1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 147 const TargetRegisterClass *RC; 148 if (LMul == 1 || VT.getVectorElementType() == MVT::i1) 149 RC = &RISCV::VRRegClass; 150 else if (LMul == 2) 151 RC = &RISCV::VRM2RegClass; 152 else if (LMul == 4) 153 RC = &RISCV::VRM4RegClass; 154 else if (LMul == 8) 155 RC = &RISCV::VRM8RegClass; 156 else 157 llvm_unreachable("Unexpected LMul!"); 158 159 addRegisterClass(VT, RC); 160 }; 161 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 162 if (useRVVForFixedLengthVectorVT(VT)) 163 addRegClassForFixedVectors(VT); 164 165 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 166 if (useRVVForFixedLengthVectorVT(VT)) 167 addRegClassForFixedVectors(VT); 168 } 169 } 170 171 // Compute derived properties from the register classes. 172 computeRegisterProperties(STI.getRegisterInfo()); 173 174 setStackPointerRegisterToSaveRestore(RISCV::X2); 175 176 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 177 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 178 179 // TODO: add all necessary setOperationAction calls. 180 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 181 182 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 183 setOperationAction(ISD::BR_CC, XLenVT, Expand); 184 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 185 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 186 187 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 188 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 189 190 setOperationAction(ISD::VASTART, MVT::Other, Custom); 191 setOperationAction(ISD::VAARG, MVT::Other, Expand); 192 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 193 setOperationAction(ISD::VAEND, MVT::Other, Expand); 194 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 196 if (!Subtarget.hasStdExtZbb()) { 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 199 } 200 201 if (Subtarget.is64Bit()) { 202 setOperationAction(ISD::ADD, MVT::i32, Custom); 203 setOperationAction(ISD::SUB, MVT::i32, Custom); 204 setOperationAction(ISD::SHL, MVT::i32, Custom); 205 setOperationAction(ISD::SRA, MVT::i32, Custom); 206 setOperationAction(ISD::SRL, MVT::i32, Custom); 207 208 setOperationAction(ISD::UADDO, MVT::i32, Custom); 209 setOperationAction(ISD::USUBO, MVT::i32, Custom); 210 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 211 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 212 } 213 214 if (!Subtarget.hasStdExtM()) { 215 setOperationAction(ISD::MUL, XLenVT, Expand); 216 setOperationAction(ISD::MULHS, XLenVT, Expand); 217 setOperationAction(ISD::MULHU, XLenVT, Expand); 218 setOperationAction(ISD::SDIV, XLenVT, Expand); 219 setOperationAction(ISD::UDIV, XLenVT, Expand); 220 setOperationAction(ISD::SREM, XLenVT, Expand); 221 setOperationAction(ISD::UREM, XLenVT, Expand); 222 } 223 224 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 225 setOperationAction(ISD::MUL, MVT::i32, Custom); 226 227 setOperationAction(ISD::SDIV, MVT::i8, Custom); 228 setOperationAction(ISD::UDIV, MVT::i8, Custom); 229 setOperationAction(ISD::UREM, MVT::i8, Custom); 230 setOperationAction(ISD::SDIV, MVT::i16, Custom); 231 setOperationAction(ISD::UDIV, MVT::i16, Custom); 232 setOperationAction(ISD::UREM, MVT::i16, Custom); 233 setOperationAction(ISD::SDIV, MVT::i32, Custom); 234 setOperationAction(ISD::UDIV, MVT::i32, Custom); 235 setOperationAction(ISD::UREM, MVT::i32, Custom); 236 } 237 238 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 239 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 240 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 241 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 242 243 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 244 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 245 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 246 247 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 248 if (Subtarget.is64Bit()) { 249 setOperationAction(ISD::ROTL, MVT::i32, Custom); 250 setOperationAction(ISD::ROTR, MVT::i32, Custom); 251 } 252 } else { 253 setOperationAction(ISD::ROTL, XLenVT, Expand); 254 setOperationAction(ISD::ROTR, XLenVT, Expand); 255 } 256 257 if (Subtarget.hasStdExtZbp()) { 258 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 259 // more combining. 260 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 261 setOperationAction(ISD::BSWAP, XLenVT, Custom); 262 263 if (Subtarget.is64Bit()) { 264 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 265 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 266 } 267 } else { 268 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 269 // pattern match it directly in isel. 270 setOperationAction(ISD::BSWAP, XLenVT, 271 Subtarget.hasStdExtZbb() ? Legal : Expand); 272 } 273 274 if (Subtarget.hasStdExtZbb()) { 275 setOperationAction(ISD::SMIN, XLenVT, Legal); 276 setOperationAction(ISD::SMAX, XLenVT, Legal); 277 setOperationAction(ISD::UMIN, XLenVT, Legal); 278 setOperationAction(ISD::UMAX, XLenVT, Legal); 279 280 if (Subtarget.is64Bit()) { 281 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 282 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 283 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 284 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 285 } 286 } else { 287 setOperationAction(ISD::CTTZ, XLenVT, Expand); 288 setOperationAction(ISD::CTLZ, XLenVT, Expand); 289 setOperationAction(ISD::CTPOP, XLenVT, Expand); 290 } 291 292 if (Subtarget.hasStdExtZbt()) { 293 setOperationAction(ISD::FSHL, XLenVT, Custom); 294 setOperationAction(ISD::FSHR, XLenVT, Custom); 295 setOperationAction(ISD::SELECT, XLenVT, Legal); 296 297 if (Subtarget.is64Bit()) { 298 setOperationAction(ISD::FSHL, MVT::i32, Custom); 299 setOperationAction(ISD::FSHR, MVT::i32, Custom); 300 } 301 } else { 302 setOperationAction(ISD::SELECT, XLenVT, Custom); 303 } 304 305 ISD::CondCode FPCCToExpand[] = { 306 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 307 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 308 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 309 310 ISD::NodeType FPOpToExpand[] = { 311 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 312 ISD::FP_TO_FP16}; 313 314 if (Subtarget.hasStdExtZfh()) 315 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 316 317 if (Subtarget.hasStdExtZfh()) { 318 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 319 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 320 for (auto CC : FPCCToExpand) 321 setCondCodeAction(CC, MVT::f16, Expand); 322 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 323 setOperationAction(ISD::SELECT, MVT::f16, Custom); 324 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 325 for (auto Op : FPOpToExpand) 326 setOperationAction(Op, MVT::f16, Expand); 327 } 328 329 if (Subtarget.hasStdExtF()) { 330 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 331 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 332 for (auto CC : FPCCToExpand) 333 setCondCodeAction(CC, MVT::f32, Expand); 334 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 335 setOperationAction(ISD::SELECT, MVT::f32, Custom); 336 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 337 for (auto Op : FPOpToExpand) 338 setOperationAction(Op, MVT::f32, Expand); 339 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 340 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 341 } 342 343 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 344 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 345 346 if (Subtarget.hasStdExtD()) { 347 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 348 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f64, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 352 setOperationAction(ISD::SELECT, MVT::f64, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 354 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 355 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 356 for (auto Op : FPOpToExpand) 357 setOperationAction(Op, MVT::f64, Expand); 358 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 359 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 360 } 361 362 if (Subtarget.is64Bit()) { 363 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 364 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 365 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 366 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 367 } 368 369 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 370 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 371 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 372 setOperationAction(ISD::JumpTable, XLenVT, Custom); 373 374 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 375 376 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 377 // Unfortunately this can't be determined just from the ISA naming string. 378 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 379 Subtarget.is64Bit() ? Legal : Custom); 380 381 setOperationAction(ISD::TRAP, MVT::Other, Legal); 382 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 383 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 384 385 if (Subtarget.hasStdExtA()) { 386 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 387 setMinCmpXchgSizeInBits(32); 388 } else { 389 setMaxAtomicSizeInBitsSupported(0); 390 } 391 392 setBooleanContents(ZeroOrOneBooleanContent); 393 394 if (Subtarget.hasStdExtV()) { 395 setBooleanVectorContents(ZeroOrOneBooleanContent); 396 397 setOperationAction(ISD::VSCALE, XLenVT, Custom); 398 399 // RVV intrinsics may have illegal operands. 400 // We also need to custom legalize vmv.x.s. 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 403 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 404 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 405 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 406 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 408 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 409 410 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 411 412 if (!Subtarget.is64Bit()) { 413 // We must custom-lower certain vXi64 operations on RV32 due to the vector 414 // element type being illegal. 415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 416 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 417 418 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 419 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 420 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 421 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 422 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 423 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 424 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 425 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 426 } 427 428 for (MVT VT : BoolVecVTs) { 429 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 430 431 // Mask VTs are custom-expanded into a series of standard nodes 432 setOperationAction(ISD::TRUNCATE, VT, Custom); 433 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 434 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 435 436 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 437 } 438 439 for (MVT VT : IntVecVTs) { 440 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 441 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 442 443 setOperationAction(ISD::SMIN, VT, Legal); 444 setOperationAction(ISD::SMAX, VT, Legal); 445 setOperationAction(ISD::UMIN, VT, Legal); 446 setOperationAction(ISD::UMAX, VT, Legal); 447 448 setOperationAction(ISD::ROTL, VT, Expand); 449 setOperationAction(ISD::ROTR, VT, Expand); 450 451 // Custom-lower extensions and truncations from/to mask types. 452 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 453 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 454 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 455 456 // RVV has native int->float & float->int conversions where the 457 // element type sizes are within one power-of-two of each other. Any 458 // wider distances between type sizes have to be lowered as sequences 459 // which progressively narrow the gap in stages. 460 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 461 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 462 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 463 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 464 465 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 466 // nodes which truncate by one power of two at a time. 467 setOperationAction(ISD::TRUNCATE, VT, Custom); 468 469 // Custom-lower insert/extract operations to simplify patterns. 470 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 471 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 472 473 // Custom-lower reduction operations to set up the corresponding custom 474 // nodes' operands. 475 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 476 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 477 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 478 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 479 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 480 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 481 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 482 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 483 484 setOperationAction(ISD::MLOAD, VT, Custom); 485 setOperationAction(ISD::MSTORE, VT, Custom); 486 setOperationAction(ISD::MGATHER, VT, Custom); 487 setOperationAction(ISD::MSCATTER, VT, Custom); 488 489 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 490 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 491 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 492 493 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 494 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 495 } 496 497 // Expand various CCs to best match the RVV ISA, which natively supports UNE 498 // but no other unordered comparisons, and supports all ordered comparisons 499 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 500 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 501 // and we pattern-match those back to the "original", swapping operands once 502 // more. This way we catch both operations and both "vf" and "fv" forms with 503 // fewer patterns. 504 ISD::CondCode VFPCCToExpand[] = { 505 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 506 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 507 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 508 }; 509 510 // Sets common operation actions on RVV floating-point vector types. 511 const auto SetCommonVFPActions = [&](MVT VT) { 512 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 513 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 514 // sizes are within one power-of-two of each other. Therefore conversions 515 // between vXf16 and vXf64 must be lowered as sequences which convert via 516 // vXf32. 517 setOperationAction(ISD::FP_ROUND, VT, Custom); 518 setOperationAction(ISD::FP_EXTEND, VT, Custom); 519 // Custom-lower insert/extract operations to simplify patterns. 520 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 521 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 522 // Expand various condition codes (explained above). 523 for (auto CC : VFPCCToExpand) 524 setCondCodeAction(CC, VT, Expand); 525 526 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 527 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 528 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 529 530 setOperationAction(ISD::MLOAD, VT, Custom); 531 setOperationAction(ISD::MSTORE, VT, Custom); 532 setOperationAction(ISD::MGATHER, VT, Custom); 533 setOperationAction(ISD::MSCATTER, VT, Custom); 534 535 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 536 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 537 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 538 539 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 540 }; 541 542 if (Subtarget.hasStdExtZfh()) 543 for (MVT VT : F16VecVTs) 544 SetCommonVFPActions(VT); 545 546 if (Subtarget.hasStdExtF()) 547 for (MVT VT : F32VecVTs) 548 SetCommonVFPActions(VT); 549 550 if (Subtarget.hasStdExtD()) 551 for (MVT VT : F64VecVTs) 552 SetCommonVFPActions(VT); 553 554 if (Subtarget.useRVVForFixedLengthVectors()) { 555 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 556 if (!useRVVForFixedLengthVectorVT(VT)) 557 continue; 558 559 // By default everything must be expanded. 560 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 561 setOperationAction(Op, VT, Expand); 562 for (MVT OtherVT : MVT::fixedlen_vector_valuetypes()) 563 setTruncStoreAction(VT, OtherVT, Expand); 564 565 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 566 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 567 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 568 569 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 570 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 571 572 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 573 574 setOperationAction(ISD::LOAD, VT, Custom); 575 setOperationAction(ISD::STORE, VT, Custom); 576 577 setOperationAction(ISD::SETCC, VT, Custom); 578 579 setOperationAction(ISD::TRUNCATE, VT, Custom); 580 581 setOperationAction(ISD::BITCAST, VT, Custom); 582 583 // Operations below are different for between masks and other vectors. 