index = Regs[1 - I];
690       // We can't tell here whether the index vector has the right type
691       // for the access; the caller needs to do that instead.
692       if (Index.getOpcode() == ISD::ZERO_EXTEND)
693         Index = Index.getOperand(0);
694       if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
695           Index.getOperand(1) == Elem) {
696         Index = Index.getOperand(0);
697         return true;
698       }
699     }
700   }
701   return false;
702 }
703 
704 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
705                                                uint64_t InsertMask) const {
706   // We're only interested in cases where the insertion is into some operand
707   // of Op, rather than into Op itself.  The only useful case is an AND.
708   if (Op.getOpcode() != ISD::AND)
709     return false;
710 
711   // We need a constant mask.
712   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
713   if (!MaskNode)
714     return false;
715 
716   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
717   uint64_t AndMask = MaskNode->getZExtValue();
718   if (InsertMask & AndMask)
719     return false;
720 
721   // It's only an insertion if all bits are covered or are known to be zero.
722   // The inner check covers all cases but is more expensive.
723   uint64_t Used = allOnes(Op.getValueSizeInBits());
724   if (Used != (AndMask | InsertMask)) {
725     KnownBits Known;
726     CurDAG->computeKnownBits(Op.getOperand(0), Known);
727     if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
728       return false;
729   }
730 
731   Op = Op.getOperand(0);
732   return true;
733 }
734 
735 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
736                                           uint64_t Mask) const {
737   const SystemZInstrInfo *TII = getInstrInfo();
738   if (RxSBG.Rotate != 0)
739     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
740   Mask &= RxSBG.Mask;
741   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
742     RxSBG.Mask = Mask;
743     return true;
744   }
745   return false;
746 }
747 
748 // Return true if any bits of (RxSBG.Input & Mask) are significant.
749 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
750   // Rotate the mask in the same way as RxSBG.Input is rotated.
751   if (RxSBG.Rotate != 0)
752     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
753   return (Mask & RxSBG.Mask) != 0;
754 }
755 
756 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
757   SDValue N = RxSBG.Input;
758   unsigned Opcode = N.getOpcode();
759   switch (Opcode) {
760   case ISD::TRUNCATE: {
761     if (RxSBG.Opcode == SystemZ::RNSBG)
762       return false;
763     uint64_t BitSize = N.getValueSizeInBits();
764     uint64_t Mask = allOnes(BitSize);
765     if (!refineRxSBGMask(RxSBG, Mask))
766       return false;
767     RxSBG.Input = N.getOperand(0);
768     return true;
769   }
770   case ISD::AND: {
771     if (RxSBG.Opcode == SystemZ::RNSBG)
772       return false;
773 
774     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
775     if (!MaskNode)
776       return false;
777 
778     SDValue Input = N.getOperand(0);
779     uint64_t Mask = MaskNode->getZExtValue();
780     if (!refineRxSBGMask(RxSBG, Mask)) {
781       // If some bits of Input are already known zeros, those bits will have
782       // been removed from the mask.  See if adding them back in makes the
783       // mask suitable.
784       KnownBits Known;
785       CurDAG->computeKnownBits(Input, Known);
786       Mask |= Known.Zero.getZExtValue();
787       if (!refineRxSBGMask(RxSBG, Mask))
788         return false;
789     }
790     RxSBG.Input = Input;
791     return true;
792   }
793 
794   case ISD::OR: {
795     if (RxSBG.Opcode != SystemZ::RNSBG)
796       return false;
797 
798     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
799     if (!MaskNode)
800       return false;
801 
802     SDValue Input = N.getOperand(0);
803     uint64_t Mask = ~MaskNode->getZExtValue();
804     if (!refineRxSBGMask(RxSBG, Mask)) {
805       // If some bits of Input are already known ones, those bits will have
806       // been removed from the mask.  See if adding them back in makes the
807       // mask suitable.
808       KnownBits Known;
809       CurDAG->computeKnownBits(Input, Known);
810       Mask &= ~Known.One.getZExtValue();
811       if (!refineRxSBGMask(RxSBG, Mask))
812         return false;
813     }
814     RxSBG.Input = Input;
815     return true;
816   }
817 
818   case ISD::ROTL: {
819     // Any 64-bit rotate left can be merged into the RxSBG.
