1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZTargetMachine.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "systemz-isel"
24 
25 namespace {
26 // Used to build addressing modes.
27 struct SystemZAddressingMode {
28   // The shape of the address.
29   enum AddrForm {
30     // base+displacement
31     FormBD,
32 
33     // base+displacement+index for load and store operands
34     FormBDXNormal,
35 
36     // base+displacement+index for load address operands
37     FormBDXLA,
38 
39     // base+displacement+index+ADJDYNALLOC
40     FormBDXDynAlloc
41   };
42   AddrForm Form;
43 
44   // The type of displacement.  The enum names here correspond directly
45   // to the definitions in SystemZOperand.td.  We could split them into
46   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47   enum DispRange {
48     Disp12Only,
49     Disp12Pair,
50     Disp20Only,
51     Disp20Only128,
52     Disp20Pair
53   };
54   DispRange DR;
55 
56   // The parts of the address.  The address is equivalent to:
57   //
58   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59   SDValue Base;
60   int64_t Disp;
61   SDValue Index;
62   bool IncludesDynAlloc;
63 
64   SystemZAddressingMode(AddrForm form, DispRange dr)
65     : Form(form), DR(dr), Base(), Disp(0), Index(),
66       IncludesDynAlloc(false) {}
67 
68   // True if the address can have an index register.
69   bool hasIndexField() { return Form != FormBD; }
70 
71   // True if the address can (and must) include ADJDYNALLOC.
72   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73 
74   void dump() {
75     errs() << "SystemZAddressingMode " << this << '\n';
76 
77     errs() << " Base ";
78     if (Base.getNode())
79       Base.getNode()->dump();
80     else
81       errs() << "null\n";
82 
83     if (hasIndexField()) {
84       errs() << " Index ";
85       if (Index.getNode())
86         Index.getNode()->dump();
87       else
88         errs() << "null\n";
89     }
90 
91     errs() << " Disp " << Disp;
92     if (IncludesDynAlloc)
93       errs() << " + ADJDYNALLOC";
94     errs() << '\n';
95   }
96 };
97 
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100   assert(Count <= 64);
101   if (Count > 63)
102     return UINT64_MAX;
103   return (uint64_t(1) << Count) - 1;
104 }
105 
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5).  The combined operand value is effectively:
109 //
110 //   (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 //   (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise.  The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120   RxSBGOperands(unsigned Op, SDValue N)
121     : Opcode(Op), BitSize(N.getValueSizeInBits()),
122       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123       Rotate(0) {}
124 
125   unsigned Opcode;
126   unsigned BitSize;
127   uint64_t Mask;
128   SDValue Input;
129   unsigned Start;
130   unsigned End;
131   unsigned Rotate;
132 };
133 
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135   const SystemZSubtarget *Subtarget;
136 
137   // Used by SystemZOperands.td to create integer constants.
138   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139     return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140   }
141 
142   const SystemZTargetMachine &getTargetMachine() const {
143     return static_cast<const SystemZTargetMachine &>(TM);
144   }
145 
146   const SystemZInstrInfo *getInstrInfo() const {
147     return Subtarget->getInstrInfo();
148   }
149 
150   // Try to fold more of the base or index of AM into AM, where IsBase
151   // selects between the base and index.
152   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153 
154   // Try to describe N in AM, returning true on success.
155   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156 
157   // Extract individual target operands from matched address AM.
158   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159                           SDValue &Base, SDValue &Disp) const;
160   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
162 
163   // Try to match Addr as a FormBD address with displacement type DR.
164   // Return true on success, storing the base and displacement in
165   // Base and Disp respectively.
166   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                     SDValue &Base, SDValue &Disp) const;
168 
169   // Try to match Addr as a FormBDX address with displacement type DR.
170   // Return true on success and if the result had no index.  Store the
171   // base and displacement in Base and Disp respectively.
172   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173                      SDValue &Base, SDValue &Disp) const;
174 
175   // Try to match Addr as a FormBDX* address of form Form with
176   // displacement type DR.  Return true on success, storing the base,
177   // displacement and index in Base, Disp and Index respectively.
178   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179                      SystemZAddressingMode::DispRange DR, SDValue Addr,
180                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
181 
182   // PC-relative address matching routines used by SystemZOperands.td.
183   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184     if (SystemZISD::isPCREL(Addr.getOpcode())) {
185       Target = Addr.getOperand(0);
186       return true;
187     }
188     return false;
189   }
190 
191   // BD matching routines used by SystemZOperands.td.
192   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194   }
195   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197   }
198   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200   }
201   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203   }
204 
205   // MVI matching routines used by SystemZOperands.td.
206   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208   }
209   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211   }
212 
213   // BDX matching routines used by SystemZOperands.td.
214   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215                            SDValue &Index) const {
216     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                          SystemZAddressingMode::Disp12Only,
218                          Addr, Base, Disp, Index);
219   }
220   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221                            SDValue &Index) const {
222     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223                          SystemZAddressingMode::Disp12Pair,
224                          Addr, Base, Disp, Index);
225   }
226   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                             SDValue &Index) const {
228     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229                          SystemZAddressingMode::Disp12Only,
230                          Addr, Base, Disp, Index);
231   }
232   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233                            SDValue &Index) const {
234     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                          SystemZAddressingMode::Disp20Only,
236                          Addr, Base, Disp, Index);
237   }
238   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239                               SDValue &Index) const {
240     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                          SystemZAddressingMode::Disp20Only128,
242                          Addr, Base, Disp, Index);
243   }
244   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                            SDValue &Index) const {
246     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247                          SystemZAddressingMode::Disp20Pair,
248                          Addr, Base, Disp, Index);
249   }
250   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                           SDValue &Index) const {
252     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                          SystemZAddressingMode::Disp12Pair,
254                          Addr, Base, Disp, Index);
255   }
256   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257                           SDValue &Index) const {
258     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259                          SystemZAddressingMode::Disp20Pair,
260                          Addr, Base, Disp, Index);
261   }
262 
263   // Try to match Addr as an address with a base, 12-bit displacement
264   // and index, where the index is element Elem of a vector.