584 if (VT.getVectorElementType() == MVT::i1) { 585 setOperationAction(ISD::AND, VT, Custom); 586 setOperationAction(ISD::OR, VT, Custom); 587 setOperationAction(ISD::XOR, VT, Custom); 588 continue; 589 } 590 591 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 592 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 593 594 setOperationAction(ISD::MLOAD, VT, Custom); 595 setOperationAction(ISD::MSTORE, VT, Custom); 596 setOperationAction(ISD::MGATHER, VT, Custom); 597 setOperationAction(ISD::MSCATTER, VT, Custom); 598 setOperationAction(ISD::ADD, VT, Custom); 599 setOperationAction(ISD::MUL, VT, Custom); 600 setOperationAction(ISD::SUB, VT, Custom); 601 setOperationAction(ISD::AND, VT, Custom); 602 setOperationAction(ISD::OR, VT, Custom); 603 setOperationAction(ISD::XOR, VT, Custom); 604 setOperationAction(ISD::SDIV, VT, Custom); 605 setOperationAction(ISD::SREM, VT, Custom); 606 setOperationAction(ISD::UDIV, VT, Custom); 607 setOperationAction(ISD::UREM, VT, Custom); 608 setOperationAction(ISD::SHL, VT, Custom); 609 setOperationAction(ISD::SRA, VT, Custom); 610 setOperationAction(ISD::SRL, VT, Custom); 611 612 setOperationAction(ISD::SMIN, VT, Custom); 613 setOperationAction(ISD::SMAX, VT, Custom); 614 setOperationAction(ISD::UMIN, VT, Custom); 615 setOperationAction(ISD::UMAX, VT, Custom); 616 setOperationAction(ISD::ABS, VT, Custom); 617 618 setOperationAction(ISD::MULHS, VT, Custom); 619 setOperationAction(ISD::MULHU, VT, Custom); 620 621 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 622 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 623 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 624 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 625 626 setOperationAction(ISD::VSELECT, VT, Custom); 627 628 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 629 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 630 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 631 632 // Custom-lower reduction operations to set up the corresponding custom 633 // nodes' operands. 634 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 635 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 636 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 637 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 638 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 639 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 640 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 642 } 643 644 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 645 if (!useRVVForFixedLengthVectorVT(VT)) 646 continue; 647 648 // By default everything must be expanded. 649 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 650 setOperationAction(Op, VT, Expand); 651 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 652 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 653 setTruncStoreAction(VT, OtherVT, Expand); 654 } 655 656 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 657 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 658 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 659 660 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 661 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 662 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 663 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 664 665 setOperationAction(ISD::LOAD, VT, Custom); 666 setOperationAction(ISD::STORE, VT, Custom); 667 setOperationAction(ISD::MLOAD, VT, Custom); 668 setOperationAction(ISD::MSTORE, VT, Custom); 669 setOperationAction(ISD::MGATHER, VT, Custom); 670 setOperationAction(ISD::MSCATTER, VT, Custom); 671 setOperationAction(ISD::FADD, VT, Custom); 672 setOperationAction(ISD::FSUB, VT, Custom); 673 setOperationAction(ISD::FMUL, VT, Custom); 674 setOperationAction(ISD::FDIV, VT, Custom); 675 setOperationAction(ISD::FNEG, VT, Custom); 676 setOperationAction(ISD::FABS, VT, Custom); 677 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 678 setOperationAction(ISD::FSQRT, VT, Custom); 679 setOperationAction(ISD::FMA, VT, Custom); 680 681 setOperationAction(ISD::FP_ROUND, VT, Custom); 682 setOperationAction(ISD::FP_EXTEND, VT, Custom); 683 684 for (auto CC : VFPCCToExpand) 685 setCondCodeAction(CC, VT, Expand); 686 687 setOperationAction(ISD::VSELECT, VT, Custom); 688 689 setOperationAction(ISD::BITCAST, VT, Custom); 690 691 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 692 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 693 } 694 } 695 } 696 697 // Function alignments. 698 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 699 setMinFunctionAlignment(FunctionAlignment); 700 setPrefFunctionAlignment(FunctionAlignment); 701 702 setMinimumJumpTableEntries(5); 703 704 // Jumps are expensive, compared to logic 705 setJumpIsExpensive(); 706 707 // We can use any register for comparisons 708 setHasMultipleConditionRegisters(); 709 710 if (Subtarget.hasStdExtZbp()) { 711 setTargetDAGCombine(ISD::OR); 712 } 713 if (Subtarget.hasStdExtV()) { 714 setTargetDAGCombine(ISD::FCOPYSIGN); 715 setTargetDAGCombine(ISD::MGATHER); 716 setTargetDAGCombine(ISD::MSCATTER); 717 } 718 } 719 720 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 721 LLVMContext &Context, 722 EVT VT) const { 723 if (!VT.isVector()) 724 return getPointerTy(DL); 725 if (Subtarget.hasStdExtV() && 726 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 727 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 728 return VT.changeVectorElementTypeToInteger(); 729 } 730 731 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 732 const CallInst &I, 733 MachineFunction &MF, 734 unsigned Intrinsic) const { 735 switch (Intrinsic) { 736 default: 737 return false; 738 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 739 case Intrinsic::riscv_masked_atomicrmw_add_i32: 740 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 741 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 742 case Intrinsic::riscv_masked_atomicrmw_max_i32: 743 case Intrinsic::riscv_masked_atomicrmw_min_i32: 744 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 745 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 746 case Intrinsic::riscv_masked_cmpxchg_i32: 747 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 748 Info.opc = ISD::INTRINSIC_W_CHAIN; 749 Info.memVT = MVT::getVT(PtrTy->getElementType()); 750 Info.ptrVal = I.getArgOperand(0); 751 Info.offset = 0; 752 Info.align = Align(4); 753 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 754 MachineMemOperand::MOVolatile; 755 return true; 756 } 757 } 758 759 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 760 const AddrMode &AM, Type *Ty, 761 unsigned AS, 762 Instruction *I) const { 763 // No global is ever allowed as a base. 764 if (AM.BaseGV) 765 return false; 766 767 // Require a 12-bit signed offset. 768 if (!isInt<12>(AM.BaseOffs)) 769 return false; 770 771 switch (AM.Scale) { 772 case 0: // "r+i" or just "i", depending on HasBaseReg. 773 break; 774 case 1: 775 if (!AM.HasBaseReg) // allow "r+i". 776 break; 777 return false; // disallow "r+r" or "r+r+i". 778 default: 779 return false; 780 } 781 782 return true; 783 } 784 785 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 786 return isInt<12>(Imm); 787 } 788 789 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 790 return isInt<12>(Imm); 791 } 792 793 // On RV32, 64-bit integers are split into their high and low parts and held 794 // in two different registers, so the trunc is free since the low register can 795 // just be used. 796 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 797 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 798 return false; 799 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 800 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 801 return (SrcBits == 64 && DestBits == 32); 802 } 803 804 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 805 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 806 !SrcVT.isInteger() || !DstVT.isInteger()) 807 return false; 808 unsigned SrcBits = SrcVT.getSizeInBits(); 809 unsigned DestBits = DstVT.getSizeInBits(); 810 return (SrcBits == 64 && DestBits == 32); 811 } 812 813 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 814 // Zexts are free if they can be combined with a load. 815 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 816 EVT MemVT = LD->getMemoryVT(); 817 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 818 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 819 (LD->getExtensionType() == ISD::NON_EXTLOAD || 820 LD->getExtensionType() == ISD::ZEXTLOAD)) 821 return true; 822 } 823 824 return TargetLowering::isZExtFree(Val, VT2); 825 } 826 827 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 828 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 829 } 830 831 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 832 return Subtarget.hasStdExtZbb(); 833 } 834 835 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 836 return Subtarget.hasStdExtZbb(); 837 } 838 839 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 840 bool ForCodeSize) const { 841 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 842 return false; 843 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 844 return false; 845 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 846 return false; 847 if (Imm.isNegZero()) 848 return false; 849 return Imm.isZero(); 850 } 851 852 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 853 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 854 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 855 (VT == MVT::f64 && Subtarget.hasStdExtD()); 856 } 857 858 // Changes the condition code and swaps operands if necessary, so the SetCC 859 // operation matches one of the comparisons supported directly by branches 860 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 861 // with 1/-1. 862 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 863 ISD::CondCode &CC, SelectionDAG &DAG) { 864 // Convert X > -1 to X >= 0. 865 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 866 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 867 CC = ISD::SETGE; 868 return; 869 } 870 // Convert X < 1 to 0 >= X. 871 if (CC == ISD::SETLT && isOneConstant(RHS)) { 872 RHS = LHS; 873 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 874 CC = ISD::SETGE; 875 return; 876 } 877 878 switch (CC) { 879 default: 880 break; 881 case ISD::SETGT: 882 case ISD::SETLE: 883 case ISD::SETUGT: 884 case ISD::SETULE: 885 CC = ISD::getSetCCSwappedOperands(CC); 886 std::swap(LHS, RHS); 887 break; 888 } 889 } 890 891 // Return the RISC-V branch opcode that matches the given DAG integer 892 // condition code. The CondCode must be one of those supported by the RISC-V 893 // ISA (see translateSetCCForBranch). 894 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 895 switch (CC) { 896 default: 897 llvm_unreachable("Unsupported CondCode"); 898 case ISD::SETEQ: 899 return RISCV::BEQ; 900 case ISD::SETNE: 901 return RISCV::BNE; 902 case ISD::SETLT: 903 return RISCV::BLT; 904 case ISD::SETGE: 905 return RISCV::BGE; 906 case ISD::SETULT: 907 return RISCV::BLTU; 908 case ISD::SETUGE: 909 return RISCV::BGEU; 910 } 911 } 912 913 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) { 914 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 915 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 916 if (VT.getVectorElementType() == MVT::i1) 917 KnownSize *= 8; 918 919 switch (KnownSize) { 920 default: 921 llvm_unreachable("Invalid LMUL."); 922 case 8: 923 return RISCVVLMUL::LMUL_F8; 924 case 16: 925 return RISCVVLMUL::LMUL_F4; 926 case 32: 927 return RISCVVLMUL::LMUL_F2; 928 case 64: 929 return RISCVVLMUL::LMUL_1; 930 case 128: 931 return RISCVVLMUL::LMUL_2; 932 case 256: 933 return RISCVVLMUL::LMUL_4; 934 case 512: 935 return RISCVVLMUL::LMUL_8; 936 } 937 } 938 939 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) { 940 switch (LMul) { 941 default: 942 llvm_unreachable("Invalid LMUL."); 943 case RISCVVLMUL::LMUL_F8: 944 case RISCVVLMUL::LMUL_F4: 945 case RISCVVLMUL::LMUL_F2: 946 case RISCVVLMUL::LMUL_1: 947 return RISCV::VRRegClassID; 948 case RISCVVLMUL::LMUL_2: 949 return RISCV::VRM2RegClassID; 950 case RISCVVLMUL::LMUL_4: 951 return RISCV::VRM4RegClassID; 952 case RISCVVLMUL::LMUL_8: 953 return RISCV::VRM8RegClassID; 954 } 955 } 956 957 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 958 RISCVVLMUL LMUL = getLMUL(VT); 959 if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 || 960 LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) { 961 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 962 "Unexpected subreg numbering"); 963 return RISCV::sub_vrm1_0 + Index; 964 } 965 if (LMUL == RISCVVLMUL::LMUL_2) { 966 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 967 "Unexpected subreg numbering"); 968 return RISCV::sub_vrm2_0 + Index; 969 } 970 if (LMUL == RISCVVLMUL::LMUL_4) { 971 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 972 "Unexpected subreg numbering"); 973 return RISCV::sub_vrm4_0 + Index; 974 } 975 llvm_unreachable("Invalid vector type."); 976 } 977 978 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 979 if (VT.getVectorElementType() == MVT::i1) 980 return RISCV::VRRegClassID; 981 return getRegClassIDForLMUL(getLMUL(VT)); 982 } 983 984 // Attempt to decompose a subvector insert/extract between VecVT and 985 // SubVecVT via subregister indices. Returns the subregister index that 986 // can perform the subvector insert/extract with the given element index, as 987 // well as the index corresponding to any leftover subvectors that must be 988 // further inserted/extracted within the register class for SubVecVT. 989 std::pair<unsigned, unsigned> 990 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 991 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 992 const RISCVRegisterInfo *TRI) { 993 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 994 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 995 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 996 "Register classes not ordered"); 997 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 998 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 999 // Try to compose a subregister index that takes us from the incoming 1000 // LMUL>1 register class down to the outgoing one. At each step we half 1001 // the LMUL: 1002 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1003 // Note that this is not guaranteed to find a subregister index, such as 1004 // when we are extracting from one VR type to another. 1005 unsigned SubRegIdx = RISCV::NoSubRegister; 1006 for (const unsigned RCID : 1007 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1008 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1009 VecVT = VecVT.getHalfNumVectorElementsVT(); 1010 bool IsHi = 1011 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1012 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1013 getSubregIndexByMVT(VecVT, IsHi)); 1014 if (IsHi) 1015 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1016 } 1017 return {SubRegIdx, InsertExtractIdx}; 1018 } 1019 1020 // Return the largest legal scalable vector type that matches VT's element type. 1021 MVT RISCVTargetLowering::getContainerForFixedLengthVector( 1022 const TargetLowering &TLI, MVT VT, const RISCVSubtarget &Subtarget) { 1023 assert(VT.isFixedLengthVector() && TLI.isTypeLegal(VT) && 1024 "Expected legal fixed length vector!"); 1025 1026 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 1027 assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!"); 1028 1029 MVT EltVT = VT.getVectorElementType(); 1030 switch (EltVT.SimpleTy) { 1031 default: 1032 llvm_unreachable("unexpected element type for RVV container"); 1033 case MVT::i1: { 1034 // Masks are calculated assuming 8-bit elements since that's when we need 1035 // the most elements. 1036 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8; 1037 return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock); 1038 } 1039 case MVT::i8: 1040 case MVT::i16: 1041 case MVT::i32: 1042 case MVT::i64: 1043 case MVT::f16: 1044 case MVT::f32: 1045 case MVT::f64: { 1046 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits(); 1047 return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock); 1048 } 1049 } 1050 } 1051 1052 MVT RISCVTargetLowering::getContainerForFixedLengthVector( 1053 SelectionDAG &DAG, MVT VT, const RISCVSubtarget &Subtarget) { 1054 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1055 Subtarget); 1056 } 1057 1058 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1059 return getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1060 } 1061 1062 // Grow V to consume an entire RVV register. 