1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
174                    MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
188 
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190 
191   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
192 
193   if (!Subtarget.hasStdExtZbb())
194     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
195 
196   if (Subtarget.is64Bit()) {
197     setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
198 
199     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
200                        MVT::i32, Custom);
201 
202     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
203                        MVT::i32, Custom);
204   } else {
205     setLibcallName(
206         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
207         nullptr);
208     setLibcallName(RTLIB::MULO_I64, nullptr);
209   }
210 
211   if (!Subtarget.hasStdExtM()) {
212     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
213                         ISD::SREM, ISD::UREM},
214                        XLenVT, Expand);
215   } else {
216     if (Subtarget.is64Bit()) {
217       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
218 
219       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
220                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
221     } else {
222       setOperationAction(ISD::MUL, MVT::i64, Custom);
223     }
224   }
225 
226   setOperationAction(
227       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
228       Expand);
229 
230   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
231                      Custom);
232 
233   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
234       Subtarget.hasStdExtZbkb()) {
235     if (Subtarget.is64Bit())
236       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
237   } else {
238     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
239   }
240 
241   if (Subtarget.hasStdExtZbp()) {
242     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
243     // more combining.
244     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
245 
246     // BSWAP i8 doesn't exist.
247     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
248 
249     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
250 
251     if (Subtarget.is64Bit())
252       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
253   } else {
254     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
255     // pattern match it directly in isel.
256     setOperationAction(ISD::BSWAP, XLenVT,
257                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
258                            ? Legal
259                            : Expand);
260     // Zbkb can use rev8+brev8 to implement bitreverse.
261     setOperationAction(ISD::BITREVERSE, XLenVT,
262                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
263   }
264 
265   if (Subtarget.hasStdExtZbb()) {
266     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
267                        Legal);
268 
269     if (Subtarget.is64Bit())
270       setOperationAction(
271           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
272           MVT::i32, Custom);
273   } else {
274     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
275 
276     if (Subtarget.is64Bit())
277       setOperationAction(ISD::ABS, MVT::i32, Custom);
278   }
279 
280   if (Subtarget.hasStdExtZbt()) {
281     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
282     setOperationAction(ISD::SELECT, XLenVT, Legal);
283 
284     if (Subtarget.is64Bit())
285       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
286   } else {
287     setOperationAction(ISD::SELECT, XLenVT, Custom);
288   }
289 
290   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
291       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
292       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
293       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
294       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
295       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
296       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
297 
298   static const ISD::CondCode FPCCToExpand[] = {
299       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
300       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
301       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
302 
303   static const ISD::NodeType FPOpToExpand[] = {
304       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
305       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
306 
307   if (Subtarget.hasStdExtZfh())
308     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
309 
310   if (Subtarget.hasStdExtZfh()) {
311     for (auto NT : FPLegalNodeTypes)
312       setOperationAction(NT, MVT::f16, Legal);
313     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
314     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
315     setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
316     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
317     setOperationAction(ISD::SELECT, MVT::f16, Custom);
318     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
319 
320     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
321                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
322                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
323                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
324                         ISD::FLOG2, ISD::FLOG10},
325                        MVT::f16, Promote);
326 
327     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
328     // complete support for all operations in LegalizeDAG.
329 
330     // We need to custom promote this.
331     if (Subtarget.is64Bit())
332       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
333   }
334 
335   if (Subtarget.hasStdExtF()) {
336     for (auto NT : FPLegalNodeTypes)
337       setOperationAction(NT, MVT::f32, Legal);
338     setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
339     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
340     setOperationAction(ISD::SELECT, MVT::f32, Custom);
341     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
342     for (auto Op : FPOpToExpand)
343       setOperationAction(Op, MVT::f32, Expand);
344     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
345     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
346   }
347 
348   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
349     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
350 
351   if (Subtarget.hasStdExtD()) {
352     for (auto NT : FPLegalNodeTypes)
353       setOperationAction(NT, MVT::f64, Legal);
354     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
355     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
356     setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
357     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
358     setOperationAction(ISD::SELECT, MVT::f64, Custom);
359     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
360     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
361     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
362     for (auto Op : FPOpToExpand)
363       setOperationAction(Op, MVT::f64, Expand);
364     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
365     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
366   }
367 
368   if (Subtarget.is64Bit())
369     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
370                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
371                        MVT::i32, Custom);
372 
373   if (Subtarget.hasStdExtF()) {
374     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
375                        Custom);
376 
377     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
378                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
379                        XLenVT, Legal);
380 
381     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
382     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
383   }
384 
385   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
386                       ISD::JumpTable},
387                      XLenVT, Custom);
388 
389   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
390 
391   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
392   // Unfortunately this can't be determined just from the ISA naming string.
393   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
394                      Subtarget.is64Bit() ? Legal : Custom);
395 
396   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
397   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
398   if (Subtarget.is64Bit())
399     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
400 
401   if (Subtarget.hasStdExtA()) {
402     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
403     setMinCmpXchgSizeInBits(32);
404   } else {
405     setMaxAtomicSizeInBitsSupported(0);
406   }
407 
408   setBooleanContents(ZeroOrOneBooleanContent);
409 
410   if (Subtarget.hasVInstructions()) {
411     setBooleanVectorContents(ZeroOrOneBooleanContent);
412 
413     setOperationAction(ISD::VSCALE, XLenVT, Custom);
414 
415     // RVV intrinsics may have illegal operands.
416     // We also need to custom legalize vmv.x.s.
417     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
418                        {MVT::i8, MVT::i16}, Custom);
419     if (Subtarget.is64Bit())
420       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
421     else
422       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
423                          MVT::i64, Custom);
424 
425     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
426                        MVT::Other, Custom);
427 
428     static const unsigned IntegerVPOps[] = {
429         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
430         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
431         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
432         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
433         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
434         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
435         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
436         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
437         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SIGN_EXTEND,
438         ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
439 
440     static const unsigned FloatingPointVPOps[] = {
441         ISD::VP_FADD,        ISD::VP_FSUB,
442         ISD::VP_FMUL,        ISD::VP_FDIV,
443         ISD::VP_FNEG,        ISD::VP_FMA,
444         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
445         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
446         ISD::VP_MERGE,       ISD::VP_SELECT,
447         ISD::VP_SITOFP,      ISD::VP_UITOFP,
448         ISD::VP_SETCC,       ISD::VP_FP_ROUND,
449         ISD::VP_FP_EXTEND};
450 
451     if (!Subtarget.is64Bit()) {
452       // We must custom-lower certain vXi64 operations on RV32 due to the vector
453       // element type being illegal.
454       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
455                          MVT::i64, Custom);
456 
457       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
458                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
459                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
460                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
461                          MVT::i64, Custom);
462 
463       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
464                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
465                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
466                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
467                          MVT::i64, Custom);
468     }
469 
470     for (MVT VT : BoolVecVTs) {
471       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
472 
473       // Mask VTs are custom-expanded into a series of standard nodes
474       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
475                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
476                          VT, Custom);
477 
478       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
479                          Custom);
480 
481       setOperationAction(ISD::SELECT, VT, Custom);
482       setOperationAction(
483           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
484           Expand);
485 
486       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
487 
488       setOperationAction(
489           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
490           Custom);
491 
492       setOperationAction(
493           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
494           Custom);
495 
496       // RVV has native int->float & float->int conversions where the
497       // element type sizes are within one power-of-two of each other. Any
498       // wider distances between type sizes have to be lowered as sequences
499       // which progressively narrow the gap in stages.
500       setOperationAction(
501           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
502           VT, Custom);
503 
504       // Expand all extending loads to types larger than this, and truncating
505       // stores from types larger than this.
506       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
507         setTruncStoreAction(OtherVT, VT, Expand);
508         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
509                          VT, Expand);
510       }
511 
512       setOperationAction(
513           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
514           Custom);
515     }
516 
517     for (MVT VT : IntVecVTs) {
518       if (VT.getVectorElementType() == MVT::i64 &&
519           !Subtarget.hasVInstructionsI64())
520         continue;
521 
522       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
523       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
524 
525       // Vectors implement MULHS/MULHU.
526       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
527 
528       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
529       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
530         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
531 
532       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
533                          Legal);
534 
535       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
536 
537       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
538                          Expand);
539 
540       setOperationAction(ISD::BSWAP, VT, Expand);
541 
542       // Custom-lower extensions and truncations from/to mask types.
543       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
544                          VT, Custom);
545 
546       // RVV has native int->float & float->int conversions where the
547       // element type sizes are within one power-of-two of each other. Any
548       // wider distances between type sizes have to be lowered as sequences
549       // which progressively narrow the gap in stages.
550       setOperationAction(
551           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
552           VT, Custom);
553 
554       setOperationAction(
555           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
556 
557       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
558       // nodes which truncate by one power of two at a time.
559       setOperationAction(ISD::TRUNCATE, VT, Custom);
560 
561       // Custom-lower insert/extract operations to simplify patterns.
562       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
563                          Custom);
564 
565       // Custom-lower reduction operations to set up the corresponding custom
566       // nodes' operands.
567       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
568                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
569                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
570                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
571                          VT, Custom);
572 
573       setOperationAction(IntegerVPOps, VT, Custom);
574 
575       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
576 
577       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
578                          VT, Custom);
579 
580       setOperationAction(
581           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
582           Custom);
583 
584       setOperationAction(
585           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
586           VT, Custom);
587 
588       setOperationAction(ISD::SELECT, VT, Custom);
589       setOperationAction(ISD::SELECT_CC, VT, Expand);
590 
591       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
592 
593       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
594         setTruncStoreAction(VT, OtherVT, Expand);
595         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
596                          VT, Expand);
597       }
598 
599       // Splice
600       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
601 
602       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
603       // type that can represent the value exactly.
604       if (VT.getVectorElementType() != MVT::i64) {
605         MVT FloatEltVT =
606             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
607         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
608         if (isTypeLegal(FloatVT)) {
609           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
610                              Custom);
611         }
612       }
613     }
614 
615     // Expand various CCs to best match the RVV ISA, which natively supports UNE
616     // but no other unordered comparisons, and supports all ordered comparisons
617     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
618     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
619     // and we pattern-match those back to the "original", swapping operands once
620     // more. This way we catch both operations and both "vf" and "fv" forms with
621     // fewer patterns.
622     static const ISD::CondCode VFPCCToExpand[] = {
623         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
624         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
625         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
626     };
627 
628     // Sets common operation actions on RVV floating-point vector types.
629     const auto SetCommonVFPActions = [&](MVT VT) {
630       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
631       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
632       // sizes are within one power-of-two of each other. Therefore conversions
633       // between vXf16 and vXf64 must be lowered as sequences which convert via
634       // vXf32.
635       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
636       // Custom-lower insert/extract operations to simplify patterns.
637       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
638                          Custom);
639       // Expand various condition codes (explained above).
640       setCondCodeAction(VFPCCToExpand, VT, Expand);
641 
642       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
643 
644       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
645                          VT, Custom);
646 
647       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
648                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
649                          VT, Custom);
650 
651       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
652 
653       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
654 
655       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
656                          VT, Custom);
657 
658       setOperationAction(
659           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
660           Custom);
661 
662       setOperationAction(ISD::SELECT, VT, Custom);
663       setOperationAction(ISD::SELECT_CC, VT, Expand);
664 
665       setOperationAction(
666           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
667           VT, Custom);
668 
669       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
670 
671       setOperationAction(FloatingPointVPOps, VT, Custom);
672     };
673 
674     // Sets common extload/truncstore actions on RVV floating-point vector
675     // types.
676     const auto SetCommonVFPExtLoadTruncStoreActions =
677         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
678           for (auto SmallVT : SmallerVTs) {
679             setTruncStoreAction(VT, SmallVT, Expand);
680             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
681           }
682         };
683 
684     if (Subtarget.hasVInstructionsF16())
685       for (MVT VT : F16VecVTs)
686         SetCommonVFPActions(VT);
687 
688     for (MVT VT : F32VecVTs) {
689       if (Subtarget.hasVInstructionsF32())
690         SetCommonVFPActions(VT);
691       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
692     }
693 
694     for (MVT VT : F64VecVTs) {
695       if (Subtarget.hasVInstructionsF64())
696         SetCommonVFPActions(VT);
697       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
698       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
699     }
700 
701     if (Subtarget.useRVVForFixedLengthVectors()) {
702       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
703         if (!useRVVForFixedLengthVectorVT(VT))
704           continue;
705 
706         // By default everything must be expanded.
707         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
708           setOperationAction(Op, VT, Expand);
709         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
710           setTruncStoreAction(VT, OtherVT, Expand);
711           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
712                            OtherVT, VT, Expand);
713         }
714 
715         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
716         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
717                            Custom);
718 
719         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
720                            Custom);
721 
722         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
723                            VT, Custom);
724 
725         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
726 
727         setOperationAction(ISD::SETCC, VT, Custom);
728 
729         setOperationAction(ISD::SELECT, VT, Custom);
730 
731         setOperationAction(ISD::TRUNCATE, VT, Custom);
732 
733         setOperationAction(ISD::BITCAST, VT, Custom);
734 
735         setOperationAction(
736             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
737             Custom);
738 
739         setOperationAction(
740             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
741             Custom);
742 
743         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
744                             ISD::FP_TO_UINT},
745                            VT, Custom);
746 
747         // Operations below are different for between masks and other vectors.
748         if (VT.getVectorElementType() == MVT::i1) {
749           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
750                               ISD::OR, ISD::XOR},
751                              VT, Custom);
752 
753           setOperationAction(
754               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
755               VT, Custom);
756           continue;
757         }
758 
759         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
760         // it before type legalization for i64 vectors on RV32. It will then be
761         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
762         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
763         // improvements first.
764         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
765           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
766           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
767         }
768 
769         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
770         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
771 
772         setOperationAction(
773             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
774 
775         setOperationAction(
776             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
777             Custom);
778 
779         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
780                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
781                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
782                            VT, Custom);
783 
784         setOperationAction(
785             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
786 
787         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
788         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
789           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
790 
791         setOperationAction(
792             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
793             Custom);
794 
795         setOperationAction(ISD::VSELECT, VT, Custom);
796         setOperationAction(ISD::SELECT_CC, VT, Expand);
797 
798         setOperationAction(
799             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
800 
801         // Custom-lower reduction operations to set up the corresponding custom
802         // nodes' operands.
803         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
804                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
805                             ISD::VECREDUCE_UMIN},
806                            VT, Custom);
807 
808         setOperationAction(IntegerVPOps, VT, Custom);
809 
810         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
811         // type that can represent the value exactly.
812         if (VT.getVectorElementType() != MVT::i64) {
813           MVT FloatEltVT =
814               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
815           EVT FloatVT =
816               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
817           if (isTypeLegal(FloatVT))
818             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
819                                Custom);
820         }
821       }
822 
823       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
824         if (!useRVVForFixedLengthVectorVT(VT))
825           continue;
826 
827         // By default everything must be expanded.
828         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
829           setOperationAction(Op, VT, Expand);
830         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
831           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
832           setTruncStoreAction(VT, OtherVT, Expand);
833         }
834 
835         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
836         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
837                            Custom);
838 
839         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
840                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
841                             ISD::EXTRACT_VECTOR_ELT},
842                            VT, Custom);
843 
844         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
845                             ISD::MGATHER, ISD::MSCATTER},
846                            VT, Custom);
847 
848         setOperationAction(
849             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
850             Custom);
851 
852         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
853                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
854                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
855                            VT, Custom);
856 
857         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
858 
859         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
860                            VT, Custom);
861 
862         for (auto CC : VFPCCToExpand)
863           setCondCodeAction(CC, VT, Expand);
864 
865         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
866         setOperationAction(ISD::SELECT_CC, VT, Expand);
867 
868         setOperationAction(ISD::BITCAST, VT, Custom);
869 
870         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
871                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
872                            VT, Custom);
873 
874         setOperationAction(FloatingPointVPOps, VT, Custom);
875       }
876 
877       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
878       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
879                          Custom);
880       if (Subtarget.hasStdExtZfh())
881         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
882       if (Subtarget.hasStdExtF())
883         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
884       if (Subtarget.hasStdExtD())
885         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
886     }
887   }
888 
889   // Function alignments.
890   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
891   setMinFunctionAlignment(FunctionAlignment);
892   setPrefFunctionAlignment(FunctionAlignment);
893 
894   setMinimumJumpTableEntries(5);
895 
896   // Jumps are expensive, compared to logic
897   setJumpIsExpensive();
898 
899   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
900                        ISD::OR, ISD::XOR});
901 
902   if (Subtarget.hasStdExtF())
903     setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
904 
905   if (Subtarget.hasStdExtZbp())
906     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
907 
908   if (Subtarget.hasStdExtZbb())
909     setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
910 
911   if (Subtarget.hasStdExtZbkb())
912     setTargetDAGCombine(ISD::BITREVERSE);
913   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
914     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
915   if (Subtarget.hasStdExtF())
916     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
917                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
918   if (Subtarget.hasVInstructions())
919     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
920                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
921                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
922 
923   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
924   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
925 }
926 
927 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
928                                             LLVMContext &Context,
929                                             EVT VT) const {
930   if (!VT.isVector())
931     return getPointerTy(DL);
932   if (Subtarget.hasVInstructions() &&
933       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
934     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
935   return VT.changeVectorElementTypeToInteger();
936 }
937 
938 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
939   return Subtarget.getXLenVT();
940 }
941 
942 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
943                                              const CallInst &I,
944                                              MachineFunction &MF,
945                                              unsigned Intrinsic) const {
946   auto &DL = I.getModule()->getDataLayout();
947   switch (Intrinsic) {
948   default:
949     return false;
950   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
951   case Intrinsic::riscv_masked_atomicrmw_add_i32:
952   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
953   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
954   case Intrinsic::riscv_masked_atomicrmw_max_i32:
955   case Intrinsic::riscv_masked_atomicrmw_min_i32:
956   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
957   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
958   case Intrinsic::riscv_masked_cmpxchg_i32:
959     Info.opc = ISD::INTRINSIC_W_CHAIN;
960     Info.memVT = MVT::i32;
961     Info.ptrVal = I.getArgOperand(0);
962     Info.offset = 0;
963     Info.align = Align(4);
964     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
965                  MachineMemOperand::MOVolatile;
966     return true;
967   case Intrinsic::riscv_masked_strided_load:
968     Info.opc = ISD::INTRINSIC_W_CHAIN;
969     Info.ptrVal = I.getArgOperand(1);
970     Info.memVT = getValueType(DL, I.getType()->getScalarType());
971     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
972     Info.size = MemoryLocation::UnknownSize;
973     Info.flags |= MachineMemOperand::MOLoad;
974     return true;
975   case Intrinsic::riscv_masked_strided_store:
976     Info.opc = ISD::INTRINSIC_VOID;
977     Info.ptrVal = I.getArgOperand(1);
978     Info.memVT =
979         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
980     Info.align = Align(
981         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
982         8);
983     Info.size = MemoryLocation::UnknownSize;
984     Info.flags |= MachineMemOperand::MOStore;
985     return true;
986   case Intrinsic::riscv_seg2_load:
987   case Intrinsic::riscv_seg3_load:
988   case Intrinsic::riscv_seg4_load:
989   case Intrinsic::riscv_seg5_load:
990   case Intrinsic::riscv_seg6_load:
991   case Intrinsic::riscv_seg7_load:
992   case Intrinsic::riscv_seg8_load:
993     Info.opc = ISD::INTRINSIC_W_CHAIN;
994     Info.ptrVal = I.getArgOperand(0);
995     Info.memVT =
996         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
997     Info.align =
998         Align(DL.getTypeSizeInBits(
999                   I.getType()->getStructElementType(0)->getScalarType()) /
1000               8);
1001     Info.size = MemoryLocation::UnknownSize;
1002     Info.flags |= MachineMemOperand::MOLoad;
1003     return true;
1004   }
1005 }
1006 
1007 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1008                                                 const AddrMode &AM, Type *Ty,
1009                                                 unsigned AS,
1010                                                 Instruction *I) const {
1011   // No global is ever allowed as a base.
1012   if (AM.BaseGV)
1013     return false;
1014 
1015   // RVV instructions only support register addressing.
1016   if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1017     return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1018 
1019   // Require a 12-bit signed offset.
1020   if (!isInt<12>(AM.BaseOffs))
1021     return false;
1022 
1023   switch (AM.Scale) {
1024   case 0: // "r+i" or just "i", depending on HasBaseReg.
1025     break;
1026   case 1:
1027     if (!AM.HasBaseReg) // allow "r+i".
1028       break;
1029     return false; // disallow "r+r" or "r+r+i".
1030   default:
1031     return false;
1032   }
1033 
1034   return true;
1035 }
1036 
1037 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1038   return isInt<12>(Imm);
1039 }
1040 
1041 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1042   return isInt<12>(Imm);
1043 }
1044 
1045 // On RV32, 64-bit integers are split into their high and low parts and held
1046 // in two different registers, so the trunc is free since the low register can
1047 // just be used.
1048 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1049   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1050     return false;
1051   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1052   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1053   return (SrcBits == 64 && DestBits == 32);
1054 }
1055 
1056 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1057   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1058       !SrcVT.isInteger() || !DstVT.isInteger())
1059     return false;
1060   unsigned SrcBits = SrcVT.getSizeInBits();
1061   unsigned DestBits = DstVT.getSizeInBits();
1062   return (SrcBits == 64 && DestBits == 32);
1063 }
1064 
1065 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1066   // Zexts are free if they can be combined with a load.
1067   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1068   // poorly with type legalization of compares preferring sext.
1069   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1070     EVT MemVT = LD->getMemoryVT();
1071     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1072         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1073          LD->getExtensionType() == ISD::ZEXTLOAD))
1074       return true;
1075   }
1076 
1077   return TargetLowering::isZExtFree(Val, VT2);
1078 }
1079 
1080 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1081   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1082 }
1083 
1084 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1085   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1086 }
1087 
1088 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1089   return Subtarget.hasStdExtZbb();
1090 }
1091 
1092 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1093   return Subtarget.hasStdExtZbb();
1094 }
1095 
1096 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1097   EVT VT = Y.getValueType();
1098 
1099   // FIXME: Support vectors once we have tests.
1100   if (VT.isVector())
1101     return false;
1102 
1103   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1104           Subtarget.hasStdExtZbkb()) &&
1105          !isa<ConstantSDNode>(Y);
1106 }
1107 
1108 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1109   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1110   auto *C = dyn_cast<ConstantSDNode>(Y);
1111   return C && C->getAPIntValue().ule(10);
1112 }
1113 
1114 bool RISCVTargetLowering::
1115     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1116         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1117         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1118         SelectionDAG &DAG) const {
1119   // One interesting pattern that we'd want to form is 'bit extract':
1120   //   ((1 >> Y) & 1) ==/!= 0
1121   // But we also need to be careful not to try to reverse that fold.
1122 
1123   // Is this '((1 >> Y) & 1)'?
1124   if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1125     return false; // Keep the 'bit extract' pattern.
1126 
1127   // Will this be '((1 >> Y) & 1)' after the transform?
1128   if (NewShiftOpcode == ISD::SRL && CC->isOne())
1129     return true; // Do form the 'bit extract' pattern.
1130 
1131   // If 'X' is a constant, and we transform, then we will immediately
1132   // try to undo the fold, thus causing endless combine loop.
1133   // So only do the transform if X is not a constant. This matches the default
1134   // implementation of this function.
1135   return !XC;
1136 }
1137 
1138 /// Check if sinking \p I's operands to I's basic block is profitable, because
1139 /// the operands can be folded into a target instruction, e.g.
1140 /// splats of scalars can fold into vector instructions.
1141 bool RISCVTargetLowering::shouldSinkOperands(
1142     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1143   using namespace llvm::PatternMatch;
1144 
1145   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1146     return false;
1147 
1148   auto IsSinker = [&](Instruction *I, int Operand) {
1149     switch (I->getOpcode()) {
1150     case Instruction::Add:
1151     case Instruction::Sub:
1152     case Instruction::Mul:
1153     case Instruction::And:
1154     case Instruction::Or:
1155     case Instruction::Xor:
1156     case Instruction::FAdd:
1157     case Instruction::FSub:
1158     case Instruction::FMul:
1159     case Instruction::FDiv:
1160     case Instruction::ICmp:
1161     case Instruction::FCmp:
1162       return true;
1163     case Instruction::Shl:
1164     case Instruction::LShr:
1165     case Instruction::AShr:
1166     case Instruction::UDiv:
1167     case Instruction::SDiv:
1168     case Instruction::URem:
1169     case Instruction::SRem:
1170       return Operand == 1;
1171     case Instruction::Call:
1172       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1173         switch (II->getIntrinsicID()) {
1174         case Intrinsic::fma:
1175         case Intrinsic::vp_fma:
1176           return Operand == 0 || Operand == 1;
1177         // FIXME: Our patterns can only match vx/vf instructions when the splat
1178         // it on the RHS, because TableGen doesn't recognize our VP operations
1179         // as commutative.
1180         case Intrinsic::vp_add:
1181         case Intrinsic::vp_mul:
1182         case Intrinsic::vp_and:
1183         case Intrinsic::vp_or:
1184         case Intrinsic::vp_xor:
1185         case Intrinsic::vp_fadd:
1186         case Intrinsic::vp_fmul:
1187         case Intrinsic::vp_shl:
1188         case Intrinsic::vp_lshr:
1189         case Intrinsic::vp_ashr:
1190         case Intrinsic::vp_udiv:
1191         case Intrinsic::vp_sdiv:
1192         case Intrinsic::vp_urem:
1193         case Intrinsic::vp_srem:
1194           return Operand == 1;
1195         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1196         // explicit patterns for both LHS and RHS (as 'vr' versions).
1197         case Intrinsic::vp_sub:
1198         case Intrinsic::vp_fsub:
1199         case Intrinsic::vp_fdiv:
1200           return Operand == 0 || Operand == 1;
1201         default:
1202           return false;
1203         }
1204       }
1205       return false;
1206     default:
1207       return false;
1208     }
1209   };
1210 
1211   for (auto OpIdx : enumerate(I->operands())) {
1212     if (!IsSinker(I, OpIdx.index()))
1213       continue;
1214 
1215     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1216     // Make sure we are not already sinking this operand
1217     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1218       continue;
1219 
1220     // We are looking for a splat that can be sunk.
1221     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1222                              m_Undef(), m_ZeroMask())))
1223       continue;
1224 
1225     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1226     // and vector registers
1227     for (Use &U : Op->uses()) {
1228       Instruction *Insn = cast<Instruction>(U.getUser());
1229       if (!IsSinker(Insn, U.getOperandNo()))
1230         return false;
1231     }
1232 
1233     Ops.push_back(&Op->getOperandUse(0));
1234     Ops.push_back(&OpIdx.value());
1235   }
1236   return true;
1237 }
1238 
1239 bool RISCVTargetLowering::isOffsetFoldingLegal(
1240     const GlobalAddressSDNode *GA) const {
1241   // In order to maximise the opportunity for common subexpression elimination,
1242   // keep a separate ADD node for the global address offset instead of folding
1243   // it in the global address node. Later peephole optimisations may choose to
1244   // fold it back in when profitable.
1245   return false;
1246 }
1247 
1248 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1249                                        bool ForCodeSize) const {
1250   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1251   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1252     return false;
1253   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1254     return false;
1255   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1256     return false;
1257   return Imm.isZero();
1258 }
1259 
1260 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1261   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1262          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1263          (VT == MVT::f64 && Subtarget.hasStdExtD());
1264 }
1265 
1266 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1267                                                       CallingConv::ID CC,
1268                                                       EVT VT) const {
1269   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1270   // We might still end up using a GPR but that will be decided based on ABI.
1271   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1272   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1273     return MVT::f32;
1274 
1275   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1276 }
1277 
1278 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1279                                                            CallingConv::ID CC,
1280                                                            EVT VT) const {
1281   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1282   // We might still end up using a GPR but that will be decided based on ABI.
1283   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1284   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1285     return 1;
1286 
1287   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1288 }
1289 
1290 // Changes the condition code and swaps operands if necessary, so the SetCC
1291 // operation matches one of the comparisons supported directly by branches
1292 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1293 // with 1/-1.
1294 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1295                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1296   // Convert X > -1 to X >= 0.
1297   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1298     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1299     CC = ISD::SETGE;
1300     return;
1301   }
1302   // Convert X < 1 to 0 >= X.
1303   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1304     RHS = LHS;
1305     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1306     CC = ISD::SETGE;
1307     return;
1308   }
1309 
1310   switch (CC) {
1311   default:
1312     break;
1313   case ISD::SETGT:
1314   case ISD::SETLE:
1315   case ISD::SETUGT:
1316   case ISD::SETULE:
1317     CC = ISD::getSetCCSwappedOperands(CC);
1318     std::swap(LHS, RHS);
1319     break;
1320   }
1321 }
1322 
1323 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1324   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1325   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1326   if (VT.getVectorElementType() == MVT::i1)
1327     KnownSize *= 8;
1328 
1329   switch (KnownSize) {
1330   default:
1331     llvm_unreachable("Invalid LMUL.");
1332   case 8:
1333     return RISCVII::VLMUL::LMUL_F8;
1334   case 16:
1335     return RISCVII::VLMUL::LMUL_F4;
1336   case 32:
1337     return RISCVII::VLMUL::LMUL_F2;
1338   case 64:
1339     return RISCVII::VLMUL::LMUL_1;
1340   case 128:
1341     return RISCVII::VLMUL::LMUL_2;
1342   case 256:
1343     return RISCVII::VLMUL::LMUL_4;
1344   case 512:
1345     return RISCVII::VLMUL::LMUL_8;
1346   }
1347 }
1348 
1349 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1350   switch (LMul) {
1351   default:
1352     llvm_unreachable("Invalid LMUL.");
1353   case RISCVII::VLMUL::LMUL_F8:
1354   case RISCVII::VLMUL::LMUL_F4:
1355   case RISCVII::VLMUL::LMUL_F2:
1356   case RISCVII::VLMUL::LMUL_1:
1357     return RISCV::VRRegClassID;
1358   case RISCVII::VLMUL::LMUL_2:
1359     return RISCV::VRM2RegClassID;
1360   case RISCVII::VLMUL::LMUL_4:
1361     return RISCV::VRM4RegClassID;
1362   case RISCVII::VLMUL::LMUL_8:
1363     return RISCV::VRM8RegClassID;
1364   }
1365 }
1366 
1367 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1368   RISCVII::VLMUL LMUL = getLMUL(VT);
1369   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1370       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1371       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1372       LMUL == RISCVII::VLMUL::LMUL_1) {
1373     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1374                   "Unexpected subreg numbering");
1375     return RISCV::sub_vrm1_0 + Index;
1376   }
1377   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1378     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1379                   "Unexpected subreg numbering");
1380     return RISCV::sub_vrm2_0 + Index;
1381   }
1382   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1383     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1384                   "Unexpected subreg numbering");
1385     return RISCV::sub_vrm4_0 + Index;
1386   }
1387   llvm_unreachable("Invalid vector type.");
1388 }
1389 
1390 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1391   if (VT.getVectorElementType() == MVT::i1)
1392     return RISCV::VRRegClassID;
1393   return getRegClassIDForLMUL(getLMUL(VT));
1394 }
1395 
1396 // Attempt to decompose a subvector insert/extract between VecVT and
1397 // SubVecVT via subregister indices. Returns the subregister index that
1398 // can perform the subvector insert/extract with the given element index, as
1399 // well as the index corresponding to any leftover subvectors that must be
1400 // further inserted/extracted within the register class for SubVecVT.
1401 std::pair<unsigned, unsigned>
1402 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1403     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1404     const RISCVRegisterInfo *TRI) {
1405   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1406                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1407                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1408                 "Register classes not ordered");
1409   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1410   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1411   // Try to compose a subregister index that takes us from the incoming
1412   // LMUL>1 register class down to the outgoing one. At each step we half
1413   // the LMUL:
1414   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1415   // Note that this is not guaranteed to find a subregister index, such as
1416   // when we are extracting from one VR type to another.
1417   unsigned SubRegIdx = RISCV::NoSubRegister;
1418   for (const unsigned RCID :
1419        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1420     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1421       VecVT = VecVT.getHalfNumVectorElementsVT();
1422       bool IsHi =
1423           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1424       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1425                                             getSubregIndexByMVT(VecVT, IsHi));
1426       if (IsHi)
1427         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1428     }
1429   return {SubRegIdx, InsertExtractIdx};
1430 }
1431 
1432 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1433 // stores for those types.
1434 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1435   return !Subtarget.useRVVForFixedLengthVectors() ||
1436          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1437 }
1438 
1439 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1440   if (ScalarTy->isPointerTy())
1441     return true;
1442 
1443   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1444       ScalarTy->isIntegerTy(32))
1445     return true;
1446 
1447   if (ScalarTy->isIntegerTy(64))
1448     return Subtarget.hasVInstructionsI64();
1449 
1450   if (ScalarTy->isHalfTy())
1451     return Subtarget.hasVInstructionsF16();
1452   if (ScalarTy->isFloatTy())
1453     return Subtarget.hasVInstructionsF32();
1454   if (ScalarTy->isDoubleTy())
1455     return Subtarget.hasVInstructionsF64();
1456 
1457   return false;
1458 }
1459 
1460 static SDValue getVLOperand(SDValue Op) {
1461   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1462           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1463          "Unexpected opcode");
1464   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1465   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1466   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1467       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1468   if (!II)
1469     return SDValue();
1470   return Op.getOperand(II->VLOperand + 1 + HasChain);
1471 }
1472 
1473 static bool useRVVForFixedLengthVectorVT(MVT VT,
1474                                          const RISCVSubtarget &Subtarget) {
1475   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1476   if (!Subtarget.useRVVForFixedLengthVectors())
1477     return false;
1478 
1479   // We only support a set of vector types with a consistent maximum fixed size
1480   // across all supported vector element types to avoid legalization issues.
1481   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1482   // fixed-length vector type we support is 1024 bytes.
1483   if (VT.getFixedSizeInBits() > 1024 * 8)
1484     return false;
1485 
1486   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1487 
1488   MVT EltVT = VT.getVectorElementType();
1489 
1490   // Don't use RVV for vectors we cannot scalarize if required.
1491   switch (EltVT.SimpleTy) {
1492   // i1 is supported but has different rules.
1493   default:
1494     return false;
1495   case MVT::i1:
1496     // Masks can only use a single register.
1497     if (VT.getVectorNumElements() > MinVLen)
1498       return false;
1499     MinVLen /= 8;
1500     break;
1501   case MVT::i8:
1502   case MVT::i16:
1503   case MVT::i32:
1504     break;
1505   case MVT::i64:
1506     if (!Subtarget.hasVInstructionsI64())
1507       return false;
1508     break;
1509   case MVT::f16:
1510     if (!Subtarget.hasVInstructionsF16())
1511       return false;
1512     break;
1513   case MVT::f32:
1514     if (!Subtarget.hasVInstructionsF32())
1515       return false;
1516     break;
1517   case MVT::f64:
1518     if (!Subtarget.hasVInstructionsF64())
1519       return false;
1520     break;
1521   }
1522 
1523   // Reject elements larger than ELEN.
1524   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1525     return false;
1526 
1527   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1528   // Don't use RVV for types that don't fit.
1529   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1530     return false;
1531 
1532   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1533   // the base fixed length RVV support in place.
1534   if (!VT.isPow2VectorType())
1535     return false;
1536 
1537   return true;
1538 }
1539 
1540 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1541   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1542 }
1543 
1544 // Return the largest legal scalable vector type that matches VT's element type.
1545 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1546                                             const RISCVSubtarget &Subtarget) {
1547   // This may be called before legal types are setup.
1548   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1549           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1550          "Expected legal fixed length vector!");
1551 
1552   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1553   unsigned MaxELen = Subtarget.getELEN();
1554 
1555   MVT EltVT = VT.getVectorElementType();
1556   switch (EltVT.SimpleTy) {
1557   default:
1558     llvm_unreachable("unexpected element type for RVV container");
1559   case MVT::i1:
1560   case MVT::i8:
1561   case MVT::i16:
1562   case MVT::i32:
1563   case MVT::i64:
1564   case MVT::f16:
1565   case MVT::f32:
1566   case MVT::f64: {
1567     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1568     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1569     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1570     unsigned NumElts =
1571         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1572     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1573     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1574     return MVT::getScalableVectorVT(EltVT, NumElts);
1575   }
1576   }
1577 }
1578 
1579 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1580                                             const RISCVSubtarget &Subtarget) {
1581   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1582                                           Subtarget);
1583 }
1584 
1585 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1586   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1587 }
1588 
1589 // Grow V to consume an entire RVV register.
1590 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1591                                        const RISCVSubtarget &Subtarget) {
1592   assert(VT.isScalableVector() &&
1593          "Expected to convert into a scalable vector!");
1594   assert(V.getValueType().isFixedLengthVector() &&
1595          "Expected a fixed length vector operand!");
1596   SDLoc DL(V);
1597   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1598   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1599 }
1600 
1601 // Shrink V so it's just big enough to maintain a VT's worth of data.
1602 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1603                                          const RISCVSubtarget &Subtarget) {
1604   assert(VT.isFixedLengthVector() &&
1605          "Expected to convert into a fixed length vector!");
1606   assert(V.getValueType().isScalableVector() &&
1607          "Expected a scalable vector operand!");
1608   SDLoc DL(V);
1609   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1610   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1611 }
1612 
1613 /// Return the type of the mask type suitable for masking the provided
1614 /// vector type.  This is simply an i1 element type vector of the same
1615 /// (possibly scalable) length.
1616 static MVT getMaskTypeFor(EVT VecVT) {
1617   assert(VecVT.isVector());
1618   ElementCount EC = VecVT.getVectorElementCount();
1619   return MVT::getVectorVT(MVT::i1, EC);
1620 }
1621 
1622 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1623 /// vector length VL.  .
1624 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1625                               SelectionDAG &DAG) {
1626   MVT MaskVT = getMaskTypeFor(VecVT);
1627   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1628 }
1629 
1630 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1631 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1632 // the vector type that it is contained in.
1633 static std::pair<SDValue, SDValue>
1634 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1635                 const RISCVSubtarget &Subtarget) {
1636   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1637   MVT XLenVT = Subtarget.getXLenVT();
1638   SDValue VL = VecVT.isFixedLengthVector()
1639                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1640                    : DAG.getRegister(RISCV::X0, XLenVT);
1641   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1642   return {Mask, VL};
1643 }
1644 
1645 // As above but assuming the given type is a scalable vector type.
1646 static std::pair<SDValue, SDValue>
1647 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1648                         const RISCVSubtarget &Subtarget) {
1649   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1650   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1651 }
1652 
1653 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1654 // of either is (currently) supported. This can get us into an infinite loop
1655 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1656 // as a ..., etc.
1657 // Until either (or both) of these can reliably lower any node, reporting that
1658 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1659 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1660 // which is not desirable.
1661 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1662     EVT VT, unsigned DefinedValues) const {
1663   return false;
1664 }
1665 
1666 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1667                                   const RISCVSubtarget &Subtarget) {
1668   // RISCV FP-to-int conversions saturate to the destination register size, but
1669   // don't produce 0 for nan. We can use a conversion instruction and fix the
1670   // nan case with a compare and a select.
1671   SDValue Src = Op.getOperand(0);
1672 
1673   EVT DstVT = Op.getValueType();
1674   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1675 
1676   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1677   unsigned Opc;
1678   if (SatVT == DstVT)
1679     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1680   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1681     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1682   else
1683     return SDValue();
1684   // FIXME: Support other SatVTs by clamping before or after the conversion.
1685 
1686   SDLoc DL(Op);
1687   SDValue FpToInt = DAG.getNode(
1688       Opc, DL, DstVT, Src,
1689       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1690 
1691   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1692   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1693 }
1694 
1695 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1696 // and back. Taking care to avoid converting values that are nan or already
1697 // correct.
1698 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1699 // have FRM dependencies modeled yet.
1700 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1701   MVT VT = Op.getSimpleValueType();
1702   assert(VT.isVector() && "Unexpected type");
1703 
1704   SDLoc DL(Op);
1705 
1706   // Freeze the source since we are increasing the number of uses.
1707   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1708 
1709   // Truncate to integer and convert back to FP.
1710   MVT IntVT = VT.changeVectorElementTypeToInteger();
1711   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1712   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1713 
1714   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1715 
1716   if (Op.getOpcode() == ISD::FCEIL) {
1717     // If the truncated value is the greater than or equal to the original
1718     // value, we've computed the ceil. Otherwise, we went the wrong way and
1719     // need to increase by 1.
1720     // FIXME: This should use a masked operation. Handle here or in isel?
1721     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1722                                  DAG.getConstantFP(1.0, DL, VT));
1723     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1724     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1725   } else if (Op.getOpcode() == ISD::FFLOOR) {
1726     // If the truncated value is the less than or equal to the original value,
1727     // we've computed the floor. Otherwise, we went the wrong way and need to
1728     // decrease by 1.
1729     // FIXME: This should use a masked operation. Handle here or in isel?
1730     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1731                                  DAG.getConstantFP(1.0, DL, VT));
1732     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1733     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1734   }
1735 
1736   // Restore the original sign so that -0.0 is preserved.
1737   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1738 
1739   // Determine the largest integer that can be represented exactly. This and
1740   // values larger than it don't have any fractional bits so don't need to
1741   // be converted.
1742   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1743   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1744   APFloat MaxVal = APFloat(FltSem);
1745   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1746                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1747   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1748 
1749   // If abs(Src) was larger than MaxVal or nan, keep it.
1750   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1751   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1752   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1753 }
1754 
1755 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1756 // This mode isn't supported in vector hardware on RISCV. But as long as we
1757 // aren't compiling with trapping math, we can emulate this with
1758 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1759 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1760 // dependencies modeled yet.
1761 // FIXME: Use masked operations to avoid final merge.
1762 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1763   MVT VT = Op.getSimpleValueType();
1764   assert(VT.isVector() && "Unexpected type");
1765 
1766   SDLoc DL(Op);
1767 
1768   // Freeze the source since we are increasing the number of uses.
1769   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1770 
1771   // We do the conversion on the absolute value and fix the sign at the end.
1772   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1773 
1774   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1775   bool Ignored;
1776   APFloat Point5Pred = APFloat(0.5f);
1777   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1778   Point5Pred.next(/*nextDown*/ true);
1779 
1780   // Add the adjustment.
1781   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1782                                DAG.getConstantFP(Point5Pred, DL, VT));
1783 
1784   // Truncate to integer and convert back to fp.
1785   MVT IntVT = VT.changeVectorElementTypeToInteger();
1786   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1787   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1788 
1789   // Restore the original sign.
1790   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1791 
1792   // Determine the largest integer that can be represented exactly. This and
1793   // values larger than it don't have any fractional bits so don't need to
1794   // be converted.
1795   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1796   APFloat MaxVal = APFloat(FltSem);
1797   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1798                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1799   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1800 
1801   // If abs(Src) was larger than MaxVal or nan, keep it.
1802   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1803   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1804   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1805 }
1806 
1807 struct VIDSequence {
1808   int64_t StepNumerator;
1809   unsigned StepDenominator;
1810   int64_t Addend;
1811 };
1812 
1813 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1814 // to the (non-zero) step S and start value X. This can be then lowered as the
1815 // RVV sequence (VID * S) + X, for example.
1816 // The step S is represented as an integer numerator divided by a positive
1817 // denominator. Note that the implementation currently only identifies
1818 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1819 // cannot detect 2/3, for example.
1820 // Note that this method will also match potentially unappealing index
1821 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1822 // determine whether this is worth generating code for.
1823 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1824   unsigned NumElts = Op.getNumOperands();
1825   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1826   if (!Op.getValueType().isInteger())
1827     return None;
1828 
1829   Optional<unsigned> SeqStepDenom;
1830   Optional<int64_t> SeqStepNum, SeqAddend;
1831   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1832   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1833   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1834     // Assume undef elements match the sequence; we just have to be careful
1835     // when interpolating across them.
1836     if (Op.getOperand(Idx).isUndef())
1837       continue;
1838     // The BUILD_VECTOR must be all constants.