265   // Return true on success, storing the base, displacement and vector
266   // in Base, Disp and Index respectively.
267   bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268                            SDValue &Disp, SDValue &Index) const;
269 
270   // Check whether (or Op (and X InsertMask)) is effectively an insertion
271   // of X into bits InsertMask of some Y != Op.  Return true if so and
272   // set Op to that Y.
273   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274 
275   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276   // Return true on success.
277   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278 
279   // Try to fold some of RxSBG.Input into other fields of RxSBG.
280   // Return true on success.
281   bool expandRxSBG(RxSBGOperands &RxSBG) const;
282 
283   // Return an undefined value of type VT.
284   SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285 
286   // Convert N to VT, if it isn't already.
287   SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288 
289   // Try to implement AND or shift node N using RISBG with the zero flag set.
290   // Return the selected node on success, otherwise return null.
291   bool tryRISBGZero(SDNode *N);
292 
293   // Try to use RISBG or Opcode to implement OR or XOR node N.
294   // Return the selected node on success, otherwise return null.
295   bool tryRxSBG(SDNode *N, unsigned Opcode);
296 
297   // If Op0 is null, then Node is a constant that can be loaded using:
298   //
299   //   (Opcode UpperVal LowerVal)
300   //
301   // If Op0 is nonnull, then Node can be implemented using:
302   //
303   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
304   void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305                            uint64_t UpperVal, uint64_t LowerVal);
306 
307   // Try to use gather instruction Opcode to implement vector insertion N.
308   bool tryGather(SDNode *N, unsigned Opcode);
309 
310   // Try to use scatter instruction Opcode to implement store Store.
311   bool tryScatter(StoreSDNode *Store, unsigned Opcode);
312 
313   // Return true if Load and Store are loads and stores of the same size
314   // and are guaranteed not to overlap.  Such operations can be implemented
315   // using block (SS-format) instructions.
316   //
317   // Partial overlap would lead to incorrect code, since the block operations
318   // are logically bytewise, even though they have a fast path for the
319   // non-overlapping case.  We also need to avoid full overlap (i.e. two
320   // addresses that might be equal at run time) because although that case
321   // would be handled correctly, it might be implemented by millicode.
322   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
323 
324   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
325   // from Y to X.
326   bool storeLoadCanUseMVC(SDNode *N) const;
327 
328   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
329   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
330   // to X.
331   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
332 
333 public:
334   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
335       : SelectionDAGISel(TM, OptLevel) {}
336 
337   bool runOnMachineFunction(MachineFunction &MF) override {
338     Subtarget = &MF.getSubtarget<SystemZSubtarget>();
339     return SelectionDAGISel::runOnMachineFunction(MF);
340   }
341 
342   // Override MachineFunctionPass.
343   StringRef getPassName() const override {
344     return "SystemZ DAG->DAG Pattern Instruction Selection";
345   }
346 
347   // Override SelectionDAGISel.
348   void Select(SDNode *Node) override;
349   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
350                                     std::vector<SDValue> &OutOps) override;
351 
352   // Include the pieces autogenerated from the target description.
353   #include "SystemZGenDAGISel.inc"
354 };
355 } // end anonymous namespace
356 
357 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
358                                          CodeGenOpt::Level OptLevel) {
359   return new SystemZDAGToDAGISel(TM, OptLevel);
360 }
361 
362 // Return true if Val should be selected as a displacement for an address
363 // with range DR.  Here we're interested in the range of both the instruction
364 // described by DR and of any pairing instruction.
365 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
366   switch (DR) {
367   case SystemZAddressingMode::Disp12Only:
368     return isUInt<12>(Val);
369 
370   case SystemZAddressingMode::Disp12Pair:
371   case SystemZAddressingMode::Disp20Only:
372   case SystemZAddressingMode::Disp20Pair:
373     return isInt<20>(Val);
374 
375   case SystemZAddressingMode::Disp20Only128:
376     return isInt<20>(Val) && isInt<20>(Val + 8);
377   }
378   llvm_unreachable("Unhandled displacement range");
379 }
380 
381 // Change the base or index in AM to Value, where IsBase selects
382 // between the base and index.
383 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
384                             SDValue Value) {
385   if (IsBase)
386     AM.Base = Value;
387   else
388     AM.Index = Value;
389 }
390 
391 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
392 // where IsBase selects between the base and index.  Try to fold the
393 // ADJDYNALLOC into AM.
394 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
395                               SDValue Value) {
396   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
397     changeComponent(AM, IsBase, Value);
398     AM.IncludesDynAlloc = true;
399     return true;
400   }
401   return false;
402 }
403 
404 // The base of AM is equivalent to Base + Index.  Try to use Index as
405 // the index register.
406 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
407                         SDValue Index) {
408   if (AM.hasIndexField() && !AM.Index.getNode()) {
409     AM.Base = Base;
410     AM.Index = Index;
411     return true;
412   }
413   return false;
414 }
415 
416 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
417 // between the base and index.  Try to fold Op1 into AM's displacement.
418 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
419                        SDValue Op0, uint64_t Op1) {
420   // First try adjusting the displacement.