1063 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1064 const RISCVSubtarget &Subtarget) { 1065 assert(VT.isScalableVector() && 1066 "Expected to convert into a scalable vector!"); 1067 assert(V.getValueType().isFixedLengthVector() && 1068 "Expected a fixed length vector operand!"); 1069 SDLoc DL(V); 1070 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1071 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1072 } 1073 1074 // Shrink V so it's just big enough to maintain a VT's worth of data. 1075 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1076 const RISCVSubtarget &Subtarget) { 1077 assert(VT.isFixedLengthVector() && 1078 "Expected to convert into a fixed length vector!"); 1079 assert(V.getValueType().isScalableVector() && 1080 "Expected a scalable vector operand!"); 1081 SDLoc DL(V); 1082 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1083 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1084 } 1085 1086 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1087 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1088 // the vector type that it is contained in. 1089 static std::pair<SDValue, SDValue> 1090 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1091 const RISCVSubtarget &Subtarget) { 1092 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1093 MVT XLenVT = Subtarget.getXLenVT(); 1094 SDValue VL = VecVT.isFixedLengthVector() 1095 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1096 : DAG.getRegister(RISCV::X0, XLenVT); 1097 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1098 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1099 return {Mask, VL}; 1100 } 1101 1102 // As above but assuming the given type is a scalable vector type. 1103 static std::pair<SDValue, SDValue> 1104 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1105 const RISCVSubtarget &Subtarget) { 1106 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1107 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1108 } 1109 1110 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1111 // of either is (currently) supported. This can get us into an infinite loop 1112 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1113 // as a ..., etc. 1114 // Until either (or both) of these can reliably lower any node, reporting that 1115 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1116 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1117 // which is not desirable. 1118 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1119 EVT VT, unsigned DefinedValues) const { 1120 return false; 1121 } 1122 1123 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1124 // Only splats are currently supported. 1125 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1126 return true; 1127 1128 return false; 1129 } 1130 1131 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1132 const RISCVSubtarget &Subtarget) { 1133 MVT VT = Op.getSimpleValueType(); 1134 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1135 1136 MVT ContainerVT = 1137 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, VT, Subtarget); 1138 1139 SDLoc DL(Op); 1140 SDValue Mask, VL; 1141 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1142 1143 MVT XLenVT = Subtarget.getXLenVT(); 1144 unsigned NumElts = Op.getNumOperands(); 1145 1146 if (VT.getVectorElementType() == MVT::i1) { 1147 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1148 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1149 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1150 } 1151 1152 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1153 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1154 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1155 } 1156 1157 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1158 // scalar integer chunks whose bit-width depends on the number of mask 1159 // bits and XLEN. 1160 // First, determine the most appropriate scalar integer type to use. This 1161 // is at most XLenVT, but may be shrunk to a smaller vector element type 1162 // according to the size of the final vector - use i8 chunks rather than 1163 // XLenVT if we're producing a v8i1. This results in more consistent 1164 // codegen across RV32 and RV64. 1165 // If we have to use more than one INSERT_VECTOR_ELT then this optimization 1166 // is likely to increase code size; avoid peforming it in such a case. 1167 unsigned NumViaIntegerBits = 1168 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1169 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1170 (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) { 1171 // Now we can create our integer vector type. Note that it may be larger 1172 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1173 MVT IntegerViaVecVT = 1174 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1175 divideCeil(NumElts, NumViaIntegerBits)); 1176 1177 uint64_t Bits = 0; 1178 unsigned BitPos = 0, IntegerEltIdx = 0; 1179 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1180 1181 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1182 // Once we accumulate enough bits to fill our scalar type, insert into 1183 // our vector and clear our accumulated data. 1184 if (I != 0 && I % NumViaIntegerBits == 0) { 1185 if (NumViaIntegerBits <= 32) 1186 Bits = SignExtend64(Bits, 32); 1187 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1188 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1189 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1190 Bits = 0; 1191 BitPos = 0; 1192 IntegerEltIdx++; 1193 } 1194 SDValue V = Op.getOperand(I); 1195 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1196 Bits |= ((uint64_t)BitValue << BitPos); 1197 } 1198 1199 // Insert the (remaining) scalar value into position in our integer 1200 // vector type. 1201 if (NumViaIntegerBits <= 32) 1202 Bits = SignExtend64(Bits, 32); 1203 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1204 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1205 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1206 1207 if (NumElts < NumViaIntegerBits) { 1208 // If we're producing a smaller vector than our minimum legal integer 1209 // type, bitcast to the equivalent (known-legal) mask type, and extract 1210 // our final mask. 1211 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1212 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1213 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1214 DAG.getConstant(0, DL, XLenVT)); 1215 } else { 1216 // Else we must have produced an integer type with the same size as the 1217 // mask type; bitcast for the final result. 1218 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1219 Vec = DAG.getBitcast(VT, Vec); 1220 } 1221 1222 return Vec; 1223 } 1224 1225 return SDValue(); 1226 } 1227 1228 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1229 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1230 : RISCVISD::VMV_V_X_VL; 1231 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1232 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1233 } 1234 1235 // Try and match an index sequence, which we can lower directly to the vid 1236 // instruction. An all-undef vector is matched by getSplatValue, above. 1237 if (VT.isInteger()) { 1238 bool IsVID = true; 1239 for (unsigned I = 0; I < NumElts && IsVID; I++) 1240 IsVID &= Op.getOperand(I).isUndef() || 1241 (isa<ConstantSDNode>(Op.getOperand(I)) && 1242 Op.getConstantOperandVal(I) == I); 1243 1244 if (IsVID) { 1245 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1246 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1247 } 1248 } 1249 1250 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1251 // when re-interpreted as a vector with a larger element type. For example, 1252 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1253 // could be instead splat as 1254 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1255 // TODO: This optimization could also work on non-constant splats, but it 1256 // would require bit-manipulation instructions to construct the splat value. 1257 SmallVector<SDValue> Sequence; 1258 unsigned EltBitSize = VT.getScalarSizeInBits(); 1259 const auto *BV = cast<BuildVectorSDNode>(Op); 1260 if (VT.isInteger() && EltBitSize < 64 && 1261 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1262 BV->getRepeatedSequence(Sequence) && 1263 (Sequence.size() * EltBitSize) <= 64) { 1264 unsigned SeqLen = Sequence.size(); 1265 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1266 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1267 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1268 ViaIntVT == MVT::i64) && 1269 "Unexpected sequence type"); 1270 1271 unsigned EltIdx = 0; 1272 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1273 uint64_t SplatValue = 0; 1274 // Construct the amalgamated value which can be splatted as this larger 1275 // vector type. 1276 for (const auto &SeqV : Sequence) { 1277 if (!SeqV.isUndef()) 1278 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1279 << (EltIdx * EltBitSize)); 1280 EltIdx++; 1281 } 1282 1283 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1284 // achieve better constant materializion. 1285 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1286 SplatValue = SignExtend64(SplatValue, 32); 1287 1288 // Since we can't introduce illegal i64 types at this stage, we can only 1289 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1290 // way we can use RVV instructions to splat. 1291 assert((ViaIntVT.bitsLE(XLenVT) || 1292 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1293 "Unexpected bitcast sequence"); 1294 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1295 SDValue ViaVL = 1296 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1297 MVT ViaContainerVT = 1298 RISCVTargetLowering::getContainerForFixedLengthVector(DAG, ViaVecVT, 1299 Subtarget); 1300 SDValue Splat = 1301 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1302 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1303 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1304 return DAG.getBitcast(VT, Splat); 1305 } 1306 } 1307 1308 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1309 // which constitute a large proportion of the elements. In such cases we can 1310 // splat a vector with the dominant element and make up the shortfall with 1311 // INSERT_VECTOR_ELTs. 1312 // Note that this includes vectors of 2 elements by association. The 1313 // upper-most element is the "dominant" one, allowing us to use a splat to 1314 // "insert" the upper element, and an insert of the lower element at position 1315 // 0, which improves codegen. 1316 SDValue DominantValue; 1317 unsigned MostCommonCount = 0; 1318 DenseMap<SDValue, unsigned> ValueCounts; 1319 unsigned NumUndefElts = 1320 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1321 1322 for (SDValue V : Op->op_values()) { 1323 if (V.isUndef()) 1324 continue; 1325 1326 ValueCounts.insert(std::make_pair(V, 0)); 1327 unsigned &Count = ValueCounts[V]; 1328 1329 // Is this value dominant? In case of a tie, prefer the highest element as 1330 // it's cheaper to insert near the beginning of a vector than it is at the 1331 // end. 1332 if (++Count >= MostCommonCount) { 1333 DominantValue = V; 1334 MostCommonCount = Count; 1335 } 1336 } 1337 1338 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1339 unsigned NumDefElts = NumElts - NumUndefElts; 1340 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1341 1342 // Don't perform this optimization when optimizing for size, since 1343 // materializing elements and inserting them tends to cause code bloat. 1344 if (!DAG.shouldOptForSize() && 1345 ((MostCommonCount > DominantValueCountThreshold) || 1346 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1347 // Start by splatting the most common element. 1348 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1349 1350 DenseSet<SDValue> Processed{DominantValue}; 1351 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1352 for (const auto &OpIdx : enumerate(Op->ops())) { 1353 const SDValue &V = OpIdx.value(); 1354 if (V.isUndef() || !Processed.insert(V).second) 1355 continue; 1356 if (ValueCounts[V] == 1) { 1357 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1358 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1359 } else { 1360 // Blend in all instances of this value using a VSELECT, using a 1361 // mask where each bit signals whether that element is the one 1362 // we're after. 1363 SmallVector<SDValue> Ops; 1364 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1365 return DAG.getConstant(V == V1, DL, XLenVT); 1366 }); 1367 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1368 DAG.getBuildVector(SelMaskTy, DL, Ops), 1369 DAG.getSplatBuildVector(VT, DL, V), Vec); 1370 } 1371 } 1372 1373 return Vec; 1374 } 1375 1376 return SDValue(); 1377 } 1378 1379 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1380 const RISCVSubtarget &Subtarget) { 1381 SDValue V1 = Op.getOperand(0); 1382 SDValue V2 = Op.getOperand(1); 1383 SDLoc DL(Op); 1384 MVT XLenVT = Subtarget.getXLenVT(); 1385 MVT VT = Op.getSimpleValueType(); 1386 unsigned NumElts = VT.getVectorNumElements(); 1387 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1388 1389 if (SVN->isSplat()) { 1390 int Lane = SVN->getSplatIndex(); 1391 if (Lane >= 0) { 1392 MVT ContainerVT = RISCVTargetLowering::getContainerForFixedLengthVector( 1393 DAG, VT, Subtarget); 1394 1395 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1396 assert(Lane < (int)NumElts && "Unexpected lane!"); 1397 1398 SDValue Mask, VL; 1399 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1400 SDValue Gather = 1401 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1402 DAG.getConstant(Lane, DL, XLenVT), Mask, VL); 1403 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1404 } 1405 } 1406 1407 // Detect shuffles which can be re-expressed as vector selects. 1408 SmallVector<SDValue> MaskVals; 1409 // By default we preserve the original operand order, and select LHS as true 1410 // and RHS as false. However, since RVV vector selects may feature splats but 1411 // only on the LHS, we may choose to invert our mask and instead select 1412 // between RHS and LHS. 1413 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1414 1415 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1416 int MaskIndex = MaskIdx.value(); 1417 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ SwapOps; 1418 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1419 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1420 }); 1421 1422 if (IsSelect) { 1423 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1424 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1425 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1426 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, SwapOps ? V2 : V1, 1427 SwapOps ? V1 : V2); 1428 } 1429 1430 return SDValue(); 1431 } 1432 1433 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1434 SDLoc DL, SelectionDAG &DAG, 1435 const RISCVSubtarget &Subtarget) { 1436 if (VT.isScalableVector()) 1437 return DAG.getFPExtendOrRound(Op, DL, VT); 1438 assert(VT.isFixedLengthVector() && 1439 "Unexpected value type for RVV FP extend/round lowering"); 1440 SDValue Mask, VL; 1441 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1442 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1443 ? RISCVISD::FP_EXTEND_VL 1444 : RISCVISD::FP_ROUND_VL; 1445 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1446 } 1447 1448 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1449 SelectionDAG &DAG) const { 1450 switch (Op.getOpcode()) { 1451 default: 1452 report_fatal_error("unimplemented operand"); 1453 case ISD::GlobalAddress: 1454 return lowerGlobalAddress(Op, DAG); 1455 case ISD::BlockAddress: 1456 return lowerBlockAddress(Op, DAG); 1457 case ISD::ConstantPool: 1458 return lowerConstantPool(Op, DAG); 1459 case ISD::JumpTable: 1460 return lowerJumpTable(Op, DAG); 1461 case ISD::GlobalTLSAddress: 1462 return lowerGlobalTLSAddress(Op, DAG); 1463 case ISD::SELECT: 1464 return lowerSELECT(Op, DAG); 1465 case ISD::BRCOND: 1466 return lowerBRCOND(Op, DAG); 1467 case ISD::VASTART: 1468 return lowerVASTART(Op, DAG); 1469 case ISD::FRAMEADDR: 1470 return lowerFRAMEADDR(Op, DAG); 1471 case ISD::RETURNADDR: 1472 return lowerRETURNADDR(Op, DAG); 1473 case ISD::SHL_PARTS: 1474 return lowerShiftLeftParts(Op, DAG); 1475 case ISD::SRA_PARTS: 1476 return lowerShiftRightParts(Op, DAG, true); 1477 case ISD::SRL_PARTS: 1478 return lowerShiftRightParts(Op, DAG, false); 1479 case ISD::BITCAST: { 1480 SDValue Op0 = Op.getOperand(0); 1481 // We can handle fixed length vector bitcasts with a simple replacement 1482 // in isel. 1483 if (Op.getValueType().isFixedLengthVector()) { 1484 if (Op0.getValueType().isFixedLengthVector()) 1485 return Op; 1486 return SDValue(); 1487 } 1488 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 1489 Subtarget.hasStdExtZfh()) && 1490 "Unexpected custom legalisation"); 1491 SDLoc DL(Op); 1492 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 1493 if (Op0.getValueType() != MVT::i16) 1494 return SDValue(); 1495 SDValue NewOp0 = 1496 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 1497 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1498 return FPConv; 1499 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 1500 Subtarget.hasStdExtF()) { 1501 if (Op0.getValueType() != MVT::i32) 1502 return SDValue(); 1503 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1504 SDValue FPConv = 1505 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1506 return FPConv; 1507 } 1508 return SDValue(); 1509 } 1510 case ISD::INTRINSIC_WO_CHAIN: 1511 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1512 case ISD::INTRINSIC_W_CHAIN: 1513 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1514 case ISD::BSWAP: 1515 case ISD::BITREVERSE: { 1516 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1517 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1518 MVT VT = Op.getSimpleValueType(); 1519 SDLoc DL(Op); 1520 // Start with the maximum immediate value which is the bitwidth - 1. 1521 unsigned Imm = VT.getSizeInBits() - 1; 1522 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1523 if (Op.getOpcode() == ISD::BSWAP) 1524 Imm &= ~0x7U; 1525 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 1526 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 1527 } 1528 case ISD::FSHL: 1529 case ISD::FSHR: { 1530 MVT VT = Op.getSimpleValueType(); 1531 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1532 SDLoc DL(Op); 1533 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1534 // use log(XLen) bits. Mask the shift amount accordingly. 