820     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
821       return false;
822     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
823     if (!CountNode)
824       return false;
825 
826     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
827     RxSBG.Input = N.getOperand(0);
828     return true;
829   }
830 
831   case ISD::ANY_EXTEND:
832     // Bits above the extended operand are don't-care.
833     RxSBG.Input = N.getOperand(0);
834     return true;
835 
836   case ISD::ZERO_EXTEND:
837     if (RxSBG.Opcode != SystemZ::RNSBG) {
838       // Restrict the mask to the extended operand.
839       unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
840       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
841         return false;
842 
843       RxSBG.Input = N.getOperand(0);
844       return true;
845     }
846     LLVM_FALLTHROUGH;
847 
848   case ISD::SIGN_EXTEND: {
849     // Check that the extension bits are don't-care (i.e. are masked out
850     // by the final mask).
851     unsigned BitSize = N.getValueSizeInBits();
852     unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
853     if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
854       // In the case where only the sign bit is active, increase Rotate with
855       // the extension width.
856       if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
857         RxSBG.Rotate += (BitSize - InnerBitSize);
858       else
859         return false;
860     }
861 
862     RxSBG.Input = N.getOperand(0);
863     return true;
864   }
865 
866   case ISD::SHL: {
867     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
868     if (!CountNode)
869       return false;
870 
871     uint64_t Count = CountNode->getZExtValue();
872     unsigned BitSize = N.getValueSizeInBits();
873     if (Count < 1 || Count >= BitSize)
874       return false;
875 
876     if (RxSBG.Opcode == SystemZ::RNSBG) {
877       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
878       // count bits from RxSBG.Input are ignored.
879       if (maskMatters(RxSBG, allOnes(Count)))
880         return false;
881     } else {
882       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
883       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
884         return false;
885     }
886 
887     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
888     RxSBG.Input = N.getOperand(0);
889     return true;
890   }
891 
892   case ISD::SRL:
893   case ISD::SRA: {
894     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
895     if (!CountNode)
896       return false;
897 
898     uint64_t Count = CountNode->getZExtValue();
899     unsigned BitSize = N.getValueSizeInBits();
900     if (Count < 1 || Count >= BitSize)
901       return false;
902 
903     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
904       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
905       // count bits from RxSBG.Input are ignored.
906       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
907         return false;
908     } else {
909       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
910       // which is similar to SLL above.
911       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
912         return false;
913     }
914 
915     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
916     RxSBG.Input = N.getOperand(0);
917     return true;
918   }
919   default:
920     return false;
921   }
922 }
923 
924 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
925   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
926   return SDValue(N, 0);
927 }
928 
929 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
930                                        SDValue N) const {
931   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
932     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
933                                          DL, VT, getUNDEF(DL, MVT::i64), N);
934   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
935     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
936   assert(N.getValueType() == VT && "Unexpected value types");
937   return N;
938 }
939 
940 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
941   SDLoc DL(N);
942   EVT VT = N->getValueType(0);
943   if (!VT.isInteger() || VT.getSizeInBits() > 64)
944     return false;
945   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
946   unsigned Count = 0;
947   while (expandRxSBG(RISBG))
948     // The widening or narrowing is expected to be free.
949     // Counting widening or narrowing as a saved operation will result in
950     // preferring an R*SBG over a simple shift/logical instruction.
951     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
952         RISBG.Input.getOpcode() != ISD::TRUNCATE)
953       Count += 1;
954   if (Count == 0)
955     return false;
956 
957   // Prefer to use normal shift instructions over RISBG, since they can handle
958   // all cases and are sometimes shorter.
959   if (Count == 1 && N->getOpcode() != ISD::AND)
960     return false;
961 
962   // Prefer register extensions like LLC over RISBG.  Also prefer to start
963   // out with normal ANDs if one instruction would be enough.  We can convert
964   // these ANDs into an RISBG later if a three-address instruction is useful.
965   if (RISBG.Rotate == 0) {
966     bool PreferAnd = false;
967     // Prefer AND for any 32-bit and-immediate operation.
968     if (VT == MVT::i32)
969       PreferAnd = true;
970     // As well as for any 64-bit operation that can be implemented via LLC(R),
971     // LLH(R), LLGT(R), or one of the and-immediate instructions.