421   int64_t TestDisp = AM.Disp + Op1;
422   if (selectDisp(AM.DR, TestDisp)) {
423     changeComponent(AM, IsBase, Op0);
424     AM.Disp = TestDisp;
425     return true;
426   }
427 
428   // We could consider forcing the displacement into a register and
429   // using it as an index, but it would need to be carefully tuned.
430   return false;
431 }
432 
433 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
434                                         bool IsBase) const {
435   SDValue N = IsBase ? AM.Base : AM.Index;
436   unsigned Opcode = N.getOpcode();
437   if (Opcode == ISD::TRUNCATE) {
438     N = N.getOperand(0);
439     Opcode = N.getOpcode();
440   }
441   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
442     SDValue Op0 = N.getOperand(0);
443     SDValue Op1 = N.getOperand(1);
444 
445     unsigned Op0Code = Op0->getOpcode();
446     unsigned Op1Code = Op1->getOpcode();
447 
448     if (Op0Code == SystemZISD::ADJDYNALLOC)
449       return expandAdjDynAlloc(AM, IsBase, Op1);
450     if (Op1Code == SystemZISD::ADJDYNALLOC)
451       return expandAdjDynAlloc(AM, IsBase, Op0);
452 
453     if (Op0Code == ISD::Constant)
454       return expandDisp(AM, IsBase, Op1,
455                         cast<ConstantSDNode>(Op0)->getSExtValue());
456     if (Op1Code == ISD::Constant)
457       return expandDisp(AM, IsBase, Op0,
458                         cast<ConstantSDNode>(Op1)->getSExtValue());
459 
460     if (IsBase && expandIndex(AM, Op0, Op1))
461       return true;
462   }
463   if (Opcode == SystemZISD::PCREL_OFFSET) {
464     SDValue Full = N.getOperand(0);
465     SDValue Base = N.getOperand(1);
466     SDValue Anchor = Base.getOperand(0);
467     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
468                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
469     return expandDisp(AM, IsBase, Base, Offset);
470   }
471   return false;
472 }
473 
474 // Return true if an instruction with displacement range DR should be
475 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
476 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
477   assert(selectDisp(DR, Val) && "Invalid displacement");
478   switch (DR) {
479   case SystemZAddressingMode::Disp12Only:
480   case SystemZAddressingMode::Disp20Only:
481   case SystemZAddressingMode::Disp20Only128:
482     return true;
483 
484   case SystemZAddressingMode::Disp12Pair:
485     // Use the other instruction if the displacement is too large.
486     return isUInt<12>(Val);
487 
488   case SystemZAddressingMode::Disp20Pair:
489     // Use the other instruction if the displacement is small enough.
490     return !isUInt<12>(Val);
491   }
492   llvm_unreachable("Unhandled displacement range");
493 }
494 
495 // Return true if Base + Disp + Index should be performed by LA(Y).
496 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
497   // Don't use LA(Y) for constants.
498   if (!Base)
499     return false;
500 
501   // Always use LA(Y) for frame addresses, since we know that the destination
502   // register is almost always (perhaps always) going to be different from
503   // the frame register.
504   if (Base->getOpcode() == ISD::FrameIndex)
505     return true;
506 
507   if (Disp) {
508     // Always use LA(Y) if there is a base, displacement and index.
509     if (Index)
510       return true;
511 
512     // Always use LA if the displacement is small enough.  It should always
513     // be no worse than AGHI (and better if it avoids a move).
514     if (isUInt<12>(Disp))
515       return true;
516 
517     // For similar reasons, always use LAY if the constant is too big for AGHI.
518     // LAY should be no worse than AGFI.
519     if (!isInt<16>(Disp))
520       return true;
521   } else {
522     // Don't use LA for plain registers.
523     if (!Index)
524       return false;
525 
526     // Don't use LA for plain addition if the index operand is only used
527     // once.  It should be a natural two-operand addition in that case.
528     if (Index->hasOneUse())
529       return false;
530 
531     // Prefer addition if the second operation is sign-extended, in the
532     // hope of using AGF.
533     unsigned IndexOpcode = Index->getOpcode();
534     if (IndexOpcode == ISD::SIGN_EXTEND ||
535         IndexOpcode == ISD::SIGN_EXTEND_INREG)
536       return false;
537   }
538 
539   // Don't use LA for two-operand addition if either operand is only
540   // used once.  The addition instructions are better in that case.
541   if (Base->hasOneUse())
542     return false;
543 
544   return true;
545 }
546 
547 // Return true if Addr is suitable for AM, updating AM if so.
548 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
549                                         SystemZAddressingMode &AM) const {
550   // Start out assuming that the address will need to be loaded separately,
551   // then try to extend it as much as we can.
552   AM.Base = Addr;
553 
554   // First try treating the address as a constant.
555   if (Addr.getOpcode() == ISD::Constant &&
556       expandDisp(AM, true, SDValue(),
557                  cast<ConstantSDNode>(Addr)->getSExtValue()))
558     ;
559   // Also see if it's a bare ADJDYNALLOC.
560   else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
561            expandAdjDynAlloc(AM, true, SDValue()))
562     ;
563   else
564     // Otherwise try expanding each component.
565     while (expandAddress(AM, true) ||
566            (AM.Index.getNode() && expandAddress(AM, false)))
567       continue;
568 
569   // Reject cases where it isn't profitable to use LA(Y).
570   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
571       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
572     return false;
573 
574   // Reject cases where the other instruction in a pair should be used.
575   if (!isValidDisp(AM.DR, AM.Disp))
576     return false;
577 
578   // Make sure that ADJDYNALLOC is included where necessary.