1535 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1536 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1537 DAG.getConstant(ShAmtWidth, DL, VT)); 1538 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1539 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1540 } 1541 case ISD::TRUNCATE: { 1542 SDLoc DL(Op); 1543 MVT VT = Op.getSimpleValueType(); 1544 // Only custom-lower vector truncates 1545 if (!VT.isVector()) 1546 return Op; 1547 1548 // Truncates to mask types are handled differently 1549 if (VT.getVectorElementType() == MVT::i1) 1550 return lowerVectorMaskTrunc(Op, DAG); 1551 1552 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 1553 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 1554 // truncate by one power of two at a time. 1555 MVT DstEltVT = VT.getVectorElementType(); 1556 1557 SDValue Src = Op.getOperand(0); 1558 MVT SrcVT = Src.getSimpleValueType(); 1559 MVT SrcEltVT = SrcVT.getVectorElementType(); 1560 1561 assert(DstEltVT.bitsLT(SrcEltVT) && 1562 isPowerOf2_64(DstEltVT.getSizeInBits()) && 1563 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 1564 "Unexpected vector truncate lowering"); 1565 1566 MVT ContainerVT = SrcVT; 1567 if (SrcVT.isFixedLengthVector()) { 1568 ContainerVT = getContainerForFixedLengthVector(SrcVT); 1569 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 1570 } 1571 1572 SDValue Result = Src; 1573 SDValue Mask, VL; 1574 std::tie(Mask, VL) = 1575 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 1576 LLVMContext &Context = *DAG.getContext(); 1577 const ElementCount Count = ContainerVT.getVectorElementCount(); 1578 do { 1579 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 1580 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 1581 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 1582 Mask, VL); 1583 } while (SrcEltVT != DstEltVT); 1584 1585 if (SrcVT.isFixedLengthVector()) 1586 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 1587 1588 return Result; 1589 } 1590 case ISD::ANY_EXTEND: 1591 case ISD::ZERO_EXTEND: 1592 if (Op.getOperand(0).getValueType().isVector() && 1593 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1594 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 1595 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 1596 case ISD::SIGN_EXTEND: 1597 if (Op.getOperand(0).getValueType().isVector() && 1598 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1599 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 1600 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 1601 case ISD::SPLAT_VECTOR_PARTS: 1602 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 1603 case ISD::INSERT_VECTOR_ELT: 1604 return lowerINSERT_VECTOR_ELT(Op, DAG); 1605 case ISD::EXTRACT_VECTOR_ELT: 1606 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1607 case ISD::VSCALE: { 1608 MVT VT = Op.getSimpleValueType(); 1609 SDLoc DL(Op); 1610 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 1611 // We define our scalable vector types for lmul=1 to use a 64 bit known 1612 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 1613 // vscale as VLENB / 8. 1614 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 1615 DAG.getConstant(3, DL, VT)); 1616 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 1617 } 1618 case ISD::FP_EXTEND: { 1619 // RVV can only do fp_extend to types double the size as the source. We 1620 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 1621 // via f32. 1622 SDLoc DL(Op); 1623 MVT VT = Op.getSimpleValueType(); 1624 SDValue Src = Op.getOperand(0); 1625 MVT SrcVT = Src.getSimpleValueType(); 1626 1627 // Prepare any fixed-length vector operands. 1628 MVT ContainerVT = VT; 1629 if (SrcVT.isFixedLengthVector()) { 1630 ContainerVT = getContainerForFixedLengthVector(VT); 1631 MVT SrcContainerVT = 1632 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 1633 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1634 } 1635 1636 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 1637 SrcVT.getVectorElementType() != MVT::f16) { 1638 // For scalable vectors, we only need to close the gap between 1639 // vXf16->vXf64. 1640 if (!VT.isFixedLengthVector()) 1641 return Op; 1642 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 1643 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1644 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1645 } 1646 1647 MVT InterVT = VT.changeVectorElementType(MVT::f32); 1648 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 1649 SDValue IntermediateExtend = getRVVFPExtendOrRound( 1650 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 1651 1652 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 1653 DL, DAG, Subtarget); 1654 if (VT.isFixedLengthVector()) 1655 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 1656 return Extend; 1657 } 1658 case ISD::FP_ROUND: { 1659 // RVV can only do fp_round to types half the size as the source. We 1660 // custom-lower f64->f16 rounds via RVV's round-to-odd float 1661 // conversion instruction. 1662 SDLoc DL(Op); 1663 MVT VT = Op.getSimpleValueType(); 1664 SDValue Src = Op.getOperand(0); 1665 MVT SrcVT = Src.getSimpleValueType(); 1666 1667 // Prepare any fixed-length vector operands. 1668 MVT ContainerVT = VT; 1669 if (VT.isFixedLengthVector()) { 1670 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 1671 ContainerVT = 1672 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 1673 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1674 } 1675 1676 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 1677 SrcVT.getVectorElementType() != MVT::f64) { 1678 // For scalable vectors, we only need to close the gap between 1679 // vXf64<->vXf16. 1680 if (!VT.isFixedLengthVector()) 1681 return Op; 1682 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 1683 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 1684 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1685 } 1686 1687 SDValue Mask, VL; 1688 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1689 1690 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 1691 SDValue IntermediateRound = 1692 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 1693 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 1694 DL, DAG, Subtarget); 1695 1696 if (VT.isFixedLengthVector()) 1697 return convertFromScalableVector(VT, Round, DAG, Subtarget); 1698 return Round; 1699 } 1700 case ISD::FP_TO_SINT: 1701 case ISD::FP_TO_UINT: 1702 case ISD::SINT_TO_FP: 1703 case ISD::UINT_TO_FP: { 1704 // RVV can only do fp<->int conversions to types half/double the size as 1705 // the source. We custom-lower any conversions that do two hops into 1706 // sequences. 1707 MVT VT = Op.getSimpleValueType(); 1708 if (!VT.isVector()) 1709 return Op; 1710 SDLoc DL(Op); 1711 SDValue Src = Op.getOperand(0); 1712 MVT EltVT = VT.getVectorElementType(); 1713 MVT SrcVT = Src.getSimpleValueType(); 1714 MVT SrcEltVT = SrcVT.getVectorElementType(); 1715 unsigned EltSize = EltVT.getSizeInBits(); 1716 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 1717 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 1718 "Unexpected vector element types"); 1719 1720 bool IsInt2FP = SrcEltVT.isInteger(); 1721 // Widening conversions 1722 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 1723 if (IsInt2FP) { 1724 // Do a regular integer sign/zero extension then convert to float. 1725 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 1726 VT.getVectorElementCount()); 1727 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 1728 ? ISD::ZERO_EXTEND 1729 : ISD::SIGN_EXTEND; 1730 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 1731 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 1732 } 1733 // FP2Int 1734 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 1735 // Do one doubling fp_extend then complete the operation by converting 1736 // to int. 1737 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1738 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 1739 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 1740 } 1741 1742 // Narrowing conversions 1743 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 1744 if (IsInt2FP) { 1745 // One narrowing int_to_fp, then an fp_round. 1746 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 1747 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 1748 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 1749 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 1750 } 1751 // FP2Int 1752 // One narrowing fp_to_int, then truncate the integer. If the float isn't 1753 // representable by the integer, the result is poison. 1754 MVT IVecVT = 1755 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 1756 VT.getVectorElementCount()); 1757 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 1758 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 1759 } 1760 1761 // Scalable vectors can exit here. Patterns will handle equally-sized 1762 // conversions halving/doubling ones. 1763 if (!VT.isFixedLengthVector()) 1764 return Op; 1765 1766 // For fixed-length vectors we lower to a custom "VL" node. 1767 unsigned RVVOpc = 0; 1768 switch (Op.getOpcode()) { 1769 default: 1770 llvm_unreachable("Impossible opcode"); 1771 case ISD::FP_TO_SINT: 1772 RVVOpc = RISCVISD::FP_TO_SINT_VL; 1773 break; 1774 case ISD::FP_TO_UINT: 1775 RVVOpc = RISCVISD::FP_TO_UINT_VL; 1776 break; 1777 case ISD::SINT_TO_FP: 1778 RVVOpc = RISCVISD::SINT_TO_FP_VL; 1779 break; 1780 case ISD::UINT_TO_FP: 1781 RVVOpc = RISCVISD::UINT_TO_FP_VL; 1782 break; 1783 } 1784 1785 MVT ContainerVT, SrcContainerVT; 1786 // Derive the reference container type from the larger vector type. 1787 if (SrcEltSize > EltSize) { 1788 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 1789 ContainerVT = 1790 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 1791 } else { 1792 ContainerVT = getContainerForFixedLengthVector(VT); 1793 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 1794 } 1795 1796 SDValue Mask, VL; 1797 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1798 1799 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 1800 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 1801 return convertFromScalableVector(VT, Src, DAG, Subtarget); 1802 } 1803 case ISD::VECREDUCE_ADD: 1804 case ISD::VECREDUCE_UMAX: 1805 case ISD::VECREDUCE_SMAX: 1806 case ISD::VECREDUCE_UMIN: 1807 case ISD::VECREDUCE_SMIN: 1808 case ISD::VECREDUCE_AND: 1809 case ISD::VECREDUCE_OR: 1810 case ISD::VECREDUCE_XOR: 1811 return lowerVECREDUCE(Op, DAG); 1812 case ISD::VECREDUCE_FADD: 1813 case ISD::VECREDUCE_SEQ_FADD: 1814 return lowerFPVECREDUCE(Op, DAG); 1815 case ISD::INSERT_SUBVECTOR: 1816 return lowerINSERT_SUBVECTOR(Op, DAG); 1817 case ISD::EXTRACT_SUBVECTOR: 1818 return lowerEXTRACT_SUBVECTOR(Op, DAG); 1819 case ISD::STEP_VECTOR: 1820 return lowerSTEP_VECTOR(Op, DAG); 1821 case ISD::VECTOR_REVERSE: 1822 return lowerVECTOR_REVERSE(Op, DAG); 1823 case ISD::BUILD_VECTOR: 1824 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 1825 case ISD::VECTOR_SHUFFLE: 1826 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 1827 case ISD::CONCAT_VECTORS: { 1828 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 1829 // better than going through the stack, as the default expansion does. 1830 SDLoc DL(Op); 1831 MVT VT = Op.getSimpleValueType(); 1832 unsigned NumOpElts = 1833 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 1834 SDValue Vec = DAG.getUNDEF(VT); 1835 for (const auto &OpIdx : enumerate(Op->ops())) 1836 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 1837 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 1838 return Vec; 1839 } 1840 case ISD::LOAD: 1841 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 1842 case ISD::STORE: 1843 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 1844 case ISD::MLOAD: 1845 return lowerMLOAD(Op, DAG); 1846 case ISD::MSTORE: 1847 return lowerMSTORE(Op, DAG); 1848 case ISD::SETCC: 1849 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 1850 case ISD::ADD: 1851 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 1852 case ISD::SUB: 1853 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 1854 case ISD::MUL: 1855 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 1856 case ISD::MULHS: 1857 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 1858 case ISD::MULHU: 1859 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 1860 case ISD::AND: 1861 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 1862 RISCVISD::AND_VL); 1863 case ISD::OR: 1864 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 1865 RISCVISD::OR_VL); 1866 case ISD::XOR: 1867 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 1868 RISCVISD::XOR_VL); 1869 case ISD::SDIV: 1870 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 1871 case ISD::SREM: 1872 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 1873 case ISD::UDIV: 1874 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 1875 case ISD::UREM: 1876 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 1877 case ISD::SHL: 1878 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 1879 case ISD::SRA: 1880 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 1881 case ISD::SRL: 1882 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 1883 case ISD::FADD: 1884 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 1885 case ISD::FSUB: 1886 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 1887 case ISD::FMUL: 1888 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 1889 case ISD::FDIV: 1890 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 1891 case ISD::FNEG: 1892 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 1893 case ISD::FABS: 1894 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 1895 case ISD::FSQRT: 1896 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 1897 case ISD::FMA: 1898 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 1899 case ISD::SMIN: 1900 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 1901 case ISD::SMAX: 1902 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 1903 case ISD::UMIN: 1904 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 1905 case ISD::UMAX: 1906 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 1907 case ISD::ABS: 1908 return lowerABS(Op, DAG); 1909 case ISD::VSELECT: 1910 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 1911 case ISD::FCOPYSIGN: 1912 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 1913 case ISD::MGATHER: 1914 return lowerMGATHER(Op, DAG); 1915 case ISD::MSCATTER: 1916 return lowerMSCATTER(Op, DAG); 1917 } 1918 } 1919 1920 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 1921 SelectionDAG &DAG, unsigned Flags) { 1922 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 1923 } 1924 1925 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 1926 SelectionDAG &DAG, unsigned Flags) { 1927 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 1928 Flags); 1929 } 1930 1931 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 1932 SelectionDAG &DAG, unsigned Flags) { 1933 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 1934 N->getOffset(), Flags); 1935 } 1936 1937 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 1938 SelectionDAG &DAG, unsigned Flags) { 1939 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 1940 } 1941 1942 template <class NodeTy> 1943 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 1944 bool IsLocal) const { 1945 SDLoc DL(N); 1946 EVT Ty = getPointerTy(DAG.getDataLayout()); 1947 1948 if (isPositionIndependent()) { 1949 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 1950 if (IsLocal) 1951 // Use PC-relative addressing to access the symbol. This generates the 1952 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 1953 // %pcrel_lo(auipc)). 1954 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 1955 1956 // Use PC-relative addressing to access the GOT for this symbol, then load 1957 // the address from the GOT. This generates the pattern (PseudoLA sym), 1958 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 1959 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 1960 } 1961 1962 switch (getTargetMachine().getCodeModel()) { 1963 default: 1964 report_fatal_error("Unsupported code model for lowering"); 1965 case CodeModel::Small: { 1966 // Generate a sequence for accessing addresses within the first 2 GiB of 1967 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 1968 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 1969 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 1970 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 1971 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 1972 } 1973 case CodeModel::Medium: { 1974 // Generate a sequence for accessing addresses within any 2GiB range within 1975 // the address space. This generates the pattern (PseudoLLA sym), which 1976 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 1977 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 1978 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 1979 } 1980 } 1981 } 1982 1983 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 1984 SelectionDAG &DAG) const { 1985 SDLoc DL(Op); 1986 EVT Ty = Op.getValueType(); 1987 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1988 int64_t Offset = N->getOffset(); 1989 MVT XLenVT = Subtarget.getXLenVT(); 1990 1991 const GlobalValue *GV = N->getGlobal(); 1992 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 1993 SDValue Addr = getAddr(N, DAG, IsLocal); 1994 1995 // In order to maximise the opportunity for common subexpression elimination, 1996 // emit a separate ADD node for the global address offset instead of folding 1997 // it in the global address node. Later peephole optimisations may choose to 1998 // fold it back in when profitable. 