972     else if (RISBG.Mask == 0xff ||
973              RISBG.Mask == 0xffff ||
974              RISBG.Mask == 0x7fffffff ||
975              SystemZ::isImmLF(~RISBG.Mask) ||
976              SystemZ::isImmHF(~RISBG.Mask))
977      PreferAnd = true;
978     // And likewise for the LLZRGF instruction, which doesn't have a register
979     // to register version.
980     else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
981       if (Load->getMemoryVT() == MVT::i32 &&
982           (Load->getExtensionType() == ISD::EXTLOAD ||
983            Load->getExtensionType() == ISD::ZEXTLOAD) &&
984           RISBG.Mask == 0xffffff00 &&
985           Subtarget->hasLoadAndZeroRightmostByte())
986       PreferAnd = true;
987     }
988     if (PreferAnd) {
989       // Replace the current node with an AND.  Note that the current node
990       // might already be that same AND, in which case it is already CSE'd
991       // with it, and we must not call ReplaceNode.
992       SDValue In = convertTo(DL, VT, RISBG.Input);
993       SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
994       SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
995       if (N != New.getNode()) {
996         insertDAGNode(CurDAG, N, Mask);
997         insertDAGNode(CurDAG, N, New);
998         ReplaceNode(N, New.getNode());
999         N = New.getNode();
1000       }
1001       // Now, select the machine opcode to implement this operation.
1002       if (!N->isMachineOpcode())
1003         SelectCode(N);
1004       return true;
1005     }
1006   }
1007 
1008   unsigned Opcode = SystemZ::RISBG;
1009   // Prefer RISBGN if available, since it does not clobber CC.
1010   if (Subtarget->hasMiscellaneousExtensions())
1011     Opcode = SystemZ::RISBGN;
1012   EVT OpcodeVT = MVT::i64;
1013   if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1014       // We can only use the 32-bit instructions if all source bits are
1015       // in the low 32 bits without wrapping, both after rotation (because
1016       // of the smaller range for Start and End) and before rotation
1017       // (because the input value is truncated).
1018       RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1019       ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1020       ((RISBG.End + RISBG.Rotate) & 63) >=
1021       ((RISBG.Start + RISBG.Rotate) & 63)) {
1022     Opcode = SystemZ::RISBMux;
1023     OpcodeVT = MVT::i32;
1024     RISBG.Start &= 31;
1025     RISBG.End &= 31;
1026   }
1027   SDValue Ops[5] = {
1028     getUNDEF(DL, OpcodeVT),
1029     convertTo(DL, OpcodeVT, RISBG.Input),
1030     CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1031     CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1032     CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1033   };
1034   SDValue New = convertTo(
1035       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1036   ReplaceNode(N, New.getNode());
1037   return true;
1038 }
1039 
1040 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1041   SDLoc DL(N);
1042   EVT VT = N->getValueType(0);
1043   if (!VT.isInteger() || VT.getSizeInBits() > 64)
1044     return false;
1045   // Try treating each operand of N as the second operand of the RxSBG
1046   // and see which goes deepest.
1047   RxSBGOperands RxSBG[] = {
1048     RxSBGOperands(Opcode, N->getOperand(0)),
1049     RxSBGOperands(Opcode, N->getOperand(1))
1050   };
1051   unsigned Count[] = { 0, 0 };
1052   for (unsigned I = 0; I < 2; ++I)
1053     while (expandRxSBG(RxSBG[I]))
1054       // The widening or narrowing is expected to be free.
1055       // Counting widening or narrowing as a saved operation will result in
1056       // preferring an R*SBG over a simple shift/logical instruction.
1057       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1058           RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1059         Count[I] += 1;
1060 
1061   // Do nothing if neither operand is suitable.
1062   if (Count[0] == 0 && Count[1] == 0)
1063     return false;
1064 
1065   // Pick the deepest second operand.
1066   unsigned I = Count[0] > Count[1] ? 0 : 1;
1067   SDValue Op0 = N->getOperand(I ^ 1);
1068 
1069   // Prefer IC for character insertions from memory.
1070   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1071     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1072       if (Load->getMemoryVT() == MVT::i8)
1073         return false;
1074 
1075   // See whether we can avoid an AND in the first operand by converting
1076   // ROSBG to RISBG.
1077   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1078     Opcode = SystemZ::RISBG;
1079     // Prefer RISBGN if available, since it does not clobber CC.
