1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "riscv-lower" 43 44 STATISTIC(NumTailCalls, "Number of tail calls"); 45 46 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 47 const RISCVSubtarget &STI) 48 : TargetLowering(TM), Subtarget(STI) { 49 50 if (Subtarget.isRV32E()) 51 report_fatal_error("Codegen not yet implemented for RV32E"); 52 53 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 54 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 55 56 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 57 !Subtarget.hasStdExtF()) { 58 errs() << "Hard-float 'f' ABI can't be used for a target that " 59 "doesn't support the F instruction set extension (ignoring " 60 "target-abi)\n"; 61 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 62 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 63 !Subtarget.hasStdExtD()) { 64 errs() << "Hard-float 'd' ABI can't be used for a target that " 65 "doesn't support the D instruction set extension (ignoring " 66 "target-abi)\n"; 67 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 68 } 69 70 switch (ABI) { 71 default: 72 report_fatal_error("Don't know how to lower this ABI"); 73 case RISCVABI::ABI_ILP32: 74 case RISCVABI::ABI_ILP32F: 75 case RISCVABI::ABI_ILP32D: 76 case RISCVABI::ABI_LP64: 77 case RISCVABI::ABI_LP64F: 78 case RISCVABI::ABI_LP64D: 79 break; 80 } 81 82 MVT XLenVT = Subtarget.getXLenVT(); 83 84 // Set up the register classes. 85 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 86 87 if (Subtarget.hasStdExtZfh()) 88 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 89 if (Subtarget.hasStdExtF()) 90 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 91 if (Subtarget.hasStdExtD()) 92 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 93 94 static const MVT::SimpleValueType BoolVecVTs[] = { 95 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 96 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 97 static const MVT::SimpleValueType IntVecVTs[] = { 98 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 99 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 100 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 101 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 102 MVT::nxv4i64, MVT::nxv8i64}; 103 static const MVT::SimpleValueType F16VecVTs[] = { 104 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 105 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 106 static const MVT::SimpleValueType F32VecVTs[] = { 107 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 108 static const MVT::SimpleValueType F64VecVTs[] = { 109 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 110 111 if (Subtarget.hasStdExtV()) { 112 auto addRegClassForRVV = [this](MVT VT) { 113 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 114 assert(Size <= 512 && isPowerOf2_32(Size)); 115 const TargetRegisterClass *RC; 116 if (Size <= 64) 117 RC = &RISCV::VRRegClass; 118 else if (Size == 128) 119 RC = &RISCV::VRM2RegClass; 120 else if (Size == 256) 121 RC = &RISCV::VRM4RegClass; 122 else 123 RC = &RISCV::VRM8RegClass; 124 125 addRegisterClass(VT, RC); 126 }; 127 128 for (MVT VT : BoolVecVTs) 129 addRegClassForRVV(VT); 130 for (MVT VT : IntVecVTs) 131 addRegClassForRVV(VT); 132 133 if (Subtarget.hasStdExtZfh()) 134 for (MVT VT : F16VecVTs) 135 addRegClassForRVV(VT); 136 137 if (Subtarget.hasStdExtF()) 138 for (MVT VT : F32VecVTs) 139 addRegClassForRVV(VT); 140 141 if (Subtarget.hasStdExtD()) 142 for (MVT VT : F64VecVTs) 143 addRegClassForRVV(VT); 144 145 if (Subtarget.useRVVForFixedLengthVectors()) { 146 auto addRegClassForFixedVectors = [this](MVT VT) { 147 MVT ContainerVT = getContainerForFixedLengthVector(VT); 148 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 149 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 150 addRegisterClass(VT, TRI.getRegClass(RCID)); 151 }; 152 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 153 if (useRVVForFixedLengthVectorVT(VT)) 154 addRegClassForFixedVectors(VT); 155 156 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 157 if (useRVVForFixedLengthVectorVT(VT)) 158 addRegClassForFixedVectors(VT); 159 } 160 } 161 162 // Compute derived properties from the register classes. 163 computeRegisterProperties(STI.getRegisterInfo()); 164 165 setStackPointerRegisterToSaveRestore(RISCV::X2); 166 167 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 168 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 169 170 // TODO: add all necessary setOperationAction calls. 171 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 172 173 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 174 setOperationAction(ISD::BR_CC, XLenVT, Expand); 175 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 176 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 177 178 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 179 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 180 181 setOperationAction(ISD::VASTART, MVT::Other, Custom); 182 setOperationAction(ISD::VAARG, MVT::Other, Expand); 183 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 184 setOperationAction(ISD::VAEND, MVT::Other, Expand); 185 186 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 187 if (!Subtarget.hasStdExtZbb()) { 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 190 } 191 192 if (Subtarget.is64Bit()) { 193 setOperationAction(ISD::ADD, MVT::i32, Custom); 194 setOperationAction(ISD::SUB, MVT::i32, Custom); 195 setOperationAction(ISD::SHL, MVT::i32, Custom); 196 setOperationAction(ISD::SRA, MVT::i32, Custom); 197 setOperationAction(ISD::SRL, MVT::i32, Custom); 198 199 setOperationAction(ISD::UADDO, MVT::i32, Custom); 200 setOperationAction(ISD::USUBO, MVT::i32, Custom); 201 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 202 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 203 } else { 204 setLibcallName(RTLIB::SHL_I128, nullptr); 205 setLibcallName(RTLIB::SRL_I128, nullptr); 206 setLibcallName(RTLIB::SRA_I128, nullptr); 207 setLibcallName(RTLIB::MUL_I128, nullptr); 208 setLibcallName(RTLIB::MULO_I64, nullptr); 209 } 210 211 if (!Subtarget.hasStdExtM()) { 212 setOperationAction(ISD::MUL, XLenVT, Expand); 213 setOperationAction(ISD::MULHS, XLenVT, Expand); 214 setOperationAction(ISD::MULHU, XLenVT, Expand); 215 setOperationAction(ISD::SDIV, XLenVT, Expand); 216 setOperationAction(ISD::UDIV, XLenVT, Expand); 217 setOperationAction(ISD::SREM, XLenVT, Expand); 218 setOperationAction(ISD::UREM, XLenVT, Expand); 219 } else { 220 if (Subtarget.is64Bit()) { 221 setOperationAction(ISD::MUL, MVT::i32, Custom); 222 setOperationAction(ISD::MUL, MVT::i128, Custom); 223 224 setOperationAction(ISD::SDIV, MVT::i8, Custom); 225 setOperationAction(ISD::UDIV, MVT::i8, Custom); 226 setOperationAction(ISD::UREM, MVT::i8, Custom); 227 setOperationAction(ISD::SDIV, MVT::i16, Custom); 228 setOperationAction(ISD::UDIV, MVT::i16, Custom); 229 setOperationAction(ISD::UREM, MVT::i16, Custom); 230 setOperationAction(ISD::SDIV, MVT::i32, Custom); 231 setOperationAction(ISD::UDIV, MVT::i32, Custom); 232 setOperationAction(ISD::UREM, MVT::i32, Custom); 233 } else { 234 setOperationAction(ISD::MUL, MVT::i64, Custom); 235 } 236 } 237 238 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 239 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 240 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 241 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 242 243 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 244 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 245 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 246 247 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 248 if (Subtarget.is64Bit()) { 249 setOperationAction(ISD::ROTL, MVT::i32, Custom); 250 setOperationAction(ISD::ROTR, MVT::i32, Custom); 251 } 252 } else { 253 setOperationAction(ISD::ROTL, XLenVT, Expand); 254 setOperationAction(ISD::ROTR, XLenVT, Expand); 255 } 256 257 if (Subtarget.hasStdExtZbp()) { 258 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 259 // more combining. 260 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 261 setOperationAction(ISD::BSWAP, XLenVT, Custom); 262 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 263 // BSWAP i8 doesn't exist. 264 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 265 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 266 267 if (Subtarget.is64Bit()) { 268 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 269 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 270 } 271 } else { 272 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 273 // pattern match it directly in isel. 274 setOperationAction(ISD::BSWAP, XLenVT, 275 Subtarget.hasStdExtZbb() ? Legal : Expand); 276 } 277 278 if (Subtarget.hasStdExtZbb()) { 279 setOperationAction(ISD::SMIN, XLenVT, Legal); 280 setOperationAction(ISD::SMAX, XLenVT, Legal); 281 setOperationAction(ISD::UMIN, XLenVT, Legal); 282 setOperationAction(ISD::UMAX, XLenVT, Legal); 283 284 if (Subtarget.is64Bit()) { 285 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 286 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 287 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 288 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 289 } 290 } else { 291 setOperationAction(ISD::CTTZ, XLenVT, Expand); 292 setOperationAction(ISD::CTLZ, XLenVT, Expand); 293 setOperationAction(ISD::CTPOP, XLenVT, Expand); 294 } 295 296 if (Subtarget.hasStdExtZbt()) { 297 setOperationAction(ISD::FSHL, XLenVT, Custom); 298 setOperationAction(ISD::FSHR, XLenVT, Custom); 299 setOperationAction(ISD::SELECT, XLenVT, Legal); 300 301 if (Subtarget.is64Bit()) { 302 setOperationAction(ISD::FSHL, MVT::i32, Custom); 303 setOperationAction(ISD::FSHR, MVT::i32, Custom); 304 } 305 } else { 306 setOperationAction(ISD::SELECT, XLenVT, Custom); 307 } 308 309 ISD::CondCode FPCCToExpand[] = { 310 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 311 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 312 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 313 314 ISD::NodeType FPOpToExpand[] = { 315 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 316 ISD::FP_TO_FP16}; 317 318 if (Subtarget.hasStdExtZfh()) 319 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 320 321 if (Subtarget.hasStdExtZfh()) { 322 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 323 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 324 setOperationAction(ISD::LRINT, MVT::f16, Legal); 325 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 326 setOperationAction(ISD::LROUND, MVT::f16, Legal); 327 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 328 for (auto CC : FPCCToExpand) 329 setCondCodeAction(CC, MVT::f16, Expand); 330 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 331 setOperationAction(ISD::SELECT, MVT::f16, Custom); 332 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 333 for (auto Op : FPOpToExpand) 334 setOperationAction(Op, MVT::f16, Expand); 335 } 336 337 if (Subtarget.hasStdExtF()) { 338 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 339 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 340 setOperationAction(ISD::LRINT, MVT::f32, Legal); 341 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 342 setOperationAction(ISD::LROUND, MVT::f32, Legal); 343 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 344 for (auto CC : FPCCToExpand) 345 setCondCodeAction(CC, MVT::f32, Expand); 346 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 347 setOperationAction(ISD::SELECT, MVT::f32, Custom); 348 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 349 for (auto Op : FPOpToExpand) 350 setOperationAction(Op, MVT::f32, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 352 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 353 } 354 355 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 356 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 357 358 if (Subtarget.hasStdExtD()) { 359 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 360 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 361 setOperationAction(ISD::LRINT, MVT::f64, Legal); 362 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 363 setOperationAction(ISD::LROUND, MVT::f64, Legal); 364 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 365 for (auto CC : FPCCToExpand) 366 setCondCodeAction(CC, MVT::f64, Expand); 367 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 368 setOperationAction(ISD::SELECT, MVT::f64, Custom); 369 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 370 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 371 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 372 for (auto Op : FPOpToExpand) 373 setOperationAction(Op, MVT::f64, Expand); 374 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 375 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 376 } 377 378 if (Subtarget.is64Bit()) { 379 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 380 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 381 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 382 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 383 } 384 385 if (Subtarget.hasStdExtF()) { 386 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 387 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 388 389 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 390 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 391 } 392 393 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 394 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 395 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 396 setOperationAction(ISD::JumpTable, XLenVT, Custom); 397 398 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 399 400 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 401 // Unfortunately this can't be determined just from the ISA naming string. 402 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 403 Subtarget.is64Bit() ? Legal : Custom); 404 405 setOperationAction(ISD::TRAP, MVT::Other, Legal); 406 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 408 if (Subtarget.is64Bit()) 409 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 410 411 if (Subtarget.hasStdExtA()) { 412 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 413 setMinCmpXchgSizeInBits(32); 414 } else { 415 setMaxAtomicSizeInBitsSupported(0); 416 } 417 418 setBooleanContents(ZeroOrOneBooleanContent); 419 420 if (Subtarget.hasStdExtV()) { 421 setBooleanVectorContents(ZeroOrOneBooleanContent); 422 423 setOperationAction(ISD::VSCALE, XLenVT, Custom); 424 425 // RVV intrinsics may have illegal operands. 426 // We also need to custom legalize vmv.x.s. 427 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 428 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 429 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 431 if (Subtarget.is64Bit()) { 432 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 433 } else { 434 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 435 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 436 } 437 438 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 439 440 static unsigned IntegerVPOps[] = { 441 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 442 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 443 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 444 445 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 446 ISD::VP_FMUL, ISD::VP_FDIV}; 447 448 if (!Subtarget.is64Bit()) { 449 // We must custom-lower certain vXi64 operations on RV32 due to the vector 450 // element type being illegal. 451 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 452 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 453 454 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 455 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 456 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 457 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 458 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 459 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 460 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 461 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 462 } 463 464 for (MVT VT : BoolVecVTs) { 465 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 466 467 // Mask VTs are custom-expanded into a series of standard nodes 468 setOperationAction(ISD::TRUNCATE, VT, Custom); 469 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 470 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 471 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 472 473 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 474 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 475 476 setOperationAction(ISD::SELECT, VT, Custom); 477 setOperationAction(ISD::SELECT_CC, VT, Expand); 478 setOperationAction(ISD::VSELECT, VT, Expand); 479 480 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 481 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 482 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 483 484 // RVV has native int->float & float->int conversions where the 485 // element type sizes are within one power-of-two of each other. Any 486 // wider distances between type sizes have to be lowered as sequences 487 // which progressively narrow the gap in stages. 488 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 489 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 490 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 491 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 492 493 // Expand all extending loads to types larger than this, and truncating 494 // stores from types larger than this. 495 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 496 setTruncStoreAction(OtherVT, VT, Expand); 497 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 498 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 499 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 500 } 501 } 502 503 for (MVT VT : IntVecVTs) { 504 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 505 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 506 507 setOperationAction(ISD::SMIN, VT, Legal); 508 setOperationAction(ISD::SMAX, VT, Legal); 509 setOperationAction(ISD::UMIN, VT, Legal); 510 setOperationAction(ISD::UMAX, VT, Legal); 511 512 setOperationAction(ISD::ROTL, VT, Expand); 513 setOperationAction(ISD::ROTR, VT, Expand); 514 515 // Custom-lower extensions and truncations from/to mask types. 516 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 517 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 518 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 519 520 // RVV has native int->float & float->int conversions where the 521 // element type sizes are within one power-of-two of each other. Any 522 // wider distances between type sizes have to be lowered as sequences 523 // which progressively narrow the gap in stages. 524 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 525 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 526 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 527 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 528 529 setOperationAction(ISD::SADDSAT, VT, Legal); 530 setOperationAction(ISD::UADDSAT, VT, Legal); 531 setOperationAction(ISD::SSUBSAT, VT, Legal); 532 setOperationAction(ISD::USUBSAT, VT, Legal); 533 534 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 535 // nodes which truncate by one power of two at a time. 536 setOperationAction(ISD::TRUNCATE, VT, Custom); 537 538 // Custom-lower insert/extract operations to simplify patterns. 539 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 540 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 541 542 // Custom-lower reduction operations to set up the corresponding custom 543 // nodes' operands. 544 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 545 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 546 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 547 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 548 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 551 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 552 553 for (unsigned VPOpc : IntegerVPOps) 554 setOperationAction(VPOpc, VT, Custom); 555 556 setOperationAction(ISD::LOAD, VT, Custom); 557 setOperationAction(ISD::STORE, VT, Custom); 558 559 setOperationAction(ISD::MLOAD, VT, Custom); 560 setOperationAction(ISD::MSTORE, VT, Custom); 561 setOperationAction(ISD::MGATHER, VT, Custom); 562 setOperationAction(ISD::MSCATTER, VT, Custom); 563 564 setOperationAction(ISD::VP_LOAD, VT, Custom); 565 setOperationAction(ISD::VP_STORE, VT, Custom); 566 setOperationAction(ISD::VP_GATHER, VT, Custom); 567 setOperationAction(ISD::VP_SCATTER, VT, Custom); 568 569 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 570 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 571 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 572 573 setOperationAction(ISD::SELECT, VT, Custom); 574 setOperationAction(ISD::SELECT_CC, VT, Expand); 575 576 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 577 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 578 579 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 580 setTruncStoreAction(VT, OtherVT, Expand); 581 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 582 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 583 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 584 } 585 } 586 587 // Expand various CCs to best match the RVV ISA, which natively supports UNE 588 // but no other unordered comparisons, and supports all ordered comparisons 589 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 590 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 591 // and we pattern-match those back to the "original", swapping operands once 592 // more. This way we catch both operations and both "vf" and "fv" forms with 593 // fewer patterns. 594 ISD::CondCode VFPCCToExpand[] = { 595 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 596 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 597 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 598 }; 599 600 // Sets common operation actions on RVV floating-point vector types. 601 const auto SetCommonVFPActions = [&](MVT VT) { 602 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 603 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 604 // sizes are within one power-of-two of each other. Therefore conversions 605 // between vXf16 and vXf64 must be lowered as sequences which convert via 606 // vXf32. 607 setOperationAction(ISD::FP_ROUND, VT, Custom); 608 setOperationAction(ISD::FP_EXTEND, VT, Custom); 609 // Custom-lower insert/extract operations to simplify patterns. 610 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 611 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 612 // Expand various condition codes (explained above). 613 for (auto CC : VFPCCToExpand) 614 setCondCodeAction(CC, VT, Expand); 615 616 setOperationAction(ISD::FMINNUM, VT, Legal); 617 setOperationAction(ISD::FMAXNUM, VT, Legal); 618 619 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 620 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 621 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 622 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 623 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 624 625 setOperationAction(ISD::LOAD, VT, Custom); 626 setOperationAction(ISD::STORE, VT, Custom); 627 628 setOperationAction(ISD::MLOAD, VT, Custom); 629 setOperationAction(ISD::MSTORE, VT, Custom); 630 setOperationAction(ISD::MGATHER, VT, Custom); 631 setOperationAction(ISD::MSCATTER, VT, Custom); 632 633 setOperationAction(ISD::VP_LOAD, VT, Custom); 634 setOperationAction(ISD::VP_STORE, VT, Custom); 635 setOperationAction(ISD::VP_GATHER, VT, Custom); 636 setOperationAction(ISD::VP_SCATTER, VT, Custom); 637 638 setOperationAction(ISD::SELECT, VT, Custom); 639 setOperationAction(ISD::SELECT_CC, VT, Expand); 640 641 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 642 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 643 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 644 645 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 646 647 for (unsigned VPOpc : FloatingPointVPOps) 648 setOperationAction(VPOpc, VT, Custom); 649 }; 650 651 // Sets common extload/truncstore actions on RVV floating-point vector 652 // types. 653 const auto SetCommonVFPExtLoadTruncStoreActions = 654 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 655 for (auto SmallVT : SmallerVTs) { 656 setTruncStoreAction(VT, SmallVT, Expand); 657 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 658 } 659 }; 660 661 if (Subtarget.hasStdExtZfh()) 662 for (MVT VT : F16VecVTs) 663 SetCommonVFPActions(VT); 664 665 for (MVT VT : F32VecVTs) { 666 if (Subtarget.hasStdExtF()) 667 SetCommonVFPActions(VT); 668 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 669 } 670 671 for (MVT VT : F64VecVTs) { 672 if (Subtarget.hasStdExtD()) 673 SetCommonVFPActions(VT); 674 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 675 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 676 } 677 678 if (Subtarget.useRVVForFixedLengthVectors()) { 679 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 680 if (!useRVVForFixedLengthVectorVT(VT)) 681 continue; 682 683 // By default everything must be expanded. 684 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 685 setOperationAction(Op, VT, Expand); 686 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 687 setTruncStoreAction(VT, OtherVT, Expand); 688 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 689 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 690 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 691 } 692 693 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 694 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 695 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 696 697 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 698 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 699 700 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 701 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 702 703 setOperationAction(ISD::LOAD, VT, Custom); 704 setOperationAction(ISD::STORE, VT, Custom); 705 706 setOperationAction(ISD::SETCC, VT, Custom); 707 708 setOperationAction(ISD::SELECT, VT, Custom); 709 710 setOperationAction(ISD::TRUNCATE, VT, Custom); 711 712 setOperationAction(ISD::BITCAST, VT, Custom); 713 714 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 715 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 716 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 717 718 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 719 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 720 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 721 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 722 723 // Operations below are different for between masks and other vectors. 724 if (VT.getVectorElementType() == MVT::i1) { 725 setOperationAction(ISD::AND, VT, Custom); 726 setOperationAction(ISD::OR, VT, Custom); 727 setOperationAction(ISD::XOR, VT, Custom); 728 continue; 729 } 730 731 // Use SPLAT_VECTOR to prevent type legalization from destroying the 732 // splats when type legalizing i64 scalar on RV32. 733 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 734 // improvements first. 735 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 736 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 737 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 738 } 739 740 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 741 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 742 743 setOperationAction(ISD::MLOAD, VT, Custom); 744 setOperationAction(ISD::MSTORE, VT, Custom); 745 setOperationAction(ISD::MGATHER, VT, Custom); 746 setOperationAction(ISD::MSCATTER, VT, Custom); 747 748 setOperationAction(ISD::VP_LOAD, VT, Custom); 749 setOperationAction(ISD::VP_STORE, VT, Custom); 750 setOperationAction(ISD::VP_GATHER, VT, Custom); 751 setOperationAction(ISD::VP_SCATTER, VT, Custom); 752 753 setOperationAction(ISD::ADD, VT, Custom); 754 setOperationAction(ISD::MUL, VT, Custom); 755 setOperationAction(ISD::SUB, VT, Custom); 756 setOperationAction(ISD::AND, VT, Custom); 757 setOperationAction(ISD::OR, VT, Custom); 758 setOperationAction(ISD::XOR, VT, Custom); 759 setOperationAction(ISD::SDIV, VT, Custom); 760 setOperationAction(ISD::SREM, VT, Custom); 761 setOperationAction(ISD::UDIV, VT, Custom); 762 setOperationAction(ISD::UREM, VT, Custom); 763 setOperationAction(ISD::SHL, VT, Custom); 764 setOperationAction(ISD::SRA, VT, Custom); 765 setOperationAction(ISD::SRL, VT, Custom); 766 767 setOperationAction(ISD::SMIN, VT, Custom); 768 setOperationAction(ISD::SMAX, VT, Custom); 769 setOperationAction(ISD::UMIN, VT, Custom); 770 setOperationAction(ISD::UMAX, VT, Custom); 771 setOperationAction(ISD::ABS, VT, Custom); 772 773 setOperationAction(ISD::MULHS, VT, Custom); 774 setOperationAction(ISD::MULHU, VT, Custom); 775 776 setOperationAction(ISD::SADDSAT, VT, Custom); 777 setOperationAction(ISD::UADDSAT, VT, Custom); 778 setOperationAction(ISD::SSUBSAT, VT, Custom); 779 setOperationAction(ISD::USUBSAT, VT, Custom); 780 781 setOperationAction(ISD::VSELECT, VT, Custom); 782 setOperationAction(ISD::SELECT_CC, VT, Expand); 783 784 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 785 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 786 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 787 788 // Custom-lower reduction operations to set up the corresponding custom 789 // nodes' operands. 790 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 791 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 792 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 793 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 794 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 795 796 for (unsigned VPOpc : IntegerVPOps) 797 setOperationAction(VPOpc, VT, Custom); 798 } 799 800 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 801 if (!useRVVForFixedLengthVectorVT(VT)) 802 continue; 803 804 // By default everything must be expanded. 805 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 806 setOperationAction(Op, VT, Expand); 807 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 808 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 809 setTruncStoreAction(VT, OtherVT, Expand); 810 } 811 812 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 813 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 814 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 815 816 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 817 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 818 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 819 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 820 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 821 822 setOperationAction(ISD::LOAD, VT, Custom); 823 setOperationAction(ISD::STORE, VT, Custom); 824 setOperationAction(ISD::MLOAD, VT, Custom); 825 setOperationAction(ISD::MSTORE, VT, Custom); 826 setOperationAction(ISD::MGATHER, VT, Custom); 827 setOperationAction(ISD::MSCATTER, VT, Custom); 828 829 setOperationAction(ISD::VP_LOAD, VT, Custom); 830 setOperationAction(ISD::VP_STORE, VT, Custom); 831 setOperationAction(ISD::VP_GATHER, VT, Custom); 832 setOperationAction(ISD::VP_SCATTER, VT, Custom); 833 834 setOperationAction(ISD::FADD, VT, Custom); 835 setOperationAction(ISD::FSUB, VT, Custom); 836 setOperationAction(ISD::FMUL, VT, Custom); 837 setOperationAction(ISD::FDIV, VT, Custom); 838 setOperationAction(ISD::FNEG, VT, Custom); 839 setOperationAction(ISD::FABS, VT, Custom); 840 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 841 setOperationAction(ISD::FSQRT, VT, Custom); 842 setOperationAction(ISD::FMA, VT, Custom); 843 setOperationAction(ISD::FMINNUM, VT, Custom); 844 setOperationAction(ISD::FMAXNUM, VT, Custom); 845 846 setOperationAction(ISD::FP_ROUND, VT, Custom); 847 setOperationAction(ISD::FP_EXTEND, VT, Custom); 848 849 for (auto CC : VFPCCToExpand) 850 setCondCodeAction(CC, VT, Expand); 851 852 setOperationAction(ISD::VSELECT, VT, Custom); 853 setOperationAction(ISD::SELECT, VT, Custom); 854 setOperationAction(ISD::SELECT_CC, VT, Expand); 855 856 setOperationAction(ISD::BITCAST, VT, Custom); 857 858 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 859 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 860 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 861 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 862 863 for (unsigned VPOpc : FloatingPointVPOps) 864 setOperationAction(VPOpc, VT, Custom); 865 } 866 867 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 868 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 869 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 870 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 871 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 872 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 873 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 874 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 875 } 876 } 877 878 // Function alignments. 879 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 880 setMinFunctionAlignment(FunctionAlignment); 881 setPrefFunctionAlignment(FunctionAlignment); 882 883 setMinimumJumpTableEntries(5); 884 885 // Jumps are expensive, compared to logic 886 setJumpIsExpensive(); 887 888 // We can use any register for comparisons 889 setHasMultipleConditionRegisters(); 890 891 setTargetDAGCombine(ISD::ADD); 892 setTargetDAGCombine(ISD::SUB); 893 setTargetDAGCombine(ISD::AND); 894 setTargetDAGCombine(ISD::OR); 895 setTargetDAGCombine(ISD::XOR); 896 setTargetDAGCombine(ISD::ANY_EXTEND); 897 setTargetDAGCombine(ISD::ZERO_EXTEND); 898 if (Subtarget.hasStdExtV()) { 899 setTargetDAGCombine(ISD::FCOPYSIGN); 900 setTargetDAGCombine(ISD::MGATHER); 901 setTargetDAGCombine(ISD::MSCATTER); 902 setTargetDAGCombine(ISD::VP_GATHER); 903 setTargetDAGCombine(ISD::VP_SCATTER); 904 setTargetDAGCombine(ISD::SRA); 905 setTargetDAGCombine(ISD::SRL); 906 setTargetDAGCombine(ISD::SHL); 907 } 908 } 909 910 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 911 LLVMContext &Context, 912 EVT VT) const { 913 if (!VT.isVector()) 914 return getPointerTy(DL); 915 if (Subtarget.hasStdExtV() && 916 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 917 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 918 return VT.changeVectorElementTypeToInteger(); 919 } 920 921 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 922 return Subtarget.getXLenVT(); 923 } 924 925 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 926 const CallInst &I, 927 MachineFunction &MF, 928 unsigned Intrinsic) const { 929 switch (Intrinsic) { 930 default: 931 return false; 932 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 933 case Intrinsic::riscv_masked_atomicrmw_add_i32: 934 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 935 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 936 case Intrinsic::riscv_masked_atomicrmw_max_i32: 937 case Intrinsic::riscv_masked_atomicrmw_min_i32: 938 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 939 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 940 case Intrinsic::riscv_masked_cmpxchg_i32: { 941 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 942 Info.opc = ISD::INTRINSIC_W_CHAIN; 943 Info.memVT = MVT::getVT(PtrTy->getElementType()); 944 Info.ptrVal = I.getArgOperand(0); 945 Info.offset = 0; 946 Info.align = Align(4); 947 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 948 MachineMemOperand::MOVolatile; 949 return true; 950 } 951 } 952 } 953 954 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 955 const AddrMode &AM, Type *Ty, 956 unsigned AS, 957 Instruction *I) const { 958 // No global is ever allowed as a base. 959 if (AM.BaseGV) 960 return false; 961 962 // Require a 12-bit signed offset. 963 if (!isInt<12>(AM.BaseOffs)) 964 return false; 965 966 switch (AM.Scale) { 967 case 0: // "r+i" or just "i", depending on HasBaseReg. 968 break; 969 case 1: 970 if (!AM.HasBaseReg) // allow "r+i". 971 break; 972 return false; // disallow "r+r" or "r+r+i". 973 default: 974 return false; 975 } 976 977 return true; 978 } 979 980 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 981 return isInt<12>(Imm); 982 } 983 984 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 985 return isInt<12>(Imm); 986 } 987 988 // On RV32, 64-bit integers are split into their high and low parts and held 989 // in two different registers, so the trunc is free since the low register can 990 // just be used. 991 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 992 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 993 return false; 994 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 995 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 996 return (SrcBits == 64 && DestBits == 32); 997 } 998 999 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1000 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1001 !SrcVT.isInteger() || !DstVT.isInteger()) 1002 return false; 1003 unsigned SrcBits = SrcVT.getSizeInBits(); 1004 unsigned DestBits = DstVT.getSizeInBits(); 1005 return (SrcBits == 64 && DestBits == 32); 1006 } 1007 1008 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1009 // Zexts are free if they can be combined with a load. 1010 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1011 EVT MemVT = LD->getMemoryVT(); 1012 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1013 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1014 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1015 LD->getExtensionType() == ISD::ZEXTLOAD)) 1016 return true; 1017 } 1018 1019 return TargetLowering::isZExtFree(Val, VT2); 1020 } 1021 1022 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1023 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1024 } 1025 1026 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1027 return Subtarget.hasStdExtZbb(); 1028 } 1029 1030 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1031 return Subtarget.hasStdExtZbb(); 1032 } 1033 1034 /// Check if sinking \p I's operands to I's basic block is profitable, because 1035 /// the operands can be folded into a target instruction, e.g. 1036 /// splats of scalars can fold into vector instructions. 1037 bool RISCVTargetLowering::shouldSinkOperands( 1038 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1039 using namespace llvm::PatternMatch; 1040 1041 if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV()) 1042 return false; 1043 1044 auto IsSinker = [&](Instruction *I, int Operand) { 1045 switch (I->getOpcode()) { 1046 case Instruction::Add: 1047 case Instruction::Sub: 1048 case Instruction::Mul: 1049 return true; 1050 case Instruction::Shl: 1051 case Instruction::LShr: 1052 case Instruction::AShr: 1053 return Operand == 1; 1054 default: 1055 return false; 1056 } 1057 }; 1058 1059 for (auto OpIdx : enumerate(I->operands())) { 1060 if (!IsSinker(I, OpIdx.index())) 1061 continue; 1062 1063 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1064 // Make sure we are not already sinking this operand 1065 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1066 continue; 1067 1068 // We are looking for a splat that can be sunk. 1069 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1070 m_Undef(), m_ZeroMask()))) 1071 continue; 1072 1073 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1074 // and vector registers 1075 for (Use &U : Op->uses()) { 1076 Instruction *Insn = cast<Instruction>(U.getUser()); 1077 if (!IsSinker(Insn, U.getOperandNo())) 1078 return false; 1079 } 1080 1081 Ops.push_back(&Op->getOperandUse(0)); 1082 Ops.push_back(&OpIdx.value()); 1083 } 1084 return true; 1085 } 1086 1087 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1088 bool ForCodeSize) const { 1089 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1090 return false; 1091 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1092 return false; 1093 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1094 return false; 1095 if (Imm.isNegZero()) 1096 return false; 1097 return Imm.isZero(); 1098 } 1099 1100 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1101 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1102 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1103 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1104 } 1105 1106 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1107 CallingConv::ID CC, 1108 EVT VT) const { 1109 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1110 // end up using a GPR but that will be decided based on ABI. 1111 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1112 return MVT::f32; 1113 1114 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1115 } 1116 1117 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1118 CallingConv::ID CC, 1119 EVT VT) const { 1120 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1121 // end up using a GPR but that will be decided based on ABI. 1122 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1123 return 1; 1124 1125 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1126 } 1127 1128 // Changes the condition code and swaps operands if necessary, so the SetCC 1129 // operation matches one of the comparisons supported directly by branches 1130 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1131 // with 1/-1. 1132 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1133 ISD::CondCode &CC, SelectionDAG &DAG) { 1134 // Convert X > -1 to X >= 0. 1135 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1136 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1137 CC = ISD::SETGE; 1138 return; 1139 } 1140 // Convert X < 1 to 0 >= X. 1141 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1142 RHS = LHS; 1143 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1144 CC = ISD::SETGE; 1145 return; 1146 } 1147 1148 switch (CC) { 1149 default: 1150 break; 1151 case ISD::SETGT: 1152 case ISD::SETLE: 1153 case ISD::SETUGT: 1154 case ISD::SETULE: 1155 CC = ISD::getSetCCSwappedOperands(CC); 1156 std::swap(LHS, RHS); 1157 break; 1158 } 1159 } 1160 1161 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1162 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1163 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1164 if (VT.getVectorElementType() == MVT::i1) 1165 KnownSize *= 8; 1166 1167 switch (KnownSize) { 1168 default: 1169 llvm_unreachable("Invalid LMUL."); 1170 case 8: 1171 return RISCVII::VLMUL::LMUL_F8; 1172 case 16: 1173 return RISCVII::VLMUL::LMUL_F4; 1174 case 32: 1175 return RISCVII::VLMUL::LMUL_F2; 1176 case 64: 1177 return RISCVII::VLMUL::LMUL_1; 1178 case 128: 1179 return RISCVII::VLMUL::LMUL_2; 1180 case 256: 1181 return RISCVII::VLMUL::LMUL_4; 1182 case 512: 1183 return RISCVII::VLMUL::LMUL_8; 1184 } 1185 } 1186 1187 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1188 switch (LMul) { 1189 default: 1190 llvm_unreachable("Invalid LMUL."); 1191 case RISCVII::VLMUL::LMUL_F8: 1192 case RISCVII::VLMUL::LMUL_F4: 1193 case RISCVII::VLMUL::LMUL_F2: 1194 case RISCVII::VLMUL::LMUL_1: 1195 return RISCV::VRRegClassID; 1196 case RISCVII::VLMUL::LMUL_2: 1197 return RISCV::VRM2RegClassID; 1198 case RISCVII::VLMUL::LMUL_4: 1199 return RISCV::VRM4RegClassID; 1200 case RISCVII::VLMUL::LMUL_8: 1201 return RISCV::VRM8RegClassID; 1202 } 1203 } 1204 1205 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1206 RISCVII::VLMUL LMUL = getLMUL(VT); 1207 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1208 LMUL == RISCVII::VLMUL::LMUL_F4 || 1209 LMUL == RISCVII::VLMUL::LMUL_F2 || 1210 LMUL == RISCVII::VLMUL::LMUL_1) { 1211 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1212 "Unexpected subreg numbering"); 1213 return RISCV::sub_vrm1_0 + Index; 1214 } 1215 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1216 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1217 "Unexpected subreg numbering"); 1218 return RISCV::sub_vrm2_0 + Index; 1219 } 1220 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1221 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1222 "Unexpected subreg numbering"); 1223 return RISCV::sub_vrm4_0 + Index; 1224 } 1225 llvm_unreachable("Invalid vector type."); 1226 } 1227 1228 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1229 if (VT.getVectorElementType() == MVT::i1) 1230 return RISCV::VRRegClassID; 1231 return getRegClassIDForLMUL(getLMUL(VT)); 1232 } 1233 1234 // Attempt to decompose a subvector insert/extract between VecVT and 1235 // SubVecVT via subregister indices. Returns the subregister index that 1236 // can perform the subvector insert/extract with the given element index, as 1237 // well as the index corresponding to any leftover subvectors that must be 1238 // further inserted/extracted within the register class for SubVecVT. 