1999 if (Offset != 0) 2000 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2001 DAG.getConstant(Offset, DL, XLenVT)); 2002 return Addr; 2003 } 2004 2005 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2006 SelectionDAG &DAG) const { 2007 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2008 2009 return getAddr(N, DAG); 2010 } 2011 2012 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2013 SelectionDAG &DAG) const { 2014 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2015 2016 return getAddr(N, DAG); 2017 } 2018 2019 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2020 SelectionDAG &DAG) const { 2021 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2022 2023 return getAddr(N, DAG); 2024 } 2025 2026 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2027 SelectionDAG &DAG, 2028 bool UseGOT) const { 2029 SDLoc DL(N); 2030 EVT Ty = getPointerTy(DAG.getDataLayout()); 2031 const GlobalValue *GV = N->getGlobal(); 2032 MVT XLenVT = Subtarget.getXLenVT(); 2033 2034 if (UseGOT) { 2035 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2036 // load the address from the GOT and add the thread pointer. This generates 2037 // the pattern (PseudoLA_TLS_IE sym), which expands to 2038 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2039 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2040 SDValue Load = 2041 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2042 2043 // Add the thread pointer. 2044 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2045 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2046 } 2047 2048 // Generate a sequence for accessing the address relative to the thread 2049 // pointer, with the appropriate adjustment for the thread pointer offset. 2050 // This generates the pattern 2051 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2052 SDValue AddrHi = 2053 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2054 SDValue AddrAdd = 2055 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2056 SDValue AddrLo = 2057 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2058 2059 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2060 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2061 SDValue MNAdd = SDValue( 2062 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2063 0); 2064 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2065 } 2066 2067 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2068 SelectionDAG &DAG) const { 2069 SDLoc DL(N); 2070 EVT Ty = getPointerTy(DAG.getDataLayout()); 2071 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2072 const GlobalValue *GV = N->getGlobal(); 2073 2074 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2075 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2076 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2077 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2078 SDValue Load = 2079 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2080 2081 // Prepare argument list to generate call. 2082 ArgListTy Args; 2083 ArgListEntry Entry; 2084 Entry.Node = Load; 2085 Entry.Ty = CallTy; 2086 Args.push_back(Entry); 2087 2088 // Setup call to __tls_get_addr. 2089 TargetLowering::CallLoweringInfo CLI(DAG); 2090 CLI.setDebugLoc(DL) 2091 .setChain(DAG.getEntryNode()) 2092 .setLibCallee(CallingConv::C, CallTy, 2093 DAG.getExternalSymbol("__tls_get_addr", Ty), 2094 std::move(Args)); 2095 2096 return LowerCallTo(CLI).first; 2097 } 2098 2099 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2100 SelectionDAG &DAG) const { 2101 SDLoc DL(Op); 2102 EVT Ty = Op.getValueType(); 2103 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2104 int64_t Offset = N->getOffset(); 2105 MVT XLenVT = Subtarget.getXLenVT(); 2106 2107 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2108 2109 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2110 CallingConv::GHC) 2111 report_fatal_error("In GHC calling convention TLS is not supported"); 2112 2113 SDValue Addr; 2114 switch (Model) { 2115 case TLSModel::LocalExec: 2116 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2117 break; 2118 case TLSModel::InitialExec: 2119 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2120 break; 2121 case TLSModel::LocalDynamic: 2122 case TLSModel::GeneralDynamic: 2123 Addr = getDynamicTLSAddr(N, DAG); 2124 break; 2125 } 2126 2127 // In order to maximise the opportunity for common subexpression elimination, 2128 // emit a separate ADD node for the global address offset instead of folding 2129 // it in the global address node. Later peephole optimisations may choose to 2130 // fold it back in when profitable. 2131 if (Offset != 0) 2132 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2133 DAG.getConstant(Offset, DL, XLenVT)); 2134 return Addr; 2135 } 2136 2137 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2138 SDValue CondV = Op.getOperand(0); 2139 SDValue TrueV = Op.getOperand(1); 2140 SDValue FalseV = Op.getOperand(2); 2141 SDLoc DL(Op); 2142 MVT XLenVT = Subtarget.getXLenVT(); 2143 2144 // If the result type is XLenVT and CondV is the output of a SETCC node 2145 // which also operated on XLenVT inputs, then merge the SETCC node into the 2146 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2147 // compare+branch instructions. i.e.: 2148 // (select (setcc lhs, rhs, cc), truev, falsev) 2149 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2150 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2151 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2152 SDValue LHS = CondV.getOperand(0); 2153 SDValue RHS = CondV.getOperand(1); 2154 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2155 ISD::CondCode CCVal = CC->get(); 2156 2157 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2158 2159 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 2160 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2161 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2162 } 2163 2164 // Otherwise: 2165 // (select condv, truev, falsev) 2166 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2167 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2168 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 2169 2170 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2171 2172 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2173 } 2174 2175 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2176 SDValue CondV = Op.getOperand(1); 2177 SDLoc DL(Op); 2178 MVT XLenVT = Subtarget.getXLenVT(); 2179 2180 if (CondV.getOpcode() == ISD::SETCC && 2181 CondV.getOperand(0).getValueType() == XLenVT) { 2182 SDValue LHS = CondV.getOperand(0); 2183 SDValue RHS = CondV.getOperand(1); 2184 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2185 2186 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2187 2188 SDValue TargetCC = DAG.getCondCode(CCVal); 2189 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2190 LHS, RHS, TargetCC, Op.getOperand(2)); 2191 } 2192 2193 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2194 CondV, DAG.getConstant(0, DL, XLenVT), 2195 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2196 } 2197 2198 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2199 MachineFunction &MF = DAG.getMachineFunction(); 2200 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2201 2202 SDLoc DL(Op); 2203 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2204 getPointerTy(MF.getDataLayout())); 2205 2206 // vastart just stores the address of the VarArgsFrameIndex slot into the 2207 // memory location argument. 2208 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2209 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2210 MachinePointerInfo(SV)); 2211 } 2212 2213 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2214 SelectionDAG &DAG) const { 2215 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2216 MachineFunction &MF = DAG.getMachineFunction(); 2217 MachineFrameInfo &MFI = MF.getFrameInfo(); 2218 MFI.setFrameAddressIsTaken(true); 2219 Register FrameReg = RI.getFrameRegister(MF); 2220 int XLenInBytes = Subtarget.getXLen() / 8; 2221 2222 EVT VT = Op.getValueType(); 2223 SDLoc DL(Op); 2224 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2225 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2226 while (Depth--) { 2227 int Offset = -(XLenInBytes * 2); 2228 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2229 DAG.getIntPtrConstant(Offset, DL)); 2230 FrameAddr = 2231 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2232 } 2233 return FrameAddr; 2234 } 2235 2236 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2237 SelectionDAG &DAG) const { 2238 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2239 MachineFunction &MF = DAG.getMachineFunction(); 2240 MachineFrameInfo &MFI = MF.getFrameInfo(); 2241 MFI.setReturnAddressIsTaken(true); 2242 MVT XLenVT = Subtarget.getXLenVT(); 2243 int XLenInBytes = Subtarget.getXLen() / 8; 2244 2245 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2246 return SDValue(); 2247 2248 EVT VT = Op.getValueType(); 2249 SDLoc DL(Op); 2250 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2251 if (Depth) { 2252 int Off = -XLenInBytes; 2253 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2254 SDValue Offset = DAG.getConstant(Off, DL, VT); 2255 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2256 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2257 MachinePointerInfo()); 2258 } 2259 2260 // Return the value of the return address register, marking it an implicit 2261 // live-in. 2262 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2263 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2264 } 2265 2266 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2267 SelectionDAG &DAG) const { 2268 SDLoc DL(Op); 2269 SDValue Lo = Op.getOperand(0); 2270 SDValue Hi = Op.getOperand(1); 2271 SDValue Shamt = Op.getOperand(2); 2272 EVT VT = Lo.getValueType(); 2273 2274 // if Shamt-XLEN < 0: // Shamt < XLEN 2275 // Lo = Lo << Shamt 2276 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2277 // else: 2278 // Lo = 0 2279 // Hi = Lo << (Shamt-XLEN) 2280 2281 SDValue Zero = DAG.getConstant(0, DL, VT); 2282 SDValue One = DAG.getConstant(1, DL, VT); 2283 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2284 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2285 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2286 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2287 2288 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2289 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2290 SDValue ShiftRightLo = 2291 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2292 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2293 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2294 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2295 2296 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2297 2298 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2299 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2300 2301 SDValue Parts[2] = {Lo, Hi}; 2302 return DAG.getMergeValues(Parts, DL); 2303 } 2304 2305 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2306 bool IsSRA) const { 2307 SDLoc DL(Op); 2308 SDValue Lo = Op.getOperand(0); 2309 SDValue Hi = Op.getOperand(1); 2310 SDValue Shamt = Op.getOperand(2); 2311 EVT VT = Lo.getValueType(); 2312 2313 // SRA expansion: 2314 // if Shamt-XLEN < 0: // Shamt < XLEN 2315 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2316 // Hi = Hi >>s Shamt 2317 // else: 2318 // Lo = Hi >>s (Shamt-XLEN); 2319 // Hi = Hi >>s (XLEN-1) 2320 // 2321 // SRL expansion: 2322 // if Shamt-XLEN < 0: // Shamt < XLEN 2323 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2324 // Hi = Hi >>u Shamt 2325 // else: 2326 // Lo = Hi >>u (Shamt-XLEN); 2327 // Hi = 0; 2328 2329 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2330 2331 SDValue Zero = DAG.getConstant(0, DL, VT); 2332 SDValue One = DAG.getConstant(1, DL, VT); 2333 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2334 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2335 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2336 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2337 2338 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2339 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2340 SDValue ShiftLeftHi = 2341 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2342 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2343 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2344 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2345 SDValue HiFalse = 2346 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2347 2348 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2349 2350 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2351 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2352 2353 SDValue Parts[2] = {Lo, Hi}; 2354 return DAG.getMergeValues(Parts, DL); 2355 } 2356 2357 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2358 // illegal (currently only vXi64 RV32). 2359 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2360 // them to SPLAT_VECTOR_I64 2361 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2362 SelectionDAG &DAG) const { 2363 SDLoc DL(Op); 2364 EVT VecVT = Op.getValueType(); 2365 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2366 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2367 2368 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2369 SDValue Lo = Op.getOperand(0); 2370 SDValue Hi = Op.getOperand(1); 2371 2372 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2373 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2374 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2375 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2376 // node in order to try and match RVV vector/scalar instructions. 2377 if ((LoC >> 31) == HiC) 2378 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2379 } 2380 2381 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 2382 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 2383 // vmv.v.x vX, hi 2384 // vsll.vx vX, vX, /*32*/ 2385 // vmv.v.x vY, lo 2386 // vsll.vx vY, vY, /*32*/ 2387 // vsrl.vx vY, vY, /*32*/ 2388 // vor.vv vX, vX, vY 2389 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 2390 2391 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2392 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 2393 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 2394 2395 if (isNullConstant(Hi)) 2396 return Lo; 2397 2398 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 2399 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 2400 2401 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 2402 } 2403 2404 // Custom-lower extensions from mask vectors by using a vselect either with 1 2405 // for zero/any-extension or -1 for sign-extension: 2406 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2407 // Note that any-extension is lowered identically to zero-extension. 2408 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2409 int64_t ExtTrueVal) const { 2410 SDLoc DL(Op); 2411 MVT VecVT = Op.getSimpleValueType(); 2412 SDValue Src = Op.getOperand(0); 2413 // Only custom-lower extensions from mask types 2414 assert(Src.getValueType().isVector() && 2415 Src.getValueType().getVectorElementType() == MVT::i1); 2416 2417 MVT XLenVT = Subtarget.getXLenVT(); 2418 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2419 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2420 2421 if (VecVT.isScalableVector()) { 2422 // Be careful not to introduce illegal scalar types at this stage, and be 2423 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2424 // illegal and must be expanded. Since we know that the constants are 2425 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2426 bool IsRV32E64 = 2427 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2428 2429 if (!IsRV32E64) { 2430 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2431 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2432 } else { 2433 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 2434 SplatTrueVal = 2435 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 2436 } 2437 2438 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 2439 } 2440 2441 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2442 MVT I1ContainerVT = 2443 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2444 2445 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 2446 2447 SDValue Mask, VL; 2448 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2449 2450 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 2451 SplatTrueVal = 2452 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 2453 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 2454 SplatTrueVal, SplatZero, VL); 2455 2456 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2457 } 2458 2459 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 2460 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 2461 MVT ExtVT = Op.getSimpleValueType(); 2462 // Only custom-lower extensions from fixed-length vector types. 