1839     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1840       return None;
1841 
1842     uint64_t Val = Op.getConstantOperandVal(Idx) &
1843                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1844 
1845     if (PrevElt) {
1846       // Calculate the step since the last non-undef element, and ensure
1847       // it's consistent across the entire sequence.
1848       unsigned IdxDiff = Idx - PrevElt->second;
1849       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1850 
1851       // A zero-value value difference means that we're somewhere in the middle
1852       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1853       // step change before evaluating the sequence.
1854       if (ValDiff == 0)
1855         continue;
1856 
1857       int64_t Remainder = ValDiff % IdxDiff;
1858       // Normalize the step if it's greater than 1.
1859       if (Remainder != ValDiff) {
1860         // The difference must cleanly divide the element span.
1861         if (Remainder != 0)
1862           return None;
1863         ValDiff /= IdxDiff;
1864         IdxDiff = 1;
1865       }
1866 
1867       if (!SeqStepNum)
1868         SeqStepNum = ValDiff;
1869       else if (ValDiff != SeqStepNum)
1870         return None;
1871 
1872       if (!SeqStepDenom)
1873         SeqStepDenom = IdxDiff;
1874       else if (IdxDiff != *SeqStepDenom)
1875         return None;
1876     }
1877 
1878     // Record this non-undef element for later.
1879     if (!PrevElt || PrevElt->first != Val)
1880       PrevElt = std::make_pair(Val, Idx);
1881   }
1882 
1883   // We need to have logged a step for this to count as a legal index sequence.
1884   if (!SeqStepNum || !SeqStepDenom)
1885     return None;
1886 
1887   // Loop back through the sequence and validate elements we might have skipped
1888   // while waiting for a valid step. While doing this, log any sequence addend.
1889   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1890     if (Op.getOperand(Idx).isUndef())
1891       continue;
1892     uint64_t Val = Op.getConstantOperandVal(Idx) &
1893                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1894     uint64_t ExpectedVal =
1895         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1896     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1897     if (!SeqAddend)
1898       SeqAddend = Addend;
1899     else if (Addend != SeqAddend)
1900       return None;
1901   }
1902 
1903   assert(SeqAddend && "Must have an addend if we have a step");
1904 
1905   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1906 }
1907 
1908 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1909 // and lower it as a VRGATHER_VX_VL from the source vector.
1910 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1911                                   SelectionDAG &DAG,
1912                                   const RISCVSubtarget &Subtarget) {
1913   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1914     return SDValue();
1915   SDValue Vec = SplatVal.getOperand(0);
1916   // Only perform this optimization on vectors of the same size for simplicity.
1917   if (Vec.getValueType() != VT)
1918     return SDValue();
1919   SDValue Idx = SplatVal.getOperand(1);
1920   // The index must be a legal type.
1921   if (Idx.getValueType() != Subtarget.getXLenVT())
1922     return SDValue();
1923 
1924   MVT ContainerVT = VT;
1925   if (VT.isFixedLengthVector()) {
1926     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1927     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1928   }
1929 
1930   SDValue Mask, VL;
1931   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1932 
1933   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1934                                Idx, Mask, VL);
1935 
1936   if (!VT.isFixedLengthVector())
1937     return Gather;
1938 
1939   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1940 }
1941 
1942 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1943                                  const RISCVSubtarget &Subtarget) {
1944   MVT VT = Op.getSimpleValueType();
1945   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1946 
1947   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1948 
1949   SDLoc DL(Op);
1950   SDValue Mask, VL;
1951   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1952 
1953   MVT XLenVT = Subtarget.getXLenVT();
1954   unsigned NumElts = Op.getNumOperands();
1955 
1956   if (VT.getVectorElementType() == MVT::i1) {
1957     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1958       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1959       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1960     }
1961 
1962     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1963       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1964       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1965     }
1966 
1967     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1968     // scalar integer chunks whose bit-width depends on the number of mask
1969     // bits and XLEN.
1970     // First, determine the most appropriate scalar integer type to use. This
1971     // is at most XLenVT, but may be shrunk to a smaller vector element type
1972     // according to the size of the final vector - use i8 chunks rather than
1973     // XLenVT if we're producing a v8i1. This results in more consistent
1974     // codegen across RV32 and RV64.
1975     unsigned NumViaIntegerBits =
1976         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1977     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
1978     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1979       // If we have to use more than one INSERT_VECTOR_ELT then this
1980       // optimization is likely to increase code size; avoid peforming it in
1981       // such a case. We can use a load from a constant pool in this case.
1982       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1983         return SDValue();
1984       // Now we can create our integer vector type. Note that it may be larger
1985       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1986       MVT IntegerViaVecVT =
1987           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1988                            divideCeil(NumElts, NumViaIntegerBits));
1989 
1990       uint64_t Bits = 0;
1991       unsigned BitPos = 0, IntegerEltIdx = 0;
1992       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1993 
1994       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1995         // Once we accumulate enough bits to fill our scalar type, insert into
1996         // our vector and clear our accumulated data.
1997         if (I != 0 && I % NumViaIntegerBits == 0) {
1998           if (NumViaIntegerBits <= 32)
1999             Bits = SignExtend64<32>(Bits);
2000           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2001           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2002                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2003           Bits = 0;
2004           BitPos = 0;
2005           IntegerEltIdx++;
2006         }
2007         SDValue V = Op.getOperand(I);
2008         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2009         Bits |= ((uint64_t)BitValue << BitPos);
2010       }
2011 
2012       // Insert the (remaining) scalar value into position in our integer
2013       // vector type.
2014       if (NumViaIntegerBits <= 32)
2015         Bits = SignExtend64<32>(Bits);
2016       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2017       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2018                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2019 
2020       if (NumElts < NumViaIntegerBits) {
2021         // If we're producing a smaller vector than our minimum legal integer
2022         // type, bitcast to the equivalent (known-legal) mask type, and extract
2023         // our final mask.
2024         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2025         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2026         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2027                           DAG.getConstant(0, DL, XLenVT));
2028       } else {
2029         // Else we must have produced an integer type with the same size as the
2030         // mask type; bitcast for the final result.
2031         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2032         Vec = DAG.getBitcast(VT, Vec);
2033       }
2034 
2035       return Vec;
2036     }
2037 
2038     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2039     // vector type, we have a legal equivalently-sized i8 type, so we can use
2040     // that.
2041     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2042     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2043 
2044     SDValue WideVec;
2045     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2046       // For a splat, perform a scalar truncate before creating the wider
2047       // vector.
2048       assert(Splat.getValueType() == XLenVT &&
2049              "Unexpected type for i1 splat value");
2050       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2051                           DAG.getConstant(1, DL, XLenVT));
2052       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2053     } else {
2054       SmallVector<SDValue, 8> Ops(Op->op_values());
2055       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2056       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2057       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2058     }
2059 
2060     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2061   }
2062 
2063   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2064     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2065       return Gather;
2066     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2067                                         : RISCVISD::VMV_V_X_VL;
2068     Splat =
2069         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2070     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2071   }
2072 
2073   // Try and match index sequences, which we can lower to the vid instruction
2074   // with optional modifications. An all-undef vector is matched by
2075   // getSplatValue, above.
2076   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2077     int64_t StepNumerator = SimpleVID->StepNumerator;
2078     unsigned StepDenominator = SimpleVID->StepDenominator;
2079     int64_t Addend = SimpleVID->Addend;
2080 
2081     assert(StepNumerator != 0 && "Invalid step");
2082     bool Negate = false;
2083     int64_t SplatStepVal = StepNumerator;
2084     unsigned StepOpcode = ISD::MUL;
2085     if (StepNumerator != 1) {
2086       if (isPowerOf2_64(std::abs(StepNumerator))) {
2087         Negate = StepNumerator < 0;
2088         StepOpcode = ISD::SHL;
2089         SplatStepVal = Log2_64(std::abs(StepNumerator));
2090       }
2091     }
2092 
2093     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2094     // threshold since it's the immediate value many RVV instructions accept.
2095     // There is no vmul.vi instruction so ensure multiply constant can fit in
2096     // a single addi instruction.
2097     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2098          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2099         isPowerOf2_32(StepDenominator) &&
2100         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2101       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2102       // Convert right out of the scalable type so we can use standard ISD
2103       // nodes for the rest of the computation. If we used scalable types with
2104       // these, we'd lose the fixed-length vector info and generate worse
2105       // vsetvli code.
2106       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2107       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2108           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2109         SDValue SplatStep = DAG.getSplatBuildVector(
2110             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2111         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2112       }
2113       if (StepDenominator != 1) {
2114         SDValue SplatStep = DAG.getSplatBuildVector(
2115             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2116         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2117       }
2118       if (Addend != 0 || Negate) {
2119         SDValue SplatAddend = DAG.getSplatBuildVector(
2120             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2121         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2122       }
2123       return VID;
2124     }
2125   }
2126 
2127   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2128   // when re-interpreted as a vector with a larger element type. For example,
2129   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2130   // could be instead splat as
2131   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2132   // TODO: This optimization could also work on non-constant splats, but it
2133   // would require bit-manipulation instructions to construct the splat value.
2134   SmallVector<SDValue> Sequence;
2135   unsigned EltBitSize = VT.getScalarSizeInBits();
2136   const auto *BV = cast<BuildVectorSDNode>(Op);
2137   if (VT.isInteger() && EltBitSize < 64 &&
2138       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2139       BV->getRepeatedSequence(Sequence) &&
2140       (Sequence.size() * EltBitSize) <= 64) {
2141     unsigned SeqLen = Sequence.size();
2142     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2143     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2144     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2145             ViaIntVT == MVT::i64) &&
2146            "Unexpected sequence type");
2147 
2148     unsigned EltIdx = 0;
2149     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2150     uint64_t SplatValue = 0;
2151     // Construct the amalgamated value which can be splatted as this larger
2152     // vector type.
2153     for (const auto &SeqV : Sequence) {
2154       if (!SeqV.isUndef())
2155         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2156                        << (EltIdx * EltBitSize));
2157       EltIdx++;
2158     }
2159 
2160     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2161     // achieve better constant materializion.
2162     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2163       SplatValue = SignExtend64<32>(SplatValue);
2164 
2165     // Since we can't introduce illegal i64 types at this stage, we can only
2166     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2167     // way we can use RVV instructions to splat.
2168     assert((ViaIntVT.bitsLE(XLenVT) ||
2169             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2170            "Unexpected bitcast sequence");
2171     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2172       SDValue ViaVL =
2173           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2174       MVT ViaContainerVT =
2175           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2176       SDValue Splat =
2177           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2178                       DAG.getUNDEF(ViaContainerVT),
2179                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2180       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2181       return DAG.getBitcast(VT, Splat);
2182     }
2183   }
2184 
2185   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2186   // which constitute a large proportion of the elements. In such cases we can
2187   // splat a vector with the dominant element and make up the shortfall with
2188   // INSERT_VECTOR_ELTs.
2189   // Note that this includes vectors of 2 elements by association. The
2190   // upper-most element is the "dominant" one, allowing us to use a splat to
2191   // "insert" the upper element, and an insert of the lower element at position
2192   // 0, which improves codegen.
2193   SDValue DominantValue;
2194   unsigned MostCommonCount = 0;
2195   DenseMap<SDValue, unsigned> ValueCounts;
2196   unsigned NumUndefElts =
2197       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2198 
2199   // Track the number of scalar loads we know we'd be inserting, estimated as
2200   // any non-zero floating-point constant. Other kinds of element are either
2201   // already in registers or are materialized on demand. The threshold at which
2202   // a vector load is more desirable than several scalar materializion and
2203   // vector-insertion instructions is not known.
2204   unsigned NumScalarLoads = 0;
2205 
2206   for (SDValue V : Op->op_values()) {
2207     if (V.isUndef())
2208       continue;
2209 
2210     ValueCounts.insert(std::make_pair(V, 0));
2211     unsigned &Count = ValueCounts[V];
2212 
2213     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2214       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2215 
2216     // Is this value dominant? In case of a tie, prefer the highest element as
2217     // it's cheaper to insert near the beginning of a vector than it is at the
2218     // end.
2219     if (++Count >= MostCommonCount) {
2220       DominantValue = V;
2221       MostCommonCount = Count;
2222     }
2223   }
2224 
2225   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2226   unsigned NumDefElts = NumElts - NumUndefElts;
2227   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2228 
2229   // Don't perform this optimization when optimizing for size, since
2230   // materializing elements and inserting them tends to cause code bloat.
2231   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2232       ((MostCommonCount > DominantValueCountThreshold) ||
2233        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2234     // Start by splatting the most common element.
2235     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2236 
2237     DenseSet<SDValue> Processed{DominantValue};
2238     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2239     for (const auto &OpIdx : enumerate(Op->ops())) {
2240       const SDValue &V = OpIdx.value();
2241       if (V.isUndef() || !Processed.insert(V).second)
2242         continue;
2243       if (ValueCounts[V] == 1) {
2244         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2245                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2246       } else {
2247         // Blend in all instances of this value using a VSELECT, using a
2248         // mask where each bit signals whether that element is the one
2249         // we're after.
2250         SmallVector<SDValue> Ops;
2251         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2252           return DAG.getConstant(V == V1, DL, XLenVT);
2253         });
2254         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2255                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2256                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2257       }
2258     }
2259 
2260     return Vec;
2261   }
2262 
2263   return SDValue();
2264 }
2265 
2266 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2267                                    SDValue Lo, SDValue Hi, SDValue VL,
2268                                    SelectionDAG &DAG) {
2269   if (!Passthru)
2270     Passthru = DAG.getUNDEF(VT);
2271   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2272     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2273     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2274     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2275     // node in order to try and match RVV vector/scalar instructions.
2276     if ((LoC >> 31) == HiC)
2277       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2278 
2279     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2280     // vmv.v.x whose EEW = 32 to lower it.
2281     auto *Const = dyn_cast<ConstantSDNode>(VL);
2282     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2283       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2284       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2285       // access the subtarget here now.
2286       auto InterVec = DAG.getNode(
2287           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2288                                   DAG.getRegister(RISCV::X0, MVT::i32));
2289       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2290     }
2291   }
2292 
2293   // Fall back to a stack store and stride x0 vector load.
2294   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2295                      Hi, VL);
2296 }
2297 
2298 // Called by type legalization to handle splat of i64 on RV32.
2299 // FIXME: We can optimize this when the type has sign or zero bits in one
2300 // of the halves.
2301 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2302                                    SDValue Scalar, SDValue VL,
2303                                    SelectionDAG &DAG) {
2304   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2305   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2306                            DAG.getConstant(0, DL, MVT::i32));
2307   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2308                            DAG.getConstant(1, DL, MVT::i32));
2309   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2310 }
2311 
2312 // This function lowers a splat of a scalar operand Splat with the vector
2313 // length VL. It ensures the final sequence is type legal, which is useful when
2314 // lowering a splat after type legalization.
2315 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2316                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2317                                 const RISCVSubtarget &Subtarget) {
2318   bool HasPassthru = Passthru && !Passthru.isUndef();
2319   if (!HasPassthru && !Passthru)
2320     Passthru = DAG.getUNDEF(VT);
2321   if (VT.isFloatingPoint()) {
2322     // If VL is 1, we could use vfmv.s.f.
2323     if (isOneConstant(VL))
2324       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2325     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2326   }
2327 
2328   MVT XLenVT = Subtarget.getXLenVT();
2329 
2330   // Simplest case is that the operand needs to be promoted to XLenVT.
2331   if (Scalar.getValueType().bitsLE(XLenVT)) {
2332     // If the operand is a constant, sign extend to increase our chances
2333     // of being able to use a .vi instruction. ANY_EXTEND would become a
2334     // a zero extend and the simm5 check in isel would fail.
2335     // FIXME: Should we ignore the upper bits in isel instead?
2336     unsigned ExtOpc =
2337         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2338     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2339     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2340     // If VL is 1 and the scalar value won't benefit from immediate, we could
2341     // use vmv.s.x.
2342     if (isOneConstant(VL) &&
2343         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2344       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2345     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2346   }
2347 
2348   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2349          "Unexpected scalar for splat lowering!");
2350 
2351   if (isOneConstant(VL) && isNullConstant(Scalar))
2352     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2353                        DAG.getConstant(0, DL, XLenVT), VL);
2354 
2355   // Otherwise use the more complicated splatting algorithm.
2356   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2357 }
2358 
2359 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2360                                 const RISCVSubtarget &Subtarget) {
2361   // We need to be able to widen elements to the next larger integer type.
2362   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2363     return false;
2364 
2365   int Size = Mask.size();
2366   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2367 
2368   int Srcs[] = {-1, -1};
2369   for (int i = 0; i != Size; ++i) {
2370     // Ignore undef elements.
2371     if (Mask[i] < 0)
2372       continue;
2373 
2374     // Is this an even or odd element.
2375     int Pol = i % 2;
2376 
2377     // Ensure we consistently use the same source for this element polarity.
2378     int Src = Mask[i] / Size;
2379     if (Srcs[Pol] < 0)
2380       Srcs[Pol] = Src;
2381     if (Srcs[Pol] != Src)
2382       return false;
2383 
2384     // Make sure the element within the source is appropriate for this element
2385     // in the destination.
2386     int Elt = Mask[i] % Size;
2387     if (Elt != i / 2)
2388       return false;
2389   }
2390 
2391   // We need to find a source for each polarity and they can't be the same.
2392   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2393     return false;
2394 
2395   // Swap the sources if the second source was in the even polarity.
2396   SwapSources = Srcs[0] > Srcs[1];
2397 
2398   return true;
2399 }
2400 
2401 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2402 /// and then extract the original number of elements from the rotated result.
2403 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2404 /// returned rotation amount is for a rotate right, where elements move from
2405 /// higher elements to lower elements. \p LoSrc indicates the first source
2406 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2407 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2408 /// 0 or 1 if a rotation is found.
2409 ///
2410 /// NOTE: We talk about rotate to the right which matches how bit shift and
2411 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2412 /// and the table below write vectors with the lowest elements on the left.
2413 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2414   int Size = Mask.size();
2415 
2416   // We need to detect various ways of spelling a rotation:
2417   //   [11, 12, 13, 14, 15,  0,  1,  2]
2418   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2419   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2420   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2421   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2422   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2423   int Rotation = 0;
2424   LoSrc = -1;
2425   HiSrc = -1;
2426   for (int i = 0; i != Size; ++i) {
2427     int M = Mask[i];
2428     if (M < 0)
2429       continue;
2430 
2431     // Determine where a rotate vector would have started.
2432     int StartIdx = i - (M % Size);
2433     // The identity rotation isn't interesting, stop.
2434     if (StartIdx == 0)
2435       return -1;
2436 
2437     // If we found the tail of a vector the rotation must be the missing
2438     // front. If we found the head of a vector, it must be how much of the
2439     // head.
2440     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2441 
2442     if (Rotation == 0)
2443       Rotation = CandidateRotation;
2444     else if (Rotation != CandidateRotation)
2445       // The rotations don't match, so we can't match this mask.
2446       return -1;
2447 
2448     // Compute which value this mask is pointing at.
2449     int MaskSrc = M < Size ? 0 : 1;
2450 
2451     // Compute which of the two target values this index should be assigned to.
2452     // This reflects whether the high elements are remaining or the low elemnts
2453     // are remaining.
2454     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2455 
2456     // Either set up this value if we've not encountered it before, or check
2457     // that it remains consistent.
2458     if (TargetSrc < 0)
2459       TargetSrc = MaskSrc;
2460     else if (TargetSrc != MaskSrc)
2461       // This may be a rotation, but it pulls from the inputs in some
2462       // unsupported interleaving.
2463       return -1;
2464   }
2465 
2466   // Check that we successfully analyzed the mask, and normalize the results.
2467   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2468   assert((LoSrc >= 0 || HiSrc >= 0) &&
2469          "Failed to find a rotated input vector!");
2470 
2471   return Rotation;
2472 }
2473 
2474 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2475                                    const RISCVSubtarget &Subtarget) {
2476   SDValue V1 = Op.getOperand(0);
2477   SDValue V2 = Op.getOperand(1);
2478   SDLoc DL(Op);
2479   MVT XLenVT = Subtarget.getXLenVT();
2480   MVT VT = Op.getSimpleValueType();
2481   unsigned NumElts = VT.getVectorNumElements();
2482   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2483 
2484   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2485 
2486   SDValue TrueMask, VL;
2487   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2488 
2489   if (SVN->isSplat()) {
2490     const int Lane = SVN->getSplatIndex();
2491     if (Lane >= 0) {
2492       MVT SVT = VT.getVectorElementType();
2493 
2494       // Turn splatted vector load into a strided load with an X0 stride.
2495       SDValue V = V1;
2496       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2497       // with undef.
2498       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2499       int Offset = Lane;
2500       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2501         int OpElements =
2502             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2503         V = V.getOperand(Offset / OpElements);
2504         Offset %= OpElements;
2505       }
2506 
2507       // We need to ensure the load isn't atomic or volatile.
2508       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2509         auto *Ld = cast<LoadSDNode>(V);
2510         Offset *= SVT.getStoreSize();
2511         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2512                                                    TypeSize::Fixed(Offset), DL);
2513 
2514         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2515         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2516           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2517           SDValue IntID =
2518               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2519           SDValue Ops[] = {Ld->getChain(),
2520                            IntID,
2521                            DAG.getUNDEF(ContainerVT),
2522                            NewAddr,
2523                            DAG.getRegister(RISCV::X0, XLenVT),
2524                            VL};
2525           SDValue NewLoad = DAG.getMemIntrinsicNode(
2526               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2527               DAG.getMachineFunction().getMachineMemOperand(
2528                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2529           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2530           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2531         }
2532 
2533         // Otherwise use a scalar load and splat. This will give the best
2534         // opportunity to fold a splat into the operation. ISel can turn it into
2535         // the x0 strided load if we aren't able to fold away the select.
2536         if (SVT.isFloatingPoint())
2537           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2538                           Ld->getPointerInfo().getWithOffset(Offset),
2539                           Ld->getOriginalAlign(),
2540                           Ld->getMemOperand()->getFlags());
2541         else
2542           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2543                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2544                              Ld->getOriginalAlign(),
2545                              Ld->getMemOperand()->getFlags());
2546         DAG.makeEquivalentMemoryOrdering(Ld, V);
2547 
2548         unsigned Opc =
2549             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2550         SDValue Splat =
2551             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2552         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2553       }
2554 
2555       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2556       assert(Lane < (int)NumElts && "Unexpected lane!");
2557       SDValue Gather =
2558           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2559                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2560       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2561     }
2562   }
2563 
2564   ArrayRef<int> Mask = SVN->getMask();
2565 
2566   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2567   // be undef which can be handled with a single SLIDEDOWN/UP.
2568   int LoSrc, HiSrc;
2569   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2570   if (Rotation > 0) {
2571     SDValue LoV, HiV;
2572     if (LoSrc >= 0) {
2573       LoV = LoSrc == 0 ? V1 : V2;
2574       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2575     }
2576     if (HiSrc >= 0) {
2577       HiV = HiSrc == 0 ? V1 : V2;
2578       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2579     }
2580 
2581     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2582     // to slide LoV up by (NumElts - Rotation).
2583     unsigned InvRotate = NumElts - Rotation;
2584 
2585     SDValue Res = DAG.getUNDEF(ContainerVT);
2586     if (HiV) {
2587       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2588       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2589       // causes multiple vsetvlis in some test cases such as lowering
2590       // reduce.mul
2591       SDValue DownVL = VL;
2592       if (LoV)
2593         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2594       Res =
2595           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2596                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2597     }
2598     if (LoV)
2599       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2600                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2601 
2602     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2603   }
2604 
2605   // Detect an interleave shuffle and lower to
2606   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2607   bool SwapSources;
2608   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2609     // Swap sources if needed.
2610     if (SwapSources)
2611       std::swap(V1, V2);
2612 
2613     // Extract the lower half of the vectors.
2614     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2615     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2616                      DAG.getConstant(0, DL, XLenVT));
2617     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2618                      DAG.getConstant(0, DL, XLenVT));
2619 
2620     // Double the element width and halve the number of elements in an int type.
2621     unsigned EltBits = VT.getScalarSizeInBits();
2622     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2623     MVT WideIntVT =
2624         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2625     // Convert this to a scalable vector. We need to base this on the
2626     // destination size to ensure there's always a type with a smaller LMUL.
2627     MVT WideIntContainerVT =
2628         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2629 
2630     // Convert sources to scalable vectors with the same element count as the
2631     // larger type.
2632     MVT HalfContainerVT = MVT::getVectorVT(
2633         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2634     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2635     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2636 
2637     // Cast sources to integer.
2638     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2639     MVT IntHalfVT =
2640         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2641     V1 = DAG.getBitcast(IntHalfVT, V1);
2642     V2 = DAG.getBitcast(IntHalfVT, V2);
2643 
2644     // Freeze V2 since we use it twice and we need to be sure that the add and
2645     // multiply see the same value.
2646     V2 = DAG.getFreeze(V2);
2647 
2648     // Recreate TrueMask using the widened type's element count.
2649     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2650 
2651     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2652     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2653                               V2, TrueMask, VL);
2654     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2655     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2656                                      DAG.getUNDEF(IntHalfVT),
2657                                      DAG.getAllOnesConstant(DL, XLenVT));
2658     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2659                                    V2, Multiplier, TrueMask, VL);
2660     // Add the new copies to our previous addition giving us 2^eltbits copies of
2661     // V2. This is equivalent to shifting V2 left by eltbits. This should
2662     // combine with the vwmulu.vv above to form vwmaccu.vv.
2663     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2664                       TrueMask, VL);
2665     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2666     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2667     // vector VT.
2668     ContainerVT =
2669         MVT::getVectorVT(VT.getVectorElementType(),
2670                          WideIntContainerVT.getVectorElementCount() * 2);
2671     Add = DAG.getBitcast(ContainerVT, Add);
2672     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2673   }
2674 
2675   // Detect shuffles which can be re-expressed as vector selects; these are
2676   // shuffles in which each element in the destination is taken from an element
2677   // at the corresponding index in either source vectors.
2678   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2679     int MaskIndex = MaskIdx.value();
2680     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2681   });
2682 
2683   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2684 
2685   SmallVector<SDValue> MaskVals;
2686   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2687   // merged with a second vrgather.
2688   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2689 
2690   // By default we preserve the original operand order, and use a mask to
2691   // select LHS as true and RHS as false. However, since RVV vector selects may
2692   // feature splats but only on the LHS, we may choose to invert our mask and
2693   // instead select between RHS and LHS.
2694   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2695   bool InvertMask = IsSelect == SwapOps;
2696 
2697   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2698   // half.
2699   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2700 
2701   // Now construct the mask that will be used by the vselect or blended
2702   // vrgather operation. For vrgathers, construct the appropriate indices into
2703   // each vector.
2704   for (int MaskIndex : Mask) {
2705     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2706     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2707     if (!IsSelect) {
2708       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2709       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2710                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2711                                      : DAG.getUNDEF(XLenVT));
2712       GatherIndicesRHS.push_back(
2713           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2714                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2715       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2716         ++LHSIndexCounts[MaskIndex];
2717       if (!IsLHSOrUndefIndex)
2718         ++RHSIndexCounts[MaskIndex - NumElts];
2719     }
2720   }
2721 
2722   if (SwapOps) {
2723     std::swap(V1, V2);
2724     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2725   }
2726 
2727   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2728   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2729   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2730 
2731   if (IsSelect)
2732     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2733 
2734   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2735     // On such a large vector we're unable to use i8 as the index type.
2736     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2737     // may involve vector splitting if we're already at LMUL=8, or our
2738     // user-supplied maximum fixed-length LMUL.
2739     return SDValue();
2740   }
2741 
2742   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2743   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2744   MVT IndexVT = VT.changeTypeToInteger();
2745   // Since we can't introduce illegal index types at this stage, use i16 and
2746   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2747   // than XLenVT.
2748   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2749     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2750     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2751   }
2752 
2753   MVT IndexContainerVT =
2754       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2755 
2756   SDValue Gather;
2757   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2758   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2759   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2760     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2761                               Subtarget);
2762   } else {
2763     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2764     // If only one index is used, we can use a "splat" vrgather.
2765     // TODO: We can splat the most-common index and fix-up any stragglers, if
2766     // that's beneficial.
2767     if (LHSIndexCounts.size() == 1) {
2768       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2769       Gather =
2770           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2771                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2772     } else {
2773       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2774       LHSIndices =
2775           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2776 
2777       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2778                            TrueMask, VL);
2779     }
2780   }
2781 
2782   // If a second vector operand is used by this shuffle, blend it in with an
2783   // additional vrgather.
2784   if (!V2.isUndef()) {
2785     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2786     // If only one index is used, we can use a "splat" vrgather.
2787     // TODO: We can splat the most-common index and fix-up any stragglers, if
2788     // that's beneficial.
2789     if (RHSIndexCounts.size() == 1) {
2790       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2791       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2792                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2793     } else {
2794       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2795       RHSIndices =
2796           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2797       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2798                        VL);
2799     }
2800 
2801     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2802     SelectMask =
2803         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2804 
2805     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2806                          Gather, VL);
2807   }
2808 
2809   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2810 }
2811 
2812 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2813   // Support splats for any type. These should type legalize well.
2814   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2815     return true;
2816 
2817   // Only support legal VTs for other shuffles for now.
2818   if (!isTypeLegal(VT))
2819     return false;
2820 
2821   MVT SVT = VT.getSimpleVT();
2822 
2823   bool SwapSources;
2824   int LoSrc, HiSrc;
2825   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2826          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2827 }
2828 
2829 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2830 // the exponent.
2831 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2832   MVT VT = Op.getSimpleValueType();
2833   unsigned EltSize = VT.getScalarSizeInBits();
2834   SDValue Src = Op.getOperand(0);
2835   SDLoc DL(Op);
2836 
2837   // We need a FP type that can represent the value.
2838   // TODO: Use f16 for i8 when possible?
2839   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2840   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2841 
2842   // Legal types should have been checked in the RISCVTargetLowering
2843   // constructor.
2844   // TODO: Splitting may make sense in some cases.
2845   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2846          "Expected legal float type!");
2847 
2848   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2849   // The trailing zero count is equal to log2 of this single bit value.
2850   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2851     SDValue Neg =
2852         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2853     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2854   }
2855 
2856   // We have a legal FP type, convert to it.
2857   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2858   // Bitcast to integer and shift the exponent to the LSB.
2859   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2860   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2861   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2862   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2863                               DAG.getConstant(ShiftAmt, DL, IntVT));
2864   // Truncate back to original type to allow vnsrl.
2865   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2866   // The exponent contains log2 of the value in biased form.
2867   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2868 
2869   // For trailing zeros, we just need to subtract the bias.
2870   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2871     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2872                        DAG.getConstant(ExponentBias, DL, VT));
2873 
2874   // For leading zeros, we need to remove the bias and convert from log2 to
2875   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2876   unsigned Adjust = ExponentBias + (EltSize - 1);
2877   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2878 }
2879 
2880 // While RVV has alignment restrictions, we should always be able to load as a
2881 // legal equivalently-sized byte-typed vector instead. This method is
2882 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2883 // the load is already correctly-aligned, it returns SDValue().
2884 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2885                                                     SelectionDAG &DAG) const {
2886   auto *Load = cast<LoadSDNode>(Op);
2887   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2888 
2889   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2890                                      Load->getMemoryVT(),
2891                                      *Load->getMemOperand()))
2892     return SDValue();
2893 
2894   SDLoc DL(Op);
2895   MVT VT = Op.getSimpleValueType();
2896   unsigned EltSizeBits = VT.getScalarSizeInBits();
2897   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2898          "Unexpected unaligned RVV load type");
2899   MVT NewVT =
2900       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2901   assert(NewVT.isValid() &&
2902          "Expecting equally-sized RVV vector types to be legal");
2903   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2904                           Load->getPointerInfo(), Load->getOriginalAlign(),
2905                           Load->getMemOperand()->getFlags());
2906   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2907 }
2908 
2909 // While RVV has alignment restrictions, we should always be able to store as a
2910 // legal equivalently-sized byte-typed vector instead. This method is
2911 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2912 // returns SDValue() if the store is already correctly aligned.
2913 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2914                                                      SelectionDAG &DAG) const {
2915   auto *Store = cast<StoreSDNode>(Op);
2916   assert(Store && Store->getValue().getValueType().isVector() &&
2917          "Expected vector store");
2918 
2919   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2920                                      Store->getMemoryVT(),
2921                                      *Store->getMemOperand()))
2922     return SDValue();
2923 
2924   SDLoc DL(Op);
2925   SDValue StoredVal = Store->getValue();
2926   MVT VT = StoredVal.getSimpleValueType();
2927   unsigned EltSizeBits = VT.getScalarSizeInBits();
2928   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2929          "Unexpected unaligned RVV store type");
2930   MVT NewVT =
2931       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2932   assert(NewVT.isValid() &&
2933          "Expecting equally-sized RVV vector types to be legal");
2934   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2935   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2936                       Store->getPointerInfo(), Store->getOriginalAlign(),
2937                       Store->getMemOperand()->getFlags());
2938 }
2939 
2940 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2941                                             SelectionDAG &DAG) const {
2942   switch (Op.getOpcode()) {
2943   default:
2944     report_fatal_error("unimplemented operand");
2945   case ISD::GlobalAddress:
2946     return lowerGlobalAddress(Op, DAG);
2947   case ISD::BlockAddress:
2948     return lowerBlockAddress(Op, DAG);
2949   case ISD::ConstantPool:
2950     return lowerConstantPool(Op, DAG);
2951   case ISD::JumpTable:
2952     return lowerJumpTable(Op, DAG);
2953   case ISD::GlobalTLSAddress:
2954     return lowerGlobalTLSAddress(Op, DAG);
2955   case ISD::SELECT:
2956     return lowerSELECT(Op, DAG);
2957   case ISD::BRCOND:
2958     return lowerBRCOND(Op, DAG);
2959   case ISD::VASTART:
2960     return lowerVASTART(Op, DAG);
2961   case ISD::FRAMEADDR:
2962     return lowerFRAMEADDR(Op, DAG);
2963   case ISD::RETURNADDR:
2964     return lowerRETURNADDR(Op, DAG);
2965   case ISD::SHL_PARTS:
2966     return lowerShiftLeftParts(Op, DAG);
2967   case ISD::SRA_PARTS:
2968     return lowerShiftRightParts(Op, DAG, true);
2969   case ISD::SRL_PARTS:
2970     return lowerShiftRightParts(Op, DAG, false);
2971   case ISD::BITCAST: {
2972     SDLoc DL(Op);
2973     EVT VT = Op.getValueType();
2974     SDValue Op0 = Op.getOperand(0);
2975     EVT Op0VT = Op0.getValueType();
2976     MVT XLenVT = Subtarget.getXLenVT();
2977     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2978       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2979       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2980       return FPConv;
2981     }
2982     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2983         Subtarget.hasStdExtF()) {
2984       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2985       SDValue FPConv =
2986           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2987       return FPConv;
2988     }
2989 
2990     // Consider other scalar<->scalar casts as legal if the types are legal.
2991     // Otherwise expand them.
2992     if (!VT.isVector() && !Op0VT.isVector()) {
2993       if (isTypeLegal(VT) && isTypeLegal(Op0VT))
2994         return Op;
2995       return SDValue();
2996     }
2997 
2998     assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
2999            "Unexpected types");
3000 
3001     if (VT.isFixedLengthVector()) {
3002       // We can handle fixed length vector bitcasts with a simple replacement
3003       // in isel.
3004       if (Op0VT.isFixedLengthVector())
3005         return Op;
3006       // When bitcasting from scalar to fixed-length vector, insert the scalar
3007       // into a one-element vector of the result type, and perform a vector
3008       // bitcast.
3009       if (!Op0VT.isVector()) {
3010         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3011         if (!isTypeLegal(BVT))
3012           return SDValue();
3013         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3014                                               DAG.getUNDEF(BVT), Op0,
3015                                               DAG.getConstant(0, DL, XLenVT)));
3016       }
3017       return SDValue();
3018     }
3019     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3020     // thus: bitcast the vector to a one-element vector type whose element type
3021     // is the same as the result type, and extract the first element.
3022     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3023       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3024       if (!isTypeLegal(BVT))
3025         return SDValue();
3026       SDValue BVec = DAG.getBitcast(BVT, Op0);
3027       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3028                          DAG.getConstant(0, DL, XLenVT));
3029     }
3030     return SDValue();
3031   }
3032   case ISD::INTRINSIC_WO_CHAIN:
3033     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3034   case ISD::INTRINSIC_W_CHAIN:
3035     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3036   case ISD::INTRINSIC_VOID:
3037     return LowerINTRINSIC_VOID(Op, DAG);
3038   case ISD::BSWAP:
3039   case ISD::BITREVERSE: {
3040     MVT VT = Op.getSimpleValueType();
3041     SDLoc DL(Op);
3042     if (Subtarget.hasStdExtZbp()) {
3043       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3044       // Start with the maximum immediate value which is the bitwidth - 1.
3045       unsigned Imm = VT.getSizeInBits() - 1;
3046       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3047       if (Op.getOpcode() == ISD::BSWAP)
3048         Imm &= ~0x7U;
3049       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3050                          DAG.getConstant(Imm, DL, VT));
3051     }
3052     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3053     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3054     // Expand bitreverse to a bswap(rev8) followed by brev8.
3055     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3056     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3057     // as brev8 by an isel pattern.
3058     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3059                        DAG.getConstant(7, DL, VT));
3060   }
3061   case ISD::FSHL:
3062   case ISD::FSHR: {
3063     MVT VT = Op.getSimpleValueType();
3064     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3065     SDLoc DL(Op);
3066     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3067     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3068     // accidentally setting the extra bit.
3069     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3070     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3071                                 DAG.getConstant(ShAmtWidth, DL, VT));
3072     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3073     // instruction use different orders. fshl will return its first operand for
3074     // shift of zero, fshr will return its second operand. fsl and fsr both
3075     // return rs1 so the ISD nodes need to have different operand orders.
3076     // Shift amount is in rs2.
3077     SDValue Op0 = Op.getOperand(0);
3078     SDValue Op1 = Op.getOperand(1);
3079     unsigned Opc = RISCVISD::FSL;
3080     if (Op.getOpcode() == ISD::FSHR) {
3081       std::swap(Op0, Op1);
3082       Opc = RISCVISD::FSR;
3083     }
3084     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3085   }
3086   case ISD::TRUNCATE:
3087     // Only custom-lower vector truncates
3088     if (!Op.getSimpleValueType().isVector())
3089       return Op;
3090     return lowerVectorTruncLike(Op, DAG);
3091   case ISD::ANY_EXTEND:
3092   case ISD::ZERO_EXTEND:
3093     if (Op.getOperand(0).getValueType().isVector() &&
3094         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3095       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3096     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3097   case ISD::SIGN_EXTEND:
3098     if (Op.getOperand(0).getValueType().isVector() &&
3099         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3100       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3101     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3102   case ISD::SPLAT_VECTOR_PARTS:
3103     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3104   case ISD::INSERT_VECTOR_ELT:
3105     return lowerINSERT_VECTOR_ELT(Op, DAG);
3106   case ISD::EXTRACT_VECTOR_ELT:
3107     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3108   case ISD::VSCALE: {
3109     MVT VT = Op.getSimpleValueType();
3110     SDLoc DL(Op);
3111     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3112     // We define our scalable vector types for lmul=1 to use a 64 bit known
3113     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3114     // vscale as VLENB / 8.
3115     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3116     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3117       report_fatal_error("Support for VLEN==32 is incomplete.");
3118     // We assume VLENB is a multiple of 8. We manually choose the best shift
3119     // here because SimplifyDemandedBits isn't always able to simplify it.
3120     uint64_t Val = Op.getConstantOperandVal(0);
3121     if (isPowerOf2_64(Val)) {
3122       uint64_t Log2 = Log2_64(Val);
3123       if (Log2 < 3)
3124         return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3125                            DAG.getConstant(3 - Log2, DL, VT));
3126       if (Log2 > 3)
3127         return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3128                            DAG.getConstant(Log2 - 3, DL, VT));
3129       return VLENB;
3130     }
3131     // If the multiplier is a multiple of 8, scale it down to avoid needing
3132     // to shift the VLENB value.
3133     if ((Val % 8) == 0)
3134       return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3135                          DAG.getConstant(Val / 8, DL, VT));
3136 
3137     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3138                                  DAG.getConstant(3, DL, VT));
3139     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3140   }
3141   case ISD::FPOWI: {
3142     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3143     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3144     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3145         Op.getOperand(1).getValueType() == MVT::i32) {
3146       SDLoc DL(Op);
3147       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3148       SDValue Powi =
3149           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3150       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3151                          DAG.getIntPtrConstant(0, DL));
3152     }
3153     return SDValue();
3154   }
3155   case ISD::FP_EXTEND:
3156   case ISD::FP_ROUND:
3157     if (!Op.getValueType().isVector())
3158       return Op;
3159     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3160   case ISD::FP_TO_SINT:
3161   case ISD::FP_TO_UINT:
3162   case ISD::SINT_TO_FP:
3163   case ISD::UINT_TO_FP: {
3164     // RVV can only do fp<->int conversions to types half/double the size as
3165     // the source. We custom-lower any conversions that do two hops into
3166     // sequences.
3167     MVT VT = Op.getSimpleValueType();
3168     if (!VT.isVector())
3169       return Op;
3170     SDLoc DL(Op);
3171     SDValue Src = Op.getOperand(0);
3172     MVT EltVT = VT.getVectorElementType();
3173     MVT SrcVT = Src.getSimpleValueType();
3174     MVT SrcEltVT = SrcVT.getVectorElementType();
3175     unsigned EltSize = EltVT.getSizeInBits();
3176     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3177     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3178            "Unexpected vector element types");
3179 
3180     bool IsInt2FP = SrcEltVT.isInteger();
3181     // Widening conversions
3182     if (EltSize > (2 * SrcEltSize)) {
3183       if (IsInt2FP) {
3184         // Do a regular integer sign/zero extension then convert to float.
3185         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3186                                       VT.getVectorElementCount());
3187         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3188                                  ? ISD::ZERO_EXTEND
3189                                  : ISD::SIGN_EXTEND;
3190         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3191         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3192       }
3193       // FP2Int
3194       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3195       // Do one doubling fp_extend then complete the operation by converting
3196       // to int.
3197       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3198       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3199       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3200     }
3201 
3202     // Narrowing conversions
3203     if (SrcEltSize > (2 * EltSize)) {
3204       if (IsInt2FP) {
3205         // One narrowing int_to_fp, then an fp_round.
3206         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3207         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3208         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3209         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3210       }
3211       // FP2Int
3212       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3213       // representable by the integer, the result is poison.
3214       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3215                                     VT.getVectorElementCount());
3216       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3217       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3218     }
3219 
3220     // Scalable vectors can exit here. Patterns will handle equally-sized
3221     // conversions halving/doubling ones.
3222     if (!VT.isFixedLengthVector())
3223       return Op;
3224 
3225     // For fixed-length vectors we lower to a custom "VL" node.
3226     unsigned RVVOpc = 0;
3227     switch (Op.getOpcode()) {
3228     default:
3229       llvm_unreachable("Impossible opcode");
3230     case ISD::FP_TO_SINT:
3231       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3232       break;
3233     case ISD::FP_TO_UINT:
3234       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3235       break;
3236     case ISD::SINT_TO_FP:
3237       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3238       break;
3239     case ISD::UINT_TO_FP:
3240       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3241       break;
3242     }
3243 
3244     MVT ContainerVT, SrcContainerVT;
3245     // Derive the reference container type from the larger vector type.