579   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
580     return false;
581 
582   DEBUG(AM.dump());
583   return true;
584 }
585 
586 // Insert a node into the DAG at least before Pos.  This will reposition
587 // the node as needed, and will assign it a node ID that is <= Pos's ID.
588 // Note that this does *not* preserve the uniqueness of node IDs!
589 // The selection DAG must no longer depend on their uniqueness when this
590 // function is used.
591 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
592   if (N.getNode()->getNodeId() == -1 ||
593       N.getNode()->getNodeId() > Pos->getNodeId()) {
594     DAG->RepositionNode(Pos->getIterator(), N.getNode());
595     N.getNode()->setNodeId(Pos->getNodeId());
596   }
597 }
598 
599 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
600                                              EVT VT, SDValue &Base,
601                                              SDValue &Disp) const {
602   Base = AM.Base;
603   if (!Base.getNode())
604     // Register 0 means "no base".  This is mostly useful for shifts.
605     Base = CurDAG->getRegister(0, VT);
606   else if (Base.getOpcode() == ISD::FrameIndex) {
607     // Lower a FrameIndex to a TargetFrameIndex.
608     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
609     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
610   } else if (Base.getValueType() != VT) {
611     // Truncate values from i64 to i32, for shifts.
612     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
613            "Unexpected truncation");
614     SDLoc DL(Base);
615     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
616     insertDAGNode(CurDAG, Base.getNode(), Trunc);
617     Base = Trunc;
618   }
619 
620   // Lower the displacement to a TargetConstant.
621   Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
622 }
623 
624 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
625                                              EVT VT, SDValue &Base,
626                                              SDValue &Disp,
627                                              SDValue &Index) const {
628   getAddressOperands(AM, VT, Base, Disp);
629 
630   Index = AM.Index;
631   if (!Index.getNode())
632     // Register 0 means "no index".
633     Index = CurDAG->getRegister(0, VT);
634 }
635 
636 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
637                                        SDValue Addr, SDValue &Base,
638                                        SDValue &Disp) const {
639   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
640   if (!selectAddress(Addr, AM))
641     return false;
642 
643   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
644   return true;
645 }
646 
647 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
648                                         SDValue Addr, SDValue &Base,
649                                         SDValue &Disp) const {
650   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
651   if (!selectAddress(Addr, AM) || AM.Index.getNode())
652     return false;
653 
654   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
655   return true;
656 }
657 
658 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
659                                         SystemZAddressingMode::DispRange DR,
660                                         SDValue Addr, SDValue &Base,
661                                         SDValue &Disp, SDValue &Index) const {
662   SystemZAddressingMode AM(Form, DR);
663   if (!selectAddress(Addr, AM))
664     return false;
665 
666   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
667   return true;
668 }
669 
670 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
671                                               SDValue &Base,
672                                               SDValue &Disp,
673                                               SDValue &Index) const {
674   SDValue Regs[2];
675   if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
676       Regs[0].getNode() && Regs[1].getNode()) {
677     for (unsigned int I = 0; I < 2; ++I) {
678       Base = Regs[I];
679       Index = Regs[1 - I];
680       // We can't tell here whether the index vector has the right type
681       // for the access; the caller needs to do that instead.
682       if (Index.getOpcode() == ISD::ZERO_EXTEND)
683         Index = Index.getOperand(0);
684       if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
685           Index.getOperand(1) == Elem) {
686         Index = Index.getOperand(0);
687         return true;
688       }
689     }
690   }
691   return false;
692 }
693 
694 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
695                                                uint64_t InsertMask) const {
696   // We're only interested in cases where the insertion is into some operand
697   // of Op, rather than into Op itself.  The only useful case is an AND.
698   if (Op.getOpcode() != ISD::AND)
699     return false;
700 
701   // We need a constant mask.
702   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
703   if (!MaskNode)
704     return false;
705 
706   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
707   uint64_t AndMask = MaskNode->getZExtValue();
708   if (InsertMask & AndMask)
709     return false;
710 
711   // It's only an insertion if all bits are covered or are known to be zero.
712   // The inner check covers all cases but is more expensive.
713   uint64_t Used = allOnes(Op.getValueSizeInBits());
714   if (Used != (AndMask | InsertMask)) {
715     KnownBits Known;
716     CurDAG->computeKnownBits(Op.getOperand(0), Known);
717     if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
718       return false;
719   }
720 
721   Op = Op.getOperand(0);
722   return true;
723 }
724 
725 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
726                                           uint64_t Mask) const {
727   const SystemZInstrInfo *TII = getInstrInfo();
728   if (RxSBG.Rotate != 0)
729     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
730   Mask &= RxSBG.Mask;
731   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
732     RxSBG.Mask = Mask;
733     return true;
734   }
735   return false;
736 }
737 
738 // Return true if any bits of (RxSBG.Input & Mask) are significant.
739 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
740   // Rotate the mask in the same way as RxSBG.Input is rotated.
741   if (RxSBG.Rotate != 0)
742     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
743   return (Mask & RxSBG.Mask) != 0;
744 }
745 
746 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
747   SDValue N = RxSBG.Input;
748   unsigned Opcode = N.getOpcode();
749   switch (Opcode) {
750   case ISD::TRUNCATE: {
751     if (RxSBG.Opcode == SystemZ::RNSBG)
752       return false;
753     uint64_t BitSize = N.getValueSizeInBits();
754     uint64_t Mask = allOnes(BitSize);
755     if (!refineRxSBGMask(RxSBG, Mask))
756       return false;
757     RxSBG.Input = N.getOperand(0);
758     return true;
759   }
760   case ISD::AND: {
761     if (RxSBG.Opcode == SystemZ::RNSBG)
762       return false;
763 
764     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
765     if (!MaskNode)
766       return false;
767 
768     SDValue Input = N.getOperand(0);
769     uint64_t Mask = MaskNode->getZExtValue();
770     if (!refineRxSBGMask(RxSBG, Mask)) {
771       // If some bits of Input are already known zeros, those bits will have
772       // been removed from the mask.  See if adding them back in makes the
773       // mask suitable.