2463 if (!ExtVT.isFixedLengthVector()) 2464 return Op; 2465 MVT VT = Op.getOperand(0).getSimpleValueType(); 2466 // Grab the canonical container type for the extended type. Infer the smaller 2467 // type from that to ensure the same number of vector elements, as we know 2468 // the LMUL will be sufficient to hold the smaller type. 2469 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 2470 // Get the extended container type manually to ensure the same number of 2471 // vector elements between source and dest. 2472 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 2473 ContainerExtVT.getVectorElementCount()); 2474 2475 SDValue Op1 = 2476 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 2477 2478 SDLoc DL(Op); 2479 SDValue Mask, VL; 2480 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2481 2482 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 2483 2484 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 2485 } 2486 2487 // Custom-lower truncations from vectors to mask vectors by using a mask and a 2488 // setcc operation: 2489 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 2490 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 2491 SelectionDAG &DAG) const { 2492 SDLoc DL(Op); 2493 EVT MaskVT = Op.getValueType(); 2494 // Only expect to custom-lower truncations to mask types 2495 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 2496 "Unexpected type for vector mask lowering"); 2497 SDValue Src = Op.getOperand(0); 2498 MVT VecVT = Src.getSimpleValueType(); 2499 2500 // If this is a fixed vector, we need to convert it to a scalable vector. 2501 MVT ContainerVT = VecVT; 2502 if (VecVT.isFixedLengthVector()) { 2503 ContainerVT = getContainerForFixedLengthVector(VecVT); 2504 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2505 } 2506 2507 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 2508 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 2509 2510 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 2511 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 2512 2513 if (VecVT.isScalableVector()) { 2514 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 2515 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 2516 } 2517 2518 SDValue Mask, VL; 2519 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2520 2521 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2522 SDValue Trunc = 2523 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 2524 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 2525 DAG.getCondCode(ISD::SETNE), Mask, VL); 2526 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 2527 } 2528 2529 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 2530 // first position of a vector, and that vector is slid up to the insert index. 2531 // By limiting the active vector length to index+1 and merging with the 2532 // original vector (with an undisturbed tail policy for elements >= VL), we 2533 // achieve the desired result of leaving all elements untouched except the one 2534 // at VL-1, which is replaced with the desired value. 2535 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2536 SelectionDAG &DAG) const { 2537 SDLoc DL(Op); 2538 MVT VecVT = Op.getSimpleValueType(); 2539 SDValue Vec = Op.getOperand(0); 2540 SDValue Val = Op.getOperand(1); 2541 SDValue Idx = Op.getOperand(2); 2542 2543 MVT ContainerVT = VecVT; 2544 // If the operand is a fixed-length vector, convert to a scalable one. 2545 if (VecVT.isFixedLengthVector()) { 2546 ContainerVT = getContainerForFixedLengthVector(VecVT); 2547 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2548 } 2549 2550 MVT XLenVT = Subtarget.getXLenVT(); 2551 2552 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2553 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 2554 // Even i64-element vectors on RV32 can be lowered without scalar 2555 // legalization if the most-significant 32 bits of the value are not affected 2556 // by the sign-extension of the lower 32 bits. 2557 // TODO: We could also catch sign extensions of a 32-bit value. 2558 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 2559 const auto *CVal = cast<ConstantSDNode>(Val); 2560 if (isInt<32>(CVal->getSExtValue())) { 2561 IsLegalInsert = true; 2562 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 2563 } 2564 } 2565 2566 SDValue Mask, VL; 2567 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2568 2569 SDValue ValInVec; 2570 2571 if (IsLegalInsert) { 2572 if (isNullConstant(Idx)) { 2573 Vec = DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, Vec, Val, VL); 2574 if (!VecVT.isFixedLengthVector()) 2575 return Vec; 2576 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 2577 } 2578 ValInVec = DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, ContainerVT, 2579 DAG.getUNDEF(ContainerVT), Val, VL); 2580 } else { 2581 // On RV32, i64-element vectors must be specially handled to place the 2582 // value at element 0, by using two vslide1up instructions in sequence on 2583 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 2584 // this. 2585 SDValue One = DAG.getConstant(1, DL, XLenVT); 2586 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 2587 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 2588 MVT I32ContainerVT = 2589 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 2590 SDValue I32Mask = 2591 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 2592 // Limit the active VL to two. 2593 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 2594 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 2595 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 2596 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 2597 InsertI64VL); 2598 // First slide in the hi value, then the lo in underneath it. 2599 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 2600 ValHi, I32Mask, InsertI64VL); 2601 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 2602 ValLo, I32Mask, InsertI64VL); 2603 // Bitcast back to the right container type. 2604 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 2605 } 2606 2607 // Now that the value is in a vector, slide it into position. 2608 SDValue InsertVL = 2609 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 2610 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 2611 ValInVec, Idx, Mask, InsertVL); 2612 if (!VecVT.isFixedLengthVector()) 2613 return Slideup; 2614 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 2615 } 2616 2617 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 2618 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 2619 // types this is done using VMV_X_S to allow us to glean information about the 2620 // sign bits of the result. 2621 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2622 SelectionDAG &DAG) const { 2623 SDLoc DL(Op); 2624 SDValue Idx = Op.getOperand(1); 2625 SDValue Vec = Op.getOperand(0); 2626 EVT EltVT = Op.getValueType(); 2627 MVT VecVT = Vec.getSimpleValueType(); 2628 MVT XLenVT = Subtarget.getXLenVT(); 2629 2630 if (VecVT.getVectorElementType() == MVT::i1) { 2631 // FIXME: For now we just promote to an i8 vector and extract from that, 2632 // but this is probably not optimal. 2633 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 2634 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 2635 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 2636 } 2637 2638 // If this is a fixed vector, we need to convert it to a scalable vector. 2639 MVT ContainerVT = VecVT; 2640 if (VecVT.isFixedLengthVector()) { 2641 ContainerVT = getContainerForFixedLengthVector(VecVT); 2642 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2643 } 2644 2645 // If the index is 0, the vector is already in the right position. 2646 if (!isNullConstant(Idx)) { 2647 // Use a VL of 1 to avoid processing more elements than we need. 2648 SDValue VL = DAG.getConstant(1, DL, XLenVT); 2649 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2650 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2651 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2652 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 2653 } 2654 2655 if (!EltVT.isInteger()) { 2656 // Floating-point extracts are handled in TableGen. 2657 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 2658 DAG.getConstant(0, DL, XLenVT)); 2659 } 2660 2661 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 2662 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 2663 } 2664 2665 // Called by type legalization to handle splat of i64 on RV32. 2666 // FIXME: We can optimize this when the type has sign or zero bits in one 2667 // of the halves. 2668 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2669 SDValue VL, SelectionDAG &DAG) { 2670 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VT); 2671 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2672 DAG.getConstant(0, DL, MVT::i32)); 2673 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2674 DAG.getConstant(1, DL, MVT::i32)); 2675 2676 // vmv.v.x vX, hi 2677 // vsll.vx vX, vX, /*32*/ 2678 // vmv.v.x vY, lo 2679 // vsll.vx vY, vY, /*32*/ 2680 // vsrl.vx vY, vY, /*32*/ 2681 // vor.vv vX, vX, vY 2682 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 2683 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2684 Lo = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2685 Lo = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL); 2686 Lo = DAG.getNode(RISCVISD::SRL_VL, DL, VT, Lo, ThirtyTwoV, Mask, VL); 2687 2688 Hi = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Hi, VL); 2689 Hi = DAG.getNode(RISCVISD::SHL_VL, DL, VT, Hi, ThirtyTwoV, Mask, VL); 2690 2691 return DAG.getNode(RISCVISD::OR_VL, DL, VT, Lo, Hi, Mask, VL); 2692 } 2693 2694 // Some RVV intrinsics may claim that they want an integer operand to be 2695 // promoted or expanded. 2696 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 2697 const RISCVSubtarget &Subtarget) { 2698 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2699 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 2700 "Unexpected opcode"); 2701 2702 if (!Subtarget.hasStdExtV()) 2703 return SDValue(); 2704 2705 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 2706 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 2707 SDLoc DL(Op); 2708 2709 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 2710 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 2711 if (!II || !II->SplatOperand) 2712 return SDValue(); 2713 2714 unsigned SplatOp = II->SplatOperand + HasChain; 2715 assert(SplatOp < Op.getNumOperands()); 2716 2717 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 2718 SDValue &ScalarOp = Operands[SplatOp]; 2719 MVT OpVT = ScalarOp.getSimpleValueType(); 2720 MVT VT = Op.getSimpleValueType(); 2721 MVT XLenVT = Subtarget.getXLenVT(); 2722 2723 // If this isn't a scalar, or its type is XLenVT we're done. 2724 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 2725 return SDValue(); 2726 2727 // Simplest case is that the operand needs to be promoted to XLenVT. 2728 if (OpVT.bitsLT(XLenVT)) { 2729 // If the operand is a constant, sign extend to increase our chances 2730 // of being able to use a .vi instruction. ANY_EXTEND would become a 2731 // a zero extend and the simm5 check in isel would fail. 2732 // FIXME: Should we ignore the upper bits in isel instead? 2733 unsigned ExtOpc = 2734 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2735 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 2736 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2737 } 2738 2739 // The more complex case is when the scalar is larger than XLenVT. 2740 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 2741 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 2742 2743 // If this is a sign-extended 32-bit constant, we can truncate it and rely 2744 // on the instruction to sign-extend since SEW>XLEN. 2745 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 2746 if (isInt<32>(CVal->getSExtValue())) { 2747 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 2748 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2749 } 2750 } 2751 2752 // We need to convert the scalar to a splat vector. 2753 // FIXME: Can we implicitly truncate the scalar if it is known to 2754 // be sign extended? 2755 // VL should be the last operand. 2756 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 2757 assert(VL.getValueType() == XLenVT); 2758 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 2759 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 2760 } 2761 2762 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2763 SelectionDAG &DAG) const { 2764 unsigned IntNo = Op.getConstantOperandVal(0); 2765 SDLoc DL(Op); 2766 MVT XLenVT = Subtarget.getXLenVT(); 2767 2768 switch (IntNo) { 2769 default: 2770 break; // Don't custom lower most intrinsics. 2771 case Intrinsic::thread_pointer: { 2772 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2773 return DAG.getRegister(RISCV::X4, PtrVT); 2774 } 2775 case Intrinsic::riscv_vmv_x_s: 2776 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 2777 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 2778 Op.getOperand(1)); 2779 case Intrinsic::riscv_vmv_v_x: { 2780 SDValue Scalar = Op.getOperand(1); 2781 if (Scalar.getValueType().bitsLE(XLenVT)) { 2782 unsigned ExtOpc = 2783 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2784 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2785 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), Scalar, 2786 Op.getOperand(2)); 2787 } 2788 2789 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 2790 2791 // If this is a sign-extended 32-bit constant, we can truncate it and rely 2792 // on the instruction to sign-extend since SEW>XLEN. 2793 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) { 2794 if (isInt<32>(CVal->getSExtValue())) 2795 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(), 2796 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32), 2797 Op.getOperand(2)); 2798 } 2799 2800 // Otherwise use the more complicated splatting algorithm. 2801 return splatSplitI64WithVL(DL, Op.getSimpleValueType(), Scalar, 2802 Op.getOperand(2), DAG); 2803 } 2804 case Intrinsic::riscv_vfmv_v_f: 2805 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 2806 Op.getOperand(1), Op.getOperand(2)); 2807 case Intrinsic::riscv_vmv_s_x: { 2808 SDValue Scalar = Op.getOperand(2); 2809 2810 if (Scalar.getValueType().bitsLE(XLenVT)) { 2811 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 2812 return DAG.getNode(RISCVISD::VMV_S_XF_VL, DL, Op.getValueType(), 2813 Op.getOperand(1), Scalar, Op.getOperand(3)); 2814 } 2815 2816 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 2817 2818 // This is an i64 value that lives in two scalar registers. We have to 2819 // insert this in a convoluted way. First we build vXi64 splat containing 2820 // the/ two values that we assemble using some bit math. Next we'll use 2821 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 2822 // to merge element 0 from our splat into the source vector. 2823 // FIXME: This is probably not the best way to do this, but it is 2824 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 2825 // point. 2826 // vmv.v.x vX, hi 2827 // vsll.vx vX, vX, /*32*/ 2828 // vmv.v.x vY, lo 2829 // vsll.vx vY, vY, /*32*/ 2830 // vsrl.vx vY, vY, /*32*/ 2831 // vor.vv vX, vX, vY 2832 // 2833 // vid.v vVid 2834 // vmseq.vx mMask, vVid, 0 2835 // vmerge.vvm vDest, vSrc, vVal, mMask 2836 MVT VT = Op.getSimpleValueType(); 2837 SDValue Vec = Op.getOperand(1); 2838 SDValue VL = Op.getOperand(3); 2839 2840 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2841 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 2842 DAG.getConstant(0, DL, MVT::i32), VL); 2843 2844 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 2845 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2846 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 2847 SDValue SelectCond = 2848 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 2849 DAG.getCondCode(ISD::SETEQ), Mask, VL); 2850 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 2851 Vec, VL); 2852 } 2853 } 2854 2855 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 2856 } 2857 2858 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 2859 SelectionDAG &DAG) const { 2860 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 2861 } 2862 2863 static MVT getLMUL1VT(MVT VT) { 2864 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 2865 "Unexpected vector MVT"); 2866 return MVT::getScalableVectorVT( 2867 VT.getVectorElementType(), 2868 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 2869 } 2870 2871 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 2872 switch (ISDOpcode) { 2873 default: 2874 llvm_unreachable("Unhandled reduction"); 2875 case ISD::VECREDUCE_ADD: 2876 return RISCVISD::VECREDUCE_ADD_VL; 2877 case ISD::VECREDUCE_UMAX: 2878 return RISCVISD::VECREDUCE_UMAX_VL; 2879 case ISD::VECREDUCE_SMAX: 2880 return RISCVISD::VECREDUCE_SMAX_VL; 2881 case ISD::VECREDUCE_UMIN: 2882 return RISCVISD::VECREDUCE_UMIN_VL; 2883 case ISD::VECREDUCE_SMIN: 2884 return RISCVISD::VECREDUCE_SMIN_VL; 2885 case ISD::VECREDUCE_AND: 2886 return RISCVISD::VECREDUCE_AND_VL; 2887 case ISD::VECREDUCE_OR: 2888 return RISCVISD::VECREDUCE_OR_VL; 2889 case ISD::VECREDUCE_XOR: 2890 return RISCVISD::VECREDUCE_XOR_VL; 2891 } 2892 } 2893 2894 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 2895 SelectionDAG &DAG) const { 2896 SDLoc DL(Op); 2897 SDValue Vec = Op.getOperand(0); 2898 EVT VecEVT = Vec.getValueType(); 2899 2900 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 2901 2902 // Due to ordering in legalize types we may have a vector type that needs to 2903 // be split. Do that manually so we can get down to a legal type. 2904 while (getTypeAction(*DAG.getContext(), VecEVT) == 2905 TargetLowering::TypeSplitVector) { 2906 SDValue Lo, Hi; 2907 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 2908 VecEVT = Lo.getValueType(); 2909 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 2910 } 2911 2912 // TODO: The type may need to be widened rather than split. Or widened before 2913 // it can be split. 