1239 std::pair<unsigned, unsigned> 1240 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1241 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1242 const RISCVRegisterInfo *TRI) { 1243 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1244 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1245 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1246 "Register classes not ordered"); 1247 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1248 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1249 // Try to compose a subregister index that takes us from the incoming 1250 // LMUL>1 register class down to the outgoing one. At each step we half 1251 // the LMUL: 1252 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1253 // Note that this is not guaranteed to find a subregister index, such as 1254 // when we are extracting from one VR type to another. 1255 unsigned SubRegIdx = RISCV::NoSubRegister; 1256 for (const unsigned RCID : 1257 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1258 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1259 VecVT = VecVT.getHalfNumVectorElementsVT(); 1260 bool IsHi = 1261 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1262 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1263 getSubregIndexByMVT(VecVT, IsHi)); 1264 if (IsHi) 1265 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1266 } 1267 return {SubRegIdx, InsertExtractIdx}; 1268 } 1269 1270 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1271 // stores for those types. 1272 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1273 return !Subtarget.useRVVForFixedLengthVectors() || 1274 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1275 } 1276 1277 static bool useRVVForFixedLengthVectorVT(MVT VT, 1278 const RISCVSubtarget &Subtarget) { 1279 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1280 if (!Subtarget.useRVVForFixedLengthVectors()) 1281 return false; 1282 1283 // We only support a set of vector types with a consistent maximum fixed size 1284 // across all supported vector element types to avoid legalization issues. 1285 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1286 // fixed-length vector type we support is 1024 bytes. 1287 if (VT.getFixedSizeInBits() > 1024 * 8) 1288 return false; 1289 1290 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1291 1292 MVT EltVT = VT.getVectorElementType(); 1293 1294 // Don't use RVV for vectors we cannot scalarize if required. 1295 switch (EltVT.SimpleTy) { 1296 // i1 is supported but has different rules. 1297 default: 1298 return false; 1299 case MVT::i1: 1300 // Masks can only use a single register. 1301 if (VT.getVectorNumElements() > MinVLen) 1302 return false; 1303 MinVLen /= 8; 1304 break; 1305 case MVT::i8: 1306 case MVT::i16: 1307 case MVT::i32: 1308 case MVT::i64: 1309 break; 1310 case MVT::f16: 1311 if (!Subtarget.hasStdExtZfh()) 1312 return false; 1313 break; 1314 case MVT::f32: 1315 if (!Subtarget.hasStdExtF()) 1316 return false; 1317 break; 1318 case MVT::f64: 1319 if (!Subtarget.hasStdExtD()) 1320 return false; 1321 break; 1322 } 1323 1324 // Reject elements larger than ELEN. 1325 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1326 return false; 1327 1328 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1329 // Don't use RVV for types that don't fit. 1330 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1331 return false; 1332 1333 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1334 // the base fixed length RVV support in place. 1335 if (!VT.isPow2VectorType()) 1336 return false; 1337 1338 return true; 1339 } 1340 1341 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1342 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1343 } 1344 1345 // Return the largest legal scalable vector type that matches VT's element type. 1346 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1347 const RISCVSubtarget &Subtarget) { 1348 // This may be called before legal types are setup. 1349 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1350 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1351 "Expected legal fixed length vector!"); 1352 1353 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1354 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1355 1356 MVT EltVT = VT.getVectorElementType(); 1357 switch (EltVT.SimpleTy) { 1358 default: 1359 llvm_unreachable("unexpected element type for RVV container"); 1360 case MVT::i1: 1361 case MVT::i8: 1362 case MVT::i16: 1363 case MVT::i32: 1364 case MVT::i64: 1365 case MVT::f16: 1366 case MVT::f32: 1367 case MVT::f64: { 1368 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1369 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1370 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1371 unsigned NumElts = 1372 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1373 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1374 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1375 return MVT::getScalableVectorVT(EltVT, NumElts); 1376 } 1377 } 1378 } 1379 1380 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1381 const RISCVSubtarget &Subtarget) { 1382 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1383 Subtarget); 1384 } 1385 1386 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1387 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1388 } 1389 1390 // Grow V to consume an entire RVV register. 1391 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1392 const RISCVSubtarget &Subtarget) { 1393 assert(VT.isScalableVector() && 1394 "Expected to convert into a scalable vector!"); 1395 assert(V.getValueType().isFixedLengthVector() && 1396 "Expected a fixed length vector operand!"); 1397 SDLoc DL(V); 1398 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1399 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1400 } 1401 1402 // Shrink V so it's just big enough to maintain a VT's worth of data. 1403 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1404 const RISCVSubtarget &Subtarget) { 1405 assert(VT.isFixedLengthVector() && 1406 "Expected to convert into a fixed length vector!"); 1407 assert(V.getValueType().isScalableVector() && 1408 "Expected a scalable vector operand!"); 1409 SDLoc DL(V); 1410 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1411 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1412 } 1413 1414 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1415 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1416 // the vector type that it is contained in. 1417 static std::pair<SDValue, SDValue> 1418 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1419 const RISCVSubtarget &Subtarget) { 1420 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1421 MVT XLenVT = Subtarget.getXLenVT(); 1422 SDValue VL = VecVT.isFixedLengthVector() 1423 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1424 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1425 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1426 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1427 return {Mask, VL}; 1428 } 1429 1430 // As above but assuming the given type is a scalable vector type. 1431 static std::pair<SDValue, SDValue> 1432 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1433 const RISCVSubtarget &Subtarget) { 1434 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1435 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1436 } 1437 1438 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1439 // of either is (currently) supported. This can get us into an infinite loop 1440 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1441 // as a ..., etc. 1442 // Until either (or both) of these can reliably lower any node, reporting that 1443 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1444 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1445 // which is not desirable. 1446 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1447 EVT VT, unsigned DefinedValues) const { 1448 return false; 1449 } 1450 1451 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1452 // Only splats are currently supported. 1453 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1454 return true; 1455 1456 return false; 1457 } 1458 1459 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1460 // RISCV FP-to-int conversions saturate to the destination register size, but 1461 // don't produce 0 for nan. We can use a conversion instruction and fix the 1462 // nan case with a compare and a select. 1463 SDValue Src = Op.getOperand(0); 1464 1465 EVT DstVT = Op.getValueType(); 1466 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1467 1468 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1469 unsigned Opc; 1470 if (SatVT == DstVT) 1471 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1472 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1473 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1474 else 1475 return SDValue(); 1476 // FIXME: Support other SatVTs by clamping before or after the conversion. 1477 1478 SDLoc DL(Op); 1479 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1480 1481 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1482 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1483 } 1484 1485 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1486 const RISCVSubtarget &Subtarget) { 1487 MVT VT = Op.getSimpleValueType(); 1488 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1489 1490 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1491 1492 SDLoc DL(Op); 1493 SDValue Mask, VL; 1494 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1495 1496 unsigned Opc = 1497 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1498 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1499 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1500 } 1501 1502 struct VIDSequence { 1503 int64_t StepNumerator; 1504 unsigned StepDenominator; 1505 int64_t Addend; 1506 }; 1507 1508 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1509 // to the (non-zero) step S and start value X. This can be then lowered as the 1510 // RVV sequence (VID * S) + X, for example. 1511 // The step S is represented as an integer numerator divided by a positive 1512 // denominator. Note that the implementation currently only identifies 1513 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1514 // cannot detect 2/3, for example. 1515 // Note that this method will also match potentially unappealing index 1516 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1517 // determine whether this is worth generating code for. 1518 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1519 unsigned NumElts = Op.getNumOperands(); 1520 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1521 if (!Op.getValueType().isInteger()) 1522 return None; 1523 1524 Optional<unsigned> SeqStepDenom; 1525 Optional<int64_t> SeqStepNum, SeqAddend; 1526 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1527 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1528 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1529 // Assume undef elements match the sequence; we just have to be careful 1530 // when interpolating across them. 1531 if (Op.getOperand(Idx).isUndef()) 1532 continue; 1533 // The BUILD_VECTOR must be all constants. 1534 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1535 return None; 1536 1537 uint64_t Val = Op.getConstantOperandVal(Idx) & 1538 maskTrailingOnes<uint64_t>(EltSizeInBits); 1539 1540 if (PrevElt) { 1541 // Calculate the step since the last non-undef element, and ensure 1542 // it's consistent across the entire sequence. 1543 unsigned IdxDiff = Idx - PrevElt->second; 1544 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1545 1546 // A zero-value value difference means that we're somewhere in the middle 1547 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1548 // step change before evaluating the sequence. 1549 if (ValDiff != 0) { 1550 int64_t Remainder = ValDiff % IdxDiff; 1551 // Normalize the step if it's greater than 1. 1552 if (Remainder != ValDiff) { 1553 // The difference must cleanly divide the element span. 1554 if (Remainder != 0) 1555 return None; 1556 ValDiff /= IdxDiff; 1557 IdxDiff = 1; 1558 } 1559 1560 if (!SeqStepNum) 1561 SeqStepNum = ValDiff; 1562 else if (ValDiff != SeqStepNum) 1563 return None; 1564 1565 if (!SeqStepDenom) 1566 SeqStepDenom = IdxDiff; 1567 else if (IdxDiff != *SeqStepDenom) 1568 return None; 1569 } 1570 } 1571 1572 // Record and/or check any addend. 1573 if (SeqStepNum && SeqStepDenom) { 1574 uint64_t ExpectedVal = 1575 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1576 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1577 if (!SeqAddend) 1578 SeqAddend = Addend; 1579 else if (SeqAddend != Addend) 1580 return None; 1581 } 1582 1583 // Record this non-undef element for later. 1584 if (!PrevElt || PrevElt->first != Val) 1585 PrevElt = std::make_pair(Val, Idx); 1586 } 1587 // We need to have logged both a step and an addend for this to count as 1588 // a legal index sequence. 1589 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1590 return None; 1591 1592 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1593 } 1594 1595 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1596 const RISCVSubtarget &Subtarget) { 1597 MVT VT = Op.getSimpleValueType(); 1598 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1599 1600 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1601 1602 SDLoc DL(Op); 1603 SDValue Mask, VL; 1604 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1605 1606 MVT XLenVT = Subtarget.getXLenVT(); 1607 unsigned NumElts = Op.getNumOperands(); 1608 1609 if (VT.getVectorElementType() == MVT::i1) { 1610 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1611 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1612 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1613 } 1614 1615 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1616 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1617 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1618 } 1619 1620 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1621 // scalar integer chunks whose bit-width depends on the number of mask 1622 // bits and XLEN. 1623 // First, determine the most appropriate scalar integer type to use. This 1624 // is at most XLenVT, but may be shrunk to a smaller vector element type 1625 // according to the size of the final vector - use i8 chunks rather than 1626 // XLenVT if we're producing a v8i1. This results in more consistent 1627 // codegen across RV32 and RV64. 1628 unsigned NumViaIntegerBits = 1629 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1630 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1631 // If we have to use more than one INSERT_VECTOR_ELT then this 1632 // optimization is likely to increase code size; avoid peforming it in 1633 // such a case. We can use a load from a constant pool in this case. 1634 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1635 return SDValue(); 1636 // Now we can create our integer vector type. Note that it may be larger 1637 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1638 MVT IntegerViaVecVT = 1639 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1640 divideCeil(NumElts, NumViaIntegerBits)); 1641 1642 uint64_t Bits = 0; 1643 unsigned BitPos = 0, IntegerEltIdx = 0; 1644 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1645 1646 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1647 // Once we accumulate enough bits to fill our scalar type, insert into 1648 // our vector and clear our accumulated data. 1649 if (I != 0 && I % NumViaIntegerBits == 0) { 1650 if (NumViaIntegerBits <= 32) 1651 Bits = SignExtend64(Bits, 32); 1652 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1653 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1654 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1655 Bits = 0; 1656 BitPos = 0; 1657 IntegerEltIdx++; 1658 } 1659 SDValue V = Op.getOperand(I); 1660 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1661 Bits |= ((uint64_t)BitValue << BitPos); 1662 } 1663 1664 // Insert the (remaining) scalar value into position in our integer 1665 // vector type. 1666 if (NumViaIntegerBits <= 32) 1667 Bits = SignExtend64(Bits, 32); 1668 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1669 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1670 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1671 1672 if (NumElts < NumViaIntegerBits) { 1673 // If we're producing a smaller vector than our minimum legal integer 1674 // type, bitcast to the equivalent (known-legal) mask type, and extract 1675 // our final mask. 1676 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1677 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1678 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1679 DAG.getConstant(0, DL, XLenVT)); 1680 } else { 1681 // Else we must have produced an integer type with the same size as the 1682 // mask type; bitcast for the final result. 1683 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1684 Vec = DAG.getBitcast(VT, Vec); 1685 } 1686 1687 return Vec; 1688 } 1689 1690 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1691 // vector type, we have a legal equivalently-sized i8 type, so we can use 1692 // that. 1693 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1694 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1695 1696 SDValue WideVec; 1697 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1698 // For a splat, perform a scalar truncate before creating the wider 1699 // vector. 1700 assert(Splat.getValueType() == XLenVT && 1701 "Unexpected type for i1 splat value"); 1702 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1703 DAG.getConstant(1, DL, XLenVT)); 1704 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1705 } else { 1706 SmallVector<SDValue, 8> Ops(Op->op_values()); 1707 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1708 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1709 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1710 } 1711 1712 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1713 } 1714 1715 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1716 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1717 : RISCVISD::VMV_V_X_VL; 1718 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1719 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1720 } 1721 1722 // Try and match index sequences, which we can lower to the vid instruction 1723 // with optional modifications. An all-undef vector is matched by 1724 // getSplatValue, above. 1725 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1726 int64_t StepNumerator = SimpleVID->StepNumerator; 1727 unsigned StepDenominator = SimpleVID->StepDenominator; 1728 int64_t Addend = SimpleVID->Addend; 1729 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1730 // threshold since it's the immediate value many RVV instructions accept. 1731 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1732 isInt<5>(Addend)) { 1733 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1734 // Convert right out of the scalable type so we can use standard ISD 1735 // nodes for the rest of the computation. If we used scalable types with 1736 // these, we'd lose the fixed-length vector info and generate worse 1737 // vsetvli code. 1738 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1739 assert(StepNumerator != 0 && "Invalid step"); 1740 bool Negate = false; 1741 if (StepNumerator != 1) { 1742 int64_t SplatStepVal = StepNumerator; 1743 unsigned Opcode = ISD::MUL; 1744 if (isPowerOf2_64(std::abs(StepNumerator))) { 1745 Negate = StepNumerator < 0; 1746 Opcode = ISD::SHL; 1747 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1748 } 1749 SDValue SplatStep = DAG.getSplatVector( 1750 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1751 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1752 } 1753 if (StepDenominator != 1) { 1754 SDValue SplatStep = DAG.getSplatVector( 1755 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1756 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1757 } 1758 if (Addend != 0 || Negate) { 1759 SDValue SplatAddend = 1760 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1761 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1762 } 1763 return VID; 1764 } 1765 } 1766 1767 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1768 // when re-interpreted as a vector with a larger element type. For example, 1769 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1770 // could be instead splat as 1771 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1772 // TODO: This optimization could also work on non-constant splats, but it 1773 // would require bit-manipulation instructions to construct the splat value. 1774 SmallVector<SDValue> Sequence; 1775 unsigned EltBitSize = VT.getScalarSizeInBits(); 1776 const auto *BV = cast<BuildVectorSDNode>(Op); 1777 if (VT.isInteger() && EltBitSize < 64 && 1778 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1779 BV->getRepeatedSequence(Sequence) && 1780 (Sequence.size() * EltBitSize) <= 64) { 1781 unsigned SeqLen = Sequence.size(); 1782 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1783 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1784 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1785 ViaIntVT == MVT::i64) && 1786 "Unexpected sequence type"); 1787 1788 unsigned EltIdx = 0; 1789 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1790 uint64_t SplatValue = 0; 1791 // Construct the amalgamated value which can be splatted as this larger 1792 // vector type. 1793 for (const auto &SeqV : Sequence) { 1794 if (!SeqV.isUndef()) 1795 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1796 << (EltIdx * EltBitSize)); 1797 EltIdx++; 1798 } 1799 1800 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1801 // achieve better constant materializion. 1802 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1803 SplatValue = SignExtend64(SplatValue, 32); 1804 1805 // Since we can't introduce illegal i64 types at this stage, we can only 1806 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1807 // way we can use RVV instructions to splat. 1808 assert((ViaIntVT.bitsLE(XLenVT) || 1809 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1810 "Unexpected bitcast sequence"); 1811 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1812 SDValue ViaVL = 1813 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1814 MVT ViaContainerVT = 1815 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1816 SDValue Splat = 1817 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1818 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1819 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1820 return DAG.getBitcast(VT, Splat); 1821 } 1822 } 1823 1824 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1825 // which constitute a large proportion of the elements. In such cases we can 1826 // splat a vector with the dominant element and make up the shortfall with 1827 // INSERT_VECTOR_ELTs. 1828 // Note that this includes vectors of 2 elements by association. The 1829 // upper-most element is the "dominant" one, allowing us to use a splat to 1830 // "insert" the upper element, and an insert of the lower element at position 1831 // 0, which improves codegen. 1832 SDValue DominantValue; 1833 unsigned MostCommonCount = 0; 1834 DenseMap<SDValue, unsigned> ValueCounts; 1835 unsigned NumUndefElts = 1836 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1837 1838 // Track the number of scalar loads we know we'd be inserting, estimated as 1839 // any non-zero floating-point constant. Other kinds of element are either 1840 // already in registers or are materialized on demand. The threshold at which 1841 // a vector load is more desirable than several scalar materializion and 1842 // vector-insertion instructions is not known. 1843 unsigned NumScalarLoads = 0; 1844 1845 for (SDValue V : Op->op_values()) { 1846 if (V.isUndef()) 1847 continue; 1848 1849 ValueCounts.insert(std::make_pair(V, 0)); 1850 unsigned &Count = ValueCounts[V]; 1851 1852 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1853 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1854 1855 // Is this value dominant? In case of a tie, prefer the highest element as 1856 // it's cheaper to insert near the beginning of a vector than it is at the 1857 // end. 1858 if (++Count >= MostCommonCount) { 1859 DominantValue = V; 1860 MostCommonCount = Count; 1861 } 1862 } 1863 1864 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1865 unsigned NumDefElts = NumElts - NumUndefElts; 1866 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1867 1868 // Don't perform this optimization when optimizing for size, since 1869 // materializing elements and inserting them tends to cause code bloat. 1870 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1871 ((MostCommonCount > DominantValueCountThreshold) || 1872 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1873 // Start by splatting the most common element. 1874 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1875 1876 DenseSet<SDValue> Processed{DominantValue}; 1877 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1878 for (const auto &OpIdx : enumerate(Op->ops())) { 1879 const SDValue &V = OpIdx.value(); 1880 if (V.isUndef() || !Processed.insert(V).second) 1881 continue; 1882 if (ValueCounts[V] == 1) { 1883 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1884 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1885 } else { 1886 // Blend in all instances of this value using a VSELECT, using a 1887 // mask where each bit signals whether that element is the one 1888 // we're after. 1889 SmallVector<SDValue> Ops; 1890 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1891 return DAG.getConstant(V == V1, DL, XLenVT); 1892 }); 1893 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1894 DAG.getBuildVector(SelMaskTy, DL, Ops), 1895 DAG.getSplatBuildVector(VT, DL, V), Vec); 1896 } 1897 } 1898 1899 return Vec; 1900 } 1901 1902 return SDValue(); 1903 } 1904 1905 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1906 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1907 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1908 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1909 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1910 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1911 // node in order to try and match RVV vector/scalar instructions. 1912 if ((LoC >> 31) == HiC) 1913 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1914 } 1915 1916 // Fall back to a stack store and stride x0 vector load. 1917 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1918 } 1919 1920 // Called by type legalization to handle splat of i64 on RV32. 1921 // FIXME: We can optimize this when the type has sign or zero bits in one 1922 // of the halves. 1923 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1924 SDValue VL, SelectionDAG &DAG) { 1925 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1926 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1927 DAG.getConstant(0, DL, MVT::i32)); 1928 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1929 DAG.getConstant(1, DL, MVT::i32)); 1930 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1931 } 1932 1933 // This function lowers a splat of a scalar operand Splat with the vector 1934 // length VL. It ensures the final sequence is type legal, which is useful when 1935 // lowering a splat after type legalization. 1936 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1937 SelectionDAG &DAG, 1938 const RISCVSubtarget &Subtarget) { 1939 if (VT.isFloatingPoint()) 1940 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1941 1942 MVT XLenVT = Subtarget.getXLenVT(); 1943 1944 // Simplest case is that the operand needs to be promoted to XLenVT. 1945 if (Scalar.getValueType().bitsLE(XLenVT)) { 1946 // If the operand is a constant, sign extend to increase our chances 1947 // of being able to use a .vi instruction. ANY_EXTEND would become a 1948 // a zero extend and the simm5 check in isel would fail. 1949 // FIXME: Should we ignore the upper bits in isel instead? 1950 unsigned ExtOpc = 1951 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1952 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1953 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1954 } 1955 1956 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1957 "Unexpected scalar for splat lowering!"); 1958 1959 // Otherwise use the more complicated splatting algorithm. 1960 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1961 } 1962 1963 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1964 const RISCVSubtarget &Subtarget) { 1965 SDValue V1 = Op.getOperand(0); 1966 SDValue V2 = Op.getOperand(1); 1967 SDLoc DL(Op); 1968 MVT XLenVT = Subtarget.getXLenVT(); 1969 MVT VT = Op.getSimpleValueType(); 1970 unsigned NumElts = VT.getVectorNumElements(); 1971 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1972 1973 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1974 1975 SDValue TrueMask, VL; 1976 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1977 1978 if (SVN->isSplat()) { 1979 const int Lane = SVN->getSplatIndex(); 1980 if (Lane >= 0) { 1981 MVT SVT = VT.getVectorElementType(); 1982 1983 // Turn splatted vector load into a strided load with an X0 stride. 1984 SDValue V = V1; 1985 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1986 // with undef. 1987 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1988 int Offset = Lane; 1989 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1990 int OpElements = 1991 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1992 V = V.getOperand(Offset / OpElements); 1993 Offset %= OpElements; 1994 } 1995 1996 // We need to ensure the load isn't atomic or volatile. 1997 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1998 auto *Ld = cast<LoadSDNode>(V); 1999 Offset *= SVT.getStoreSize(); 2000 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2001 TypeSize::Fixed(Offset), DL); 2002 2003 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2004 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2005 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2006 SDValue IntID = 2007 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2008 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2009 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2010 SDValue NewLoad = DAG.getMemIntrinsicNode( 2011 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2012 DAG.getMachineFunction().getMachineMemOperand( 2013 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2014 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2015 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2016 } 2017 2018 // Otherwise use a scalar load and splat. This will give the best 2019 // opportunity to fold a splat into the operation. ISel can turn it into 2020 // the x0 strided load if we aren't able to fold away the select. 2021 if (SVT.isFloatingPoint()) 2022 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2023 Ld->getPointerInfo().getWithOffset(Offset), 2024 Ld->getOriginalAlign(), 2025 Ld->getMemOperand()->getFlags()); 2026 else 2027 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2028 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2029 Ld->getOriginalAlign(), 2030 Ld->getMemOperand()->getFlags()); 2031 DAG.makeEquivalentMemoryOrdering(Ld, V); 2032 2033 unsigned Opc = 2034 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2035 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2036 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2037 } 2038 2039 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2040 assert(Lane < (int)NumElts && "Unexpected lane!"); 2041 SDValue Gather = 2042 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2043 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2044 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2045 } 2046 } 2047 2048 // Detect shuffles which can be re-expressed as vector selects; these are 2049 // shuffles in which each element in the destination is taken from an element 2050 // at the corresponding index in either source vectors. 2051 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2052 int MaskIndex = MaskIdx.value(); 2053 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2054 }); 2055 2056 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2057 2058 SmallVector<SDValue> MaskVals; 2059 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2060 // merged with a second vrgather. 2061 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2062 2063 // By default we preserve the original operand order, and use a mask to 2064 // select LHS as true and RHS as false. However, since RVV vector selects may 2065 // feature splats but only on the LHS, we may choose to invert our mask and 2066 // instead select between RHS and LHS. 2067 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2068 bool InvertMask = IsSelect == SwapOps; 2069 2070 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2071 // half. 2072 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2073 2074 // Now construct the mask that will be used by the vselect or blended 2075 // vrgather operation. For vrgathers, construct the appropriate indices into 2076 // each vector. 2077 for (int MaskIndex : SVN->getMask()) { 2078 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2079 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2080 if (!IsSelect) { 2081 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2082 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2083 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2084 : DAG.getUNDEF(XLenVT)); 2085 GatherIndicesRHS.push_back( 2086 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2087 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2088 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2089 ++LHSIndexCounts[MaskIndex]; 2090 if (!IsLHSOrUndefIndex) 2091 ++RHSIndexCounts[MaskIndex - NumElts]; 2092 } 2093 } 2094 2095 if (SwapOps) { 2096 std::swap(V1, V2); 2097 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2098 } 2099 2100 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2101 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2102 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2103 2104 if (IsSelect) 2105 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2106 2107 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2108 // On such a large vector we're unable to use i8 as the index type. 2109 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2110 // may involve vector splitting if we're already at LMUL=8, or our 2111 // user-supplied maximum fixed-length LMUL. 2112 return SDValue(); 2113 } 2114 2115 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2116 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2117 MVT IndexVT = VT.changeTypeToInteger(); 2118 // Since we can't introduce illegal index types at this stage, use i16 and 2119 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2120 // than XLenVT. 2121 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2122 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2123 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2124 } 2125 2126 MVT IndexContainerVT = 2127 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2128 2129 SDValue Gather; 2130 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2131 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2132 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2133 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2134 } else { 2135 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2136 // If only one index is used, we can use a "splat" vrgather. 2137 // TODO: We can splat the most-common index and fix-up any stragglers, if 2138 // that's beneficial. 2139 if (LHSIndexCounts.size() == 1) { 2140 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2141 Gather = 2142 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2143 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2144 } else { 2145 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2146 LHSIndices = 2147 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2148 2149 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2150 TrueMask, VL); 2151 } 2152 } 2153 2154 // If a second vector operand is used by this shuffle, blend it in with an 2155 // additional vrgather. 2156 if (!V2.isUndef()) { 2157 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2158 // If only one index is used, we can use a "splat" vrgather. 2159 // TODO: We can splat the most-common index and fix-up any stragglers, if 2160 // that's beneficial. 2161 if (RHSIndexCounts.size() == 1) { 2162 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2163 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2164 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2165 } else { 2166 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2167 RHSIndices = 2168 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2169 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2170 VL); 2171 } 2172 2173 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2174 SelectMask = 2175 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2176 2177 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2178 Gather, VL); 2179 } 2180 2181 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2182 } 2183 2184 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2185 SDLoc DL, SelectionDAG &DAG, 2186 const RISCVSubtarget &Subtarget) { 2187 if (VT.isScalableVector()) 2188 return DAG.getFPExtendOrRound(Op, DL, VT); 2189 assert(VT.isFixedLengthVector() && 2190 "Unexpected value type for RVV FP extend/round lowering"); 2191 SDValue Mask, VL; 2192 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2193 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2194 ? RISCVISD::FP_EXTEND_VL 2195 : RISCVISD::FP_ROUND_VL; 2196 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2197 } 2198 2199 // While RVV has alignment restrictions, we should always be able to load as a 2200 // legal equivalently-sized byte-typed vector instead. This method is 2201 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2202 // the load is already correctly-aligned, it returns SDValue(). 2203 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2204 SelectionDAG &DAG) const { 2205 auto *Load = cast<LoadSDNode>(Op); 2206 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2207 2208 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2209 Load->getMemoryVT(), 2210 *Load->getMemOperand())) 2211 return SDValue(); 2212 2213 SDLoc DL(Op); 2214 MVT VT = Op.getSimpleValueType(); 2215 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2216 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2217 "Unexpected unaligned RVV load type"); 2218 MVT NewVT = 2219 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2220 assert(NewVT.isValid() && 2221 "Expecting equally-sized RVV vector types to be legal"); 2222 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2223 Load->getPointerInfo(), Load->getOriginalAlign(), 2224 Load->getMemOperand()->getFlags()); 2225 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2226 } 2227 2228 // While RVV has alignment restrictions, we should always be able to store as a 2229 // legal equivalently-sized byte-typed vector instead. This method is 2230 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2231 // returns SDValue() if the store is already correctly aligned. 2232 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2233 SelectionDAG &DAG) const { 2234 auto *Store = cast<StoreSDNode>(Op); 2235 assert(Store && Store->getValue().getValueType().isVector() && 2236 "Expected vector store"); 2237 2238 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2239 Store->getMemoryVT(), 2240 *Store->getMemOperand())) 2241 return SDValue(); 2242 2243 SDLoc DL(Op); 2244 SDValue StoredVal = Store->getValue(); 2245 MVT VT = StoredVal.getSimpleValueType(); 2246 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2247 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2248 "Unexpected unaligned RVV store type"); 2249 MVT NewVT = 2250 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2251 assert(NewVT.isValid() && 2252 "Expecting equally-sized RVV vector types to be legal"); 2253 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2254 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2255 Store->getPointerInfo(), Store->getOriginalAlign(), 2256 Store->getMemOperand()->getFlags()); 2257 } 2258 2259 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2260 SelectionDAG &DAG) const { 2261 switch (Op.getOpcode()) { 2262 default: 2263 report_fatal_error("unimplemented operand"); 2264 case ISD::GlobalAddress: 2265 return lowerGlobalAddress(Op, DAG); 2266 case ISD::BlockAddress: 2267 return lowerBlockAddress(Op, DAG); 2268 case ISD::ConstantPool: 2269 return lowerConstantPool(Op, DAG); 2270 case ISD::JumpTable: 2271 return lowerJumpTable(Op, DAG); 2272 case ISD::GlobalTLSAddress: 2273 return lowerGlobalTLSAddress(Op, DAG); 2274 case ISD::SELECT: 2275 return lowerSELECT(Op, DAG); 2276 case ISD::BRCOND: 2277 return lowerBRCOND(Op, DAG); 2278 case ISD::VASTART: 2279 return lowerVASTART(Op, DAG); 2280 case ISD::FRAMEADDR: 2281 return lowerFRAMEADDR(Op, DAG); 2282 case ISD::RETURNADDR: 2283 return lowerRETURNADDR(Op, DAG); 2284 case ISD::SHL_PARTS: 2285 return lowerShiftLeftParts(Op, DAG); 2286 case ISD::SRA_PARTS: 2287 return lowerShiftRightParts(Op, DAG, true); 2288 case ISD::SRL_PARTS: 2289 return lowerShiftRightParts(Op, DAG, false); 2290 case ISD::BITCAST: { 2291 SDLoc DL(Op); 2292 EVT VT = Op.getValueType(); 2293 SDValue Op0 = Op.getOperand(0); 2294 EVT Op0VT = Op0.getValueType(); 2295 MVT XLenVT = Subtarget.getXLenVT(); 2296 if (VT.isFixedLengthVector()) { 2297 // We can handle fixed length vector bitcasts with a simple replacement 2298 // in isel. 2299 if (Op0VT.isFixedLengthVector()) 2300 return Op; 2301 // When bitcasting from scalar to fixed-length vector, insert the scalar 2302 // into a one-element vector of the result type, and perform a vector 2303 // bitcast. 2304 if (!Op0VT.isVector()) { 2305 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2306 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2307 DAG.getUNDEF(BVT), Op0, 2308 DAG.getConstant(0, DL, XLenVT))); 2309 } 2310 return SDValue(); 2311 } 2312 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2313 // thus: bitcast the vector to a one-element vector type whose element type 2314 // is the same as the result type, and extract the first element. 2315 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2316 LLVMContext &Context = *DAG.getContext(); 2317 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2318 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2319 DAG.getConstant(0, DL, XLenVT)); 2320 } 2321 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2322 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2323 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2324 return FPConv; 2325 } 2326 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2327 Subtarget.hasStdExtF()) { 2328 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2329 SDValue FPConv = 2330 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2331 return FPConv; 2332 } 2333 return SDValue(); 2334 } 2335 case ISD::INTRINSIC_WO_CHAIN: 2336 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2337 case ISD::INTRINSIC_W_CHAIN: 2338 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2339 case ISD::BSWAP: 2340 case ISD::BITREVERSE: { 2341 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2342 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2343 MVT VT = Op.getSimpleValueType(); 2344 SDLoc DL(Op); 2345 // Start with the maximum immediate value which is the bitwidth - 1. 