1080     if (Subtarget->hasMiscellaneousExtensions())
1081       Opcode = SystemZ::RISBGN;
1082   }
1083 
1084   SDValue Ops[5] = {
1085     convertTo(DL, MVT::i64, Op0),
1086     convertTo(DL, MVT::i64, RxSBG[I].Input),
1087     CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1088     CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1089     CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1090   };
1091   SDValue New = convertTo(
1092       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1093   ReplaceNode(N, New.getNode());
1094   return true;
1095 }
1096 
1097 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1098                                               SDValue Op0, uint64_t UpperVal,
1099                                               uint64_t LowerVal) {
1100   EVT VT = Node->getValueType(0);
1101   SDLoc DL(Node);
1102   SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1103   if (Op0.getNode())
1104     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1105 
1106   {
1107     // When we haven't passed in Op0, Upper will be a constant. In order to
1108     // prevent folding back to the large immediate in `Or = getNode(...)` we run
1109     // SelectCode first and end up with an opaque machine node. This means that
1110     // we need to use a handle to keep track of Upper in case it gets CSE'd by
1111     // SelectCode.
1112     //
1113     // Note that in the case where Op0 is passed in we could just call
1114     // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1115     // the handle at all, but it's fine to do it here.
1116     //
1117     // TODO: This is a pretty hacky way to do this. Can we do something that
1118     // doesn't require a two paragraph explanation?
1119     HandleSDNode Handle(Upper);
1120     SelectCode(Upper.getNode());
1121     Upper = Handle.getValue();
1122   }
1123 
1124   SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1125   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1126 
1127   ReplaceNode(Node, Or.getNode());
1128 
1129   SelectCode(Or.getNode());
1130 }
1131 
1132 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1133   SDValue ElemV = N->getOperand(2);
1134   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1135   if (!ElemN)
1136     return false;
1137 
1138   unsigned Elem = ElemN->getZExtValue();
1139   EVT VT = N->getValueType(0);
1140   if (Elem >= VT.getVectorNumElements())
1141     return false;
1142 
1143   auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1144   if (!Load || !Load->hasOneUse())
1145     return false;
1146   if (Load->getMemoryVT().getSizeInBits() !=
1147       Load->getValueType(0).getSizeInBits())
1148     return false;
1149 
1150   SDValue Base, Disp, Index;
1151   if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1152       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1153     return false;
1154 
1155   SDLoc DL(Load);
1156   SDValue Ops[] = {
1157     N->getOperand(0), Base, Disp, Index,
1158     CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1159   };
1160   SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1161   ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1162   ReplaceNode(N, Res);
1163   return true;
1164 }
1165 
1166 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1167   SDValue Value = Store->getValue();
1168   if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1169     return false;
1170   if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1171     return false;
1172 
1173   SDValue ElemV = Value.getOperand(1);
1174   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1175   if (!ElemN)
1176     return false;
1177 
1178   SDValue Vec = Value.getOperand(0);
1179   EVT VT = Vec.getValueType();
1180   unsigned Elem = ElemN->getZExtValue();
1181   if (Elem >= VT.getVectorNumElements())
1182     return false;
1183 
1184   SDValue Base, Disp, Index;
1185   if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1186       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1187     return false;
1188 
1189   SDLoc DL(Store);
1190   SDValue Ops[] = {
1191     Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1192     Store->getChain()
1193   };
1194   ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1195   return true;
1196 }
1197 
1198 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1199                                                LoadSDNode *Load) const {
1200   // Check that the two memory operands have the same size.
1201   if (Load->getMemoryVT() != Store->getMemoryVT())
1202     return false;
1203 
1204   // Volatility stops an access from being decomposed.
1205   if (Load->isVolatile() || Store->isVolatile())
1206     return false;
1207 
1208   // There's no chance of overlap if the load is invariant.
1209   if (Load->isInvariant() && Load->isDereferenceable())
1210     return true;
1211 
1212   // Otherwise we need to check whether there's an alias.
1213   const Value *V1 = Load->getMemOperand()->getValue();
1214   const Value *V2 = Store->getMemOperand()->getValue();
1215   if (!V1 || !V2)
1216     return false;
1217 
1218   // Reject equality.