2914 if (!isTypeLegal(VecEVT)) 2915 return SDValue(); 2916 2917 MVT VecVT = VecEVT.getSimpleVT(); 2918 MVT VecEltVT = VecVT.getVectorElementType(); 2919 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 2920 2921 MVT ContainerVT = VecVT; 2922 if (VecVT.isFixedLengthVector()) { 2923 ContainerVT = getContainerForFixedLengthVector(VecVT); 2924 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2925 } 2926 2927 MVT M1VT = getLMUL1VT(ContainerVT); 2928 2929 SDValue Mask, VL; 2930 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2931 2932 // FIXME: This is a VLMAX splat which might be too large and can prevent 2933 // vsetvli removal. 2934 SDValue NeutralElem = 2935 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 2936 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 2937 SDValue Reduction = 2938 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 2939 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 2940 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 2941 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 2942 } 2943 2944 // Given a reduction op, this function returns the matching reduction opcode, 2945 // the vector SDValue and the scalar SDValue required to lower this to a 2946 // RISCVISD node. 2947 static std::tuple<unsigned, SDValue, SDValue> 2948 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 2949 SDLoc DL(Op); 2950 switch (Op.getOpcode()) { 2951 default: 2952 llvm_unreachable("Unhandled reduction"); 2953 case ISD::VECREDUCE_FADD: 2954 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 2955 DAG.getConstantFP(0.0, DL, EltVT)); 2956 case ISD::VECREDUCE_SEQ_FADD: 2957 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 2958 Op.getOperand(0)); 2959 } 2960 } 2961 2962 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 2963 SelectionDAG &DAG) const { 2964 SDLoc DL(Op); 2965 MVT VecEltVT = Op.getSimpleValueType(); 2966 2967 unsigned RVVOpcode; 2968 SDValue VectorVal, ScalarVal; 2969 std::tie(RVVOpcode, VectorVal, ScalarVal) = 2970 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 2971 MVT VecVT = VectorVal.getSimpleValueType(); 2972 2973 MVT ContainerVT = VecVT; 2974 if (VecVT.isFixedLengthVector()) { 2975 ContainerVT = getContainerForFixedLengthVector(VecVT); 2976 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 2977 } 2978 2979 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 2980 2981 SDValue Mask, VL; 2982 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2983 2984 // FIXME: This is a VLMAX splat which might be too large and can prevent 2985 // vsetvli removal. 2986 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 2987 SDValue Reduction = 2988 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 2989 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 2990 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 2991 } 2992 2993 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 2994 SelectionDAG &DAG) const { 2995 SDValue Vec = Op.getOperand(0); 2996 SDValue SubVec = Op.getOperand(1); 2997 MVT VecVT = Vec.getSimpleValueType(); 2998 MVT SubVecVT = SubVec.getSimpleValueType(); 2999 3000 SDLoc DL(Op); 3001 MVT XLenVT = Subtarget.getXLenVT(); 3002 unsigned OrigIdx = Op.getConstantOperandVal(2); 3003 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3004 3005 // We don't have the ability to slide mask vectors up indexed by their i1 3006 // elements; the smallest we can do is i8. Often we are able to bitcast to 3007 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3008 // into a scalable one, we might not necessarily have enough scalable 3009 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3010 if (SubVecVT.getVectorElementType() == MVT::i1 && 3011 (OrigIdx != 0 || !Vec.isUndef())) { 3012 if (VecVT.getVectorMinNumElements() >= 8 && 3013 SubVecVT.getVectorMinNumElements() >= 8) { 3014 assert(OrigIdx % 8 == 0 && "Invalid index"); 3015 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3016 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3017 "Unexpected mask vector lowering"); 3018 OrigIdx /= 8; 3019 SubVecVT = 3020 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3021 SubVecVT.isScalableVector()); 3022 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3023 VecVT.isScalableVector()); 3024 Vec = DAG.getBitcast(VecVT, Vec); 3025 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3026 } else { 3027 // We can't slide this mask vector up indexed by its i1 elements. 3028 // This poses a problem when we wish to insert a scalable vector which 3029 // can't be re-expressed as a larger type. Just choose the slow path and 3030 // extend to a larger type, then truncate back down. 3031 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3032 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3033 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3034 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3035 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3036 Op.getOperand(2)); 3037 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3038 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3039 } 3040 } 3041 3042 // If the subvector vector is a fixed-length type, we cannot use subregister 3043 // manipulation to simplify the codegen; we don't know which register of a 3044 // LMUL group contains the specific subvector as we only know the minimum 3045 // register size. Therefore we must slide the vector group up the full 3046 // amount. 3047 if (SubVecVT.isFixedLengthVector()) { 3048 if (OrigIdx == 0 && Vec.isUndef()) 3049 return Op; 3050 MVT ContainerVT = VecVT; 3051 if (VecVT.isFixedLengthVector()) { 3052 ContainerVT = getContainerForFixedLengthVector(VecVT); 3053 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3054 } 3055 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3056 DAG.getUNDEF(ContainerVT), SubVec, 3057 DAG.getConstant(0, DL, XLenVT)); 3058 SDValue Mask = 3059 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3060 // Set the vector length to only the number of elements we care about. Note 3061 // that for slideup this includes the offset. 3062 SDValue VL = 3063 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3064 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3065 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3066 SubVec, SlideupAmt, Mask, VL); 3067 if (VecVT.isFixedLengthVector()) 3068 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3069 return DAG.getBitcast(Op.getValueType(), Slideup); 3070 } 3071 3072 unsigned SubRegIdx, RemIdx; 3073 std::tie(SubRegIdx, RemIdx) = 3074 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3075 VecVT, SubVecVT, OrigIdx, TRI); 3076 3077 RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3078 bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 || 3079 SubVecLMUL == RISCVVLMUL::LMUL_F4 || 3080 SubVecLMUL == RISCVVLMUL::LMUL_F8; 3081 3082 // 1. If the Idx has been completely eliminated and this subvector's size is 3083 // a vector register or a multiple thereof, or the surrounding elements are 3084 // undef, then this is a subvector insert which naturally aligns to a vector 3085 // register. These can easily be handled using subregister manipulation. 3086 // 2. If the subvector is smaller than a vector register, then the insertion 3087 // must preserve the undisturbed elements of the register. We do this by 3088 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3089 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3090 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3091 // LMUL=1 type back into the larger vector (resolving to another subregister 3092 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3093 // to avoid allocating a large register group to hold our subvector. 3094 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3095 return Op; 3096 3097 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3098 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3099 // (in our case undisturbed). This means we can set up a subvector insertion 3100 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3101 // size of the subvector. 3102 MVT InterSubVT = VecVT; 3103 SDValue AlignedExtract = Vec; 3104 unsigned AlignedIdx = OrigIdx - RemIdx; 3105 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3106 InterSubVT = getLMUL1VT(VecVT); 3107 // Extract a subvector equal to the nearest full vector register type. This 3108 // should resolve to a EXTRACT_SUBREG instruction. 3109 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3110 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3111 } 3112 3113 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3114 // For scalable vectors this must be further multiplied by vscale. 3115 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3116 3117 SDValue Mask, VL; 3118 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3119 3120 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3121 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3122 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3123 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3124 3125 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3126 DAG.getUNDEF(InterSubVT), SubVec, 3127 DAG.getConstant(0, DL, XLenVT)); 3128 3129 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3130 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3131 3132 // If required, insert this subvector back into the correct vector register. 3133 // This should resolve to an INSERT_SUBREG instruction. 3134 if (VecVT.bitsGT(InterSubVT)) 3135 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3136 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3137 3138 // We might have bitcast from a mask type: cast back to the original type if 3139 // required. 3140 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3141 } 3142 3143 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3144 SelectionDAG &DAG) const { 3145 SDValue Vec = Op.getOperand(0); 3146 MVT SubVecVT = Op.getSimpleValueType(); 3147 MVT VecVT = Vec.getSimpleValueType(); 3148 3149 SDLoc DL(Op); 3150 MVT XLenVT = Subtarget.getXLenVT(); 3151 unsigned OrigIdx = Op.getConstantOperandVal(1); 3152 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3153 3154 // We don't have the ability to slide mask vectors down indexed by their i1 3155 // elements; the smallest we can do is i8. Often we are able to bitcast to 3156 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3157 // from a scalable one, we might not necessarily have enough scalable 3158 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3159 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3160 if (VecVT.getVectorMinNumElements() >= 8 && 3161 SubVecVT.getVectorMinNumElements() >= 8) { 3162 assert(OrigIdx % 8 == 0 && "Invalid index"); 3163 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3164 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3165 "Unexpected mask vector lowering"); 3166 OrigIdx /= 8; 3167 SubVecVT = 3168 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3169 SubVecVT.isScalableVector()); 3170 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3171 VecVT.isScalableVector()); 3172 Vec = DAG.getBitcast(VecVT, Vec); 3173 } else { 3174 // We can't slide this mask vector down, indexed by its i1 elements. 3175 // This poses a problem when we wish to extract a scalable vector which 3176 // can't be re-expressed as a larger type. Just choose the slow path and 3177 // extend to a larger type, then truncate back down. 3178 // TODO: We could probably improve this when extracting certain fixed 3179 // from fixed, where we can extract as i8 and shift the correct element 3180 // right to reach the desired subvector? 3181 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3182 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3183 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3184 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3185 Op.getOperand(1)); 3186 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3187 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3188 } 3189 } 3190 3191 // If the subvector vector is a fixed-length type, we cannot use subregister 3192 // manipulation to simplify the codegen; we don't know which register of a 3193 // LMUL group contains the specific subvector as we only know the minimum 3194 // register size. Therefore we must slide the vector group down the full 3195 // amount. 3196 if (SubVecVT.isFixedLengthVector()) { 3197 // With an index of 0 this is a cast-like subvector, which can be performed 3198 // with subregister operations. 3199 if (OrigIdx == 0) 3200 return Op; 3201 MVT ContainerVT = VecVT; 3202 if (VecVT.isFixedLengthVector()) { 3203 ContainerVT = getContainerForFixedLengthVector(VecVT); 3204 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3205 } 3206 SDValue Mask = 3207 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3208 // Set the vector length to only the number of elements we care about. This 3209 // avoids sliding down elements we're going to discard straight away. 3210 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3211 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3212 SDValue Slidedown = 3213 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3214 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3215 // Now we can use a cast-like subvector extract to get the result. 3216 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3217 DAG.getConstant(0, DL, XLenVT)); 3218 return DAG.getBitcast(Op.getValueType(), Slidedown); 3219 } 3220 3221 unsigned SubRegIdx, RemIdx; 3222 std::tie(SubRegIdx, RemIdx) = 3223 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3224 VecVT, SubVecVT, OrigIdx, TRI); 3225 3226 // If the Idx has been completely eliminated then this is a subvector extract 3227 // which naturally aligns to a vector register. These can easily be handled 3228 // using subregister manipulation. 3229 if (RemIdx == 0) 3230 return Op; 3231 3232 // Else we must shift our vector register directly to extract the subvector. 3233 // Do this using VSLIDEDOWN. 3234 3235 // If the vector type is an LMUL-group type, extract a subvector equal to the 3236 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3237 // instruction. 3238 MVT InterSubVT = VecVT; 3239 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3240 InterSubVT = getLMUL1VT(VecVT); 3241 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3242 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3243 } 3244 3245 // Slide this vector register down by the desired number of elements in order 3246 // to place the desired subvector starting at element 0. 3247 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3248 // For scalable vectors this must be further multiplied by vscale. 3249 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3250 3251 SDValue Mask, VL; 3252 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3253 SDValue Slidedown = 3254 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3255 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3256 3257 // Now the vector is in the right position, extract our final subvector. This 3258 // should resolve to a COPY. 3259 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3260 DAG.getConstant(0, DL, XLenVT)); 3261 3262 // We might have bitcast from a mask type: cast back to the original type if 3263 // required. 3264 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3265 } 3266 3267 // Implement step_vector to the vid instruction. 3268 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3269 SelectionDAG &DAG) const { 3270 SDLoc DL(Op); 3271 assert(Op.getConstantOperandAPInt(0) == 1 && "Unexpected step value"); 3272 MVT VT = Op.getSimpleValueType(); 3273 SDValue Mask, VL; 3274 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3275 return DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3276 } 3277 3278 // Implement vector_reverse using vrgather.vv with indices determined by 3279 // subtracting the id of each element from (VLMAX-1). This will convert 3280 // the indices like so: 3281 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3282 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3283 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3284 SelectionDAG &DAG) const { 3285 SDLoc DL(Op); 3286 MVT VecVT = Op.getSimpleValueType(); 3287 unsigned EltSize = VecVT.getScalarSizeInBits(); 3288 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3289 3290 unsigned MaxVLMAX = 0; 3291 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3292 if (VectorBitsMax != 0) 3293 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3294 3295 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3296 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3297 3298 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3299 // to use vrgatherei16.vv. 3300 // TODO: It's also possible to use vrgatherei16.vv for other types to 3301 // decrease register width for the index calculation. 