2346 unsigned Imm = VT.getSizeInBits() - 1; 2347 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2348 if (Op.getOpcode() == ISD::BSWAP) 2349 Imm &= ~0x7U; 2350 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2351 DAG.getConstant(Imm, DL, VT)); 2352 } 2353 case ISD::FSHL: 2354 case ISD::FSHR: { 2355 MVT VT = Op.getSimpleValueType(); 2356 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2357 SDLoc DL(Op); 2358 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2359 return Op; 2360 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2361 // use log(XLen) bits. Mask the shift amount accordingly. 2362 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2363 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2364 DAG.getConstant(ShAmtWidth, DL, VT)); 2365 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2366 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2367 } 2368 case ISD::TRUNCATE: { 2369 SDLoc DL(Op); 2370 MVT VT = Op.getSimpleValueType(); 2371 // Only custom-lower vector truncates 2372 if (!VT.isVector()) 2373 return Op; 2374 2375 // Truncates to mask types are handled differently 2376 if (VT.getVectorElementType() == MVT::i1) 2377 return lowerVectorMaskTrunc(Op, DAG); 2378 2379 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2380 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2381 // truncate by one power of two at a time. 2382 MVT DstEltVT = VT.getVectorElementType(); 2383 2384 SDValue Src = Op.getOperand(0); 2385 MVT SrcVT = Src.getSimpleValueType(); 2386 MVT SrcEltVT = SrcVT.getVectorElementType(); 2387 2388 assert(DstEltVT.bitsLT(SrcEltVT) && 2389 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2390 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2391 "Unexpected vector truncate lowering"); 2392 2393 MVT ContainerVT = SrcVT; 2394 if (SrcVT.isFixedLengthVector()) { 2395 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2396 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2397 } 2398 2399 SDValue Result = Src; 2400 SDValue Mask, VL; 2401 std::tie(Mask, VL) = 2402 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2403 LLVMContext &Context = *DAG.getContext(); 2404 const ElementCount Count = ContainerVT.getVectorElementCount(); 2405 do { 2406 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2407 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2408 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2409 Mask, VL); 2410 } while (SrcEltVT != DstEltVT); 2411 2412 if (SrcVT.isFixedLengthVector()) 2413 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2414 2415 return Result; 2416 } 2417 case ISD::ANY_EXTEND: 2418 case ISD::ZERO_EXTEND: 2419 if (Op.getOperand(0).getValueType().isVector() && 2420 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2421 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2422 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2423 case ISD::SIGN_EXTEND: 2424 if (Op.getOperand(0).getValueType().isVector() && 2425 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2426 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2427 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2428 case ISD::SPLAT_VECTOR_PARTS: 2429 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2430 case ISD::INSERT_VECTOR_ELT: 2431 return lowerINSERT_VECTOR_ELT(Op, DAG); 2432 case ISD::EXTRACT_VECTOR_ELT: 2433 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2434 case ISD::VSCALE: { 2435 MVT VT = Op.getSimpleValueType(); 2436 SDLoc DL(Op); 2437 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2438 // We define our scalable vector types for lmul=1 to use a 64 bit known 2439 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2440 // vscale as VLENB / 8. 2441 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2442 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2443 // We assume VLENB is a multiple of 8. We manually choose the best shift 2444 // here because SimplifyDemandedBits isn't always able to simplify it. 2445 uint64_t Val = Op.getConstantOperandVal(0); 2446 if (isPowerOf2_64(Val)) { 2447 uint64_t Log2 = Log2_64(Val); 2448 if (Log2 < 3) 2449 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2450 DAG.getConstant(3 - Log2, DL, VT)); 2451 if (Log2 > 3) 2452 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2453 DAG.getConstant(Log2 - 3, DL, VT)); 2454 return VLENB; 2455 } 2456 // If the multiplier is a multiple of 8, scale it down to avoid needing 2457 // to shift the VLENB value. 2458 if ((Val % 8) == 0) 2459 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2460 DAG.getConstant(Val / 8, DL, VT)); 2461 } 2462 2463 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2464 DAG.getConstant(3, DL, VT)); 2465 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2466 } 2467 case ISD::FP_EXTEND: { 2468 // RVV can only do fp_extend to types double the size as the source. We 2469 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2470 // via f32. 2471 SDLoc DL(Op); 2472 MVT VT = Op.getSimpleValueType(); 2473 SDValue Src = Op.getOperand(0); 2474 MVT SrcVT = Src.getSimpleValueType(); 2475 2476 // Prepare any fixed-length vector operands. 2477 MVT ContainerVT = VT; 2478 if (SrcVT.isFixedLengthVector()) { 2479 ContainerVT = getContainerForFixedLengthVector(VT); 2480 MVT SrcContainerVT = 2481 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2482 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2483 } 2484 2485 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2486 SrcVT.getVectorElementType() != MVT::f16) { 2487 // For scalable vectors, we only need to close the gap between 2488 // vXf16->vXf64. 2489 if (!VT.isFixedLengthVector()) 2490 return Op; 2491 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2492 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2493 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2494 } 2495 2496 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2497 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2498 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2499 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2500 2501 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2502 DL, DAG, Subtarget); 2503 if (VT.isFixedLengthVector()) 2504 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2505 return Extend; 2506 } 2507 case ISD::FP_ROUND: { 2508 // RVV can only do fp_round to types half the size as the source. We 2509 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2510 // conversion instruction. 2511 SDLoc DL(Op); 2512 MVT VT = Op.getSimpleValueType(); 2513 SDValue Src = Op.getOperand(0); 2514 MVT SrcVT = Src.getSimpleValueType(); 2515 2516 // Prepare any fixed-length vector operands. 2517 MVT ContainerVT = VT; 2518 if (VT.isFixedLengthVector()) { 2519 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2520 ContainerVT = 2521 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2522 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2523 } 2524 2525 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2526 SrcVT.getVectorElementType() != MVT::f64) { 2527 // For scalable vectors, we only need to close the gap between 2528 // vXf64<->vXf16. 2529 if (!VT.isFixedLengthVector()) 2530 return Op; 2531 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2532 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2533 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2534 } 2535 2536 SDValue Mask, VL; 2537 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2538 2539 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2540 SDValue IntermediateRound = 2541 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2542 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2543 DL, DAG, Subtarget); 2544 2545 if (VT.isFixedLengthVector()) 2546 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2547 return Round; 2548 } 2549 case ISD::FP_TO_SINT: 2550 case ISD::FP_TO_UINT: 2551 case ISD::SINT_TO_FP: 2552 case ISD::UINT_TO_FP: { 2553 // RVV can only do fp<->int conversions to types half/double the size as 2554 // the source. We custom-lower any conversions that do two hops into 2555 // sequences. 2556 MVT VT = Op.getSimpleValueType(); 2557 if (!VT.isVector()) 2558 return Op; 2559 SDLoc DL(Op); 2560 SDValue Src = Op.getOperand(0); 2561 MVT EltVT = VT.getVectorElementType(); 2562 MVT SrcVT = Src.getSimpleValueType(); 2563 MVT SrcEltVT = SrcVT.getVectorElementType(); 2564 unsigned EltSize = EltVT.getSizeInBits(); 2565 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2566 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2567 "Unexpected vector element types"); 2568 2569 bool IsInt2FP = SrcEltVT.isInteger(); 2570 // Widening conversions 2571 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2572 if (IsInt2FP) { 2573 // Do a regular integer sign/zero extension then convert to float. 2574 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2575 VT.getVectorElementCount()); 2576 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2577 ? ISD::ZERO_EXTEND 2578 : ISD::SIGN_EXTEND; 2579 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2580 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2581 } 2582 // FP2Int 2583 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2584 // Do one doubling fp_extend then complete the operation by converting 2585 // to int. 2586 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2587 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2588 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2589 } 2590 2591 // Narrowing conversions 2592 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2593 if (IsInt2FP) { 2594 // One narrowing int_to_fp, then an fp_round. 2595 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2596 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2597 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2598 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2599 } 2600 // FP2Int 2601 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2602 // representable by the integer, the result is poison. 2603 MVT IVecVT = 2604 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2605 VT.getVectorElementCount()); 2606 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2607 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2608 } 2609 2610 // Scalable vectors can exit here. Patterns will handle equally-sized 2611 // conversions halving/doubling ones. 2612 if (!VT.isFixedLengthVector()) 2613 return Op; 2614 2615 // For fixed-length vectors we lower to a custom "VL" node. 2616 unsigned RVVOpc = 0; 2617 switch (Op.getOpcode()) { 2618 default: 2619 llvm_unreachable("Impossible opcode"); 2620 case ISD::FP_TO_SINT: 2621 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2622 break; 2623 case ISD::FP_TO_UINT: 2624 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2625 break; 2626 case ISD::SINT_TO_FP: 2627 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2628 break; 2629 case ISD::UINT_TO_FP: 2630 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2631 break; 2632 } 2633 2634 MVT ContainerVT, SrcContainerVT; 2635 // Derive the reference container type from the larger vector type. 2636 if (SrcEltSize > EltSize) { 2637 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2638 ContainerVT = 2639 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2640 } else { 2641 ContainerVT = getContainerForFixedLengthVector(VT); 2642 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2643 } 2644 2645 SDValue Mask, VL; 2646 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2647 2648 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2649 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2650 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2651 } 2652 case ISD::FP_TO_SINT_SAT: 2653 case ISD::FP_TO_UINT_SAT: 2654 return lowerFP_TO_INT_SAT(Op, DAG); 2655 case ISD::VECREDUCE_ADD: 2656 case ISD::VECREDUCE_UMAX: 2657 case ISD::VECREDUCE_SMAX: 2658 case ISD::VECREDUCE_UMIN: 2659 case ISD::VECREDUCE_SMIN: 2660 return lowerVECREDUCE(Op, DAG); 2661 case ISD::VECREDUCE_AND: 2662 case ISD::VECREDUCE_OR: 2663 case ISD::VECREDUCE_XOR: 2664 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2665 return lowerVectorMaskVECREDUCE(Op, DAG); 2666 return lowerVECREDUCE(Op, DAG); 2667 case ISD::VECREDUCE_FADD: 2668 case ISD::VECREDUCE_SEQ_FADD: 2669 case ISD::VECREDUCE_FMIN: 2670 case ISD::VECREDUCE_FMAX: 2671 return lowerFPVECREDUCE(Op, DAG); 2672 case ISD::INSERT_SUBVECTOR: 2673 return lowerINSERT_SUBVECTOR(Op, DAG); 2674 case ISD::EXTRACT_SUBVECTOR: 2675 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2676 case ISD::STEP_VECTOR: 2677 return lowerSTEP_VECTOR(Op, DAG); 2678 case ISD::VECTOR_REVERSE: 2679 return lowerVECTOR_REVERSE(Op, DAG); 2680 case ISD::BUILD_VECTOR: 2681 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2682 case ISD::SPLAT_VECTOR: 2683 if (Op.getValueType().getVectorElementType() == MVT::i1) 2684 return lowerVectorMaskSplat(Op, DAG); 2685 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2686 case ISD::VECTOR_SHUFFLE: 2687 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2688 case ISD::CONCAT_VECTORS: { 2689 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2690 // better than going through the stack, as the default expansion does. 2691 SDLoc DL(Op); 2692 MVT VT = Op.getSimpleValueType(); 2693 unsigned NumOpElts = 2694 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2695 SDValue Vec = DAG.getUNDEF(VT); 2696 for (const auto &OpIdx : enumerate(Op->ops())) 2697 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2698 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2699 return Vec; 2700 } 2701 case ISD::LOAD: 2702 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2703 return V; 2704 if (Op.getValueType().isFixedLengthVector()) 2705 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2706 return Op; 2707 case ISD::STORE: 2708 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2709 return V; 2710 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2711 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2712 return Op; 2713 case ISD::MLOAD: 2714 case ISD::VP_LOAD: 2715 return lowerMaskedLoad(Op, DAG); 2716 case ISD::MSTORE: 2717 case ISD::VP_STORE: 2718 return lowerMaskedStore(Op, DAG); 2719 case ISD::SETCC: 2720 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2721 case ISD::ADD: 2722 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2723 case ISD::SUB: 2724 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2725 case ISD::MUL: 2726 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2727 case ISD::MULHS: 2728 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2729 case ISD::MULHU: 2730 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2731 case ISD::AND: 2732 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2733 RISCVISD::AND_VL); 2734 case ISD::OR: 2735 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2736 RISCVISD::OR_VL); 2737 case ISD::XOR: 2738 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2739 RISCVISD::XOR_VL); 2740 case ISD::SDIV: 2741 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2742 case ISD::SREM: 2743 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2744 case ISD::UDIV: 2745 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2746 case ISD::UREM: 2747 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2748 case ISD::SHL: 2749 case ISD::SRA: 2750 case ISD::SRL: 2751 if (Op.getSimpleValueType().isFixedLengthVector()) 2752 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2753 // This can be called for an i32 shift amount that needs to be promoted. 2754 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2755 "Unexpected custom legalisation"); 2756 return SDValue(); 2757 case ISD::SADDSAT: 2758 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2759 case ISD::UADDSAT: 2760 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2761 case ISD::SSUBSAT: 2762 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2763 case ISD::USUBSAT: 2764 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2765 case ISD::FADD: 2766 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2767 case ISD::FSUB: 2768 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2769 case ISD::FMUL: 2770 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2771 case ISD::FDIV: 2772 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2773 case ISD::FNEG: 2774 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2775 case ISD::FABS: 2776 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2777 case ISD::FSQRT: 2778 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2779 case ISD::FMA: 2780 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2781 case ISD::SMIN: 2782 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2783 case ISD::SMAX: 2784 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2785 case ISD::UMIN: 2786 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2787 case ISD::UMAX: 2788 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2789 case ISD::FMINNUM: 2790 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2791 case ISD::FMAXNUM: 2792 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2793 case ISD::ABS: 2794 return lowerABS(Op, DAG); 2795 case ISD::VSELECT: 2796 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2797 case ISD::FCOPYSIGN: 2798 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2799 case ISD::MGATHER: 2800 case ISD::VP_GATHER: 2801 return lowerMaskedGather(Op, DAG); 2802 case ISD::MSCATTER: 2803 case ISD::VP_SCATTER: 2804 return lowerMaskedScatter(Op, DAG); 2805 case ISD::FLT_ROUNDS_: 2806 return lowerGET_ROUNDING(Op, DAG); 2807 case ISD::SET_ROUNDING: 2808 return lowerSET_ROUNDING(Op, DAG); 2809 case ISD::VP_ADD: 2810 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2811 case ISD::VP_SUB: 2812 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2813 case ISD::VP_MUL: 2814 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2815 case ISD::VP_SDIV: 2816 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2817 case ISD::VP_UDIV: 2818 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2819 case ISD::VP_SREM: 2820 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2821 case ISD::VP_UREM: 2822 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2823 case ISD::VP_AND: 2824 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2825 case ISD::VP_OR: 2826 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2827 case ISD::VP_XOR: 2828 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2829 case ISD::VP_ASHR: 2830 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2831 case ISD::VP_LSHR: 2832 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2833 case ISD::VP_SHL: 2834 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2835 case ISD::VP_FADD: 2836 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2837 case ISD::VP_FSUB: 2838 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2839 case ISD::VP_FMUL: 2840 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2841 case ISD::VP_FDIV: 2842 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2843 } 2844 } 2845 2846 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2847 SelectionDAG &DAG, unsigned Flags) { 2848 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2849 } 2850 2851 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2852 SelectionDAG &DAG, unsigned Flags) { 2853 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2854 Flags); 2855 } 2856 2857 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2858 SelectionDAG &DAG, unsigned Flags) { 2859 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2860 N->getOffset(), Flags); 2861 } 2862 2863 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2864 SelectionDAG &DAG, unsigned Flags) { 2865 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2866 } 2867 2868 template <class NodeTy> 2869 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2870 bool IsLocal) const { 2871 SDLoc DL(N); 2872 EVT Ty = getPointerTy(DAG.getDataLayout()); 2873 2874 if (isPositionIndependent()) { 2875 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2876 if (IsLocal) 2877 // Use PC-relative addressing to access the symbol. This generates the 2878 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2879 // %pcrel_lo(auipc)). 2880 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2881 2882 // Use PC-relative addressing to access the GOT for this symbol, then load 2883 // the address from the GOT. This generates the pattern (PseudoLA sym), 2884 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2885 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2886 } 2887 2888 switch (getTargetMachine().getCodeModel()) { 2889 default: 2890 report_fatal_error("Unsupported code model for lowering"); 2891 case CodeModel::Small: { 2892 // Generate a sequence for accessing addresses within the first 2 GiB of 2893 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2894 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2895 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2896 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2897 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2898 } 2899 case CodeModel::Medium: { 2900 // Generate a sequence for accessing addresses within any 2GiB range within 2901 // the address space. This generates the pattern (PseudoLLA sym), which 2902 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2903 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2904 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2905 } 2906 } 2907 } 2908 2909 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2910 SelectionDAG &DAG) const { 2911 SDLoc DL(Op); 2912 EVT Ty = Op.getValueType(); 2913 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2914 int64_t Offset = N->getOffset(); 2915 MVT XLenVT = Subtarget.getXLenVT(); 2916 2917 const GlobalValue *GV = N->getGlobal(); 2918 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2919 SDValue Addr = getAddr(N, DAG, IsLocal); 2920 2921 // In order to maximise the opportunity for common subexpression elimination, 2922 // emit a separate ADD node for the global address offset instead of folding 2923 // it in the global address node. Later peephole optimisations may choose to 2924 // fold it back in when profitable. 2925 if (Offset != 0) 2926 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2927 DAG.getConstant(Offset, DL, XLenVT)); 2928 return Addr; 2929 } 2930 2931 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2932 SelectionDAG &DAG) const { 2933 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2934 2935 return getAddr(N, DAG); 2936 } 2937 2938 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2939 SelectionDAG &DAG) const { 2940 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2941 2942 return getAddr(N, DAG); 2943 } 2944 2945 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2946 SelectionDAG &DAG) const { 2947 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2948 2949 return getAddr(N, DAG); 2950 } 2951 2952 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2953 SelectionDAG &DAG, 2954 bool UseGOT) const { 2955 SDLoc DL(N); 2956 EVT Ty = getPointerTy(DAG.getDataLayout()); 2957 const GlobalValue *GV = N->getGlobal(); 2958 MVT XLenVT = Subtarget.getXLenVT(); 2959 2960 if (UseGOT) { 2961 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2962 // load the address from the GOT and add the thread pointer. This generates 2963 // the pattern (PseudoLA_TLS_IE sym), which expands to 2964 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2965 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2966 SDValue Load = 2967 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2968 2969 // Add the thread pointer. 2970 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2971 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2972 } 2973 2974 // Generate a sequence for accessing the address relative to the thread 2975 // pointer, with the appropriate adjustment for the thread pointer offset. 2976 // This generates the pattern 2977 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2978 SDValue AddrHi = 2979 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2980 SDValue AddrAdd = 2981 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2982 SDValue AddrLo = 2983 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2984 2985 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2986 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2987 SDValue MNAdd = SDValue( 2988 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2989 0); 2990 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2991 } 2992 2993 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2994 SelectionDAG &DAG) const { 2995 SDLoc DL(N); 2996 EVT Ty = getPointerTy(DAG.getDataLayout()); 2997 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2998 const GlobalValue *GV = N->getGlobal(); 2999 3000 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3001 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3002 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3003 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3004 SDValue Load = 3005 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3006 3007 // Prepare argument list to generate call. 3008 ArgListTy Args; 3009 ArgListEntry Entry; 3010 Entry.Node = Load; 3011 Entry.Ty = CallTy; 3012 Args.push_back(Entry); 3013 3014 // Setup call to __tls_get_addr. 3015 TargetLowering::CallLoweringInfo CLI(DAG); 3016 CLI.setDebugLoc(DL) 3017 .setChain(DAG.getEntryNode()) 3018 .setLibCallee(CallingConv::C, CallTy, 3019 DAG.getExternalSymbol("__tls_get_addr", Ty), 3020 std::move(Args)); 3021 3022 return LowerCallTo(CLI).first; 3023 } 3024 3025 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3026 SelectionDAG &DAG) const { 3027 SDLoc DL(Op); 3028 EVT Ty = Op.getValueType(); 3029 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3030 int64_t Offset = N->getOffset(); 3031 MVT XLenVT = Subtarget.getXLenVT(); 3032 3033 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3034 3035 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3036 CallingConv::GHC) 3037 report_fatal_error("In GHC calling convention TLS is not supported"); 3038 3039 SDValue Addr; 3040 switch (Model) { 3041 case TLSModel::LocalExec: 3042 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3043 break; 3044 case TLSModel::InitialExec: 3045 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3046 break; 3047 case TLSModel::LocalDynamic: 3048 case TLSModel::GeneralDynamic: 3049 Addr = getDynamicTLSAddr(N, DAG); 3050 break; 3051 } 3052 3053 // In order to maximise the opportunity for common subexpression elimination, 3054 // emit a separate ADD node for the global address offset instead of folding 3055 // it in the global address node. Later peephole optimisations may choose to 3056 // fold it back in when profitable. 3057 if (Offset != 0) 3058 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3059 DAG.getConstant(Offset, DL, XLenVT)); 3060 return Addr; 3061 } 3062 3063 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3064 SDValue CondV = Op.getOperand(0); 3065 SDValue TrueV = Op.getOperand(1); 3066 SDValue FalseV = Op.getOperand(2); 3067 SDLoc DL(Op); 3068 MVT VT = Op.getSimpleValueType(); 3069 MVT XLenVT = Subtarget.getXLenVT(); 3070 3071 // Lower vector SELECTs to VSELECTs by splatting the condition. 3072 if (VT.isVector()) { 3073 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3074 SDValue CondSplat = VT.isScalableVector() 3075 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3076 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3077 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3078 } 3079 3080 // If the result type is XLenVT and CondV is the output of a SETCC node 3081 // which also operated on XLenVT inputs, then merge the SETCC node into the 3082 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3083 // compare+branch instructions. i.e.: 3084 // (select (setcc lhs, rhs, cc), truev, falsev) 3085 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3086 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3087 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3088 SDValue LHS = CondV.getOperand(0); 3089 SDValue RHS = CondV.getOperand(1); 3090 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3091 ISD::CondCode CCVal = CC->get(); 3092 3093 // Special case for a select of 2 constants that have a diffence of 1. 3094 // Normally this is done by DAGCombine, but if the select is introduced by 3095 // type legalization or op legalization, we miss it. Restricting to SETLT 3096 // case for now because that is what signed saturating add/sub need. 3097 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3098 // but we would probably want to swap the true/false values if the condition 3099 // is SETGE/SETLE to avoid an XORI. 3100 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3101 CCVal == ISD::SETLT) { 3102 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3103 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3104 if (TrueVal - 1 == FalseVal) 3105 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3106 if (TrueVal + 1 == FalseVal) 3107 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3108 } 3109 3110 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3111 3112 SDValue TargetCC = DAG.getCondCode(CCVal); 3113 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3114 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3115 } 3116 3117 // Otherwise: 3118 // (select condv, truev, falsev) 3119 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3120 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3121 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3122 3123 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3124 3125 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3126 } 3127 3128 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3129 SDValue CondV = Op.getOperand(1); 3130 SDLoc DL(Op); 3131 MVT XLenVT = Subtarget.getXLenVT(); 3132 3133 if (CondV.getOpcode() == ISD::SETCC && 3134 CondV.getOperand(0).getValueType() == XLenVT) { 3135 SDValue LHS = CondV.getOperand(0); 3136 SDValue RHS = CondV.getOperand(1); 3137 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3138 3139 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3140 3141 SDValue TargetCC = DAG.getCondCode(CCVal); 3142 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3143 LHS, RHS, TargetCC, Op.getOperand(2)); 3144 } 3145 3146 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3147 CondV, DAG.getConstant(0, DL, XLenVT), 3148 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3149 } 3150 3151 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3152 MachineFunction &MF = DAG.getMachineFunction(); 3153 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3154 3155 SDLoc DL(Op); 3156 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3157 getPointerTy(MF.getDataLayout())); 3158 3159 // vastart just stores the address of the VarArgsFrameIndex slot into the 3160 // memory location argument. 3161 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3162 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3163 MachinePointerInfo(SV)); 3164 } 3165 3166 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3167 SelectionDAG &DAG) const { 3168 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3169 MachineFunction &MF = DAG.getMachineFunction(); 3170 MachineFrameInfo &MFI = MF.getFrameInfo(); 3171 MFI.setFrameAddressIsTaken(true); 3172 Register FrameReg = RI.getFrameRegister(MF); 3173 int XLenInBytes = Subtarget.getXLen() / 8; 3174 3175 EVT VT = Op.getValueType(); 3176 SDLoc DL(Op); 3177 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3178 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3179 while (Depth--) { 3180 int Offset = -(XLenInBytes * 2); 3181 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3182 DAG.getIntPtrConstant(Offset, DL)); 3183 FrameAddr = 3184 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3185 } 3186 return FrameAddr; 3187 } 3188 3189 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3190 SelectionDAG &DAG) const { 3191 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3192 MachineFunction &MF = DAG.getMachineFunction(); 3193 MachineFrameInfo &MFI = MF.getFrameInfo(); 3194 MFI.setReturnAddressIsTaken(true); 3195 MVT XLenVT = Subtarget.getXLenVT(); 3196 int XLenInBytes = Subtarget.getXLen() / 8; 3197 3198 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3199 return SDValue(); 3200 3201 EVT VT = Op.getValueType(); 3202 SDLoc DL(Op); 3203 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3204 if (Depth) { 3205 int Off = -XLenInBytes; 3206 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3207 SDValue Offset = DAG.getConstant(Off, DL, VT); 3208 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3209 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3210 MachinePointerInfo()); 3211 } 3212 3213 // Return the value of the return address register, marking it an implicit 3214 // live-in. 3215 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3216 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3217 } 3218 3219 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3220 SelectionDAG &DAG) const { 3221 SDLoc DL(Op); 3222 SDValue Lo = Op.getOperand(0); 3223 SDValue Hi = Op.getOperand(1); 3224 SDValue Shamt = Op.getOperand(2); 3225 EVT VT = Lo.getValueType(); 3226 3227 // if Shamt-XLEN < 0: // Shamt < XLEN 3228 // Lo = Lo << Shamt 3229 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3230 // else: 3231 // Lo = 0 3232 // Hi = Lo << (Shamt-XLEN) 3233 3234 SDValue Zero = DAG.getConstant(0, DL, VT); 3235 SDValue One = DAG.getConstant(1, DL, VT); 3236 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3237 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3238 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3239 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3240 3241 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3242 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3243 SDValue ShiftRightLo = 3244 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3245 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3246 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3247 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3248 3249 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3250 3251 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3252 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3253 3254 SDValue Parts[2] = {Lo, Hi}; 3255 return DAG.getMergeValues(Parts, DL); 3256 } 3257 3258 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3259 bool IsSRA) const { 3260 SDLoc DL(Op); 3261 SDValue Lo = Op.getOperand(0); 3262 SDValue Hi = Op.getOperand(1); 3263 SDValue Shamt = Op.getOperand(2); 3264 EVT VT = Lo.getValueType(); 3265 3266 // SRA expansion: 3267 // if Shamt-XLEN < 0: // Shamt < XLEN 3268 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3269 // Hi = Hi >>s Shamt 3270 // else: 3271 // Lo = Hi >>s (Shamt-XLEN); 3272 // Hi = Hi >>s (XLEN-1) 3273 // 3274 // SRL expansion: 3275 // if Shamt-XLEN < 0: // Shamt < XLEN 3276 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3277 // Hi = Hi >>u Shamt 3278 // else: 3279 // Lo = Hi >>u (Shamt-XLEN); 3280 // Hi = 0; 3281 3282 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3283 3284 SDValue Zero = DAG.getConstant(0, DL, VT); 3285 SDValue One = DAG.getConstant(1, DL, VT); 3286 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3287 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3288 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3289 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3290 3291 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3292 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3293 SDValue ShiftLeftHi = 3294 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3295 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3296 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3297 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3298 SDValue HiFalse = 3299 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3300 3301 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3302 3303 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3304 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3305 3306 SDValue Parts[2] = {Lo, Hi}; 3307 return DAG.getMergeValues(Parts, DL); 3308 } 3309 3310 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3311 // legal equivalently-sized i8 type, so we can use that as a go-between. 3312 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3313 SelectionDAG &DAG) const { 3314 SDLoc DL(Op); 3315 MVT VT = Op.getSimpleValueType(); 3316 SDValue SplatVal = Op.getOperand(0); 3317 // All-zeros or all-ones splats are handled specially. 3318 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3319 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3320 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3321 } 3322 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3323 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3324 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3325 } 3326 MVT XLenVT = Subtarget.getXLenVT(); 3327 assert(SplatVal.getValueType() == XLenVT && 3328 "Unexpected type for i1 splat value"); 3329 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3330 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3331 DAG.getConstant(1, DL, XLenVT)); 3332 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3333 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3334 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3335 } 3336 3337 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3338 // illegal (currently only vXi64 RV32). 3339 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3340 // them to SPLAT_VECTOR_I64 3341 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3342 SelectionDAG &DAG) const { 3343 SDLoc DL(Op); 3344 MVT VecVT = Op.getSimpleValueType(); 3345 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3346 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3347 3348 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3349 SDValue Lo = Op.getOperand(0); 3350 SDValue Hi = Op.getOperand(1); 3351 3352 if (VecVT.isFixedLengthVector()) { 3353 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3354 SDLoc DL(Op); 3355 SDValue Mask, VL; 3356 std::tie(Mask, VL) = 3357 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3358 3359 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3360 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3361 } 3362 3363 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3364 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3365 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3366 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3367 // node in order to try and match RVV vector/scalar instructions. 3368 if ((LoC >> 31) == HiC) 3369 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3370 } 3371 3372 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3373 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3374 isa<ConstantSDNode>(Hi.getOperand(1)) && 3375 Hi.getConstantOperandVal(1) == 31) 3376 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3377 3378 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3379 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3380 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3381 } 3382 3383 // Custom-lower extensions from mask vectors by using a vselect either with 1 3384 // for zero/any-extension or -1 for sign-extension: 3385 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3386 // Note that any-extension is lowered identically to zero-extension. 3387 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3388 int64_t ExtTrueVal) const { 3389 SDLoc DL(Op); 3390 MVT VecVT = Op.getSimpleValueType(); 3391 SDValue Src = Op.getOperand(0); 3392 // Only custom-lower extensions from mask types 3393 assert(Src.getValueType().isVector() && 3394 Src.getValueType().getVectorElementType() == MVT::i1); 3395 3396 MVT XLenVT = Subtarget.getXLenVT(); 3397 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3398 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3399 3400 if (VecVT.isScalableVector()) { 3401 // Be careful not to introduce illegal scalar types at this stage, and be 3402 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3403 // illegal and must be expanded. Since we know that the constants are 3404 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3405 bool IsRV32E64 = 3406 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3407 3408 if (!IsRV32E64) { 3409 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3410 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3411 } else { 3412 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3413 SplatTrueVal = 3414 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3415 } 3416 3417 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3418 } 3419 3420 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3421 MVT I1ContainerVT = 3422 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3423 3424 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3425 3426 SDValue Mask, VL; 3427 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3428 3429 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3430 SplatTrueVal = 3431 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3432 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3433 SplatTrueVal, SplatZero, VL); 3434 3435 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3436 } 3437 3438 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3439 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3440 MVT ExtVT = Op.getSimpleValueType(); 3441 // Only custom-lower extensions from fixed-length vector types. 3442 if (!ExtVT.isFixedLengthVector()) 3443 return Op; 3444 MVT VT = Op.getOperand(0).getSimpleValueType(); 3445 // Grab the canonical container type for the extended type. Infer the smaller 3446 // type from that to ensure the same number of vector elements, as we know 3447 // the LMUL will be sufficient to hold the smaller type. 3448 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3449 // Get the extended container type manually to ensure the same number of 3450 // vector elements between source and dest. 3451 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3452 ContainerExtVT.getVectorElementCount()); 3453 3454 SDValue Op1 = 3455 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3456 3457 SDLoc DL(Op); 3458 SDValue Mask, VL; 3459 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3460 3461 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3462 3463 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3464 } 3465 3466 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3467 // setcc operation: 3468 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3469 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3470 SelectionDAG &DAG) const { 3471 SDLoc DL(Op); 3472 EVT MaskVT = Op.getValueType(); 3473 // Only expect to custom-lower truncations to mask types 3474 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3475 "Unexpected type for vector mask lowering"); 3476 SDValue Src = Op.getOperand(0); 3477 MVT VecVT = Src.getSimpleValueType(); 3478 3479 // If this is a fixed vector, we need to convert it to a scalable vector. 3480 MVT ContainerVT = VecVT; 3481 if (VecVT.isFixedLengthVector()) { 3482 ContainerVT = getContainerForFixedLengthVector(VecVT); 3483 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3484 } 3485 3486 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3487 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3488 3489 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3490 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3491 3492 if (VecVT.isScalableVector()) { 3493 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3494 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3495 } 3496 3497 SDValue Mask, VL; 3498 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3499 3500 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3501 SDValue Trunc = 3502 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3503 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3504 DAG.getCondCode(ISD::SETNE), Mask, VL); 3505 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3506 } 3507 3508 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3509 // first position of a vector, and that vector is slid up to the insert index. 