3246     if (SrcEltSize > EltSize) {
3247       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3248       ContainerVT =
3249           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3250     } else {
3251       ContainerVT = getContainerForFixedLengthVector(VT);
3252       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3253     }
3254 
3255     SDValue Mask, VL;
3256     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3257 
3258     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3259     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3260     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3261   }
3262   case ISD::FP_TO_SINT_SAT:
3263   case ISD::FP_TO_UINT_SAT:
3264     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3265   case ISD::FTRUNC:
3266   case ISD::FCEIL:
3267   case ISD::FFLOOR:
3268     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3269   case ISD::FROUND:
3270     return lowerFROUND(Op, DAG);
3271   case ISD::VECREDUCE_ADD:
3272   case ISD::VECREDUCE_UMAX:
3273   case ISD::VECREDUCE_SMAX:
3274   case ISD::VECREDUCE_UMIN:
3275   case ISD::VECREDUCE_SMIN:
3276     return lowerVECREDUCE(Op, DAG);
3277   case ISD::VECREDUCE_AND:
3278   case ISD::VECREDUCE_OR:
3279   case ISD::VECREDUCE_XOR:
3280     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3281       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3282     return lowerVECREDUCE(Op, DAG);
3283   case ISD::VECREDUCE_FADD:
3284   case ISD::VECREDUCE_SEQ_FADD:
3285   case ISD::VECREDUCE_FMIN:
3286   case ISD::VECREDUCE_FMAX:
3287     return lowerFPVECREDUCE(Op, DAG);
3288   case ISD::VP_REDUCE_ADD:
3289   case ISD::VP_REDUCE_UMAX:
3290   case ISD::VP_REDUCE_SMAX:
3291   case ISD::VP_REDUCE_UMIN:
3292   case ISD::VP_REDUCE_SMIN:
3293   case ISD::VP_REDUCE_FADD:
3294   case ISD::VP_REDUCE_SEQ_FADD:
3295   case ISD::VP_REDUCE_FMIN:
3296   case ISD::VP_REDUCE_FMAX:
3297     return lowerVPREDUCE(Op, DAG);
3298   case ISD::VP_REDUCE_AND:
3299   case ISD::VP_REDUCE_OR:
3300   case ISD::VP_REDUCE_XOR:
3301     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3302       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3303     return lowerVPREDUCE(Op, DAG);
3304   case ISD::INSERT_SUBVECTOR:
3305     return lowerINSERT_SUBVECTOR(Op, DAG);
3306   case ISD::EXTRACT_SUBVECTOR:
3307     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3308   case ISD::STEP_VECTOR:
3309     return lowerSTEP_VECTOR(Op, DAG);
3310   case ISD::VECTOR_REVERSE:
3311     return lowerVECTOR_REVERSE(Op, DAG);
3312   case ISD::VECTOR_SPLICE:
3313     return lowerVECTOR_SPLICE(Op, DAG);
3314   case ISD::BUILD_VECTOR:
3315     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3316   case ISD::SPLAT_VECTOR:
3317     if (Op.getValueType().getVectorElementType() == MVT::i1)
3318       return lowerVectorMaskSplat(Op, DAG);
3319     return SDValue();
3320   case ISD::VECTOR_SHUFFLE:
3321     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3322   case ISD::CONCAT_VECTORS: {
3323     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3324     // better than going through the stack, as the default expansion does.
3325     SDLoc DL(Op);
3326     MVT VT = Op.getSimpleValueType();
3327     unsigned NumOpElts =
3328         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3329     SDValue Vec = DAG.getUNDEF(VT);
3330     for (const auto &OpIdx : enumerate(Op->ops())) {
3331       SDValue SubVec = OpIdx.value();
3332       // Don't insert undef subvectors.
3333       if (SubVec.isUndef())
3334         continue;
3335       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3336                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3337     }
3338     return Vec;
3339   }
3340   case ISD::LOAD:
3341     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3342       return V;
3343     if (Op.getValueType().isFixedLengthVector())
3344       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3345     return Op;
3346   case ISD::STORE:
3347     if (auto V = expandUnalignedRVVStore(Op, DAG))
3348       return V;
3349     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3350       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3351     return Op;
3352   case ISD::MLOAD:
3353   case ISD::VP_LOAD:
3354     return lowerMaskedLoad(Op, DAG);
3355   case ISD::MSTORE:
3356   case ISD::VP_STORE:
3357     return lowerMaskedStore(Op, DAG);
3358   case ISD::SETCC:
3359     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3360   case ISD::ADD:
3361     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3362   case ISD::SUB:
3363     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3364   case ISD::MUL:
3365     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3366   case ISD::MULHS:
3367     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3368   case ISD::MULHU:
3369     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3370   case ISD::AND:
3371     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3372                                               RISCVISD::AND_VL);
3373   case ISD::OR:
3374     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3375                                               RISCVISD::OR_VL);
3376   case ISD::XOR:
3377     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3378                                               RISCVISD::XOR_VL);
3379   case ISD::SDIV:
3380     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3381   case ISD::SREM:
3382     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3383   case ISD::UDIV:
3384     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3385   case ISD::UREM:
3386     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3387   case ISD::SHL:
3388   case ISD::SRA:
3389   case ISD::SRL:
3390     if (Op.getSimpleValueType().isFixedLengthVector())
3391       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3392     // This can be called for an i32 shift amount that needs to be promoted.
3393     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3394            "Unexpected custom legalisation");
3395     return SDValue();
3396   case ISD::SADDSAT:
3397     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3398   case ISD::UADDSAT:
3399     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3400   case ISD::SSUBSAT:
3401     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3402   case ISD::USUBSAT:
3403     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3404   case ISD::FADD:
3405     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3406   case ISD::FSUB:
3407     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3408   case ISD::FMUL:
3409     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3410   case ISD::FDIV:
3411     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3412   case ISD::FNEG:
3413     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3414   case ISD::FABS:
3415     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3416   case ISD::FSQRT:
3417     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3418   case ISD::FMA:
3419     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3420   case ISD::SMIN:
3421     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3422   case ISD::SMAX:
3423     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3424   case ISD::UMIN:
3425     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3426   case ISD::UMAX:
3427     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3428   case ISD::FMINNUM:
3429     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3430   case ISD::FMAXNUM:
3431     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3432   case ISD::ABS:
3433     return lowerABS(Op, DAG);
3434   case ISD::CTLZ_ZERO_UNDEF:
3435   case ISD::CTTZ_ZERO_UNDEF:
3436     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3437   case ISD::VSELECT:
3438     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3439   case ISD::FCOPYSIGN:
3440     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3441   case ISD::MGATHER:
3442   case ISD::VP_GATHER:
3443     return lowerMaskedGather(Op, DAG);
3444   case ISD::MSCATTER:
3445   case ISD::VP_SCATTER:
3446     return lowerMaskedScatter(Op, DAG);
3447   case ISD::FLT_ROUNDS_:
3448     return lowerGET_ROUNDING(Op, DAG);
3449   case ISD::SET_ROUNDING:
3450     return lowerSET_ROUNDING(Op, DAG);
3451   case ISD::EH_DWARF_CFA:
3452     return lowerEH_DWARF_CFA(Op, DAG);
3453   case ISD::VP_SELECT:
3454     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3455   case ISD::VP_MERGE:
3456     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3457   case ISD::VP_ADD:
3458     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3459   case ISD::VP_SUB:
3460     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3461   case ISD::VP_MUL:
3462     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3463   case ISD::VP_SDIV:
3464     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3465   case ISD::VP_UDIV:
3466     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3467   case ISD::VP_SREM:
3468     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3469   case ISD::VP_UREM:
3470     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3471   case ISD::VP_AND:
3472     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3473   case ISD::VP_OR:
3474     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3475   case ISD::VP_XOR:
3476     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3477   case ISD::VP_ASHR:
3478     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3479   case ISD::VP_LSHR:
3480     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3481   case ISD::VP_SHL:
3482     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3483   case ISD::VP_FADD:
3484     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3485   case ISD::VP_FSUB:
3486     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3487   case ISD::VP_FMUL:
3488     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3489   case ISD::VP_FDIV:
3490     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3491   case ISD::VP_FNEG:
3492     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3493   case ISD::VP_FMA:
3494     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3495   case ISD::VP_SIGN_EXTEND:
3496   case ISD::VP_ZERO_EXTEND:
3497     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3498       return lowerVPExtMaskOp(Op, DAG);
3499     return lowerVPOp(Op, DAG,
3500                      Op.getOpcode() == ISD::VP_SIGN_EXTEND
3501                          ? RISCVISD::VSEXT_VL
3502                          : RISCVISD::VZEXT_VL);
3503   case ISD::VP_TRUNCATE:
3504     return lowerVectorTruncLike(Op, DAG);
3505   case ISD::VP_FP_EXTEND:
3506   case ISD::VP_FP_ROUND:
3507     return lowerVectorFPExtendOrRoundLike(Op, DAG);
3508   case ISD::VP_FPTOSI:
3509     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3510   case ISD::VP_FPTOUI:
3511     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3512   case ISD::VP_SITOFP:
3513     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3514   case ISD::VP_UITOFP:
3515     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3516   case ISD::VP_SETCC:
3517     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3518       return lowerVPSetCCMaskOp(Op, DAG);
3519     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3520   }
3521 }
3522 
3523 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3524                              SelectionDAG &DAG, unsigned Flags) {
3525   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3526 }
3527 
3528 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3529                              SelectionDAG &DAG, unsigned Flags) {
3530   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3531                                    Flags);
3532 }
3533 
3534 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3535                              SelectionDAG &DAG, unsigned Flags) {
3536   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3537                                    N->getOffset(), Flags);
3538 }
3539 
3540 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3541                              SelectionDAG &DAG, unsigned Flags) {
3542   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3543 }
3544 
3545 template <class NodeTy>
3546 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3547                                      bool IsLocal) const {
3548   SDLoc DL(N);
3549   EVT Ty = getPointerTy(DAG.getDataLayout());
3550 
3551   if (isPositionIndependent()) {
3552     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3553     if (IsLocal)
3554       // Use PC-relative addressing to access the symbol. This generates the
3555       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3556       // %pcrel_lo(auipc)).
3557       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3558 
3559     // Use PC-relative addressing to access the GOT for this symbol, then load
3560     // the address from the GOT. This generates the pattern (PseudoLA sym),
3561     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3562     SDValue Load =
3563         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3564     MachineFunction &MF = DAG.getMachineFunction();
3565     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3566         MachinePointerInfo::getGOT(MF),
3567         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3568             MachineMemOperand::MOInvariant,
3569         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3570     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3571     return Load;
3572   }
3573 
3574   switch (getTargetMachine().getCodeModel()) {
3575   default:
3576     report_fatal_error("Unsupported code model for lowering");
3577   case CodeModel::Small: {
3578     // Generate a sequence for accessing addresses within the first 2 GiB of
3579     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3580     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3581     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3582     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3583     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3584   }
3585   case CodeModel::Medium: {
3586     // Generate a sequence for accessing addresses within any 2GiB range within
3587     // the address space. This generates the pattern (PseudoLLA sym), which
3588     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3589     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3590     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3591   }
3592   }
3593 }
3594 
3595 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3596     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3597 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3598     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3599 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3600     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3601 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3602     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3603 
3604 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3605                                                 SelectionDAG &DAG) const {
3606   SDLoc DL(Op);
3607   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3608   assert(N->getOffset() == 0 && "unexpected offset in global node");
3609 
3610   const GlobalValue *GV = N->getGlobal();
3611   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3612   return getAddr(N, DAG, IsLocal);
3613 }
3614 
3615 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3616                                                SelectionDAG &DAG) const {
3617   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3618 
3619   return getAddr(N, DAG);
3620 }
3621 
3622 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3623                                                SelectionDAG &DAG) const {
3624   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3625 
3626   return getAddr(N, DAG);
3627 }
3628 
3629 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3630                                             SelectionDAG &DAG) const {
3631   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3632 
3633   return getAddr(N, DAG);
3634 }
3635 
3636 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3637                                               SelectionDAG &DAG,
3638                                               bool UseGOT) const {
3639   SDLoc DL(N);
3640   EVT Ty = getPointerTy(DAG.getDataLayout());
3641   const GlobalValue *GV = N->getGlobal();
3642   MVT XLenVT = Subtarget.getXLenVT();
3643 
3644   if (UseGOT) {
3645     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3646     // load the address from the GOT and add the thread pointer. This generates
3647     // the pattern (PseudoLA_TLS_IE sym), which expands to
3648     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3649     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3650     SDValue Load =
3651         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3652     MachineFunction &MF = DAG.getMachineFunction();
3653     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3654         MachinePointerInfo::getGOT(MF),
3655         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3656             MachineMemOperand::MOInvariant,
3657         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3658     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3659 
3660     // Add the thread pointer.
3661     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3662     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3663   }
3664 
3665   // Generate a sequence for accessing the address relative to the thread
3666   // pointer, with the appropriate adjustment for the thread pointer offset.
3667   // This generates the pattern
3668   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3669   SDValue AddrHi =
3670       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3671   SDValue AddrAdd =
3672       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3673   SDValue AddrLo =
3674       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3675 
3676   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3677   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3678   SDValue MNAdd = SDValue(
3679       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3680       0);
3681   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3682 }
3683 
3684 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3685                                                SelectionDAG &DAG) const {
3686   SDLoc DL(N);
3687   EVT Ty = getPointerTy(DAG.getDataLayout());
3688   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3689   const GlobalValue *GV = N->getGlobal();
3690 
3691   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3692   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3693   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3694   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3695   SDValue Load =
3696       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3697 
3698   // Prepare argument list to generate call.
3699   ArgListTy Args;
3700   ArgListEntry Entry;
3701   Entry.Node = Load;
3702   Entry.Ty = CallTy;
3703   Args.push_back(Entry);
3704 
3705   // Setup call to __tls_get_addr.
3706   TargetLowering::CallLoweringInfo CLI(DAG);
3707   CLI.setDebugLoc(DL)
3708       .setChain(DAG.getEntryNode())
3709       .setLibCallee(CallingConv::C, CallTy,
3710                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3711                     std::move(Args));
3712 
3713   return LowerCallTo(CLI).first;
3714 }
3715 
3716 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3717                                                    SelectionDAG &DAG) const {
3718   SDLoc DL(Op);
3719   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3720   assert(N->getOffset() == 0 && "unexpected offset in global node");
3721 
3722   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3723 
3724   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3725       CallingConv::GHC)
3726     report_fatal_error("In GHC calling convention TLS is not supported");
3727 
3728   SDValue Addr;
3729   switch (Model) {
3730   case TLSModel::LocalExec:
3731     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3732     break;
3733   case TLSModel::InitialExec:
3734     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3735     break;
3736   case TLSModel::LocalDynamic:
3737   case TLSModel::GeneralDynamic:
3738     Addr = getDynamicTLSAddr(N, DAG);
3739     break;
3740   }
3741 
3742   return Addr;
3743 }
3744 
3745 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3746   SDValue CondV = Op.getOperand(0);
3747   SDValue TrueV = Op.getOperand(1);
3748   SDValue FalseV = Op.getOperand(2);
3749   SDLoc DL(Op);
3750   MVT VT = Op.getSimpleValueType();
3751   MVT XLenVT = Subtarget.getXLenVT();
3752 
3753   // Lower vector SELECTs to VSELECTs by splatting the condition.
3754   if (VT.isVector()) {
3755     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3756     SDValue CondSplat = VT.isScalableVector()
3757                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3758                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3759     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3760   }
3761 
3762   // If the result type is XLenVT and CondV is the output of a SETCC node
3763   // which also operated on XLenVT inputs, then merge the SETCC node into the
3764   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3765   // compare+branch instructions. i.e.:
3766   // (select (setcc lhs, rhs, cc), truev, falsev)
3767   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3768   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3769       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3770     SDValue LHS = CondV.getOperand(0);
3771     SDValue RHS = CondV.getOperand(1);
3772     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3773     ISD::CondCode CCVal = CC->get();
3774 
3775     // Special case for a select of 2 constants that have a diffence of 1.
3776     // Normally this is done by DAGCombine, but if the select is introduced by
3777     // type legalization or op legalization, we miss it. Restricting to SETLT
3778     // case for now because that is what signed saturating add/sub need.
3779     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3780     // but we would probably want to swap the true/false values if the condition
3781     // is SETGE/SETLE to avoid an XORI.
3782     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3783         CCVal == ISD::SETLT) {
3784       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3785       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3786       if (TrueVal - 1 == FalseVal)
3787         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3788       if (TrueVal + 1 == FalseVal)
3789         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3790     }
3791 
3792     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3793 
3794     SDValue TargetCC = DAG.getCondCode(CCVal);
3795     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3796     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3797   }
3798 
3799   // Otherwise:
3800   // (select condv, truev, falsev)
3801   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3802   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3803   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3804 
3805   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3806 
3807   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3808 }
3809 
3810 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3811   SDValue CondV = Op.getOperand(1);
3812   SDLoc DL(Op);
3813   MVT XLenVT = Subtarget.getXLenVT();
3814 
3815   if (CondV.getOpcode() == ISD::SETCC &&
3816       CondV.getOperand(0).getValueType() == XLenVT) {
3817     SDValue LHS = CondV.getOperand(0);
3818     SDValue RHS = CondV.getOperand(1);
3819     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3820 
3821     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3822 
3823     SDValue TargetCC = DAG.getCondCode(CCVal);
3824     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3825                        LHS, RHS, TargetCC, Op.getOperand(2));
3826   }
3827 
3828   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3829                      CondV, DAG.getConstant(0, DL, XLenVT),
3830                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3831 }
3832 
3833 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3834   MachineFunction &MF = DAG.getMachineFunction();
3835   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3836 
3837   SDLoc DL(Op);
3838   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3839                                  getPointerTy(MF.getDataLayout()));
3840 
3841   // vastart just stores the address of the VarArgsFrameIndex slot into the
3842   // memory location argument.
3843   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3844   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3845                       MachinePointerInfo(SV));
3846 }
3847 
3848 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3849                                             SelectionDAG &DAG) const {
3850   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3851   MachineFunction &MF = DAG.getMachineFunction();
3852   MachineFrameInfo &MFI = MF.getFrameInfo();
3853   MFI.setFrameAddressIsTaken(true);
3854   Register FrameReg = RI.getFrameRegister(MF);
3855   int XLenInBytes = Subtarget.getXLen() / 8;
3856 
3857   EVT VT = Op.getValueType();
3858   SDLoc DL(Op);
3859   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3860   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3861   while (Depth--) {
3862     int Offset = -(XLenInBytes * 2);
3863     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3864                               DAG.getIntPtrConstant(Offset, DL));
3865     FrameAddr =
3866         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3867   }
3868   return FrameAddr;
3869 }
3870 
3871 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3872                                              SelectionDAG &DAG) const {
3873   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3874   MachineFunction &MF = DAG.getMachineFunction();
3875   MachineFrameInfo &MFI = MF.getFrameInfo();
3876   MFI.setReturnAddressIsTaken(true);
3877   MVT XLenVT = Subtarget.getXLenVT();
3878   int XLenInBytes = Subtarget.getXLen() / 8;
3879 
3880   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3881     return SDValue();
3882 
3883   EVT VT = Op.getValueType();
3884   SDLoc DL(Op);
3885   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3886   if (Depth) {
3887     int Off = -XLenInBytes;
3888     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3889     SDValue Offset = DAG.getConstant(Off, DL, VT);
3890     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3891                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3892                        MachinePointerInfo());
3893   }
3894 
3895   // Return the value of the return address register, marking it an implicit
3896   // live-in.
3897   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3898   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3899 }
3900 
3901 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3902                                                  SelectionDAG &DAG) const {
3903   SDLoc DL(Op);
3904   SDValue Lo = Op.getOperand(0);
3905   SDValue Hi = Op.getOperand(1);
3906   SDValue Shamt = Op.getOperand(2);
3907   EVT VT = Lo.getValueType();
3908 
3909   // if Shamt-XLEN < 0: // Shamt < XLEN
3910   //   Lo = Lo << Shamt
3911   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
3912   // else:
3913   //   Lo = 0
3914   //   Hi = Lo << (Shamt-XLEN)
3915 
3916   SDValue Zero = DAG.getConstant(0, DL, VT);
3917   SDValue One = DAG.getConstant(1, DL, VT);
3918   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3919   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3920   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3921   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3922 
3923   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3924   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3925   SDValue ShiftRightLo =
3926       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3927   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3928   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3929   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3930 
3931   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3932 
3933   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3934   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3935 
3936   SDValue Parts[2] = {Lo, Hi};
3937   return DAG.getMergeValues(Parts, DL);
3938 }
3939 
3940 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3941                                                   bool IsSRA) const {
3942   SDLoc DL(Op);
3943   SDValue Lo = Op.getOperand(0);
3944   SDValue Hi = Op.getOperand(1);
3945   SDValue Shamt = Op.getOperand(2);
3946   EVT VT = Lo.getValueType();
3947 
3948   // SRA expansion:
3949   //   if Shamt-XLEN < 0: // Shamt < XLEN
3950   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3951   //     Hi = Hi >>s Shamt
3952   //   else:
3953   //     Lo = Hi >>s (Shamt-XLEN);
3954   //     Hi = Hi >>s (XLEN-1)
3955   //
3956   // SRL expansion:
3957   //   if Shamt-XLEN < 0: // Shamt < XLEN
3958   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3959   //     Hi = Hi >>u Shamt
3960   //   else:
3961   //     Lo = Hi >>u (Shamt-XLEN);
3962   //     Hi = 0;
3963 
3964   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3965 
3966   SDValue Zero = DAG.getConstant(0, DL, VT);
3967   SDValue One = DAG.getConstant(1, DL, VT);
3968   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3969   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3970   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3971   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3972 
3973   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3974   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3975   SDValue ShiftLeftHi =
3976       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3977   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3978   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3979   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3980   SDValue HiFalse =
3981       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3982 
3983   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3984 
3985   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3986   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3987 
3988   SDValue Parts[2] = {Lo, Hi};
3989   return DAG.getMergeValues(Parts, DL);
3990 }
3991 
3992 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3993 // legal equivalently-sized i8 type, so we can use that as a go-between.
3994 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3995                                                   SelectionDAG &DAG) const {
3996   SDLoc DL(Op);
3997   MVT VT = Op.getSimpleValueType();
3998   SDValue SplatVal = Op.getOperand(0);
3999   // All-zeros or all-ones splats are handled specially.
4000   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4001     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4002     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4003   }
4004   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4005     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4006     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4007   }
4008   MVT XLenVT = Subtarget.getXLenVT();
4009   assert(SplatVal.getValueType() == XLenVT &&
4010          "Unexpected type for i1 splat value");
4011   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4012   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4013                          DAG.getConstant(1, DL, XLenVT));
4014   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4015   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4016   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4017 }
4018 
4019 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4020 // illegal (currently only vXi64 RV32).
4021 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4022 // them to VMV_V_X_VL.
4023 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4024                                                      SelectionDAG &DAG) const {
4025   SDLoc DL(Op);
4026   MVT VecVT = Op.getSimpleValueType();
4027   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4028          "Unexpected SPLAT_VECTOR_PARTS lowering");
4029 
4030   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4031   SDValue Lo = Op.getOperand(0);
4032   SDValue Hi = Op.getOperand(1);
4033 
4034   if (VecVT.isFixedLengthVector()) {
4035     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4036     SDLoc DL(Op);
4037     SDValue Mask, VL;
4038     std::tie(Mask, VL) =
4039         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4040 
4041     SDValue Res =
4042         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4043     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4044   }
4045 
4046   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4047     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4048     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4049     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4050     // node in order to try and match RVV vector/scalar instructions.
4051     if ((LoC >> 31) == HiC)
4052       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4053                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4054   }
4055 
4056   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4057   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4058       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4059       Hi.getConstantOperandVal(1) == 31)
4060     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4061                        DAG.getRegister(RISCV::X0, MVT::i32));
4062 
4063   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4064   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4065                      DAG.getUNDEF(VecVT), Lo, Hi,
4066                      DAG.getRegister(RISCV::X0, MVT::i32));
4067 }
4068 
4069 // Custom-lower extensions from mask vectors by using a vselect either with 1
4070 // for zero/any-extension or -1 for sign-extension:
4071 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4072 // Note that any-extension is lowered identically to zero-extension.
4073 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4074                                                 int64_t ExtTrueVal) const {
4075   SDLoc DL(Op);
4076   MVT VecVT = Op.getSimpleValueType();
4077   SDValue Src = Op.getOperand(0);
4078   // Only custom-lower extensions from mask types
4079   assert(Src.getValueType().isVector() &&
4080          Src.getValueType().getVectorElementType() == MVT::i1);
4081 
4082   if (VecVT.isScalableVector()) {
4083     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4084     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4085     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4086   }
4087 
4088   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4089   MVT I1ContainerVT =
4090       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4091 
4092   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4093 
4094   SDValue Mask, VL;
4095   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4096 
4097   MVT XLenVT = Subtarget.getXLenVT();
4098   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4099   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4100 
4101   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4102                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4103   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4104                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4105   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4106                                SplatTrueVal, SplatZero, VL);
4107 
4108   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4109 }
4110 
4111 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4112     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4113   MVT ExtVT = Op.getSimpleValueType();
4114   // Only custom-lower extensions from fixed-length vector types.
4115   if (!ExtVT.isFixedLengthVector())
4116     return Op;
4117   MVT VT = Op.getOperand(0).getSimpleValueType();
4118   // Grab the canonical container type for the extended type. Infer the smaller
4119   // type from that to ensure the same number of vector elements, as we know
4120   // the LMUL will be sufficient to hold the smaller type.
4121   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4122   // Get the extended container type manually to ensure the same number of
4123   // vector elements between source and dest.
4124   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4125                                      ContainerExtVT.getVectorElementCount());
4126 
4127   SDValue Op1 =
4128       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4129 
4130   SDLoc DL(Op);
4131   SDValue Mask, VL;
4132   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4133 
4134   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4135 
4136   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4137 }
4138 
4139 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4140 // setcc operation:
4141 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4142 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4143                                                       SelectionDAG &DAG) const {
4144   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4145   SDLoc DL(Op);
4146   EVT MaskVT = Op.getValueType();
4147   // Only expect to custom-lower truncations to mask types
4148   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4149          "Unexpected type for vector mask lowering");
4150   SDValue Src = Op.getOperand(0);
4151   MVT VecVT = Src.getSimpleValueType();
4152   SDValue Mask, VL;
4153   if (IsVPTrunc) {
4154     Mask = Op.getOperand(1);
4155     VL = Op.getOperand(2);
4156   }
4157   // If this is a fixed vector, we need to convert it to a scalable vector.
4158   MVT ContainerVT = VecVT;
4159 
4160   if (VecVT.isFixedLengthVector()) {
4161     ContainerVT = getContainerForFixedLengthVector(VecVT);
4162     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4163     if (IsVPTrunc) {
4164       MVT MaskContainerVT =
4165           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4166       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4167     }
4168   }
4169 
4170   if (!IsVPTrunc) {
4171     std::tie(Mask, VL) =
4172         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4173   }
4174 
4175   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4176   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4177 
4178   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4179                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4180   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4181                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4182 
4183   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4184   SDValue Trunc =
4185       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4186   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4187                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4188   if (MaskVT.isFixedLengthVector())
4189     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4190   return Trunc;
4191 }
4192 
4193 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4194                                                   SelectionDAG &DAG) const {
4195   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4196   SDLoc DL(Op);
4197 
4198   MVT VT = Op.getSimpleValueType();
4199   // Only custom-lower vector truncates
4200   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4201 
4202   // Truncates to mask types are handled differently
4203   if (VT.getVectorElementType() == MVT::i1)
4204     return lowerVectorMaskTruncLike(Op, DAG);
4205 
4206   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4207   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4208   // truncate by one power of two at a time.
4209   MVT DstEltVT = VT.getVectorElementType();
4210 
4211   SDValue Src = Op.getOperand(0);
4212   MVT SrcVT = Src.getSimpleValueType();
4213   MVT SrcEltVT = SrcVT.getVectorElementType();
4214 
4215   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4216          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4217          "Unexpected vector truncate lowering");
4218 
4219   MVT ContainerVT = SrcVT;
4220   SDValue Mask, VL;
4221   if (IsVPTrunc) {
4222     Mask = Op.getOperand(1);
4223     VL = Op.getOperand(2);
4224   }
4225   if (SrcVT.isFixedLengthVector()) {
4226     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4227     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4228     if (IsVPTrunc) {
4229       MVT MaskVT = getMaskTypeFor(ContainerVT);
4230       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4231     }
4232   }
4233 
4234   SDValue Result = Src;
4235   if (!IsVPTrunc) {
4236     std::tie(Mask, VL) =
4237         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4238   }
4239 
4240   LLVMContext &Context = *DAG.getContext();
4241   const ElementCount Count = ContainerVT.getVectorElementCount();
4242   do {
4243     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4244     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4245     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4246                          Mask, VL);
4247   } while (SrcEltVT != DstEltVT);
4248 
4249   if (SrcVT.isFixedLengthVector())
4250     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4251 
4252   return Result;
4253 }
4254 
4255 SDValue
4256 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4257                                                     SelectionDAG &DAG) const {
4258   bool IsVP =
4259       Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4260   bool IsExtend =
4261       Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4262   // RVV can only do truncate fp to types half the size as the source. We
4263   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4264   // conversion instruction.
4265   SDLoc DL(Op);
4266   MVT VT = Op.getSimpleValueType();
4267 
4268   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4269 
4270   SDValue Src = Op.getOperand(0);
4271   MVT SrcVT = Src.getSimpleValueType();
4272 
4273   bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4274                                      SrcVT.getVectorElementType() != MVT::f16);
4275   bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4276                                      SrcVT.getVectorElementType() != MVT::f64);
4277 
4278   bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4279 
4280   // Prepare any fixed-length vector operands.
4281   MVT ContainerVT = VT;
4282   SDValue Mask, VL;
4283   if (IsVP) {
4284     Mask = Op.getOperand(1);
4285     VL = Op.getOperand(2);
4286   }
4287   if (VT.isFixedLengthVector()) {
4288     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4289     ContainerVT =
4290         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4291     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4292     if (IsVP) {
4293       MVT MaskVT = getMaskTypeFor(ContainerVT);
4294       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4295     }
4296   }
4297 
4298   if (!IsVP)
4299     std::tie(Mask, VL) =
4300         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4301 
4302   unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4303 
4304   if (IsDirectConv) {
4305     Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4306     if (VT.isFixedLengthVector())
4307       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4308     return Src;
4309   }
4310 
4311   unsigned InterConvOpc =
4312       IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4313 
4314   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4315   SDValue IntermediateConv =
4316       DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4317   SDValue Result =
4318       DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4319   if (VT.isFixedLengthVector())
4320     return convertFromScalableVector(VT, Result, DAG, Subtarget);
4321   return Result;
4322 }
4323 
4324 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4325 // first position of a vector, and that vector is slid up to the insert index.
4326 // By limiting the active vector length to index+1 and merging with the
4327 // original vector (with an undisturbed tail policy for elements >= VL), we
4328 // achieve the desired result of leaving all elements untouched except the one
4329 // at VL-1, which is replaced with the desired value.
4330 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4331                                                     SelectionDAG &DAG) const {
4332   SDLoc DL(Op);
4333   MVT VecVT = Op.getSimpleValueType();
4334   SDValue Vec = Op.getOperand(0);
4335   SDValue Val = Op.getOperand(1);
4336   SDValue Idx = Op.getOperand(2);
4337 
4338   if (VecVT.getVectorElementType() == MVT::i1) {
4339     // FIXME: For now we just promote to an i8 vector and insert into that,
4340     // but this is probably not optimal.
4341     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4342     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4343     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4344     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4345   }
4346 
4347   MVT ContainerVT = VecVT;
4348   // If the operand is a fixed-length vector, convert to a scalable one.
4349   if (VecVT.isFixedLengthVector()) {
4350     ContainerVT = getContainerForFixedLengthVector(VecVT);
4351     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4352   }
4353 
4354   MVT XLenVT = Subtarget.getXLenVT();
4355 
4356   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4357   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4358   // Even i64-element vectors on RV32 can be lowered without scalar
4359   // legalization if the most-significant 32 bits of the value are not affected
4360   // by the sign-extension of the lower 32 bits.
4361   // TODO: We could also catch sign extensions of a 32-bit value.
4362   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4363     const auto *CVal = cast<ConstantSDNode>(Val);
4364     if (isInt<32>(CVal->getSExtValue())) {
4365       IsLegalInsert = true;
4366       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4367     }
4368   }
4369 
4370   SDValue Mask, VL;
4371   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4372 
4373   SDValue ValInVec;
4374 
4375   if (IsLegalInsert) {
4376     unsigned Opc =
4377         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4378     if (isNullConstant(Idx)) {
4379       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4380       if (!VecVT.isFixedLengthVector())
4381         return Vec;
4382       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4383     }
4384     ValInVec =
4385         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4386   } else {
4387     // On RV32, i64-element vectors must be specially handled to place the
4388     // value at element 0, by using two vslide1up instructions in sequence on
4389     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4390     // this.
4391     SDValue One = DAG.getConstant(1, DL, XLenVT);
4392     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4393     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4394     MVT I32ContainerVT =
4395         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4396     SDValue I32Mask =
4397         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4398     // Limit the active VL to two.
4399     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4400     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4401     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4402     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4403                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4404     // First slide in the hi value, then the lo in underneath it.
4405     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4406                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4407                            I32Mask, InsertI64VL);
4408     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4409                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4410                            I32Mask, InsertI64VL);
4411     // Bitcast back to the right container type.
4412     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4413   }
4414 
4415   // Now that the value is in a vector, slide it into position.
4416   SDValue InsertVL =
4417       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4418   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4419                                 ValInVec, Idx, Mask, InsertVL);
4420   if (!VecVT.isFixedLengthVector())
4421     return Slideup;
4422   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4423 }
4424 
4425 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4426 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4427 // types this is done using VMV_X_S to allow us to glean information about the
4428 // sign bits of the result.
4429 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4430                                                      SelectionDAG &DAG) const {
4431   SDLoc DL(Op);
4432   SDValue Idx = Op.getOperand(1);
4433   SDValue Vec = Op.getOperand(0);
4434   EVT EltVT = Op.getValueType();
4435   MVT VecVT = Vec.getSimpleValueType();
4436   MVT XLenVT = Subtarget.getXLenVT();
4437 
4438   if (VecVT.getVectorElementType() == MVT::i1) {
4439     if (VecVT.isFixedLengthVector()) {
4440       unsigned NumElts = VecVT.getVectorNumElements();
4441       if (NumElts >= 8) {
4442         MVT WideEltVT;
4443         unsigned WidenVecLen;
4444         SDValue ExtractElementIdx;
4445         SDValue ExtractBitIdx;
4446         unsigned MaxEEW = Subtarget.getELEN();
4447         MVT LargestEltVT = MVT::getIntegerVT(
4448             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4449         if (NumElts <= LargestEltVT.getSizeInBits()) {
4450           assert(isPowerOf2_32(NumElts) &&
4451                  "the number of elements should be power of 2");
4452           WideEltVT = MVT::getIntegerVT(NumElts);
4453           WidenVecLen = 1;
4454           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4455           ExtractBitIdx = Idx;
4456         } else {
4457           WideEltVT = LargestEltVT;
4458           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4459           // extract element index = index / element width
4460           ExtractElementIdx = DAG.getNode(
4461               ISD::SRL, DL, XLenVT, Idx,
4462               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4463           // mask bit index = index % element width
4464           ExtractBitIdx = DAG.getNode(
4465               ISD::AND, DL, XLenVT, Idx,
4466               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4467         }
4468         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4469         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4470         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4471                                          Vec, ExtractElementIdx);
4472         // Extract the bit from GPR.
4473         SDValue ShiftRight =
4474             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4475         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4476                            DAG.getConstant(1, DL, XLenVT));
4477       }
4478     }
4479     // Otherwise, promote to an i8 vector and extract from that.
4480     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4481     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4482     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4483   }
4484 
4485   // If this is a fixed vector, we need to convert it to a scalable vector.
4486   MVT ContainerVT = VecVT;
4487   if (VecVT.isFixedLengthVector()) {
4488     ContainerVT = getContainerForFixedLengthVector(VecVT);
4489     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4490   }
4491 
4492   // If the index is 0, the vector is already in the right position.
4493   if (!isNullConstant(Idx)) {
4494     // Use a VL of 1 to avoid processing more elements than we need.
4495     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4496     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4497     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4498                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4499   }
4500 
4501   if (!EltVT.isInteger()) {
4502     // Floating-point extracts are handled in TableGen.
4503     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4504                        DAG.getConstant(0, DL, XLenVT));
4505   }
4506 
4507   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4508   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4509 }
4510 
4511 // Some RVV intrinsics may claim that they want an integer operand to be
4512 // promoted or expanded.
4513 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4514                                            const RISCVSubtarget &Subtarget) {
4515   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4516           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4517          "Unexpected opcode");
4518 
4519   if (!Subtarget.hasVInstructions())
4520     return SDValue();
4521 
4522   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4523   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4524   SDLoc DL(Op);
4525 
4526   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4527       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4528   if (!II || !II->hasScalarOperand())
4529     return SDValue();
4530 
4531   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4532   assert(SplatOp < Op.getNumOperands());
4533 
4534   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4535   SDValue &ScalarOp = Operands[SplatOp];
4536   MVT OpVT = ScalarOp.getSimpleValueType();
4537   MVT XLenVT = Subtarget.getXLenVT();
4538 
4539   // If this isn't a scalar, or its type is XLenVT we're done.
4540   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4541     return SDValue();
4542 
4543   // Simplest case is that the operand needs to be promoted to XLenVT.
4544   if (OpVT.bitsLT(XLenVT)) {
4545     // If the operand is a constant, sign extend to increase our chances
4546     // of being able to use a .vi instruction. ANY_EXTEND would become a
4547     // a zero extend and the simm5 check in isel would fail.
4548     // FIXME: Should we ignore the upper bits in isel instead?
4549     unsigned ExtOpc =
4550         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4551     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4552     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4553   }
4554 
4555   // Use the previous operand to get the vXi64 VT. The result might be a mask
4556   // VT for compares. Using the previous operand assumes that the previous
4557   // operand will never have a smaller element size than a scalar operand and
4558   // that a widening operation never uses SEW=64.
4559   // NOTE: If this fails the below assert, we can probably just find the
4560   // element count from any operand or result and use it to construct the VT.
4561   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4562   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4563 
4564   // The more complex case is when the scalar is larger than XLenVT.
4565   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4566          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4567 
4568   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4569   // instruction to sign-extend since SEW>XLEN.
4570   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4571     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4572     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4573   }
4574 
4575   switch (IntNo) {
4576   case Intrinsic::riscv_vslide1up:
4577   case Intrinsic::riscv_vslide1down:
4578   case Intrinsic::riscv_vslide1up_mask:
4579   case Intrinsic::riscv_vslide1down_mask: {
4580     // We need to special case these when the scalar is larger than XLen.
4581     unsigned NumOps = Op.getNumOperands();
4582     bool IsMasked = NumOps == 7;
4583 
4584     // Convert the vector source to the equivalent nxvXi32 vector.
4585     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4586     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4587 
4588     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4589                                    DAG.getConstant(0, DL, XLenVT));
4590     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4591                                    DAG.getConstant(1, DL, XLenVT));
4592 
4593     // Double the VL since we halved SEW.
4594     SDValue AVL = getVLOperand(Op);
4595     SDValue I32VL;
4596 
4597     // Optimize for constant AVL
4598     if (isa<ConstantSDNode>(AVL)) {
4599       unsigned EltSize = VT.getScalarSizeInBits();
4600       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4601 
4602       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4603       unsigned MaxVLMAX =
4604           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4605 
4606       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4607       unsigned MinVLMAX =
4608           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4609 
4610       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4611       if (AVLInt <= MinVLMAX) {
4612         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4613       } else if (AVLInt >= 2 * MaxVLMAX) {
4614         // Just set vl to VLMAX in this situation
4615         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4616         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4617         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4618         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4619         SDValue SETVLMAX = DAG.getTargetConstant(
4620             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4621         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4622                             LMUL);
4623       } else {
4624         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4625         // is related to the hardware implementation.
4626         // So let the following code handle
4627       }
4628     }
4629     if (!I32VL) {
4630       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4631       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4632       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4633       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4634       SDValue SETVL =
4635           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4636       // Using vsetvli instruction to get actually used length which related to
4637       // the hardware implementation
4638       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4639                                SEW, LMUL);
4640       I32VL =
4641           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4642     }
4643 
4644     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4645 
4646     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4647     // instructions.
4648     SDValue Passthru;
4649     if (IsMasked)
4650       Passthru = DAG.getUNDEF(I32VT);
4651     else
4652       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4653 
4654     if (IntNo == Intrinsic::riscv_vslide1up ||
4655         IntNo == Intrinsic::riscv_vslide1up_mask) {
4656       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4657                         ScalarHi, I32Mask, I32VL);
4658       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4659                         ScalarLo, I32Mask, I32VL);
4660     } else {
4661       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4662                         ScalarLo, I32Mask, I32VL);
4663       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4664                         ScalarHi, I32Mask, I32VL);
4665     }
4666 
4667     // Convert back to nxvXi64.
4668     Vec = DAG.getBitcast(VT, Vec);
4669 
4670     if (!IsMasked)
4671       return Vec;
4672     // Apply mask after the operation.
4673     SDValue Mask = Operands[NumOps - 3];
4674     SDValue MaskedOff = Operands[1];
4675     // Assume Policy operand is the last operand.
4676     uint64_t Policy =
4677         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4678     // We don't need to select maskedoff if it's undef.
4679     if (MaskedOff.isUndef())
4680       return Vec;
4681     // TAMU
4682     if (Policy == RISCVII::TAIL_AGNOSTIC)
4683       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4684                          AVL);
4685     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4686     // It's fine because vmerge does not care mask policy.
4687     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4688                        AVL);
4689   }
4690   }
4691 
4692   // We need to convert the scalar to a splat vector.
4693   SDValue VL = getVLOperand(Op);
4694   assert(VL.getValueType() == XLenVT);
4695   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4696   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4697 }
4698 
4699 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4700                                                      SelectionDAG &DAG) const {
4701   unsigned IntNo = Op.getConstantOperandVal(0);
4702   SDLoc DL(Op);
4703   MVT XLenVT = Subtarget.getXLenVT();
4704 
4705   switch (IntNo) {
4706   default:
4707     break; // Don't custom lower most intrinsics.
4708   case Intrinsic::thread_pointer: {
4709     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4710     return DAG.getRegister(RISCV::X4, PtrVT);
4711   }
4712   case Intrinsic::riscv_orc_b:
4713   case Intrinsic::riscv_brev8: {
4714     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4715     unsigned Opc =
4716         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4717     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4718                        DAG.getConstant(7, DL, XLenVT));
4719   }
4720   case Intrinsic::riscv_grev:
4721   case Intrinsic::riscv_gorc: {
4722     unsigned Opc =
4723         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4724     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4725   }
4726   case Intrinsic::riscv_zip:
4727   case Intrinsic::riscv_unzip: {
4728     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4729     // For i32 the immediate is 15. For i64 the immediate is 31.
4730     unsigned Opc =
4731         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4732     unsigned BitWidth = Op.getValueSizeInBits();
4733     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4734     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4735                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4736   }
4737   case Intrinsic::riscv_shfl:
4738   case Intrinsic::riscv_unshfl: {
4739     unsigned Opc =
4740         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4741     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4742   }
4743   case Intrinsic::riscv_bcompress:
4744   case Intrinsic::riscv_bdecompress: {
4745     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4746                                                        : RISCVISD::BDECOMPRESS;
4747     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4748   }
4749   case Intrinsic::riscv_bfp:
4750     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4751                        Op.getOperand(2));
4752   case Intrinsic::riscv_fsl:
4753     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4754                        Op.getOperand(2), Op.getOperand(3));
4755   case Intrinsic::riscv_fsr:
4756     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4757                        Op.getOperand(2), Op.getOperand(3));
4758   case Intrinsic::riscv_vmv_x_s:
4759     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4760     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4761                        Op.getOperand(1));
4762   case Intrinsic::riscv_vmv_v_x:
4763     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4764                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4765                             Subtarget);
4766   case Intrinsic::riscv_vfmv_v_f:
4767     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4768                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4769   case Intrinsic::riscv_vmv_s_x: {
4770     SDValue Scalar = Op.getOperand(2);
4771 
4772     if (Scalar.getValueType().bitsLE(XLenVT)) {
4773       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4774       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4775                          Op.getOperand(1), Scalar, Op.getOperand(3));
4776     }
4777 
4778     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4779 
4780     // This is an i64 value that lives in two scalar registers. We have to
4781     // insert this in a convoluted way. First we build vXi64 splat containing
4782     // the two values that we assemble using some bit math. Next we'll use
4783     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4784     // to merge element 0 from our splat into the source vector.