1219   uint64_t Size = Load->getMemoryVT().getStoreSize();
1220   int64_t End1 = Load->getSrcValueOffset() + Size;
1221   int64_t End2 = Store->getSrcValueOffset() + Size;
1222   if (V1 == V2 && End1 == End2)
1223     return false;
1224 
1225   return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1226                     MemoryLocation(V2, End2, Store->getAAInfo()));
1227 }
1228 
1229 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1230   auto *Store = cast<StoreSDNode>(N);
1231   auto *Load = cast<LoadSDNode>(Store->getValue());
1232 
1233   // Prefer not to use MVC if either address can use ... RELATIVE LONG
1234   // instructions.
1235   uint64_t Size = Load->getMemoryVT().getStoreSize();
1236   if (Size > 1 && Size <= 8) {
1237     // Prefer LHRL, LRL and LGRL.
1238     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1239       return false;
1240     // Prefer STHRL, STRL and STGRL.
1241     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1242       return false;
1243   }
1244 
1245   return canUseBlockOperation(Store, Load);
1246 }
1247 
1248 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1249                                                      unsigned I) const {
1250   auto *StoreA = cast<StoreSDNode>(N);
1251   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1252   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1253   return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1254 }
1255 
1256 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1257   // If we have a custom node, we already have selected!
1258   if (Node->isMachineOpcode()) {
1259     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1260     Node->setNodeId(-1);
1261     return;
1262   }
1263 
1264   unsigned Opcode = Node->getOpcode();
1265   switch (Opcode) {
1266   case ISD::OR:
1267     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1268       if (tryRxSBG(Node, SystemZ::ROSBG))
1269         return;
1270     goto or_xor;
1271 
1272   case ISD::XOR:
1273     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1274       if (tryRxSBG(Node, SystemZ::RXSBG))
1275         return;
1276     // Fall through.
1277   or_xor:
1278     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1279     // split the operation into two.  If both operands here happen to be
1280     // constant, leave this to common code to optimize.
1281     if (Node->getValueType(0) == MVT::i64 &&
1282         Node->getOperand(0).getOpcode() != ISD::Constant)
1283       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1284         uint64_t Val = Op1->getZExtValue();
1285         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1286           splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1287                               Val - uint32_t(Val), uint32_t(Val));
1288           return;
1289         }
1290       }
1291     break;
1292 
1293   case ISD::AND:
1294     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1295       if (tryRxSBG(Node, SystemZ::RNSBG))
1296         return;
1297     LLVM_FALLTHROUGH;
1298   case ISD::ROTL:
1299   case ISD::SHL:
1300   case ISD::SRL:
1301   case ISD::ZERO_EXTEND:
1302     if (tryRISBGZero(Node))
1303       return;
1304     break;
1305 
1306   case ISD::Constant:
1307     // If this is a 64-bit constant that is out of the range of LLILF,
1308     // LLIHF and LGFI, split it into two 32-bit pieces.
1309     if (Node->getValueType(0) == MVT::i64) {
1310       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1311       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1312         splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1313                             uint32_t(Val));
1314         return;
1315       }
1316     }
1317     break;
1318 
1319   case SystemZISD::SELECT_CCMASK: {
1320     SDValue Op0 = Node->getOperand(0);
1321     SDValue Op1 = Node->getOperand(1);
1322     // Prefer to put any load first, so that it can be matched as a
1323     // conditional load.  Likewise for constants in range for LOCHI.
1324     if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1325         (Subtarget->hasLoadStoreOnCond2() &&
1326          Node->getValueType(0).isInteger() &&
1327          Op1.getOpcode() == ISD::Constant &&
1328          isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1329          !(Op0.getOpcode() == ISD::Constant &&
1330            isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1331       SDValue CCValid = Node->getOperand(2);
1332       SDValue CCMask = Node->getOperand(3);
1333       uint64_t ConstCCValid =
1334         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1335       uint64_t ConstCCMask =
1336         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1337       // Invert the condition.