3510 // By limiting the active vector length to index+1 and merging with the 3511 // original vector (with an undisturbed tail policy for elements >= VL), we 3512 // achieve the desired result of leaving all elements untouched except the one 3513 // at VL-1, which is replaced with the desired value. 3514 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3515 SelectionDAG &DAG) const { 3516 SDLoc DL(Op); 3517 MVT VecVT = Op.getSimpleValueType(); 3518 SDValue Vec = Op.getOperand(0); 3519 SDValue Val = Op.getOperand(1); 3520 SDValue Idx = Op.getOperand(2); 3521 3522 if (VecVT.getVectorElementType() == MVT::i1) { 3523 // FIXME: For now we just promote to an i8 vector and insert into that, 3524 // but this is probably not optimal. 3525 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3526 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3527 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3528 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3529 } 3530 3531 MVT ContainerVT = VecVT; 3532 // If the operand is a fixed-length vector, convert to a scalable one. 3533 if (VecVT.isFixedLengthVector()) { 3534 ContainerVT = getContainerForFixedLengthVector(VecVT); 3535 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3536 } 3537 3538 MVT XLenVT = Subtarget.getXLenVT(); 3539 3540 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3541 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3542 // Even i64-element vectors on RV32 can be lowered without scalar 3543 // legalization if the most-significant 32 bits of the value are not affected 3544 // by the sign-extension of the lower 32 bits. 3545 // TODO: We could also catch sign extensions of a 32-bit value. 3546 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3547 const auto *CVal = cast<ConstantSDNode>(Val); 3548 if (isInt<32>(CVal->getSExtValue())) { 3549 IsLegalInsert = true; 3550 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3551 } 3552 } 3553 3554 SDValue Mask, VL; 3555 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3556 3557 SDValue ValInVec; 3558 3559 if (IsLegalInsert) { 3560 unsigned Opc = 3561 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3562 if (isNullConstant(Idx)) { 3563 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3564 if (!VecVT.isFixedLengthVector()) 3565 return Vec; 3566 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3567 } 3568 ValInVec = 3569 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3570 } else { 3571 // On RV32, i64-element vectors must be specially handled to place the 3572 // value at element 0, by using two vslide1up instructions in sequence on 3573 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3574 // this. 3575 SDValue One = DAG.getConstant(1, DL, XLenVT); 3576 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3577 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3578 MVT I32ContainerVT = 3579 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3580 SDValue I32Mask = 3581 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3582 // Limit the active VL to two. 3583 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3584 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3585 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3586 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3587 InsertI64VL); 3588 // First slide in the hi value, then the lo in underneath it. 3589 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3590 ValHi, I32Mask, InsertI64VL); 3591 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3592 ValLo, I32Mask, InsertI64VL); 3593 // Bitcast back to the right container type. 3594 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3595 } 3596 3597 // Now that the value is in a vector, slide it into position. 3598 SDValue InsertVL = 3599 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3600 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3601 ValInVec, Idx, Mask, InsertVL); 3602 if (!VecVT.isFixedLengthVector()) 3603 return Slideup; 3604 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3605 } 3606 3607 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3608 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3609 // types this is done using VMV_X_S to allow us to glean information about the 3610 // sign bits of the result. 3611 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3612 SelectionDAG &DAG) const { 3613 SDLoc DL(Op); 3614 SDValue Idx = Op.getOperand(1); 3615 SDValue Vec = Op.getOperand(0); 3616 EVT EltVT = Op.getValueType(); 3617 MVT VecVT = Vec.getSimpleValueType(); 3618 MVT XLenVT = Subtarget.getXLenVT(); 3619 3620 if (VecVT.getVectorElementType() == MVT::i1) { 3621 // FIXME: For now we just promote to an i8 vector and extract from that, 3622 // but this is probably not optimal. 3623 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3624 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3625 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3626 } 3627 3628 // If this is a fixed vector, we need to convert it to a scalable vector. 3629 MVT ContainerVT = VecVT; 3630 if (VecVT.isFixedLengthVector()) { 3631 ContainerVT = getContainerForFixedLengthVector(VecVT); 3632 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3633 } 3634 3635 // If the index is 0, the vector is already in the right position. 3636 if (!isNullConstant(Idx)) { 3637 // Use a VL of 1 to avoid processing more elements than we need. 3638 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3639 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3640 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3641 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3642 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3643 } 3644 3645 if (!EltVT.isInteger()) { 3646 // Floating-point extracts are handled in TableGen. 3647 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3648 DAG.getConstant(0, DL, XLenVT)); 3649 } 3650 3651 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3652 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3653 } 3654 3655 // Some RVV intrinsics may claim that they want an integer operand to be 3656 // promoted or expanded. 3657 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3658 const RISCVSubtarget &Subtarget) { 3659 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3660 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3661 "Unexpected opcode"); 3662 3663 if (!Subtarget.hasStdExtV()) 3664 return SDValue(); 3665 3666 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3667 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3668 SDLoc DL(Op); 3669 3670 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3671 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3672 if (!II || !II->SplatOperand) 3673 return SDValue(); 3674 3675 unsigned SplatOp = II->SplatOperand + HasChain; 3676 assert(SplatOp < Op.getNumOperands()); 3677 3678 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3679 SDValue &ScalarOp = Operands[SplatOp]; 3680 MVT OpVT = ScalarOp.getSimpleValueType(); 3681 MVT XLenVT = Subtarget.getXLenVT(); 3682 3683 // If this isn't a scalar, or its type is XLenVT we're done. 3684 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3685 return SDValue(); 3686 3687 // Simplest case is that the operand needs to be promoted to XLenVT. 3688 if (OpVT.bitsLT(XLenVT)) { 3689 // If the operand is a constant, sign extend to increase our chances 3690 // of being able to use a .vi instruction. ANY_EXTEND would become a 3691 // a zero extend and the simm5 check in isel would fail. 3692 // FIXME: Should we ignore the upper bits in isel instead? 3693 unsigned ExtOpc = 3694 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3695 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3696 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3697 } 3698 3699 // Use the previous operand to get the vXi64 VT. The result might be a mask 3700 // VT for compares. Using the previous operand assumes that the previous 3701 // operand will never have a smaller element size than a scalar operand and 3702 // that a widening operation never uses SEW=64. 3703 // NOTE: If this fails the below assert, we can probably just find the 3704 // element count from any operand or result and use it to construct the VT. 3705 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3706 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3707 3708 // The more complex case is when the scalar is larger than XLenVT. 3709 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3710 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3711 3712 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3713 // on the instruction to sign-extend since SEW>XLEN. 3714 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3715 if (isInt<32>(CVal->getSExtValue())) { 3716 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3717 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3718 } 3719 } 3720 3721 // We need to convert the scalar to a splat vector. 3722 // FIXME: Can we implicitly truncate the scalar if it is known to 3723 // be sign extended? 3724 // VL should be the last operand. 3725 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3726 assert(VL.getValueType() == XLenVT); 3727 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3728 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3729 } 3730 3731 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3732 SelectionDAG &DAG) const { 3733 unsigned IntNo = Op.getConstantOperandVal(0); 3734 SDLoc DL(Op); 3735 MVT XLenVT = Subtarget.getXLenVT(); 3736 3737 switch (IntNo) { 3738 default: 3739 break; // Don't custom lower most intrinsics. 3740 case Intrinsic::thread_pointer: { 3741 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3742 return DAG.getRegister(RISCV::X4, PtrVT); 3743 } 3744 case Intrinsic::riscv_orc_b: 3745 // Lower to the GORCI encoding for orc.b. 3746 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3747 DAG.getConstant(7, DL, XLenVT)); 3748 case Intrinsic::riscv_grev: 3749 case Intrinsic::riscv_gorc: { 3750 unsigned Opc = 3751 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3752 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3753 } 3754 case Intrinsic::riscv_shfl: 3755 case Intrinsic::riscv_unshfl: { 3756 unsigned Opc = 3757 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3758 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3759 } 3760 case Intrinsic::riscv_bcompress: 3761 case Intrinsic::riscv_bdecompress: { 3762 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3763 : RISCVISD::BDECOMPRESS; 3764 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3765 } 3766 case Intrinsic::riscv_vmv_x_s: 3767 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3768 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3769 Op.getOperand(1)); 3770 case Intrinsic::riscv_vmv_v_x: 3771 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3772 Op.getSimpleValueType(), DL, DAG, Subtarget); 3773 case Intrinsic::riscv_vfmv_v_f: 3774 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3775 Op.getOperand(1), Op.getOperand(2)); 3776 case Intrinsic::riscv_vmv_s_x: { 3777 SDValue Scalar = Op.getOperand(2); 3778 3779 if (Scalar.getValueType().bitsLE(XLenVT)) { 3780 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3781 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3782 Op.getOperand(1), Scalar, Op.getOperand(3)); 3783 } 3784 3785 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3786 3787 // This is an i64 value that lives in two scalar registers. We have to 3788 // insert this in a convoluted way. First we build vXi64 splat containing 3789 // the/ two values that we assemble using some bit math. Next we'll use 3790 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3791 // to merge element 0 from our splat into the source vector. 3792 // FIXME: This is probably not the best way to do this, but it is 3793 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3794 // point. 3795 // sw lo, (a0) 3796 // sw hi, 4(a0) 3797 // vlse vX, (a0) 3798 // 3799 // vid.v vVid 3800 // vmseq.vx mMask, vVid, 0 3801 // vmerge.vvm vDest, vSrc, vVal, mMask 3802 MVT VT = Op.getSimpleValueType(); 3803 SDValue Vec = Op.getOperand(1); 3804 SDValue VL = Op.getOperand(3); 3805 3806 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3807 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3808 DAG.getConstant(0, DL, MVT::i32), VL); 3809 3810 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3811 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3812 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3813 SDValue SelectCond = 3814 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3815 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3816 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3817 Vec, VL); 3818 } 3819 case Intrinsic::riscv_vslide1up: 3820 case Intrinsic::riscv_vslide1down: 3821 case Intrinsic::riscv_vslide1up_mask: 3822 case Intrinsic::riscv_vslide1down_mask: { 3823 // We need to special case these when the scalar is larger than XLen. 3824 unsigned NumOps = Op.getNumOperands(); 3825 bool IsMasked = NumOps == 6; 3826 unsigned OpOffset = IsMasked ? 1 : 0; 3827 SDValue Scalar = Op.getOperand(2 + OpOffset); 3828 if (Scalar.getValueType().bitsLE(XLenVT)) 3829 break; 3830 3831 // Splatting a sign extended constant is fine. 3832 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3833 if (isInt<32>(CVal->getSExtValue())) 3834 break; 3835 3836 MVT VT = Op.getSimpleValueType(); 3837 assert(VT.getVectorElementType() == MVT::i64 && 3838 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3839 3840 // Convert the vector source to the equivalent nxvXi32 vector. 3841 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3842 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3843 3844 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3845 DAG.getConstant(0, DL, XLenVT)); 3846 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3847 DAG.getConstant(1, DL, XLenVT)); 3848 3849 // Double the VL since we halved SEW. 3850 SDValue VL = Op.getOperand(NumOps - 1); 3851 SDValue I32VL = 3852 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3853 3854 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3855 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3856 3857 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3858 // instructions. 3859 if (IntNo == Intrinsic::riscv_vslide1up || 3860 IntNo == Intrinsic::riscv_vslide1up_mask) { 3861 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3862 I32Mask, I32VL); 3863 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3864 I32Mask, I32VL); 3865 } else { 3866 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3867 I32Mask, I32VL); 3868 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3869 I32Mask, I32VL); 3870 } 3871 3872 // Convert back to nxvXi64. 3873 Vec = DAG.getBitcast(VT, Vec); 3874 3875 if (!IsMasked) 3876 return Vec; 3877 3878 // Apply mask after the operation. 3879 SDValue Mask = Op.getOperand(NumOps - 2); 3880 SDValue MaskedOff = Op.getOperand(1); 3881 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3882 } 3883 } 3884 3885 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3886 } 3887 3888 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3889 SelectionDAG &DAG) const { 3890 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3891 } 3892 3893 static MVT getLMUL1VT(MVT VT) { 3894 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3895 "Unexpected vector MVT"); 3896 return MVT::getScalableVectorVT( 3897 VT.getVectorElementType(), 3898 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3899 } 3900 3901 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3902 switch (ISDOpcode) { 3903 default: 3904 llvm_unreachable("Unhandled reduction"); 3905 case ISD::VECREDUCE_ADD: 3906 return RISCVISD::VECREDUCE_ADD_VL; 3907 case ISD::VECREDUCE_UMAX: 3908 return RISCVISD::VECREDUCE_UMAX_VL; 3909 case ISD::VECREDUCE_SMAX: 3910 return RISCVISD::VECREDUCE_SMAX_VL; 3911 case ISD::VECREDUCE_UMIN: 3912 return RISCVISD::VECREDUCE_UMIN_VL; 3913 case ISD::VECREDUCE_SMIN: 3914 return RISCVISD::VECREDUCE_SMIN_VL; 3915 case ISD::VECREDUCE_AND: 3916 return RISCVISD::VECREDUCE_AND_VL; 3917 case ISD::VECREDUCE_OR: 3918 return RISCVISD::VECREDUCE_OR_VL; 3919 case ISD::VECREDUCE_XOR: 3920 return RISCVISD::VECREDUCE_XOR_VL; 3921 } 3922 } 3923 3924 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3925 SelectionDAG &DAG) const { 3926 SDLoc DL(Op); 3927 SDValue Vec = Op.getOperand(0); 3928 MVT VecVT = Vec.getSimpleValueType(); 3929 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3930 Op.getOpcode() == ISD::VECREDUCE_OR || 3931 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3932 "Unexpected reduction lowering"); 3933 3934 MVT XLenVT = Subtarget.getXLenVT(); 3935 assert(Op.getValueType() == XLenVT && 3936 "Expected reduction output to be legalized to XLenVT"); 3937 3938 MVT ContainerVT = VecVT; 3939 if (VecVT.isFixedLengthVector()) { 3940 ContainerVT = getContainerForFixedLengthVector(VecVT); 3941 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3942 } 3943 3944 SDValue Mask, VL; 3945 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3946 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3947 3948 switch (Op.getOpcode()) { 3949 default: 3950 llvm_unreachable("Unhandled reduction"); 3951 case ISD::VECREDUCE_AND: 3952 // vpopc ~x == 0 3953 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3954 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3955 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3956 case ISD::VECREDUCE_OR: 3957 // vpopc x != 0 3958 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3959 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3960 case ISD::VECREDUCE_XOR: { 3961 // ((vpopc x) & 1) != 0 3962 SDValue One = DAG.getConstant(1, DL, XLenVT); 3963 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3964 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3965 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3966 } 3967 } 3968 } 3969 3970 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3971 SelectionDAG &DAG) const { 3972 SDLoc DL(Op); 3973 SDValue Vec = Op.getOperand(0); 3974 EVT VecEVT = Vec.getValueType(); 3975 3976 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3977 3978 // Due to ordering in legalize types we may have a vector type that needs to 3979 // be split. Do that manually so we can get down to a legal type. 3980 while (getTypeAction(*DAG.getContext(), VecEVT) == 3981 TargetLowering::TypeSplitVector) { 3982 SDValue Lo, Hi; 3983 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3984 VecEVT = Lo.getValueType(); 3985 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3986 } 3987 3988 // TODO: The type may need to be widened rather than split. Or widened before 3989 // it can be split. 3990 if (!isTypeLegal(VecEVT)) 3991 return SDValue(); 3992 3993 MVT VecVT = VecEVT.getSimpleVT(); 3994 MVT VecEltVT = VecVT.getVectorElementType(); 3995 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3996 3997 MVT ContainerVT = VecVT; 3998 if (VecVT.isFixedLengthVector()) { 3999 ContainerVT = getContainerForFixedLengthVector(VecVT); 4000 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4001 } 4002 4003 MVT M1VT = getLMUL1VT(ContainerVT); 4004 4005 SDValue Mask, VL; 4006 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4007 4008 // FIXME: This is a VLMAX splat which might be too large and can prevent 4009 // vsetvli removal. 4010 SDValue NeutralElem = 4011 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4012 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4013 SDValue Reduction = 4014 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 4015 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4016 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4017 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4018 } 4019 4020 // Given a reduction op, this function returns the matching reduction opcode, 4021 // the vector SDValue and the scalar SDValue required to lower this to a 4022 // RISCVISD node. 4023 static std::tuple<unsigned, SDValue, SDValue> 4024 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4025 SDLoc DL(Op); 4026 auto Flags = Op->getFlags(); 4027 unsigned Opcode = Op.getOpcode(); 4028 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4029 switch (Opcode) { 4030 default: 4031 llvm_unreachable("Unhandled reduction"); 4032 case ISD::VECREDUCE_FADD: 4033 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4034 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4035 case ISD::VECREDUCE_SEQ_FADD: 4036 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4037 Op.getOperand(0)); 4038 case ISD::VECREDUCE_FMIN: 4039 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4040 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4041 case ISD::VECREDUCE_FMAX: 4042 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4043 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4044 } 4045 } 4046 4047 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4048 SelectionDAG &DAG) const { 4049 SDLoc DL(Op); 4050 MVT VecEltVT = Op.getSimpleValueType(); 4051 4052 unsigned RVVOpcode; 4053 SDValue VectorVal, ScalarVal; 4054 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4055 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4056 MVT VecVT = VectorVal.getSimpleValueType(); 4057 4058 MVT ContainerVT = VecVT; 4059 if (VecVT.isFixedLengthVector()) { 4060 ContainerVT = getContainerForFixedLengthVector(VecVT); 4061 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4062 } 4063 4064 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4065 4066 SDValue Mask, VL; 4067 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4068 4069 // FIXME: This is a VLMAX splat which might be too large and can prevent 4070 // vsetvli removal. 4071 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4072 SDValue Reduction = 4073 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 4074 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4075 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4076 } 4077 4078 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4079 SelectionDAG &DAG) const { 4080 SDValue Vec = Op.getOperand(0); 4081 SDValue SubVec = Op.getOperand(1); 4082 MVT VecVT = Vec.getSimpleValueType(); 4083 MVT SubVecVT = SubVec.getSimpleValueType(); 4084 4085 SDLoc DL(Op); 4086 MVT XLenVT = Subtarget.getXLenVT(); 4087 unsigned OrigIdx = Op.getConstantOperandVal(2); 4088 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4089 4090 // We don't have the ability to slide mask vectors up indexed by their i1 4091 // elements; the smallest we can do is i8. Often we are able to bitcast to 4092 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4093 // into a scalable one, we might not necessarily have enough scalable 4094 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4095 if (SubVecVT.getVectorElementType() == MVT::i1 && 4096 (OrigIdx != 0 || !Vec.isUndef())) { 4097 if (VecVT.getVectorMinNumElements() >= 8 && 4098 SubVecVT.getVectorMinNumElements() >= 8) { 4099 assert(OrigIdx % 8 == 0 && "Invalid index"); 4100 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4101 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4102 "Unexpected mask vector lowering"); 4103 OrigIdx /= 8; 4104 SubVecVT = 4105 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4106 SubVecVT.isScalableVector()); 4107 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4108 VecVT.isScalableVector()); 4109 Vec = DAG.getBitcast(VecVT, Vec); 4110 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4111 } else { 4112 // We can't slide this mask vector up indexed by its i1 elements. 4113 // This poses a problem when we wish to insert a scalable vector which 4114 // can't be re-expressed as a larger type. Just choose the slow path and 4115 // extend to a larger type, then truncate back down. 4116 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4117 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4118 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4119 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4120 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4121 Op.getOperand(2)); 4122 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4123 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4124 } 4125 } 4126 4127 // If the subvector vector is a fixed-length type, we cannot use subregister 4128 // manipulation to simplify the codegen; we don't know which register of a 4129 // LMUL group contains the specific subvector as we only know the minimum 4130 // register size. Therefore we must slide the vector group up the full 4131 // amount. 4132 if (SubVecVT.isFixedLengthVector()) { 4133 if (OrigIdx == 0 && Vec.isUndef()) 4134 return Op; 4135 MVT ContainerVT = VecVT; 4136 if (VecVT.isFixedLengthVector()) { 4137 ContainerVT = getContainerForFixedLengthVector(VecVT); 4138 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4139 } 4140 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4141 DAG.getUNDEF(ContainerVT), SubVec, 4142 DAG.getConstant(0, DL, XLenVT)); 4143 SDValue Mask = 4144 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4145 // Set the vector length to only the number of elements we care about. Note 4146 // that for slideup this includes the offset. 4147 SDValue VL = 4148 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4149 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4150 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4151 SubVec, SlideupAmt, Mask, VL); 4152 if (VecVT.isFixedLengthVector()) 4153 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4154 return DAG.getBitcast(Op.getValueType(), Slideup); 4155 } 4156 4157 unsigned SubRegIdx, RemIdx; 4158 std::tie(SubRegIdx, RemIdx) = 4159 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4160 VecVT, SubVecVT, OrigIdx, TRI); 4161 4162 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4163 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4164 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4165 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4166 4167 // 1. If the Idx has been completely eliminated and this subvector's size is 4168 // a vector register or a multiple thereof, or the surrounding elements are 4169 // undef, then this is a subvector insert which naturally aligns to a vector 4170 // register. These can easily be handled using subregister manipulation. 4171 // 2. If the subvector is smaller than a vector register, then the insertion 4172 // must preserve the undisturbed elements of the register. We do this by 4173 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4174 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4175 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4176 // LMUL=1 type back into the larger vector (resolving to another subregister 4177 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4178 // to avoid allocating a large register group to hold our subvector. 4179 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4180 return Op; 4181 4182 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4183 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4184 // (in our case undisturbed). This means we can set up a subvector insertion 4185 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4186 // size of the subvector. 4187 MVT InterSubVT = VecVT; 4188 SDValue AlignedExtract = Vec; 4189 unsigned AlignedIdx = OrigIdx - RemIdx; 4190 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4191 InterSubVT = getLMUL1VT(VecVT); 4192 // Extract a subvector equal to the nearest full vector register type. This 4193 // should resolve to a EXTRACT_SUBREG instruction. 4194 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4195 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4196 } 4197 4198 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4199 // For scalable vectors this must be further multiplied by vscale. 4200 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4201 4202 SDValue Mask, VL; 4203 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4204 4205 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4206 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4207 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4208 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4209 4210 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4211 DAG.getUNDEF(InterSubVT), SubVec, 4212 DAG.getConstant(0, DL, XLenVT)); 4213 4214 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4215 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4216 4217 // If required, insert this subvector back into the correct vector register. 4218 // This should resolve to an INSERT_SUBREG instruction. 4219 if (VecVT.bitsGT(InterSubVT)) 4220 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4221 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4222 4223 // We might have bitcast from a mask type: cast back to the original type if 4224 // required. 4225 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4226 } 4227 4228 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4229 SelectionDAG &DAG) const { 4230 SDValue Vec = Op.getOperand(0); 4231 MVT SubVecVT = Op.getSimpleValueType(); 4232 MVT VecVT = Vec.getSimpleValueType(); 4233 4234 SDLoc DL(Op); 4235 MVT XLenVT = Subtarget.getXLenVT(); 4236 unsigned OrigIdx = Op.getConstantOperandVal(1); 4237 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4238 4239 // We don't have the ability to slide mask vectors down indexed by their i1 4240 // elements; the smallest we can do is i8. Often we are able to bitcast to 4241 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4242 // from a scalable one, we might not necessarily have enough scalable 4243 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4244 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4245 if (VecVT.getVectorMinNumElements() >= 8 && 4246 SubVecVT.getVectorMinNumElements() >= 8) { 4247 assert(OrigIdx % 8 == 0 && "Invalid index"); 4248 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4249 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4250 "Unexpected mask vector lowering"); 4251 OrigIdx /= 8; 4252 SubVecVT = 4253 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4254 SubVecVT.isScalableVector()); 4255 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4256 VecVT.isScalableVector()); 4257 Vec = DAG.getBitcast(VecVT, Vec); 4258 } else { 4259 // We can't slide this mask vector down, indexed by its i1 elements. 4260 // This poses a problem when we wish to extract a scalable vector which 4261 // can't be re-expressed as a larger type. Just choose the slow path and 4262 // extend to a larger type, then truncate back down. 4263 // TODO: We could probably improve this when extracting certain fixed 4264 // from fixed, where we can extract as i8 and shift the correct element 4265 // right to reach the desired subvector? 4266 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4267 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4268 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4269 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4270 Op.getOperand(1)); 4271 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4272 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4273 } 4274 } 4275 4276 // If the subvector vector is a fixed-length type, we cannot use subregister 4277 // manipulation to simplify the codegen; we don't know which register of a 4278 // LMUL group contains the specific subvector as we only know the minimum 4279 // register size. Therefore we must slide the vector group down the full 4280 // amount. 4281 if (SubVecVT.isFixedLengthVector()) { 4282 // With an index of 0 this is a cast-like subvector, which can be performed 4283 // with subregister operations. 4284 if (OrigIdx == 0) 4285 return Op; 4286 MVT ContainerVT = VecVT; 4287 if (VecVT.isFixedLengthVector()) { 4288 ContainerVT = getContainerForFixedLengthVector(VecVT); 4289 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4290 } 4291 SDValue Mask = 4292 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4293 // Set the vector length to only the number of elements we care about. This 4294 // avoids sliding down elements we're going to discard straight away. 4295 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4296 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4297 SDValue Slidedown = 4298 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4299 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4300 // Now we can use a cast-like subvector extract to get the result. 4301 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4302 DAG.getConstant(0, DL, XLenVT)); 4303 return DAG.getBitcast(Op.getValueType(), Slidedown); 4304 } 4305 4306 unsigned SubRegIdx, RemIdx; 4307 std::tie(SubRegIdx, RemIdx) = 4308 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4309 VecVT, SubVecVT, OrigIdx, TRI); 4310 4311 // If the Idx has been completely eliminated then this is a subvector extract 4312 // which naturally aligns to a vector register. These can easily be handled 4313 // using subregister manipulation. 4314 if (RemIdx == 0) 4315 return Op; 4316 4317 // Else we must shift our vector register directly to extract the subvector. 4318 // Do this using VSLIDEDOWN. 4319 4320 // If the vector type is an LMUL-group type, extract a subvector equal to the 4321 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4322 // instruction. 4323 MVT InterSubVT = VecVT; 4324 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4325 InterSubVT = getLMUL1VT(VecVT); 4326 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4327 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4328 } 4329 4330 // Slide this vector register down by the desired number of elements in order 4331 // to place the desired subvector starting at element 0. 4332 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4333 // For scalable vectors this must be further multiplied by vscale. 4334 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4335 4336 SDValue Mask, VL; 4337 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4338 SDValue Slidedown = 4339 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4340 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4341 4342 // Now the vector is in the right position, extract our final subvector. This 4343 // should resolve to a COPY. 4344 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4345 DAG.getConstant(0, DL, XLenVT)); 4346 4347 // We might have bitcast from a mask type: cast back to the original type if 4348 // required. 4349 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4350 } 4351 4352 // Lower step_vector to the vid instruction. Any non-identity step value must 4353 // be accounted for my manual expansion. 4354 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4355 SelectionDAG &DAG) const { 4356 SDLoc DL(Op); 4357 MVT VT = Op.getSimpleValueType(); 4358 MVT XLenVT = Subtarget.getXLenVT(); 4359 SDValue Mask, VL; 4360 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4361 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4362 uint64_t StepValImm = Op.getConstantOperandVal(0); 4363 if (StepValImm != 1) { 4364 if (isPowerOf2_64(StepValImm)) { 4365 SDValue StepVal = 4366 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4367 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4368 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4369 } else { 4370 SDValue StepVal = lowerScalarSplat( 4371 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4372 DL, DAG, Subtarget); 4373 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4374 } 4375 } 4376 return StepVec; 4377 } 4378 4379 // Implement vector_reverse using vrgather.vv with indices determined by 4380 // subtracting the id of each element from (VLMAX-1). This will convert 4381 // the indices like so: 4382 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4383 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4384 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4385 SelectionDAG &DAG) const { 4386 SDLoc DL(Op); 4387 MVT VecVT = Op.getSimpleValueType(); 4388 unsigned EltSize = VecVT.getScalarSizeInBits(); 4389 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4390 4391 unsigned MaxVLMAX = 0; 4392 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4393 if (VectorBitsMax != 0) 4394 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4395 4396 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4397 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4398 4399 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4400 // to use vrgatherei16.vv. 4401 // TODO: It's also possible to use vrgatherei16.vv for other types to 4402 // decrease register width for the index calculation. 4403 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4404 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4405 // Reverse each half, then reassemble them in reverse order. 4406 // NOTE: It's also possible that after splitting that VLMAX no longer 4407 // requires vrgatherei16.vv. 4408 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4409 SDValue Lo, Hi; 4410 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4411 EVT LoVT, HiVT; 4412 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4413 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4414 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4415 // Reassemble the low and high pieces reversed. 4416 // FIXME: This is a CONCAT_VECTORS. 4417 SDValue Res = 4418 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4419 DAG.getIntPtrConstant(0, DL)); 4420 return DAG.getNode( 4421 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4422 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4423 } 4424 4425 // Just promote the int type to i16 which will double the LMUL. 4426 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4427 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4428 } 4429 4430 MVT XLenVT = Subtarget.getXLenVT(); 4431 SDValue Mask, VL; 4432 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4433 4434 // Calculate VLMAX-1 for the desired SEW. 4435 unsigned MinElts = VecVT.getVectorMinNumElements(); 4436 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4437 DAG.getConstant(MinElts, DL, XLenVT)); 4438 SDValue VLMinus1 = 4439 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4440 4441 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4442 bool IsRV32E64 = 4443 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4444 SDValue SplatVL; 4445 if (!IsRV32E64) 4446 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4447 else 4448 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4449 4450 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4451 SDValue Indices = 4452 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4453 4454 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4455 } 4456 4457 SDValue 4458 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4459 SelectionDAG &DAG) const { 4460 SDLoc DL(Op); 4461 auto *Load = cast<LoadSDNode>(Op); 4462 4463 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4464 Load->getMemoryVT(), 4465 *Load->getMemOperand()) && 4466 "Expecting a correctly-aligned load"); 4467 4468 MVT VT = Op.getSimpleValueType(); 4469 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4470 4471 SDValue VL = 4472 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4473 4474 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4475 SDValue NewLoad = DAG.getMemIntrinsicNode( 4476 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4477 Load->getMemoryVT(), Load->getMemOperand()); 4478 4479 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4480 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4481 } 4482 4483 SDValue 4484 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4485 SelectionDAG &DAG) const { 4486 SDLoc DL(Op); 4487 auto *Store = cast<StoreSDNode>(Op); 4488 4489 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4490 Store->getMemoryVT(), 4491 *Store->getMemOperand()) && 4492 "Expecting a correctly-aligned store"); 4493 4494 SDValue StoreVal = Store->getValue(); 4495 MVT VT = StoreVal.getSimpleValueType(); 4496 4497 // If the size less than a byte, we need to pad with zeros to make a byte. 4498 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4499 VT = MVT::v8i1; 4500 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4501 DAG.getConstant(0, DL, VT), StoreVal, 4502 DAG.getIntPtrConstant(0, DL)); 4503 } 4504 4505 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4506 4507 SDValue VL = 4508 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4509 4510 SDValue NewValue = 4511 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4512 return DAG.getMemIntrinsicNode( 4513 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4514 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4515 Store->getMemoryVT(), Store->getMemOperand()); 4516 } 4517 4518 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4519 SelectionDAG &DAG) const { 4520 SDLoc DL(Op); 4521 MVT VT = Op.getSimpleValueType(); 4522 4523 const auto *MemSD = cast<MemSDNode>(Op); 4524 EVT MemVT = MemSD->getMemoryVT(); 4525 MachineMemOperand *MMO = MemSD->getMemOperand(); 4526 SDValue Chain = MemSD->getChain(); 4527 SDValue BasePtr = MemSD->getBasePtr(); 4528 4529 SDValue Mask, PassThru, VL; 4530 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4531 Mask = VPLoad->getMask(); 4532 PassThru = DAG.getUNDEF(VT); 4533 VL = VPLoad->getVectorLength(); 4534 } else { 4535 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4536 Mask = MLoad->getMask(); 4537 PassThru = MLoad->getPassThru(); 4538 } 4539 4540 MVT XLenVT = Subtarget.getXLenVT(); 4541 4542 MVT ContainerVT = VT; 4543 if (VT.isFixedLengthVector()) { 4544 ContainerVT = getContainerForFixedLengthVector(VT); 4545 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4546 4547 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4548 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4549 } 4550 4551 if (!VL) 4552 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4553 4554 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4555 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4556 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL}; 4557 SDValue Result = 4558 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4559 Chain = Result.getValue(1); 4560 4561 if (VT.isFixedLengthVector()) 4562 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4563 4564 return DAG.getMergeValues({Result, Chain}, DL); 4565 } 4566 4567 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4568 SelectionDAG &DAG) const { 4569 SDLoc DL(Op); 4570 4571 const auto *MemSD = cast<MemSDNode>(Op); 4572 EVT MemVT = MemSD->getMemoryVT(); 4573 MachineMemOperand *MMO = MemSD->getMemOperand(); 4574 SDValue Chain = MemSD->getChain(); 4575 SDValue BasePtr = MemSD->getBasePtr(); 4576 SDValue Val, Mask, VL; 4577 4578 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4579 Val = VPStore->getValue(); 4580 Mask = VPStore->getMask(); 4581 VL = VPStore->getVectorLength(); 4582 } else { 4583 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4584 Val = MStore->getValue(); 4585 Mask = MStore->getMask(); 4586 } 4587 4588 MVT VT = Val.getSimpleValueType(); 4589 MVT XLenVT = Subtarget.getXLenVT(); 4590 4591 MVT ContainerVT = VT; 4592 if (VT.isFixedLengthVector()) { 4593 ContainerVT = getContainerForFixedLengthVector(VT); 4594 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4595 4596 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4597 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4598 } 4599 4600 if (!VL) 4601 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4602 4603 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4604 return DAG.getMemIntrinsicNode( 4605 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4606 {Chain, IntID, Val, BasePtr, Mask, VL}, MemVT, MMO); 4607 } 4608 4609 SDValue 4610 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4611 SelectionDAG &DAG) const { 4612 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4613 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4614 4615 MVT VT = Op.getSimpleValueType(); 4616 4617 SDValue Op1 = 4618 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4619 SDValue Op2 = 4620 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4621 4622 SDLoc DL(Op); 4623 SDValue VL = 4624 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4625 4626 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4627 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4628 4629 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4630 Op.getOperand(2), Mask, VL); 4631 4632 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4633 } 4634 4635 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4636 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4637 MVT VT = Op.getSimpleValueType(); 4638 4639 if (VT.getVectorElementType() == MVT::i1) 4640 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4641 4642 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4643 } 4644 4645 SDValue 4646 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4647 SelectionDAG &DAG) const { 4648 unsigned Opc; 4649 switch (Op.getOpcode()) { 4650 default: llvm_unreachable("Unexpected opcode!"); 4651 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4652 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4653 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4654 } 4655 4656 return lowerToScalableOp(Op, DAG, Opc); 4657 } 4658 4659 // Lower vector ABS to smax(X, sub(0, X)). 