4785     // FIXME: This is probably not the best way to do this, but it is
4786     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4787     // point.
4788     //   sw lo, (a0)
4789     //   sw hi, 4(a0)
4790     //   vlse vX, (a0)
4791     //
4792     //   vid.v      vVid
4793     //   vmseq.vx   mMask, vVid, 0
4794     //   vmerge.vvm vDest, vSrc, vVal, mMask
4795     MVT VT = Op.getSimpleValueType();
4796     SDValue Vec = Op.getOperand(1);
4797     SDValue VL = getVLOperand(Op);
4798 
4799     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4800     if (Op.getOperand(1).isUndef())
4801       return SplattedVal;
4802     SDValue SplattedIdx =
4803         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4804                     DAG.getConstant(0, DL, MVT::i32), VL);
4805 
4806     MVT MaskVT = getMaskTypeFor(VT);
4807     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4808     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4809     SDValue SelectCond =
4810         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4811                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4812     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4813                        Vec, VL);
4814   }
4815   }
4816 
4817   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4818 }
4819 
4820 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4821                                                     SelectionDAG &DAG) const {
4822   unsigned IntNo = Op.getConstantOperandVal(1);
4823   switch (IntNo) {
4824   default:
4825     break;
4826   case Intrinsic::riscv_masked_strided_load: {
4827     SDLoc DL(Op);
4828     MVT XLenVT = Subtarget.getXLenVT();
4829 
4830     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4831     // the selection of the masked intrinsics doesn't do this for us.
4832     SDValue Mask = Op.getOperand(5);
4833     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4834 
4835     MVT VT = Op->getSimpleValueType(0);
4836     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4837 
4838     SDValue PassThru = Op.getOperand(2);
4839     if (!IsUnmasked) {
4840       MVT MaskVT = getMaskTypeFor(ContainerVT);
4841       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4842       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4843     }
4844 
4845     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4846 
4847     SDValue IntID = DAG.getTargetConstant(
4848         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4849         XLenVT);
4850 
4851     auto *Load = cast<MemIntrinsicSDNode>(Op);
4852     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4853     if (IsUnmasked)
4854       Ops.push_back(DAG.getUNDEF(ContainerVT));
4855     else
4856       Ops.push_back(PassThru);
4857     Ops.push_back(Op.getOperand(3)); // Ptr
4858     Ops.push_back(Op.getOperand(4)); // Stride
4859     if (!IsUnmasked)
4860       Ops.push_back(Mask);
4861     Ops.push_back(VL);
4862     if (!IsUnmasked) {
4863       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4864       Ops.push_back(Policy);
4865     }
4866 
4867     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4868     SDValue Result =
4869         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4870                                 Load->getMemoryVT(), Load->getMemOperand());
4871     SDValue Chain = Result.getValue(1);
4872     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4873     return DAG.getMergeValues({Result, Chain}, DL);
4874   }
4875   case Intrinsic::riscv_seg2_load:
4876   case Intrinsic::riscv_seg3_load:
4877   case Intrinsic::riscv_seg4_load:
4878   case Intrinsic::riscv_seg5_load:
4879   case Intrinsic::riscv_seg6_load:
4880   case Intrinsic::riscv_seg7_load:
4881   case Intrinsic::riscv_seg8_load: {
4882     SDLoc DL(Op);
4883     static const Intrinsic::ID VlsegInts[7] = {
4884         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4885         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4886         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4887         Intrinsic::riscv_vlseg8};
4888     unsigned NF = Op->getNumValues() - 1;
4889     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4890     MVT XLenVT = Subtarget.getXLenVT();
4891     MVT VT = Op->getSimpleValueType(0);
4892     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4893 
4894     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4895     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4896     auto *Load = cast<MemIntrinsicSDNode>(Op);
4897     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4898     ContainerVTs.push_back(MVT::Other);
4899     SDVTList VTs = DAG.getVTList(ContainerVTs);
4900     SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
4901     Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
4902     Ops.push_back(Op.getOperand(2));
4903     Ops.push_back(VL);
4904     SDValue Result =
4905         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4906                                 Load->getMemoryVT(), Load->getMemOperand());
4907     SmallVector<SDValue, 9> Results;
4908     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4909       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4910                                                   DAG, Subtarget));
4911     Results.push_back(Result.getValue(NF));
4912     return DAG.getMergeValues(Results, DL);
4913   }
4914   }
4915 
4916   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4917 }
4918 
4919 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4920                                                  SelectionDAG &DAG) const {
4921   unsigned IntNo = Op.getConstantOperandVal(1);
4922   switch (IntNo) {
4923   default:
4924     break;
4925   case Intrinsic::riscv_masked_strided_store: {
4926     SDLoc DL(Op);
4927     MVT XLenVT = Subtarget.getXLenVT();
4928 
4929     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4930     // the selection of the masked intrinsics doesn't do this for us.
4931     SDValue Mask = Op.getOperand(5);
4932     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4933 
4934     SDValue Val = Op.getOperand(2);
4935     MVT VT = Val.getSimpleValueType();
4936     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4937 
4938     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4939     if (!IsUnmasked) {
4940       MVT MaskVT = getMaskTypeFor(ContainerVT);
4941       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4942     }
4943 
4944     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4945 
4946     SDValue IntID = DAG.getTargetConstant(
4947         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4948         XLenVT);
4949 
4950     auto *Store = cast<MemIntrinsicSDNode>(Op);
4951     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4952     Ops.push_back(Val);
4953     Ops.push_back(Op.getOperand(3)); // Ptr
4954     Ops.push_back(Op.getOperand(4)); // Stride
4955     if (!IsUnmasked)
4956       Ops.push_back(Mask);
4957     Ops.push_back(VL);
4958 
4959     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4960                                    Ops, Store->getMemoryVT(),
4961                                    Store->getMemOperand());
4962   }
4963   }
4964 
4965   return SDValue();
4966 }
4967 
4968 static MVT getLMUL1VT(MVT VT) {
4969   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4970          "Unexpected vector MVT");
4971   return MVT::getScalableVectorVT(
4972       VT.getVectorElementType(),
4973       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4974 }
4975 
4976 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4977   switch (ISDOpcode) {
4978   default:
4979     llvm_unreachable("Unhandled reduction");
4980   case ISD::VECREDUCE_ADD:
4981     return RISCVISD::VECREDUCE_ADD_VL;
4982   case ISD::VECREDUCE_UMAX:
4983     return RISCVISD::VECREDUCE_UMAX_VL;
4984   case ISD::VECREDUCE_SMAX:
4985     return RISCVISD::VECREDUCE_SMAX_VL;
4986   case ISD::VECREDUCE_UMIN:
4987     return RISCVISD::VECREDUCE_UMIN_VL;
4988   case ISD::VECREDUCE_SMIN:
4989     return RISCVISD::VECREDUCE_SMIN_VL;
4990   case ISD::VECREDUCE_AND:
4991     return RISCVISD::VECREDUCE_AND_VL;
4992   case ISD::VECREDUCE_OR:
4993     return RISCVISD::VECREDUCE_OR_VL;
4994   case ISD::VECREDUCE_XOR:
4995     return RISCVISD::VECREDUCE_XOR_VL;
4996   }
4997 }
4998 
4999 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5000                                                          SelectionDAG &DAG,
5001                                                          bool IsVP) const {
5002   SDLoc DL(Op);
5003   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5004   MVT VecVT = Vec.getSimpleValueType();
5005   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5006           Op.getOpcode() == ISD::VECREDUCE_OR ||
5007           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5008           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5009           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5010           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5011          "Unexpected reduction lowering");
5012 
5013   MVT XLenVT = Subtarget.getXLenVT();
5014   assert(Op.getValueType() == XLenVT &&
5015          "Expected reduction output to be legalized to XLenVT");
5016 
5017   MVT ContainerVT = VecVT;
5018   if (VecVT.isFixedLengthVector()) {
5019     ContainerVT = getContainerForFixedLengthVector(VecVT);
5020     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5021   }
5022 
5023   SDValue Mask, VL;
5024   if (IsVP) {
5025     Mask = Op.getOperand(2);
5026     VL = Op.getOperand(3);
5027   } else {
5028     std::tie(Mask, VL) =
5029         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5030   }
5031 
5032   unsigned BaseOpc;
5033   ISD::CondCode CC;
5034   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5035 
5036   switch (Op.getOpcode()) {
5037   default:
5038     llvm_unreachable("Unhandled reduction");
5039   case ISD::VECREDUCE_AND:
5040   case ISD::VP_REDUCE_AND: {
5041     // vcpop ~x == 0
5042     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5043     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5044     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5045     CC = ISD::SETEQ;
5046     BaseOpc = ISD::AND;
5047     break;
5048   }
5049   case ISD::VECREDUCE_OR:
5050   case ISD::VP_REDUCE_OR:
5051     // vcpop x != 0
5052     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5053     CC = ISD::SETNE;
5054     BaseOpc = ISD::OR;
5055     break;
5056   case ISD::VECREDUCE_XOR:
5057   case ISD::VP_REDUCE_XOR: {
5058     // ((vcpop x) & 1) != 0
5059     SDValue One = DAG.getConstant(1, DL, XLenVT);
5060     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5061     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5062     CC = ISD::SETNE;
5063     BaseOpc = ISD::XOR;
5064     break;
5065   }
5066   }
5067 
5068   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5069 
5070   if (!IsVP)
5071     return SetCC;
5072 
5073   // Now include the start value in the operation.
5074   // Note that we must return the start value when no elements are operated
5075   // upon. The vcpop instructions we've emitted in each case above will return
5076   // 0 for an inactive vector, and so we've already received the neutral value:
5077   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5078   // can simply include the start value.
5079   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5080 }
5081 
5082 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5083                                             SelectionDAG &DAG) const {
5084   SDLoc DL(Op);
5085   SDValue Vec = Op.getOperand(0);
5086   EVT VecEVT = Vec.getValueType();
5087 
5088   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5089 
5090   // Due to ordering in legalize types we may have a vector type that needs to
5091   // be split. Do that manually so we can get down to a legal type.
5092   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5093          TargetLowering::TypeSplitVector) {
5094     SDValue Lo, Hi;
5095     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5096     VecEVT = Lo.getValueType();
5097     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5098   }
5099 
5100   // TODO: The type may need to be widened rather than split. Or widened before
5101   // it can be split.
5102   if (!isTypeLegal(VecEVT))
5103     return SDValue();
5104 
5105   MVT VecVT = VecEVT.getSimpleVT();
5106   MVT VecEltVT = VecVT.getVectorElementType();
5107   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5108 
5109   MVT ContainerVT = VecVT;
5110   if (VecVT.isFixedLengthVector()) {
5111     ContainerVT = getContainerForFixedLengthVector(VecVT);
5112     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5113   }
5114 
5115   MVT M1VT = getLMUL1VT(ContainerVT);
5116   MVT XLenVT = Subtarget.getXLenVT();
5117 
5118   SDValue Mask, VL;
5119   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5120 
5121   SDValue NeutralElem =
5122       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5123   SDValue IdentitySplat =
5124       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5125                        M1VT, DL, DAG, Subtarget);
5126   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5127                                   IdentitySplat, Mask, VL);
5128   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5129                              DAG.getConstant(0, DL, XLenVT));
5130   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5131 }
5132 
5133 // Given a reduction op, this function returns the matching reduction opcode,
5134 // the vector SDValue and the scalar SDValue required to lower this to a
5135 // RISCVISD node.
5136 static std::tuple<unsigned, SDValue, SDValue>
5137 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5138   SDLoc DL(Op);
5139   auto Flags = Op->getFlags();
5140   unsigned Opcode = Op.getOpcode();
5141   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5142   switch (Opcode) {
5143   default:
5144     llvm_unreachable("Unhandled reduction");
5145   case ISD::VECREDUCE_FADD: {
5146     // Use positive zero if we can. It is cheaper to materialize.
5147     SDValue Zero =
5148         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5149     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5150   }
5151   case ISD::VECREDUCE_SEQ_FADD:
5152     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5153                            Op.getOperand(0));
5154   case ISD::VECREDUCE_FMIN:
5155     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5156                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5157   case ISD::VECREDUCE_FMAX:
5158     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5159                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5160   }
5161 }
5162 
5163 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5164                                               SelectionDAG &DAG) const {
5165   SDLoc DL(Op);
5166   MVT VecEltVT = Op.getSimpleValueType();
5167 
5168   unsigned RVVOpcode;
5169   SDValue VectorVal, ScalarVal;
5170   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5171       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5172   MVT VecVT = VectorVal.getSimpleValueType();
5173 
5174   MVT ContainerVT = VecVT;
5175   if (VecVT.isFixedLengthVector()) {
5176     ContainerVT = getContainerForFixedLengthVector(VecVT);
5177     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5178   }
5179 
5180   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5181   MVT XLenVT = Subtarget.getXLenVT();
5182 
5183   SDValue Mask, VL;
5184   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5185 
5186   SDValue ScalarSplat =
5187       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5188                        M1VT, DL, DAG, Subtarget);
5189   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5190                                   VectorVal, ScalarSplat, Mask, VL);
5191   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5192                      DAG.getConstant(0, DL, XLenVT));
5193 }
5194 
5195 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5196   switch (ISDOpcode) {
5197   default:
5198     llvm_unreachable("Unhandled reduction");
5199   case ISD::VP_REDUCE_ADD:
5200     return RISCVISD::VECREDUCE_ADD_VL;
5201   case ISD::VP_REDUCE_UMAX:
5202     return RISCVISD::VECREDUCE_UMAX_VL;
5203   case ISD::VP_REDUCE_SMAX:
5204     return RISCVISD::VECREDUCE_SMAX_VL;
5205   case ISD::VP_REDUCE_UMIN:
5206     return RISCVISD::VECREDUCE_UMIN_VL;
5207   case ISD::VP_REDUCE_SMIN:
5208     return RISCVISD::VECREDUCE_SMIN_VL;
5209   case ISD::VP_REDUCE_AND:
5210     return RISCVISD::VECREDUCE_AND_VL;
5211   case ISD::VP_REDUCE_OR:
5212     return RISCVISD::VECREDUCE_OR_VL;
5213   case ISD::VP_REDUCE_XOR:
5214     return RISCVISD::VECREDUCE_XOR_VL;
5215   case ISD::VP_REDUCE_FADD:
5216     return RISCVISD::VECREDUCE_FADD_VL;
5217   case ISD::VP_REDUCE_SEQ_FADD:
5218     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5219   case ISD::VP_REDUCE_FMAX:
5220     return RISCVISD::VECREDUCE_FMAX_VL;
5221   case ISD::VP_REDUCE_FMIN:
5222     return RISCVISD::VECREDUCE_FMIN_VL;
5223   }
5224 }
5225 
5226 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5227                                            SelectionDAG &DAG) const {
5228   SDLoc DL(Op);
5229   SDValue Vec = Op.getOperand(1);
5230   EVT VecEVT = Vec.getValueType();
5231 
5232   // TODO: The type may need to be widened rather than split. Or widened before
5233   // it can be split.
5234   if (!isTypeLegal(VecEVT))
5235     return SDValue();
5236 
5237   MVT VecVT = VecEVT.getSimpleVT();
5238   MVT VecEltVT = VecVT.getVectorElementType();
5239   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5240 
5241   MVT ContainerVT = VecVT;
5242   if (VecVT.isFixedLengthVector()) {
5243     ContainerVT = getContainerForFixedLengthVector(VecVT);
5244     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5245   }
5246 
5247   SDValue VL = Op.getOperand(3);
5248   SDValue Mask = Op.getOperand(2);
5249 
5250   MVT M1VT = getLMUL1VT(ContainerVT);
5251   MVT XLenVT = Subtarget.getXLenVT();
5252   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5253 
5254   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5255                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5256                                         DL, DAG, Subtarget);
5257   SDValue Reduction =
5258       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5259   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5260                              DAG.getConstant(0, DL, XLenVT));
5261   if (!VecVT.isInteger())
5262     return Elt0;
5263   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5264 }
5265 
5266 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5267                                                    SelectionDAG &DAG) const {
5268   SDValue Vec = Op.getOperand(0);
5269   SDValue SubVec = Op.getOperand(1);
5270   MVT VecVT = Vec.getSimpleValueType();
5271   MVT SubVecVT = SubVec.getSimpleValueType();
5272 
5273   SDLoc DL(Op);
5274   MVT XLenVT = Subtarget.getXLenVT();
5275   unsigned OrigIdx = Op.getConstantOperandVal(2);
5276   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5277 
5278   // We don't have the ability to slide mask vectors up indexed by their i1
5279   // elements; the smallest we can do is i8. Often we are able to bitcast to
5280   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5281   // into a scalable one, we might not necessarily have enough scalable
5282   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5283   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5284       (OrigIdx != 0 || !Vec.isUndef())) {
5285     if (VecVT.getVectorMinNumElements() >= 8 &&
5286         SubVecVT.getVectorMinNumElements() >= 8) {
5287       assert(OrigIdx % 8 == 0 && "Invalid index");
5288       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5289              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5290              "Unexpected mask vector lowering");
5291       OrigIdx /= 8;
5292       SubVecVT =
5293           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5294                            SubVecVT.isScalableVector());
5295       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5296                                VecVT.isScalableVector());
5297       Vec = DAG.getBitcast(VecVT, Vec);
5298       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5299     } else {
5300       // We can't slide this mask vector up indexed by its i1 elements.
5301       // This poses a problem when we wish to insert a scalable vector which
5302       // can't be re-expressed as a larger type. Just choose the slow path and
5303       // extend to a larger type, then truncate back down.
5304       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5305       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5306       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5307       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5308       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5309                         Op.getOperand(2));
5310       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5311       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5312     }
5313   }
5314 
5315   // If the subvector vector is a fixed-length type, we cannot use subregister
5316   // manipulation to simplify the codegen; we don't know which register of a
5317   // LMUL group contains the specific subvector as we only know the minimum
5318   // register size. Therefore we must slide the vector group up the full
5319   // amount.
5320   if (SubVecVT.isFixedLengthVector()) {
5321     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5322       return Op;
5323     MVT ContainerVT = VecVT;
5324     if (VecVT.isFixedLengthVector()) {
5325       ContainerVT = getContainerForFixedLengthVector(VecVT);
5326       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5327     }
5328     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5329                          DAG.getUNDEF(ContainerVT), SubVec,
5330                          DAG.getConstant(0, DL, XLenVT));
5331     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5332       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5333       return DAG.getBitcast(Op.getValueType(), SubVec);
5334     }
5335     SDValue Mask =
5336         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5337     // Set the vector length to only the number of elements we care about. Note
5338     // that for slideup this includes the offset.
5339     SDValue VL =
5340         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5341     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5342     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5343                                   SubVec, SlideupAmt, Mask, VL);
5344     if (VecVT.isFixedLengthVector())
5345       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5346     return DAG.getBitcast(Op.getValueType(), Slideup);
5347   }
5348 
5349   unsigned SubRegIdx, RemIdx;
5350   std::tie(SubRegIdx, RemIdx) =
5351       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5352           VecVT, SubVecVT, OrigIdx, TRI);
5353 
5354   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5355   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5356                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5357                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5358 
5359   // 1. If the Idx has been completely eliminated and this subvector's size is
5360   // a vector register or a multiple thereof, or the surrounding elements are
5361   // undef, then this is a subvector insert which naturally aligns to a vector
5362   // register. These can easily be handled using subregister manipulation.
5363   // 2. If the subvector is smaller than a vector register, then the insertion
5364   // must preserve the undisturbed elements of the register. We do this by
5365   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5366   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5367   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5368   // LMUL=1 type back into the larger vector (resolving to another subregister
5369   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5370   // to avoid allocating a large register group to hold our subvector.
5371   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5372     return Op;
5373 
5374   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5375   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5376   // (in our case undisturbed). This means we can set up a subvector insertion
5377   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5378   // size of the subvector.
5379   MVT InterSubVT = VecVT;
5380   SDValue AlignedExtract = Vec;
5381   unsigned AlignedIdx = OrigIdx - RemIdx;
5382   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5383     InterSubVT = getLMUL1VT(VecVT);
5384     // Extract a subvector equal to the nearest full vector register type. This
5385     // should resolve to a EXTRACT_SUBREG instruction.
5386     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5387                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5388   }
5389 
5390   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5391   // For scalable vectors this must be further multiplied by vscale.
5392   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5393 
5394   SDValue Mask, VL;
5395   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5396 
5397   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5398   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5399   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5400   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5401 
5402   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5403                        DAG.getUNDEF(InterSubVT), SubVec,
5404                        DAG.getConstant(0, DL, XLenVT));
5405 
5406   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5407                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5408 
5409   // If required, insert this subvector back into the correct vector register.
5410   // This should resolve to an INSERT_SUBREG instruction.
5411   if (VecVT.bitsGT(InterSubVT))
5412     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5413                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5414 
5415   // We might have bitcast from a mask type: cast back to the original type if
5416   // required.
5417   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5418 }
5419 
5420 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5421                                                     SelectionDAG &DAG) const {
5422   SDValue Vec = Op.getOperand(0);
5423   MVT SubVecVT = Op.getSimpleValueType();
5424   MVT VecVT = Vec.getSimpleValueType();
5425 
5426   SDLoc DL(Op);
5427   MVT XLenVT = Subtarget.getXLenVT();
5428   unsigned OrigIdx = Op.getConstantOperandVal(1);
5429   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5430 
5431   // We don't have the ability to slide mask vectors down indexed by their i1
5432   // elements; the smallest we can do is i8. Often we are able to bitcast to
5433   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5434   // from a scalable one, we might not necessarily have enough scalable
5435   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5436   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5437     if (VecVT.getVectorMinNumElements() >= 8 &&
5438         SubVecVT.getVectorMinNumElements() >= 8) {
5439       assert(OrigIdx % 8 == 0 && "Invalid index");
5440       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5441              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5442              "Unexpected mask vector lowering");
5443       OrigIdx /= 8;
5444       SubVecVT =
5445           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5446                            SubVecVT.isScalableVector());
5447       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5448                                VecVT.isScalableVector());
5449       Vec = DAG.getBitcast(VecVT, Vec);
5450     } else {
5451       // We can't slide this mask vector down, indexed by its i1 elements.
5452       // This poses a problem when we wish to extract a scalable vector which
5453       // can't be re-expressed as a larger type. Just choose the slow path and
5454       // extend to a larger type, then truncate back down.
5455       // TODO: We could probably improve this when extracting certain fixed
5456       // from fixed, where we can extract as i8 and shift the correct element
5457       // right to reach the desired subvector?
5458       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5459       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5460       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5461       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5462                         Op.getOperand(1));
5463       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5464       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5465     }
5466   }
5467 
5468   // If the subvector vector is a fixed-length type, we cannot use subregister
5469   // manipulation to simplify the codegen; we don't know which register of a
5470   // LMUL group contains the specific subvector as we only know the minimum
5471   // register size. Therefore we must slide the vector group down the full
5472   // amount.
5473   if (SubVecVT.isFixedLengthVector()) {
5474     // With an index of 0 this is a cast-like subvector, which can be performed
5475     // with subregister operations.
5476     if (OrigIdx == 0)
5477       return Op;
5478     MVT ContainerVT = VecVT;
5479     if (VecVT.isFixedLengthVector()) {
5480       ContainerVT = getContainerForFixedLengthVector(VecVT);
5481       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5482     }
5483     SDValue Mask =
5484         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5485     // Set the vector length to only the number of elements we care about. This
5486     // avoids sliding down elements we're going to discard straight away.
5487     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5488     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5489     SDValue Slidedown =
5490         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5491                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5492     // Now we can use a cast-like subvector extract to get the result.
5493     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5494                             DAG.getConstant(0, DL, XLenVT));
5495     return DAG.getBitcast(Op.getValueType(), Slidedown);
5496   }
5497 
5498   unsigned SubRegIdx, RemIdx;
5499   std::tie(SubRegIdx, RemIdx) =
5500       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5501           VecVT, SubVecVT, OrigIdx, TRI);
5502 
5503   // If the Idx has been completely eliminated then this is a subvector extract
5504   // which naturally aligns to a vector register. These can easily be handled
5505   // using subregister manipulation.
5506   if (RemIdx == 0)
5507     return Op;
5508 
5509   // Else we must shift our vector register directly to extract the subvector.
5510   // Do this using VSLIDEDOWN.
5511 
5512   // If the vector type is an LMUL-group type, extract a subvector equal to the
5513   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5514   // instruction.
5515   MVT InterSubVT = VecVT;
5516   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5517     InterSubVT = getLMUL1VT(VecVT);
5518     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5519                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5520   }
5521 
5522   // Slide this vector register down by the desired number of elements in order
5523   // to place the desired subvector starting at element 0.
5524   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5525   // For scalable vectors this must be further multiplied by vscale.
5526   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5527 
5528   SDValue Mask, VL;
5529   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5530   SDValue Slidedown =
5531       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5532                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5533 
5534   // Now the vector is in the right position, extract our final subvector. This
5535   // should resolve to a COPY.
5536   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5537                           DAG.getConstant(0, DL, XLenVT));
5538 
5539   // We might have bitcast from a mask type: cast back to the original type if
5540   // required.
5541   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5542 }
5543 
5544 // Lower step_vector to the vid instruction. Any non-identity step value must
5545 // be accounted for my manual expansion.
5546 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5547                                               SelectionDAG &DAG) const {
5548   SDLoc DL(Op);
5549   MVT VT = Op.getSimpleValueType();
5550   MVT XLenVT = Subtarget.getXLenVT();
5551   SDValue Mask, VL;
5552   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5553   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5554   uint64_t StepValImm = Op.getConstantOperandVal(0);
5555   if (StepValImm != 1) {
5556     if (isPowerOf2_64(StepValImm)) {
5557       SDValue StepVal =
5558           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5559                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5560       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5561     } else {
5562       SDValue StepVal = lowerScalarSplat(
5563           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5564           VL, VT, DL, DAG, Subtarget);
5565       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5566     }
5567   }
5568   return StepVec;
5569 }
5570 
5571 // Implement vector_reverse using vrgather.vv with indices determined by
5572 // subtracting the id of each element from (VLMAX-1). This will convert
5573 // the indices like so:
5574 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5575 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5576 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5577                                                  SelectionDAG &DAG) const {
5578   SDLoc DL(Op);
5579   MVT VecVT = Op.getSimpleValueType();
5580   unsigned EltSize = VecVT.getScalarSizeInBits();
5581   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5582 
5583   unsigned MaxVLMAX = 0;
5584   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5585   if (VectorBitsMax != 0)
5586     MaxVLMAX =
5587         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5588 
5589   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5590   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5591 
5592   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5593   // to use vrgatherei16.vv.
5594   // TODO: It's also possible to use vrgatherei16.vv for other types to
5595   // decrease register width for the index calculation.
5596   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5597     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5598     // Reverse each half, then reassemble them in reverse order.
5599     // NOTE: It's also possible that after splitting that VLMAX no longer
5600     // requires vrgatherei16.vv.
5601     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5602       SDValue Lo, Hi;
5603       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5604       EVT LoVT, HiVT;
5605       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5606       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5607       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5608       // Reassemble the low and high pieces reversed.
5609       // FIXME: This is a CONCAT_VECTORS.
5610       SDValue Res =
5611           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5612                       DAG.getIntPtrConstant(0, DL));
5613       return DAG.getNode(
5614           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5615           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5616     }
5617 
5618     // Just promote the int type to i16 which will double the LMUL.
5619     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5620     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5621   }
5622 
5623   MVT XLenVT = Subtarget.getXLenVT();
5624   SDValue Mask, VL;
5625   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5626 
5627   // Calculate VLMAX-1 for the desired SEW.
5628   unsigned MinElts = VecVT.getVectorMinNumElements();
5629   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5630                               DAG.getConstant(MinElts, DL, XLenVT));
5631   SDValue VLMinus1 =
5632       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5633 
5634   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5635   bool IsRV32E64 =
5636       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5637   SDValue SplatVL;
5638   if (!IsRV32E64)
5639     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5640   else
5641     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5642                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5643 
5644   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5645   SDValue Indices =
5646       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5647 
5648   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5649 }
5650 
5651 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5652                                                 SelectionDAG &DAG) const {
5653   SDLoc DL(Op);
5654   SDValue V1 = Op.getOperand(0);
5655   SDValue V2 = Op.getOperand(1);
5656   MVT XLenVT = Subtarget.getXLenVT();
5657   MVT VecVT = Op.getSimpleValueType();
5658 
5659   unsigned MinElts = VecVT.getVectorMinNumElements();
5660   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5661                               DAG.getConstant(MinElts, DL, XLenVT));
5662 
5663   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5664   SDValue DownOffset, UpOffset;
5665   if (ImmValue >= 0) {
5666     // The operand is a TargetConstant, we need to rebuild it as a regular
5667     // constant.
5668     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5669     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5670   } else {
5671     // The operand is a TargetConstant, we need to rebuild it as a regular
5672     // constant rather than negating the original operand.
5673     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5674     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5675   }
5676 
5677   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5678 
5679   SDValue SlideDown =
5680       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5681                   DownOffset, TrueMask, UpOffset);
5682   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5683                      TrueMask,
5684                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5685 }
5686 
5687 SDValue
5688 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5689                                                      SelectionDAG &DAG) const {
5690   SDLoc DL(Op);
5691   auto *Load = cast<LoadSDNode>(Op);
5692 
5693   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5694                                         Load->getMemoryVT(),
5695                                         *Load->getMemOperand()) &&
5696          "Expecting a correctly-aligned load");
5697 
5698   MVT VT = Op.getSimpleValueType();
5699   MVT XLenVT = Subtarget.getXLenVT();
5700   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5701 
5702   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5703 
5704   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5705   SDValue IntID = DAG.getTargetConstant(
5706       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5707   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5708   if (!IsMaskOp)
5709     Ops.push_back(DAG.getUNDEF(ContainerVT));
5710   Ops.push_back(Load->getBasePtr());
5711   Ops.push_back(VL);
5712   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5713   SDValue NewLoad =
5714       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5715                               Load->getMemoryVT(), Load->getMemOperand());
5716 
5717   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5718   return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5719 }
5720 
5721 SDValue
5722 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5723                                                       SelectionDAG &DAG) const {
5724   SDLoc DL(Op);
5725   auto *Store = cast<StoreSDNode>(Op);
5726 
5727   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5728                                         Store->getMemoryVT(),
5729                                         *Store->getMemOperand()) &&
5730          "Expecting a correctly-aligned store");
5731 
5732   SDValue StoreVal = Store->getValue();
5733   MVT VT = StoreVal.getSimpleValueType();
5734   MVT XLenVT = Subtarget.getXLenVT();
5735 
5736   // If the size less than a byte, we need to pad with zeros to make a byte.
5737   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5738     VT = MVT::v8i1;
5739     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5740                            DAG.getConstant(0, DL, VT), StoreVal,
5741                            DAG.getIntPtrConstant(0, DL));
5742   }
5743 
5744   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5745 
5746   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5747 
5748   SDValue NewValue =
5749       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5750 
5751   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5752   SDValue IntID = DAG.getTargetConstant(
5753       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5754   return DAG.getMemIntrinsicNode(
5755       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5756       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5757       Store->getMemoryVT(), Store->getMemOperand());
5758 }
5759 
5760 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5761                                              SelectionDAG &DAG) const {
5762   SDLoc DL(Op);
5763   MVT VT = Op.getSimpleValueType();
5764 
5765   const auto *MemSD = cast<MemSDNode>(Op);
5766   EVT MemVT = MemSD->getMemoryVT();
5767   MachineMemOperand *MMO = MemSD->getMemOperand();
5768   SDValue Chain = MemSD->getChain();
5769   SDValue BasePtr = MemSD->getBasePtr();
5770 
5771   SDValue Mask, PassThru, VL;
5772   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5773     Mask = VPLoad->getMask();
5774     PassThru = DAG.getUNDEF(VT);
5775     VL = VPLoad->getVectorLength();
5776   } else {
5777     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5778     Mask = MLoad->getMask();
5779     PassThru = MLoad->getPassThru();
5780   }
5781 
5782   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5783 
5784   MVT XLenVT = Subtarget.getXLenVT();
5785 
5786   MVT ContainerVT = VT;
5787   if (VT.isFixedLengthVector()) {
5788     ContainerVT = getContainerForFixedLengthVector(VT);
5789     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5790     if (!IsUnmasked) {
5791       MVT MaskVT = getMaskTypeFor(ContainerVT);
5792       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5793     }
5794   }
5795 
5796   if (!VL)
5797     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5798 
5799   unsigned IntID =
5800       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5801   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5802   if (IsUnmasked)
5803     Ops.push_back(DAG.getUNDEF(ContainerVT));
5804   else
5805     Ops.push_back(PassThru);
5806   Ops.push_back(BasePtr);
5807   if (!IsUnmasked)
5808     Ops.push_back(Mask);
5809   Ops.push_back(VL);
5810   if (!IsUnmasked)
5811     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5812 
5813   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5814 
5815   SDValue Result =
5816       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5817   Chain = Result.getValue(1);
5818 
5819   if (VT.isFixedLengthVector())
5820     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5821 
5822   return DAG.getMergeValues({Result, Chain}, DL);
5823 }
5824 
5825 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5826                                               SelectionDAG &DAG) const {
5827   SDLoc DL(Op);
5828 
5829   const auto *MemSD = cast<MemSDNode>(Op);
5830   EVT MemVT = MemSD->getMemoryVT();
5831   MachineMemOperand *MMO = MemSD->getMemOperand();
5832   SDValue Chain = MemSD->getChain();
5833   SDValue BasePtr = MemSD->getBasePtr();
5834   SDValue Val, Mask, VL;
5835 
5836   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5837     Val = VPStore->getValue();
5838     Mask = VPStore->getMask();
5839     VL = VPStore->getVectorLength();
5840   } else {
5841     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5842     Val = MStore->getValue();
5843     Mask = MStore->getMask();
5844   }
5845 
5846   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5847 
5848   MVT VT = Val.getSimpleValueType();
5849   MVT XLenVT = Subtarget.getXLenVT();
5850 
5851   MVT ContainerVT = VT;
5852   if (VT.isFixedLengthVector()) {
5853     ContainerVT = getContainerForFixedLengthVector(VT);
5854 
5855     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5856     if (!IsUnmasked) {
5857       MVT MaskVT = getMaskTypeFor(ContainerVT);
5858       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5859     }
5860   }
5861 
5862   if (!VL)
5863     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5864 
5865   unsigned IntID =
5866       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5867   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5868   Ops.push_back(Val);
5869   Ops.push_back(BasePtr);
5870   if (!IsUnmasked)
5871     Ops.push_back(Mask);
5872   Ops.push_back(VL);
5873 
5874   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5875                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5876 }
5877 
5878 SDValue
5879 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5880                                                       SelectionDAG &DAG) const {
5881   MVT InVT = Op.getOperand(0).getSimpleValueType();
5882   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5883 
5884   MVT VT = Op.getSimpleValueType();
5885 
5886   SDValue Op1 =
5887       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5888   SDValue Op2 =
5889       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5890 
5891   SDLoc DL(Op);
5892   SDValue VL =
5893       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5894 
5895   MVT MaskVT = getMaskTypeFor(ContainerVT);
5896   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5897 
5898   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5899                             Op.getOperand(2), Mask, VL);
5900 
5901   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5902 }
5903 
5904 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5905     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5906   MVT VT = Op.getSimpleValueType();
5907 
5908   if (VT.getVectorElementType() == MVT::i1)
5909     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5910 
5911   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5912 }
5913 
5914 SDValue
5915 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5916                                                       SelectionDAG &DAG) const {
5917   unsigned Opc;
5918   switch (Op.getOpcode()) {
5919   default: llvm_unreachable("Unexpected opcode!");
5920   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5921   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5922   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5923   }
5924 
5925   return lowerToScalableOp(Op, DAG, Opc);
5926 }
5927 
5928 // Lower vector ABS to smax(X, sub(0, X)).
5929 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5930   SDLoc DL(Op);
5931   MVT VT = Op.getSimpleValueType();
5932   SDValue X = Op.getOperand(0);
5933 
5934   assert(VT.isFixedLengthVector() && "Unexpected type");
5935 
5936   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5937   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5938 
5939   SDValue Mask, VL;
5940   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5941 
5942   SDValue SplatZero = DAG.getNode(
5943       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5944       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5945   SDValue NegX =
5946       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5947   SDValue Max =
5948       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5949 
5950   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5951 }
5952 
5953 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5954     SDValue Op, SelectionDAG &DAG) const {
5955   SDLoc DL(Op);
5956   MVT VT = Op.getSimpleValueType();
5957   SDValue Mag = Op.getOperand(0);
5958   SDValue Sign = Op.getOperand(1);
5959   assert(Mag.getValueType() == Sign.getValueType() &&
5960          "Can only handle COPYSIGN with matching types.");
5961 
5962   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5963   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5964   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5965 
5966   SDValue Mask, VL;
5967   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5968 
5969   SDValue CopySign =
5970       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5971 
5972   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5973 }
5974 
5975 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5976     SDValue Op, SelectionDAG &DAG) const {
5977   MVT VT = Op.getSimpleValueType();
5978   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5979 
5980   MVT I1ContainerVT =
5981       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5982 
5983   SDValue CC =
5984       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5985   SDValue Op1 =
5986       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5987   SDValue Op2 =
5988       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5989 
5990   SDLoc DL(Op);
5991   SDValue Mask, VL;
5992   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5993 
5994   SDValue Select =
5995       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5996 
5997   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5998 }
5999 
6000 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6001                                                unsigned NewOpc,
6002                                                bool HasMask) const {
6003   MVT VT = Op.getSimpleValueType();
6004   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6005 
6006   // Create list of operands by converting existing ones to scalable types.
6007   SmallVector<SDValue, 6> Ops;
6008   for (const SDValue &V : Op->op_values()) {
6009     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6010 
6011     // Pass through non-vector operands.
6012     if (!V.getValueType().isVector()) {
6013       Ops.push_back(V);
6014       continue;
6015     }
6016 
6017     // "cast" fixed length vector to a scalable vector.
6018     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6019            "Only fixed length vectors are supported!");
6020     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6021   }
6022 
6023   SDLoc DL(Op);
6024   SDValue Mask, VL;
6025   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6026   if (HasMask)
6027     Ops.push_back(Mask);
6028   Ops.push_back(VL);
6029 
6030   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6031   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6032 }
6033 
6034 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6035 // * Operands of each node are assumed to be in the same order.
6036 // * The EVL operand is promoted from i32 to i64 on RV64.
6037 // * Fixed-length vectors are converted to their scalable-vector container
6038 //   types.
6039 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6040                                        unsigned RISCVISDOpc) const {
6041   SDLoc DL(Op);
6042   MVT VT = Op.getSimpleValueType();
6043   SmallVector<SDValue, 4> Ops;
6044 
6045   for (const auto &OpIdx : enumerate(Op->ops())) {
6046     SDValue V = OpIdx.value();
6047     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6048     // Pass through operands which aren't fixed-length vectors.
6049     if (!V.getValueType().isFixedLengthVector()) {
6050       Ops.push_back(V);
6051       continue;
6052     }
6053     // "cast" fixed length vector to a scalable vector.
6054     MVT OpVT = V.getSimpleValueType();
6055     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6056     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6057            "Only fixed length vectors are supported!");
6058     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6059   }
6060 
6061   if (!VT.isFixedLengthVector())
6062     return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6063 
6064   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6065 
6066   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6067 
6068   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6069 }
6070 
6071 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6072                                               SelectionDAG &DAG) const {
6073   SDLoc DL(Op);
6074   MVT VT = Op.getSimpleValueType();
6075 
6076   SDValue Src = Op.getOperand(0);
6077   // NOTE: Mask is dropped.
6078   SDValue VL = Op.getOperand(2);
6079 
6080   MVT ContainerVT = VT;
6081   if (VT.isFixedLengthVector()) {
6082     ContainerVT = getContainerForFixedLengthVector(VT);
6083     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6084     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6085   }
6086 
6087   MVT XLenVT = Subtarget.getXLenVT();
6088   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6089   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6090                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6091 
6092   SDValue SplatValue = DAG.getConstant(
6093       Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6094   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6095                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6096 
6097   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6098                                Splat, ZeroSplat, VL);
6099   if (!VT.isFixedLengthVector())
6100     return Result;
6101   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6102 }
6103 
6104 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6105                                                 SelectionDAG &DAG) const {
6106   SDLoc DL(Op);
6107   MVT VT = Op.getSimpleValueType();
6108 
6109   SDValue Op1 = Op.getOperand(0);
6110   SDValue Op2 = Op.getOperand(1);
6111   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6112   // NOTE: Mask is dropped.
6113   SDValue VL = Op.getOperand(4);
6114 
6115   MVT ContainerVT = VT;
6116   if (VT.isFixedLengthVector()) {
6117     ContainerVT = getContainerForFixedLengthVector(VT);
6118     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6119     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6120   }
6121 
6122   SDValue Result;
6123   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6124 
6125   switch (Condition) {
6126   default:
6127     break;
6128   // X != Y  --> (X^Y)
6129   case ISD::SETNE:
6130     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6131     break;
6132   // X == Y  --> ~(X^Y)
6133   case ISD::SETEQ: {
6134     SDValue Temp =
6135         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6136     Result =
6137         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6138     break;
6139   }
6140   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6141   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6142   case ISD::SETGT:
6143   case ISD::SETULT: {
6144     SDValue Temp =
6145         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6146     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6147     break;
6148   }
6149   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6150   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6151   case ISD::SETLT:
6152   case ISD::SETUGT: {
6153     SDValue Temp =
6154         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6155     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6156     break;
6157   }
6158   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6159   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6160   case ISD::SETGE:
6161   case ISD::SETULE: {
6162     SDValue Temp =
6163         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6164     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6165     break;
6166   }
6167   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6168   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6169   case ISD::SETLE:
6170   case ISD::SETUGE: {
6171     SDValue Temp =
6172         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6173     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6174     break;
6175   }
6176   }
6177 
6178   if (!VT.isFixedLengthVector())
6179     return Result;
6180   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6181 }
6182 
6183 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6184 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6185                                                 unsigned RISCVISDOpc) const {
6186   SDLoc DL(Op);
6187 
6188   SDValue Src = Op.getOperand(0);
6189   SDValue Mask = Op.getOperand(1);
6190   SDValue VL = Op.getOperand(2);
6191 
6192   MVT DstVT = Op.getSimpleValueType();
6193   MVT SrcVT = Src.getSimpleValueType();
6194   if (DstVT.isFixedLengthVector()) {
6195     DstVT = getContainerForFixedLengthVector(DstVT);
6196     SrcVT = getContainerForFixedLengthVector(SrcVT);
6197     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6198     MVT MaskVT = getMaskTypeFor(DstVT);
6199     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6200   }
6201 
6202   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6203                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6204                                 ? RISCVISD::VSEXT_VL
6205                                 : RISCVISD::VZEXT_VL;
6206 
6207   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6208   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6209 
6210   SDValue Result;
6211   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6212     if (SrcVT.isInteger()) {
6213       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6214 
6215       // Do we need to do any pre-widening before converting?
6216       if (SrcEltSize == 1) {
6217         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6218         MVT XLenVT = Subtarget.getXLenVT();
6219         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6220         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6221                                         DAG.getUNDEF(IntVT), Zero, VL);
6222         SDValue One = DAG.getConstant(
6223             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6224         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6225                                        DAG.getUNDEF(IntVT), One, VL);
6226         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6227                           ZeroSplat, VL);
6228       } else if (DstEltSize > (2 * SrcEltSize)) {
6229         // Widen before converting.