1338       CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1339                                    CCMask.getValueType());
1340       SDValue Op4 = Node->getOperand(4);
1341       Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1342     }
1343     break;
1344   }
1345 
1346   case ISD::INSERT_VECTOR_ELT: {
1347     EVT VT = Node->getValueType(0);
1348     unsigned ElemBitSize = VT.getScalarSizeInBits();
1349     if (ElemBitSize == 32) {
1350       if (tryGather(Node, SystemZ::VGEF))
1351         return;
1352     } else if (ElemBitSize == 64) {
1353       if (tryGather(Node, SystemZ::VGEG))
1354         return;
1355     }
1356     break;
1357   }
1358 
1359   case ISD::STORE: {
1360     auto *Store = cast<StoreSDNode>(Node);
1361     unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1362     if (ElemBitSize == 32) {
1363       if (tryScatter(Store, SystemZ::VSCEF))
1364         return;
1365     } else if (ElemBitSize == 64) {
1366       if (tryScatter(Store, SystemZ::VSCEG))
1367         return;
1368     }
1369     break;
1370   }
1371   }
1372 
1373   SelectCode(Node);
1374 }
1375 
1376 bool SystemZDAGToDAGISel::
1377 SelectInlineAsmMemoryOperand(const SDValue &Op,
1378                              unsigned ConstraintID,
1379                              std::vector<SDValue> &OutOps) {
1380   SystemZAddressingMode::AddrForm Form;
1381   SystemZAddressingMode::DispRange DispRange;
1382   SDValue Base, Disp, Index;
1383 
1384   switch(ConstraintID) {
1385   default:
1386     llvm_unreachable("Unexpected asm memory constraint");
1387   case InlineAsm::Constraint_i:
1388   case InlineAsm::Constraint_Q:
1389     // Accept an address with a short displacement, but no index.
1390     Form = SystemZAddressingMode::FormBD;
1391     DispRange = SystemZAddressingMode::Disp12Only;
1392     break;
1393   case InlineAsm::Constraint_R:
1394     // Accept an address with a short displacement and an index.
1395     Form = SystemZAddressingMode::FormBDXNormal;
1396     DispRange = SystemZAddressingMode::Disp12Only;
1397     break;
1398   case InlineAsm::Constraint_S:
1399     // Accept an address with a long displacement, but no index.
1400     Form = SystemZAddressingMode::FormBD;
1401     DispRange = SystemZAddressingMode::Disp20Only;
1402     break;
1403   case InlineAsm::Constraint_T:
1404   case InlineAsm::Constraint_m:
1405   case InlineAsm::Constraint_o:
1406     // Accept an address with a long displacement and an index.
1407     // m works the same as T, as this is the most general case.
1408     // We don't really have any special handling of "offsettable"
1409     // memory addresses, so just treat o the same as m.
1410     Form = SystemZAddressingMode::FormBDXNormal;
1411     DispRange = SystemZAddressingMode::Disp20Only;
1412     break;
1413   }
1414 
1415   if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1416     const TargetRegisterClass *TRC =
1417       Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1418     SDLoc DL(Base);
1419     SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1420 
1421     // Make sure that the base address doesn't go into %r0.
1422     // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1423     if (Base.getOpcode() != ISD::TargetFrameIndex &&
1424         Base.getOpcode() != ISD::Register) {
1425       Base =
1426         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1427                                        DL, Base.getValueType(),
1428                                        Base, RC), 0);
1429     }
1430 
1431     // Make sure that the index register isn't assigned to %r0 either.
1432     if (Index.getOpcode() != ISD::Register) {
1433       Index =
1434         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1435                                        DL, Index.getValueType(),
1436                                        Index, RC), 0);
1437     }
1438 
1439     OutOps.push_back(Base);
1440     OutOps.push_back(Disp);
1441     OutOps.push_back(Index);
1442     return false;
1443   }
1444 
1445   return true;
1446 }
1447 
1448 namespace {
1449 // Represents a sequence for extracting a 0/1 value from an IPM result:
1450 // (((X ^ XORValue) + AddValue) >> Bit)
1451 struct IPMConversion {
1452   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1453     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1454 
1455   int64_t XORValue;
1456   int64_t AddValue;
1457   unsigned Bit;
1458 };
1459 } // end anonymous namespace
1460 
1461 // Return a sequence for getting a 1 from an IPM result when CC has a
1462 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1463 // The handling of CC values outside CCValid doesn't matter.
1464 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1465   // Deal with cases where the result can be taken directly from a bit
1466   // of the IPM result.
1467   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1468     return IPMConversion(0, 0, SystemZ::IPM_CC);
1469   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1470     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1471 
1472   // Deal with cases where we can add a value to force the sign bit
1473   // to contain the right value.  Putting the bit in 31 means we can
1474   // use SRL rather than RISBG(L), and also makes it easier to get a
1475   // 0/-1 value, so it has priority over the other tests below.
