1 //===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RISCVTargetTransformInfo.h" 10 #include "MCTargetDesc/RISCVMatInt.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include <cmath> 15 using namespace llvm; 16 17 #define DEBUG_TYPE "riscvtti" 18 19 static cl::opt<unsigned> RVVRegisterWidthLMUL( 20 "riscv-v-register-bit-width-lmul", 21 cl::desc( 22 "The LMUL to use for getRegisterBitWidth queries. Affects LMUL used " 23 "by autovectorized code. Fractional LMULs are not supported."), 24 cl::init(1), cl::Hidden); 25 26 InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 27 TTI::TargetCostKind CostKind) { 28 assert(Ty->isIntegerTy() && 29 "getIntImmCost can only estimate cost of materialising integers"); 30 31 // We have a Zero register, so 0 is always free. 32 if (Imm == 0) 33 return TTI::TCC_Free; 34 35 // Otherwise, we check how many instructions it will take to materialise. 36 const DataLayout &DL = getDataLayout(); 37 return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty), 38 getST()->getFeatureBits()); 39 } 40 41 InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 42 const APInt &Imm, Type *Ty, 43 TTI::TargetCostKind CostKind, 44 Instruction *Inst) { 45 assert(Ty->isIntegerTy() && 46 "getIntImmCost can only estimate cost of materialising integers"); 47 48 // We have a Zero register, so 0 is always free. 49 if (Imm == 0) 50 return TTI::TCC_Free; 51 52 // Some instructions in RISC-V can take a 12-bit immediate. Some of these are 53 // commutative, in others the immediate comes from a specific argument index. 54 bool Takes12BitImm = false; 55 unsigned ImmArgIdx = ~0U; 56 57 switch (Opcode) { 58 case Instruction::GetElementPtr: 59 // Never hoist any arguments to a GetElementPtr. CodeGenPrepare will 60 // split up large offsets in GEP into better parts than ConstantHoisting 61 // can. 62 return TTI::TCC_Free; 63 case Instruction::And: 64 // zext.h 65 if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb()) 66 return TTI::TCC_Free; 67 // zext.w 68 if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZbb()) 69 return TTI::TCC_Free; 70 LLVM_FALLTHROUGH; 71 case Instruction::Add: 72 case Instruction::Or: 73 case Instruction::Xor: 74 case Instruction::Mul: 75 Takes12BitImm = true; 76 break; 77 case Instruction::Sub: 78 case Instruction::Shl: 79 case Instruction::LShr: 80 case Instruction::AShr: 81 Takes12BitImm = true; 82 ImmArgIdx = 1; 83 break; 84 default: 85 break; 86 } 87 88 if (Takes12BitImm) { 89 // Check immediate is the correct argument... 90 if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) { 91 // ... and fits into the 12-bit immediate. 92 if (Imm.getMinSignedBits() <= 64 && 93 getTLI()->isLegalAddImmediate(Imm.getSExtValue())) { 94 return TTI::TCC_Free; 95 } 96 } 97 98 // Otherwise, use the full materialisation cost. 99 return getIntImmCost(Imm, Ty, CostKind); 100 } 101 102 // By default, prevent hoisting. 103 return TTI::TCC_Free; 104 } 105 106 InstructionCost 107 RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 108 const APInt &Imm, Type *Ty, 109 TTI::TargetCostKind CostKind) { 110 // Prevent hoisting in unknown cases. 111 return TTI::TCC_Free; 112 } 113 114 TargetTransformInfo::PopcntSupportKind 115 RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) { 116 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 117 return ST->hasStdExtZbb() ? TTI::PSK_FastHardware : TTI::PSK_Software; 118 } 119 120 bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const { 121 // Currently, the ExpandReductions pass can't expand scalable-vector 122 // reductions, but we still request expansion as RVV doesn't support certain 123 // reductions and the SelectionDAG can't legalize them either. 124 switch (II->getIntrinsicID()) { 125 default: 126 return false; 127 // These reductions have no equivalent in RVV 128 case Intrinsic::vector_reduce_mul: 129 case Intrinsic::vector_reduce_fmul: 130 return true; 131 } 132 } 133 134 Optional<unsigned> RISCVTTIImpl::getMaxVScale() const { 135 // There is no assumption of the maximum vector length in V specification. 