6230         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6231                                      DstVT.getVectorElementCount());
6232         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6233       }
6234 
6235       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6236     } else {
6237       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6238              "Wrong input/output vector types");
6239 
6240       // Convert f16 to f32 then convert f32 to i64.
6241       if (DstEltSize > (2 * SrcEltSize)) {
6242         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6243         MVT InterimFVT =
6244             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6245         Src =
6246             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6247       }
6248 
6249       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6250     }
6251   } else { // Narrowing + Conversion
6252     if (SrcVT.isInteger()) {
6253       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6254       // First do a narrowing convert to an FP type half the size, then round
6255       // the FP type to a small FP type if needed.
6256 
6257       MVT InterimFVT = DstVT;
6258       if (SrcEltSize > (2 * DstEltSize)) {
6259         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6260         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6261         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6262       }
6263 
6264       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6265 
6266       if (InterimFVT != DstVT) {
6267         Src = Result;
6268         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6269       }
6270     } else {
6271       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6272              "Wrong input/output vector types");
6273       // First do a narrowing conversion to an integer half the size, then
6274       // truncate if needed.
6275 
6276       if (DstEltSize == 1) {
6277         // First convert to the same size integer, then convert to mask using
6278         // setcc.
6279         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6280         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6281                                           DstVT.getVectorElementCount());
6282         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6283 
6284         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6285         // otherwise the conversion was undefined.
6286         MVT XLenVT = Subtarget.getXLenVT();
6287         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6288         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6289                                 DAG.getUNDEF(InterimIVT), SplatZero);
6290         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6291                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6292       } else {
6293         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6294                                           DstVT.getVectorElementCount());
6295 
6296         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6297 
6298         while (InterimIVT != DstVT) {
6299           SrcEltSize /= 2;
6300           Src = Result;
6301           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6302                                         DstVT.getVectorElementCount());
6303           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6304                                Src, Mask, VL);
6305         }
6306       }
6307     }
6308   }
6309 
6310   MVT VT = Op.getSimpleValueType();
6311   if (!VT.isFixedLengthVector())
6312     return Result;
6313   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6314 }
6315 
6316 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6317                                             unsigned MaskOpc,
6318                                             unsigned VecOpc) const {
6319   MVT VT = Op.getSimpleValueType();
6320   if (VT.getVectorElementType() != MVT::i1)
6321     return lowerVPOp(Op, DAG, VecOpc);
6322 
6323   // It is safe to drop mask parameter as masked-off elements are undef.
6324   SDValue Op1 = Op->getOperand(0);
6325   SDValue Op2 = Op->getOperand(1);
6326   SDValue VL = Op->getOperand(3);
6327 
6328   MVT ContainerVT = VT;
6329   const bool IsFixed = VT.isFixedLengthVector();
6330   if (IsFixed) {
6331     ContainerVT = getContainerForFixedLengthVector(VT);
6332     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6333     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6334   }
6335 
6336   SDLoc DL(Op);
6337   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6338   if (!IsFixed)
6339     return Val;
6340   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6341 }
6342 
6343 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6344 // matched to a RVV indexed load. The RVV indexed load instructions only
6345 // support the "unsigned unscaled" addressing mode; indices are implicitly
6346 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6347 // signed or scaled indexing is extended to the XLEN value type and scaled
6348 // accordingly.
6349 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6350                                                SelectionDAG &DAG) const {
6351   SDLoc DL(Op);
6352   MVT VT = Op.getSimpleValueType();
6353 
6354   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6355   EVT MemVT = MemSD->getMemoryVT();
6356   MachineMemOperand *MMO = MemSD->getMemOperand();
6357   SDValue Chain = MemSD->getChain();
6358   SDValue BasePtr = MemSD->getBasePtr();
6359 
6360   ISD::LoadExtType LoadExtType;
6361   SDValue Index, Mask, PassThru, VL;
6362 
6363   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6364     Index = VPGN->getIndex();
6365     Mask = VPGN->getMask();
6366     PassThru = DAG.getUNDEF(VT);
6367     VL = VPGN->getVectorLength();
6368     // VP doesn't support extending loads.
6369     LoadExtType = ISD::NON_EXTLOAD;
6370   } else {
6371     // Else it must be a MGATHER.
6372     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6373     Index = MGN->getIndex();
6374     Mask = MGN->getMask();
6375     PassThru = MGN->getPassThru();
6376     LoadExtType = MGN->getExtensionType();
6377   }
6378 
6379   MVT IndexVT = Index.getSimpleValueType();
6380   MVT XLenVT = Subtarget.getXLenVT();
6381 
6382   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6383          "Unexpected VTs!");
6384   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6385   // Targets have to explicitly opt-in for extending vector loads.
6386   assert(LoadExtType == ISD::NON_EXTLOAD &&
6387          "Unexpected extending MGATHER/VP_GATHER");
6388   (void)LoadExtType;
6389 
6390   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6391   // the selection of the masked intrinsics doesn't do this for us.
6392   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6393 
6394   MVT ContainerVT = VT;
6395   if (VT.isFixedLengthVector()) {
6396     ContainerVT = getContainerForFixedLengthVector(VT);
6397     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6398                                ContainerVT.getVectorElementCount());
6399 
6400     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6401 
6402     if (!IsUnmasked) {
6403       MVT MaskVT = getMaskTypeFor(ContainerVT);
6404       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6405       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6406     }
6407   }
6408 
6409   if (!VL)
6410     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6411 
6412   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6413     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6414     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6415                                    VL);
6416     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6417                         TrueMask, VL);
6418   }
6419 
6420   unsigned IntID =
6421       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6422   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6423   if (IsUnmasked)
6424     Ops.push_back(DAG.getUNDEF(ContainerVT));
6425   else
6426     Ops.push_back(PassThru);
6427   Ops.push_back(BasePtr);
6428   Ops.push_back(Index);
6429   if (!IsUnmasked)
6430     Ops.push_back(Mask);
6431   Ops.push_back(VL);
6432   if (!IsUnmasked)
6433     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6434 
6435   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6436   SDValue Result =
6437       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6438   Chain = Result.getValue(1);
6439 
6440   if (VT.isFixedLengthVector())
6441     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6442 
6443   return DAG.getMergeValues({Result, Chain}, DL);
6444 }
6445 
6446 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6447 // matched to a RVV indexed store. The RVV indexed store instructions only
6448 // support the "unsigned unscaled" addressing mode; indices are implicitly
6449 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6450 // signed or scaled indexing is extended to the XLEN value type and scaled
6451 // accordingly.
6452 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6453                                                 SelectionDAG &DAG) const {
6454   SDLoc DL(Op);
6455   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6456   EVT MemVT = MemSD->getMemoryVT();
6457   MachineMemOperand *MMO = MemSD->getMemOperand();
6458   SDValue Chain = MemSD->getChain();
6459   SDValue BasePtr = MemSD->getBasePtr();
6460 
6461   bool IsTruncatingStore = false;
6462   SDValue Index, Mask, Val, VL;
6463 
6464   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6465     Index = VPSN->getIndex();
6466     Mask = VPSN->getMask();
6467     Val = VPSN->getValue();
6468     VL = VPSN->getVectorLength();
6469     // VP doesn't support truncating stores.
6470     IsTruncatingStore = false;
6471   } else {
6472     // Else it must be a MSCATTER.
6473     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6474     Index = MSN->getIndex();
6475     Mask = MSN->getMask();
6476     Val = MSN->getValue();
6477     IsTruncatingStore = MSN->isTruncatingStore();
6478   }
6479 
6480   MVT VT = Val.getSimpleValueType();
6481   MVT IndexVT = Index.getSimpleValueType();
6482   MVT XLenVT = Subtarget.getXLenVT();
6483 
6484   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6485          "Unexpected VTs!");
6486   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6487   // Targets have to explicitly opt-in for extending vector loads and
6488   // truncating vector stores.
6489   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6490   (void)IsTruncatingStore;
6491 
6492   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6493   // the selection of the masked intrinsics doesn't do this for us.
6494   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6495 
6496   MVT ContainerVT = VT;
6497   if (VT.isFixedLengthVector()) {
6498     ContainerVT = getContainerForFixedLengthVector(VT);
6499     IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6500                                ContainerVT.getVectorElementCount());
6501 
6502     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6503     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6504 
6505     if (!IsUnmasked) {
6506       MVT MaskVT = getMaskTypeFor(ContainerVT);
6507       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6508     }
6509   }
6510 
6511   if (!VL)
6512     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6513 
6514   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6515     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6516     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6517                                    VL);
6518     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6519                         TrueMask, VL);
6520   }
6521 
6522   unsigned IntID =
6523       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6524   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6525   Ops.push_back(Val);
6526   Ops.push_back(BasePtr);
6527   Ops.push_back(Index);
6528   if (!IsUnmasked)
6529     Ops.push_back(Mask);
6530   Ops.push_back(VL);
6531 
6532   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6533                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6534 }
6535 
6536 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6537                                                SelectionDAG &DAG) const {
6538   const MVT XLenVT = Subtarget.getXLenVT();
6539   SDLoc DL(Op);
6540   SDValue Chain = Op->getOperand(0);
6541   SDValue SysRegNo = DAG.getTargetConstant(
6542       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6543   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6544   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6545 
6546   // Encoding used for rounding mode in RISCV differs from that used in
6547   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6548   // table, which consists of a sequence of 4-bit fields, each representing
6549   // corresponding FLT_ROUNDS mode.
6550   static const int Table =
6551       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6552       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6553       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6554       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6555       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6556 
6557   SDValue Shift =
6558       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6559   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6560                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6561   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6562                                DAG.getConstant(7, DL, XLenVT));
6563 
6564   return DAG.getMergeValues({Masked, Chain}, DL);
6565 }
6566 
6567 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6568                                                SelectionDAG &DAG) const {
6569   const MVT XLenVT = Subtarget.getXLenVT();
6570   SDLoc DL(Op);
6571   SDValue Chain = Op->getOperand(0);
6572   SDValue RMValue = Op->getOperand(1);
6573   SDValue SysRegNo = DAG.getTargetConstant(
6574       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6575 
6576   // Encoding used for rounding mode in RISCV differs from that used in
6577   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6578   // a table, which consists of a sequence of 4-bit fields, each representing
6579   // corresponding RISCV mode.
6580   static const unsigned Table =
6581       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6582       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6583       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6584       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6585       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6586 
6587   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6588                               DAG.getConstant(2, DL, XLenVT));
6589   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6590                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6591   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6592                         DAG.getConstant(0x7, DL, XLenVT));
6593   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6594                      RMValue);
6595 }
6596 
6597 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6598                                                SelectionDAG &DAG) const {
6599   MachineFunction &MF = DAG.getMachineFunction();
6600 
6601   bool isRISCV64 = Subtarget.is64Bit();
6602   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6603 
6604   int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6605   return DAG.getFrameIndex(FI, PtrVT);
6606 }
6607 
6608 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6609   switch (IntNo) {
6610   default:
6611     llvm_unreachable("Unexpected Intrinsic");
6612   case Intrinsic::riscv_bcompress:
6613     return RISCVISD::BCOMPRESSW;
6614   case Intrinsic::riscv_bdecompress:
6615     return RISCVISD::BDECOMPRESSW;
6616   case Intrinsic::riscv_bfp:
6617     return RISCVISD::BFPW;
6618   case Intrinsic::riscv_fsl:
6619     return RISCVISD::FSLW;
6620   case Intrinsic::riscv_fsr:
6621     return RISCVISD::FSRW;
6622   }
6623 }
6624 
6625 // Converts the given intrinsic to a i64 operation with any extension.
6626 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6627                                          unsigned IntNo) {
6628   SDLoc DL(N);
6629   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6630   // Deal with the Instruction Operands
6631   SmallVector<SDValue, 3> NewOps;
6632   for (SDValue Op : drop_begin(N->ops()))
6633     // Promote the operand to i64 type
6634     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6635   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6636   // ReplaceNodeResults requires we maintain the same type for the return value.
6637   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6638 }
6639 
6640 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6641 // form of the given Opcode.
6642 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6643   switch (Opcode) {
6644   default:
6645     llvm_unreachable("Unexpected opcode");
6646   case ISD::SHL:
6647     return RISCVISD::SLLW;
6648   case ISD::SRA:
6649     return RISCVISD::SRAW;
6650   case ISD::SRL:
6651     return RISCVISD::SRLW;
6652   case ISD::SDIV:
6653     return RISCVISD::DIVW;
6654   case ISD::UDIV:
6655     return RISCVISD::DIVUW;
6656   case ISD::UREM:
6657     return RISCVISD::REMUW;
6658   case ISD::ROTL:
6659     return RISCVISD::ROLW;
6660   case ISD::ROTR:
6661     return RISCVISD::RORW;
6662   }
6663 }
6664 
6665 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6666 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6667 // otherwise be promoted to i64, making it difficult to select the
6668 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6669 // type i8/i16/i32 is lost.
6670 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6671                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6672   SDLoc DL(N);
6673   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6674   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6675   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6676   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6677   // ReplaceNodeResults requires we maintain the same type for the return value.
6678   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6679 }
6680 
6681 // Converts the given 32-bit operation to a i64 operation with signed extension
6682 // semantic to reduce the signed extension instructions.
6683 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6684   SDLoc DL(N);
6685   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6686   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6687   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6688   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6689                                DAG.getValueType(MVT::i32));
6690   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6691 }
6692 
6693 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6694                                              SmallVectorImpl<SDValue> &Results,
6695                                              SelectionDAG &DAG) const {
6696   SDLoc DL(N);
6697   switch (N->getOpcode()) {
6698   default:
6699     llvm_unreachable("Don't know how to custom type legalize this operation!");
6700   case ISD::STRICT_FP_TO_SINT:
6701   case ISD::STRICT_FP_TO_UINT:
6702   case ISD::FP_TO_SINT:
6703   case ISD::FP_TO_UINT: {
6704     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6705            "Unexpected custom legalisation");
6706     bool IsStrict = N->isStrictFPOpcode();
6707     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6708                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6709     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6710     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6711         TargetLowering::TypeSoftenFloat) {
6712       if (!isTypeLegal(Op0.getValueType()))
6713         return;
6714       if (IsStrict) {
6715         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6716                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6717         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6718         SDValue Res = DAG.getNode(
6719             Opc, DL, VTs, N->getOperand(0), Op0,
6720             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6721         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6722         Results.push_back(Res.getValue(1));
6723         return;
6724       }
6725       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6726       SDValue Res =
6727           DAG.getNode(Opc, DL, MVT::i64, Op0,
6728                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6729       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6730       return;
6731     }
6732     // If the FP type needs to be softened, emit a library call using the 'si'
6733     // version. If we left it to default legalization we'd end up with 'di'. If
6734     // the FP type doesn't need to be softened just let generic type
6735     // legalization promote the result type.
6736     RTLIB::Libcall LC;
6737     if (IsSigned)
6738       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6739     else
6740       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6741     MakeLibCallOptions CallOptions;
6742     EVT OpVT = Op0.getValueType();
6743     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6744     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6745     SDValue Result;
6746     std::tie(Result, Chain) =
6747         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6748     Results.push_back(Result);
6749     if (IsStrict)
6750       Results.push_back(Chain);
6751     break;
6752   }
6753   case ISD::READCYCLECOUNTER: {
6754     assert(!Subtarget.is64Bit() &&
6755            "READCYCLECOUNTER only has custom type legalization on riscv32");
6756 
6757     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6758     SDValue RCW =
6759         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6760 
6761     Results.push_back(
6762         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6763     Results.push_back(RCW.getValue(2));
6764     break;
6765   }
6766   case ISD::MUL: {
6767     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6768     unsigned XLen = Subtarget.getXLen();
6769     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6770     if (Size > XLen) {
6771       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6772       SDValue LHS = N->getOperand(0);
6773       SDValue RHS = N->getOperand(1);
6774       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6775 
6776       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6777       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6778       // We need exactly one side to be unsigned.
6779       if (LHSIsU == RHSIsU)
6780         return;
6781 
6782       auto MakeMULPair = [&](SDValue S, SDValue U) {
6783         MVT XLenVT = Subtarget.getXLenVT();
6784         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6785         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6786         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6787         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6788         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6789       };
6790 
6791       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6792       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6793 
6794       // The other operand should be signed, but still prefer MULH when
6795       // possible.
6796       if (RHSIsU && LHSIsS && !RHSIsS)
6797         Results.push_back(MakeMULPair(LHS, RHS));
6798       else if (LHSIsU && RHSIsS && !LHSIsS)
6799         Results.push_back(MakeMULPair(RHS, LHS));
6800 
6801       return;
6802     }
6803     LLVM_FALLTHROUGH;
6804   }
6805   case ISD::ADD:
6806   case ISD::SUB:
6807     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6808            "Unexpected custom legalisation");
6809     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6810     break;
6811   case ISD::SHL:
6812   case ISD::SRA:
6813   case ISD::SRL:
6814     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6815            "Unexpected custom legalisation");
6816     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6817       // If we can use a BSET instruction, allow default promotion to apply.
6818       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6819           isOneConstant(N->getOperand(0)))
6820         break;
6821       Results.push_back(customLegalizeToWOp(N, DAG));
6822       break;
6823     }
6824 
6825     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6826     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6827     // shift amount.
6828     if (N->getOpcode() == ISD::SHL) {
6829       SDLoc DL(N);
6830       SDValue NewOp0 =
6831           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6832       SDValue NewOp1 =
6833           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6834       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6835       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6836                                    DAG.getValueType(MVT::i32));
6837       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6838     }
6839 
6840     break;
6841   case ISD::ROTL:
6842   case ISD::ROTR:
6843     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6844            "Unexpected custom legalisation");
6845     Results.push_back(customLegalizeToWOp(N, DAG));
6846     break;
6847   case ISD::CTTZ:
6848   case ISD::CTTZ_ZERO_UNDEF:
6849   case ISD::CTLZ:
6850   case ISD::CTLZ_ZERO_UNDEF: {
6851     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6852            "Unexpected custom legalisation");
6853 
6854     SDValue NewOp0 =
6855         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6856     bool IsCTZ =
6857         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6858     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6859     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6860     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6861     return;
6862   }
6863   case ISD::SDIV:
6864   case ISD::UDIV:
6865   case ISD::UREM: {
6866     MVT VT = N->getSimpleValueType(0);
6867     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6868            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6869            "Unexpected custom legalisation");
6870     // Don't promote division/remainder by constant since we should expand those
6871     // to multiply by magic constant.
6872     // FIXME: What if the expansion is disabled for minsize.
6873     if (N->getOperand(1).getOpcode() == ISD::Constant)
6874       return;
6875 
6876     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6877     // the upper 32 bits. For other types we need to sign or zero extend
6878     // based on the opcode.
6879     unsigned ExtOpc = ISD::ANY_EXTEND;
6880     if (VT != MVT::i32)
6881       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6882                                            : ISD::ZERO_EXTEND;
6883 
6884     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6885     break;
6886   }
6887   case ISD::UADDO:
6888   case ISD::USUBO: {
6889     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6890            "Unexpected custom legalisation");
6891     bool IsAdd = N->getOpcode() == ISD::UADDO;
6892     // Create an ADDW or SUBW.
6893     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6894     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6895     SDValue Res =
6896         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6897     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6898                       DAG.getValueType(MVT::i32));
6899 
6900     SDValue Overflow;
6901     if (IsAdd && isOneConstant(RHS)) {
6902       // Special case uaddo X, 1 overflowed if the addition result is 0.
6903       // The general case (X + C) < C is not necessarily beneficial. Although we
6904       // reduce the live range of X, we may introduce the materialization of
6905       // constant C, especially when the setcc result is used by branch. We have
6906       // no compare with constant and branch instructions.
6907       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6908                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6909     } else {
6910       // Sign extend the LHS and perform an unsigned compare with the ADDW
6911       // result. Since the inputs are sign extended from i32, this is equivalent
6912       // to comparing the lower 32 bits.
6913       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6914       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6915                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6916     }
6917 
6918     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6919     Results.push_back(Overflow);
6920     return;
6921   }
6922   case ISD::UADDSAT:
6923   case ISD::USUBSAT: {
6924     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6925            "Unexpected custom legalisation");
6926     if (Subtarget.hasStdExtZbb()) {
6927       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6928       // sign extend allows overflow of the lower 32 bits to be detected on
6929       // the promoted size.
6930       SDValue LHS =
6931           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6932       SDValue RHS =
6933           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6934       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6935       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6936       return;
6937     }
6938 
6939     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6940     // promotion for UADDO/USUBO.
6941     Results.push_back(expandAddSubSat(N, DAG));
6942     return;
6943   }
6944   case ISD::ABS: {
6945     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6946            "Unexpected custom legalisation");
6947           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6948 
6949     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6950 
6951     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6952 
6953     // Freeze the source so we can increase it's use count.
6954     Src = DAG.getFreeze(Src);
6955 
6956     // Copy sign bit to all bits using the sraiw pattern.
6957     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6958                                    DAG.getValueType(MVT::i32));
6959     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6960                            DAG.getConstant(31, DL, MVT::i64));
6961 
6962     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6963     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6964 
6965     // NOTE: The result is only required to be anyextended, but sext is
6966     // consistent with type legalization of sub.
6967     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6968                          DAG.getValueType(MVT::i32));
6969     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6970     return;
6971   }
6972   case ISD::BITCAST: {
6973     EVT VT = N->getValueType(0);
6974     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6975     SDValue Op0 = N->getOperand(0);
6976     EVT Op0VT = Op0.getValueType();
6977     MVT XLenVT = Subtarget.getXLenVT();
6978     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6979       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6980       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6981     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6982                Subtarget.hasStdExtF()) {
6983       SDValue FPConv =
6984           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6985       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6986     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6987                isTypeLegal(Op0VT)) {
6988       // Custom-legalize bitcasts from fixed-length vector types to illegal
6989       // scalar types in order to improve codegen. Bitcast the vector to a
6990       // one-element vector type whose element type is the same as the result
6991       // type, and extract the first element.
6992       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6993       if (isTypeLegal(BVT)) {
6994         SDValue BVec = DAG.getBitcast(BVT, Op0);
6995         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6996                                       DAG.getConstant(0, DL, XLenVT)));
6997       }
6998     }
6999     break;
7000   }
7001   case RISCVISD::GREV:
7002   case RISCVISD::GORC:
7003   case RISCVISD::SHFL: {
7004     MVT VT = N->getSimpleValueType(0);
7005     MVT XLenVT = Subtarget.getXLenVT();
7006     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7007            "Unexpected custom legalisation");
7008     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7009     assert((Subtarget.hasStdExtZbp() ||
7010             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7011              N->getConstantOperandVal(1) == 7)) &&
7012            "Unexpected extension");
7013     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7014     SDValue NewOp1 =
7015         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7016     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7017     // ReplaceNodeResults requires we maintain the same type for the return
7018     // value.
7019     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7020     break;
7021   }
7022   case ISD::BSWAP:
7023   case ISD::BITREVERSE: {
7024     MVT VT = N->getSimpleValueType(0);
7025     MVT XLenVT = Subtarget.getXLenVT();
7026     assert((VT == MVT::i8 || VT == MVT::i16 ||
7027             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7028            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7029     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7030     unsigned Imm = VT.getSizeInBits() - 1;
7031     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7032     if (N->getOpcode() == ISD::BSWAP)
7033       Imm &= ~0x7U;
7034     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7035                                 DAG.getConstant(Imm, DL, XLenVT));
7036     // ReplaceNodeResults requires we maintain the same type for the return
7037     // value.
7038     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7039     break;
7040   }
7041   case ISD::FSHL:
7042   case ISD::FSHR: {
7043     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7044            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7045     SDValue NewOp0 =
7046         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7047     SDValue NewOp1 =
7048         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7049     SDValue NewShAmt =
7050         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7051     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7052     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7053     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7054                            DAG.getConstant(0x1f, DL, MVT::i64));
7055     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7056     // instruction use different orders. fshl will return its first operand for
7057     // shift of zero, fshr will return its second operand. fsl and fsr both
7058     // return rs1 so the ISD nodes need to have different operand orders.
7059     // Shift amount is in rs2.
7060     unsigned Opc = RISCVISD::FSLW;
7061     if (N->getOpcode() == ISD::FSHR) {
7062       std::swap(NewOp0, NewOp1);
7063       Opc = RISCVISD::FSRW;
7064     }
7065     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7066     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7067     break;
7068   }
7069   case ISD::EXTRACT_VECTOR_ELT: {
7070     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7071     // type is illegal (currently only vXi64 RV32).
7072     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7073     // transferred to the destination register. We issue two of these from the
7074     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7075     // first element.
7076     SDValue Vec = N->getOperand(0);
7077     SDValue Idx = N->getOperand(1);
7078 
7079     // The vector type hasn't been legalized yet so we can't issue target
7080     // specific nodes if it needs legalization.
7081     // FIXME: We would manually legalize if it's important.
7082     if (!isTypeLegal(Vec.getValueType()))
7083       return;
7084 
7085     MVT VecVT = Vec.getSimpleValueType();
7086 
7087     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7088            VecVT.getVectorElementType() == MVT::i64 &&
7089            "Unexpected EXTRACT_VECTOR_ELT legalization");
7090 
7091     // If this is a fixed vector, we need to convert it to a scalable vector.
7092     MVT ContainerVT = VecVT;
7093     if (VecVT.isFixedLengthVector()) {
7094       ContainerVT = getContainerForFixedLengthVector(VecVT);
7095       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7096     }
7097 
7098     MVT XLenVT = Subtarget.getXLenVT();
7099 
7100     // Use a VL of 1 to avoid processing more elements than we need.
7101     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7102     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7103 
7104     // Unless the index is known to be 0, we must slide the vector down to get
7105     // the desired element into index 0.
7106     if (!isNullConstant(Idx)) {
7107       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7108                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7109     }
7110 
7111     // Extract the lower XLEN bits of the correct vector element.
7112     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7113 
7114     // To extract the upper XLEN bits of the vector element, shift the first
7115     // element right by 32 bits and re-extract the lower XLEN bits.
7116     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7117                                      DAG.getUNDEF(ContainerVT),
7118                                      DAG.getConstant(32, DL, XLenVT), VL);
7119     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7120                                  ThirtyTwoV, Mask, VL);
7121 
7122     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7123 
7124     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7125     break;
7126   }
7127   case ISD::INTRINSIC_WO_CHAIN: {
7128     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7129     switch (IntNo) {
7130     default:
7131       llvm_unreachable(
7132           "Don't know how to custom type legalize this intrinsic!");
7133     case Intrinsic::riscv_grev:
7134     case Intrinsic::riscv_gorc: {
7135       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7136              "Unexpected custom legalisation");
7137       SDValue NewOp1 =
7138           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7139       SDValue NewOp2 =
7140           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7141       unsigned Opc =
7142           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7143       // If the control is a constant, promote the node by clearing any extra
7144       // bits bits in the control. isel will form greviw/gorciw if the result is
7145       // sign extended.
7146       if (isa<ConstantSDNode>(NewOp2)) {
7147         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7148                              DAG.getConstant(0x1f, DL, MVT::i64));
7149         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7150       }
7151       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7152       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7153       break;
7154     }
7155     case Intrinsic::riscv_bcompress:
7156     case Intrinsic::riscv_bdecompress:
7157     case Intrinsic::riscv_bfp:
7158     case Intrinsic::riscv_fsl:
7159     case Intrinsic::riscv_fsr: {
7160       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7161              "Unexpected custom legalisation");
7162       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7163       break;
7164     }
7165     case Intrinsic::riscv_orc_b: {
7166       // Lower to the GORCI encoding for orc.b with the operand extended.
7167       SDValue NewOp =
7168           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7169       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7170                                 DAG.getConstant(7, DL, MVT::i64));
7171       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7172       return;
7173     }
7174     case Intrinsic::riscv_shfl:
7175     case Intrinsic::riscv_unshfl: {
7176       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7177              "Unexpected custom legalisation");
7178       SDValue NewOp1 =
7179           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7180       SDValue NewOp2 =
7181           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7182       unsigned Opc =
7183           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7184       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7185       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7186       // will be shuffled the same way as the lower 32 bit half, but the two
7187       // halves won't cross.
7188       if (isa<ConstantSDNode>(NewOp2)) {
7189         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7190                              DAG.getConstant(0xf, DL, MVT::i64));
7191         Opc =
7192             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7193       }
7194       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7195       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7196       break;
7197     }
7198     case Intrinsic::riscv_vmv_x_s: {
7199       EVT VT = N->getValueType(0);
7200       MVT XLenVT = Subtarget.getXLenVT();
7201       if (VT.bitsLT(XLenVT)) {
7202         // Simple case just extract using vmv.x.s and truncate.
7203         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7204                                       Subtarget.getXLenVT(), N->getOperand(1));
7205         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7206         return;
7207       }
7208 
7209       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7210              "Unexpected custom legalization");
7211 
7212       // We need to do the move in two steps.
7213       SDValue Vec = N->getOperand(1);
7214       MVT VecVT = Vec.getSimpleValueType();
7215 
7216       // First extract the lower XLEN bits of the element.
7217       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7218 
7219       // To extract the upper XLEN bits of the vector element, shift the first
7220       // element right by 32 bits and re-extract the lower XLEN bits.
7221       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7222       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7223 
7224       SDValue ThirtyTwoV =
7225           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7226                       DAG.getConstant(32, DL, XLenVT), VL);
7227       SDValue LShr32 =
7228           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7229       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7230 
7231       Results.push_back(
7232           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7233       break;
7234     }
7235     }
7236     break;
7237   }
7238   case ISD::VECREDUCE_ADD:
7239   case ISD::VECREDUCE_AND:
7240   case ISD::VECREDUCE_OR:
7241   case ISD::VECREDUCE_XOR:
7242   case ISD::VECREDUCE_SMAX:
7243   case ISD::VECREDUCE_UMAX:
7244   case ISD::VECREDUCE_SMIN:
7245   case ISD::VECREDUCE_UMIN:
7246     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7247       Results.push_back(V);
7248     break;
7249   case ISD::VP_REDUCE_ADD:
7250   case ISD::VP_REDUCE_AND:
7251   case ISD::VP_REDUCE_OR:
7252   case ISD::VP_REDUCE_XOR:
7253   case ISD::VP_REDUCE_SMAX:
7254   case ISD::VP_REDUCE_UMAX:
7255   case ISD::VP_REDUCE_SMIN:
7256   case ISD::VP_REDUCE_UMIN:
7257     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7258       Results.push_back(V);
7259     break;
7260   case ISD::FLT_ROUNDS_: {
7261     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7262     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7263     Results.push_back(Res.getValue(0));
7264     Results.push_back(Res.getValue(1));
7265     break;
7266   }
7267   }
7268 }
7269 
7270 // A structure to hold one of the bit-manipulation patterns below. Together, a
7271 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7272 //   (or (and (shl x, 1), 0xAAAAAAAA),
7273 //       (and (srl x, 1), 0x55555555))
7274 struct RISCVBitmanipPat {
7275   SDValue Op;
7276   unsigned ShAmt;
7277   bool IsSHL;
7278 
7279   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7280     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7281   }
7282 };
7283 
7284 // Matches patterns of the form
7285 //   (and (shl x, C2), (C1 << C2))
7286 //   (and (srl x, C2), C1)
7287 //   (shl (and x, C1), C2)
7288 //   (srl (and x, (C1 << C2)), C2)
7289 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7290 // The expected masks for each shift amount are specified in BitmanipMasks where
7291 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7292 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7293 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7294 // XLen is 64.
7295 static Optional<RISCVBitmanipPat>
7296 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7297   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7298          "Unexpected number of masks");
7299   Optional<uint64_t> Mask;
7300   // Optionally consume a mask around the shift operation.
7301   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7302     Mask = Op.getConstantOperandVal(1);
7303     Op = Op.getOperand(0);
7304   }
7305   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7306     return None;
7307   bool IsSHL = Op.getOpcode() == ISD::SHL;
7308 
7309   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7310     return None;
7311   uint64_t ShAmt = Op.getConstantOperandVal(1);
7312 
7313   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7314   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7315     return None;
7316   // If we don't have enough masks for 64 bit, then we must be trying to
7317   // match SHFL so we're only allowed to shift 1/4 of the width.
7318   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7319     return None;
7320 
7321   SDValue Src = Op.getOperand(0);
7322 
7323   // The expected mask is shifted left when the AND is found around SHL
7324   // patterns.
7325   //   ((x >> 1) & 0x55555555)
7326   //   ((x << 1) & 0xAAAAAAAA)
7327   bool SHLExpMask = IsSHL;
7328 
7329   if (!Mask) {
7330     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7331     // the mask is all ones: consume that now.
7332     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7333       Mask = Src.getConstantOperandVal(1);
7334       Src = Src.getOperand(0);
7335       // The expected mask is now in fact shifted left for SRL, so reverse the
7336       // decision.
7337       //   ((x & 0xAAAAAAAA) >> 1)
7338       //   ((x & 0x55555555) << 1)
7339       SHLExpMask = !SHLExpMask;
7340     } else {
7341       // Use a default shifted mask of all-ones if there's no AND, truncated
7342       // down to the expected width. This simplifies the logic later on.
7343       Mask = maskTrailingOnes<uint64_t>(Width);
7344       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7345     }
7346   }
7347 
7348   unsigned MaskIdx = Log2_32(ShAmt);
7349   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7350 
7351   if (SHLExpMask)
7352     ExpMask <<= ShAmt;
7353 
7354   if (Mask != ExpMask)
7355     return None;
7356 
7357   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7358 }
7359 
7360 // Matches any of the following bit-manipulation patterns:
7361 //   (and (shl x, 1), (0x55555555 << 1))
7362 //   (and (srl x, 1), 0x55555555)
7363 //   (shl (and x, 0x55555555), 1)
7364 //   (srl (and x, (0x55555555 << 1)), 1)
7365 // where the shift amount and mask may vary thus:
7366 //   [1]  = 0x55555555 / 0xAAAAAAAA
7367 //   [2]  = 0x33333333 / 0xCCCCCCCC
7368 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7369 //   [8]  = 0x00FF00FF / 0xFF00FF00
7370 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7371 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7372 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7373   // These are the unshifted masks which we use to match bit-manipulation
7374   // patterns. They may be shifted left in certain circumstances.
7375   static const uint64_t BitmanipMasks[] = {
7376       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7377       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7378 
7379   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7380 }
7381 
7382 // Try to fold (<bop> x, (reduction.<bop> vec, start))
7383 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7384   auto BinOpToRVVReduce = [](unsigned Opc) {
7385     switch (Opc) {
7386     default:
7387       llvm_unreachable("Unhandled binary to transfrom reduction");
7388     case ISD::ADD:
7389       return RISCVISD::VECREDUCE_ADD_VL;
7390     case ISD::UMAX:
7391       return RISCVISD::VECREDUCE_UMAX_VL;
7392     case ISD::SMAX:
7393       return RISCVISD::VECREDUCE_SMAX_VL;
7394     case ISD::UMIN:
7395       return RISCVISD::VECREDUCE_UMIN_VL;
7396     case ISD::SMIN:
7397       return RISCVISD::VECREDUCE_SMIN_VL;
7398     case ISD::AND:
7399       return RISCVISD::VECREDUCE_AND_VL;
7400     case ISD::OR:
7401       return RISCVISD::VECREDUCE_OR_VL;
7402     case ISD::XOR:
7403       return RISCVISD::VECREDUCE_XOR_VL;
7404     case ISD::FADD:
7405       return RISCVISD::VECREDUCE_FADD_VL;
7406     case ISD::FMAXNUM:
7407       return RISCVISD::VECREDUCE_FMAX_VL;
7408     case ISD::FMINNUM:
7409       return RISCVISD::VECREDUCE_FMIN_VL;
7410     }
7411   };
7412 
7413   auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7414     return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7415            isNullConstant(V.getOperand(1)) &&
7416            V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7417   };
7418 
7419   unsigned Opc = N->getOpcode();
7420   unsigned ReduceIdx;
7421   if (IsReduction(N->getOperand(0), Opc))
7422     ReduceIdx = 0;
7423   else if (IsReduction(N->getOperand(1), Opc))
7424     ReduceIdx = 1;
7425   else
7426     return SDValue();
7427 
7428   // Skip if FADD disallows reassociation but the combiner needs.
7429   if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7430     return SDValue();
7431 
7432   SDValue Extract = N->getOperand(ReduceIdx);
7433   SDValue Reduce = Extract.getOperand(0);
7434   if (!Reduce.hasOneUse())
7435     return SDValue();
7436 
7437   SDValue ScalarV = Reduce.getOperand(2);
7438 
7439   // Make sure that ScalarV is a splat with VL=1.
7440   if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7441       ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7442       ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7443     return SDValue();
7444 
7445   if (!isOneConstant(ScalarV.getOperand(2)))
7446     return SDValue();
7447 
7448   // TODO: Deal with value other than neutral element.
7449   auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7450     if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7451         isNullFPConstant(V))
7452       return true;
7453     return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7454                                  N->getFlags()) == V;
7455   };
7456 
7457   // Check the scalar of ScalarV is neutral element
7458   if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7459     return SDValue();
7460 
7461   if (!ScalarV.hasOneUse())
7462     return SDValue();
7463 
7464   EVT SplatVT = ScalarV.getValueType();
7465   SDValue NewStart = N->getOperand(1 - ReduceIdx);
7466   unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7467   if (SplatVT.isInteger()) {
7468     auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7469     if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7470       SplatOpc = RISCVISD::VMV_S_X_VL;
7471     else
7472       SplatOpc = RISCVISD::VMV_V_X_VL;
7473   }
7474 
7475   SDValue NewScalarV =
7476       DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7477                   ScalarV.getOperand(2));
7478   SDValue NewReduce =
7479       DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7480                   Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7481                   Reduce.getOperand(3), Reduce.getOperand(4));
7482   return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7483                      Extract.getValueType(), NewReduce, Extract.getOperand(1));
7484 }
7485 
7486 // Match the following pattern as a GREVI(W) operation
7487 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7488 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7489                                const RISCVSubtarget &Subtarget) {
7490   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7491   EVT VT = Op.getValueType();
7492 
7493   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7494     auto LHS = matchGREVIPat(Op.getOperand(0));
7495     auto RHS = matchGREVIPat(Op.getOperand(1));
7496     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7497       SDLoc DL(Op);
7498       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7499                          DAG.getConstant(LHS->ShAmt, DL, VT));
7500     }
7501   }
7502   return SDValue();
7503 }
7504 
7505 // Matches any the following pattern as a GORCI(W) operation
7506 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7507 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7508 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7509 // Note that with the variant of 3.,
7510 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7511 // the inner pattern will first be matched as GREVI and then the outer
7512 // pattern will be matched to GORC via the first rule above.
7513 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7514 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7515                                const RISCVSubtarget &Subtarget) {
7516   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7517   EVT VT = Op.getValueType();
7518 
7519   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7520     SDLoc DL(Op);
7521     SDValue Op0 = Op.getOperand(0);
7522     SDValue Op1 = Op.getOperand(1);
7523 
7524     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7525       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7526           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7527           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7528         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7529       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7530       if ((Reverse.getOpcode() == ISD::ROTL ||
7531            Reverse.getOpcode() == ISD::ROTR) &&
7532           Reverse.getOperand(0) == X &&
7533           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7534         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7535         if (RotAmt == (VT.getSizeInBits() / 2))
7536           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7537                              DAG.getConstant(RotAmt, DL, VT));
7538       }
7539       return SDValue();
7540     };
7541 
7542     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7543     if (SDValue V = MatchOROfReverse(Op0, Op1))
7544       return V;
7545     if (SDValue V = MatchOROfReverse(Op1, Op0))
7546       return V;
7547 
7548     // OR is commutable so canonicalize its OR operand to the left
7549     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7550       std::swap(Op0, Op1);
7551     if (Op0.getOpcode() != ISD::OR)
7552       return SDValue();
7553     SDValue OrOp0 = Op0.getOperand(0);
7554     SDValue OrOp1 = Op0.getOperand(1);
7555     auto LHS = matchGREVIPat(OrOp0);
7556     // OR is commutable so swap the operands and try again: x might have been
7557     // on the left
7558     if (!LHS) {
7559       std::swap(OrOp0, OrOp1);
7560       LHS = matchGREVIPat(OrOp0);
7561     }
7562     auto RHS = matchGREVIPat(Op1);
7563     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7564       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7565                          DAG.getConstant(LHS->ShAmt, DL, VT));
7566     }
7567   }
7568   return SDValue();
7569 }
7570 
7571 // Matches any of the following bit-manipulation patterns:
7572 //   (and (shl x, 1), (0x22222222 << 1))
7573 //   (and (srl x, 1), 0x22222222)
7574 //   (shl (and x, 0x22222222), 1)
7575 //   (srl (and x, (0x22222222 << 1)), 1)
7576 // where the shift amount and mask may vary thus:
7577 //   [1]  = 0x22222222 / 0x44444444
7578 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7579 //   [4]  = 0x00F000F0 / 0x0F000F00
7580 //   [8]  = 0x0000FF00 / 0x00FF0000
7581 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7582 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7583   // These are the unshifted masks which we use to match bit-manipulation
7584   // patterns. They may be shifted left in certain circumstances.
7585   static const uint64_t BitmanipMasks[] = {
7586       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7587       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7588 
7589   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7590 }
7591 
7592 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7593 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7594                                const RISCVSubtarget &Subtarget) {
7595   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7596   EVT VT = Op.getValueType();
7597 
7598   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7599     return SDValue();
7600 
7601   SDValue Op0 = Op.getOperand(0);
7602   SDValue Op1 = Op.getOperand(1);
7603 
7604   // Or is commutable so canonicalize the second OR to the LHS.
7605   if (Op0.getOpcode() != ISD::OR)
7606     std::swap(Op0, Op1);
7607   if (Op0.getOpcode() != ISD::OR)
7608     return SDValue();
7609 
7610   // We found an inner OR, so our operands are the operands of the inner OR
7611   // and the other operand of the outer OR.
7612   SDValue A = Op0.getOperand(0);
7613   SDValue B = Op0.getOperand(1);
7614   SDValue C = Op1;
7615 
7616   auto Match1 = matchSHFLPat(A);
7617   auto Match2 = matchSHFLPat(B);
7618 
7619   // If neither matched, we failed.
7620   if (!Match1 && !Match2)
7621     return SDValue();
7622 
7623   // We had at least one match. if one failed, try the remaining C operand.
7624   if (!Match1) {
7625     std::swap(A, C);
7626     Match1 = matchSHFLPat(A);
7627     if (!Match1)
7628       return SDValue();
7629   } else if (!Match2) {
7630     std::swap(B, C);
7631     Match2 = matchSHFLPat(B);
7632     if (!Match2)
7633       return SDValue();
7634   }
7635   assert(Match1 && Match2);
7636 
7637   // Make sure our matches pair up.
7638   if (!Match1->formsPairWith(*Match2))
7639     return SDValue();
7640 
7641   // All the remains is to make sure C is an AND with the same input, that masks
7642   // out the bits that are being shuffled.
7643   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7644       C.getOperand(0) != Match1->Op)
7645     return SDValue();
7646 
7647   uint64_t Mask = C.getConstantOperandVal(1);
7648 
7649   static const uint64_t BitmanipMasks[] = {
7650       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7651       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7652   };
7653 
7654   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7655   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7656   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7657 
7658   if (Mask != ExpMask)
7659     return SDValue();
7660 
7661   SDLoc DL(Op);
7662   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7663                      DAG.getConstant(Match1->ShAmt, DL, VT));
7664 }
7665 
7666 // Optimize (add (shl x, c0), (shl y, c1)) ->
7667 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7668 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7669                                   const RISCVSubtarget &Subtarget) {
7670   // Perform this optimization only in the zba extension.
7671   if (!Subtarget.hasStdExtZba())
7672     return SDValue();
7673 
7674   // Skip for vector types and larger types.
7675   EVT VT = N->getValueType(0);
7676   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7677     return SDValue();
7678 
7679   // The two operand nodes must be SHL and have no other use.
7680   SDValue N0 = N->getOperand(0);
7681   SDValue N1 = N->getOperand(1);
7682   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7683       !N0->hasOneUse() || !N1->hasOneUse())
7684     return SDValue();
7685 
7686   // Check c0 and c1.