4660 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4661 SDLoc DL(Op); 4662 MVT VT = Op.getSimpleValueType(); 4663 SDValue X = Op.getOperand(0); 4664 4665 assert(VT.isFixedLengthVector() && "Unexpected type"); 4666 4667 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4668 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4669 4670 SDValue Mask, VL; 4671 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4672 4673 SDValue SplatZero = 4674 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4675 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4676 SDValue NegX = 4677 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4678 SDValue Max = 4679 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4680 4681 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4682 } 4683 4684 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4685 SDValue Op, SelectionDAG &DAG) const { 4686 SDLoc DL(Op); 4687 MVT VT = Op.getSimpleValueType(); 4688 SDValue Mag = Op.getOperand(0); 4689 SDValue Sign = Op.getOperand(1); 4690 assert(Mag.getValueType() == Sign.getValueType() && 4691 "Can only handle COPYSIGN with matching types."); 4692 4693 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4694 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4695 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4696 4697 SDValue Mask, VL; 4698 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4699 4700 SDValue CopySign = 4701 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4702 4703 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4704 } 4705 4706 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4707 SDValue Op, SelectionDAG &DAG) const { 4708 MVT VT = Op.getSimpleValueType(); 4709 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4710 4711 MVT I1ContainerVT = 4712 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4713 4714 SDValue CC = 4715 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4716 SDValue Op1 = 4717 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4718 SDValue Op2 = 4719 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4720 4721 SDLoc DL(Op); 4722 SDValue Mask, VL; 4723 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4724 4725 SDValue Select = 4726 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4727 4728 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4729 } 4730 4731 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4732 unsigned NewOpc, 4733 bool HasMask) const { 4734 MVT VT = Op.getSimpleValueType(); 4735 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4736 4737 // Create list of operands by converting existing ones to scalable types. 4738 SmallVector<SDValue, 6> Ops; 4739 for (const SDValue &V : Op->op_values()) { 4740 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4741 4742 // Pass through non-vector operands. 4743 if (!V.getValueType().isVector()) { 4744 Ops.push_back(V); 4745 continue; 4746 } 4747 4748 // "cast" fixed length vector to a scalable vector. 4749 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4750 "Only fixed length vectors are supported!"); 4751 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4752 } 4753 4754 SDLoc DL(Op); 4755 SDValue Mask, VL; 4756 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4757 if (HasMask) 4758 Ops.push_back(Mask); 4759 Ops.push_back(VL); 4760 4761 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4762 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4763 } 4764 4765 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4766 // * Operands of each node are assumed to be in the same order. 4767 // * The EVL operand is promoted from i32 to i64 on RV64. 4768 // * Fixed-length vectors are converted to their scalable-vector container 4769 // types. 4770 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4771 unsigned RISCVISDOpc) const { 4772 SDLoc DL(Op); 4773 MVT VT = Op.getSimpleValueType(); 4774 SmallVector<SDValue, 4> Ops; 4775 4776 for (const auto &OpIdx : enumerate(Op->ops())) { 4777 SDValue V = OpIdx.value(); 4778 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4779 // Pass through operands which aren't fixed-length vectors. 4780 if (!V.getValueType().isFixedLengthVector()) { 4781 Ops.push_back(V); 4782 continue; 4783 } 4784 // "cast" fixed length vector to a scalable vector. 4785 MVT OpVT = V.getSimpleValueType(); 4786 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4787 assert(useRVVForFixedLengthVectorVT(OpVT) && 4788 "Only fixed length vectors are supported!"); 4789 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4790 } 4791 4792 if (!VT.isFixedLengthVector()) 4793 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4794 4795 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4796 4797 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4798 4799 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4800 } 4801 4802 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 4803 // matched to a RVV indexed load. The RVV indexed load instructions only 4804 // support the "unsigned unscaled" addressing mode; indices are implicitly 4805 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 4806 // signed or scaled indexing is extended to the XLEN value type and scaled 4807 // accordingly. 4808 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 4809 SelectionDAG &DAG) const { 4810 SDLoc DL(Op); 4811 MVT VT = Op.getSimpleValueType(); 4812 4813 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 4814 EVT MemVT = MemSD->getMemoryVT(); 4815 MachineMemOperand *MMO = MemSD->getMemOperand(); 4816 SDValue Chain = MemSD->getChain(); 4817 SDValue BasePtr = MemSD->getBasePtr(); 4818 4819 ISD::LoadExtType LoadExtType; 4820 SDValue Index, Mask, PassThru, VL; 4821 4822 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 4823 Index = VPGN->getIndex(); 4824 Mask = VPGN->getMask(); 4825 PassThru = DAG.getUNDEF(VT); 4826 VL = VPGN->getVectorLength(); 4827 // VP doesn't support extending loads. 4828 LoadExtType = ISD::NON_EXTLOAD; 4829 } else { 4830 // Else it must be a MGATHER. 4831 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4832 Index = MGN->getIndex(); 4833 Mask = MGN->getMask(); 4834 PassThru = MGN->getPassThru(); 4835 LoadExtType = MGN->getExtensionType(); 4836 } 4837 4838 MVT IndexVT = Index.getSimpleValueType(); 4839 MVT XLenVT = Subtarget.getXLenVT(); 4840 4841 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4842 "Unexpected VTs!"); 4843 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 4844 // Targets have to explicitly opt-in for extending vector loads. 4845 assert(LoadExtType == ISD::NON_EXTLOAD && 4846 "Unexpected extending MGATHER/VP_GATHER"); 4847 (void)LoadExtType; 4848 4849 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4850 // the selection of the masked intrinsics doesn't do this for us. 4851 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4852 4853 MVT ContainerVT = VT; 4854 if (VT.isFixedLengthVector()) { 4855 // We need to use the larger of the result and index type to determine the 4856 // scalable type to use so we don't increase LMUL for any operand/result. 4857 if (VT.bitsGE(IndexVT)) { 4858 ContainerVT = getContainerForFixedLengthVector(VT); 4859 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4860 ContainerVT.getVectorElementCount()); 4861 } else { 4862 IndexVT = getContainerForFixedLengthVector(IndexVT); 4863 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4864 IndexVT.getVectorElementCount()); 4865 } 4866 4867 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4868 4869 if (!IsUnmasked) { 4870 MVT MaskVT = 4871 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4872 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4873 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4874 } 4875 } 4876 4877 if (!VL) 4878 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4879 4880 unsigned IntID = 4881 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 4882 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4883 if (!IsUnmasked) 4884 Ops.push_back(PassThru); 4885 Ops.push_back(BasePtr); 4886 Ops.push_back(Index); 4887 if (!IsUnmasked) 4888 Ops.push_back(Mask); 4889 Ops.push_back(VL); 4890 4891 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4892 SDValue Result = 4893 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4894 Chain = Result.getValue(1); 4895 4896 if (VT.isFixedLengthVector()) 4897 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4898 4899 return DAG.getMergeValues({Result, Chain}, DL); 4900 } 4901 4902 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 4903 // matched to a RVV indexed store. The RVV indexed store instructions only 4904 // support the "unsigned unscaled" addressing mode; indices are implicitly 4905 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 4906 // signed or scaled indexing is extended to the XLEN value type and scaled 4907 // accordingly. 4908 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 4909 SelectionDAG &DAG) const { 4910 SDLoc DL(Op); 4911 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 4912 EVT MemVT = MemSD->getMemoryVT(); 4913 MachineMemOperand *MMO = MemSD->getMemOperand(); 4914 SDValue Chain = MemSD->getChain(); 4915 SDValue BasePtr = MemSD->getBasePtr(); 4916 4917 bool IsTruncatingStore = false; 4918 SDValue Index, Mask, Val, VL; 4919 4920 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 4921 Index = VPSN->getIndex(); 4922 Mask = VPSN->getMask(); 4923 Val = VPSN->getValue(); 4924 VL = VPSN->getVectorLength(); 4925 // VP doesn't support truncating stores. 4926 IsTruncatingStore = false; 4927 } else { 4928 // Else it must be a MSCATTER. 4929 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4930 Index = MSN->getIndex(); 4931 Mask = MSN->getMask(); 4932 Val = MSN->getValue(); 4933 IsTruncatingStore = MSN->isTruncatingStore(); 4934 } 4935 4936 MVT VT = Val.getSimpleValueType(); 4937 MVT IndexVT = Index.getSimpleValueType(); 4938 MVT XLenVT = Subtarget.getXLenVT(); 4939 4940 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4941 "Unexpected VTs!"); 4942 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 4943 // Targets have to explicitly opt-in for extending vector loads and 4944 // truncating vector stores. 4945 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 4946 (void)IsTruncatingStore; 4947 4948 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4949 // the selection of the masked intrinsics doesn't do this for us. 4950 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4951 4952 MVT ContainerVT = VT; 4953 if (VT.isFixedLengthVector()) { 4954 // We need to use the larger of the value and index type to determine the 4955 // scalable type to use so we don't increase LMUL for any operand/result. 4956 if (VT.bitsGE(IndexVT)) { 4957 ContainerVT = getContainerForFixedLengthVector(VT); 4958 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4959 ContainerVT.getVectorElementCount()); 4960 } else { 4961 IndexVT = getContainerForFixedLengthVector(IndexVT); 4962 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4963 IndexVT.getVectorElementCount()); 4964 } 4965 4966 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4967 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4968 4969 if (!IsUnmasked) { 4970 MVT MaskVT = 4971 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4972 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4973 } 4974 } 4975 4976 if (!VL) 4977 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4978 4979 unsigned IntID = 4980 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4981 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4982 Ops.push_back(Val); 4983 Ops.push_back(BasePtr); 4984 Ops.push_back(Index); 4985 if (!IsUnmasked) 4986 Ops.push_back(Mask); 4987 Ops.push_back(VL); 4988 4989 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4990 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4991 } 4992 4993 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4994 SelectionDAG &DAG) const { 4995 const MVT XLenVT = Subtarget.getXLenVT(); 4996 SDLoc DL(Op); 4997 SDValue Chain = Op->getOperand(0); 4998 SDValue SysRegNo = DAG.getConstant( 4999 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5000 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5001 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5002 5003 // Encoding used for rounding mode in RISCV differs from that used in 5004 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5005 // table, which consists of a sequence of 4-bit fields, each representing 5006 // corresponding FLT_ROUNDS mode. 5007 static const int Table = 5008 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5009 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5010 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5011 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5012 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5013 5014 SDValue Shift = 5015 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5016 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5017 DAG.getConstant(Table, DL, XLenVT), Shift); 5018 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5019 DAG.getConstant(7, DL, XLenVT)); 5020 5021 return DAG.getMergeValues({Masked, Chain}, DL); 5022 } 5023 5024 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5025 SelectionDAG &DAG) const { 5026 const MVT XLenVT = Subtarget.getXLenVT(); 5027 SDLoc DL(Op); 5028 SDValue Chain = Op->getOperand(0); 5029 SDValue RMValue = Op->getOperand(1); 5030 SDValue SysRegNo = DAG.getConstant( 5031 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5032 5033 // Encoding used for rounding mode in RISCV differs from that used in 5034 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5035 // a table, which consists of a sequence of 4-bit fields, each representing 5036 // corresponding RISCV mode. 5037 static const unsigned Table = 5038 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5039 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5040 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5041 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5042 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5043 5044 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5045 DAG.getConstant(2, DL, XLenVT)); 5046 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5047 DAG.getConstant(Table, DL, XLenVT), Shift); 5048 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5049 DAG.getConstant(0x7, DL, XLenVT)); 5050 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5051 RMValue); 5052 } 5053 5054 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5055 // form of the given Opcode. 5056 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5057 switch (Opcode) { 5058 default: 5059 llvm_unreachable("Unexpected opcode"); 5060 case ISD::SHL: 5061 return RISCVISD::SLLW; 5062 case ISD::SRA: 5063 return RISCVISD::SRAW; 5064 case ISD::SRL: 5065 return RISCVISD::SRLW; 5066 case ISD::SDIV: 5067 return RISCVISD::DIVW; 5068 case ISD::UDIV: 5069 return RISCVISD::DIVUW; 5070 case ISD::UREM: 5071 return RISCVISD::REMUW; 5072 case ISD::ROTL: 5073 return RISCVISD::ROLW; 5074 case ISD::ROTR: 5075 return RISCVISD::RORW; 5076 case RISCVISD::GREV: 5077 return RISCVISD::GREVW; 5078 case RISCVISD::GORC: 5079 return RISCVISD::GORCW; 5080 } 5081 } 5082 5083 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5084 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5085 // otherwise be promoted to i64, making it difficult to select the 5086 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5087 // type i8/i16/i32 is lost. 5088 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5089 unsigned ExtOpc = ISD::ANY_EXTEND) { 5090 SDLoc DL(N); 5091 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5092 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5093 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5094 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5095 // ReplaceNodeResults requires we maintain the same type for the return value. 5096 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5097 } 5098 5099 // Converts the given 32-bit operation to a i64 operation with signed extension 5100 // semantic to reduce the signed extension instructions. 5101 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5102 SDLoc DL(N); 5103 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5104 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5105 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5106 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5107 DAG.getValueType(MVT::i32)); 5108 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5109 } 5110 5111 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5112 SmallVectorImpl<SDValue> &Results, 5113 SelectionDAG &DAG) const { 5114 SDLoc DL(N); 5115 switch (N->getOpcode()) { 5116 default: 5117 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5118 case ISD::STRICT_FP_TO_SINT: 5119 case ISD::STRICT_FP_TO_UINT: 5120 case ISD::FP_TO_SINT: 5121 case ISD::FP_TO_UINT: { 5122 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5123 "Unexpected custom legalisation"); 5124 bool IsStrict = N->isStrictFPOpcode(); 5125 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5126 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5127 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5128 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5129 TargetLowering::TypeSoftenFloat) { 5130 // FIXME: Support strict FP. 5131 if (IsStrict) 5132 return; 5133 if (!isTypeLegal(Op0.getValueType())) 5134 return; 5135 unsigned Opc = 5136 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5137 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5138 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5139 return; 5140 } 5141 // If the FP type needs to be softened, emit a library call using the 'si' 5142 // version. If we left it to default legalization we'd end up with 'di'. If 5143 // the FP type doesn't need to be softened just let generic type 5144 // legalization promote the result type. 5145 RTLIB::Libcall LC; 5146 if (IsSigned) 5147 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5148 else 5149 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5150 MakeLibCallOptions CallOptions; 5151 EVT OpVT = Op0.getValueType(); 5152 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5153 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5154 SDValue Result; 5155 std::tie(Result, Chain) = 5156 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5157 Results.push_back(Result); 5158 if (IsStrict) 5159 Results.push_back(Chain); 5160 break; 5161 } 5162 case ISD::READCYCLECOUNTER: { 5163 assert(!Subtarget.is64Bit() && 5164 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5165 5166 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5167 SDValue RCW = 5168 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5169 5170 Results.push_back( 5171 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5172 Results.push_back(RCW.getValue(2)); 5173 break; 5174 } 5175 case ISD::MUL: { 5176 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5177 unsigned XLen = Subtarget.getXLen(); 5178 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5179 if (Size > XLen) { 5180 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5181 SDValue LHS = N->getOperand(0); 5182 SDValue RHS = N->getOperand(1); 5183 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5184 5185 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5186 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5187 // We need exactly one side to be unsigned. 5188 if (LHSIsU == RHSIsU) 5189 return; 5190 5191 auto MakeMULPair = [&](SDValue S, SDValue U) { 5192 MVT XLenVT = Subtarget.getXLenVT(); 5193 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5194 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5195 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5196 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5197 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5198 }; 5199 5200 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5201 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5202 5203 // The other operand should be signed, but still prefer MULH when 5204 // possible. 5205 if (RHSIsU && LHSIsS && !RHSIsS) 5206 Results.push_back(MakeMULPair(LHS, RHS)); 5207 else if (LHSIsU && RHSIsS && !LHSIsS) 5208 Results.push_back(MakeMULPair(RHS, LHS)); 5209 5210 return; 5211 } 5212 LLVM_FALLTHROUGH; 5213 } 5214 case ISD::ADD: 5215 case ISD::SUB: 5216 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5217 "Unexpected custom legalisation"); 5218 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5219 break; 5220 case ISD::SHL: 5221 case ISD::SRA: 5222 case ISD::SRL: 5223 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5224 "Unexpected custom legalisation"); 5225 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5226 Results.push_back(customLegalizeToWOp(N, DAG)); 5227 break; 5228 } 5229 5230 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5231 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5232 // shift amount. 5233 if (N->getOpcode() == ISD::SHL) { 5234 SDLoc DL(N); 5235 SDValue NewOp0 = 5236 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5237 SDValue NewOp1 = 5238 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5239 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5240 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5241 DAG.getValueType(MVT::i32)); 5242 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5243 } 5244 5245 break; 5246 case ISD::ROTL: 5247 case ISD::ROTR: 5248 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5249 "Unexpected custom legalisation"); 5250 Results.push_back(customLegalizeToWOp(N, DAG)); 5251 break; 5252 case ISD::CTTZ: 5253 case ISD::CTTZ_ZERO_UNDEF: 5254 case ISD::CTLZ: 5255 case ISD::CTLZ_ZERO_UNDEF: { 5256 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5257 "Unexpected custom legalisation"); 5258 5259 SDValue NewOp0 = 5260 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5261 bool IsCTZ = 5262 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5263 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5264 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5265 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5266 return; 5267 } 5268 case ISD::SDIV: 5269 case ISD::UDIV: 5270 case ISD::UREM: { 5271 MVT VT = N->getSimpleValueType(0); 5272 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5273 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5274 "Unexpected custom legalisation"); 5275 // Don't promote division/remainder by constant since we should expand those 5276 // to multiply by magic constant. 5277 // FIXME: What if the expansion is disabled for minsize. 5278 if (N->getOperand(1).getOpcode() == ISD::Constant) 5279 return; 5280 5281 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5282 // the upper 32 bits. For other types we need to sign or zero extend 5283 // based on the opcode. 5284 unsigned ExtOpc = ISD::ANY_EXTEND; 5285 if (VT != MVT::i32) 5286 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5287 : ISD::ZERO_EXTEND; 5288 5289 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5290 break; 5291 } 5292 case ISD::UADDO: 5293 case ISD::USUBO: { 5294 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5295 "Unexpected custom legalisation"); 5296 bool IsAdd = N->getOpcode() == ISD::UADDO; 5297 // Create an ADDW or SUBW. 5298 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5299 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5300 SDValue Res = 5301 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5302 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5303 DAG.getValueType(MVT::i32)); 5304 5305 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5306 // Since the inputs are sign extended from i32, this is equivalent to 5307 // comparing the lower 32 bits. 5308 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5309 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5310 IsAdd ? ISD::SETULT : ISD::SETUGT); 5311 5312 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5313 Results.push_back(Overflow); 5314 return; 5315 } 5316 case ISD::UADDSAT: 5317 case ISD::USUBSAT: { 5318 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5319 "Unexpected custom legalisation"); 5320 if (Subtarget.hasStdExtZbb()) { 5321 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5322 // sign extend allows overflow of the lower 32 bits to be detected on 5323 // the promoted size. 5324 SDValue LHS = 5325 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5326 SDValue RHS = 5327 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5328 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5329 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5330 return; 5331 } 5332 5333 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5334 // promotion for UADDO/USUBO. 5335 Results.push_back(expandAddSubSat(N, DAG)); 5336 return; 5337 } 5338 case ISD::BITCAST: { 5339 EVT VT = N->getValueType(0); 5340 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5341 SDValue Op0 = N->getOperand(0); 5342 EVT Op0VT = Op0.getValueType(); 5343 MVT XLenVT = Subtarget.getXLenVT(); 5344 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5345 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5346 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5347 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5348 Subtarget.hasStdExtF()) { 5349 SDValue FPConv = 5350 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5351 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5352 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5353 isTypeLegal(Op0VT)) { 5354 // Custom-legalize bitcasts from fixed-length vector types to illegal 5355 // scalar types in order to improve codegen. Bitcast the vector to a 5356 // one-element vector type whose element type is the same as the result 5357 // type, and extract the first element. 5358 LLVMContext &Context = *DAG.getContext(); 5359 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5360 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5361 DAG.getConstant(0, DL, XLenVT))); 5362 } 5363 break; 5364 } 5365 case RISCVISD::GREV: 5366 case RISCVISD::GORC: { 5367 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5368 "Unexpected custom legalisation"); 5369 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5370 // This is similar to customLegalizeToWOp, except that we pass the second 5371 // operand (a TargetConstant) straight through: it is already of type 5372 // XLenVT. 5373 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5374 SDValue NewOp0 = 5375 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5376 SDValue NewOp1 = 5377 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5378 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5379 // ReplaceNodeResults requires we maintain the same type for the return 5380 // value. 5381 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5382 break; 5383 } 5384 case RISCVISD::SHFL: { 5385 // There is no SHFLIW instruction, but we can just promote the operation. 5386 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5387 "Unexpected custom legalisation"); 5388 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5389 SDValue NewOp0 = 5390 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5391 SDValue NewOp1 = 5392 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5393 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5394 // ReplaceNodeResults requires we maintain the same type for the return 5395 // value. 5396 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5397 break; 5398 } 5399 case ISD::BSWAP: 5400 case ISD::BITREVERSE: { 5401 MVT VT = N->getSimpleValueType(0); 5402 MVT XLenVT = Subtarget.getXLenVT(); 5403 assert((VT == MVT::i8 || VT == MVT::i16 || 5404 (VT == MVT::i32 && Subtarget.is64Bit())) && 5405 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5406 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5407 unsigned Imm = VT.getSizeInBits() - 1; 5408 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5409 if (N->getOpcode() == ISD::BSWAP) 5410 Imm &= ~0x7U; 5411 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5412 SDValue GREVI = 5413 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5414 // ReplaceNodeResults requires we maintain the same type for the return 5415 // value. 5416 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5417 break; 5418 } 5419 case ISD::FSHL: 5420 case ISD::FSHR: { 5421 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5422 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5423 SDValue NewOp0 = 5424 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5425 SDValue NewOp1 = 5426 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5427 SDValue NewOp2 = 5428 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5429 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5430 // Mask the shift amount to 5 bits. 5431 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5432 DAG.getConstant(0x1f, DL, MVT::i64)); 5433 unsigned Opc = 5434 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5435 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5436 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5437 break; 5438 } 5439 case ISD::EXTRACT_VECTOR_ELT: { 5440 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5441 // type is illegal (currently only vXi64 RV32). 5442 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5443 // transferred to the destination register. We issue two of these from the 5444 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5445 // first element. 5446 SDValue Vec = N->getOperand(0); 5447 SDValue Idx = N->getOperand(1); 5448 5449 // The vector type hasn't been legalized yet so we can't issue target 5450 // specific nodes if it needs legalization. 5451 // FIXME: We would manually legalize if it's important. 5452 if (!isTypeLegal(Vec.getValueType())) 5453 return; 5454 5455 MVT VecVT = Vec.getSimpleValueType(); 5456 5457 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5458 VecVT.getVectorElementType() == MVT::i64 && 5459 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5460 5461 // If this is a fixed vector, we need to convert it to a scalable vector. 5462 MVT ContainerVT = VecVT; 5463 if (VecVT.isFixedLengthVector()) { 5464 ContainerVT = getContainerForFixedLengthVector(VecVT); 5465 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5466 } 5467 5468 MVT XLenVT = Subtarget.getXLenVT(); 5469 5470 // Use a VL of 1 to avoid processing more elements than we need. 5471 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5472 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5473 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5474 5475 // Unless the index is known to be 0, we must slide the vector down to get 5476 // the desired element into index 0. 5477 if (!isNullConstant(Idx)) { 5478 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5479 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5480 } 5481 5482 // Extract the lower XLEN bits of the correct vector element. 5483 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5484 5485 // To extract the upper XLEN bits of the vector element, shift the first 5486 // element right by 32 bits and re-extract the lower XLEN bits. 5487 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5488 DAG.getConstant(32, DL, XLenVT), VL); 5489 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5490 ThirtyTwoV, Mask, VL); 5491 5492 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5493 5494 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5495 break; 5496 } 5497 case ISD::INTRINSIC_WO_CHAIN: { 5498 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5499 switch (IntNo) { 5500 default: 5501 llvm_unreachable( 5502 "Don't know how to custom type legalize this intrinsic!"); 5503 case Intrinsic::riscv_orc_b: { 5504 // Lower to the GORCI encoding for orc.b with the operand extended. 5505 SDValue NewOp = 5506 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5507 // If Zbp is enabled, use GORCIW which will sign extend the result. 5508 unsigned Opc = 5509 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5510 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5511 DAG.getConstant(7, DL, MVT::i64)); 5512 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5513 return; 5514 } 5515 case Intrinsic::riscv_grev: 5516 case Intrinsic::riscv_gorc: { 5517 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5518 "Unexpected custom legalisation"); 5519 SDValue NewOp1 = 5520 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5521 SDValue NewOp2 = 5522 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5523 unsigned Opc = 5524 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5525 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5526 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5527 break; 5528 } 5529 case Intrinsic::riscv_shfl: 5530 case Intrinsic::riscv_unshfl: { 5531 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5532 "Unexpected custom legalisation"); 5533 SDValue NewOp1 = 5534 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5535 SDValue NewOp2 = 5536 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5537 unsigned Opc = 5538 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5539 if (isa<ConstantSDNode>(N->getOperand(2))) { 5540 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5541 DAG.getConstant(0xf, DL, MVT::i64)); 5542 Opc = 5543 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5544 } 5545 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5546 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5547 break; 5548 } 5549 case Intrinsic::riscv_bcompress: 5550 case Intrinsic::riscv_bdecompress: { 5551 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5552 "Unexpected custom legalisation"); 5553 SDValue NewOp1 = 5554 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5555 SDValue NewOp2 = 5556 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5557 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5558 ? RISCVISD::BCOMPRESSW 5559 : RISCVISD::BDECOMPRESSW; 5560 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5561 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5562 break; 5563 } 5564 case Intrinsic::riscv_vmv_x_s: { 5565 EVT VT = N->getValueType(0); 5566 MVT XLenVT = Subtarget.getXLenVT(); 5567 if (VT.bitsLT(XLenVT)) { 5568 // Simple case just extract using vmv.x.s and truncate. 5569 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5570 Subtarget.getXLenVT(), N->getOperand(1)); 5571 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5572 return; 5573 } 5574 5575 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5576 "Unexpected custom legalization"); 5577 5578 // We need to do the move in two steps. 5579 SDValue Vec = N->getOperand(1); 5580 MVT VecVT = Vec.getSimpleValueType(); 5581 5582 // First extract the lower XLEN bits of the element. 5583 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5584 5585 // To extract the upper XLEN bits of the vector element, shift the first 5586 // element right by 32 bits and re-extract the lower XLEN bits. 5587 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5588 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5589 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5590 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5591 DAG.getConstant(32, DL, XLenVT), VL); 5592 SDValue LShr32 = 5593 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5594 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5595 5596 Results.push_back( 5597 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5598 break; 5599 } 5600 } 5601 break; 5602 } 5603 case ISD::VECREDUCE_ADD: 5604 case ISD::VECREDUCE_AND: 5605 case ISD::VECREDUCE_OR: 5606 case ISD::VECREDUCE_XOR: 5607 case ISD::VECREDUCE_SMAX: 5608 case ISD::VECREDUCE_UMAX: 5609 case ISD::VECREDUCE_SMIN: 5610 case ISD::VECREDUCE_UMIN: 5611 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5612 Results.push_back(V); 5613 break; 5614 case ISD::FLT_ROUNDS_: { 5615 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5616 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5617 Results.push_back(Res.getValue(0)); 5618 Results.push_back(Res.getValue(1)); 5619 break; 5620 } 5621 } 5622 } 5623 5624 // A structure to hold one of the bit-manipulation patterns below. Together, a 5625 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5626 // (or (and (shl x, 1), 0xAAAAAAAA), 5627 // (and (srl x, 1), 0x55555555)) 5628 struct RISCVBitmanipPat { 5629 SDValue Op; 5630 unsigned ShAmt; 5631 bool IsSHL; 5632 5633 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5634 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5635 } 5636 }; 5637 5638 // Matches patterns of the form 5639 // (and (shl x, C2), (C1 << C2)) 5640 // (and (srl x, C2), C1) 5641 // (shl (and x, C1), C2) 5642 // (srl (and x, (C1 << C2)), C2) 5643 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5644 // The expected masks for each shift amount are specified in BitmanipMasks where 5645 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5646 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5647 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5648 // XLen is 64. 5649 static Optional<RISCVBitmanipPat> 5650 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5651 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5652 "Unexpected number of masks"); 5653 Optional<uint64_t> Mask; 5654 // Optionally consume a mask around the shift operation. 5655 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5656 Mask = Op.getConstantOperandVal(1); 5657 Op = Op.getOperand(0); 5658 } 5659 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5660 return None; 5661 bool IsSHL = Op.getOpcode() == ISD::SHL; 5662 5663 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5664 return None; 5665 uint64_t ShAmt = Op.getConstantOperandVal(1); 5666 5667 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5668 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5669 return None; 5670 // If we don't have enough masks for 64 bit, then we must be trying to 5671 // match SHFL so we're only allowed to shift 1/4 of the width. 5672 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5673 return None; 5674 5675 SDValue Src = Op.getOperand(0); 5676 5677 // The expected mask is shifted left when the AND is found around SHL 5678 // patterns. 5679 // ((x >> 1) & 0x55555555) 5680 // ((x << 1) & 0xAAAAAAAA) 5681 bool SHLExpMask = IsSHL; 5682 5683 if (!Mask) { 5684 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5685 // the mask is all ones: consume that now. 5686 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5687 Mask = Src.getConstantOperandVal(1); 5688 Src = Src.getOperand(0); 5689 // The expected mask is now in fact shifted left for SRL, so reverse the 5690 // decision. 5691 // ((x & 0xAAAAAAAA) >> 1) 5692 // ((x & 0x55555555) << 1) 5693 SHLExpMask = !SHLExpMask; 5694 } else { 5695 // Use a default shifted mask of all-ones if there's no AND, truncated 5696 // down to the expected width. This simplifies the logic later on. 5697 Mask = maskTrailingOnes<uint64_t>(Width); 5698 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5699 } 5700 } 5701 5702 unsigned MaskIdx = Log2_32(ShAmt); 5703 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5704 5705 if (SHLExpMask) 5706 ExpMask <<= ShAmt; 5707 5708 if (Mask != ExpMask) 5709 return None; 5710 5711 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5712 } 5713 5714 // Matches any of the following bit-manipulation patterns: 5715 // (and (shl x, 1), (0x55555555 << 1)) 5716 // (and (srl x, 1), 0x55555555) 5717 // (shl (and x, 0x55555555), 1) 5718 // (srl (and x, (0x55555555 << 1)), 1) 5719 // where the shift amount and mask may vary thus: 5720 // [1] = 0x55555555 / 0xAAAAAAAA 5721 // [2] = 0x33333333 / 0xCCCCCCCC 5722 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5723 // [8] = 0x00FF00FF / 0xFF00FF00 5724 // [16] = 0x0000FFFF / 0xFFFFFFFF 5725 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5726 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5727 // These are the unshifted masks which we use to match bit-manipulation 5728 // patterns. They may be shifted left in certain circumstances. 5729 static const uint64_t BitmanipMasks[] = { 5730 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5731 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5732 5733 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5734 } 5735 5736 // Match the following pattern as a GREVI(W) operation 5737 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5738 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5739 const RISCVSubtarget &Subtarget) { 5740 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5741 EVT VT = Op.getValueType(); 5742 5743 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5744 auto LHS = matchGREVIPat(Op.getOperand(0)); 5745 auto RHS = matchGREVIPat(Op.getOperand(1)); 5746 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5747 SDLoc DL(Op); 5748 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5749 DAG.getConstant(LHS->ShAmt, DL, VT)); 5750 } 5751 } 5752 return SDValue(); 5753 } 5754 5755 // Matches any the following pattern as a GORCI(W) operation 5756 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5757 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5758 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5759 // Note that with the variant of 3., 5760 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5761 // the inner pattern will first be matched as GREVI and then the outer 5762 // pattern will be matched to GORC via the first rule above. 