1476   //
1477   // These sequences rely on the fact that the upper two bits of the
1478   // IPM result are zero.
1479   uint64_t TopBit = uint64_t(1) << 31;
1480   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1481     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1482   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1483     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1484   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1485                             | SystemZ::CCMASK_1
1486                             | SystemZ::CCMASK_2)))
1487     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1488   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1489     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1490   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1491                             | SystemZ::CCMASK_2
1492                             | SystemZ::CCMASK_3)))
1493     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1494 
1495   // Next try inverting the value and testing a bit.  0/1 could be
1496   // handled this way too, but we dealt with that case above.
1497   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1498     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1499 
1500   // Handle cases where adding a value forces a non-sign bit to contain
1501   // the right value.
1502   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1503     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1504   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1505     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1506 
1507   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1508   // can be done by inverting the low CC bit and applying one of the
1509   // sign-based extractions above.
1510   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1511     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1512   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1513     return IPMConversion(1 << SystemZ::IPM_CC,
1514                          TopBit - (3 << SystemZ::IPM_CC), 31);
1515   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1516                             | SystemZ::CCMASK_1
1517                             | SystemZ::CCMASK_3)))
1518     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1519   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1520                             | SystemZ::CCMASK_2
1521                             | SystemZ::CCMASK_3)))
1522     return IPMConversion(1 << SystemZ::IPM_CC,
1523                          TopBit - (1 << SystemZ::IPM_CC), 31);
1524 
1525   llvm_unreachable("Unexpected CC combination");
1526 }
1527 
1528 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1529   auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1530   auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1531   if (!TrueOp || !FalseOp)
1532     return SDValue();
1533   if (FalseOp->getZExtValue() != 0)
1534     return SDValue();
1535   if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1536     return SDValue();
1537 
1538   auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1539   auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1540   if (!CCValidOp || !CCMaskOp)
1541     return SDValue();
1542   int CCValid = CCValidOp->getZExtValue();
1543   int CCMask = CCMaskOp->getZExtValue();
1544 
1545   SDLoc DL(Node);
1546   SDValue Glue = Node->getOperand(4);
1547   IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1548   SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1549 
1550   if (IPM.XORValue)
1551     Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1552                              CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1553 
1554   if (IPM.AddValue)
1555     Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1556                              CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1557 
1558   EVT VT = Node->getValueType(0);
1559   if (VT == MVT::i32 && IPM.Bit == 31) {
1560     unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1561     Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1562                              CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1563   } else {
1564     if (VT != MVT::i32)
1565       Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1566 
1567     if (TrueOp->getSExtValue() == 1) {
1568       // The SHR/AND sequence should get optimized to an RISBG.
1569       Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1570                                CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1571       Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1572                                CurDAG->getConstant(1, DL, VT));
1573     } else {
1574       // Sign-extend from IPM.Bit using a pair of shifts.
1575       int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1576       int SraAmt = VT.getSizeInBits() - 1;
1577       Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1578                                CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1579       Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1580                                CurDAG->getConstant(SraAmt, DL, MVT::i32));
1581     }
1582   }
1583 
1584   return Result;
1585 }
1586 
1587 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1588   // If we have conditional immediate loads, we always prefer
1589   // using those over an IPM sequence.
1590   if (Subtarget->hasLoadStoreOnCond2())
1591     return;
1592 
1593   bool MadeChange = false;
1594 
1595   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1596                                        E = CurDAG->allnodes_end();
1597        I != E;) {
1598     SDNode *N = &*I++;
1599     if (N->use_empty())
1600       continue;
1601 
1602     SDValue Res;
1603     switch (N->getOpcode()) {
1604     default: break;
1605     case SystemZISD::SELECT_CCMASK:
1606       Res = expandSelectBoolean(N);
1607       break;
1608     }
1609 
1610     if (Res) {
1611       DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld:    ");
1612       DEBUG(N->dump(CurDAG));
1613       DEBUG(dbgs() << "\nNew: ");
1614       DEBUG(Res.getNode()->dump(CurDAG));
1615       DEBUG(dbgs() << "\n");
1616 
1617       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1618       MadeChange = true;
1619     }
1620   }
1621 
1622   if (MadeChange)
1623     CurDAG->RemoveDeadNodes();
1624 }
1625