7687   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7688   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7689   if (!N0C || !N1C)
7690     return SDValue();
7691   int64_t C0 = N0C->getSExtValue();
7692   int64_t C1 = N1C->getSExtValue();
7693   if (C0 <= 0 || C1 <= 0)
7694     return SDValue();
7695 
7696   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7697   int64_t Bits = std::min(C0, C1);
7698   int64_t Diff = std::abs(C0 - C1);
7699   if (Diff != 1 && Diff != 2 && Diff != 3)
7700     return SDValue();
7701 
7702   // Build nodes.
7703   SDLoc DL(N);
7704   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7705   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7706   SDValue NA0 =
7707       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7708   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7709   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7710 }
7711 
7712 // Combine
7713 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7714 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7715 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7716 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7717 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7718 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7719 // The grev patterns represents BSWAP.
7720 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7721 // off the grev.
7722 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7723                                           const RISCVSubtarget &Subtarget) {
7724   bool IsWInstruction =
7725       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7726   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7727           IsWInstruction) &&
7728          "Unexpected opcode!");
7729   SDValue Src = N->getOperand(0);
7730   EVT VT = N->getValueType(0);
7731   SDLoc DL(N);
7732 
7733   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7734     return SDValue();
7735 
7736   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7737       !isa<ConstantSDNode>(Src.getOperand(1)))
7738     return SDValue();
7739 
7740   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7741   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7742 
7743   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7744   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7745   unsigned ShAmt1 = N->getConstantOperandVal(1);
7746   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7747   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7748     return SDValue();
7749 
7750   Src = Src.getOperand(0);
7751 
7752   // Toggle bit the MSB of the shift.
7753   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7754   if (CombinedShAmt == 0)
7755     return Src;
7756 
7757   SDValue Res = DAG.getNode(
7758       RISCVISD::GREV, DL, VT, Src,
7759       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7760   if (!IsWInstruction)
7761     return Res;
7762 
7763   // Sign extend the result to match the behavior of the rotate. This will be
7764   // selected to GREVIW in isel.
7765   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7766                      DAG.getValueType(MVT::i32));
7767 }
7768 
7769 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7770 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7771 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7772 // not undo itself, but they are redundant.
7773 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7774   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7775   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7776   SDValue Src = N->getOperand(0);
7777 
7778   if (Src.getOpcode() != N->getOpcode())
7779     return SDValue();
7780 
7781   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7782       !isa<ConstantSDNode>(Src.getOperand(1)))
7783     return SDValue();
7784 
7785   unsigned ShAmt1 = N->getConstantOperandVal(1);
7786   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7787   Src = Src.getOperand(0);
7788 
7789   unsigned CombinedShAmt;
7790   if (IsGORC)
7791     CombinedShAmt = ShAmt1 | ShAmt2;
7792   else
7793     CombinedShAmt = ShAmt1 ^ ShAmt2;
7794 
7795   if (CombinedShAmt == 0)
7796     return Src;
7797 
7798   SDLoc DL(N);
7799   return DAG.getNode(
7800       N->getOpcode(), DL, N->getValueType(0), Src,
7801       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7802 }
7803 
7804 // Combine a constant select operand into its use:
7805 //
7806 // (and (select cond, -1, c), x)
7807 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7808 // (or  (select cond, 0, c), x)
7809 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7810 // (xor (select cond, 0, c), x)
7811 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7812 // (add (select cond, 0, c), x)
7813 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7814 // (sub x, (select cond, 0, c))
7815 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7816 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7817                                    SelectionDAG &DAG, bool AllOnes) {
7818   EVT VT = N->getValueType(0);
7819 
7820   // Skip vectors.
7821   if (VT.isVector())
7822     return SDValue();
7823 
7824   if ((Slct.getOpcode() != ISD::SELECT &&
7825        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7826       !Slct.hasOneUse())
7827     return SDValue();
7828 
7829   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7830     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7831   };
7832 
7833   bool SwapSelectOps;
7834   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7835   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7836   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7837   SDValue NonConstantVal;
7838   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7839     SwapSelectOps = false;
7840     NonConstantVal = FalseVal;
7841   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7842     SwapSelectOps = true;
7843     NonConstantVal = TrueVal;
7844   } else
7845     return SDValue();
7846 
7847   // Slct is now know to be the desired identity constant when CC is true.
7848   TrueVal = OtherOp;
7849   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7850   // Unless SwapSelectOps says the condition should be false.
7851   if (SwapSelectOps)
7852     std::swap(TrueVal, FalseVal);
7853 
7854   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7855     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7856                        {Slct.getOperand(0), Slct.getOperand(1),
7857                         Slct.getOperand(2), TrueVal, FalseVal});
7858 
7859   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7860                      {Slct.getOperand(0), TrueVal, FalseVal});
7861 }
7862 
7863 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7864 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7865                                               bool AllOnes) {
7866   SDValue N0 = N->getOperand(0);
7867   SDValue N1 = N->getOperand(1);
7868   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7869     return Result;
7870   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7871     return Result;
7872   return SDValue();
7873 }
7874 
7875 // Transform (add (mul x, c0), c1) ->
7876 //           (add (mul (add x, c1/c0), c0), c1%c0).
7877 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7878 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7879 // to an infinite loop in DAGCombine if transformed.
7880 // Or transform (add (mul x, c0), c1) ->
7881 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7882 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7883 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7884 // lead to an infinite loop in DAGCombine if transformed.
7885 // Or transform (add (mul x, c0), c1) ->
7886 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7887 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7888 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7889 // lead to an infinite loop in DAGCombine if transformed.
7890 // Or transform (add (mul x, c0), c1) ->
7891 //              (mul (add x, c1/c0), c0).
7892 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7893 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7894                                      const RISCVSubtarget &Subtarget) {
7895   // Skip for vector types and larger types.
7896   EVT VT = N->getValueType(0);
7897   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7898     return SDValue();
7899   // The first operand node must be a MUL and has no other use.
7900   SDValue N0 = N->getOperand(0);
7901   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7902     return SDValue();
7903   // Check if c0 and c1 match above conditions.
7904   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7905   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7906   if (!N0C || !N1C)
7907     return SDValue();
7908   // If N0C has multiple uses it's possible one of the cases in
7909   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7910   // in an infinite loop.
7911   if (!N0C->hasOneUse())
7912     return SDValue();
7913   int64_t C0 = N0C->getSExtValue();
7914   int64_t C1 = N1C->getSExtValue();
7915   int64_t CA, CB;
7916   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7917     return SDValue();
7918   // Search for proper CA (non-zero) and CB that both are simm12.
7919   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7920       !isInt<12>(C0 * (C1 / C0))) {
7921     CA = C1 / C0;
7922     CB = C1 % C0;
7923   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7924              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7925     CA = C1 / C0 + 1;
7926     CB = C1 % C0 - C0;
7927   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7928              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7929     CA = C1 / C0 - 1;
7930     CB = C1 % C0 + C0;
7931   } else
7932     return SDValue();
7933   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7934   SDLoc DL(N);
7935   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7936                              DAG.getConstant(CA, DL, VT));
7937   SDValue New1 =
7938       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7939   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7940 }
7941 
7942 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7943                                  const RISCVSubtarget &Subtarget) {
7944   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7945     return V;
7946   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7947     return V;
7948   if (SDValue V = combineBinOpToReduce(N, DAG))
7949     return V;
7950   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7951   //      (select lhs, rhs, cc, x, (add x, y))
7952   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7953 }
7954 
7955 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7956   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7957   //      (select lhs, rhs, cc, x, (sub x, y))
7958   SDValue N0 = N->getOperand(0);
7959   SDValue N1 = N->getOperand(1);
7960   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7961 }
7962 
7963 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
7964                                  const RISCVSubtarget &Subtarget) {
7965   SDValue N0 = N->getOperand(0);
7966   // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
7967   // extending X. This is safe since we only need the LSB after the shift and
7968   // shift amounts larger than 31 would produce poison. If we wait until
7969   // type legalization, we'll create RISCVISD::SRLW and we can't recover it
7970   // to use a BEXT instruction.
7971   if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
7972       N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
7973       N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
7974       N0.hasOneUse()) {
7975     SDLoc DL(N);
7976     SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
7977     SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
7978     SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
7979     SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
7980                               DAG.getConstant(1, DL, MVT::i64));
7981     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
7982   }
7983 
7984   if (SDValue V = combineBinOpToReduce(N, DAG))
7985     return V;
7986 
7987   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7988   //      (select lhs, rhs, cc, x, (and x, y))
7989   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7990 }
7991 
7992 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7993                                 const RISCVSubtarget &Subtarget) {
7994   if (Subtarget.hasStdExtZbp()) {
7995     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7996       return GREV;
7997     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7998       return GORC;
7999     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8000       return SHFL;
8001   }
8002 
8003   if (SDValue V = combineBinOpToReduce(N, DAG))
8004     return V;
8005   // fold (or (select cond, 0, y), x) ->
8006   //      (select cond, x, (or x, y))
8007   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8008 }
8009 
8010 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8011   SDValue N0 = N->getOperand(0);
8012   SDValue N1 = N->getOperand(1);
8013 
8014   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8015   // NOTE: Assumes ROL being legal means ROLW is legal.
8016   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8017   if (N0.getOpcode() == RISCVISD::SLLW &&
8018       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8019       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8020     SDLoc DL(N);
8021     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8022                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8023   }
8024 
8025   if (SDValue V = combineBinOpToReduce(N, DAG))
8026     return V;
8027   // fold (xor (select cond, 0, y), x) ->
8028   //      (select cond, x, (xor x, y))
8029   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8030 }
8031 
8032 static SDValue
8033 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8034                                 const RISCVSubtarget &Subtarget) {
8035   SDValue Src = N->getOperand(0);
8036   EVT VT = N->getValueType(0);
8037 
8038   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8039   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8040       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8041     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8042                        Src.getOperand(0));
8043 
8044   // Fold (i64 (sext_inreg (abs X), i32)) ->
8045   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8046   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8047   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8048   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8049   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8050   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8051   // may get combined into an earlier operation so we need to use
8052   // ComputeNumSignBits.
8053   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8054   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8055   // we can't assume that X has 33 sign bits. We must check.
8056   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8057       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8058       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8059       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8060     SDLoc DL(N);
8061     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8062     SDValue Neg =
8063         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8064     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8065                       DAG.getValueType(MVT::i32));
8066     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8067   }
8068 
8069   return SDValue();
8070 }
8071 
8072 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8073 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8074 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8075                                              bool Commute = false) {
8076   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8077           N->getOpcode() == RISCVISD::SUB_VL) &&
8078          "Unexpected opcode");
8079   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8080   SDValue Op0 = N->getOperand(0);
8081   SDValue Op1 = N->getOperand(1);
8082   if (Commute)
8083     std::swap(Op0, Op1);
8084 
8085   MVT VT = N->getSimpleValueType(0);
8086 
8087   // Determine the narrow size for a widening add/sub.
8088   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8089   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8090                                   VT.getVectorElementCount());
8091 
8092   SDValue Mask = N->getOperand(2);
8093   SDValue VL = N->getOperand(3);
8094 
8095   SDLoc DL(N);
8096 
8097   // If the RHS is a sext or zext, we can form a widening op.
8098   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8099        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8100       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8101     unsigned ExtOpc = Op1.getOpcode();
8102     Op1 = Op1.getOperand(0);
8103     // Re-introduce narrower extends if needed.
8104     if (Op1.getValueType() != NarrowVT)
8105       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8106 
8107     unsigned WOpc;
8108     if (ExtOpc == RISCVISD::VSEXT_VL)
8109       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8110     else
8111       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8112 
8113     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8114   }
8115 
8116   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8117   // sext/zext?
8118 
8119   return SDValue();
8120 }
8121 
8122 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8123 // vwsub(u).vv/vx.
8124 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8125   SDValue Op0 = N->getOperand(0);
8126   SDValue Op1 = N->getOperand(1);
8127   SDValue Mask = N->getOperand(2);
8128   SDValue VL = N->getOperand(3);
8129 
8130   MVT VT = N->getSimpleValueType(0);
8131   MVT NarrowVT = Op1.getSimpleValueType();
8132   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8133 
8134   unsigned VOpc;
8135   switch (N->getOpcode()) {
8136   default: llvm_unreachable("Unexpected opcode");
8137   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8138   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8139   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8140   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8141   }
8142 
8143   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8144                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8145 
8146   SDLoc DL(N);
8147 
8148   // If the LHS is a sext or zext, we can narrow this op to the same size as
8149   // the RHS.
8150   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8151        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8152       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8153     unsigned ExtOpc = Op0.getOpcode();
8154     Op0 = Op0.getOperand(0);
8155     // Re-introduce narrower extends if needed.
8156     if (Op0.getValueType() != NarrowVT)
8157       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8158     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8159   }
8160 
8161   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8162                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8163 
8164   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8165   // to commute and use a vwadd(u).vx instead.
8166   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8167       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8168     Op0 = Op0.getOperand(1);
8169 
8170     // See if have enough sign bits or zero bits in the scalar to use a
8171     // widening add/sub by splatting to smaller element size.
8172     unsigned EltBits = VT.getScalarSizeInBits();
8173     unsigned ScalarBits = Op0.getValueSizeInBits();
8174     // Make sure we're getting all element bits from the scalar register.
8175     // FIXME: Support implicit sign extension of vmv.v.x?
8176     if (ScalarBits < EltBits)
8177       return SDValue();
8178 
8179     if (IsSigned) {
8180       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8181         return SDValue();
8182     } else {
8183       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8184       if (!DAG.MaskedValueIsZero(Op0, Mask))
8185         return SDValue();
8186     }
8187 
8188     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8189                       DAG.getUNDEF(NarrowVT), Op0, VL);
8190     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8191   }
8192 
8193   return SDValue();
8194 }
8195 
8196 // Try to form VWMUL, VWMULU or VWMULSU.
8197 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8198 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8199                                        bool Commute) {
8200   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8201   SDValue Op0 = N->getOperand(0);
8202   SDValue Op1 = N->getOperand(1);
8203   if (Commute)
8204     std::swap(Op0, Op1);
8205 
8206   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8207   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8208   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8209   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8210     return SDValue();
8211 
8212   SDValue Mask = N->getOperand(2);
8213   SDValue VL = N->getOperand(3);
8214 
8215   // Make sure the mask and VL match.
8216   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8217     return SDValue();
8218 
8219   MVT VT = N->getSimpleValueType(0);
8220 
8221   // Determine the narrow size for a widening multiply.
8222   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8223   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8224                                   VT.getVectorElementCount());
8225 
8226   SDLoc DL(N);
8227 
8228   // See if the other operand is the same opcode.
8229   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8230     if (!Op1.hasOneUse())
8231       return SDValue();
8232 
8233     // Make sure the mask and VL match.
8234     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8235       return SDValue();
8236 
8237     Op1 = Op1.getOperand(0);
8238   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8239     // The operand is a splat of a scalar.
8240 
8241     // The pasthru must be undef for tail agnostic
8242     if (!Op1.getOperand(0).isUndef())
8243       return SDValue();
8244     // The VL must be the same.
8245     if (Op1.getOperand(2) != VL)
8246       return SDValue();
8247 
8248     // Get the scalar value.
8249     Op1 = Op1.getOperand(1);
8250 
8251     // See if have enough sign bits or zero bits in the scalar to use a
8252     // widening multiply by splatting to smaller element size.
8253     unsigned EltBits = VT.getScalarSizeInBits();
8254     unsigned ScalarBits = Op1.getValueSizeInBits();
8255     // Make sure we're getting all element bits from the scalar register.
8256     // FIXME: Support implicit sign extension of vmv.v.x?
8257     if (ScalarBits < EltBits)
8258       return SDValue();
8259 
8260     // If the LHS is a sign extend, try to use vwmul.
8261     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8262       // Can use vwmul.
8263     } else {
8264       // Otherwise try to use vwmulu or vwmulsu.
8265       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8266       if (DAG.MaskedValueIsZero(Op1, Mask))
8267         IsVWMULSU = IsSignExt;
8268       else
8269         return SDValue();
8270     }
8271 
8272     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8273                       DAG.getUNDEF(NarrowVT), Op1, VL);
8274   } else
8275     return SDValue();
8276 
8277   Op0 = Op0.getOperand(0);
8278 
8279   // Re-introduce narrower extends if needed.
8280   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8281   if (Op0.getValueType() != NarrowVT)
8282     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8283   // vwmulsu requires second operand to be zero extended.
8284   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8285   if (Op1.getValueType() != NarrowVT)
8286     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8287 
8288   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8289   if (!IsVWMULSU)
8290     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8291   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8292 }
8293 
8294 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8295   switch (Op.getOpcode()) {
8296   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8297   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8298   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8299   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8300   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8301   }
8302 
8303   return RISCVFPRndMode::Invalid;
8304 }
8305 
8306 // Fold
8307 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8308 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8309 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8310 //   (fp_to_int (fceil X))      -> fcvt X, rup
8311 //   (fp_to_int (fround X))     -> fcvt X, rmm
8312 static SDValue performFP_TO_INTCombine(SDNode *N,
8313                                        TargetLowering::DAGCombinerInfo &DCI,
8314                                        const RISCVSubtarget &Subtarget) {
8315   SelectionDAG &DAG = DCI.DAG;
8316   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8317   MVT XLenVT = Subtarget.getXLenVT();
8318 
8319   // Only handle XLen or i32 types. Other types narrower than XLen will
8320   // eventually be legalized to XLenVT.
8321   EVT VT = N->getValueType(0);
8322   if (VT != MVT::i32 && VT != XLenVT)
8323     return SDValue();
8324 
8325   SDValue Src = N->getOperand(0);
8326 
8327   // Ensure the FP type is also legal.
8328   if (!TLI.isTypeLegal(Src.getValueType()))
8329     return SDValue();
8330 
8331   // Don't do this for f16 with Zfhmin and not Zfh.
8332   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8333     return SDValue();
8334 
8335   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8336   if (FRM == RISCVFPRndMode::Invalid)
8337     return SDValue();
8338 
8339   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8340 
8341   unsigned Opc;
8342   if (VT == XLenVT)
8343     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8344   else
8345     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8346 
8347   SDLoc DL(N);
8348   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8349                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8350   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8351 }
8352 
8353 // Fold
8354 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8355 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8356 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8357 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8358 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8359 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8360                                        TargetLowering::DAGCombinerInfo &DCI,
8361                                        const RISCVSubtarget &Subtarget) {
8362   SelectionDAG &DAG = DCI.DAG;
8363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8364   MVT XLenVT = Subtarget.getXLenVT();
8365 
8366   // Only handle XLen types. Other types narrower than XLen will eventually be
8367   // legalized to XLenVT.
8368   EVT DstVT = N->getValueType(0);
8369   if (DstVT != XLenVT)
8370     return SDValue();
8371 
8372   SDValue Src = N->getOperand(0);
8373 
8374   // Ensure the FP type is also legal.
8375   if (!TLI.isTypeLegal(Src.getValueType()))
8376     return SDValue();
8377 
8378   // Don't do this for f16 with Zfhmin and not Zfh.
8379   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8380     return SDValue();
8381 
8382   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8383 
8384   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8385   if (FRM == RISCVFPRndMode::Invalid)
8386     return SDValue();
8387 
8388   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8389 
8390   unsigned Opc;
8391   if (SatVT == DstVT)
8392     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8393   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8394     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8395   else
8396     return SDValue();
8397   // FIXME: Support other SatVTs by clamping before or after the conversion.
8398 
8399   Src = Src.getOperand(0);
8400 
8401   SDLoc DL(N);
8402   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8403                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8404 
8405   // RISCV FP-to-int conversions saturate to the destination register size, but
8406   // don't produce 0 for nan.
8407   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8408   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8409 }
8410 
8411 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8412 // smaller than XLenVT.
8413 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8414                                         const RISCVSubtarget &Subtarget) {
8415   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8416 
8417   SDValue Src = N->getOperand(0);
8418   if (Src.getOpcode() != ISD::BSWAP)
8419     return SDValue();
8420 
8421   EVT VT = N->getValueType(0);
8422   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8423       !isPowerOf2_32(VT.getSizeInBits()))
8424     return SDValue();
8425 
8426   SDLoc DL(N);
8427   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8428                      DAG.getConstant(7, DL, VT));
8429 }
8430 
8431 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8432                                                DAGCombinerInfo &DCI) const {
8433   SelectionDAG &DAG = DCI.DAG;
8434 
8435   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8436   // bits are demanded. N will be added to the Worklist if it was not deleted.
8437   // Caller should return SDValue(N, 0) if this returns true.
8438   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8439     SDValue Op = N->getOperand(OpNo);
8440     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8441     if (!SimplifyDemandedBits(Op, Mask, DCI))
8442       return false;
8443 
8444     if (N->getOpcode() != ISD::DELETED_NODE)
8445       DCI.AddToWorklist(N);
8446     return true;
8447   };
8448 
8449   switch (N->getOpcode()) {
8450   default:
8451     break;
8452   case RISCVISD::SplitF64: {
8453     SDValue Op0 = N->getOperand(0);
8454     // If the input to SplitF64 is just BuildPairF64 then the operation is
8455     // redundant. Instead, use BuildPairF64's operands directly.
8456     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8457       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8458 
8459     if (Op0->isUndef()) {
8460       SDValue Lo = DAG.getUNDEF(MVT::i32);
8461       SDValue Hi = DAG.getUNDEF(MVT::i32);
8462       return DCI.CombineTo(N, Lo, Hi);
8463     }
8464 
8465     SDLoc DL(N);
8466 
8467     // It's cheaper to materialise two 32-bit integers than to load a double
8468     // from the constant pool and transfer it to integer registers through the
8469     // stack.
8470     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8471       APInt V = C->getValueAPF().bitcastToAPInt();
8472       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8473       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8474       return DCI.CombineTo(N, Lo, Hi);
8475     }
8476 
8477     // This is a target-specific version of a DAGCombine performed in
8478     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8479     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8480     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8481     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8482         !Op0.getNode()->hasOneUse())
8483       break;
8484     SDValue NewSplitF64 =
8485         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8486                     Op0.getOperand(0));
8487     SDValue Lo = NewSplitF64.getValue(0);
8488     SDValue Hi = NewSplitF64.getValue(1);
8489     APInt SignBit = APInt::getSignMask(32);
8490     if (Op0.getOpcode() == ISD::FNEG) {
8491       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8492                                   DAG.getConstant(SignBit, DL, MVT::i32));
8493       return DCI.CombineTo(N, Lo, NewHi);
8494     }
8495     assert(Op0.getOpcode() == ISD::FABS);
8496     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8497                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8498     return DCI.CombineTo(N, Lo, NewHi);
8499   }
8500   case RISCVISD::SLLW:
8501   case RISCVISD::SRAW:
8502   case RISCVISD::SRLW: {
8503     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8504     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8505         SimplifyDemandedLowBitsHelper(1, 5))
8506       return SDValue(N, 0);
8507 
8508     break;
8509   }
8510   case ISD::ROTR:
8511   case ISD::ROTL:
8512   case RISCVISD::RORW:
8513   case RISCVISD::ROLW: {
8514     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8515       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8516       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8517           SimplifyDemandedLowBitsHelper(1, 5))
8518         return SDValue(N, 0);
8519     }
8520 
8521     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8522   }
8523   case RISCVISD::CLZW:
8524   case RISCVISD::CTZW: {
8525     // Only the lower 32 bits of the first operand are read
8526     if (SimplifyDemandedLowBitsHelper(0, 32))
8527       return SDValue(N, 0);
8528     break;
8529   }
8530   case RISCVISD::GREV:
8531   case RISCVISD::GORC: {
8532     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8533     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8534     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8535     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8536       return SDValue(N, 0);
8537 
8538     return combineGREVI_GORCI(N, DAG);
8539   }
8540   case RISCVISD::GREVW:
8541   case RISCVISD::GORCW: {
8542     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8543     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8544         SimplifyDemandedLowBitsHelper(1, 5))
8545       return SDValue(N, 0);
8546 
8547     break;
8548   }
8549   case RISCVISD::SHFL:
8550   case RISCVISD::UNSHFL: {
8551     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8552     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8553     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8554     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8555       return SDValue(N, 0);
8556 
8557     break;
8558   }
8559   case RISCVISD::SHFLW:
8560   case RISCVISD::UNSHFLW: {
8561     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8562     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8563         SimplifyDemandedLowBitsHelper(1, 4))
8564       return SDValue(N, 0);
8565 
8566     break;
8567   }
8568   case RISCVISD::BCOMPRESSW:
8569   case RISCVISD::BDECOMPRESSW: {
8570     // Only the lower 32 bits of LHS and RHS are read.
8571     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8572         SimplifyDemandedLowBitsHelper(1, 32))
8573       return SDValue(N, 0);
8574 
8575     break;
8576   }
8577   case RISCVISD::FSR:
8578   case RISCVISD::FSL:
8579   case RISCVISD::FSRW:
8580   case RISCVISD::FSLW: {
8581     bool IsWInstruction =
8582         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8583     unsigned BitWidth =
8584         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8585     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8586     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8587     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8588       return SDValue(N, 0);
8589 
8590     break;
8591   }
8592   case RISCVISD::FMV_X_ANYEXTH:
8593   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8594     SDLoc DL(N);
8595     SDValue Op0 = N->getOperand(0);
8596     MVT VT = N->getSimpleValueType(0);
8597     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8598     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8599     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8600     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8601          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8602         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8603          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8604       assert(Op0.getOperand(0).getValueType() == VT &&
8605              "Unexpected value type!");
8606       return Op0.getOperand(0);
8607     }
8608 
8609     // This is a target-specific version of a DAGCombine performed in
8610     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8611     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8612     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8613     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8614         !Op0.getNode()->hasOneUse())
8615       break;
8616     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8617     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8618     APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
8619     if (Op0.getOpcode() == ISD::FNEG)
8620       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8621                          DAG.getConstant(SignBit, DL, VT));
8622 
8623     assert(Op0.getOpcode() == ISD::FABS);
8624     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8625                        DAG.getConstant(~SignBit, DL, VT));
8626   }
8627   case ISD::ADD:
8628     return performADDCombine(N, DAG, Subtarget);
8629   case ISD::SUB:
8630     return performSUBCombine(N, DAG);
8631   case ISD::AND:
8632     return performANDCombine(N, DAG, Subtarget);
8633   case ISD::OR:
8634     return performORCombine(N, DAG, Subtarget);
8635   case ISD::XOR:
8636     return performXORCombine(N, DAG);
8637   case ISD::FADD:
8638   case ISD::UMAX:
8639   case ISD::UMIN:
8640   case ISD::SMAX:
8641   case ISD::SMIN:
8642   case ISD::FMAXNUM:
8643   case ISD::FMINNUM:
8644     return combineBinOpToReduce(N, DAG);
8645   case ISD::SIGN_EXTEND_INREG:
8646     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8647   case ISD::ZERO_EXTEND:
8648     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8649     // type legalization. This is safe because fp_to_uint produces poison if
8650     // it overflows.
8651     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8652       SDValue Src = N->getOperand(0);
8653       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8654           isTypeLegal(Src.getOperand(0).getValueType()))
8655         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8656                            Src.getOperand(0));
8657       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8658           isTypeLegal(Src.getOperand(1).getValueType())) {
8659         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8660         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8661                                   Src.getOperand(0), Src.getOperand(1));
8662         DCI.CombineTo(N, Res);
8663         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8664         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8665         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8666       }
8667     }
8668     return SDValue();
8669   case RISCVISD::SELECT_CC: {
8670     // Transform
8671     SDValue LHS = N->getOperand(0);
8672     SDValue RHS = N->getOperand(1);
8673     SDValue TrueV = N->getOperand(3);
8674     SDValue FalseV = N->getOperand(4);
8675 
8676     // If the True and False values are the same, we don't need a select_cc.
8677     if (TrueV == FalseV)
8678       return TrueV;
8679 
8680     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8681     if (!ISD::isIntEqualitySetCC(CCVal))
8682       break;
8683 
8684     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8685     //      (select_cc X, Y, lt, trueV, falseV)
8686     // Sometimes the setcc is introduced after select_cc has been formed.
8687     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8688         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8689       // If we're looking for eq 0 instead of ne 0, we need to invert the
8690       // condition.
8691       bool Invert = CCVal == ISD::SETEQ;
8692       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8693       if (Invert)
8694         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8695 
8696       SDLoc DL(N);
8697       RHS = LHS.getOperand(1);
8698       LHS = LHS.getOperand(0);
8699       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8700 
8701       SDValue TargetCC = DAG.getCondCode(CCVal);
8702       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8703                          {LHS, RHS, TargetCC, TrueV, FalseV});
8704     }
8705 
8706     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8707     //      (select_cc X, Y, eq/ne, trueV, falseV)
8708     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8709       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8710                          {LHS.getOperand(0), LHS.getOperand(1),
8711                           N->getOperand(2), TrueV, FalseV});
8712     // (select_cc X, 1, setne, trueV, falseV) ->
8713     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8714     // This can occur when legalizing some floating point comparisons.
8715     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8716     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8717       SDLoc DL(N);
8718       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8719       SDValue TargetCC = DAG.getCondCode(CCVal);
8720       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8721       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8722                          {LHS, RHS, TargetCC, TrueV, FalseV});
8723     }
8724 
8725     break;
8726   }
8727   case RISCVISD::BR_CC: {
8728     SDValue LHS = N->getOperand(1);
8729     SDValue RHS = N->getOperand(2);
8730     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8731     if (!ISD::isIntEqualitySetCC(CCVal))
8732       break;
8733 
8734     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8735     //      (br_cc X, Y, lt, dest)
8736     // Sometimes the setcc is introduced after br_cc has been formed.
8737     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8738         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8739       // If we're looking for eq 0 instead of ne 0, we need to invert the
8740       // condition.
8741       bool Invert = CCVal == ISD::SETEQ;
8742       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8743       if (Invert)
8744         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8745 
8746       SDLoc DL(N);
8747       RHS = LHS.getOperand(1);
8748       LHS = LHS.getOperand(0);
8749       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8750 
8751       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8752                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8753                          N->getOperand(4));
8754     }
8755 
8756     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8757     //      (br_cc X, Y, eq/ne, trueV, falseV)
8758     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8759       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8760                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8761                          N->getOperand(3), N->getOperand(4));
8762 
8763     // (br_cc X, 1, setne, br_cc) ->
8764     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8765     // This can occur when legalizing some floating point comparisons.
8766     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8767     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8768       SDLoc DL(N);
8769       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8770       SDValue TargetCC = DAG.getCondCode(CCVal);
8771       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8772       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8773                          N->getOperand(0), LHS, RHS, TargetCC,
8774                          N->getOperand(4));
8775     }
8776     break;
8777   }
8778   case ISD::BITREVERSE:
8779     return performBITREVERSECombine(N, DAG, Subtarget);
8780   case ISD::FP_TO_SINT:
8781   case ISD::FP_TO_UINT:
8782     return performFP_TO_INTCombine(N, DCI, Subtarget);
8783   case ISD::FP_TO_SINT_SAT:
8784   case ISD::FP_TO_UINT_SAT:
8785     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8786   case ISD::FCOPYSIGN: {
8787     EVT VT = N->getValueType(0);
8788     if (!VT.isVector())
8789       break;
8790     // There is a form of VFSGNJ which injects the negated sign of its second
8791     // operand. Try and bubble any FNEG up after the extend/round to produce
8792     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8793     // TRUNC=1.
8794     SDValue In2 = N->getOperand(1);
8795     // Avoid cases where the extend/round has multiple uses, as duplicating
8796     // those is typically more expensive than removing a fneg.
8797     if (!In2.hasOneUse())
8798       break;
8799     if (In2.getOpcode() != ISD::FP_EXTEND &&
8800         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8801       break;
8802     In2 = In2.getOperand(0);
8803     if (In2.getOpcode() != ISD::FNEG)
8804       break;
8805     SDLoc DL(N);
8806     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8807     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8808                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8809   }
8810   case ISD::MGATHER:
8811   case ISD::MSCATTER:
8812   case ISD::VP_GATHER:
8813   case ISD::VP_SCATTER: {
8814     if (!DCI.isBeforeLegalize())
8815       break;
8816     SDValue Index, ScaleOp;
8817     bool IsIndexScaled = false;
8818     bool IsIndexSigned = false;
8819     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8820       Index = VPGSN->getIndex();
8821       ScaleOp = VPGSN->getScale();
8822       IsIndexScaled = VPGSN->isIndexScaled();
8823       IsIndexSigned = VPGSN->isIndexSigned();
8824     } else {
8825       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8826       Index = MGSN->getIndex();
8827       ScaleOp = MGSN->getScale();
8828       IsIndexScaled = MGSN->isIndexScaled();
8829       IsIndexSigned = MGSN->isIndexSigned();
8830     }
8831     EVT IndexVT = Index.getValueType();
8832     MVT XLenVT = Subtarget.getXLenVT();
8833     // RISCV indexed loads only support the "unsigned unscaled" addressing
8834     // mode, so anything else must be manually legalized.
8835     bool NeedsIdxLegalization =
8836         IsIndexScaled ||
8837         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8838     if (!NeedsIdxLegalization)
8839       break;
8840 
8841     SDLoc DL(N);
8842 
8843     // Any index legalization should first promote to XLenVT, so we don't lose
8844     // bits when scaling. This may create an illegal index type so we let
8845     // LLVM's legalization take care of the splitting.
8846     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8847     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8848       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8849       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8850                           DL, IndexVT, Index);
8851     }
8852 
8853     if (IsIndexScaled) {
8854       // Manually scale the indices.
8855       // TODO: Sanitize the scale operand here?
8856       // TODO: For VP nodes, should we use VP_SHL here?
8857       unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8858       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8859       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8860       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8861       ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
8862     }
8863 
8864     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
8865     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8866       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8867                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8868                               ScaleOp, VPGN->getMask(),
8869                               VPGN->getVectorLength()},
8870                              VPGN->getMemOperand(), NewIndexTy);
8871     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8872       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8873                               {VPSN->getChain(), VPSN->getValue(),
8874                                VPSN->getBasePtr(), Index, ScaleOp,
8875                                VPSN->getMask(), VPSN->getVectorLength()},
8876                               VPSN->getMemOperand(), NewIndexTy);
8877     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8878       return DAG.getMaskedGather(
8879           N->getVTList(), MGN->getMemoryVT(), DL,
8880           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8881            MGN->getBasePtr(), Index, ScaleOp},
8882           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8883     const auto *MSN = cast<MaskedScatterSDNode>(N);
8884     return DAG.getMaskedScatter(
8885         N->getVTList(), MSN->getMemoryVT(), DL,
8886         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8887          Index, ScaleOp},
8888         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8889   }
8890   case RISCVISD::SRA_VL:
8891   case RISCVISD::SRL_VL:
8892   case RISCVISD::SHL_VL: {
8893     SDValue ShAmt = N->getOperand(1);
8894     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8895       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8896       SDLoc DL(N);
8897       SDValue VL = N->getOperand(3);
8898       EVT VT = N->getValueType(0);
8899       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8900                           ShAmt.getOperand(1), VL);
8901       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8902                          N->getOperand(2), N->getOperand(3));
8903     }
8904     break;
8905   }
8906   case ISD::SRA:
8907   case ISD::SRL:
8908   case ISD::SHL: {
8909     SDValue ShAmt = N->getOperand(1);
8910     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8911       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8912       SDLoc DL(N);
8913       EVT VT = N->getValueType(0);
8914       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8915                           ShAmt.getOperand(1),
8916                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8917       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8918     }
8919     break;
8920   }
8921   case RISCVISD::ADD_VL:
8922     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8923       return V;
8924     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8925   case RISCVISD::SUB_VL:
8926     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8927   case RISCVISD::VWADD_W_VL:
8928   case RISCVISD::VWADDU_W_VL:
8929   case RISCVISD::VWSUB_W_VL:
8930   case RISCVISD::VWSUBU_W_VL:
8931     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8932   case RISCVISD::MUL_VL:
8933     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8934       return V;
8935     // Mul is commutative.
8936     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8937   case ISD::STORE: {
8938     auto *Store = cast<StoreSDNode>(N);
8939     SDValue Val = Store->getValue();
8940     // Combine store of vmv.x.s to vse with VL of 1.
8941     // FIXME: Support FP.
8942     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8943       SDValue Src = Val.getOperand(0);
8944       EVT VecVT = Src.getValueType();
8945       EVT MemVT = Store->getMemoryVT();
8946       // The memory VT and the element type must match.
8947       if (VecVT.getVectorElementType() == MemVT) {
8948         SDLoc DL(N);
8949         MVT MaskVT = getMaskTypeFor(VecVT);
8950         return DAG.getStoreVP(
8951             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8952             DAG.getConstant(1, DL, MaskVT),
8953             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8954             Store->getMemOperand(), Store->getAddressingMode(),
8955             Store->isTruncatingStore(), /*IsCompress*/ false);
8956       }
8957     }
8958 
8959     break;
8960   }
8961   case ISD::SPLAT_VECTOR: {
8962     EVT VT = N->getValueType(0);
8963     // Only perform this combine on legal MVT types.
8964     if (!isTypeLegal(VT))
8965       break;
8966     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8967                                          DAG, Subtarget))
8968       return Gather;
8969     break;
8970   }
8971   case RISCVISD::VMV_V_X_VL: {
8972     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8973     // scalar input.
8974     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8975     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8976     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8977       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8978         return SDValue(N, 0);
8979 
8980     break;
8981   }
8982   case ISD::INTRINSIC_WO_CHAIN: {
8983     unsigned IntNo = N->getConstantOperandVal(0);
8984     switch (IntNo) {
8985       // By default we do not combine any intrinsic.
8986     default:
8987       return SDValue();
8988     case Intrinsic::riscv_vcpop:
8989     case Intrinsic::riscv_vcpop_mask:
8990     case Intrinsic::riscv_vfirst:
8991     case Intrinsic::riscv_vfirst_mask: {
8992       SDValue VL = N->getOperand(2);
8993       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8994           IntNo == Intrinsic::riscv_vfirst_mask)
8995         VL = N->getOperand(3);
8996       if (!isNullConstant(VL))
8997         return SDValue();
8998       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8999       SDLoc DL(N);
9000       EVT VT = N->getValueType(0);
9001       if (IntNo == Intrinsic::riscv_vfirst ||
9002           IntNo == Intrinsic::riscv_vfirst_mask)
9003         return DAG.getConstant(-1, DL, VT);
9004       return DAG.getConstant(0, DL, VT);
9005     }
9006     }
9007   }
9008   }
9009 
9010   return SDValue();
9011 }
9012 
9013 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9014     const SDNode *N, CombineLevel Level) const {
9015   // The following folds are only desirable if `(OP _, c1 << c2)` can be
9016   // materialised in fewer instructions than `(OP _, c1)`:
9017   //
9018   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9019   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9020   SDValue N0 = N->getOperand(0);
9021   EVT Ty = N0.getValueType();
9022   if (Ty.isScalarInteger() &&
9023       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9024     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9025     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9026     if (C1 && C2) {
9027       const APInt &C1Int = C1->getAPIntValue();
9028       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9029 
9030       // We can materialise `c1 << c2` into an add immediate, so it's "free",
9031       // and the combine should happen, to potentially allow further combines
9032       // later.
9033       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9034           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9035         return true;
9036 
9037       // We can materialise `c1` in an add immediate, so it's "free", and the
9038       // combine should be prevented.
9039       if (C1Int.getMinSignedBits() <= 64 &&
9040           isLegalAddImmediate(C1Int.getSExtValue()))
9041         return false;
9042 
9043       // Neither constant will fit into an immediate, so find materialisation
9044       // costs.
9045       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9046                                               Subtarget.getFeatureBits(),
9047                                               /*CompressionCost*/true);
9048       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9049           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9050           /*CompressionCost*/true);
9051 
9052       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9053       // combine should be prevented.
9054       if (C1Cost < ShiftedC1Cost)
9055         return false;
9056     }
9057   }
9058   return true;
9059 }
9060 
9061 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9062     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9063     TargetLoweringOpt &TLO) const {
9064   // Delay this optimization as late as possible.
9065   if (!TLO.LegalOps)
9066     return false;
9067 
9068   EVT VT = Op.getValueType();
9069   if (VT.isVector())
9070     return false;
9071 
9072   // Only handle AND for now.
9073   if (Op.getOpcode() != ISD::AND)
9074     return false;
9075 
9076   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9077   if (!C)
9078     return false;
9079 
9080   const APInt &Mask = C->getAPIntValue();
9081 
9082   // Clear all non-demanded bits initially.
9083   APInt ShrunkMask = Mask & DemandedBits;
9084 
9085   // Try to make a smaller immediate by setting undemanded bits.
9086 
9087   APInt ExpandedMask = Mask | ~DemandedBits;
9088 
9089   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9090     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9091   };
9092   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9093     if (NewMask == Mask)
9094       return true;
9095     SDLoc DL(Op);
9096     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9097     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9098     return TLO.CombineTo(Op, NewOp);
9099   };
9100 
9101   // If the shrunk mask fits in sign extended 12 bits, let the target
9102   // independent code apply it.
9103   if (ShrunkMask.isSignedIntN(12))
9104     return false;
9105 
9106   // Preserve (and X, 0xffff) when zext.h is supported.
9107   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9108     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9109     if (IsLegalMask(NewMask))
9110       return UseMask(NewMask);
9111   }
9112 
9113   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9114   if (VT == MVT::i64) {
9115     APInt NewMask = APInt(64, 0xffffffff);
9116     if (IsLegalMask(NewMask))
9117       return UseMask(NewMask);
9118   }
9119 
9120   // For the remaining optimizations, we need to be able to make a negative
9121   // number through a combination of mask and undemanded bits.
9122   if (!ExpandedMask.isNegative())
9123     return false;
9124 
9125   // What is the fewest number of bits we need to represent the negative number.
9126   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9127 
9128   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9129   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9130   APInt NewMask = ShrunkMask;
9131   if (MinSignedBits <= 12)
9132     NewMask.setBitsFrom(11);
9133   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9134     NewMask.setBitsFrom(31);
9135   else
9136     return false;
9137 
9138   // Check that our new mask is a subset of the demanded mask.
9139   assert(IsLegalMask(NewMask));
9140   return UseMask(NewMask);
9141 }
9142 
9143 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9144   static const uint64_t GREVMasks[] = {
9145       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9146       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9147 
9148   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9149     unsigned Shift = 1 << Stage;
9150     if (ShAmt & Shift) {
9151       uint64_t Mask = GREVMasks[Stage];
9152       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9153       if (IsGORC)
9154         Res |= x;
9155       x = Res;
9156     }
9157   }
9158 
9159   return x;
9160 }
9161 
9162 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9163                                                         KnownBits &Known,
9164                                                         const APInt &DemandedElts,
9165                                                         const SelectionDAG &DAG,
9166                                                         unsigned Depth) const {
9167   unsigned BitWidth = Known.getBitWidth();
9168   unsigned Opc = Op.getOpcode();
9169   assert((Opc >= ISD::BUILTIN_OP_END ||
9170           Opc == ISD::INTRINSIC_WO_CHAIN ||
9171           Opc == ISD::INTRINSIC_W_CHAIN ||
9172           Opc == ISD::INTRINSIC_VOID) &&
9173          "Should use MaskedValueIsZero if you don't know whether Op"
9174          " is a target node!");
9175 
9176   Known.resetAll();
9177   switch (Opc) {
9178   default: break;
9179   case RISCVISD::SELECT_CC: {
9180     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9181     // If we don't know any bits, early out.
9182     if (Known.isUnknown())
9183       break;
9184     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9185 
9186     // Only known if known in both the LHS and RHS.
9187     Known = KnownBits::commonBits(Known, Known2);
9188     break;
9189   }
9190   case RISCVISD::REMUW: {
9191     KnownBits Known2;
9192     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9193     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9194     // We only care about the lower 32 bits.
9195     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9196     // Restore the original width by sign extending.
9197     Known = Known.sext(BitWidth);
9198     break;
9199   }
9200   case RISCVISD::DIVUW: {
9201     KnownBits Known2;
9202     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9203     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9204     // We only care about the lower 32 bits.