774       KnownBits Known;
775       CurDAG->computeKnownBits(Input, Known);
776       Mask |= Known.Zero.getZExtValue();
777       if (!refineRxSBGMask(RxSBG, Mask))
778         return false;
779     }
780     RxSBG.Input = Input;
781     return true;
782   }
783 
784   case ISD::OR: {
785     if (RxSBG.Opcode != SystemZ::RNSBG)
786       return false;
787 
788     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
789     if (!MaskNode)
790       return false;
791 
792     SDValue Input = N.getOperand(0);
793     uint64_t Mask = ~MaskNode->getZExtValue();
794     if (!refineRxSBGMask(RxSBG, Mask)) {
795       // If some bits of Input are already known ones, those bits will have
796       // been removed from the mask.  See if adding them back in makes the
797       // mask suitable.
798       KnownBits Known;
799       CurDAG->computeKnownBits(Input, Known);
800       Mask &= ~Known.One.getZExtValue();
801       if (!refineRxSBGMask(RxSBG, Mask))
802         return false;
803     }
804     RxSBG.Input = Input;
805     return true;
806   }
807 
808   case ISD::ROTL: {
809     // Any 64-bit rotate left can be merged into the RxSBG.
810     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
811       return false;
812     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
813     if (!CountNode)
814       return false;
815 
816     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
817     RxSBG.Input = N.getOperand(0);
818     return true;
819   }
820 
821   case ISD::ANY_EXTEND:
822     // Bits above the extended operand are don't-care.
823     RxSBG.Input = N.getOperand(0);
824     return true;
825 
826   case ISD::ZERO_EXTEND:
827     if (RxSBG.Opcode != SystemZ::RNSBG) {
828       // Restrict the mask to the extended operand.
829       unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
830       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
831         return false;
832 
833       RxSBG.Input = N.getOperand(0);
834       return true;
835     }
836     LLVM_FALLTHROUGH;
837 
838   case ISD::SIGN_EXTEND: {
839     // Check that the extension bits are don't-care (i.e. are masked out
840     // by the final mask).
841     unsigned BitSize = N.getValueSizeInBits();
842     unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
843     if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
844       // In the case where only the sign bit is active, increase Rotate with
845       // the extension width.
846       if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
847         RxSBG.Rotate += (BitSize - InnerBitSize);
848       else
849         return false;
850     }
851 
852     RxSBG.Input = N.getOperand(0);
853     return true;
854   }
855 
856   case ISD::SHL: {
857     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
858     if (!CountNode)
859       return false;
860 
861     uint64_t Count = CountNode->getZExtValue();
862     unsigned BitSize = N.getValueSizeInBits();
863     if (Count < 1 || Count >= BitSize)
864       return false;
865 
866     if (RxSBG.Opcode == SystemZ::RNSBG) {
867       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
868       // count bits from RxSBG.Input are ignored.
869       if (maskMatters(RxSBG, allOnes(Count)))
870         return false;
871     } else {
872       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
873       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
874         return false;
875     }
876 
877     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
878     RxSBG.Input = N.getOperand(0);
879     return true;
880   }
881 
882   case ISD::SRL:
883   case ISD::SRA: {
884     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
885     if (!CountNode)
886       return false;
887 
888     uint64_t Count = CountNode->getZExtValue();
889     unsigned BitSize = N.getValueSizeInBits();
890     if (Count < 1 || Count >= BitSize)
891       return false;
892 
893     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
894       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
895       // count bits from RxSBG.Input are ignored.
896       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
897         return false;
898     } else {
899       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
900       // which is similar to SLL above.
901       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
902         return false;
903     }
904 
905     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
906     RxSBG.Input = N.getOperand(0);
907     return true;
908   }
909   default:
910     return false;
911   }
912 }
913 
914 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
915   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
916   return SDValue(N, 0);
917 }
918 
919 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
920                                        SDValue N) const {
921   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
922     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
923                                          DL, VT, getUNDEF(DL, MVT::i64), N);
924   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
925     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
926   assert(N.getValueType() == VT && "Unexpected value types");
927   return N;
928 }
929 
930 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
931   SDLoc DL(N);
932   EVT VT = N->getValueType(0);
933   if (!VT.isInteger() || VT.getSizeInBits() > 64)
934     return false;
935   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
936   unsigned Count = 0;
937   while (expandRxSBG(RISBG))
938     // The widening or narrowing is expected to be free.
939     // Counting widening or narrowing as a saved operation will result in
940     // preferring an R*SBG over a simple shift/logical instruction.
941     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
942         RISBG.Input.getOpcode() != ISD::TRUNCATE)
943       Count += 1;
944   if (Count == 0)
945     return false;
946 
947   // Prefer to use normal shift instructions over RISBG, since they can handle
948   // all cases and are sometimes shorter.
949   if (Count == 1 && N->getOpcode() != ISD::AND)
950     return false;
951 
952   // Prefer register extensions like LLC over RISBG.  Also prefer to start
953   // out with normal ANDs if one instruction would be enough.  We can convert
954   // these ANDs into an RISBG later if a three-address instruction is useful.