5763 // 4. (or (rotl/rotr x, bitwidth/2), x) 5764 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5765 const RISCVSubtarget &Subtarget) { 5766 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5767 EVT VT = Op.getValueType(); 5768 5769 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5770 SDLoc DL(Op); 5771 SDValue Op0 = Op.getOperand(0); 5772 SDValue Op1 = Op.getOperand(1); 5773 5774 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5775 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5776 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5777 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5778 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5779 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5780 if ((Reverse.getOpcode() == ISD::ROTL || 5781 Reverse.getOpcode() == ISD::ROTR) && 5782 Reverse.getOperand(0) == X && 5783 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5784 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5785 if (RotAmt == (VT.getSizeInBits() / 2)) 5786 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5787 DAG.getConstant(RotAmt, DL, VT)); 5788 } 5789 return SDValue(); 5790 }; 5791 5792 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5793 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5794 return V; 5795 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5796 return V; 5797 5798 // OR is commutable so canonicalize its OR operand to the left 5799 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5800 std::swap(Op0, Op1); 5801 if (Op0.getOpcode() != ISD::OR) 5802 return SDValue(); 5803 SDValue OrOp0 = Op0.getOperand(0); 5804 SDValue OrOp1 = Op0.getOperand(1); 5805 auto LHS = matchGREVIPat(OrOp0); 5806 // OR is commutable so swap the operands and try again: x might have been 5807 // on the left 5808 if (!LHS) { 5809 std::swap(OrOp0, OrOp1); 5810 LHS = matchGREVIPat(OrOp0); 5811 } 5812 auto RHS = matchGREVIPat(Op1); 5813 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5814 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5815 DAG.getConstant(LHS->ShAmt, DL, VT)); 5816 } 5817 } 5818 return SDValue(); 5819 } 5820 5821 // Matches any of the following bit-manipulation patterns: 5822 // (and (shl x, 1), (0x22222222 << 1)) 5823 // (and (srl x, 1), 0x22222222) 5824 // (shl (and x, 0x22222222), 1) 5825 // (srl (and x, (0x22222222 << 1)), 1) 5826 // where the shift amount and mask may vary thus: 5827 // [1] = 0x22222222 / 0x44444444 5828 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5829 // [4] = 0x00F000F0 / 0x0F000F00 5830 // [8] = 0x0000FF00 / 0x00FF0000 5831 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5832 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5833 // These are the unshifted masks which we use to match bit-manipulation 5834 // patterns. They may be shifted left in certain circumstances. 5835 static const uint64_t BitmanipMasks[] = { 5836 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5837 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5838 5839 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5840 } 5841 5842 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5843 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5844 const RISCVSubtarget &Subtarget) { 5845 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5846 EVT VT = Op.getValueType(); 5847 5848 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5849 return SDValue(); 5850 5851 SDValue Op0 = Op.getOperand(0); 5852 SDValue Op1 = Op.getOperand(1); 5853 5854 // Or is commutable so canonicalize the second OR to the LHS. 5855 if (Op0.getOpcode() != ISD::OR) 5856 std::swap(Op0, Op1); 5857 if (Op0.getOpcode() != ISD::OR) 5858 return SDValue(); 5859 5860 // We found an inner OR, so our operands are the operands of the inner OR 5861 // and the other operand of the outer OR. 5862 SDValue A = Op0.getOperand(0); 5863 SDValue B = Op0.getOperand(1); 5864 SDValue C = Op1; 5865 5866 auto Match1 = matchSHFLPat(A); 5867 auto Match2 = matchSHFLPat(B); 5868 5869 // If neither matched, we failed. 5870 if (!Match1 && !Match2) 5871 return SDValue(); 5872 5873 // We had at least one match. if one failed, try the remaining C operand. 5874 if (!Match1) { 5875 std::swap(A, C); 5876 Match1 = matchSHFLPat(A); 5877 if (!Match1) 5878 return SDValue(); 5879 } else if (!Match2) { 5880 std::swap(B, C); 5881 Match2 = matchSHFLPat(B); 5882 if (!Match2) 5883 return SDValue(); 5884 } 5885 assert(Match1 && Match2); 5886 5887 // Make sure our matches pair up. 5888 if (!Match1->formsPairWith(*Match2)) 5889 return SDValue(); 5890 5891 // All the remains is to make sure C is an AND with the same input, that masks 5892 // out the bits that are being shuffled. 5893 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5894 C.getOperand(0) != Match1->Op) 5895 return SDValue(); 5896 5897 uint64_t Mask = C.getConstantOperandVal(1); 5898 5899 static const uint64_t BitmanipMasks[] = { 5900 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5901 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5902 }; 5903 5904 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5905 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5906 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5907 5908 if (Mask != ExpMask) 5909 return SDValue(); 5910 5911 SDLoc DL(Op); 5912 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5913 DAG.getConstant(Match1->ShAmt, DL, VT)); 5914 } 5915 5916 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5917 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5918 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5919 // not undo itself, but they are redundant. 5920 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5921 SDValue Src = N->getOperand(0); 5922 5923 if (Src.getOpcode() != N->getOpcode()) 5924 return SDValue(); 5925 5926 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5927 !isa<ConstantSDNode>(Src.getOperand(1))) 5928 return SDValue(); 5929 5930 unsigned ShAmt1 = N->getConstantOperandVal(1); 5931 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5932 Src = Src.getOperand(0); 5933 5934 unsigned CombinedShAmt; 5935 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5936 CombinedShAmt = ShAmt1 | ShAmt2; 5937 else 5938 CombinedShAmt = ShAmt1 ^ ShAmt2; 5939 5940 if (CombinedShAmt == 0) 5941 return Src; 5942 5943 SDLoc DL(N); 5944 return DAG.getNode( 5945 N->getOpcode(), DL, N->getValueType(0), Src, 5946 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5947 } 5948 5949 // Combine a constant select operand into its use: 5950 // 5951 // (and (select cond, -1, c), x) 5952 // -> (select cond, x, (and x, c)) [AllOnes=1] 5953 // (or (select cond, 0, c), x) 5954 // -> (select cond, x, (or x, c)) [AllOnes=0] 5955 // (xor (select cond, 0, c), x) 5956 // -> (select cond, x, (xor x, c)) [AllOnes=0] 5957 // (add (select cond, 0, c), x) 5958 // -> (select cond, x, (add x, c)) [AllOnes=0] 5959 // (sub x, (select cond, 0, c)) 5960 // -> (select cond, x, (sub x, c)) [AllOnes=0] 5961 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5962 SelectionDAG &DAG, bool AllOnes) { 5963 EVT VT = N->getValueType(0); 5964 5965 // Skip vectors. 5966 if (VT.isVector()) 5967 return SDValue(); 5968 5969 if ((Slct.getOpcode() != ISD::SELECT && 5970 Slct.getOpcode() != RISCVISD::SELECT_CC) || 5971 !Slct.hasOneUse()) 5972 return SDValue(); 5973 5974 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5975 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5976 }; 5977 5978 bool SwapSelectOps; 5979 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 5980 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 5981 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 5982 SDValue NonConstantVal; 5983 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5984 SwapSelectOps = false; 5985 NonConstantVal = FalseVal; 5986 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5987 SwapSelectOps = true; 5988 NonConstantVal = TrueVal; 5989 } else 5990 return SDValue(); 5991 5992 // Slct is now know to be the desired identity constant when CC is true. 5993 TrueVal = OtherOp; 5994 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5995 // Unless SwapSelectOps says the condition should be false. 5996 if (SwapSelectOps) 5997 std::swap(TrueVal, FalseVal); 5998 5999 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6000 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6001 {Slct.getOperand(0), Slct.getOperand(1), 6002 Slct.getOperand(2), TrueVal, FalseVal}); 6003 6004 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6005 {Slct.getOperand(0), TrueVal, FalseVal}); 6006 } 6007 6008 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6009 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6010 bool AllOnes) { 6011 SDValue N0 = N->getOperand(0); 6012 SDValue N1 = N->getOperand(1); 6013 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6014 return Result; 6015 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6016 return Result; 6017 return SDValue(); 6018 } 6019 6020 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG) { 6021 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6022 // (select lhs, rhs, cc, x, (add x, y)) 6023 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6024 } 6025 6026 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6027 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6028 // (select lhs, rhs, cc, x, (sub x, y)) 6029 SDValue N0 = N->getOperand(0); 6030 SDValue N1 = N->getOperand(1); 6031 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6032 } 6033 6034 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6035 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6036 // (select lhs, rhs, cc, x, (and x, y)) 6037 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6038 } 6039 6040 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6041 const RISCVSubtarget &Subtarget) { 6042 if (Subtarget.hasStdExtZbp()) { 6043 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6044 return GREV; 6045 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6046 return GORC; 6047 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6048 return SHFL; 6049 } 6050 6051 // fold (or (select cond, 0, y), x) -> 6052 // (select cond, x, (or x, y)) 6053 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6054 } 6055 6056 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6057 // fold (xor (select cond, 0, y), x) -> 6058 // (select cond, x, (xor x, y)) 6059 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6060 } 6061 6062 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6063 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6064 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6065 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6066 // ADDW/SUBW/MULW. 6067 static SDValue performANY_EXTENDCombine(SDNode *N, 6068 TargetLowering::DAGCombinerInfo &DCI, 6069 const RISCVSubtarget &Subtarget) { 6070 if (!Subtarget.is64Bit()) 6071 return SDValue(); 6072 6073 SelectionDAG &DAG = DCI.DAG; 6074 6075 SDValue Src = N->getOperand(0); 6076 EVT VT = N->getValueType(0); 6077 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6078 return SDValue(); 6079 6080 // The opcode must be one that can implicitly sign_extend. 6081 // FIXME: Additional opcodes. 6082 switch (Src.getOpcode()) { 6083 default: 6084 return SDValue(); 6085 case ISD::MUL: 6086 if (!Subtarget.hasStdExtM()) 6087 return SDValue(); 6088 LLVM_FALLTHROUGH; 6089 case ISD::ADD: 6090 case ISD::SUB: 6091 break; 6092 } 6093 6094 // Only handle cases where the result is used by a CopyToReg. That likely 6095 // means the value is a liveout of the basic block. This helps prevent 6096 // infinite combine loops like PR51206. 6097 if (none_of(N->uses(), 6098 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6099 return SDValue(); 6100 6101 SmallVector<SDNode *, 4> SetCCs; 6102 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6103 UE = Src.getNode()->use_end(); 6104 UI != UE; ++UI) { 6105 SDNode *User = *UI; 6106 if (User == N) 6107 continue; 6108 if (UI.getUse().getResNo() != Src.getResNo()) 6109 continue; 6110 // All i32 setccs are legalized by sign extending operands. 6111 if (User->getOpcode() == ISD::SETCC) { 6112 SetCCs.push_back(User); 6113 continue; 6114 } 6115 // We don't know if we can extend this user. 6116 break; 6117 } 6118 6119 // If we don't have any SetCCs, this isn't worthwhile. 6120 if (SetCCs.empty()) 6121 return SDValue(); 6122 6123 SDLoc DL(N); 6124 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6125 DCI.CombineTo(N, SExt); 6126 6127 // Promote all the setccs. 6128 for (SDNode *SetCC : SetCCs) { 6129 SmallVector<SDValue, 4> Ops; 6130 6131 for (unsigned j = 0; j != 2; ++j) { 6132 SDValue SOp = SetCC->getOperand(j); 6133 if (SOp == Src) 6134 Ops.push_back(SExt); 6135 else 6136 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6137 } 6138 6139 Ops.push_back(SetCC->getOperand(2)); 6140 DCI.CombineTo(SetCC, 6141 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6142 } 6143 return SDValue(N, 0); 6144 } 6145 6146 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6147 DAGCombinerInfo &DCI) const { 6148 SelectionDAG &DAG = DCI.DAG; 6149 6150 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6151 // bits are demanded. N will be added to the Worklist if it was not deleted. 6152 // Caller should return SDValue(N, 0) if this returns true. 6153 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6154 SDValue Op = N->getOperand(OpNo); 6155 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6156 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6157 return false; 6158 6159 if (N->getOpcode() != ISD::DELETED_NODE) 6160 DCI.AddToWorklist(N); 6161 return true; 6162 }; 6163 6164 switch (N->getOpcode()) { 6165 default: 6166 break; 6167 case RISCVISD::SplitF64: { 6168 SDValue Op0 = N->getOperand(0); 6169 // If the input to SplitF64 is just BuildPairF64 then the operation is 6170 // redundant. Instead, use BuildPairF64's operands directly. 6171 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6172 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6173 6174 SDLoc DL(N); 6175 6176 // It's cheaper to materialise two 32-bit integers than to load a double 6177 // from the constant pool and transfer it to integer registers through the 6178 // stack. 6179 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6180 APInt V = C->getValueAPF().bitcastToAPInt(); 6181 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6182 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6183 return DCI.CombineTo(N, Lo, Hi); 6184 } 6185 6186 // This is a target-specific version of a DAGCombine performed in 6187 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6188 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6189 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6190 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6191 !Op0.getNode()->hasOneUse()) 6192 break; 6193 SDValue NewSplitF64 = 6194 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6195 Op0.getOperand(0)); 6196 SDValue Lo = NewSplitF64.getValue(0); 6197 SDValue Hi = NewSplitF64.getValue(1); 6198 APInt SignBit = APInt::getSignMask(32); 6199 if (Op0.getOpcode() == ISD::FNEG) { 6200 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6201 DAG.getConstant(SignBit, DL, MVT::i32)); 6202 return DCI.CombineTo(N, Lo, NewHi); 6203 } 6204 assert(Op0.getOpcode() == ISD::FABS); 6205 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6206 DAG.getConstant(~SignBit, DL, MVT::i32)); 6207 return DCI.CombineTo(N, Lo, NewHi); 6208 } 6209 case RISCVISD::SLLW: 6210 case RISCVISD::SRAW: 6211 case RISCVISD::SRLW: 6212 case RISCVISD::ROLW: 6213 case RISCVISD::RORW: { 6214 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6215 if (SimplifyDemandedLowBitsHelper(0, 32) || 6216 SimplifyDemandedLowBitsHelper(1, 5)) 6217 return SDValue(N, 0); 6218 break; 6219 } 6220 case RISCVISD::CLZW: 6221 case RISCVISD::CTZW: { 6222 // Only the lower 32 bits of the first operand are read 6223 if (SimplifyDemandedLowBitsHelper(0, 32)) 6224 return SDValue(N, 0); 6225 break; 6226 } 6227 case RISCVISD::FSL: 6228 case RISCVISD::FSR: { 6229 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6230 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6231 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6232 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6233 return SDValue(N, 0); 6234 break; 6235 } 6236 case RISCVISD::FSLW: 6237 case RISCVISD::FSRW: { 6238 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6239 // read. 6240 if (SimplifyDemandedLowBitsHelper(0, 32) || 6241 SimplifyDemandedLowBitsHelper(1, 32) || 6242 SimplifyDemandedLowBitsHelper(2, 6)) 6243 return SDValue(N, 0); 6244 break; 6245 } 6246 case RISCVISD::GREV: 6247 case RISCVISD::GORC: { 6248 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6249 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6250 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6251 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6252 return SDValue(N, 0); 6253 6254 return combineGREVI_GORCI(N, DCI.DAG); 6255 } 6256 case RISCVISD::GREVW: 6257 case RISCVISD::GORCW: { 6258 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6259 if (SimplifyDemandedLowBitsHelper(0, 32) || 6260 SimplifyDemandedLowBitsHelper(1, 5)) 6261 return SDValue(N, 0); 6262 6263 return combineGREVI_GORCI(N, DCI.DAG); 6264 } 6265 case RISCVISD::SHFL: 6266 case RISCVISD::UNSHFL: { 6267 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6268 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6269 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6270 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6271 return SDValue(N, 0); 6272 6273 break; 6274 } 6275 case RISCVISD::SHFLW: 6276 case RISCVISD::UNSHFLW: { 6277 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6278 SDValue LHS = N->getOperand(0); 6279 SDValue RHS = N->getOperand(1); 6280 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6281 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6282 if (SimplifyDemandedLowBitsHelper(0, 32) || 6283 SimplifyDemandedLowBitsHelper(1, 4)) 6284 return SDValue(N, 0); 6285 6286 break; 6287 } 6288 case RISCVISD::BCOMPRESSW: 6289 case RISCVISD::BDECOMPRESSW: { 6290 // Only the lower 32 bits of LHS and RHS are read. 6291 if (SimplifyDemandedLowBitsHelper(0, 32) || 6292 SimplifyDemandedLowBitsHelper(1, 32)) 6293 return SDValue(N, 0); 6294 6295 break; 6296 } 6297 case RISCVISD::FMV_X_ANYEXTH: 6298 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6299 SDLoc DL(N); 6300 SDValue Op0 = N->getOperand(0); 6301 MVT VT = N->getSimpleValueType(0); 6302 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6303 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6304 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6305 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6306 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6307 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6308 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6309 assert(Op0.getOperand(0).getValueType() == VT && 6310 "Unexpected value type!"); 6311 return Op0.getOperand(0); 6312 } 6313 6314 // This is a target-specific version of a DAGCombine performed in 6315 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6316 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6317 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6318 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6319 !Op0.getNode()->hasOneUse()) 6320 break; 6321 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6322 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6323 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6324 if (Op0.getOpcode() == ISD::FNEG) 6325 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6326 DAG.getConstant(SignBit, DL, VT)); 6327 6328 assert(Op0.getOpcode() == ISD::FABS); 6329 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6330 DAG.getConstant(~SignBit, DL, VT)); 6331 } 6332 case ISD::ADD: 6333 return performADDCombine(N, DAG); 6334 case ISD::SUB: 6335 return performSUBCombine(N, DAG); 6336 case ISD::AND: 6337 return performANDCombine(N, DAG); 6338 case ISD::OR: 6339 return performORCombine(N, DAG, Subtarget); 6340 case ISD::XOR: 6341 return performXORCombine(N, DAG); 6342 case ISD::ANY_EXTEND: 6343 return performANY_EXTENDCombine(N, DCI, Subtarget); 6344 case ISD::ZERO_EXTEND: 6345 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6346 // type legalization. This is safe because fp_to_uint produces poison if 6347 // it overflows. 6348 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6349 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6350 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6351 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6352 N->getOperand(0).getOperand(0)); 6353 return SDValue(); 6354 case RISCVISD::SELECT_CC: { 6355 // Transform 6356 SDValue LHS = N->getOperand(0); 6357 SDValue RHS = N->getOperand(1); 6358 SDValue TrueV = N->getOperand(3); 6359 SDValue FalseV = N->getOperand(4); 6360 6361 // If the True and False values are the same, we don't need a select_cc. 6362 if (TrueV == FalseV) 6363 return TrueV; 6364 6365 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6366 if (!ISD::isIntEqualitySetCC(CCVal)) 6367 break; 6368 6369 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6370 // (select_cc X, Y, lt, trueV, falseV) 6371 // Sometimes the setcc is introduced after select_cc has been formed. 6372 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6373 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6374 // If we're looking for eq 0 instead of ne 0, we need to invert the 6375 // condition. 6376 bool Invert = CCVal == ISD::SETEQ; 6377 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6378 if (Invert) 6379 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6380 6381 SDLoc DL(N); 6382 RHS = LHS.getOperand(1); 6383 LHS = LHS.getOperand(0); 6384 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6385 6386 SDValue TargetCC = DAG.getCondCode(CCVal); 6387 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6388 {LHS, RHS, TargetCC, TrueV, FalseV}); 6389 } 6390 6391 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6392 // (select_cc X, Y, eq/ne, trueV, falseV) 6393 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6394 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6395 {LHS.getOperand(0), LHS.getOperand(1), 6396 N->getOperand(2), TrueV, FalseV}); 6397 // (select_cc X, 1, setne, trueV, falseV) -> 6398 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6399 // This can occur when legalizing some floating point comparisons. 6400 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6401 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6402 SDLoc DL(N); 6403 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6404 SDValue TargetCC = DAG.getCondCode(CCVal); 6405 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6406 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6407 {LHS, RHS, TargetCC, TrueV, FalseV}); 6408 } 6409 6410 break; 6411 } 6412 case RISCVISD::BR_CC: { 6413 SDValue LHS = N->getOperand(1); 6414 SDValue RHS = N->getOperand(2); 6415 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6416 if (!ISD::isIntEqualitySetCC(CCVal)) 6417 break; 6418 6419 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6420 // (br_cc X, Y, lt, dest) 6421 // Sometimes the setcc is introduced after br_cc has been formed. 6422 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6423 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6424 // If we're looking for eq 0 instead of ne 0, we need to invert the 6425 // condition. 6426 bool Invert = CCVal == ISD::SETEQ; 6427 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6428 if (Invert) 6429 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6430 6431 SDLoc DL(N); 6432 RHS = LHS.getOperand(1); 6433 LHS = LHS.getOperand(0); 6434 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6435 6436 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6437 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6438 N->getOperand(4)); 6439 } 6440 6441 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6442 // (br_cc X, Y, eq/ne, trueV, falseV) 6443 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6444 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6445 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6446 N->getOperand(3), N->getOperand(4)); 6447 6448 // (br_cc X, 1, setne, br_cc) -> 6449 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6450 // This can occur when legalizing some floating point comparisons. 6451 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6452 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6453 SDLoc DL(N); 6454 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6455 SDValue TargetCC = DAG.getCondCode(CCVal); 6456 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6457 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6458 N->getOperand(0), LHS, RHS, TargetCC, 6459 N->getOperand(4)); 6460 } 6461 break; 6462 } 6463 case ISD::FCOPYSIGN: { 6464 EVT VT = N->getValueType(0); 6465 if (!VT.isVector()) 6466 break; 6467 // There is a form of VFSGNJ which injects the negated sign of its second 6468 // operand. Try and bubble any FNEG up after the extend/round to produce 6469 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6470 // TRUNC=1. 6471 SDValue In2 = N->getOperand(1); 6472 // Avoid cases where the extend/round has multiple uses, as duplicating 6473 // those is typically more expensive than removing a fneg. 6474 if (!In2.hasOneUse()) 6475 break; 6476 if (In2.getOpcode() != ISD::FP_EXTEND && 6477 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6478 break; 6479 In2 = In2.getOperand(0); 6480 if (In2.getOpcode() != ISD::FNEG) 6481 break; 6482 SDLoc DL(N); 6483 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6484 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6485 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6486 } 6487 case ISD::MGATHER: 6488 case ISD::MSCATTER: 6489 case ISD::VP_GATHER: 6490 case ISD::VP_SCATTER: { 6491 if (!DCI.isBeforeLegalize()) 6492 break; 6493 SDValue Index, ScaleOp; 6494 bool IsIndexScaled = false; 6495 bool IsIndexSigned = false; 6496 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 6497 Index = VPGSN->getIndex(); 6498 ScaleOp = VPGSN->getScale(); 6499 IsIndexScaled = VPGSN->isIndexScaled(); 6500 IsIndexSigned = VPGSN->isIndexSigned(); 6501 } else { 6502 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 6503 Index = MGSN->getIndex(); 6504 ScaleOp = MGSN->getScale(); 6505 IsIndexScaled = MGSN->isIndexScaled(); 6506 IsIndexSigned = MGSN->isIndexSigned(); 6507 } 6508 EVT IndexVT = Index.getValueType(); 6509 MVT XLenVT = Subtarget.getXLenVT(); 6510 // RISCV indexed loads only support the "unsigned unscaled" addressing 6511 // mode, so anything else must be manually legalized. 6512 bool NeedsIdxLegalization = 6513 IsIndexScaled || 6514 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 6515 if (!NeedsIdxLegalization) 6516 break; 6517 6518 SDLoc DL(N); 6519 6520 // Any index legalization should first promote to XLenVT, so we don't lose 6521 // bits when scaling. This may create an illegal index type so we let 6522 // LLVM's legalization take care of the splitting. 6523 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 6524 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6525 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6526 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6527 DL, IndexVT, Index); 6528 } 6529 6530 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 6531 if (IsIndexScaled && Scale != 1) { 6532 // Manually scale the indices by the element size. 6533 // TODO: Sanitize the scale operand here? 6534 // TODO: For VP nodes, should we use VP_SHL here? 6535 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6536 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6537 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6538 } 6539 6540 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6541 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 6542 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 6543 {VPGN->getChain(), VPGN->getBasePtr(), Index, 6544 VPGN->getScale(), VPGN->getMask(), 6545 VPGN->getVectorLength()}, 6546 VPGN->getMemOperand(), NewIndexTy); 6547 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 6548 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 6549 {VPSN->getChain(), VPSN->getValue(), 6550 VPSN->getBasePtr(), Index, VPSN->getScale(), 6551 VPSN->getMask(), VPSN->getVectorLength()}, 6552 VPSN->getMemOperand(), NewIndexTy); 6553 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 6554 return DAG.getMaskedGather( 6555 N->getVTList(), MGN->getMemoryVT(), DL, 6556 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 6557 MGN->getBasePtr(), Index, MGN->getScale()}, 6558 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6559 const auto *MSN = cast<MaskedScatterSDNode>(N); 6560 return DAG.getMaskedScatter( 6561 N->getVTList(), MSN->getMemoryVT(), DL, 6562 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 6563 Index, MSN->getScale()}, 6564 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6565 } 6566 case RISCVISD::SRA_VL: 6567 case RISCVISD::SRL_VL: 6568 case RISCVISD::SHL_VL: { 6569 SDValue ShAmt = N->getOperand(1); 6570 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6571 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6572 SDLoc DL(N); 6573 SDValue VL = N->getOperand(3); 6574 EVT VT = N->getValueType(0); 6575 ShAmt = 6576 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6577 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6578 N->getOperand(2), N->getOperand(3)); 6579 } 6580 break; 6581 } 6582 case ISD::SRA: 6583 case ISD::SRL: 6584 case ISD::SHL: { 6585 SDValue ShAmt = N->getOperand(1); 6586 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6587 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6588 SDLoc DL(N); 6589 EVT VT = N->getValueType(0); 6590 ShAmt = 6591 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6592 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6593 } 6594 break; 6595 } 6596 case RISCVISD::MUL_VL: { 6597 // Try to form VWMUL or VWMULU. 6598 // FIXME: Look for splat of extended scalar as well. 6599 // FIXME: Support VWMULSU. 6600 SDValue Op0 = N->getOperand(0); 6601 SDValue Op1 = N->getOperand(1); 6602 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6603 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6604 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6605 return SDValue(); 6606 6607 // Make sure the extends have a single use. 6608 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6609 return SDValue(); 6610 6611 SDValue Mask = N->getOperand(2); 6612 SDValue VL = N->getOperand(3); 6613 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6614 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6615 return SDValue(); 6616 6617 Op0 = Op0.getOperand(0); 6618 Op1 = Op1.getOperand(0); 6619 6620 MVT VT = N->getSimpleValueType(0); 6621 MVT NarrowVT = 6622 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6623 VT.getVectorElementCount()); 6624 6625 SDLoc DL(N); 6626 6627 // Re-introduce narrower extends if needed. 6628 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6629 if (Op0.getValueType() != NarrowVT) 6630 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6631 if (Op1.getValueType() != NarrowVT) 6632 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6633 6634 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6635 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6636 } 6637 } 6638 6639 return SDValue(); 6640 } 6641 6642 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6643 const SDNode *N, CombineLevel Level) const { 6644 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6645 // materialised in fewer instructions than `(OP _, c1)`: 6646 // 6647 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6648 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6649 SDValue N0 = N->getOperand(0); 6650 EVT Ty = N0.getValueType(); 6651 if (Ty.isScalarInteger() && 6652 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6653 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6654 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6655 if (C1 && C2) { 6656 const APInt &C1Int = C1->getAPIntValue(); 6657 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6658 6659 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6660 // and the combine should happen, to potentially allow further combines 6661 // later. 6662 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6663 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6664 return true; 6665 6666 // We can materialise `c1` in an add immediate, so it's "free", and the 6667 // combine should be prevented. 6668 if (C1Int.getMinSignedBits() <= 64 && 6669 isLegalAddImmediate(C1Int.getSExtValue())) 6670 return false; 6671 6672 // Neither constant will fit into an immediate, so find materialisation 6673 // costs. 6674 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6675 Subtarget.getFeatureBits(), 6676 /*CompressionCost*/true); 6677 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6678 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 6679 /*CompressionCost*/true); 6680 6681 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6682 // combine should be prevented. 6683 if (C1Cost < ShiftedC1Cost) 6684 return false; 6685 } 6686 } 6687 return true; 6688 } 6689 6690 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6691 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6692 TargetLoweringOpt &TLO) const { 6693 // Delay this optimization as late as possible. 6694 if (!TLO.LegalOps) 6695 return false; 6696 6697 EVT VT = Op.getValueType(); 6698 if (VT.isVector()) 6699 return false; 6700 6701 // Only handle AND for now. 6702 if (Op.getOpcode() != ISD::AND) 6703 return false; 6704 6705 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6706 if (!C) 6707 return false; 6708 6709 const APInt &Mask = C->getAPIntValue(); 6710 6711 // Clear all non-demanded bits initially. 6712 APInt ShrunkMask = Mask & DemandedBits; 6713 6714 // Try to make a smaller immediate by setting undemanded bits. 6715 6716 APInt ExpandedMask = Mask | ~DemandedBits; 6717 6718 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6719 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6720 }; 6721 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6722 if (NewMask == Mask) 6723 return true; 6724 SDLoc DL(Op); 6725 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6726 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6727 return TLO.CombineTo(Op, NewOp); 6728 }; 6729 6730 // If the shrunk mask fits in sign extended 12 bits, let the target 6731 // independent code apply it. 6732 if (ShrunkMask.isSignedIntN(12)) 6733 return false; 6734 6735 // Preserve (and X, 0xffff) when zext.h is supported. 6736 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6737 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6738 if (IsLegalMask(NewMask)) 6739 return UseMask(NewMask); 6740 } 6741 6742 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6743 if (VT == MVT::i64) { 6744 APInt NewMask = APInt(64, 0xffffffff); 6745 if (IsLegalMask(NewMask)) 6746 return UseMask(NewMask); 6747 } 6748 6749 // For the remaining optimizations, we need to be able to make a negative 6750 // number through a combination of mask and undemanded bits. 6751 if (!ExpandedMask.isNegative()) 6752 return false; 6753 6754 // What is the fewest number of bits we need to represent the negative number. 6755 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6756 6757 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6758 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6759 APInt NewMask = ShrunkMask; 6760 if (MinSignedBits <= 12) 6761 NewMask.setBitsFrom(11); 6762 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6763 NewMask.setBitsFrom(31); 6764 else 6765 return false; 6766 6767 // Sanity check that our new mask is a subset of the demanded mask. 6768 assert(IsLegalMask(NewMask)); 6769 return UseMask(NewMask); 6770 } 6771 6772 static void computeGREV(APInt &Src, unsigned ShAmt) { 6773 ShAmt &= Src.getBitWidth() - 1; 6774 uint64_t x = Src.getZExtValue(); 6775 if (ShAmt & 1) 6776 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6777 if (ShAmt & 2) 6778 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6779 if (ShAmt & 4) 6780 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6781 if (ShAmt & 8) 6782 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6783 if (ShAmt & 16) 6784 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6785 if (ShAmt & 32) 6786 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6787 Src = x; 6788 } 6789 6790 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6791 KnownBits &Known, 6792 const APInt &DemandedElts, 6793 const SelectionDAG &DAG, 6794 unsigned Depth) const { 6795 unsigned BitWidth = Known.getBitWidth(); 6796 unsigned Opc = Op.getOpcode(); 6797 assert((Opc >= ISD::BUILTIN_OP_END || 6798 Opc == ISD::INTRINSIC_WO_CHAIN || 6799 Opc == ISD::INTRINSIC_W_CHAIN || 6800 Opc == ISD::INTRINSIC_VOID) && 6801 "Should use MaskedValueIsZero if you don't know whether Op" 6802 " is a target node!"); 6803 6804 Known.resetAll(); 6805 switch (Opc) { 6806 default: break; 6807 case RISCVISD::SELECT_CC: { 6808 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6809 // If we don't know any bits, early out. 6810 if (Known.isUnknown()) 6811 break; 6812 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6813 6814 // Only known if known in both the LHS and RHS. 6815 Known = KnownBits::commonBits(Known, Known2); 6816 break; 6817 } 6818 case RISCVISD::REMUW: { 6819 KnownBits Known2; 6820 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6821 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6822 // We only care about the lower 32 bits. 6823 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6824 // Restore the original width by sign extending. 6825 Known = Known.sext(BitWidth); 6826 break; 6827 } 6828 case RISCVISD::DIVUW: { 6829 KnownBits Known2; 6830 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6831 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6832 // We only care about the lower 32 bits. 6833 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6834 // Restore the original width by sign extending. 6835 Known = Known.sext(BitWidth); 6836 break; 6837 } 6838 case RISCVISD::CTZW: { 6839 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6840 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6841 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6842 Known.Zero.setBitsFrom(LowBits); 6843 break; 6844 } 6845 case RISCVISD::CLZW: { 6846 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6847 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6848 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6849 Known.Zero.setBitsFrom(LowBits); 6850 break; 6851 } 6852 case RISCVISD::GREV: 6853 case RISCVISD::GREVW: { 6854 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6855 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6856 if (Opc == RISCVISD::GREVW) 6857 Known = Known.trunc(32); 6858 unsigned ShAmt = C->getZExtValue(); 6859 computeGREV(Known.Zero, ShAmt); 6860 computeGREV(Known.One, ShAmt); 6861 if (Opc == RISCVISD::GREVW) 6862 Known = Known.sext(BitWidth); 6863 } 6864 break; 6865 } 6866 case RISCVISD::READ_VLENB: 6867 // We assume VLENB is at least 16 bytes. 6868 Known.Zero.setLowBits(4); 6869 // We assume VLENB is no more than 65536 / 8 bytes. 6870 Known.Zero.setBitsFrom(14); 6871 break; 6872 case ISD::INTRINSIC_W_CHAIN: { 6873 unsigned IntNo = Op.getConstantOperandVal(1); 6874 switch (IntNo) { 6875 default: 6876 // We can't do anything for most intrinsics. 6877 break; 6878 case Intrinsic::riscv_vsetvli: 6879 case Intrinsic::riscv_vsetvlimax: 6880 // Assume that VL output is positive and would fit in an int32_t. 6881 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6882 if (BitWidth >= 32) 6883 Known.Zero.setBitsFrom(31); 6884 break; 6885 } 6886 break; 6887 } 6888 } 6889 } 6890 6891 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6892 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6893 unsigned Depth) const { 6894 switch (Op.getOpcode()) { 6895 default: 6896 break; 6897 case RISCVISD::SELECT_CC: { 6898 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 6899 if (Tmp == 1) return 1; // Early out. 6900 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 6901 return std::min(Tmp, Tmp2); 6902 } 6903 case RISCVISD::SLLW: 6904 case RISCVISD::SRAW: 6905 case RISCVISD::SRLW: 6906 case RISCVISD::DIVW: 6907 case RISCVISD::DIVUW: 6908 case RISCVISD::REMUW: 6909 case RISCVISD::ROLW: 6910 case RISCVISD::RORW: 6911 case RISCVISD::GREVW: 6912 case RISCVISD::GORCW: 6913 case RISCVISD::FSLW: 6914 case RISCVISD::FSRW: 6915 case RISCVISD::SHFLW: 6916 case RISCVISD::UNSHFLW: 6917 case RISCVISD::BCOMPRESSW: 6918 case RISCVISD::BDECOMPRESSW: 6919 case RISCVISD::FCVT_W_RTZ_RV64: 6920 case RISCVISD::FCVT_WU_RTZ_RV64: 6921 // TODO: As the result is sign-extended, this is conservatively correct. A 6922 // more precise answer could be calculated for SRAW depending on known 6923 // bits in the shift amount. 6924 return 33; 6925 case RISCVISD::SHFL: 6926 case RISCVISD::UNSHFL: { 6927 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6928 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6929 // will stay within the upper 32 bits. If there were more than 32 sign bits 6930 // before there will be at least 33 sign bits after. 6931 if (Op.getValueType() == MVT::i64 && 6932 isa<ConstantSDNode>(Op.getOperand(1)) && 6933 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6934 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6935 if (Tmp > 32) 6936 return 33; 6937 } 6938 break; 6939 } 6940 case RISCVISD::VMV_X_S: 6941 // The number of sign bits of the scalar result is computed by obtaining the 6942 // element type of the input vector operand, subtracting its width from the 6943 // XLEN, and then adding one (sign bit within the element type). If the 6944 // element type is wider than XLen, the least-significant XLEN bits are 6945 // taken. 6946 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6947 return 1; 6948 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6949 } 6950 6951 return 1; 6952 } 6953 6954 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6955 MachineBasicBlock *BB) { 6956 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6957 6958 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6959 // Should the count have wrapped while it was being read, we need to try 6960 // again. 6961 // ... 6962 // read: 6963 // rdcycleh x3 # load high word of cycle 6964 // rdcycle x2 # load low word of cycle 6965 // rdcycleh x4 # load high word of cycle 6966 // bne x3, x4, read # check if high word reads match, otherwise try again 6967 // ... 6968 6969 MachineFunction &MF = *BB->getParent(); 6970 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6971 MachineFunction::iterator It = ++BB->getIterator(); 6972 6973 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6974 MF.insert(It, LoopMBB); 6975 6976 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6977 MF.insert(It, DoneMBB); 6978 6979 // Transfer the remainder of BB and its successor edges to DoneMBB. 