9205     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9206     // Restore the original width by sign extending.
9207     Known = Known.sext(BitWidth);
9208     break;
9209   }
9210   case RISCVISD::CTZW: {
9211     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9212     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9213     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9214     Known.Zero.setBitsFrom(LowBits);
9215     break;
9216   }
9217   case RISCVISD::CLZW: {
9218     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9219     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9220     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9221     Known.Zero.setBitsFrom(LowBits);
9222     break;
9223   }
9224   case RISCVISD::GREV:
9225   case RISCVISD::GORC: {
9226     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9227       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9228       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9229       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9230       // To compute zeros, we need to invert the value and invert it back after.
9231       Known.Zero =
9232           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9233       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9234     }
9235     break;
9236   }
9237   case RISCVISD::READ_VLENB: {
9238     // If we know the minimum VLen from Zvl extensions, we can use that to
9239     // determine the trailing zeros of VLENB.
9240     // FIXME: Limit to 128 bit vectors until we have more testing.
9241     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9242     if (MinVLenB > 0)
9243       Known.Zero.setLowBits(Log2_32(MinVLenB));
9244     // We assume VLENB is no more than 65536 / 8 bytes.
9245     Known.Zero.setBitsFrom(14);
9246     break;
9247   }
9248   case ISD::INTRINSIC_W_CHAIN:
9249   case ISD::INTRINSIC_WO_CHAIN: {
9250     unsigned IntNo =
9251         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9252     switch (IntNo) {
9253     default:
9254       // We can't do anything for most intrinsics.
9255       break;
9256     case Intrinsic::riscv_vsetvli:
9257     case Intrinsic::riscv_vsetvlimax:
9258     case Intrinsic::riscv_vsetvli_opt:
9259     case Intrinsic::riscv_vsetvlimax_opt:
9260       // Assume that VL output is positive and would fit in an int32_t.
9261       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9262       if (BitWidth >= 32)
9263         Known.Zero.setBitsFrom(31);
9264       break;
9265     }
9266     break;
9267   }
9268   }
9269 }
9270 
9271 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9272     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9273     unsigned Depth) const {
9274   switch (Op.getOpcode()) {
9275   default:
9276     break;
9277   case RISCVISD::SELECT_CC: {
9278     unsigned Tmp =
9279         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9280     if (Tmp == 1) return 1;  // Early out.
9281     unsigned Tmp2 =
9282         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9283     return std::min(Tmp, Tmp2);
9284   }
9285   case RISCVISD::SLLW:
9286   case RISCVISD::SRAW:
9287   case RISCVISD::SRLW:
9288   case RISCVISD::DIVW:
9289   case RISCVISD::DIVUW:
9290   case RISCVISD::REMUW:
9291   case RISCVISD::ROLW:
9292   case RISCVISD::RORW:
9293   case RISCVISD::GREVW:
9294   case RISCVISD::GORCW:
9295   case RISCVISD::FSLW:
9296   case RISCVISD::FSRW:
9297   case RISCVISD::SHFLW:
9298   case RISCVISD::UNSHFLW:
9299   case RISCVISD::BCOMPRESSW:
9300   case RISCVISD::BDECOMPRESSW:
9301   case RISCVISD::BFPW:
9302   case RISCVISD::FCVT_W_RV64:
9303   case RISCVISD::FCVT_WU_RV64:
9304   case RISCVISD::STRICT_FCVT_W_RV64:
9305   case RISCVISD::STRICT_FCVT_WU_RV64:
9306     // TODO: As the result is sign-extended, this is conservatively correct. A
9307     // more precise answer could be calculated for SRAW depending on known
9308     // bits in the shift amount.
9309     return 33;
9310   case RISCVISD::SHFL:
9311   case RISCVISD::UNSHFL: {
9312     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9313     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9314     // will stay within the upper 32 bits. If there were more than 32 sign bits
9315     // before there will be at least 33 sign bits after.
9316     if (Op.getValueType() == MVT::i64 &&
9317         isa<ConstantSDNode>(Op.getOperand(1)) &&
9318         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9319       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9320       if (Tmp > 32)
9321         return 33;
9322     }
9323     break;
9324   }
9325   case RISCVISD::VMV_X_S: {
9326     // The number of sign bits of the scalar result is computed by obtaining the
9327     // element type of the input vector operand, subtracting its width from the
9328     // XLEN, and then adding one (sign bit within the element type). If the
9329     // element type is wider than XLen, the least-significant XLEN bits are
9330     // taken.
9331     unsigned XLen = Subtarget.getXLen();
9332     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9333     if (EltBits <= XLen)
9334       return XLen - EltBits + 1;
9335     break;
9336   }
9337   }
9338 
9339   return 1;
9340 }
9341 
9342 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9343                                                   MachineBasicBlock *BB) {
9344   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9345 
9346   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9347   // Should the count have wrapped while it was being read, we need to try
9348   // again.
9349   // ...
9350   // read:
9351   // rdcycleh x3 # load high word of cycle
9352   // rdcycle  x2 # load low word of cycle
9353   // rdcycleh x4 # load high word of cycle
9354   // bne x3, x4, read # check if high word reads match, otherwise try again
9355   // ...
9356 
9357   MachineFunction &MF = *BB->getParent();
9358   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9359   MachineFunction::iterator It = ++BB->getIterator();
9360 
9361   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9362   MF.insert(It, LoopMBB);
9363 
9364   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9365   MF.insert(It, DoneMBB);
9366 
9367   // Transfer the remainder of BB and its successor edges to DoneMBB.
9368   DoneMBB->splice(DoneMBB->begin(), BB,
9369                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9370   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9371 
9372   BB->addSuccessor(LoopMBB);
9373 
9374   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9375   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9376   Register LoReg = MI.getOperand(0).getReg();
9377   Register HiReg = MI.getOperand(1).getReg();
9378   DebugLoc DL = MI.getDebugLoc();
9379 
9380   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9381   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9382       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9383       .addReg(RISCV::X0);
9384   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9385       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9386       .addReg(RISCV::X0);
9387   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9388       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9389       .addReg(RISCV::X0);
9390 
9391   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9392       .addReg(HiReg)
9393       .addReg(ReadAgainReg)
9394       .addMBB(LoopMBB);
9395 
9396   LoopMBB->addSuccessor(LoopMBB);
9397   LoopMBB->addSuccessor(DoneMBB);
9398 
9399   MI.eraseFromParent();
9400 
9401   return DoneMBB;
9402 }
9403 
9404 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9405                                              MachineBasicBlock *BB) {
9406   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9407 
9408   MachineFunction &MF = *BB->getParent();
9409   DebugLoc DL = MI.getDebugLoc();
9410   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9411   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9412   Register LoReg = MI.getOperand(0).getReg();
9413   Register HiReg = MI.getOperand(1).getReg();
9414   Register SrcReg = MI.getOperand(2).getReg();
9415   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9416   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9417 
9418   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9419                           RI);
9420   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9421   MachineMemOperand *MMOLo =
9422       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9423   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9424       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9425   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9426       .addFrameIndex(FI)
9427       .addImm(0)
9428       .addMemOperand(MMOLo);
9429   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9430       .addFrameIndex(FI)
9431       .addImm(4)
9432       .addMemOperand(MMOHi);
9433   MI.eraseFromParent(); // The pseudo instruction is gone now.
9434   return BB;
9435 }
9436 
9437 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9438                                                  MachineBasicBlock *BB) {
9439   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9440          "Unexpected instruction");
9441 
9442   MachineFunction &MF = *BB->getParent();
9443   DebugLoc DL = MI.getDebugLoc();
9444   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9445   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9446   Register DstReg = MI.getOperand(0).getReg();
9447   Register LoReg = MI.getOperand(1).getReg();
9448   Register HiReg = MI.getOperand(2).getReg();
9449   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9450   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9451 
9452   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9453   MachineMemOperand *MMOLo =
9454       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9455   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9456       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9457   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9458       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9459       .addFrameIndex(FI)
9460       .addImm(0)
9461       .addMemOperand(MMOLo);
9462   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9463       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9464       .addFrameIndex(FI)
9465       .addImm(4)
9466       .addMemOperand(MMOHi);
9467   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9468   MI.eraseFromParent(); // The pseudo instruction is gone now.
9469   return BB;
9470 }
9471 
9472 static bool isSelectPseudo(MachineInstr &MI) {
9473   switch (MI.getOpcode()) {
9474   default:
9475     return false;
9476   case RISCV::Select_GPR_Using_CC_GPR:
9477   case RISCV::Select_FPR16_Using_CC_GPR:
9478   case RISCV::Select_FPR32_Using_CC_GPR:
9479   case RISCV::Select_FPR64_Using_CC_GPR:
9480     return true;
9481   }
9482 }
9483 
9484 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9485                                         unsigned RelOpcode, unsigned EqOpcode,
9486                                         const RISCVSubtarget &Subtarget) {
9487   DebugLoc DL = MI.getDebugLoc();
9488   Register DstReg = MI.getOperand(0).getReg();
9489   Register Src1Reg = MI.getOperand(1).getReg();
9490   Register Src2Reg = MI.getOperand(2).getReg();
9491   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9492   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9493   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9494 
9495   // Save the current FFLAGS.
9496   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9497 
9498   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9499                  .addReg(Src1Reg)
9500                  .addReg(Src2Reg);
9501   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9502     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9503 
9504   // Restore the FFLAGS.
9505   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9506       .addReg(SavedFFlags, RegState::Kill);
9507 
9508   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9509   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9510                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9511                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9512   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9513     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9514 
9515   // Erase the pseudoinstruction.
9516   MI.eraseFromParent();
9517   return BB;
9518 }
9519 
9520 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9521                                            MachineBasicBlock *BB,
9522                                            const RISCVSubtarget &Subtarget) {
9523   // To "insert" Select_* instructions, we actually have to insert the triangle
9524   // control-flow pattern.  The incoming instructions know the destination vreg
9525   // to set, the condition code register to branch on, the true/false values to
9526   // select between, and the condcode to use to select the appropriate branch.
9527   //
9528   // We produce the following control flow:
9529   //     HeadMBB
9530   //     |  \
9531   //     |  IfFalseMBB
9532   //     | /
9533   //    TailMBB
9534   //
9535   // When we find a sequence of selects we attempt to optimize their emission
9536   // by sharing the control flow. Currently we only handle cases where we have
9537   // multiple selects with the exact same condition (same LHS, RHS and CC).
9538   // The selects may be interleaved with other instructions if the other
9539   // instructions meet some requirements we deem safe:
9540   // - They are debug instructions. Otherwise,
9541   // - They do not have side-effects, do not access memory and their inputs do
9542   //   not depend on the results of the select pseudo-instructions.
9543   // The TrueV/FalseV operands of the selects cannot depend on the result of
9544   // previous selects in the sequence.
9545   // These conditions could be further relaxed. See the X86 target for a
9546   // related approach and more information.
9547   Register LHS = MI.getOperand(1).getReg();
9548   Register RHS = MI.getOperand(2).getReg();
9549   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9550 
9551   SmallVector<MachineInstr *, 4> SelectDebugValues;
9552   SmallSet<Register, 4> SelectDests;
9553   SelectDests.insert(MI.getOperand(0).getReg());
9554 
9555   MachineInstr *LastSelectPseudo = &MI;
9556 
9557   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9558        SequenceMBBI != E; ++SequenceMBBI) {
9559     if (SequenceMBBI->isDebugInstr())
9560       continue;
9561     if (isSelectPseudo(*SequenceMBBI)) {
9562       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9563           SequenceMBBI->getOperand(2).getReg() != RHS ||
9564           SequenceMBBI->getOperand(3).getImm() != CC ||
9565           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9566           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9567         break;
9568       LastSelectPseudo = &*SequenceMBBI;
9569       SequenceMBBI->collectDebugValues(SelectDebugValues);
9570       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9571     } else {
9572       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9573           SequenceMBBI->mayLoadOrStore())
9574         break;
9575       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9576             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9577           }))
9578         break;
9579     }
9580   }
9581 
9582   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9583   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9584   DebugLoc DL = MI.getDebugLoc();
9585   MachineFunction::iterator I = ++BB->getIterator();
9586 
9587   MachineBasicBlock *HeadMBB = BB;
9588   MachineFunction *F = BB->getParent();
9589   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9590   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9591 
9592   F->insert(I, IfFalseMBB);
9593   F->insert(I, TailMBB);
9594 
9595   // Transfer debug instructions associated with the selects to TailMBB.
9596   for (MachineInstr *DebugInstr : SelectDebugValues) {
9597     TailMBB->push_back(DebugInstr->removeFromParent());
9598   }
9599 
9600   // Move all instructions after the sequence to TailMBB.
9601   TailMBB->splice(TailMBB->end(), HeadMBB,
9602                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9603   // Update machine-CFG edges by transferring all successors of the current
9604   // block to the new block which will contain the Phi nodes for the selects.
9605   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9606   // Set the successors for HeadMBB.
9607   HeadMBB->addSuccessor(IfFalseMBB);
9608   HeadMBB->addSuccessor(TailMBB);
9609 
9610   // Insert appropriate branch.
9611   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9612     .addReg(LHS)
9613     .addReg(RHS)
9614     .addMBB(TailMBB);
9615 
9616   // IfFalseMBB just falls through to TailMBB.
9617   IfFalseMBB->addSuccessor(TailMBB);
9618 
9619   // Create PHIs for all of the select pseudo-instructions.
9620   auto SelectMBBI = MI.getIterator();
9621   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9622   auto InsertionPoint = TailMBB->begin();
9623   while (SelectMBBI != SelectEnd) {
9624     auto Next = std::next(SelectMBBI);
9625     if (isSelectPseudo(*SelectMBBI)) {
9626       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9627       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9628               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9629           .addReg(SelectMBBI->getOperand(4).getReg())
9630           .addMBB(HeadMBB)
9631           .addReg(SelectMBBI->getOperand(5).getReg())
9632           .addMBB(IfFalseMBB);
9633       SelectMBBI->eraseFromParent();
9634     }
9635     SelectMBBI = Next;
9636   }
9637 
9638   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9639   return TailMBB;
9640 }
9641 
9642 MachineBasicBlock *
9643 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9644                                                  MachineBasicBlock *BB) const {
9645   switch (MI.getOpcode()) {
9646   default:
9647     llvm_unreachable("Unexpected instr type to insert");
9648   case RISCV::ReadCycleWide:
9649     assert(!Subtarget.is64Bit() &&
9650            "ReadCycleWrite is only to be used on riscv32");
9651     return emitReadCycleWidePseudo(MI, BB);
9652   case RISCV::Select_GPR_Using_CC_GPR:
9653   case RISCV::Select_FPR16_Using_CC_GPR:
9654   case RISCV::Select_FPR32_Using_CC_GPR:
9655   case RISCV::Select_FPR64_Using_CC_GPR:
9656     return emitSelectPseudo(MI, BB, Subtarget);
9657   case RISCV::BuildPairF64Pseudo:
9658     return emitBuildPairF64Pseudo(MI, BB);
9659   case RISCV::SplitF64Pseudo:
9660     return emitSplitF64Pseudo(MI, BB);
9661   case RISCV::PseudoQuietFLE_H:
9662     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9663   case RISCV::PseudoQuietFLT_H:
9664     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9665   case RISCV::PseudoQuietFLE_S:
9666     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9667   case RISCV::PseudoQuietFLT_S:
9668     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9669   case RISCV::PseudoQuietFLE_D:
9670     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9671   case RISCV::PseudoQuietFLT_D:
9672     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9673   }
9674 }
9675 
9676 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9677                                                         SDNode *Node) const {
9678   // Add FRM dependency to any instructions with dynamic rounding mode.
9679   unsigned Opc = MI.getOpcode();
9680   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9681   if (Idx < 0)
9682     return;
9683   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9684     return;
9685   // If the instruction already reads FRM, don't add another read.
9686   if (MI.readsRegister(RISCV::FRM))
9687     return;
9688   MI.addOperand(
9689       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9690 }
9691 
9692 // Calling Convention Implementation.
9693 // The expectations for frontend ABI lowering vary from target to target.
9694 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9695 // details, but this is a longer term goal. For now, we simply try to keep the
9696 // role of the frontend as simple and well-defined as possible. The rules can
9697 // be summarised as:
9698 // * Never split up large scalar arguments. We handle them here.
9699 // * If a hardfloat calling convention is being used, and the struct may be
9700 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9701 // available, then pass as two separate arguments. If either the GPRs or FPRs
9702 // are exhausted, then pass according to the rule below.
9703 // * If a struct could never be passed in registers or directly in a stack
9704 // slot (as it is larger than 2*XLEN and the floating point rules don't
9705 // apply), then pass it using a pointer with the byval attribute.
9706 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9707 // word-sized array or a 2*XLEN scalar (depending on alignment).
9708 // * The frontend can determine whether a struct is returned by reference or
9709 // not based on its size and fields. If it will be returned by reference, the
9710 // frontend must modify the prototype so a pointer with the sret annotation is
9711 // passed as the first argument. This is not necessary for large scalar
9712 // returns.
9713 // * Struct return values and varargs should be coerced to structs containing
9714 // register-size fields in the same situations they would be for fixed
9715 // arguments.
9716 
9717 static const MCPhysReg ArgGPRs[] = {
9718   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9719   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9720 };
9721 static const MCPhysReg ArgFPR16s[] = {
9722   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9723   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9724 };
9725 static const MCPhysReg ArgFPR32s[] = {
9726   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9727   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9728 };
9729 static const MCPhysReg ArgFPR64s[] = {
9730   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9731   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9732 };
9733 // This is an interim calling convention and it may be changed in the future.
9734 static const MCPhysReg ArgVRs[] = {
9735     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9736     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9737     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9738 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9739                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9740                                      RISCV::V20M2, RISCV::V22M2};
9741 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9742                                      RISCV::V20M4};
9743 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9744 
9745 // Pass a 2*XLEN argument that has been split into two XLEN values through
9746 // registers or the stack as necessary.
9747 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9748                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9749                                 MVT ValVT2, MVT LocVT2,
9750                                 ISD::ArgFlagsTy ArgFlags2) {
9751   unsigned XLenInBytes = XLen / 8;
9752   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9753     // At least one half can be passed via register.
9754     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9755                                      VA1.getLocVT(), CCValAssign::Full));
9756   } else {
9757     // Both halves must be passed on the stack, with proper alignment.
9758     Align StackAlign =
9759         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9760     State.addLoc(
9761         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9762                             State.AllocateStack(XLenInBytes, StackAlign),
9763                             VA1.getLocVT(), CCValAssign::Full));
9764     State.addLoc(CCValAssign::getMem(
9765         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9766         LocVT2, CCValAssign::Full));
9767     return false;
9768   }
9769 
9770   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9771     // The second half can also be passed via register.
9772     State.addLoc(
9773         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9774   } else {
9775     // The second half is passed via the stack, without additional alignment.
9776     State.addLoc(CCValAssign::getMem(
9777         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9778         LocVT2, CCValAssign::Full));
9779   }
9780 
9781   return false;
9782 }
9783 
9784 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9785                                Optional<unsigned> FirstMaskArgument,
9786                                CCState &State, const RISCVTargetLowering &TLI) {
9787   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9788   if (RC == &RISCV::VRRegClass) {
9789     // Assign the first mask argument to V0.
9790     // This is an interim calling convention and it may be changed in the
9791     // future.
9792     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9793       return State.AllocateReg(RISCV::V0);
9794     return State.AllocateReg(ArgVRs);
9795   }
9796   if (RC == &RISCV::VRM2RegClass)
9797     return State.AllocateReg(ArgVRM2s);
9798   if (RC == &RISCV::VRM4RegClass)
9799     return State.AllocateReg(ArgVRM4s);
9800   if (RC == &RISCV::VRM8RegClass)
9801     return State.AllocateReg(ArgVRM8s);
9802   llvm_unreachable("Unhandled register class for ValueType");
9803 }
9804 
9805 // Implements the RISC-V calling convention. Returns true upon failure.
9806 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9807                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9808                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9809                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9810                      Optional<unsigned> FirstMaskArgument) {
9811   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9812   assert(XLen == 32 || XLen == 64);
9813   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9814 
9815   // Any return value split in to more than two values can't be returned
9816   // directly. Vectors are returned via the available vector registers.
9817   if (!LocVT.isVector() && IsRet && ValNo > 1)
9818     return true;
9819 
9820   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9821   // variadic argument, or if no F16/F32 argument registers are available.
9822   bool UseGPRForF16_F32 = true;
9823   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9824   // variadic argument, or if no F64 argument registers are available.
9825   bool UseGPRForF64 = true;
9826 
9827   switch (ABI) {
9828   default:
9829     llvm_unreachable("Unexpected ABI");
9830   case RISCVABI::ABI_ILP32:
9831   case RISCVABI::ABI_LP64:
9832     break;
9833   case RISCVABI::ABI_ILP32F:
9834   case RISCVABI::ABI_LP64F:
9835     UseGPRForF16_F32 = !IsFixed;
9836     break;
9837   case RISCVABI::ABI_ILP32D:
9838   case RISCVABI::ABI_LP64D:
9839     UseGPRForF16_F32 = !IsFixed;
9840     UseGPRForF64 = !IsFixed;
9841     break;
9842   }
9843 
9844   // FPR16, FPR32, and FPR64 alias each other.
9845   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9846     UseGPRForF16_F32 = true;
9847     UseGPRForF64 = true;
9848   }
9849 
9850   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9851   // similar local variables rather than directly checking against the target
9852   // ABI.
9853 
9854   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9855     LocVT = XLenVT;
9856     LocInfo = CCValAssign::BCvt;
9857   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9858     LocVT = MVT::i64;
9859     LocInfo = CCValAssign::BCvt;
9860   }
9861 
9862   // If this is a variadic argument, the RISC-V calling convention requires
9863   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9864   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9865   // be used regardless of whether the original argument was split during
9866   // legalisation or not. The argument will not be passed by registers if the
9867   // original type is larger than 2*XLEN, so the register alignment rule does
9868   // not apply.
9869   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9870   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9871       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9872     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9873     // Skip 'odd' register if necessary.
9874     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9875       State.AllocateReg(ArgGPRs);
9876   }
9877 
9878   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9879   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9880       State.getPendingArgFlags();
9881 
9882   assert(PendingLocs.size() == PendingArgFlags.size() &&
9883          "PendingLocs and PendingArgFlags out of sync");
9884 
9885   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9886   // registers are exhausted.
9887   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9888     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9889            "Can't lower f64 if it is split");
9890     // Depending on available argument GPRS, f64 may be passed in a pair of
9891     // GPRs, split between a GPR and the stack, or passed completely on the
9892     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9893     // cases.
9894     Register Reg = State.AllocateReg(ArgGPRs);
9895     LocVT = MVT::i32;
9896     if (!Reg) {
9897       unsigned StackOffset = State.AllocateStack(8, Align(8));
9898       State.addLoc(
9899           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9900       return false;
9901     }
9902     if (!State.AllocateReg(ArgGPRs))
9903       State.AllocateStack(4, Align(4));
9904     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9905     return false;
9906   }
9907 
9908   // Fixed-length vectors are located in the corresponding scalable-vector
9909   // container types.
9910   if (ValVT.isFixedLengthVector())
9911     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9912 
9913   // Split arguments might be passed indirectly, so keep track of the pending
9914   // values. Split vectors are passed via a mix of registers and indirectly, so
9915   // treat them as we would any other argument.
9916   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9917     LocVT = XLenVT;
9918     LocInfo = CCValAssign::Indirect;
9919     PendingLocs.push_back(
9920         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9921     PendingArgFlags.push_back(ArgFlags);
9922     if (!ArgFlags.isSplitEnd()) {
9923       return false;
9924     }
9925   }
9926 
9927   // If the split argument only had two elements, it should be passed directly
9928   // in registers or on the stack.
9929   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9930       PendingLocs.size() <= 2) {
9931     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9932     // Apply the normal calling convention rules to the first half of the
9933     // split argument.
9934     CCValAssign VA = PendingLocs[0];
9935     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9936     PendingLocs.clear();
9937     PendingArgFlags.clear();
9938     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9939                                ArgFlags);
9940   }
9941 
9942   // Allocate to a register if possible, or else a stack slot.
9943   Register Reg;
9944   unsigned StoreSizeBytes = XLen / 8;
9945   Align StackAlign = Align(XLen / 8);
9946 
9947   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9948     Reg = State.AllocateReg(ArgFPR16s);
9949   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9950     Reg = State.AllocateReg(ArgFPR32s);
9951   else if (ValVT == MVT::f64 && !UseGPRForF64)
9952     Reg = State.AllocateReg(ArgFPR64s);
9953   else if (ValVT.isVector()) {
9954     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9955     if (!Reg) {
9956       // For return values, the vector must be passed fully via registers or
9957       // via the stack.
9958       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9959       // but we're using all of them.
9960       if (IsRet)
9961         return true;
9962       // Try using a GPR to pass the address
9963       if ((Reg = State.AllocateReg(ArgGPRs))) {
9964         LocVT = XLenVT;
9965         LocInfo = CCValAssign::Indirect;
9966       } else if (ValVT.isScalableVector()) {
9967         LocVT = XLenVT;
9968         LocInfo = CCValAssign::Indirect;
9969       } else {
9970         // Pass fixed-length vectors on the stack.
9971         LocVT = ValVT;
9972         StoreSizeBytes = ValVT.getStoreSize();
9973         // Align vectors to their element sizes, being careful for vXi1
9974         // vectors.
9975         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9976       }
9977     }
9978   } else {
9979     Reg = State.AllocateReg(ArgGPRs);
9980   }
9981 
9982   unsigned StackOffset =
9983       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9984 
9985   // If we reach this point and PendingLocs is non-empty, we must be at the
9986   // end of a split argument that must be passed indirectly.
9987   if (!PendingLocs.empty()) {
9988     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9989     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9990 
9991     for (auto &It : PendingLocs) {
9992       if (Reg)
9993         It.convertToReg(Reg);
9994       else
9995         It.convertToMem(StackOffset);
9996       State.addLoc(It);
9997     }
9998     PendingLocs.clear();
9999     PendingArgFlags.clear();
10000     return false;
10001   }
10002 
10003   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10004           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10005          "Expected an XLenVT or vector types at this stage");
10006 
10007   if (Reg) {
10008     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10009     return false;
10010   }
10011 
10012   // When a floating-point value is passed on the stack, no bit-conversion is
10013   // needed.
10014   if (ValVT.isFloatingPoint()) {
10015     LocVT = ValVT;
10016     LocInfo = CCValAssign::Full;
10017   }
10018   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10019   return false;
10020 }
10021 
10022 template <typename ArgTy>
10023 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10024   for (const auto &ArgIdx : enumerate(Args)) {
10025     MVT ArgVT = ArgIdx.value().VT;
10026     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10027       return ArgIdx.index();
10028   }
10029   return None;
10030 }
10031 
10032 void RISCVTargetLowering::analyzeInputArgs(
10033     MachineFunction &MF, CCState &CCInfo,
10034     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10035     RISCVCCAssignFn Fn) const {
10036   unsigned NumArgs = Ins.size();
10037   FunctionType *FType = MF.getFunction().getFunctionType();
10038 
10039   Optional<unsigned> FirstMaskArgument;
10040   if (Subtarget.hasVInstructions())
10041     FirstMaskArgument = preAssignMask(Ins);
10042 
10043   for (unsigned i = 0; i != NumArgs; ++i) {
10044     MVT ArgVT = Ins[i].VT;
10045     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10046 
10047     Type *ArgTy = nullptr;
10048     if (IsRet)
10049       ArgTy = FType->getReturnType();
10050     else if (Ins[i].isOrigArg())
10051       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10052 
10053     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10054     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10055            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10056            FirstMaskArgument)) {
10057       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10058                         << EVT(ArgVT).getEVTString() << '\n');
10059       llvm_unreachable(nullptr);
10060     }
10061   }
10062 }
10063 
10064 void RISCVTargetLowering::analyzeOutputArgs(
10065     MachineFunction &MF, CCState &CCInfo,
10066     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10067     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10068   unsigned NumArgs = Outs.size();
10069 
10070   Optional<unsigned> FirstMaskArgument;
10071   if (Subtarget.hasVInstructions())
10072     FirstMaskArgument = preAssignMask(Outs);
10073 
10074   for (unsigned i = 0; i != NumArgs; i++) {
10075     MVT ArgVT = Outs[i].VT;
10076     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10077     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10078 
10079     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10080     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10081            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10082            FirstMaskArgument)) {
10083       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10084                         << EVT(ArgVT).getEVTString() << "\n");
10085       llvm_unreachable(nullptr);
10086     }
10087   }
10088 }
10089 
10090 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10091 // values.
10092 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10093                                    const CCValAssign &VA, const SDLoc &DL,
10094                                    const RISCVSubtarget &Subtarget) {
10095   switch (VA.getLocInfo()) {
10096   default:
10097     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10098   case CCValAssign::Full:
10099     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10100       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10101     break;
10102   case CCValAssign::BCvt:
10103     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10104       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10105     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10106       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10107     else
10108       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10109     break;
10110   }
10111   return Val;
10112 }
10113 
10114 // The caller is responsible for loading the full value if the argument is
10115 // passed with CCValAssign::Indirect.
10116 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10117                                 const CCValAssign &VA, const SDLoc &DL,
10118                                 const RISCVTargetLowering &TLI) {
10119   MachineFunction &MF = DAG.getMachineFunction();
10120   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10121   EVT LocVT = VA.getLocVT();
10122   SDValue Val;
10123   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10124   Register VReg = RegInfo.createVirtualRegister(RC);
10125   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10126   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10127 
10128   if (VA.getLocInfo() == CCValAssign::Indirect)
10129     return Val;
10130 
10131   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10132 }
10133 
10134 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10135                                    const CCValAssign &VA, const SDLoc &DL,
10136                                    const RISCVSubtarget &Subtarget) {
10137   EVT LocVT = VA.getLocVT();
10138 
10139   switch (VA.getLocInfo()) {
10140   default:
10141     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10142   case CCValAssign::Full:
10143     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10144       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10145     break;
10146   case CCValAssign::BCvt:
10147     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10148       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10149     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10150       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10151     else
10152       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10153     break;
10154   }
10155   return Val;
10156 }
10157 
10158 // The caller is responsible for loading the full value if the argument is
10159 // passed with CCValAssign::Indirect.
10160 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10161                                 const CCValAssign &VA, const SDLoc &DL) {
10162   MachineFunction &MF = DAG.getMachineFunction();
10163   MachineFrameInfo &MFI = MF.getFrameInfo();
10164   EVT LocVT = VA.getLocVT();
10165   EVT ValVT = VA.getValVT();
10166   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10167   if (ValVT.isScalableVector()) {
10168     // When the value is a scalable vector, we save the pointer which points to
10169     // the scalable vector value in the stack. The ValVT will be the pointer
10170     // type, instead of the scalable vector type.
10171     ValVT = LocVT;
10172   }
10173   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10174                                  /*IsImmutable=*/true);
10175   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10176   SDValue Val;
10177 
10178   ISD::LoadExtType ExtType;
10179   switch (VA.getLocInfo()) {
10180   default:
10181     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10182   case CCValAssign::Full:
10183   case CCValAssign::Indirect:
10184   case CCValAssign::BCvt:
10185     ExtType = ISD::NON_EXTLOAD;
10186     break;
10187   }
10188   Val = DAG.getExtLoad(
10189       ExtType, DL, LocVT, Chain, FIN,
10190       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10191   return Val;
10192 }
10193 
10194 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10195                                        const CCValAssign &VA, const SDLoc &DL) {
10196   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10197          "Unexpected VA");
10198   MachineFunction &MF = DAG.getMachineFunction();
10199   MachineFrameInfo &MFI = MF.getFrameInfo();
10200   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10201 
10202   if (VA.isMemLoc()) {
10203     // f64 is passed on the stack.
10204     int FI =
10205         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10206     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10207     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10208                        MachinePointerInfo::getFixedStack(MF, FI));
10209   }
10210 
10211   assert(VA.isRegLoc() && "Expected register VA assignment");
10212 
10213   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10214   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10215   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10216   SDValue Hi;
10217   if (VA.getLocReg() == RISCV::X17) {
10218     // Second half of f64 is passed on the stack.
10219     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10220     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10221     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10222                      MachinePointerInfo::getFixedStack(MF, FI));
10223   } else {
10224     // Second half of f64 is passed in another GPR.
10225     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10226     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10227     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10228   }
10229   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10230 }
10231 
10232 // FastCC has less than 1% performance improvement for some particular
10233 // benchmark. But theoretically, it may has benenfit for some cases.
10234 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10235                             unsigned ValNo, MVT ValVT, MVT LocVT,
10236                             CCValAssign::LocInfo LocInfo,
10237                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10238                             bool IsFixed, bool IsRet, Type *OrigTy,
10239                             const RISCVTargetLowering &TLI,
10240                             Optional<unsigned> FirstMaskArgument) {
10241 
10242   // X5 and X6 might be used for save-restore libcall.
10243   static const MCPhysReg GPRList[] = {
10244       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10245       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10246       RISCV::X29, RISCV::X30, RISCV::X31};
10247 
10248   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10249     if (unsigned Reg = State.AllocateReg(GPRList)) {
10250       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10251       return false;
10252     }
10253   }
10254 
10255   if (LocVT == MVT::f16) {
10256     static const MCPhysReg FPR16List[] = {
10257         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10258         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10259         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10260         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10261     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10262       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10263       return false;
10264     }
10265   }
10266 
10267   if (LocVT == MVT::f32) {
10268     static const MCPhysReg FPR32List[] = {
10269         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10270         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10271         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10272         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10273     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10274       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10275       return false;
10276     }
10277   }
10278 
10279   if (LocVT == MVT::f64) {
10280     static const MCPhysReg FPR64List[] = {
10281         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10282         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10283         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10284         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10285     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10286       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10287       return false;
10288     }
10289   }
10290 
10291   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10292     unsigned Offset4 = State.AllocateStack(4, Align(4));
10293     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10294     return false;
10295   }
10296 
10297   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10298     unsigned Offset5 = State.AllocateStack(8, Align(8));
10299     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10300     return false;
10301   }
10302 
10303   if (LocVT.isVector()) {
10304     if (unsigned Reg =
10305             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10306       // Fixed-length vectors are located in the corresponding scalable-vector
10307       // container types.
10308       if (ValVT.isFixedLengthVector())
10309         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10310       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10311     } else {
10312       // Try and pass the address via a "fast" GPR.
10313       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10314         LocInfo = CCValAssign::Indirect;
10315         LocVT = TLI.getSubtarget().getXLenVT();
10316         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10317       } else if (ValVT.isFixedLengthVector()) {
10318         auto StackAlign =
10319             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10320         unsigned StackOffset =
10321             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10322         State.addLoc(
10323             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10324       } else {
10325         // Can't pass scalable vectors on the stack.
10326         return true;
10327       }
10328     }
10329 
10330     return false;
10331   }
10332 
10333   return true; // CC didn't match.
10334 }
10335 
10336 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10337                          CCValAssign::LocInfo LocInfo,
10338                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10339 
10340   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10341     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10342     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10343     static const MCPhysReg GPRList[] = {
10344         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10345         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10346     if (unsigned Reg = State.AllocateReg(GPRList)) {
10347       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10348       return false;
10349     }
10350   }
10351 
10352   if (LocVT == MVT::f32) {
10353     // Pass in STG registers: F1, ..., F6
10354     //                        fs0 ... fs5
10355     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10356                                           RISCV::F18_F, RISCV::F19_F,
10357                                           RISCV::F20_F, RISCV::F21_F};
10358     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10359       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10360       return false;
10361     }
10362   }
10363 
10364   if (LocVT == MVT::f64) {
10365     // Pass in STG registers: D1, ..., D6
10366     //                        fs6 ... fs11
10367     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10368                                           RISCV::F24_D, RISCV::F25_D,
10369                                           RISCV::F26_D, RISCV::F27_D};
10370     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10371       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10372       return false;
10373     }
10374   }
10375 
10376   report_fatal_error("No registers left in GHC calling convention");
10377   return true;
10378 }
10379 
10380 // Transform physical registers into virtual registers.
10381 SDValue RISCVTargetLowering::LowerFormalArguments(
10382     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10383     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10384     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10385 
10386   MachineFunction &MF = DAG.getMachineFunction();
10387 
10388   switch (CallConv) {
10389   default:
10390     report_fatal_error("Unsupported calling convention");
10391   case CallingConv::C:
10392   case CallingConv::Fast:
10393     break;
10394   case CallingConv::GHC:
10395     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10396         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10397       report_fatal_error(
10398         "GHC calling convention requires the F and D instruction set extensions");
10399   }
10400 
10401   const Function &Func = MF.getFunction();
10402   if (Func.hasFnAttribute("interrupt")) {
10403     if (!Func.arg_empty())
10404       report_fatal_error(
10405         "Functions with the interrupt attribute cannot have arguments!");
10406 
10407     StringRef Kind =
10408       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10409 
10410     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10411       report_fatal_error(
10412         "Function interrupt attribute argument not supported!");
10413   }
10414 
10415   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10416   MVT XLenVT = Subtarget.getXLenVT();
10417   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10418   // Used with vargs to acumulate store chains.
10419   std::vector<SDValue> OutChains;
10420 
10421   // Assign locations to all of the incoming arguments.
10422   SmallVector<CCValAssign, 16> ArgLocs;
10423   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10424 
10425   if (CallConv == CallingConv::GHC)
10426     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10427   else
10428     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10429                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10430                                                    : CC_RISCV);
10431 
10432   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10433     CCValAssign &VA = ArgLocs[i];
10434     SDValue ArgValue;
10435     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10436     // case.
10437     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10438       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10439     else if (VA.isRegLoc())
10440       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10441     else
10442       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10443 
10444     if (VA.getLocInfo() == CCValAssign::Indirect) {
10445       // If the original argument was split and passed by reference (e.g. i128
10446       // on RV32), we need to load all parts of it here (using the same
10447       // address). Vectors may be partly split to registers and partly to the
10448       // stack, in which case the base address is partly offset and subsequent
10449       // stores are relative to that.
10450       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10451                                    MachinePointerInfo()));
10452       unsigned ArgIndex = Ins[i].OrigArgIndex;
10453       unsigned ArgPartOffset = Ins[i].PartOffset;
10454       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10455       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10456         CCValAssign &PartVA = ArgLocs[i + 1];
10457         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10458         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10459         if (PartVA.getValVT().isScalableVector())
10460           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10461         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10462         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10463                                      MachinePointerInfo()));
10464         ++i;
10465       }
10466       continue;
10467     }
10468     InVals.push_back(ArgValue);
10469   }
10470 
10471   if (IsVarArg) {
10472     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10473     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10474     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10475     MachineFrameInfo &MFI = MF.getFrameInfo();
10476     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10477     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10478 
10479     // Offset of the first variable argument from stack pointer, and size of
10480     // the vararg save area. For now, the varargs save area is either zero or
10481     // large enough to hold a0-a7.
10482     int VaArgOffset, VarArgsSaveSize;
10483 
10484     // If all registers are allocated, then all varargs must be passed on the
10485     // stack and we don't need to save any argregs.
10486     if (ArgRegs.size() == Idx) {
10487       VaArgOffset = CCInfo.getNextStackOffset();
10488       VarArgsSaveSize = 0;
10489     } else {
10490       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10491       VaArgOffset = -VarArgsSaveSize;
10492     }
10493 
10494     // Record the frame index of the first variable argument
10495     // which is a value necessary to VASTART.
10496     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10497     RVFI->setVarArgsFrameIndex(FI);
10498 
10499     // If saving an odd number of registers then create an extra stack slot to
10500     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10501     // offsets to even-numbered registered remain 2*XLEN-aligned.
10502     if (Idx % 2) {
10503       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10504       VarArgsSaveSize += XLenInBytes;
10505     }
10506 
10507     // Copy the integer registers that may have been used for passing varargs
10508     // to the vararg save area.
10509     for (unsigned I = Idx; I < ArgRegs.size();
10510          ++I, VaArgOffset += XLenInBytes) {
10511       const Register Reg = RegInfo.createVirtualRegister(RC);
10512       RegInfo.addLiveIn(ArgRegs[I], Reg);
10513       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10514       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10515       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10516       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10517                                    MachinePointerInfo::getFixedStack(MF, FI));
10518       cast<StoreSDNode>(Store.getNode())
10519           ->getMemOperand()
10520           ->setValue((Value *)nullptr);
10521       OutChains.push_back(Store);
10522     }
10523     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10524   }
10525 
10526   // All stores are grouped in one node to allow the matching between
10527   // the size of Ins and InVals. This only happens for vararg functions.
10528   if (!OutChains.empty()) {
10529     OutChains.push_back(Chain);
10530     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10531   }
10532 
10533   return Chain;
10534 }
10535 
10536 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10537 /// for tail call optimization.
10538 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10539 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10540     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10541     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10542 
10543   auto &Callee = CLI.Callee;
10544   auto CalleeCC = CLI.CallConv;
10545   auto &Outs = CLI.Outs;
10546   auto &Caller = MF.getFunction();
10547   auto CallerCC = Caller.getCallingConv();
10548 
10549   // Exception-handling functions need a special set of instructions to
10550   // indicate a return to the hardware. Tail-calling another function would
10551   // probably break this.
10552   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10553   // should be expanded as new function attributes are introduced.
10554   if (Caller.hasFnAttribute("interrupt"))
10555     return false;
10556 
10557   // Do not tail call opt if the stack is used to pass parameters.
10558   if (CCInfo.getNextStackOffset() != 0)
10559     return false;
10560 
10561   // Do not tail call opt if any parameters need to be passed indirectly.
10562   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10563   // passed indirectly. So the address of the value will be passed in a
10564   // register, or if not available, then the address is put on the stack. In
10565   // order to pass indirectly, space on the stack often needs to be allocated
10566   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10567   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10568   // are passed CCValAssign::Indirect.
10569   for (auto &VA : ArgLocs)
10570     if (VA.getLocInfo() == CCValAssign::Indirect)
10571       return false;
10572 
10573   // Do not tail call opt if either caller or callee uses struct return
10574   // semantics.
10575   auto IsCallerStructRet = Caller.hasStructRetAttr();
10576   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10577   if (IsCallerStructRet || IsCalleeStructRet)
10578     return false;
10579 
10580   // Externally-defined functions with weak linkage should not be
10581   // tail-called. The behaviour of branch instructions in this situation (as
10582   // used for tail calls) is implementation-defined, so we cannot rely on the
10583   // linker replacing the tail call with a return.
10584   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10585     const GlobalValue *GV = G->getGlobal();
10586     if (GV->hasExternalWeakLinkage())
10587       return false;
10588   }
10589 
10590   // The callee has to preserve all registers the caller needs to preserve.
10591   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10592   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10593   if (CalleeCC != CallerCC) {
10594     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10595     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10596       return false;
10597   }
10598 
10599   // Byval parameters hand the function a pointer directly into the stack area
10600   // we want to reuse during a tail call. Working around this *is* possible
10601   // but less efficient and uglier in LowerCall.
10602   for (auto &Arg : Outs)
10603     if (Arg.Flags.isByVal())
10604       return false;
10605 
10606   return true;
10607 }
10608 
10609 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10610   return DAG.getDataLayout().getPrefTypeAlign(
10611       VT.getTypeForEVT(*DAG.getContext()));
10612 }
10613 
10614 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10615 // and output parameter nodes.
10616 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10617                                        SmallVectorImpl<SDValue> &InVals) const {
10618   SelectionDAG &DAG = CLI.DAG;
10619   SDLoc &DL = CLI.DL;
10620   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10621   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10622   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10623   SDValue Chain = CLI.Chain;
10624   SDValue Callee = CLI.Callee;
10625   bool &IsTailCall = CLI.IsTailCall;
10626   CallingConv::ID CallConv = CLI.CallConv;
10627   bool IsVarArg = CLI.IsVarArg;
10628   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10629   MVT XLenVT = Subtarget.getXLenVT();
10630 
10631   MachineFunction &MF = DAG.getMachineFunction();
10632 
10633   // Analyze the operands of the call, assigning locations to each operand.