136 // We use the value specified by users as the maximum vector length. 137 // This function will use the assumed maximum vector length to get the 138 // maximum vscale for LoopVectorizer. 139 // If users do not specify the maximum vector length, we have no way to 140 // know whether the LoopVectorizer is safe to do or not. 141 // We only consider to use single vector register (LMUL = 1) to vectorize. 142 unsigned MaxVectorSizeInBits = ST->getMaxRVVVectorSizeInBits(); 143 if (ST->hasVInstructions() && MaxVectorSizeInBits != 0) 144 return MaxVectorSizeInBits / RISCV::RVVBitsPerBlock; 145 return BaseT::getMaxVScale(); 146 } 147 148 TypeSize 149 RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 150 unsigned LMUL = PowerOf2Floor( 151 std::max<unsigned>(std::min<unsigned>(RVVRegisterWidthLMUL, 8), 1)); 152 switch (K) { 153 case TargetTransformInfo::RGK_Scalar: 154 return TypeSize::getFixed(ST->getXLen()); 155 case TargetTransformInfo::RGK_FixedWidthVector: 156 return TypeSize::getFixed( 157 ST->hasVInstructions() ? LMUL * ST->getMinRVVVectorSizeInBits() : 0); 158 case TargetTransformInfo::RGK_ScalableVector: 159 return TypeSize::getScalable( 160 ST->hasVInstructions() ? LMUL * RISCV::RVVBitsPerBlock : 0); 161 } 162 163 llvm_unreachable("Unsupported register kind"); 164 } 165 166 InstructionCost RISCVTTIImpl::getSpliceCost(VectorType *Tp, int Index) { 167 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 168 169 unsigned Cost = 2; // vslidedown+vslideup. 170 // TODO: LMUL should increase cost. 171 // TODO: Multiplying by LT.first implies this legalizes into multiple copies 172 // of similar code, but I think we expand through memory. 173 return Cost * LT.first; 174 } 175 176 InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 177 VectorType *Tp, ArrayRef<int> Mask, 178 int Index, VectorType *SubTp, 179 ArrayRef<const Value *> Args) { 180 if (isa<ScalableVectorType>(Tp)) { 181 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 182 switch (Kind) { 183 default: 184 // Fallthrough to generic handling. 185 // TODO: Most of these cases will return getInvalid in generic code, and 186 // must be implemented here. 187 break; 188 case TTI::SK_Broadcast: { 189 return LT.first * 1; 190 } 191 case TTI::SK_Splice: 192 return getSpliceCost(Tp, Index); 193 case TTI::SK_Reverse: 194 // Most of the cost here is producing the vrgather index register 195 // Example sequence: 196 // csrr a0, vlenb 197 // srli a0, a0, 3 198 // addi a0, a0, -1 199 // vsetvli a1, zero, e8, mf8, ta, mu (ignored) 200 // vid.v v9 201 // vrsub.vx v10, v9, a0 202 // vrgather.vv v9, v8, v10 203 return LT.first * 6; 204 } 205 } 206 207 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 208 } 209 210 InstructionCost 211 RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 212 unsigned AddressSpace, 213 TTI::TargetCostKind CostKind) { 214 if (!isa<ScalableVectorType>(Src)) 215 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 216 CostKind); 217 218 return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); 219 } 220 221 InstructionCost RISCVTTIImpl::getGatherScatterOpCost( 222 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 223 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 224 if (CostKind != TTI::TCK_RecipThroughput) 225 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 226 Alignment, CostKind, I); 227 228 if ((Opcode == Instruction::Load && 229 !isLegalMaskedGather(DataTy, Align(Alignment))) || 230 (Opcode == Instruction::Store && 231 !isLegalMaskedScatter(DataTy, Align(Alignment)))) 232 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 233 Alignment, CostKind, I); 234 235 // FIXME: Only supporting fixed vectors for now. 236 if (!isa<FixedVectorType>(DataTy)) 237 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 238 Alignment, CostKind, I); 239 240 auto *VTy = cast<FixedVectorType>(DataTy); 241 unsigned NumLoads = VTy->getNumElements(); 242 InstructionCost MemOpCost = 243 getMemoryOpCost(Opcode, VTy->getElementType(), Alignment, 0, CostKind, I); 244 return NumLoads * MemOpCost; 245 } 246 247 InstructionCost 248 RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 249 TTI::TargetCostKind CostKind) { 250 auto *RetTy = ICA.getReturnType(); 251 switch (ICA.getID()) { 252 // TODO: add more intrinsic 253 case Intrinsic::experimental_stepvector: { 254 unsigned Cost = 1; // vid 255 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 256 return Cost + (LT.first - 1); 257 } 258 default: 259 break; 260 } 261 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 262 } 263 264 InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 265 Type *Src, 266 TTI::CastContextHint CCH, 267 TTI::TargetCostKind CostKind, 268 const Instruction *I) { 269 if (isa<VectorType>(Dst) && isa<VectorType>(Src)) { 270 // FIXME: Need to compute legalizing cost for illegal types. 271 if (!isTypeLegal(Src) || !isTypeLegal(Dst)) 272 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 273 274 // Skip if element size of Dst or Src is bigger than ELEN. 275 if (Src->getScalarSizeInBits() > ST->getELEN() || 276 Dst->getScalarSizeInBits() > ST->getELEN()) 277 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 278 279 int ISD = TLI->InstructionOpcodeToISD(Opcode); 280 assert(ISD && "Invalid opcode"); 281 282 // FIXME: Need to consider vsetvli and lmul. 283 int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) - 284 (int)Log2_32(Src->getScalarSizeInBits()); 285 switch (ISD) { 286 case ISD::SIGN_EXTEND: 287 case ISD::ZERO_EXTEND: 288 return 1; 289 case ISD::TRUNCATE: 290 case ISD::FP_EXTEND: 291 case ISD::FP_ROUND: 292 // Counts of narrow/widen instructions. 293 return std::abs(PowDiff); 294 case ISD::FP_TO_SINT: 295 case ISD::FP_TO_UINT: 296 case ISD::SINT_TO_FP: 297 case ISD::UINT_TO_FP: 298 if (std::abs(PowDiff) <= 1) 299 return 1; 300 // Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8), 301 // so it only need two conversion. 302 if (Src->isIntOrIntVectorTy()) 303 return 2; 304 // Counts of narrow/widen instructions. 305 return std::abs(PowDiff); 306 } 307 } 308 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 309 } 310 311 InstructionCost 312 RISCVTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 313 bool IsUnsigned, 314 TTI::TargetCostKind CostKind) { 315 // FIXME: Only supporting fixed vectors for now. 316 if (!isa<FixedVectorType>(Ty)) 317 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 318 319 if (!ST->useRVVForFixedLengthVectors()) 320 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 321 322 // Skip if scalar size of Ty is bigger than ELEN. 323 if (Ty->getScalarSizeInBits() > ST->getELEN()) 324 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 325 326 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 327 if (Ty->getElementType()->isIntegerTy(1)) 328 // vcpop sequences, see vreduction-mask.ll. umax, smin actually only 329 // cost 2, but we don't have enough info here so we slightly over cost. 330 return (LT.first - 1) + 3; 331 332 // IR Reduction is composed by two vmv and one rvv reduction instruction. 333 InstructionCost BaseCost = 2; 334 unsigned VL = cast<FixedVectorType>(Ty)->getNumElements(); 335 return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL); 336 } 337 338 InstructionCost 339 RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *VTy, 340 Optional<FastMathFlags> FMF, 341 TTI::TargetCostKind CostKind) { 342 // FIXME: Only supporting fixed vectors for now. 343 if (!isa<FixedVectorType>(VTy)) 344 return BaseT::getArithmeticReductionCost(Opcode, VTy, FMF, CostKind); 345 346 if (!ST->useRVVForFixedLengthVectors()) 347 return BaseT::getArithmeticReductionCost(Opcode, VTy, FMF, CostKind); 348 349 // Skip if scalar size of VTy is bigger than ELEN. 350 if (VTy->getScalarSizeInBits() > ST->getELEN()) 351 return BaseT::getArithmeticReductionCost(Opcode, VTy, FMF, CostKind); 352 353 int ISD = TLI->InstructionOpcodeToISD(Opcode); 354 assert(ISD && "Invalid opcode"); 355 356 if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND && 357 ISD != ISD::FADD) 358 return BaseT::getArithmeticReductionCost(Opcode, VTy, FMF, CostKind); 359 360 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VTy); 361 if (VTy->getElementType()->isIntegerTy(1)) 362 // vcpop sequences, see vreduction-mask.ll 363 return (LT.first - 1) + (ISD == ISD::AND ? 