6980 DoneMBB->splice(DoneMBB->begin(), BB, 6981 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6982 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6983 6984 BB->addSuccessor(LoopMBB); 6985 6986 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6987 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6988 Register LoReg = MI.getOperand(0).getReg(); 6989 Register HiReg = MI.getOperand(1).getReg(); 6990 DebugLoc DL = MI.getDebugLoc(); 6991 6992 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6993 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6994 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6995 .addReg(RISCV::X0); 6996 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6997 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6998 .addReg(RISCV::X0); 6999 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7000 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7001 .addReg(RISCV::X0); 7002 7003 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7004 .addReg(HiReg) 7005 .addReg(ReadAgainReg) 7006 .addMBB(LoopMBB); 7007 7008 LoopMBB->addSuccessor(LoopMBB); 7009 LoopMBB->addSuccessor(DoneMBB); 7010 7011 MI.eraseFromParent(); 7012 7013 return DoneMBB; 7014 } 7015 7016 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7017 MachineBasicBlock *BB) { 7018 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7019 7020 MachineFunction &MF = *BB->getParent(); 7021 DebugLoc DL = MI.getDebugLoc(); 7022 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7023 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7024 Register LoReg = MI.getOperand(0).getReg(); 7025 Register HiReg = MI.getOperand(1).getReg(); 7026 Register SrcReg = MI.getOperand(2).getReg(); 7027 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7028 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7029 7030 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7031 RI); 7032 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7033 MachineMemOperand *MMOLo = 7034 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7035 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7036 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7037 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7038 .addFrameIndex(FI) 7039 .addImm(0) 7040 .addMemOperand(MMOLo); 7041 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7042 .addFrameIndex(FI) 7043 .addImm(4) 7044 .addMemOperand(MMOHi); 7045 MI.eraseFromParent(); // The pseudo instruction is gone now. 7046 return BB; 7047 } 7048 7049 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7050 MachineBasicBlock *BB) { 7051 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7052 "Unexpected instruction"); 7053 7054 MachineFunction &MF = *BB->getParent(); 7055 DebugLoc DL = MI.getDebugLoc(); 7056 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7057 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7058 Register DstReg = MI.getOperand(0).getReg(); 7059 Register LoReg = MI.getOperand(1).getReg(); 7060 Register HiReg = MI.getOperand(2).getReg(); 7061 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7062 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7063 7064 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7065 MachineMemOperand *MMOLo = 7066 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7067 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7068 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7069 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7070 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7071 .addFrameIndex(FI) 7072 .addImm(0) 7073 .addMemOperand(MMOLo); 7074 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7075 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7076 .addFrameIndex(FI) 7077 .addImm(4) 7078 .addMemOperand(MMOHi); 7079 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7080 MI.eraseFromParent(); // The pseudo instruction is gone now. 7081 return BB; 7082 } 7083 7084 static bool isSelectPseudo(MachineInstr &MI) { 7085 switch (MI.getOpcode()) { 7086 default: 7087 return false; 7088 case RISCV::Select_GPR_Using_CC_GPR: 7089 case RISCV::Select_FPR16_Using_CC_GPR: 7090 case RISCV::Select_FPR32_Using_CC_GPR: 7091 case RISCV::Select_FPR64_Using_CC_GPR: 7092 return true; 7093 } 7094 } 7095 7096 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7097 MachineBasicBlock *BB, 7098 const RISCVSubtarget &Subtarget) { 7099 // To "insert" Select_* instructions, we actually have to insert the triangle 7100 // control-flow pattern. The incoming instructions know the destination vreg 7101 // to set, the condition code register to branch on, the true/false values to 7102 // select between, and the condcode to use to select the appropriate branch. 7103 // 7104 // We produce the following control flow: 7105 // HeadMBB 7106 // | \ 7107 // | IfFalseMBB 7108 // | / 7109 // TailMBB 7110 // 7111 // When we find a sequence of selects we attempt to optimize their emission 7112 // by sharing the control flow. Currently we only handle cases where we have 7113 // multiple selects with the exact same condition (same LHS, RHS and CC). 7114 // The selects may be interleaved with other instructions if the other 7115 // instructions meet some requirements we deem safe: 7116 // - They are debug instructions. Otherwise, 7117 // - They do not have side-effects, do not access memory and their inputs do 7118 // not depend on the results of the select pseudo-instructions. 7119 // The TrueV/FalseV operands of the selects cannot depend on the result of 7120 // previous selects in the sequence. 7121 // These conditions could be further relaxed. See the X86 target for a 7122 // related approach and more information. 7123 Register LHS = MI.getOperand(1).getReg(); 7124 Register RHS = MI.getOperand(2).getReg(); 7125 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7126 7127 SmallVector<MachineInstr *, 4> SelectDebugValues; 7128 SmallSet<Register, 4> SelectDests; 7129 SelectDests.insert(MI.getOperand(0).getReg()); 7130 7131 MachineInstr *LastSelectPseudo = &MI; 7132 7133 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7134 SequenceMBBI != E; ++SequenceMBBI) { 7135 if (SequenceMBBI->isDebugInstr()) 7136 continue; 7137 else if (isSelectPseudo(*SequenceMBBI)) { 7138 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7139 SequenceMBBI->getOperand(2).getReg() != RHS || 7140 SequenceMBBI->getOperand(3).getImm() != CC || 7141 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7142 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7143 break; 7144 LastSelectPseudo = &*SequenceMBBI; 7145 SequenceMBBI->collectDebugValues(SelectDebugValues); 7146 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7147 } else { 7148 if (SequenceMBBI->hasUnmodeledSideEffects() || 7149 SequenceMBBI->mayLoadOrStore()) 7150 break; 7151 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7152 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7153 })) 7154 break; 7155 } 7156 } 7157 7158 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7159 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7160 DebugLoc DL = MI.getDebugLoc(); 7161 MachineFunction::iterator I = ++BB->getIterator(); 7162 7163 MachineBasicBlock *HeadMBB = BB; 7164 MachineFunction *F = BB->getParent(); 7165 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7166 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7167 7168 F->insert(I, IfFalseMBB); 7169 F->insert(I, TailMBB); 7170 7171 // Transfer debug instructions associated with the selects to TailMBB. 7172 for (MachineInstr *DebugInstr : SelectDebugValues) { 7173 TailMBB->push_back(DebugInstr->removeFromParent()); 7174 } 7175 7176 // Move all instructions after the sequence to TailMBB. 7177 TailMBB->splice(TailMBB->end(), HeadMBB, 7178 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7179 // Update machine-CFG edges by transferring all successors of the current 7180 // block to the new block which will contain the Phi nodes for the selects. 7181 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7182 // Set the successors for HeadMBB. 7183 HeadMBB->addSuccessor(IfFalseMBB); 7184 HeadMBB->addSuccessor(TailMBB); 7185 7186 // Insert appropriate branch. 7187 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7188 .addReg(LHS) 7189 .addReg(RHS) 7190 .addMBB(TailMBB); 7191 7192 // IfFalseMBB just falls through to TailMBB. 7193 IfFalseMBB->addSuccessor(TailMBB); 7194 7195 // Create PHIs for all of the select pseudo-instructions. 7196 auto SelectMBBI = MI.getIterator(); 7197 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7198 auto InsertionPoint = TailMBB->begin(); 7199 while (SelectMBBI != SelectEnd) { 7200 auto Next = std::next(SelectMBBI); 7201 if (isSelectPseudo(*SelectMBBI)) { 7202 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7203 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7204 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7205 .addReg(SelectMBBI->getOperand(4).getReg()) 7206 .addMBB(HeadMBB) 7207 .addReg(SelectMBBI->getOperand(5).getReg()) 7208 .addMBB(IfFalseMBB); 7209 SelectMBBI->eraseFromParent(); 7210 } 7211 SelectMBBI = Next; 7212 } 7213 7214 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7215 return TailMBB; 7216 } 7217 7218 MachineBasicBlock * 7219 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7220 MachineBasicBlock *BB) const { 7221 switch (MI.getOpcode()) { 7222 default: 7223 llvm_unreachable("Unexpected instr type to insert"); 7224 case RISCV::ReadCycleWide: 7225 assert(!Subtarget.is64Bit() && 7226 "ReadCycleWrite is only to be used on riscv32"); 7227 return emitReadCycleWidePseudo(MI, BB); 7228 case RISCV::Select_GPR_Using_CC_GPR: 7229 case RISCV::Select_FPR16_Using_CC_GPR: 7230 case RISCV::Select_FPR32_Using_CC_GPR: 7231 case RISCV::Select_FPR64_Using_CC_GPR: 7232 return emitSelectPseudo(MI, BB, Subtarget); 7233 case RISCV::BuildPairF64Pseudo: 7234 return emitBuildPairF64Pseudo(MI, BB); 7235 case RISCV::SplitF64Pseudo: 7236 return emitSplitF64Pseudo(MI, BB); 7237 } 7238 } 7239 7240 // Calling Convention Implementation. 7241 // The expectations for frontend ABI lowering vary from target to target. 7242 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7243 // details, but this is a longer term goal. For now, we simply try to keep the 7244 // role of the frontend as simple and well-defined as possible. The rules can 7245 // be summarised as: 7246 // * Never split up large scalar arguments. We handle them here. 7247 // * If a hardfloat calling convention is being used, and the struct may be 7248 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7249 // available, then pass as two separate arguments. If either the GPRs or FPRs 7250 // are exhausted, then pass according to the rule below. 7251 // * If a struct could never be passed in registers or directly in a stack 7252 // slot (as it is larger than 2*XLEN and the floating point rules don't 7253 // apply), then pass it using a pointer with the byval attribute. 7254 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7255 // word-sized array or a 2*XLEN scalar (depending on alignment). 7256 // * The frontend can determine whether a struct is returned by reference or 7257 // not based on its size and fields. If it will be returned by reference, the 7258 // frontend must modify the prototype so a pointer with the sret annotation is 7259 // passed as the first argument. This is not necessary for large scalar 7260 // returns. 7261 // * Struct return values and varargs should be coerced to structs containing 7262 // register-size fields in the same situations they would be for fixed 7263 // arguments. 7264 7265 static const MCPhysReg ArgGPRs[] = { 7266 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7267 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7268 }; 7269 static const MCPhysReg ArgFPR16s[] = { 7270 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7271 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7272 }; 7273 static const MCPhysReg ArgFPR32s[] = { 7274 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7275 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7276 }; 7277 static const MCPhysReg ArgFPR64s[] = { 7278 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7279 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7280 }; 7281 // This is an interim calling convention and it may be changed in the future. 7282 static const MCPhysReg ArgVRs[] = { 7283 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7284 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7285 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7286 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7287 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7288 RISCV::V20M2, RISCV::V22M2}; 7289 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7290 RISCV::V20M4}; 7291 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7292 7293 // Pass a 2*XLEN argument that has been split into two XLEN values through 7294 // registers or the stack as necessary. 7295 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7296 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7297 MVT ValVT2, MVT LocVT2, 7298 ISD::ArgFlagsTy ArgFlags2) { 7299 unsigned XLenInBytes = XLen / 8; 7300 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7301 // At least one half can be passed via register. 7302 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7303 VA1.getLocVT(), CCValAssign::Full)); 7304 } else { 7305 // Both halves must be passed on the stack, with proper alignment. 7306 Align StackAlign = 7307 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7308 State.addLoc( 7309 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7310 State.AllocateStack(XLenInBytes, StackAlign), 7311 VA1.getLocVT(), CCValAssign::Full)); 7312 State.addLoc(CCValAssign::getMem( 7313 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7314 LocVT2, CCValAssign::Full)); 7315 return false; 7316 } 7317 7318 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7319 // The second half can also be passed via register. 7320 State.addLoc( 7321 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7322 } else { 7323 // The second half is passed via the stack, without additional alignment. 7324 State.addLoc(CCValAssign::getMem( 7325 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7326 LocVT2, CCValAssign::Full)); 7327 } 7328 7329 return false; 7330 } 7331 7332 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7333 Optional<unsigned> FirstMaskArgument, 7334 CCState &State, const RISCVTargetLowering &TLI) { 7335 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7336 if (RC == &RISCV::VRRegClass) { 7337 // Assign the first mask argument to V0. 7338 // This is an interim calling convention and it may be changed in the 7339 // future. 7340 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7341 return State.AllocateReg(RISCV::V0); 7342 return State.AllocateReg(ArgVRs); 7343 } 7344 if (RC == &RISCV::VRM2RegClass) 7345 return State.AllocateReg(ArgVRM2s); 7346 if (RC == &RISCV::VRM4RegClass) 7347 return State.AllocateReg(ArgVRM4s); 7348 if (RC == &RISCV::VRM8RegClass) 7349 return State.AllocateReg(ArgVRM8s); 7350 llvm_unreachable("Unhandled register class for ValueType"); 7351 } 7352 7353 // Implements the RISC-V calling convention. Returns true upon failure. 7354 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7355 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7356 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7357 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7358 Optional<unsigned> FirstMaskArgument) { 7359 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7360 assert(XLen == 32 || XLen == 64); 7361 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7362 7363 // Any return value split in to more than two values can't be returned 7364 // directly. Vectors are returned via the available vector registers. 7365 if (!LocVT.isVector() && IsRet && ValNo > 1) 7366 return true; 7367 7368 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7369 // variadic argument, or if no F16/F32 argument registers are available. 7370 bool UseGPRForF16_F32 = true; 7371 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7372 // variadic argument, or if no F64 argument registers are available. 7373 bool UseGPRForF64 = true; 7374 7375 switch (ABI) { 7376 default: 7377 llvm_unreachable("Unexpected ABI"); 7378 case RISCVABI::ABI_ILP32: 7379 case RISCVABI::ABI_LP64: 7380 break; 7381 case RISCVABI::ABI_ILP32F: 7382 case RISCVABI::ABI_LP64F: 7383 UseGPRForF16_F32 = !IsFixed; 7384 break; 7385 case RISCVABI::ABI_ILP32D: 7386 case RISCVABI::ABI_LP64D: 7387 UseGPRForF16_F32 = !IsFixed; 7388 UseGPRForF64 = !IsFixed; 7389 break; 7390 } 7391 7392 // FPR16, FPR32, and FPR64 alias each other. 7393 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7394 UseGPRForF16_F32 = true; 7395 UseGPRForF64 = true; 7396 } 7397 7398 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7399 // similar local variables rather than directly checking against the target 7400 // ABI. 7401 7402 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7403 LocVT = XLenVT; 7404 LocInfo = CCValAssign::BCvt; 7405 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7406 LocVT = MVT::i64; 7407 LocInfo = CCValAssign::BCvt; 7408 } 7409 7410 // If this is a variadic argument, the RISC-V calling convention requires 7411 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7412 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7413 // be used regardless of whether the original argument was split during 7414 // legalisation or not. The argument will not be passed by registers if the 7415 // original type is larger than 2*XLEN, so the register alignment rule does 7416 // not apply. 7417 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7418 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7419 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7420 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7421 // Skip 'odd' register if necessary. 7422 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7423 State.AllocateReg(ArgGPRs); 7424 } 7425 7426 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7427 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7428 State.getPendingArgFlags(); 7429 7430 assert(PendingLocs.size() == PendingArgFlags.size() && 7431 "PendingLocs and PendingArgFlags out of sync"); 7432 7433 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7434 // registers are exhausted. 7435 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7436 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7437 "Can't lower f64 if it is split"); 7438 // Depending on available argument GPRS, f64 may be passed in a pair of 7439 // GPRs, split between a GPR and the stack, or passed completely on the 7440 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7441 // cases. 7442 Register Reg = State.AllocateReg(ArgGPRs); 7443 LocVT = MVT::i32; 7444 if (!Reg) { 7445 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7446 State.addLoc( 7447 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7448 return false; 7449 } 7450 if (!State.AllocateReg(ArgGPRs)) 7451 State.AllocateStack(4, Align(4)); 7452 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7453 return false; 7454 } 7455 7456 // Fixed-length vectors are located in the corresponding scalable-vector 7457 // container types. 7458 if (ValVT.isFixedLengthVector()) 7459 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7460 7461 // Split arguments might be passed indirectly, so keep track of the pending 7462 // values. Split vectors are passed via a mix of registers and indirectly, so 7463 // treat them as we would any other argument. 7464 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7465 LocVT = XLenVT; 7466 LocInfo = CCValAssign::Indirect; 7467 PendingLocs.push_back( 7468 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7469 PendingArgFlags.push_back(ArgFlags); 7470 if (!ArgFlags.isSplitEnd()) { 7471 return false; 7472 } 7473 } 7474 7475 // If the split argument only had two elements, it should be passed directly 7476 // in registers or on the stack. 7477 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7478 PendingLocs.size() <= 2) { 7479 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7480 // Apply the normal calling convention rules to the first half of the 7481 // split argument. 7482 CCValAssign VA = PendingLocs[0]; 7483 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7484 PendingLocs.clear(); 7485 PendingArgFlags.clear(); 7486 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7487 ArgFlags); 7488 } 7489 7490 // Allocate to a register if possible, or else a stack slot. 7491 Register Reg; 7492 unsigned StoreSizeBytes = XLen / 8; 7493 Align StackAlign = Align(XLen / 8); 7494 7495 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7496 Reg = State.AllocateReg(ArgFPR16s); 7497 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7498 Reg = State.AllocateReg(ArgFPR32s); 7499 else if (ValVT == MVT::f64 && !UseGPRForF64) 7500 Reg = State.AllocateReg(ArgFPR64s); 7501 else if (ValVT.isVector()) { 7502 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7503 if (!Reg) { 7504 // For return values, the vector must be passed fully via registers or 7505 // via the stack. 7506 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7507 // but we're using all of them. 7508 if (IsRet) 7509 return true; 7510 // Try using a GPR to pass the address 7511 if ((Reg = State.AllocateReg(ArgGPRs))) { 7512 LocVT = XLenVT; 7513 LocInfo = CCValAssign::Indirect; 7514 } else if (ValVT.isScalableVector()) { 7515 report_fatal_error("Unable to pass scalable vector types on the stack"); 7516 } else { 7517 // Pass fixed-length vectors on the stack. 7518 LocVT = ValVT; 7519 StoreSizeBytes = ValVT.getStoreSize(); 7520 // Align vectors to their element sizes, being careful for vXi1 7521 // vectors. 7522 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7523 } 7524 } 7525 } else { 7526 Reg = State.AllocateReg(ArgGPRs); 7527 } 7528 7529 unsigned StackOffset = 7530 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7531 7532 // If we reach this point and PendingLocs is non-empty, we must be at the 7533 // end of a split argument that must be passed indirectly. 7534 if (!PendingLocs.empty()) { 7535 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7536 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7537 7538 for (auto &It : PendingLocs) { 7539 if (Reg) 7540 It.convertToReg(Reg); 7541 else 7542 It.convertToMem(StackOffset); 7543 State.addLoc(It); 7544 } 7545 PendingLocs.clear(); 7546 PendingArgFlags.clear(); 7547 return false; 7548 } 7549 7550 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7551 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7552 "Expected an XLenVT or vector types at this stage"); 7553 7554 if (Reg) { 7555 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7556 return false; 7557 } 7558 7559 // When a floating-point value is passed on the stack, no bit-conversion is 7560 // needed. 7561 if (ValVT.isFloatingPoint()) { 7562 LocVT = ValVT; 7563 LocInfo = CCValAssign::Full; 7564 } 7565 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7566 return false; 7567 } 7568 7569 template <typename ArgTy> 7570 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7571 for (const auto &ArgIdx : enumerate(Args)) { 7572 MVT ArgVT = ArgIdx.value().VT; 7573 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7574 return ArgIdx.index(); 7575 } 7576 return None; 7577 } 7578 7579 void RISCVTargetLowering::analyzeInputArgs( 7580 MachineFunction &MF, CCState &CCInfo, 7581 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7582 RISCVCCAssignFn Fn) const { 7583 unsigned NumArgs = Ins.size(); 7584 FunctionType *FType = MF.getFunction().getFunctionType(); 7585 7586 Optional<unsigned> FirstMaskArgument; 7587 if (Subtarget.hasStdExtV()) 7588 FirstMaskArgument = preAssignMask(Ins); 7589 7590 for (unsigned i = 0; i != NumArgs; ++i) { 7591 MVT ArgVT = Ins[i].VT; 7592 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7593 7594 Type *ArgTy = nullptr; 7595 if (IsRet) 7596 ArgTy = FType->getReturnType(); 7597 else if (Ins[i].isOrigArg()) 7598 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7599 7600 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7601 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7602 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7603 FirstMaskArgument)) { 7604 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7605 << EVT(ArgVT).getEVTString() << '\n'); 7606 llvm_unreachable(nullptr); 7607 } 7608 } 7609 } 7610 7611 void RISCVTargetLowering::analyzeOutputArgs( 7612 MachineFunction &MF, CCState &CCInfo, 7613 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7614 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7615 unsigned NumArgs = Outs.size(); 7616 7617 Optional<unsigned> FirstMaskArgument; 7618 if (Subtarget.hasStdExtV()) 7619 FirstMaskArgument = preAssignMask(Outs); 7620 7621 for (unsigned i = 0; i != NumArgs; i++) { 7622 MVT ArgVT = Outs[i].VT; 7623 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7624 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7625 7626 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7627 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7628 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7629 FirstMaskArgument)) { 7630 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7631 << EVT(ArgVT).getEVTString() << "\n"); 7632 llvm_unreachable(nullptr); 7633 } 7634 } 7635 } 7636 7637 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7638 // values. 7639 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7640 const CCValAssign &VA, const SDLoc &DL, 7641 const RISCVSubtarget &Subtarget) { 7642 switch (VA.getLocInfo()) { 7643 default: 7644 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7645 case CCValAssign::Full: 7646 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7647 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7648 break; 7649 case CCValAssign::BCvt: 7650 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7651 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7652 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7653 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7654 else 7655 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7656 break; 7657 } 7658 return Val; 7659 } 7660 7661 // The caller is responsible for loading the full value if the argument is 7662 // passed with CCValAssign::Indirect. 7663 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7664 const CCValAssign &VA, const SDLoc &DL, 7665 const RISCVTargetLowering &TLI) { 7666 MachineFunction &MF = DAG.getMachineFunction(); 7667 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7668 EVT LocVT = VA.getLocVT(); 7669 SDValue Val; 7670 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7671 Register VReg = RegInfo.createVirtualRegister(RC); 7672 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7673 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7674 7675 if (VA.getLocInfo() == CCValAssign::Indirect) 7676 return Val; 7677 7678 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7679 } 7680 7681 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7682 const CCValAssign &VA, const SDLoc &DL, 7683 const RISCVSubtarget &Subtarget) { 7684 EVT LocVT = VA.getLocVT(); 7685 7686 switch (VA.getLocInfo()) { 7687 default: 7688 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7689 case CCValAssign::Full: 7690 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7691 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7692 break; 7693 case CCValAssign::BCvt: 7694 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7695 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7696 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7697 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7698 else 7699 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7700 break; 7701 } 7702 return Val; 7703 } 7704 7705 // The caller is responsible for loading the full value if the argument is 7706 // passed with CCValAssign::Indirect. 7707 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7708 const CCValAssign &VA, const SDLoc &DL) { 7709 MachineFunction &MF = DAG.getMachineFunction(); 7710 MachineFrameInfo &MFI = MF.getFrameInfo(); 7711 EVT LocVT = VA.getLocVT(); 7712 EVT ValVT = VA.getValVT(); 7713 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7714 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7715 /*Immutable=*/true); 7716 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7717 SDValue Val; 7718 7719 ISD::LoadExtType ExtType; 7720 switch (VA.getLocInfo()) { 7721 default: 7722 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7723 case CCValAssign::Full: 7724 case CCValAssign::Indirect: 7725 case CCValAssign::BCvt: 7726 ExtType = ISD::NON_EXTLOAD; 7727 break; 7728 } 7729 Val = DAG.getExtLoad( 7730 ExtType, DL, LocVT, Chain, FIN, 7731 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7732 return Val; 7733 } 7734 7735 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7736 const CCValAssign &VA, const SDLoc &DL) { 7737 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7738 "Unexpected VA"); 7739 MachineFunction &MF = DAG.getMachineFunction(); 7740 MachineFrameInfo &MFI = MF.getFrameInfo(); 7741 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7742 7743 if (VA.isMemLoc()) { 7744 // f64 is passed on the stack. 7745 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7746 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7747 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7748 MachinePointerInfo::getFixedStack(MF, FI)); 7749 } 7750 7751 assert(VA.isRegLoc() && "Expected register VA assignment"); 7752 7753 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7754 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7755 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7756 SDValue Hi; 7757 if (VA.getLocReg() == RISCV::X17) { 7758 // Second half of f64 is passed on the stack. 7759 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7760 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7761 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7762 MachinePointerInfo::getFixedStack(MF, FI)); 7763 } else { 7764 // Second half of f64 is passed in another GPR. 7765 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7766 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7767 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7768 } 7769 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7770 } 7771 7772 // FastCC has less than 1% performance improvement for some particular 7773 // benchmark. But theoretically, it may has benenfit for some cases. 7774 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7775 unsigned ValNo, MVT ValVT, MVT LocVT, 7776 CCValAssign::LocInfo LocInfo, 7777 ISD::ArgFlagsTy ArgFlags, CCState &State, 7778 bool IsFixed, bool IsRet, Type *OrigTy, 7779 const RISCVTargetLowering &TLI, 7780 Optional<unsigned> FirstMaskArgument) { 7781 7782 // X5 and X6 might be used for save-restore libcall. 7783 static const MCPhysReg GPRList[] = { 7784 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7785 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7786 RISCV::X29, RISCV::X30, RISCV::X31}; 7787 7788 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7789 if (unsigned Reg = State.AllocateReg(GPRList)) { 7790 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7791 return false; 7792 } 7793 } 7794 7795 if (LocVT == MVT::f16) { 7796 static const MCPhysReg FPR16List[] = { 7797 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7798 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7799 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7800 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7801 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7802 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7803 return false; 7804 } 7805 } 7806 7807 if (LocVT == MVT::f32) { 7808 static const MCPhysReg FPR32List[] = { 7809 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7810 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7811 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7812 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7813 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7814 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7815 return false; 7816 } 7817 } 7818 7819 if (LocVT == MVT::f64) { 7820 static const MCPhysReg FPR64List[] = { 7821 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7822 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7823 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7824 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7825 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7826 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7827 return false; 7828 } 7829 } 7830 7831 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7832 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7833 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7834 return false; 7835 } 7836 7837 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7838 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7839 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7840 return false; 7841 } 7842 7843 if (LocVT.isVector()) { 7844 if (unsigned Reg = 7845 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7846 // Fixed-length vectors are located in the corresponding scalable-vector 7847 // container types. 7848 if (ValVT.isFixedLengthVector()) 7849 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7850 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7851 } else { 7852 // Try and pass the address via a "fast" GPR. 7853 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7854 LocInfo = CCValAssign::Indirect; 7855 LocVT = TLI.getSubtarget().getXLenVT(); 7856 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7857 } else if (ValVT.isFixedLengthVector()) { 7858 auto StackAlign = 7859 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7860 unsigned StackOffset = 7861 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7862 State.addLoc( 7863 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7864 } else { 7865 // Can't pass scalable vectors on the stack. 7866 return true; 7867 } 7868 } 7869 7870 return false; 7871 } 7872 7873 return true; // CC didn't match. 7874 } 7875 7876 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7877 CCValAssign::LocInfo LocInfo, 7878 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7879 7880 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7881 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7882 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7883 static const MCPhysReg GPRList[] = { 7884 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7885 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7886 if (unsigned Reg = State.AllocateReg(GPRList)) { 7887 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7888 return false; 7889 } 7890 } 7891 7892 if (LocVT == MVT::f32) { 7893 // Pass in STG registers: F1, ..., F6 7894 // fs0 ... fs5 7895 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7896 RISCV::F18_F, RISCV::F19_F, 7897 RISCV::F20_F, RISCV::F21_F}; 7898 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7899 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7900 return false; 7901 } 7902 } 7903 7904 if (LocVT == MVT::f64) { 7905 // Pass in STG registers: D1, ..., D6 7906 // fs6 ... fs11 7907 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7908 RISCV::F24_D, RISCV::F25_D, 7909 RISCV::F26_D, RISCV::F27_D}; 7910 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7911 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7912 return false; 7913 } 7914 } 7915 7916 report_fatal_error("No registers left in GHC calling convention"); 7917 return true; 7918 } 7919 7920 // Transform physical registers into virtual registers. 7921 SDValue RISCVTargetLowering::LowerFormalArguments( 7922 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7923 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7924 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7925 7926 MachineFunction &MF = DAG.getMachineFunction(); 7927 7928 switch (CallConv) { 7929 default: 7930 report_fatal_error("Unsupported calling convention"); 7931 case CallingConv::C: 7932 case CallingConv::Fast: 7933 break; 7934 case CallingConv::GHC: 7935 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7936 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7937 report_fatal_error( 7938 "GHC calling convention requires the F and D instruction set extensions"); 7939 } 7940 7941 const Function &Func = MF.getFunction(); 7942 if (Func.hasFnAttribute("interrupt")) { 7943 if (!Func.arg_empty()) 7944 report_fatal_error( 7945 "Functions with the interrupt attribute cannot have arguments!"); 7946 7947 StringRef Kind = 7948 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7949 7950 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7951 report_fatal_error( 7952 "Function interrupt attribute argument not supported!"); 7953 } 7954 7955 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7956 MVT XLenVT = Subtarget.getXLenVT(); 7957 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7958 // Used with vargs to acumulate store chains. 7959 std::vector<SDValue> OutChains; 7960 7961 // Assign locations to all of the incoming arguments. 7962 SmallVector<CCValAssign, 16> ArgLocs; 7963 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7964 7965 if (CallConv == CallingConv::GHC) 7966 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7967 else 7968 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7969 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7970 : CC_RISCV); 7971 7972 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7973 CCValAssign &VA = ArgLocs[i]; 7974 SDValue ArgValue; 7975 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7976 // case. 7977 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7978 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7979 else if (VA.isRegLoc()) 7980 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7981 else 7982 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7983 7984 if (VA.getLocInfo() == CCValAssign::Indirect) { 7985 // If the original argument was split and passed by reference (e.g. i128 7986 // on RV32), we need to load all parts of it here (using the same 7987 // address). Vectors may be partly split to registers and partly to the 7988 // stack, in which case the base address is partly offset and subsequent 7989 // stores are relative to that. 7990 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7991 MachinePointerInfo())); 7992 unsigned ArgIndex = Ins[i].OrigArgIndex; 7993 unsigned ArgPartOffset = Ins[i].PartOffset; 7994 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7995 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7996 CCValAssign &PartVA = ArgLocs[i + 1]; 7997 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7998 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7999 if (PartVA.getValVT().isScalableVector()) 8000 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8001 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8002 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8003 MachinePointerInfo())); 8004 ++i; 8005 } 8006 continue; 8007 } 8008 InVals.push_back(ArgValue); 8009 } 8010 8011 if (IsVarArg) { 8012 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8013 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8014 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8015 MachineFrameInfo &MFI = MF.getFrameInfo(); 8016 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8017 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8018 8019 // Offset of the first variable argument from stack pointer, and size of 8020 // the vararg save area. For now, the varargs save area is either zero or 8021 // large enough to hold a0-a7. 8022 int VaArgOffset, VarArgsSaveSize; 8023 8024 // If all registers are allocated, then all varargs must be passed on the 8025 // stack and we don't need to save any argregs. 8026 if (ArgRegs.size() == Idx) { 8027 VaArgOffset = CCInfo.getNextStackOffset(); 8028 VarArgsSaveSize = 0; 8029 } else { 8030 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8031 VaArgOffset = -VarArgsSaveSize; 8032 } 8033 8034 // Record the frame index of the first variable argument 8035 // which is a value necessary to VASTART. 8036 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8037 RVFI->setVarArgsFrameIndex(FI); 8038 8039 // If saving an odd number of registers then create an extra stack slot to 8040 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8041 // offsets to even-numbered registered remain 2*XLEN-aligned. 8042 if (Idx % 2) { 8043 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8044 VarArgsSaveSize += XLenInBytes; 8045 } 8046 8047 // Copy the integer registers that may have been used for passing varargs 8048 // to the vararg save area. 8049 for (unsigned I = Idx; I < ArgRegs.size(); 8050 ++I, VaArgOffset += XLenInBytes) { 8051 const Register Reg = RegInfo.createVirtualRegister(RC); 8052 RegInfo.addLiveIn(ArgRegs[I], Reg); 8053 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8054 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8055 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8056 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8057 MachinePointerInfo::getFixedStack(MF, FI)); 8058 cast<StoreSDNode>(Store.getNode()) 8059 ->getMemOperand() 8060 ->setValue((Value *)nullptr); 8061 OutChains.push_back(Store); 8062 } 8063 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8064 } 8065 8066 // All stores are grouped in one node to allow the matching between 8067 // the size of Ins and InVals. This only happens for vararg functions. 8068 if (!OutChains.empty()) { 8069 OutChains.push_back(Chain); 8070 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8071 } 8072 8073 return Chain; 8074 } 8075 8076 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8077 /// for tail call optimization. 8078 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8079 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8080 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8081 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8082 8083 auto &Callee = CLI.Callee; 8084 auto CalleeCC = CLI.CallConv; 8085 auto &Outs = CLI.Outs; 8086 auto &Caller = MF.getFunction(); 8087 auto CallerCC = Caller.getCallingConv(); 8088 8089 // Exception-handling functions need a special set of instructions to 8090 // indicate a return to the hardware. Tail-calling another function would 8091 // probably break this. 8092 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8093 // should be expanded as new function attributes are introduced. 8094 if (Caller.hasFnAttribute("interrupt")) 8095 return false; 8096 8097 // Do not tail call opt if the stack is used to pass parameters. 8098 if (CCInfo.getNextStackOffset() != 0) 8099 return false; 8100 8101 // Do not tail call opt if any parameters need to be passed indirectly. 8102 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8103 // passed indirectly. So the address of the value will be passed in a 8104 // register, or if not available, then the address is put on the stack. In 8105 // order to pass indirectly, space on the stack often needs to be allocated 8106 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8107 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8108 // are passed CCValAssign::Indirect. 8109 for (auto &VA : ArgLocs) 8110 if (VA.getLocInfo() == CCValAssign::Indirect) 8111 return false; 8112 8113 // Do not tail call opt if either caller or callee uses struct return 8114 // semantics. 8115 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8116 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8117 if (IsCallerStructRet || IsCalleeStructRet) 8118 return false; 8119 8120 // Externally-defined functions with weak linkage should not be 8121 // tail-called. The behaviour of branch instructions in this situation (as 8122 // used for tail calls) is implementation-defined, so we cannot rely on the 8123 // linker replacing the tail call with a return. 8124 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8125 const GlobalValue *GV = G->getGlobal(); 8126 if (GV->hasExternalWeakLinkage()) 8127 return false; 8128 } 8129 8130 // The callee has to preserve all registers the caller needs to preserve. 8131 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8132 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8133 if (CalleeCC != CallerCC) { 8134 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8135 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8136 return false; 8137 } 8138 8139 // Byval parameters hand the function a pointer directly into the stack area 8140 // we want to reuse during a tail call. Working around this *is* possible 8141 // but less efficient and uglier in LowerCall. 8142 for (auto &Arg : Outs) 8143 if (Arg.Flags.isByVal()) 8144 return false; 8145 8146 return true; 8147 } 8148 8149 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8150 return DAG.getDataLayout().getPrefTypeAlign( 8151 VT.getTypeForEVT(*DAG.getContext())); 8152 } 8153 8154 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8155 // and output parameter nodes. 8156 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8157 SmallVectorImpl<SDValue> &InVals) const { 8158 SelectionDAG &DAG = CLI.DAG; 8159 SDLoc &DL = CLI.DL; 8160 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8161 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8162 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8163 SDValue Chain = CLI.Chain; 8164 SDValue Callee = CLI.Callee; 8165 bool &IsTailCall = CLI.IsTailCall; 8166 CallingConv::ID CallConv = CLI.CallConv; 8167 bool IsVarArg = CLI.IsVarArg; 8168 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8169 MVT XLenVT = Subtarget.getXLenVT(); 8170 8171 MachineFunction &MF = DAG.getMachineFunction(); 8172 8173 // Analyze the operands of the call, assigning locations to each operand. 