10634   SmallVector<CCValAssign, 16> ArgLocs;
10635   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10636 
10637   if (CallConv == CallingConv::GHC)
10638     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10639   else
10640     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10641                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10642                                                     : CC_RISCV);
10643 
10644   // Check if it's really possible to do a tail call.
10645   if (IsTailCall)
10646     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10647 
10648   if (IsTailCall)
10649     ++NumTailCalls;
10650   else if (CLI.CB && CLI.CB->isMustTailCall())
10651     report_fatal_error("failed to perform tail call elimination on a call "
10652                        "site marked musttail");
10653 
10654   // Get a count of how many bytes are to be pushed on the stack.
10655   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10656 
10657   // Create local copies for byval args
10658   SmallVector<SDValue, 8> ByValArgs;
10659   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10660     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10661     if (!Flags.isByVal())
10662       continue;
10663 
10664     SDValue Arg = OutVals[i];
10665     unsigned Size = Flags.getByValSize();
10666     Align Alignment = Flags.getNonZeroByValAlign();
10667 
10668     int FI =
10669         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10670     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10671     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10672 
10673     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10674                           /*IsVolatile=*/false,
10675                           /*AlwaysInline=*/false, IsTailCall,
10676                           MachinePointerInfo(), MachinePointerInfo());
10677     ByValArgs.push_back(FIPtr);
10678   }
10679 
10680   if (!IsTailCall)
10681     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10682 
10683   // Copy argument values to their designated locations.
10684   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10685   SmallVector<SDValue, 8> MemOpChains;
10686   SDValue StackPtr;
10687   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10688     CCValAssign &VA = ArgLocs[i];
10689     SDValue ArgValue = OutVals[i];
10690     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10691 
10692     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10693     bool IsF64OnRV32DSoftABI =
10694         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10695     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10696       SDValue SplitF64 = DAG.getNode(
10697           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10698       SDValue Lo = SplitF64.getValue(0);
10699       SDValue Hi = SplitF64.getValue(1);
10700 
10701       Register RegLo = VA.getLocReg();
10702       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10703 
10704       if (RegLo == RISCV::X17) {
10705         // Second half of f64 is passed on the stack.
10706         // Work out the address of the stack slot.
10707         if (!StackPtr.getNode())
10708           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10709         // Emit the store.
10710         MemOpChains.push_back(
10711             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10712       } else {
10713         // Second half of f64 is passed in another GPR.
10714         assert(RegLo < RISCV::X31 && "Invalid register pair");
10715         Register RegHigh = RegLo + 1;
10716         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10717       }
10718       continue;
10719     }
10720 
10721     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10722     // as any other MemLoc.
10723 
10724     // Promote the value if needed.
10725     // For now, only handle fully promoted and indirect arguments.
10726     if (VA.getLocInfo() == CCValAssign::Indirect) {
10727       // Store the argument in a stack slot and pass its address.
10728       Align StackAlign =
10729           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10730                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10731       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10732       // If the original argument was split (e.g. i128), we need
10733       // to store the required parts of it here (and pass just one address).
10734       // Vectors may be partly split to registers and partly to the stack, in
10735       // which case the base address is partly offset and subsequent stores are
10736       // relative to that.
10737       unsigned ArgIndex = Outs[i].OrigArgIndex;
10738       unsigned ArgPartOffset = Outs[i].PartOffset;
10739       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10740       // Calculate the total size to store. We don't have access to what we're
10741       // actually storing other than performing the loop and collecting the
10742       // info.
10743       SmallVector<std::pair<SDValue, SDValue>> Parts;
10744       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10745         SDValue PartValue = OutVals[i + 1];
10746         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10747         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10748         EVT PartVT = PartValue.getValueType();
10749         if (PartVT.isScalableVector())
10750           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10751         StoredSize += PartVT.getStoreSize();
10752         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10753         Parts.push_back(std::make_pair(PartValue, Offset));
10754         ++i;
10755       }
10756       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10757       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10758       MemOpChains.push_back(
10759           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10760                        MachinePointerInfo::getFixedStack(MF, FI)));
10761       for (const auto &Part : Parts) {
10762         SDValue PartValue = Part.first;
10763         SDValue PartOffset = Part.second;
10764         SDValue Address =
10765             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10766         MemOpChains.push_back(
10767             DAG.getStore(Chain, DL, PartValue, Address,
10768                          MachinePointerInfo::getFixedStack(MF, FI)));
10769       }
10770       ArgValue = SpillSlot;
10771     } else {
10772       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10773     }
10774 
10775     // Use local copy if it is a byval arg.
10776     if (Flags.isByVal())
10777       ArgValue = ByValArgs[j++];
10778 
10779     if (VA.isRegLoc()) {
10780       // Queue up the argument copies and emit them at the end.
10781       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10782     } else {
10783       assert(VA.isMemLoc() && "Argument not register or memory");
10784       assert(!IsTailCall && "Tail call not allowed if stack is used "
10785                             "for passing parameters");
10786 
10787       // Work out the address of the stack slot.
10788       if (!StackPtr.getNode())
10789         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10790       SDValue Address =
10791           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10792                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10793 
10794       // Emit the store.
10795       MemOpChains.push_back(
10796           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10797     }
10798   }
10799 
10800   // Join the stores, which are independent of one another.
10801   if (!MemOpChains.empty())
10802     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10803 
10804   SDValue Glue;
10805 
10806   // Build a sequence of copy-to-reg nodes, chained and glued together.
10807   for (auto &Reg : RegsToPass) {
10808     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10809     Glue = Chain.getValue(1);
10810   }
10811 
10812   // Validate that none of the argument registers have been marked as
10813   // reserved, if so report an error. Do the same for the return address if this
10814   // is not a tailcall.
10815   validateCCReservedRegs(RegsToPass, MF);
10816   if (!IsTailCall &&
10817       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10818     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10819         MF.getFunction(),
10820         "Return address register required, but has been reserved."});
10821 
10822   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10823   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10824   // split it and then direct call can be matched by PseudoCALL.
10825   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10826     const GlobalValue *GV = S->getGlobal();
10827 
10828     unsigned OpFlags = RISCVII::MO_CALL;
10829     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10830       OpFlags = RISCVII::MO_PLT;
10831 
10832     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10833   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10834     unsigned OpFlags = RISCVII::MO_CALL;
10835 
10836     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10837                                                  nullptr))
10838       OpFlags = RISCVII::MO_PLT;
10839 
10840     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10841   }
10842 
10843   // The first call operand is the chain and the second is the target address.
10844   SmallVector<SDValue, 8> Ops;
10845   Ops.push_back(Chain);
10846   Ops.push_back(Callee);
10847 
10848   // Add argument registers to the end of the list so that they are
10849   // known live into the call.
10850   for (auto &Reg : RegsToPass)
10851     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10852 
10853   if (!IsTailCall) {
10854     // Add a register mask operand representing the call-preserved registers.
10855     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10856     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10857     assert(Mask && "Missing call preserved mask for calling convention");
10858     Ops.push_back(DAG.getRegisterMask(Mask));
10859   }
10860 
10861   // Glue the call to the argument copies, if any.
10862   if (Glue.getNode())
10863     Ops.push_back(Glue);
10864 
10865   // Emit the call.
10866   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10867 
10868   if (IsTailCall) {
10869     MF.getFrameInfo().setHasTailCall();
10870     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10871   }
10872 
10873   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10874   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10875   Glue = Chain.getValue(1);
10876 
10877   // Mark the end of the call, which is glued to the call itself.
10878   Chain = DAG.getCALLSEQ_END(Chain,
10879                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10880                              DAG.getConstant(0, DL, PtrVT, true),
10881                              Glue, DL);
10882   Glue = Chain.getValue(1);
10883 
10884   // Assign locations to each value returned by this call.
10885   SmallVector<CCValAssign, 16> RVLocs;
10886   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10887   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10888 
10889   // Copy all of the result registers out of their specified physreg.
10890   for (auto &VA : RVLocs) {
10891     // Copy the value out
10892     SDValue RetValue =
10893         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10894     // Glue the RetValue to the end of the call sequence
10895     Chain = RetValue.getValue(1);
10896     Glue = RetValue.getValue(2);
10897 
10898     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10899       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10900       SDValue RetValue2 =
10901           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10902       Chain = RetValue2.getValue(1);
10903       Glue = RetValue2.getValue(2);
10904       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10905                              RetValue2);
10906     }
10907 
10908     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10909 
10910     InVals.push_back(RetValue);
10911   }
10912 
10913   return Chain;
10914 }
10915 
10916 bool RISCVTargetLowering::CanLowerReturn(
10917     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10918     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10919   SmallVector<CCValAssign, 16> RVLocs;
10920   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10921 
10922   Optional<unsigned> FirstMaskArgument;
10923   if (Subtarget.hasVInstructions())
10924     FirstMaskArgument = preAssignMask(Outs);
10925 
10926   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10927     MVT VT = Outs[i].VT;
10928     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10929     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10930     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10931                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10932                  *this, FirstMaskArgument))
10933       return false;
10934   }
10935   return true;
10936 }
10937 
10938 SDValue
10939 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10940                                  bool IsVarArg,
10941                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10942                                  const SmallVectorImpl<SDValue> &OutVals,
10943                                  const SDLoc &DL, SelectionDAG &DAG) const {
10944   const MachineFunction &MF = DAG.getMachineFunction();
10945   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10946 
10947   // Stores the assignment of the return value to a location.
10948   SmallVector<CCValAssign, 16> RVLocs;
10949 
10950   // Info about the registers and stack slot.
10951   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10952                  *DAG.getContext());
10953 
10954   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10955                     nullptr, CC_RISCV);
10956 
10957   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10958     report_fatal_error("GHC functions return void only");
10959 
10960   SDValue Glue;
10961   SmallVector<SDValue, 4> RetOps(1, Chain);
10962 
10963   // Copy the result values into the output registers.
10964   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10965     SDValue Val = OutVals[i];
10966     CCValAssign &VA = RVLocs[i];
10967     assert(VA.isRegLoc() && "Can only return in registers!");
10968 
10969     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10970       // Handle returning f64 on RV32D with a soft float ABI.
10971       assert(VA.isRegLoc() && "Expected return via registers");
10972       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10973                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10974       SDValue Lo = SplitF64.getValue(0);
10975       SDValue Hi = SplitF64.getValue(1);
10976       Register RegLo = VA.getLocReg();
10977       assert(RegLo < RISCV::X31 && "Invalid register pair");
10978       Register RegHi = RegLo + 1;
10979 
10980       if (STI.isRegisterReservedByUser(RegLo) ||
10981           STI.isRegisterReservedByUser(RegHi))
10982         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10983             MF.getFunction(),
10984             "Return value register required, but has been reserved."});
10985 
10986       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10987       Glue = Chain.getValue(1);
10988       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10989       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10990       Glue = Chain.getValue(1);
10991       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10992     } else {
10993       // Handle a 'normal' return.
10994       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10995       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10996 
10997       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10998         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10999             MF.getFunction(),
11000             "Return value register required, but has been reserved."});
11001 
11002       // Guarantee that all emitted copies are stuck together.
11003       Glue = Chain.getValue(1);
11004       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11005     }
11006   }
11007 
11008   RetOps[0] = Chain; // Update chain.
11009 
11010   // Add the glue node if we have it.
11011   if (Glue.getNode()) {
11012     RetOps.push_back(Glue);
11013   }
11014 
11015   unsigned RetOpc = RISCVISD::RET_FLAG;
11016   // Interrupt service routines use different return instructions.
11017   const Function &Func = DAG.getMachineFunction().getFunction();
11018   if (Func.hasFnAttribute("interrupt")) {
11019     if (!Func.getReturnType()->isVoidTy())
11020       report_fatal_error(
11021           "Functions with the interrupt attribute must have void return type!");
11022 
11023     MachineFunction &MF = DAG.getMachineFunction();
11024     StringRef Kind =
11025       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11026 
11027     if (Kind == "user")
11028       RetOpc = RISCVISD::URET_FLAG;
11029     else if (Kind == "supervisor")
11030       RetOpc = RISCVISD::SRET_FLAG;
11031     else
11032       RetOpc = RISCVISD::MRET_FLAG;
11033   }
11034 
11035   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11036 }
11037 
11038 void RISCVTargetLowering::validateCCReservedRegs(
11039     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11040     MachineFunction &MF) const {
11041   const Function &F = MF.getFunction();
11042   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11043 
11044   if (llvm::any_of(Regs, [&STI](auto Reg) {
11045         return STI.isRegisterReservedByUser(Reg.first);
11046       }))
11047     F.getContext().diagnose(DiagnosticInfoUnsupported{
11048         F, "Argument register required, but has been reserved."});
11049 }
11050 
11051 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11052   return CI->isTailCall();
11053 }
11054 
11055 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11056 #define NODE_NAME_CASE(NODE)                                                   \
11057   case RISCVISD::NODE:                                                         \
11058     return "RISCVISD::" #NODE;
11059   // clang-format off
11060   switch ((RISCVISD::NodeType)Opcode) {
11061   case RISCVISD::FIRST_NUMBER:
11062     break;
11063   NODE_NAME_CASE(RET_FLAG)
11064   NODE_NAME_CASE(URET_FLAG)
11065   NODE_NAME_CASE(SRET_FLAG)
11066   NODE_NAME_CASE(MRET_FLAG)
11067   NODE_NAME_CASE(CALL)
11068   NODE_NAME_CASE(SELECT_CC)
11069   NODE_NAME_CASE(BR_CC)
11070   NODE_NAME_CASE(BuildPairF64)
11071   NODE_NAME_CASE(SplitF64)
11072   NODE_NAME_CASE(TAIL)
11073   NODE_NAME_CASE(MULHSU)
11074   NODE_NAME_CASE(SLLW)
11075   NODE_NAME_CASE(SRAW)
11076   NODE_NAME_CASE(SRLW)
11077   NODE_NAME_CASE(DIVW)
11078   NODE_NAME_CASE(DIVUW)
11079   NODE_NAME_CASE(REMUW)
11080   NODE_NAME_CASE(ROLW)
11081   NODE_NAME_CASE(RORW)
11082   NODE_NAME_CASE(CLZW)
11083   NODE_NAME_CASE(CTZW)
11084   NODE_NAME_CASE(FSLW)
11085   NODE_NAME_CASE(FSRW)
11086   NODE_NAME_CASE(FSL)
11087   NODE_NAME_CASE(FSR)
11088   NODE_NAME_CASE(FMV_H_X)
11089   NODE_NAME_CASE(FMV_X_ANYEXTH)
11090   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11091   NODE_NAME_CASE(FMV_W_X_RV64)
11092   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11093   NODE_NAME_CASE(FCVT_X)
11094   NODE_NAME_CASE(FCVT_XU)
11095   NODE_NAME_CASE(FCVT_W_RV64)
11096   NODE_NAME_CASE(FCVT_WU_RV64)
11097   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11098   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11099   NODE_NAME_CASE(READ_CYCLE_WIDE)
11100   NODE_NAME_CASE(GREV)
11101   NODE_NAME_CASE(GREVW)
11102   NODE_NAME_CASE(GORC)
11103   NODE_NAME_CASE(GORCW)
11104   NODE_NAME_CASE(SHFL)
11105   NODE_NAME_CASE(SHFLW)
11106   NODE_NAME_CASE(UNSHFL)
11107   NODE_NAME_CASE(UNSHFLW)
11108   NODE_NAME_CASE(BFP)
11109   NODE_NAME_CASE(BFPW)
11110   NODE_NAME_CASE(BCOMPRESS)
11111   NODE_NAME_CASE(BCOMPRESSW)
11112   NODE_NAME_CASE(BDECOMPRESS)
11113   NODE_NAME_CASE(BDECOMPRESSW)
11114   NODE_NAME_CASE(VMV_V_X_VL)
11115   NODE_NAME_CASE(VFMV_V_F_VL)
11116   NODE_NAME_CASE(VMV_X_S)
11117   NODE_NAME_CASE(VMV_S_X_VL)
11118   NODE_NAME_CASE(VFMV_S_F_VL)
11119   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11120   NODE_NAME_CASE(READ_VLENB)
11121   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11122   NODE_NAME_CASE(VSLIDEUP_VL)
11123   NODE_NAME_CASE(VSLIDE1UP_VL)
11124   NODE_NAME_CASE(VSLIDEDOWN_VL)
11125   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11126   NODE_NAME_CASE(VID_VL)
11127   NODE_NAME_CASE(VFNCVT_ROD_VL)
11128   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11129   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11130   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11131   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11132   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11133   NODE_NAME_CASE(VECREDUCE_AND_VL)
11134   NODE_NAME_CASE(VECREDUCE_OR_VL)
11135   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11136   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11137   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11138   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11139   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11140   NODE_NAME_CASE(ADD_VL)
11141   NODE_NAME_CASE(AND_VL)
11142   NODE_NAME_CASE(MUL_VL)
11143   NODE_NAME_CASE(OR_VL)
11144   NODE_NAME_CASE(SDIV_VL)
11145   NODE_NAME_CASE(SHL_VL)
11146   NODE_NAME_CASE(SREM_VL)
11147   NODE_NAME_CASE(SRA_VL)
11148   NODE_NAME_CASE(SRL_VL)
11149   NODE_NAME_CASE(SUB_VL)
11150   NODE_NAME_CASE(UDIV_VL)
11151   NODE_NAME_CASE(UREM_VL)
11152   NODE_NAME_CASE(XOR_VL)
11153   NODE_NAME_CASE(SADDSAT_VL)
11154   NODE_NAME_CASE(UADDSAT_VL)
11155   NODE_NAME_CASE(SSUBSAT_VL)
11156   NODE_NAME_CASE(USUBSAT_VL)
11157   NODE_NAME_CASE(FADD_VL)
11158   NODE_NAME_CASE(FSUB_VL)
11159   NODE_NAME_CASE(FMUL_VL)
11160   NODE_NAME_CASE(FDIV_VL)
11161   NODE_NAME_CASE(FNEG_VL)
11162   NODE_NAME_CASE(FABS_VL)
11163   NODE_NAME_CASE(FSQRT_VL)
11164   NODE_NAME_CASE(FMA_VL)
11165   NODE_NAME_CASE(FCOPYSIGN_VL)
11166   NODE_NAME_CASE(SMIN_VL)
11167   NODE_NAME_CASE(SMAX_VL)
11168   NODE_NAME_CASE(UMIN_VL)
11169   NODE_NAME_CASE(UMAX_VL)
11170   NODE_NAME_CASE(FMINNUM_VL)
11171   NODE_NAME_CASE(FMAXNUM_VL)
11172   NODE_NAME_CASE(MULHS_VL)
11173   NODE_NAME_CASE(MULHU_VL)
11174   NODE_NAME_CASE(FP_TO_SINT_VL)
11175   NODE_NAME_CASE(FP_TO_UINT_VL)
11176   NODE_NAME_CASE(SINT_TO_FP_VL)
11177   NODE_NAME_CASE(UINT_TO_FP_VL)
11178   NODE_NAME_CASE(FP_EXTEND_VL)
11179   NODE_NAME_CASE(FP_ROUND_VL)
11180   NODE_NAME_CASE(VWMUL_VL)
11181   NODE_NAME_CASE(VWMULU_VL)
11182   NODE_NAME_CASE(VWMULSU_VL)
11183   NODE_NAME_CASE(VWADD_VL)
11184   NODE_NAME_CASE(VWADDU_VL)
11185   NODE_NAME_CASE(VWSUB_VL)
11186   NODE_NAME_CASE(VWSUBU_VL)
11187   NODE_NAME_CASE(VWADD_W_VL)
11188   NODE_NAME_CASE(VWADDU_W_VL)
11189   NODE_NAME_CASE(VWSUB_W_VL)
11190   NODE_NAME_CASE(VWSUBU_W_VL)
11191   NODE_NAME_CASE(SETCC_VL)
11192   NODE_NAME_CASE(VSELECT_VL)
11193   NODE_NAME_CASE(VP_MERGE_VL)
11194   NODE_NAME_CASE(VMAND_VL)
11195   NODE_NAME_CASE(VMOR_VL)
11196   NODE_NAME_CASE(VMXOR_VL)
11197   NODE_NAME_CASE(VMCLR_VL)
11198   NODE_NAME_CASE(VMSET_VL)
11199   NODE_NAME_CASE(VRGATHER_VX_VL)
11200   NODE_NAME_CASE(VRGATHER_VV_VL)
11201   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11202   NODE_NAME_CASE(VSEXT_VL)
11203   NODE_NAME_CASE(VZEXT_VL)
11204   NODE_NAME_CASE(VCPOP_VL)
11205   NODE_NAME_CASE(READ_CSR)
11206   NODE_NAME_CASE(WRITE_CSR)
11207   NODE_NAME_CASE(SWAP_CSR)
11208   }
11209   // clang-format on
11210   return nullptr;
11211 #undef NODE_NAME_CASE
11212 }
11213 
11214 /// getConstraintType - Given a constraint letter, return the type of
11215 /// constraint it is for this target.
11216 RISCVTargetLowering::ConstraintType
11217 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11218   if (Constraint.size() == 1) {
11219     switch (Constraint[0]) {
11220     default:
11221       break;
11222     case 'f':
11223       return C_RegisterClass;
11224     case 'I':
11225     case 'J':
11226     case 'K':
11227       return C_Immediate;
11228     case 'A':
11229       return C_Memory;
11230     case 'S': // A symbolic address
11231       return C_Other;
11232     }
11233   } else {
11234     if (Constraint == "vr" || Constraint == "vm")
11235       return C_RegisterClass;
11236   }
11237   return TargetLowering::getConstraintType(Constraint);
11238 }
11239 
11240 std::pair<unsigned, const TargetRegisterClass *>
11241 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11242                                                   StringRef Constraint,
11243                                                   MVT VT) const {
11244   // First, see if this is a constraint that directly corresponds to a
11245   // RISCV register class.
11246   if (Constraint.size() == 1) {
11247     switch (Constraint[0]) {
11248     case 'r':
11249       // TODO: Support fixed vectors up to XLen for P extension?
11250       if (VT.isVector())
11251         break;
11252       return std::make_pair(0U, &RISCV::GPRRegClass);
11253     case 'f':
11254       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11255         return std::make_pair(0U, &RISCV::FPR16RegClass);
11256       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11257         return std::make_pair(0U, &RISCV::FPR32RegClass);
11258       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11259         return std::make_pair(0U, &RISCV::FPR64RegClass);
11260       break;
11261     default:
11262       break;
11263     }
11264   } else if (Constraint == "vr") {
11265     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11266                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11267       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11268         return std::make_pair(0U, RC);
11269     }
11270   } else if (Constraint == "vm") {
11271     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11272       return std::make_pair(0U, &RISCV::VMV0RegClass);
11273   }
11274 
11275   // Clang will correctly decode the usage of register name aliases into their
11276   // official names. However, other frontends like `rustc` do not. This allows
11277   // users of these frontends to use the ABI names for registers in LLVM-style
11278   // register constraints.
11279   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11280                                .Case("{zero}", RISCV::X0)
11281                                .Case("{ra}", RISCV::X1)
11282                                .Case("{sp}", RISCV::X2)
11283                                .Case("{gp}", RISCV::X3)
11284                                .Case("{tp}", RISCV::X4)
11285                                .Case("{t0}", RISCV::X5)
11286                                .Case("{t1}", RISCV::X6)
11287                                .Case("{t2}", RISCV::X7)
11288                                .Cases("{s0}", "{fp}", RISCV::X8)
11289                                .Case("{s1}", RISCV::X9)
11290                                .Case("{a0}", RISCV::X10)
11291                                .Case("{a1}", RISCV::X11)
11292                                .Case("{a2}", RISCV::X12)
11293                                .Case("{a3}", RISCV::X13)
11294                                .Case("{a4}", RISCV::X14)
11295                                .Case("{a5}", RISCV::X15)
11296                                .Case("{a6}", RISCV::X16)
11297                                .Case("{a7}", RISCV::X17)
11298                                .Case("{s2}", RISCV::X18)
11299                                .Case("{s3}", RISCV::X19)
11300                                .Case("{s4}", RISCV::X20)
11301                                .Case("{s5}", RISCV::X21)
11302                                .Case("{s6}", RISCV::X22)
11303                                .Case("{s7}", RISCV::X23)
11304                                .Case("{s8}", RISCV::X24)
11305                                .Case("{s9}", RISCV::X25)
11306                                .Case("{s10}", RISCV::X26)
11307                                .Case("{s11}", RISCV::X27)
11308                                .Case("{t3}", RISCV::X28)
11309                                .Case("{t4}", RISCV::X29)
11310                                .Case("{t5}", RISCV::X30)
11311                                .Case("{t6}", RISCV::X31)
11312                                .Default(RISCV::NoRegister);
11313   if (XRegFromAlias != RISCV::NoRegister)
11314     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11315 
11316   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11317   // TableGen record rather than the AsmName to choose registers for InlineAsm
11318   // constraints, plus we want to match those names to the widest floating point
11319   // register type available, manually select floating point registers here.
11320   //
11321   // The second case is the ABI name of the register, so that frontends can also
11322   // use the ABI names in register constraint lists.
11323   if (Subtarget.hasStdExtF()) {
11324     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11325                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11326                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11327                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11328                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11329                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11330                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11331                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11332                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11333                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11334                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11335                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11336                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11337                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11338                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11339                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11340                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11341                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11342                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11343                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11344                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11345                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11346                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11347                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11348                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11349                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11350                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11351                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11352                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11353                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11354                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11355                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11356                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11357                         .Default(RISCV::NoRegister);
11358     if (FReg != RISCV::NoRegister) {
11359       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11360       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11361         unsigned RegNo = FReg - RISCV::F0_F;
11362         unsigned DReg = RISCV::F0_D + RegNo;
11363         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11364       }
11365       if (VT == MVT::f32 || VT == MVT::Other)
11366         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11367       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11368         unsigned RegNo = FReg - RISCV::F0_F;
11369         unsigned HReg = RISCV::F0_H + RegNo;
11370         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11371       }
11372     }
11373   }
11374 
11375   if (Subtarget.hasVInstructions()) {
11376     Register VReg = StringSwitch<Register>(Constraint.lower())
11377                         .Case("{v0}", RISCV::V0)
11378                         .Case("{v1}", RISCV::V1)
11379                         .Case("{v2}", RISCV::V2)
11380                         .Case("{v3}", RISCV::V3)
11381                         .Case("{v4}", RISCV::V4)
11382                         .Case("{v5}", RISCV::V5)
11383                         .Case("{v6}", RISCV::V6)
11384                         .Case("{v7}", RISCV::V7)
11385                         .Case("{v8}", RISCV::V8)
11386                         .Case("{v9}", RISCV::V9)
11387                         .Case("{v10}", RISCV::V10)
11388                         .Case("{v11}", RISCV::V11)
11389                         .Case("{v12}", RISCV::V12)
11390                         .Case("{v13}", RISCV::V13)
11391                         .Case("{v14}", RISCV::V14)
11392                         .Case("{v15}", RISCV::V15)
11393                         .Case("{v16}", RISCV::V16)
11394                         .Case("{v17}", RISCV::V17)
11395                         .Case("{v18}", RISCV::V18)
11396                         .Case("{v19}", RISCV::V19)
11397                         .Case("{v20}", RISCV::V20)
11398                         .Case("{v21}", RISCV::V21)
11399                         .Case("{v22}", RISCV::V22)
11400                         .Case("{v23}", RISCV::V23)
11401                         .Case("{v24}", RISCV::V24)
11402                         .Case("{v25}", RISCV::V25)
11403                         .Case("{v26}", RISCV::V26)
11404                         .Case("{v27}", RISCV::V27)
11405                         .Case("{v28}", RISCV::V28)
11406                         .Case("{v29}", RISCV::V29)
11407                         .Case("{v30}", RISCV::V30)
11408                         .Case("{v31}", RISCV::V31)
11409                         .Default(RISCV::NoRegister);
11410     if (VReg != RISCV::NoRegister) {
11411       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11412         return std::make_pair(VReg, &RISCV::VMRegClass);
11413       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11414         return std::make_pair(VReg, &RISCV::VRRegClass);
11415       for (const auto *RC :
11416            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11417         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11418           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11419           return std::make_pair(VReg, RC);
11420         }
11421       }
11422     }
11423   }
11424 
11425   std::pair<Register, const TargetRegisterClass *> Res =
11426       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11427 
11428   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11429   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11430   // Subtarget into account.
11431   if (Res.second == &RISCV::GPRF16RegClass ||
11432       Res.second == &RISCV::GPRF32RegClass ||
11433       Res.second == &RISCV::GPRF64RegClass)
11434     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11435 
11436   return Res;
11437 }
11438 
11439 unsigned
11440 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11441   // Currently only support length 1 constraints.
11442   if (ConstraintCode.size() == 1) {
11443     switch (ConstraintCode[0]) {
11444     case 'A':
11445       return InlineAsm::Constraint_A;
11446     default:
11447       break;
11448     }
11449   }
11450 
11451   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11452 }
11453 
11454 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11455     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11456     SelectionDAG &DAG) const {
11457   // Currently only support length 1 constraints.
11458   if (Constraint.length() == 1) {
11459     switch (Constraint[0]) {
11460     case 'I':
11461       // Validate & create a 12-bit signed immediate operand.
11462       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11463         uint64_t CVal = C->getSExtValue();
11464         if (isInt<12>(CVal))
11465           Ops.push_back(
11466               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11467       }
11468       return;
11469     case 'J':
11470       // Validate & create an integer zero operand.
11471       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11472         if (C->getZExtValue() == 0)
11473           Ops.push_back(
11474               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11475       return;
11476     case 'K':
11477       // Validate & create a 5-bit unsigned immediate operand.
11478       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11479         uint64_t CVal = C->getZExtValue();
11480         if (isUInt<5>(CVal))
11481           Ops.push_back(
11482               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11483       }
11484       return;
11485     case 'S':
11486       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11487         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11488                                                  GA->getValueType(0)));
11489       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11490         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11491                                                 BA->getValueType(0)));
11492       }
11493       return;
11494     default:
11495       break;
11496     }
11497   }
11498   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11499 }
11500 
11501 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11502                                                    Instruction *Inst,
11503                                                    AtomicOrdering Ord) const {
11504   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11505     return Builder.CreateFence(Ord);
11506   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11507     return Builder.CreateFence(AtomicOrdering::Release);
11508   return nullptr;
11509 }
11510 
11511 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11512                                                     Instruction *Inst,
11513                                                     AtomicOrdering Ord) const {
11514   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11515     return Builder.CreateFence(AtomicOrdering::Acquire);
11516   return nullptr;
11517 }
11518 
11519 TargetLowering::AtomicExpansionKind
11520 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11521   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11522   // point operations can't be used in an lr/sc sequence without breaking the
11523   // forward-progress guarantee.
11524   if (AI->isFloatingPointOperation())
11525     return AtomicExpansionKind::CmpXChg;
11526 
11527   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11528   if (Size == 8 || Size == 16)
11529     return AtomicExpansionKind::MaskedIntrinsic;
11530   return AtomicExpansionKind::None;
11531 }
11532 
11533 static Intrinsic::ID
11534 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11535   if (XLen == 32) {
11536     switch (BinOp) {
11537     default:
11538       llvm_unreachable("Unexpected AtomicRMW BinOp");
11539     case AtomicRMWInst::Xchg:
11540       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11541     case AtomicRMWInst::Add:
11542       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11543     case AtomicRMWInst::Sub:
11544       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11545     case AtomicRMWInst::Nand:
11546       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11547     case AtomicRMWInst::Max:
11548       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11549     case AtomicRMWInst::Min:
11550       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11551     case AtomicRMWInst::UMax:
11552       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11553     case AtomicRMWInst::UMin:
11554       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11555     }
11556   }
11557 
11558   if (XLen == 64) {
11559     switch (BinOp) {
11560     default:
11561       llvm_unreachable("Unexpected AtomicRMW BinOp");
11562     case AtomicRMWInst::Xchg:
11563       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11564     case AtomicRMWInst::Add:
11565       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11566     case AtomicRMWInst::Sub:
11567       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11568     case AtomicRMWInst::Nand:
11569       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11570     case AtomicRMWInst::Max:
11571       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11572     case AtomicRMWInst::Min:
11573       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11574     case AtomicRMWInst::UMax:
11575       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11576     case AtomicRMWInst::UMin:
11577       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11578     }
11579   }
11580 
11581   llvm_unreachable("Unexpected XLen\n");
11582 }
11583 
11584 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11585     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11586     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11587   unsigned XLen = Subtarget.getXLen();
11588   Value *Ordering =
11589       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11590   Type *Tys[] = {AlignedAddr->getType()};
11591   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11592       AI->getModule(),
11593       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11594 
11595   if (XLen == 64) {
11596     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11597     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11598     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11599   }
11600 
11601   Value *Result;
11602 
11603   // Must pass the shift amount needed to sign extend the loaded value prior
11604   // to performing a signed comparison for min/max. ShiftAmt is the number of
11605   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11606   // is the number of bits to left+right shift the value in order to
11607   // sign-extend.
11608   if (AI->getOperation() == AtomicRMWInst::Min ||
11609       AI->getOperation() == AtomicRMWInst::Max) {
11610     const DataLayout &DL = AI->getModule()->getDataLayout();
11611     unsigned ValWidth =
11612         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11613     Value *SextShamt =
11614         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11615     Result = Builder.CreateCall(LrwOpScwLoop,
11616                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11617   } else {
11618     Result =
11619         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11620   }
11621 
11622   if (XLen == 64)
11623     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11624   return Result;
11625 }
11626 
11627 TargetLowering::AtomicExpansionKind
11628 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11629     AtomicCmpXchgInst *CI) const {
11630   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11631   if (Size == 8 || Size == 16)
11632     return AtomicExpansionKind::MaskedIntrinsic;
11633   return AtomicExpansionKind::None;
11634 }
11635 
11636 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11637     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11638     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11639   unsigned XLen = Subtarget.getXLen();
11640   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11641   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11642   if (XLen == 64) {
11643     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11644     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11645     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11646     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11647   }
11648   Type *Tys[] = {AlignedAddr->getType()};
11649   Function *MaskedCmpXchg =
11650       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11651   Value *Result = Builder.CreateCall(
11652       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11653   if (XLen == 64)
11654     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11655   return Result;
11656 }
11657 
11658 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
11659                                                         EVT DataVT) const {
11660   return false;
11661 }
11662 
11663 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11664                                                EVT VT) const {
11665   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11666     return false;
11667 
11668   switch (FPVT.getSimpleVT().SimpleTy) {
11669   case MVT::f16:
11670     return Subtarget.hasStdExtZfh();
11671   case MVT::f32:
11672     return Subtarget.hasStdExtF();
11673   case MVT::f64:
11674     return Subtarget.hasStdExtD();
11675   default:
11676     return false;
11677   }
11678 }
11679 
11680 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11681   // If we are using the small code model, we can reduce size of jump table
11682   // entry to 4 bytes.
11683   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11684       getTargetMachine().getCodeModel() == CodeModel::Small) {
11685     return MachineJumpTableInfo::EK_Custom32;
11686   }
11687   return TargetLowering::getJumpTableEncoding();
11688 }
11689 
11690 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11691     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11692     unsigned uid, MCContext &Ctx) const {
11693   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11694          getTargetMachine().getCodeModel() == CodeModel::Small);
11695   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11696 }
11697 
11698 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11699                                                      EVT VT) const {
11700   VT = VT.getScalarType();
11701 
11702   if (!VT.isSimple())
11703     return false;
11704 
11705   switch (VT.getSimpleVT().SimpleTy) {
11706   case MVT::f16:
11707     return Subtarget.hasStdExtZfh();
11708   case MVT::f32:
11709     return Subtarget.hasStdExtF();
11710   case MVT::f64:
11711     return Subtarget.hasStdExtD();
11712   default:
11713     break;
11714   }
11715 
11716   return false;
11717 }
11718 
11719 Register RISCVTargetLowering::getExceptionPointerRegister(
11720     const Constant *PersonalityFn) const {
11721   return RISCV::X10;
11722 }
11723 
11724 Register RISCVTargetLowering::getExceptionSelectorRegister(
11725     const Constant *PersonalityFn) const {
11726   return RISCV::X11;
11727 }
11728 
11729 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11730   // Return false to suppress the unnecessary extensions if the LibCall
11731   // arguments or return value is f32 type for LP64 ABI.
11732   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11733   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11734     return false;
11735 
11736   return true;
11737 }
11738 
11739 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11740   if (Subtarget.is64Bit() && Type == MVT::i32)
11741     return true;
11742 
11743   return IsSigned;
11744 }
11745 
11746 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11747                                                  SDValue C) const {
11748   // Check integral scalar types.
11749   if (VT.isScalarInteger()) {
11750     // Omit the optimization if the sub target has the M extension and the data
11751     // size exceeds XLen.
11752     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11753       return false;
11754     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11755       // Break the MUL to a SLLI and an ADD/SUB.
11756       const APInt &Imm = ConstNode->getAPIntValue();
11757       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11758           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11759         return true;
11760       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11761       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11762           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11763            (Imm - 8).isPowerOf2()))
11764         return true;
11765       // Omit the following optimization if the sub target has the M extension
11766       // and the data size >= XLen.
11767       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11768         return false;
11769       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11770       // a pair of LUI/ADDI.
11771       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11772         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11773         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11774             (1 - ImmS).isPowerOf2())
11775         return true;
11776       }
11777     }
11778   }
11779 
11780   return false;
11781 }
11782 
11783 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11784                                                       SDValue ConstNode) const {
11785   // Let the DAGCombiner decide for vectors.
11786   EVT VT = AddNode.getValueType();
11787   if (VT.isVector())
11788     return true;
11789 
11790   // Let the DAGCombiner decide for larger types.
11791   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11792     return true;
11793 
11794   // It is worse if c1 is simm12 while c1*c2 is not.
11795   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11796   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11797   const APInt &C1 = C1Node->getAPIntValue();
11798   const APInt &C2 = C2Node->getAPIntValue();
11799   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11800     return false;
11801 
11802   // Default to true and let the DAGCombiner decide.
11803   return true;
11804 }
11805 
11806 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11807     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11808     bool *Fast) const {
11809   if (!VT.isVector()) {
11810     if (Fast)
11811       *Fast = false;
11812     return Subtarget.enableUnalignedScalarMem();
11813   }
11814 
11815   // All vector implementations must support element alignment
11816   EVT ElemVT = VT.getVectorElementType();
11817   if (Alignment >= ElemVT.getStoreSize()) {
11818     if (Fast)
11819       *Fast = true;
11820     return true;
11821   }
11822 
11823   return false;
11824 }
11825 
11826 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11827     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11828     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11829   bool IsABIRegCopy = CC.hasValue();
11830   EVT ValueVT = Val.getValueType();
11831   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11832     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11833     // and cast to f32.
11834     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11835     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11836     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11837                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11838     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11839     Parts[0] = Val;
11840     return true;
11841   }
11842 
11843   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11844     LLVMContext &Context = *DAG.getContext();
11845     EVT ValueEltVT = ValueVT.getVectorElementType();
11846     EVT PartEltVT = PartVT.getVectorElementType();
11847     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11848     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11849     if (PartVTBitSize % ValueVTBitSize == 0) {
11850       assert(PartVTBitSize >= ValueVTBitSize);
11851       // If the element types are different, bitcast to the same element type of
11852       // PartVT first.
11853       // Give an example here, we want copy a <vscale x 1 x i8> value to
11854       // <vscale x 4 x i16>.
11855       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11856       // subvector, then we can bitcast to <vscale x 4 x i16>.
11857       if (ValueEltVT != PartEltVT) {
11858         if (PartVTBitSize > ValueVTBitSize) {
11859           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11860           assert(Count != 0 && "The number of element should not be zero.");
11861           EVT SameEltTypeVT =
11862               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11863           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11864                             DAG.getUNDEF(SameEltTypeVT), Val,
11865                             DAG.getVectorIdxConstant(0, DL));
11866         }
11867         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11868       } else {
11869         Val =
11870             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11871                         Val, DAG.getVectorIdxConstant(0, DL));
11872       }
11873       Parts[0] = Val;
11874       return true;
11875     }
11876   }
11877   return false;
11878 }
11879 
11880 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11881     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11882     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11883   bool IsABIRegCopy = CC.hasValue();
11884   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11885     SDValue Val = Parts[0];
11886 
11887     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11888     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11889     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11890     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11891     return Val;
11892   }
11893 
11894   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11895     LLVMContext &Context = *DAG.getContext();
11896     SDValue Val = Parts[0];
11897     EVT ValueEltVT = ValueVT.getVectorElementType();
11898     EVT PartEltVT = PartVT.getVectorElementType();
11899     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11900     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11901     if (PartVTBitSize % ValueVTBitSize == 0) {
11902       assert(PartVTBitSize >= ValueVTBitSize);
11903       EVT SameEltTypeVT = ValueVT;
11904       // If the element types are different, convert it to the same element type
11905       // of PartVT.
11906       // Give an example here, we want copy a <vscale x 1 x i8> value from
11907       // <vscale x 4 x i16>.
11908       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11909       // then we can extract <vscale x 1 x i8>.
11910       if (ValueEltVT != PartEltVT) {
11911         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11912         assert(Count != 0 && "The number of element should not be zero.");
11913         SameEltTypeVT =
11914             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11915         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11916       }
11917       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11918                         DAG.getVectorIdxConstant(0, DL));
11919       return Val;
11920     }
11921   }
11922   return SDValue();
11923 }
11924 
11925 SDValue
11926 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11927                                    SelectionDAG &DAG,
11928                                    SmallVectorImpl<SDNode *> &Created) const {
11929   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11930   if (isIntDivCheap(N->getValueType(0), Attr))
11931     return SDValue(N, 0); // Lower SDIV as SDIV
11932 
11933   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11934          "Unexpected divisor!");
11935 
11936   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11937   if (!Subtarget.hasStdExtZbt())
11938     return SDValue();
11939 
11940   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11941   // Besides, more critical path instructions will be generated when dividing
11942   // by 2. So we keep using the original DAGs for these cases.
11943   unsigned Lg2 = Divisor.countTrailingZeros();
11944   if (Lg2 == 1 || Lg2 >= 12)
11945     return SDValue();
11946 
11947   // fold (sdiv X, pow2)
11948   EVT VT = N->getValueType(0);
11949   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11950     return SDValue();
11951 
11952   SDLoc DL(N);
11953   SDValue N0 = N->getOperand(0);
11954   SDValue Zero = DAG.getConstant(0, DL, VT);
11955   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11956 
11957   // Add (N0 < 0) ? Pow2 - 1 : 0;
11958   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11959   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11960   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11961 
11962   Created.push_back(Cmp.getNode());
11963   Created.push_back(Add.getNode());
11964   Created.push_back(Sel.getNode());
11965 
11966   // Divide by pow2.
11967   SDValue SRA =
11968       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11969 
11970   // If we're dividing by a positive value, we're done.  Otherwise, we must
11971   // negate the result.
11972   if (Divisor.isNonNegative())
11973     return SRA;
11974 
11975   Created.push_back(SRA.getNode());
11976   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11977 }
11978 
11979 #define GET_REGISTER_MATCHER
11980 #include "RISCVGenAsmMatcher.inc"
11981 
11982 Register
11983 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11984                                        const MachineFunction &MF) const {
11985   Register Reg = MatchRegisterAltName(RegName);
11986   if (Reg == RISCV::NoRegister)
11987     Reg = MatchRegisterName(RegName);
11988   if (Reg == RISCV::NoRegister)
11989     report_fatal_error(
11990         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11991   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11992   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11993     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11994                              StringRef(RegName) + "\"."));
11995   return Reg;
11996 }
11997 
11998 namespace llvm {
11999 namespace RISCVVIntrinsicsTable {
12000 
12001 #define GET_RISCVVIntrinsicsTable_IMPL
12002 #include "RISCVGenSearchableTables.inc"
12003 
12004 } // namespace RISCVVIntrinsicsTable
12005 
12006 } // namespace llvm
12007