3 : 2); 364 365 // IR Reduction is composed by two vmv and one rvv reduction instruction. 366 InstructionCost BaseCost = 2; 367 unsigned VL = cast<FixedVectorType>(VTy)->getNumElements(); 368 if (TTI::requiresOrderedReduction(FMF)) 369 return (LT.first - 1) + BaseCost + VL; 370 return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL); 371 } 372 373 void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 374 TTI::UnrollingPreferences &UP, 375 OptimizationRemarkEmitter *ORE) { 376 // TODO: More tuning on benchmarks and metrics with changes as needed 377 // would apply to all settings below to enable performance. 378 379 380 if (ST->enableDefaultUnroll()) 381 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); 382 383 // Enable Upper bound unrolling universally, not dependant upon the conditions 384 // below. 385 UP.UpperBound = true; 386 387 // Disable loop unrolling for Oz and Os. 388 UP.OptSizeThreshold = 0; 389 UP.PartialOptSizeThreshold = 0; 390 if (L->getHeader()->getParent()->hasOptSize()) 391 return; 392 393 SmallVector<BasicBlock *, 4> ExitingBlocks; 394 L->getExitingBlocks(ExitingBlocks); 395 LLVM_DEBUG(dbgs() << "Loop has:\n" 396 << "Blocks: " << L->getNumBlocks() << "\n" 397 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 398 399 // Only allow another exit other than the latch. This acts as an early exit 400 // as it mirrors the profitability calculation of the runtime unroller. 401 if (ExitingBlocks.size() > 2) 402 return; 403 404 // Limit the CFG of the loop body for targets with a branch predictor. 405 // Allowing 4 blocks permits if-then-else diamonds in the body. 406 if (L->getNumBlocks() > 4) 407 return; 408 409 // Don't unroll vectorized loops, including the remainder loop 410 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 411 return; 412 413 // Scan the loop: don't unroll loops with calls as this could prevent 414 // inlining. 415 InstructionCost Cost = 0; 416 for (auto *BB : L->getBlocks()) { 417 for (auto &I : *BB) { 418 // Initial setting - Don't unroll loops containing vectorized 419 // instructions. 420 if (I.getType()->isVectorTy()) 421 return; 422 423 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 424 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 425 if (!isLoweredToCall(F)) 426 continue; 427 } 428 return; 429 } 430 431 SmallVector<const Value *> Operands(I.operand_values()); 432 Cost += 433 getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency); 434 } 435 } 436 437 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 438 439 UP.Partial = true; 440 UP.Runtime = true; 441 UP.UnrollRemainder = true; 442 UP.UnrollAndJam = true; 443 UP.UnrollAndJamInnerLoopThreshold = 60; 444 445 // Force unrolling small loops can be very useful because of the branch 446 // taken cost of the backedge. 447 if (Cost < 12) 448 UP.Force = true; 449 } 450 451 void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 452 TTI::PeelingPreferences &PP) { 453 BaseT::getPeelingPreferences(L, SE, PP); 454 } 455 456 unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) { 457 TypeSize Size = Ty->getPrimitiveSizeInBits(); 458 if (Ty->isVectorTy()) { 459 if (Size.isScalable() && ST->hasVInstructions()) 460 return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock); 461 462 if (ST->useRVVForFixedLengthVectors()) 463 return divideCeil(Size, ST->getMinRVVVectorSizeInBits()); 464 } 465 466 return BaseT::getRegUsageForType(Ty); 467 } 468