955   if (RISBG.Rotate == 0) {
956     bool PreferAnd = false;
957     // Prefer AND for any 32-bit and-immediate operation.
958     if (VT == MVT::i32)
959       PreferAnd = true;
960     // As well as for any 64-bit operation that can be implemented via LLC(R),
961     // LLH(R), LLGT(R), or one of the and-immediate instructions.
962     else if (RISBG.Mask == 0xff ||
963              RISBG.Mask == 0xffff ||
964              RISBG.Mask == 0x7fffffff ||
965              SystemZ::isImmLF(~RISBG.Mask) ||
966              SystemZ::isImmHF(~RISBG.Mask))
967      PreferAnd = true;
968     // And likewise for the LLZRGF instruction, which doesn't have a register
969     // to register version.
970     else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
971       if (Load->getMemoryVT() == MVT::i32 &&
972           (Load->getExtensionType() == ISD::EXTLOAD ||
973            Load->getExtensionType() == ISD::ZEXTLOAD) &&
974           RISBG.Mask == 0xffffff00 &&
975           Subtarget->hasLoadAndZeroRightmostByte())
976       PreferAnd = true;
977     }
978     if (PreferAnd) {
979       // Replace the current node with an AND.  Note that the current node
980       // might already be that same AND, in which case it is already CSE'd
981       // with it, and we must not call ReplaceNode.
982       SDValue In = convertTo(DL, VT, RISBG.Input);
983       SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
984       SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
985       if (N != New.getNode()) {
986         insertDAGNode(CurDAG, N, Mask);
987         insertDAGNode(CurDAG, N, New);
988         ReplaceNode(N, New.getNode());
989         N = New.getNode();
990       }
991       // Now, select the machine opcode to implement this operation.
992       SelectCode(N);
993       return true;
994     }
995   }
996 
997   unsigned Opcode = SystemZ::RISBG;
998   // Prefer RISBGN if available, since it does not clobber CC.
999   if (Subtarget->hasMiscellaneousExtensions())
1000     Opcode = SystemZ::RISBGN;
1001   EVT OpcodeVT = MVT::i64;
1002   if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1003       // We can only use the 32-bit instructions if all source bits are
1004       // in the low 32 bits without wrapping, both after rotation (because
1005       // of the smaller range for Start and End) and before rotation
1006       // (because the input value is truncated).
1007       RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1008       ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1009       ((RISBG.End + RISBG.Rotate) & 63) >=
1010       ((RISBG.Start + RISBG.Rotate) & 63)) {
1011     Opcode = SystemZ::RISBMux;
1012     OpcodeVT = MVT::i32;
1013     RISBG.Start &= 31;
1014     RISBG.End &= 31;
1015   }
1016   SDValue Ops[5] = {
1017     getUNDEF(DL, OpcodeVT),
1018     convertTo(DL, OpcodeVT, RISBG.Input),
1019     CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1020     CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1021     CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1022   };
1023   SDValue New = convertTo(
1024       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1025   ReplaceUses(N, New.getNode());
1026   CurDAG->RemoveDeadNode(N);
1027   return true;
1028 }
1029 
1030 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1031   SDLoc DL(N);
1032   EVT VT = N->getValueType(0);
1033   if (!VT.isInteger() || VT.getSizeInBits() > 64)
1034     return false;
1035   // Try treating each operand of N as the second operand of the RxSBG
1036   // and see which goes deepest.
1037   RxSBGOperands RxSBG[] = {
1038     RxSBGOperands(Opcode, N->getOperand(0)),
1039     RxSBGOperands(Opcode, N->getOperand(1))
1040   };
1041   unsigned Count[] = { 0, 0 };
1042   for (unsigned I = 0; I < 2; ++I)
1043     while (expandRxSBG(RxSBG[I]))
1044       // The widening or narrowing is expected to be free.
1045       // Counting widening or narrowing as a saved operation will result in
1046       // preferring an R*SBG over a simple shift/logical instruction.
1047       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1048           RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1049         Count[I] += 1;
1050 
1051   // Do nothing if neither operand is suitable.
1052   if (Count[0] == 0 && Count[1] == 0)
1053     return false;
1054 
1055   // Pick the deepest second operand.
1056   unsigned I = Count[0] > Count[1] ? 0 : 1;
1057   SDValue Op0 = N->getOperand(I ^ 1);
1058 
1059   // Prefer IC for character insertions from memory.
1060   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1061     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1062       if (Load->getMemoryVT() == MVT::i8)
1063         return false;
1064 
1065   // See whether we can avoid an AND in the first operand by converting
1066   // ROSBG to RISBG.
1067   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1068     Opcode = SystemZ::RISBG;
1069     // Prefer RISBGN if available, since it does not clobber CC.
1070     if (Subtarget->hasMiscellaneousExtensions())
1071       Opcode = SystemZ::RISBGN;
1072   }
1073 
1074   SDValue Ops[5] = {
1075     convertTo(DL, MVT::i64, Op0),
1076     convertTo(DL, MVT::i64, RxSBG[I].Input),
1077     CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1078     CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1079     CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1080   };
1081   SDValue New = convertTo(
1082       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1083   ReplaceNode(N, New.getNode());
1084   return true;
1085 }
1086 
1087 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1088                                               SDValue Op0, uint64_t UpperVal,
1089                                               uint64_t LowerVal) {
1090   EVT VT = Node->getValueType(0);
1091   SDLoc DL(Node);
1092   SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1093   if (Op0.getNode())
1094     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1095 
1096   {
1097     // When we haven't passed in Op0, Upper will be a constant. In order to
1098     // prevent folding back to the large immediate in `Or = getNode(...)` we run
1099     // SelectCode first and end up with an opaque machine node. This means that
1100     // we need to use a handle to keep track of Upper in case it gets CSE'd by
1101     // SelectCode.