8174 SmallVector<CCValAssign, 16> ArgLocs; 8175 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8176 8177 if (CallConv == CallingConv::GHC) 8178 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8179 else 8180 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8181 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8182 : CC_RISCV); 8183 8184 // Check if it's really possible to do a tail call. 8185 if (IsTailCall) 8186 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8187 8188 if (IsTailCall) 8189 ++NumTailCalls; 8190 else if (CLI.CB && CLI.CB->isMustTailCall()) 8191 report_fatal_error("failed to perform tail call elimination on a call " 8192 "site marked musttail"); 8193 8194 // Get a count of how many bytes are to be pushed on the stack. 8195 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8196 8197 // Create local copies for byval args 8198 SmallVector<SDValue, 8> ByValArgs; 8199 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8200 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8201 if (!Flags.isByVal()) 8202 continue; 8203 8204 SDValue Arg = OutVals[i]; 8205 unsigned Size = Flags.getByValSize(); 8206 Align Alignment = Flags.getNonZeroByValAlign(); 8207 8208 int FI = 8209 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8210 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8211 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8212 8213 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8214 /*IsVolatile=*/false, 8215 /*AlwaysInline=*/false, IsTailCall, 8216 MachinePointerInfo(), MachinePointerInfo()); 8217 ByValArgs.push_back(FIPtr); 8218 } 8219 8220 if (!IsTailCall) 8221 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8222 8223 // Copy argument values to their designated locations. 8224 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8225 SmallVector<SDValue, 8> MemOpChains; 8226 SDValue StackPtr; 8227 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8228 CCValAssign &VA = ArgLocs[i]; 8229 SDValue ArgValue = OutVals[i]; 8230 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8231 8232 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8233 bool IsF64OnRV32DSoftABI = 8234 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8235 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8236 SDValue SplitF64 = DAG.getNode( 8237 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8238 SDValue Lo = SplitF64.getValue(0); 8239 SDValue Hi = SplitF64.getValue(1); 8240 8241 Register RegLo = VA.getLocReg(); 8242 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8243 8244 if (RegLo == RISCV::X17) { 8245 // Second half of f64 is passed on the stack. 8246 // Work out the address of the stack slot. 8247 if (!StackPtr.getNode()) 8248 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8249 // Emit the store. 8250 MemOpChains.push_back( 8251 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8252 } else { 8253 // Second half of f64 is passed in another GPR. 8254 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8255 Register RegHigh = RegLo + 1; 8256 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8257 } 8258 continue; 8259 } 8260 8261 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8262 // as any other MemLoc. 8263 8264 // Promote the value if needed. 8265 // For now, only handle fully promoted and indirect arguments. 8266 if (VA.getLocInfo() == CCValAssign::Indirect) { 8267 // Store the argument in a stack slot and pass its address. 8268 Align StackAlign = 8269 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8270 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8271 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8272 // If the original argument was split (e.g. i128), we need 8273 // to store the required parts of it here (and pass just one address). 8274 // Vectors may be partly split to registers and partly to the stack, in 8275 // which case the base address is partly offset and subsequent stores are 8276 // relative to that. 8277 unsigned ArgIndex = Outs[i].OrigArgIndex; 8278 unsigned ArgPartOffset = Outs[i].PartOffset; 8279 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8280 // Calculate the total size to store. We don't have access to what we're 8281 // actually storing other than performing the loop and collecting the 8282 // info. 8283 SmallVector<std::pair<SDValue, SDValue>> Parts; 8284 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8285 SDValue PartValue = OutVals[i + 1]; 8286 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8287 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8288 EVT PartVT = PartValue.getValueType(); 8289 if (PartVT.isScalableVector()) 8290 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8291 StoredSize += PartVT.getStoreSize(); 8292 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8293 Parts.push_back(std::make_pair(PartValue, Offset)); 8294 ++i; 8295 } 8296 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8297 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8298 MemOpChains.push_back( 8299 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8300 MachinePointerInfo::getFixedStack(MF, FI))); 8301 for (const auto &Part : Parts) { 8302 SDValue PartValue = Part.first; 8303 SDValue PartOffset = Part.second; 8304 SDValue Address = 8305 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8306 MemOpChains.push_back( 8307 DAG.getStore(Chain, DL, PartValue, Address, 8308 MachinePointerInfo::getFixedStack(MF, FI))); 8309 } 8310 ArgValue = SpillSlot; 8311 } else { 8312 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8313 } 8314 8315 // Use local copy if it is a byval arg. 8316 if (Flags.isByVal()) 8317 ArgValue = ByValArgs[j++]; 8318 8319 if (VA.isRegLoc()) { 8320 // Queue up the argument copies and emit them at the end. 8321 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8322 } else { 8323 assert(VA.isMemLoc() && "Argument not register or memory"); 8324 assert(!IsTailCall && "Tail call not allowed if stack is used " 8325 "for passing parameters"); 8326 8327 // Work out the address of the stack slot. 8328 if (!StackPtr.getNode()) 8329 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8330 SDValue Address = 8331 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8332 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8333 8334 // Emit the store. 8335 MemOpChains.push_back( 8336 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8337 } 8338 } 8339 8340 // Join the stores, which are independent of one another. 8341 if (!MemOpChains.empty()) 8342 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8343 8344 SDValue Glue; 8345 8346 // Build a sequence of copy-to-reg nodes, chained and glued together. 8347 for (auto &Reg : RegsToPass) { 8348 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8349 Glue = Chain.getValue(1); 8350 } 8351 8352 // Validate that none of the argument registers have been marked as 8353 // reserved, if so report an error. Do the same for the return address if this 8354 // is not a tailcall. 8355 validateCCReservedRegs(RegsToPass, MF); 8356 if (!IsTailCall && 8357 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8358 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8359 MF.getFunction(), 8360 "Return address register required, but has been reserved."}); 8361 8362 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8363 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8364 // split it and then direct call can be matched by PseudoCALL. 8365 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8366 const GlobalValue *GV = S->getGlobal(); 8367 8368 unsigned OpFlags = RISCVII::MO_CALL; 8369 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8370 OpFlags = RISCVII::MO_PLT; 8371 8372 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8373 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8374 unsigned OpFlags = RISCVII::MO_CALL; 8375 8376 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8377 nullptr)) 8378 OpFlags = RISCVII::MO_PLT; 8379 8380 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8381 } 8382 8383 // The first call operand is the chain and the second is the target address. 8384 SmallVector<SDValue, 8> Ops; 8385 Ops.push_back(Chain); 8386 Ops.push_back(Callee); 8387 8388 // Add argument registers to the end of the list so that they are 8389 // known live into the call. 8390 for (auto &Reg : RegsToPass) 8391 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8392 8393 if (!IsTailCall) { 8394 // Add a register mask operand representing the call-preserved registers. 8395 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8396 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8397 assert(Mask && "Missing call preserved mask for calling convention"); 8398 Ops.push_back(DAG.getRegisterMask(Mask)); 8399 } 8400 8401 // Glue the call to the argument copies, if any. 8402 if (Glue.getNode()) 8403 Ops.push_back(Glue); 8404 8405 // Emit the call. 8406 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8407 8408 if (IsTailCall) { 8409 MF.getFrameInfo().setHasTailCall(); 8410 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8411 } 8412 8413 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8414 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8415 Glue = Chain.getValue(1); 8416 8417 // Mark the end of the call, which is glued to the call itself. 8418 Chain = DAG.getCALLSEQ_END(Chain, 8419 DAG.getConstant(NumBytes, DL, PtrVT, true), 8420 DAG.getConstant(0, DL, PtrVT, true), 8421 Glue, DL); 8422 Glue = Chain.getValue(1); 8423 8424 // Assign locations to each value returned by this call. 8425 SmallVector<CCValAssign, 16> RVLocs; 8426 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8427 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8428 8429 // Copy all of the result registers out of their specified physreg. 8430 for (auto &VA : RVLocs) { 8431 // Copy the value out 8432 SDValue RetValue = 8433 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8434 // Glue the RetValue to the end of the call sequence 8435 Chain = RetValue.getValue(1); 8436 Glue = RetValue.getValue(2); 8437 8438 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8439 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8440 SDValue RetValue2 = 8441 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8442 Chain = RetValue2.getValue(1); 8443 Glue = RetValue2.getValue(2); 8444 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8445 RetValue2); 8446 } 8447 8448 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8449 8450 InVals.push_back(RetValue); 8451 } 8452 8453 return Chain; 8454 } 8455 8456 bool RISCVTargetLowering::CanLowerReturn( 8457 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8458 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8459 SmallVector<CCValAssign, 16> RVLocs; 8460 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8461 8462 Optional<unsigned> FirstMaskArgument; 8463 if (Subtarget.hasStdExtV()) 8464 FirstMaskArgument = preAssignMask(Outs); 8465 8466 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8467 MVT VT = Outs[i].VT; 8468 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8469 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8470 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8471 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8472 *this, FirstMaskArgument)) 8473 return false; 8474 } 8475 return true; 8476 } 8477 8478 SDValue 8479 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8480 bool IsVarArg, 8481 const SmallVectorImpl<ISD::OutputArg> &Outs, 8482 const SmallVectorImpl<SDValue> &OutVals, 8483 const SDLoc &DL, SelectionDAG &DAG) const { 8484 const MachineFunction &MF = DAG.getMachineFunction(); 8485 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8486 8487 // Stores the assignment of the return value to a location. 8488 SmallVector<CCValAssign, 16> RVLocs; 8489 8490 // Info about the registers and stack slot. 8491 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8492 *DAG.getContext()); 8493 8494 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8495 nullptr, CC_RISCV); 8496 8497 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8498 report_fatal_error("GHC functions return void only"); 8499 8500 SDValue Glue; 8501 SmallVector<SDValue, 4> RetOps(1, Chain); 8502 8503 // Copy the result values into the output registers. 8504 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8505 SDValue Val = OutVals[i]; 8506 CCValAssign &VA = RVLocs[i]; 8507 assert(VA.isRegLoc() && "Can only return in registers!"); 8508 8509 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8510 // Handle returning f64 on RV32D with a soft float ABI. 8511 assert(VA.isRegLoc() && "Expected return via registers"); 8512 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8513 DAG.getVTList(MVT::i32, MVT::i32), Val); 8514 SDValue Lo = SplitF64.getValue(0); 8515 SDValue Hi = SplitF64.getValue(1); 8516 Register RegLo = VA.getLocReg(); 8517 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8518 Register RegHi = RegLo + 1; 8519 8520 if (STI.isRegisterReservedByUser(RegLo) || 8521 STI.isRegisterReservedByUser(RegHi)) 8522 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8523 MF.getFunction(), 8524 "Return value register required, but has been reserved."}); 8525 8526 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8527 Glue = Chain.getValue(1); 8528 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8529 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8530 Glue = Chain.getValue(1); 8531 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8532 } else { 8533 // Handle a 'normal' return. 8534 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8535 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8536 8537 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8538 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8539 MF.getFunction(), 8540 "Return value register required, but has been reserved."}); 8541 8542 // Guarantee that all emitted copies are stuck together. 8543 Glue = Chain.getValue(1); 8544 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8545 } 8546 } 8547 8548 RetOps[0] = Chain; // Update chain. 8549 8550 // Add the glue node if we have it. 8551 if (Glue.getNode()) { 8552 RetOps.push_back(Glue); 8553 } 8554 8555 unsigned RetOpc = RISCVISD::RET_FLAG; 8556 // Interrupt service routines use different return instructions. 8557 const Function &Func = DAG.getMachineFunction().getFunction(); 8558 if (Func.hasFnAttribute("interrupt")) { 8559 if (!Func.getReturnType()->isVoidTy()) 8560 report_fatal_error( 8561 "Functions with the interrupt attribute must have void return type!"); 8562 8563 MachineFunction &MF = DAG.getMachineFunction(); 8564 StringRef Kind = 8565 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8566 8567 if (Kind == "user") 8568 RetOpc = RISCVISD::URET_FLAG; 8569 else if (Kind == "supervisor") 8570 RetOpc = RISCVISD::SRET_FLAG; 8571 else 8572 RetOpc = RISCVISD::MRET_FLAG; 8573 } 8574 8575 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8576 } 8577 8578 void RISCVTargetLowering::validateCCReservedRegs( 8579 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8580 MachineFunction &MF) const { 8581 const Function &F = MF.getFunction(); 8582 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8583 8584 if (llvm::any_of(Regs, [&STI](auto Reg) { 8585 return STI.isRegisterReservedByUser(Reg.first); 8586 })) 8587 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8588 F, "Argument register required, but has been reserved."}); 8589 } 8590 8591 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8592 return CI->isTailCall(); 8593 } 8594 8595 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8596 #define NODE_NAME_CASE(NODE) \ 8597 case RISCVISD::NODE: \ 8598 return "RISCVISD::" #NODE; 8599 // clang-format off 8600 switch ((RISCVISD::NodeType)Opcode) { 8601 case RISCVISD::FIRST_NUMBER: 8602 break; 8603 NODE_NAME_CASE(RET_FLAG) 8604 NODE_NAME_CASE(URET_FLAG) 8605 NODE_NAME_CASE(SRET_FLAG) 8606 NODE_NAME_CASE(MRET_FLAG) 8607 NODE_NAME_CASE(CALL) 8608 NODE_NAME_CASE(SELECT_CC) 8609 NODE_NAME_CASE(BR_CC) 8610 NODE_NAME_CASE(BuildPairF64) 8611 NODE_NAME_CASE(SplitF64) 8612 NODE_NAME_CASE(TAIL) 8613 NODE_NAME_CASE(MULHSU) 8614 NODE_NAME_CASE(SLLW) 8615 NODE_NAME_CASE(SRAW) 8616 NODE_NAME_CASE(SRLW) 8617 NODE_NAME_CASE(DIVW) 8618 NODE_NAME_CASE(DIVUW) 8619 NODE_NAME_CASE(REMUW) 8620 NODE_NAME_CASE(ROLW) 8621 NODE_NAME_CASE(RORW) 8622 NODE_NAME_CASE(CLZW) 8623 NODE_NAME_CASE(CTZW) 8624 NODE_NAME_CASE(FSLW) 8625 NODE_NAME_CASE(FSRW) 8626 NODE_NAME_CASE(FSL) 8627 NODE_NAME_CASE(FSR) 8628 NODE_NAME_CASE(FMV_H_X) 8629 NODE_NAME_CASE(FMV_X_ANYEXTH) 8630 NODE_NAME_CASE(FMV_W_X_RV64) 8631 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8632 NODE_NAME_CASE(FCVT_X_RTZ) 8633 NODE_NAME_CASE(FCVT_XU_RTZ) 8634 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 8635 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 8636 NODE_NAME_CASE(READ_CYCLE_WIDE) 8637 NODE_NAME_CASE(GREV) 8638 NODE_NAME_CASE(GREVW) 8639 NODE_NAME_CASE(GORC) 8640 NODE_NAME_CASE(GORCW) 8641 NODE_NAME_CASE(SHFL) 8642 NODE_NAME_CASE(SHFLW) 8643 NODE_NAME_CASE(UNSHFL) 8644 NODE_NAME_CASE(UNSHFLW) 8645 NODE_NAME_CASE(BCOMPRESS) 8646 NODE_NAME_CASE(BCOMPRESSW) 8647 NODE_NAME_CASE(BDECOMPRESS) 8648 NODE_NAME_CASE(BDECOMPRESSW) 8649 NODE_NAME_CASE(VMV_V_X_VL) 8650 NODE_NAME_CASE(VFMV_V_F_VL) 8651 NODE_NAME_CASE(VMV_X_S) 8652 NODE_NAME_CASE(VMV_S_X_VL) 8653 NODE_NAME_CASE(VFMV_S_F_VL) 8654 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8655 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8656 NODE_NAME_CASE(READ_VLENB) 8657 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8658 NODE_NAME_CASE(VSLIDEUP_VL) 8659 NODE_NAME_CASE(VSLIDE1UP_VL) 8660 NODE_NAME_CASE(VSLIDEDOWN_VL) 8661 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8662 NODE_NAME_CASE(VID_VL) 8663 NODE_NAME_CASE(VFNCVT_ROD_VL) 8664 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8665 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8666 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8667 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8668 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8669 NODE_NAME_CASE(VECREDUCE_AND_VL) 8670 NODE_NAME_CASE(VECREDUCE_OR_VL) 8671 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8672 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8673 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8674 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8675 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8676 NODE_NAME_CASE(ADD_VL) 8677 NODE_NAME_CASE(AND_VL) 8678 NODE_NAME_CASE(MUL_VL) 8679 NODE_NAME_CASE(OR_VL) 8680 NODE_NAME_CASE(SDIV_VL) 8681 NODE_NAME_CASE(SHL_VL) 8682 NODE_NAME_CASE(SREM_VL) 8683 NODE_NAME_CASE(SRA_VL) 8684 NODE_NAME_CASE(SRL_VL) 8685 NODE_NAME_CASE(SUB_VL) 8686 NODE_NAME_CASE(UDIV_VL) 8687 NODE_NAME_CASE(UREM_VL) 8688 NODE_NAME_CASE(XOR_VL) 8689 NODE_NAME_CASE(SADDSAT_VL) 8690 NODE_NAME_CASE(UADDSAT_VL) 8691 NODE_NAME_CASE(SSUBSAT_VL) 8692 NODE_NAME_CASE(USUBSAT_VL) 8693 NODE_NAME_CASE(FADD_VL) 8694 NODE_NAME_CASE(FSUB_VL) 8695 NODE_NAME_CASE(FMUL_VL) 8696 NODE_NAME_CASE(FDIV_VL) 8697 NODE_NAME_CASE(FNEG_VL) 8698 NODE_NAME_CASE(FABS_VL) 8699 NODE_NAME_CASE(FSQRT_VL) 8700 NODE_NAME_CASE(FMA_VL) 8701 NODE_NAME_CASE(FCOPYSIGN_VL) 8702 NODE_NAME_CASE(SMIN_VL) 8703 NODE_NAME_CASE(SMAX_VL) 8704 NODE_NAME_CASE(UMIN_VL) 8705 NODE_NAME_CASE(UMAX_VL) 8706 NODE_NAME_CASE(FMINNUM_VL) 8707 NODE_NAME_CASE(FMAXNUM_VL) 8708 NODE_NAME_CASE(MULHS_VL) 8709 NODE_NAME_CASE(MULHU_VL) 8710 NODE_NAME_CASE(FP_TO_SINT_VL) 8711 NODE_NAME_CASE(FP_TO_UINT_VL) 8712 NODE_NAME_CASE(SINT_TO_FP_VL) 8713 NODE_NAME_CASE(UINT_TO_FP_VL) 8714 NODE_NAME_CASE(FP_EXTEND_VL) 8715 NODE_NAME_CASE(FP_ROUND_VL) 8716 NODE_NAME_CASE(VWMUL_VL) 8717 NODE_NAME_CASE(VWMULU_VL) 8718 NODE_NAME_CASE(SETCC_VL) 8719 NODE_NAME_CASE(VSELECT_VL) 8720 NODE_NAME_CASE(VMAND_VL) 8721 NODE_NAME_CASE(VMOR_VL) 8722 NODE_NAME_CASE(VMXOR_VL) 8723 NODE_NAME_CASE(VMCLR_VL) 8724 NODE_NAME_CASE(VMSET_VL) 8725 NODE_NAME_CASE(VRGATHER_VX_VL) 8726 NODE_NAME_CASE(VRGATHER_VV_VL) 8727 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8728 NODE_NAME_CASE(VSEXT_VL) 8729 NODE_NAME_CASE(VZEXT_VL) 8730 NODE_NAME_CASE(VPOPC_VL) 8731 NODE_NAME_CASE(VLE_VL) 8732 NODE_NAME_CASE(VSE_VL) 8733 NODE_NAME_CASE(READ_CSR) 8734 NODE_NAME_CASE(WRITE_CSR) 8735 NODE_NAME_CASE(SWAP_CSR) 8736 } 8737 // clang-format on 8738 return nullptr; 8739 #undef NODE_NAME_CASE 8740 } 8741 8742 /// getConstraintType - Given a constraint letter, return the type of 8743 /// constraint it is for this target. 8744 RISCVTargetLowering::ConstraintType 8745 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8746 if (Constraint.size() == 1) { 8747 switch (Constraint[0]) { 8748 default: 8749 break; 8750 case 'f': 8751 return C_RegisterClass; 8752 case 'I': 8753 case 'J': 8754 case 'K': 8755 return C_Immediate; 8756 case 'A': 8757 return C_Memory; 8758 case 'S': // A symbolic address 8759 return C_Other; 8760 } 8761 } else { 8762 if (Constraint == "vr" || Constraint == "vm") 8763 return C_RegisterClass; 8764 } 8765 return TargetLowering::getConstraintType(Constraint); 8766 } 8767 8768 std::pair<unsigned, const TargetRegisterClass *> 8769 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8770 StringRef Constraint, 8771 MVT VT) const { 8772 // First, see if this is a constraint that directly corresponds to a 8773 // RISCV register class. 8774 if (Constraint.size() == 1) { 8775 switch (Constraint[0]) { 8776 case 'r': 8777 return std::make_pair(0U, &RISCV::GPRRegClass); 8778 case 'f': 8779 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8780 return std::make_pair(0U, &RISCV::FPR16RegClass); 8781 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8782 return std::make_pair(0U, &RISCV::FPR32RegClass); 8783 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8784 return std::make_pair(0U, &RISCV::FPR64RegClass); 8785 break; 8786 default: 8787 break; 8788 } 8789 } else { 8790 if (Constraint == "vr") { 8791 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 8792 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8793 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8794 return std::make_pair(0U, RC); 8795 } 8796 } else if (Constraint == "vm") { 8797 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8798 return std::make_pair(0U, &RISCV::VMRegClass); 8799 } 8800 } 8801 8802 // Clang will correctly decode the usage of register name aliases into their 8803 // official names. However, other frontends like `rustc` do not. This allows 8804 // users of these frontends to use the ABI names for registers in LLVM-style 8805 // register constraints. 8806 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8807 .Case("{zero}", RISCV::X0) 8808 .Case("{ra}", RISCV::X1) 8809 .Case("{sp}", RISCV::X2) 8810 .Case("{gp}", RISCV::X3) 8811 .Case("{tp}", RISCV::X4) 8812 .Case("{t0}", RISCV::X5) 8813 .Case("{t1}", RISCV::X6) 8814 .Case("{t2}", RISCV::X7) 8815 .Cases("{s0}", "{fp}", RISCV::X8) 8816 .Case("{s1}", RISCV::X9) 8817 .Case("{a0}", RISCV::X10) 8818 .Case("{a1}", RISCV::X11) 8819 .Case("{a2}", RISCV::X12) 8820 .Case("{a3}", RISCV::X13) 8821 .Case("{a4}", RISCV::X14) 8822 .Case("{a5}", RISCV::X15) 8823 .Case("{a6}", RISCV::X16) 8824 .Case("{a7}", RISCV::X17) 8825 .Case("{s2}", RISCV::X18) 8826 .Case("{s3}", RISCV::X19) 8827 .Case("{s4}", RISCV::X20) 8828 .Case("{s5}", RISCV::X21) 8829 .Case("{s6}", RISCV::X22) 8830 .Case("{s7}", RISCV::X23) 8831 .Case("{s8}", RISCV::X24) 8832 .Case("{s9}", RISCV::X25) 8833 .Case("{s10}", RISCV::X26) 8834 .Case("{s11}", RISCV::X27) 8835 .Case("{t3}", RISCV::X28) 8836 .Case("{t4}", RISCV::X29) 8837 .Case("{t5}", RISCV::X30) 8838 .Case("{t6}", RISCV::X31) 8839 .Default(RISCV::NoRegister); 8840 if (XRegFromAlias != RISCV::NoRegister) 8841 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8842 8843 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8844 // TableGen record rather than the AsmName to choose registers for InlineAsm 8845 // constraints, plus we want to match those names to the widest floating point 8846 // register type available, manually select floating point registers here. 8847 // 8848 // The second case is the ABI name of the register, so that frontends can also 8849 // use the ABI names in register constraint lists. 8850 if (Subtarget.hasStdExtF()) { 8851 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8852 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8853 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8854 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8855 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8856 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8857 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8858 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8859 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8860 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8861 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8862 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8863 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8864 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8865 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8866 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8867 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8868 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8869 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8870 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8871 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8872 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8873 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8874 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8875 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8876 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8877 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8878 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8879 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8880 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8881 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8882 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8883 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8884 .Default(RISCV::NoRegister); 8885 if (FReg != RISCV::NoRegister) { 8886 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8887 if (Subtarget.hasStdExtD()) { 8888 unsigned RegNo = FReg - RISCV::F0_F; 8889 unsigned DReg = RISCV::F0_D + RegNo; 8890 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8891 } 8892 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8893 } 8894 } 8895 8896 if (Subtarget.hasStdExtV()) { 8897 Register VReg = StringSwitch<Register>(Constraint.lower()) 8898 .Case("{v0}", RISCV::V0) 8899 .Case("{v1}", RISCV::V1) 8900 .Case("{v2}", RISCV::V2) 8901 .Case("{v3}", RISCV::V3) 8902 .Case("{v4}", RISCV::V4) 8903 .Case("{v5}", RISCV::V5) 8904 .Case("{v6}", RISCV::V6) 8905 .Case("{v7}", RISCV::V7) 8906 .Case("{v8}", RISCV::V8) 8907 .Case("{v9}", RISCV::V9) 8908 .Case("{v10}", RISCV::V10) 8909 .Case("{v11}", RISCV::V11) 8910 .Case("{v12}", RISCV::V12) 8911 .Case("{v13}", RISCV::V13) 8912 .Case("{v14}", RISCV::V14) 8913 .Case("{v15}", RISCV::V15) 8914 .Case("{v16}", RISCV::V16) 8915 .Case("{v17}", RISCV::V17) 8916 .Case("{v18}", RISCV::V18) 8917 .Case("{v19}", RISCV::V19) 8918 .Case("{v20}", RISCV::V20) 8919 .Case("{v21}", RISCV::V21) 8920 .Case("{v22}", RISCV::V22) 8921 .Case("{v23}", RISCV::V23) 8922 .Case("{v24}", RISCV::V24) 8923 .Case("{v25}", RISCV::V25) 8924 .Case("{v26}", RISCV::V26) 8925 .Case("{v27}", RISCV::V27) 8926 .Case("{v28}", RISCV::V28) 8927 .Case("{v29}", RISCV::V29) 8928 .Case("{v30}", RISCV::V30) 8929 .Case("{v31}", RISCV::V31) 8930 .Default(RISCV::NoRegister); 8931 if (VReg != RISCV::NoRegister) { 8932 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8933 return std::make_pair(VReg, &RISCV::VMRegClass); 8934 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8935 return std::make_pair(VReg, &RISCV::VRRegClass); 8936 for (const auto *RC : 8937 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8938 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8939 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8940 return std::make_pair(VReg, RC); 8941 } 8942 } 8943 } 8944 } 8945 8946 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8947 } 8948 8949 unsigned 8950 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8951 // Currently only support length 1 constraints. 8952 if (ConstraintCode.size() == 1) { 8953 switch (ConstraintCode[0]) { 8954 case 'A': 8955 return InlineAsm::Constraint_A; 8956 default: 8957 break; 8958 } 8959 } 8960 8961 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8962 } 8963 8964 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8965 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8966 SelectionDAG &DAG) const { 8967 // Currently only support length 1 constraints. 8968 if (Constraint.length() == 1) { 8969 switch (Constraint[0]) { 8970 case 'I': 8971 // Validate & create a 12-bit signed immediate operand. 8972 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8973 uint64_t CVal = C->getSExtValue(); 8974 if (isInt<12>(CVal)) 8975 Ops.push_back( 8976 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8977 } 8978 return; 8979 case 'J': 8980 // Validate & create an integer zero operand. 8981 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8982 if (C->getZExtValue() == 0) 8983 Ops.push_back( 8984 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8985 return; 8986 case 'K': 8987 // Validate & create a 5-bit unsigned immediate operand. 8988 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8989 uint64_t CVal = C->getZExtValue(); 8990 if (isUInt<5>(CVal)) 8991 Ops.push_back( 8992 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8993 } 8994 return; 8995 case 'S': 8996 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8997 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 8998 GA->getValueType(0))); 8999 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9000 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9001 BA->getValueType(0))); 9002 } 9003 return; 9004 default: 9005 break; 9006 } 9007 } 9008 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9009 } 9010 9011 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9012 Instruction *Inst, 9013 AtomicOrdering Ord) const { 9014 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9015 return Builder.CreateFence(Ord); 9016 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9017 return Builder.CreateFence(AtomicOrdering::Release); 9018 return nullptr; 9019 } 9020 9021 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9022 Instruction *Inst, 9023 AtomicOrdering Ord) const { 9024 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9025 return Builder.CreateFence(AtomicOrdering::Acquire); 9026 return nullptr; 9027 } 9028 9029 TargetLowering::AtomicExpansionKind 9030 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9031 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9032 // point operations can't be used in an lr/sc sequence without breaking the 9033 // forward-progress guarantee. 9034 if (AI->isFloatingPointOperation()) 9035 return AtomicExpansionKind::CmpXChg; 9036 9037 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9038 if (Size == 8 || Size == 16) 9039 return AtomicExpansionKind::MaskedIntrinsic; 9040 return AtomicExpansionKind::None; 9041 } 9042 9043 static Intrinsic::ID 9044 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9045 if (XLen == 32) { 9046 switch (BinOp) { 9047 default: 9048 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9049 case AtomicRMWInst::Xchg: 9050 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9051 case AtomicRMWInst::Add: 9052 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9053 case AtomicRMWInst::Sub: 9054 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9055 case AtomicRMWInst::Nand: 9056 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9057 case AtomicRMWInst::Max: 9058 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9059 case AtomicRMWInst::Min: 9060 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9061 case AtomicRMWInst::UMax: 9062 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9063 case AtomicRMWInst::UMin: 9064 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9065 } 9066 } 9067 9068 if (XLen == 64) { 9069 switch (BinOp) { 9070 default: 9071 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9072 case AtomicRMWInst::Xchg: 9073 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9074 case AtomicRMWInst::Add: 9075 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9076 case AtomicRMWInst::Sub: 9077 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9078 case AtomicRMWInst::Nand: 9079 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9080 case AtomicRMWInst::Max: 9081 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9082 case AtomicRMWInst::Min: 9083 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9084 case AtomicRMWInst::UMax: 9085 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9086 case AtomicRMWInst::UMin: 9087 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9088 } 9089 } 9090 9091 llvm_unreachable("Unexpected XLen\n"); 9092 } 9093 9094 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9095 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9096 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9097 unsigned XLen = Subtarget.getXLen(); 9098 Value *Ordering = 9099 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9100 Type *Tys[] = {AlignedAddr->getType()}; 9101 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9102 AI->getModule(), 9103 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9104 9105 if (XLen == 64) { 9106 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9107 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9108 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9109 } 9110 9111 Value *Result; 9112 9113 // Must pass the shift amount needed to sign extend the loaded value prior 9114 // to performing a signed comparison for min/max. ShiftAmt is the number of 9115 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9116 // is the number of bits to left+right shift the value in order to 9117 // sign-extend. 9118 if (AI->getOperation() == AtomicRMWInst::Min || 9119 AI->getOperation() == AtomicRMWInst::Max) { 9120 const DataLayout &DL = AI->getModule()->getDataLayout(); 9121 unsigned ValWidth = 9122 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9123 Value *SextShamt = 9124 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9125 Result = Builder.CreateCall(LrwOpScwLoop, 9126 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9127 } else { 9128 Result = 9129 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9130 } 9131 9132 if (XLen == 64) 9133 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9134 return Result; 9135 } 9136 9137 TargetLowering::AtomicExpansionKind 9138 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9139 AtomicCmpXchgInst *CI) const { 9140 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9141 if (Size == 8 || Size == 16) 9142 return AtomicExpansionKind::MaskedIntrinsic; 9143 return AtomicExpansionKind::None; 9144 } 9145 9146 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9147 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9148 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9149 unsigned XLen = Subtarget.getXLen(); 9150 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9151 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9152 if (XLen == 64) { 9153 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9154 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9155 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9156 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9157 } 9158 Type *Tys[] = {AlignedAddr->getType()}; 9159 Function *MaskedCmpXchg = 9160 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9161 Value *Result = Builder.CreateCall( 9162 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9163 if (XLen == 64) 9164 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9165 return Result; 9166 } 9167 9168 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9169 return false; 9170 } 9171 9172 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9173 EVT VT) const { 9174 VT = VT.getScalarType(); 9175 9176 if (!VT.isSimple()) 9177 return false; 9178 9179 switch (VT.getSimpleVT().SimpleTy) { 9180 case MVT::f16: 9181 return Subtarget.hasStdExtZfh(); 9182 case MVT::f32: 9183 return Subtarget.hasStdExtF(); 9184 case MVT::f64: 9185 return Subtarget.hasStdExtD(); 9186 default: 9187 break; 9188 } 9189 9190 return false; 9191 } 9192 9193 Register RISCVTargetLowering::getExceptionPointerRegister( 9194 const Constant *PersonalityFn) const { 9195 return RISCV::X10; 9196 } 9197 9198 Register RISCVTargetLowering::getExceptionSelectorRegister( 9199 const Constant *PersonalityFn) const { 9200 return RISCV::X11; 9201 } 9202 9203 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9204 // Return false to suppress the unnecessary extensions if the LibCall 9205 // arguments or return value is f32 type for LP64 ABI. 9206 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9207 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9208 return false; 9209 9210 return true; 9211 } 9212 9213 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9214 if (Subtarget.is64Bit() && Type == MVT::i32) 9215 return true; 9216 9217 return IsSigned; 9218 } 9219 9220 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9221 SDValue C) const { 9222 // Check integral scalar types. 9223 if (VT.isScalarInteger()) { 9224 // Omit the optimization if the sub target has the M extension and the data 9225 // size exceeds XLen. 9226 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9227 return false; 9228 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9229 // Break the MUL to a SLLI and an ADD/SUB. 9230 const APInt &Imm = ConstNode->getAPIntValue(); 9231 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9232 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9233 return true; 9234 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9235 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9236 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9237 (Imm - 8).isPowerOf2())) 9238 return true; 9239 // Omit the following optimization if the sub target has the M extension 9240 // and the data size >= XLen. 9241 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9242 return false; 9243 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9244 // a pair of LUI/ADDI. 9245 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9246 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9247 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9248 (1 - ImmS).isPowerOf2()) 9249 return true; 9250 } 9251 } 9252 } 9253 9254 return false; 9255 } 9256 9257 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9258 const SDValue &AddNode, const SDValue &ConstNode) const { 9259 // Let the DAGCombiner decide for vectors. 9260 EVT VT = AddNode.getValueType(); 9261 if (VT.isVector()) 9262 return true; 9263 9264 // Let the DAGCombiner decide for larger types. 9265 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9266 return true; 9267 9268 // It is worse if c1 is simm12 while c1*c2 is not. 9269 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9270 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9271 const APInt &C1 = C1Node->getAPIntValue(); 9272 const APInt &C2 = C2Node->getAPIntValue(); 9273 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9274 return false; 9275 9276 // Default to true and let the DAGCombiner decide. 9277 return true; 9278 } 9279 9280 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9281 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9282 bool *Fast) const { 9283 if (!VT.isVector()) 9284 return false; 9285 9286 EVT ElemVT = VT.getVectorElementType(); 9287 if (Alignment >= ElemVT.getStoreSize()) { 9288 if (Fast) 9289 *Fast = true; 9290 return true; 9291 } 9292 9293 return false; 9294 } 9295 9296 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9297 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9298 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9299 bool IsABIRegCopy = CC.hasValue(); 9300 EVT ValueVT = Val.getValueType(); 9301 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9302 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9303 // and cast to f32. 9304 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9305 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9306 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9307 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9308 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9309 Parts[0] = Val; 9310 return true; 9311 } 9312 9313 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9314 LLVMContext &Context = *DAG.getContext(); 9315 EVT ValueEltVT = ValueVT.getVectorElementType(); 9316 EVT PartEltVT = PartVT.getVectorElementType(); 9317 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9318 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9319 if (PartVTBitSize % ValueVTBitSize == 0) { 9320 // If the element types are different, bitcast to the same element type of 9321 // PartVT first. 9322 if (ValueEltVT != PartEltVT) { 9323 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9324 assert(Count != 0 && "The number of element should not be zero."); 9325 EVT SameEltTypeVT = 9326 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9327 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9328 } 9329 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9330 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9331 Parts[0] = Val; 9332 return true; 9333 } 9334 } 9335 return false; 9336 } 9337 9338 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9339 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9340 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9341 bool IsABIRegCopy = CC.hasValue(); 9342 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9343 SDValue Val = Parts[0]; 9344 9345 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9346 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9347 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9348 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9349 return Val; 9350 } 9351 9352 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9353 LLVMContext &Context = *DAG.getContext(); 9354 SDValue Val = Parts[0]; 9355 EVT ValueEltVT = ValueVT.getVectorElementType(); 9356 EVT PartEltVT = PartVT.getVectorElementType(); 9357 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9358 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9359 if (PartVTBitSize % ValueVTBitSize == 0) { 9360 EVT SameEltTypeVT = ValueVT; 9361 // If the element types are different, convert it to the same element type 9362 // of PartVT. 9363 if (ValueEltVT != PartEltVT) { 9364 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9365 assert(Count != 0 && "The number of element should not be zero."); 9366 SameEltTypeVT = 9367 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9368 } 9369 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9370 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9371 if (ValueEltVT != PartEltVT) 9372 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9373 return Val; 9374 } 9375 } 9376 return SDValue(); 9377 } 9378 9379 #define GET_REGISTER_MATCHER 9380 #include "RISCVGenAsmMatcher.inc" 9381 9382 Register 9383 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9384 const MachineFunction &MF) const { 9385 Register Reg = MatchRegisterAltName(RegName); 9386 if (Reg == RISCV::NoRegister) 9387 Reg = MatchRegisterName(RegName); 9388 if (Reg == RISCV::NoRegister) 9389 report_fatal_error( 9390 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9391 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9392 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9393 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9394 StringRef(RegName) + "\".")); 9395 return Reg; 9396 } 9397 9398 namespace llvm { 9399 namespace RISCVVIntrinsicsTable { 9400 9401 #define GET_RISCVVIntrinsicsTable_IMPL 9402 #include "RISCVGenSearchableTables.inc" 9403 9404 } // namespace RISCVVIntrinsicsTable 9405 9406 } // namespace llvm 9407