1102     //
1103     // Note that in the case where Op0 is passed in we could just call
1104     // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1105     // the handle at all, but it's fine to do it here.
1106     //
1107     // TODO: This is a pretty hacky way to do this. Can we do something that
1108     // doesn't require a two paragraph explanation?
1109     HandleSDNode Handle(Upper);
1110     SelectCode(Upper.getNode());
1111     Upper = Handle.getValue();
1112   }
1113 
1114   SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1115   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1116 
1117   ReplaceUses(Node, Or.getNode());
1118   CurDAG->RemoveDeadNode(Node);
1119 
1120   SelectCode(Or.getNode());
1121 }
1122 
1123 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1124   SDValue ElemV = N->getOperand(2);
1125   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1126   if (!ElemN)
1127     return false;
1128 
1129   unsigned Elem = ElemN->getZExtValue();
1130   EVT VT = N->getValueType(0);
1131   if (Elem >= VT.getVectorNumElements())
1132     return false;
1133 
1134   auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1135   if (!Load || !Load->hasOneUse())
1136     return false;
1137   if (Load->getMemoryVT().getSizeInBits() !=
1138       Load->getValueType(0).getSizeInBits())
1139     return false;
1140 
1141   SDValue Base, Disp, Index;
1142   if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1143       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1144     return false;
1145 
1146   SDLoc DL(Load);
1147   SDValue Ops[] = {
1148     N->getOperand(0), Base, Disp, Index,
1149     CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1150   };
1151   SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1152   ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1153   ReplaceNode(N, Res);
1154   return true;
1155 }
1156 
1157 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1158   SDValue Value = Store->getValue();
1159   if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1160     return false;
1161   if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1162     return false;
1163 
1164   SDValue ElemV = Value.getOperand(1);
1165   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1166   if (!ElemN)
1167     return false;
1168 
1169   SDValue Vec = Value.getOperand(0);
1170   EVT VT = Vec.getValueType();
1171   unsigned Elem = ElemN->getZExtValue();
1172   if (Elem >= VT.getVectorNumElements())
1173     return false;
1174 
1175   SDValue Base, Disp, Index;
1176   if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1177       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1178     return false;
1179 
1180   SDLoc DL(Store);
1181   SDValue Ops[] = {
1182     Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1183     Store->getChain()
1184   };
1185   ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1186   return true;
1187 }
1188 
1189 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1190                                                LoadSDNode *Load) const {
1191   // Check that the two memory operands have the same size.
1192   if (Load->getMemoryVT() != Store->getMemoryVT())
1193     return false;
1194 
1195   // Volatility stops an access from being decomposed.
1196   if (Load->isVolatile() || Store->isVolatile())
1197     return false;
1198 
1199   // There's no chance of overlap if the load is invariant.
1200   if (Load->isInvariant() && Load->isDereferenceable())
1201     return true;
1202 
1203   // Otherwise we need to check whether there's an alias.
1204   const Value *V1 = Load->getMemOperand()->getValue();
1205   const Value *V2 = Store->getMemOperand()->getValue();
1206   if (!V1 || !V2)
1207     return false;
1208 
1209   // Reject equality.
1210   uint64_t Size = Load->getMemoryVT().getStoreSize();
1211   int64_t End1 = Load->getSrcValueOffset() + Size;
1212   int64_t End2 = Store->getSrcValueOffset() + Size;
1213   if (V1 == V2 && End1 == End2)
1214     return false;
1215 
1216   return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1217                     MemoryLocation(V2, End2, Store->getAAInfo()));
1218 }
1219 
1220 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1221   auto *Store = cast<StoreSDNode>(N);
1222   auto *Load = cast<LoadSDNode>(Store->getValue());
1223 
1224   // Prefer not to use MVC if either address can use ... RELATIVE LONG
1225   // instructions.
1226   uint64_t Size = Load->getMemoryVT().getStoreSize();
1227   if (Size > 1 && Size <= 8) {
1228     // Prefer LHRL, LRL and LGRL.
1229     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1230       return false;
1231     // Prefer STHRL, STRL and STGRL.
1232     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1233       return false;
1234   }
1235 
1236   return canUseBlockOperation(Store, Load);
1237 }
1238 
1239 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1240                                                      unsigned I) const {
1241   auto *StoreA = cast<StoreSDNode>(N);
1242   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1243   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1244   return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1245 }
1246 
1247 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1248   // Dump information about the Node being selected
1249   DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1250 
1251   // If we have a custom node, we already have selected!
1252   if (Node->isMachineOpcode()) {
1253     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1254     Node->setNodeId(-1);
1255     return;
1256   }
1257 
1258   unsigned Opcode = Node->getOpcode();
1259   switch (Opcode) {
1260   case ISD::OR:
1261     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1262       if (tryRxSBG(Node, SystemZ::ROSBG))
1263         return;
1264     goto or_xor;
1265 
1266   case ISD::XOR:
1267     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1268       if (tryRxSBG(Node, SystemZ::RXSBG))
1269         return;
1270     // Fall through.
1271   or_xor:
1272     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1273     // split the operation into two.  If both operands here happen to be
1274     // constant, leave this to common code to optimize.
1275     if (Node->getValueType(0) == MVT::i64 &&
1276         Node->getOperand(0).getOpcode() != ISD::Constant)
1277       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1278         uint64_t Val = Op1->getZExtValue();
1279         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1280           splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1281                               Val - uint32_t(Val), uint32_t(Val));
1282           return;
1283         }
1284       }
1285     break;
1286 
1287   case ISD::AND:
1288     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1289       if (tryRxSBG(Node, SystemZ::RNSBG))
1290         return;
1291     LLVM_FALLTHROUGH;
1292   case ISD::ROTL:
1293   case ISD::SHL:
1294   case ISD::SRL:
1295   case ISD::ZERO_EXTEND:
1296     if (tryRISBGZero(Node))
1297       return;
1298     break;
1299 
1300   case ISD::Constant:
1301     // If this is a 64-bit constant that is out of the range of LLILF,
1302     // LLIHF and LGFI, split it into two 32-bit pieces.
1303     if (Node->getValueType(0) == MVT::i64) {
1304       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1305       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1306         splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1307                             uint32_t(Val));
1308         return;
1309       }
1310     }
1311     break;
1312 
1313   case SystemZISD::SELECT_CCMASK: {
1314     SDValue Op0 = Node->getOperand(0);
1315     SDValue Op1 = Node->getOperand(1);
1316     // Prefer to put any load first, so that it can be matched as a
1317     // conditional load.  Likewise for constants in range for LOCHI.
1318     if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1319         (Subtarget->hasLoadStoreOnCond2() &&
1320          Node->getValueType(0).isInteger() &&
1321          Op1.getOpcode() == ISD::Constant &&
1322          isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1323          !(Op0.getOpcode() == ISD::Constant &&
1324            isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1325       SDValue CCValid = Node->getOperand(2);
1326       SDValue CCMask = Node->getOperand(3);
1327       uint64_t ConstCCValid =
1328         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1329       uint64_t ConstCCMask =
1330         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1331       // Invert the condition.
1332       CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1333                                    CCMask.getValueType());
1334       SDValue Op4 = Node->getOperand(4);
1335       Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1336     }
1337     break;
1338   }
1339 
1340   case ISD::INSERT_VECTOR_ELT: {
1341     EVT VT = Node->getValueType(0);
1342     unsigned ElemBitSize = VT.getScalarSizeInBits();
1343     if (ElemBitSize == 32) {
1344       if (tryGather(Node, SystemZ::VGEF))
1345         return;
1346     } else if (ElemBitSize == 64) {
1347       if (tryGather(Node, SystemZ::VGEG))
1348         return;
1349     }
1350     break;
1351   }
1352 
1353   case ISD::STORE: {
1354     auto *Store = cast<StoreSDNode>(Node);
1355     unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1356     if (ElemBitSize == 32) {
1357       if (tryScatter(Store, SystemZ::VSCEF))
1358         return;
1359     } else if (ElemBitSize == 64) {
1360       if (tryScatter(Store, SystemZ::VSCEG))
1361         return;
1362     }
1363     break;
1364   }
1365   }
1366 
1367   SelectCode(Node);
1368 }
1369 
1370 bool SystemZDAGToDAGISel::
1371 SelectInlineAsmMemoryOperand(const SDValue &Op,
1372                              unsigned ConstraintID,
1373                              std::vector<SDValue> &OutOps) {
1374   SystemZAddressingMode::AddrForm Form;
1375   SystemZAddressingMode::DispRange DispRange;
1376   SDValue Base, Disp, Index;
1377 
1378   switch(ConstraintID) {
1379   default:
1380     llvm_unreachable("Unexpected asm memory constraint");
1381   case InlineAsm::Constraint_i:
1382   case InlineAsm::Constraint_Q:
1383     // Accept an address with a short displacement, but no index.
1384     Form = SystemZAddressingMode::FormBD;
1385     DispRange = SystemZAddressingMode::Disp12Only;
1386     break;
1387   case InlineAsm::Constraint_R:
1388     // Accept an address with a short displacement and an index.
1389     Form = SystemZAddressingMode::FormBDXNormal;
1390     DispRange = SystemZAddressingMode::Disp12Only;
1391     break;
1392   case InlineAsm::Constraint_S:
1393     // Accept an address with a long displacement, but no index.
1394     Form = SystemZAddressingMode::FormBD;
1395     DispRange = SystemZAddressingMode::Disp20Only;
1396     break;
1397   case InlineAsm::Constraint_T:
1398   case InlineAsm::Constraint_m:
1399   case InlineAsm::Constraint_o:
1400     // Accept an address with a long displacement and an index.
1401     // m works the same as T, as this is the most general case.
1402     // We don't really have any special handling of "offsettable"
1403     // memory addresses, so just treat o the same as m.
1404     Form = SystemZAddressingMode::FormBDXNormal;
1405     DispRange = SystemZAddressingMode::Disp20Only;
1406     break;
1407   }
1408 
1409   if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1410     const TargetRegisterClass *TRC =
1411       Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1412     SDLoc DL(Base);
1413     SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1414 
1415     // Make sure that the base address doesn't go into %r0.
1416     // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1417     if (Base.getOpcode() != ISD::TargetFrameIndex &&
1418         Base.getOpcode() != ISD::Register) {
1419       Base =
1420         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1421                                        DL, Base.getValueType(),
1422                                        Base, RC), 0);
1423     }
1424 
1425     // Make sure that the index register isn't assigned to %r0 either.
1426     if (Index.getOpcode() != ISD::Register) {
1427       Index =
1428         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1429                                        DL, Index.getValueType(),
1430                                        Index, RC), 0);
1431     }
1432 
1433     OutOps.push_back(Base);
1434     OutOps.push_back(Disp);
1435     OutOps.push_back(Index);
1436     return false;
1437   }
1438 
1439   return true;
1440 }
1441