3302 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3303 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3304 // Reverse each half, then reassemble them in reverse order. 3305 // NOTE: It's also possible that after splitting that VLMAX no longer 3306 // requires vrgatherei16.vv. 3307 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 3308 SDValue Lo, Hi; 3309 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3310 EVT LoVT, HiVT; 3311 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 3312 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 3313 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 3314 // Reassemble the low and high pieces reversed. 3315 // FIXME: This is a CONCAT_VECTORS. 3316 SDValue Res = 3317 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 3318 DAG.getIntPtrConstant(0, DL)); 3319 return DAG.getNode( 3320 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 3321 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 3322 } 3323 3324 // Just promote the int type to i16 which will double the LMUL. 3325 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 3326 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 3327 } 3328 3329 MVT XLenVT = Subtarget.getXLenVT(); 3330 SDValue Mask, VL; 3331 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3332 3333 // Calculate VLMAX-1 for the desired SEW. 3334 unsigned MinElts = VecVT.getVectorMinNumElements(); 3335 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 3336 DAG.getConstant(MinElts, DL, XLenVT)); 3337 SDValue VLMinus1 = 3338 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 3339 3340 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 3341 bool IsRV32E64 = 3342 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 3343 SDValue SplatVL; 3344 if (!IsRV32E64) 3345 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 3346 else 3347 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 3348 3349 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 3350 SDValue Indices = 3351 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 3352 3353 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 3354 } 3355 3356 SDValue 3357 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 3358 SelectionDAG &DAG) const { 3359 auto *Load = cast<LoadSDNode>(Op); 3360 3361 SDLoc DL(Op); 3362 MVT VT = Op.getSimpleValueType(); 3363 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3364 3365 SDValue VL = 3366 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3367 3368 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3369 SDValue NewLoad = DAG.getMemIntrinsicNode( 3370 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 3371 Load->getMemoryVT(), Load->getMemOperand()); 3372 3373 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 3374 return DAG.getMergeValues({Result, Load->getChain()}, DL); 3375 } 3376 3377 SDValue 3378 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 3379 SelectionDAG &DAG) const { 3380 auto *Store = cast<StoreSDNode>(Op); 3381 3382 SDLoc DL(Op); 3383 MVT VT = Store->getValue().getSimpleValueType(); 3384 3385 // FIXME: We probably need to zero any extra bits in a byte for mask stores. 3386 // This is tricky to do. 3387 3388 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3389 3390 SDValue VL = 3391 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3392 3393 SDValue NewValue = 3394 convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget); 3395 return DAG.getMemIntrinsicNode( 3396 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 3397 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 3398 Store->getMemoryVT(), Store->getMemOperand()); 3399 } 3400 3401 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 3402 auto *Load = cast<MaskedLoadSDNode>(Op); 3403 3404 SDLoc DL(Op); 3405 MVT VT = Op.getSimpleValueType(); 3406 MVT XLenVT = Subtarget.getXLenVT(); 3407 3408 SDValue Mask = Load->getMask(); 3409 SDValue PassThru = Load->getPassThru(); 3410 SDValue VL; 3411 3412 MVT ContainerVT = VT; 3413 if (VT.isFixedLengthVector()) { 3414 ContainerVT = getContainerForFixedLengthVector(VT); 3415 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3416 3417 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3418 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 3419 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3420 } else 3421 VL = DAG.getRegister(RISCV::X0, XLenVT); 3422 3423 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3424 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 3425 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 3426 Load->getBasePtr(), Mask, VL}; 3427 SDValue Result = 3428 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 3429 Load->getMemoryVT(), Load->getMemOperand()); 3430 SDValue Chain = Result.getValue(1); 3431 3432 if (VT.isFixedLengthVector()) 3433 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3434 3435 return DAG.getMergeValues({Result, Chain}, DL); 3436 } 3437 3438 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 3439 auto *Store = cast<MaskedStoreSDNode>(Op); 3440 3441 SDLoc DL(Op); 3442 SDValue Val = Store->getValue(); 3443 SDValue Mask = Store->getMask(); 3444 MVT VT = Val.getSimpleValueType(); 3445 MVT XLenVT = Subtarget.getXLenVT(); 3446 SDValue VL; 3447 3448 MVT ContainerVT = VT; 3449 if (VT.isFixedLengthVector()) { 3450 ContainerVT = getContainerForFixedLengthVector(VT); 3451 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3452 3453 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 3454 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3455 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3456 } else 3457 VL = DAG.getRegister(RISCV::X0, XLenVT); 3458 3459 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 3460 return DAG.getMemIntrinsicNode( 3461 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 3462 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 3463 Store->getMemoryVT(), Store->getMemOperand()); 3464 } 3465 3466 SDValue 3467 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 3468 SelectionDAG &DAG) const { 3469 MVT InVT = Op.getOperand(0).getSimpleValueType(); 3470 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 3471 3472 MVT VT = Op.getSimpleValueType(); 3473 3474 SDValue Op1 = 3475 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3476 SDValue Op2 = 3477 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 3478 3479 SDLoc DL(Op); 3480 SDValue VL = 3481 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3482 3483 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3484 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3485 3486 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 3487 Op.getOperand(2), Mask, VL); 3488 3489 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 3490 } 3491 3492 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 3493 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 3494 MVT VT = Op.getSimpleValueType(); 3495 3496 if (VT.getVectorElementType() == MVT::i1) 3497 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 3498 3499 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 3500 } 3501 3502 // Lower vector ABS to smax(X, sub(0, X)). 3503 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 3504 SDLoc DL(Op); 3505 MVT VT = Op.getSimpleValueType(); 3506 SDValue X = Op.getOperand(0); 3507 3508 assert(VT.isFixedLengthVector() && "Unexpected type"); 3509 3510 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3511 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 3512 3513 SDValue Mask, VL; 3514 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3515 3516 SDValue SplatZero = 3517 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 3518 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3519 SDValue NegX = 3520 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 3521 SDValue Max = 3522 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 3523 3524 return convertFromScalableVector(VT, Max, DAG, Subtarget); 3525 } 3526 3527 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 3528 SDValue Op, SelectionDAG &DAG) const { 3529 SDLoc DL(Op); 3530 MVT VT = Op.getSimpleValueType(); 3531 SDValue Mag = Op.getOperand(0); 3532 SDValue Sign = Op.getOperand(1); 3533 assert(Mag.getValueType() == Sign.getValueType() && 3534 "Can only handle COPYSIGN with matching types."); 3535 3536 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3537 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 3538 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 3539 3540 SDValue Mask, VL; 3541 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3542 3543 SDValue CopySign = 3544 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 3545 3546 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 3547 } 3548 3549 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 3550 SDValue Op, SelectionDAG &DAG) const { 3551 MVT VT = Op.getSimpleValueType(); 3552 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3553 3554 MVT I1ContainerVT = 3555 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3556 3557 SDValue CC = 3558 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 3559 SDValue Op1 = 3560 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 3561 SDValue Op2 = 3562 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 3563 3564 SDLoc DL(Op); 3565 SDValue Mask, VL; 3566 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3567 3568 SDValue Select = 3569 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 3570 3571 return convertFromScalableVector(VT, Select, DAG, Subtarget); 3572 } 3573 3574 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 3575 unsigned NewOpc, 3576 bool HasMask) const { 3577 MVT VT = Op.getSimpleValueType(); 3578 assert(useRVVForFixedLengthVectorVT(VT) && 3579 "Only expected to lower fixed length vector operation!"); 3580 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3581 3582 // Create list of operands by converting existing ones to scalable types. 3583 SmallVector<SDValue, 6> Ops; 3584 for (const SDValue &V : Op->op_values()) { 3585 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 3586 3587 // Pass through non-vector operands. 3588 if (!V.getValueType().isVector()) { 3589 Ops.push_back(V); 3590 continue; 3591 } 3592 3593 // "cast" fixed length vector to a scalable vector. 3594 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 3595 "Only fixed length vectors are supported!"); 3596 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 3597 } 3598 3599 SDLoc DL(Op); 3600 SDValue Mask, VL; 3601 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3602 if (HasMask) 3603 Ops.push_back(Mask); 3604 Ops.push_back(VL); 3605 3606 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 3607 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 3608 } 3609 3610 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 3611 // a RVV indexed load. The RVV indexed load instructions only support the 3612 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 3613 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 3614 // indexing is extended to the XLEN value type and scaled accordingly. 3615 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 3616 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 3617 SDLoc DL(Op); 3618 3619 SDValue Index = MGN->getIndex(); 3620 SDValue Mask = MGN->getMask(); 3621 SDValue PassThru = MGN->getPassThru(); 3622 3623 MVT VT = Op.getSimpleValueType(); 3624 MVT IndexVT = Index.getSimpleValueType(); 3625 MVT XLenVT = Subtarget.getXLenVT(); 3626 3627 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 3628 "Unexpected VTs!"); 3629 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 3630 "Unexpected pointer type"); 3631 // Targets have to explicitly opt-in for extending vector loads. 3632 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 3633 "Unexpected extending MGATHER"); 3634 3635 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3636 // the selection of the masked intrinsics doesn't do this for us. 3637 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3638 3639 SDValue VL; 3640 MVT ContainerVT = VT; 3641 if (VT.isFixedLengthVector()) { 3642 // We need to use the larger of the result and index type to determine the 3643 // scalable type to use so we don't increase LMUL for any operand/result. 3644 if (VT.bitsGE(IndexVT)) { 3645 ContainerVT = getContainerForFixedLengthVector(VT); 3646 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 3647 ContainerVT.getVectorElementCount()); 3648 } else { 3649 IndexVT = getContainerForFixedLengthVector(IndexVT); 3650 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 3651 IndexVT.getVectorElementCount()); 3652 } 3653 3654 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 3655 3656 if (!IsUnmasked) { 3657 MVT MaskVT = 3658 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3659 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3660 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 3661 } 3662 3663 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3664 } else 3665 VL = DAG.getRegister(RISCV::X0, XLenVT); 3666 3667 unsigned IntID = 3668 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 3669 SmallVector<SDValue, 8> Ops{MGN->getChain(), 3670 DAG.getTargetConstant(IntID, DL, XLenVT)}; 3671 if (!IsUnmasked) 3672 Ops.push_back(PassThru); 3673 Ops.push_back(MGN->getBasePtr()); 3674 Ops.push_back(Index); 3675 if (!IsUnmasked) 3676 Ops.push_back(Mask); 3677 Ops.push_back(VL); 3678 3679 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3680 SDValue Result = 3681 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 3682 MGN->getMemoryVT(), MGN->getMemOperand()); 3683 SDValue Chain = Result.getValue(1); 3684 3685 if (VT.isFixedLengthVector()) 3686 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3687 3688 return DAG.getMergeValues({Result, Chain}, DL); 3689 } 3690 3691 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 3692 // a RVV indexed store. The RVV indexed store instructions only support the 3693 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 3694 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 3695 // indexing is extended to the XLEN value type and scaled accordingly. 3696 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 3697 SelectionDAG &DAG) const { 3698 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 3699 SDLoc DL(Op); 3700 SDValue Index = MSN->getIndex(); 3701 SDValue Mask = MSN->getMask(); 3702 SDValue Val = MSN->getValue(); 3703 3704 MVT VT = Val.getSimpleValueType(); 3705 MVT IndexVT = Index.getSimpleValueType(); 3706 MVT XLenVT = Subtarget.getXLenVT(); 3707 3708 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 3709 "Unexpected VTs!"); 3710 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 3711 "Unexpected pointer type"); 3712 // Targets have to explicitly opt-in for extending vector loads and 3713 // truncating vector stores. 3714 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 3715 3716 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3717 // the selection of the masked intrinsics doesn't do this for us. 3718 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3719 3720 SDValue VL; 3721 if (VT.isFixedLengthVector()) { 3722 // We need to use the larger of the value and index type to determine the 3723 // scalable type to use so we don't increase LMUL for any operand/result. 3724 if (VT.bitsGE(IndexVT)) { 3725 VT = getContainerForFixedLengthVector(VT); 3726 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 3727 VT.getVectorElementCount()); 3728 } else { 3729 IndexVT = getContainerForFixedLengthVector(IndexVT); 3730 VT = MVT::getVectorVT(VT.getVectorElementType(), 3731 IndexVT.getVectorElementCount()); 3732 } 3733 3734 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 3735 Val = convertToScalableVector(VT, Val, DAG, Subtarget); 3736 3737 if (!IsUnmasked) { 3738 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3739 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3740 } 3741 3742 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3743 } else 3744 VL = DAG.getRegister(RISCV::X0, XLenVT); 3745 3746 unsigned IntID = 3747 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 3748 SmallVector<SDValue, 8> Ops{MSN->getChain(), 3749 DAG.getTargetConstant(IntID, DL, XLenVT)}; 3750 Ops.push_back(Val); 3751 Ops.push_back(MSN->getBasePtr()); 3752 Ops.push_back(Index); 3753 if (!IsUnmasked) 3754 Ops.push_back(Mask); 3755 Ops.push_back(VL); 3756 3757 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 3758 MSN->getMemoryVT(), MSN->getMemOperand()); 3759 } 3760 3761 // Returns the opcode of the target-specific SDNode that implements the 32-bit 3762 // form of the given Opcode. 3763 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 3764 switch (Opcode) { 3765 default: 3766 llvm_unreachable("Unexpected opcode"); 3767 case ISD::SHL: 3768 return RISCVISD::SLLW; 3769 case ISD::SRA: 3770 return RISCVISD::SRAW; 3771 case ISD::SRL: 3772 return RISCVISD::SRLW; 3773 case ISD::SDIV: 3774 return RISCVISD::DIVW; 3775 case ISD::UDIV: 3776 return RISCVISD::DIVUW; 3777 case ISD::UREM: 3778 return RISCVISD::REMUW; 3779 case ISD::ROTL: 3780 return RISCVISD::ROLW; 3781 case ISD::ROTR: 3782 return RISCVISD::RORW; 3783 case RISCVISD::GREVI: 3784 return RISCVISD::GREVIW; 3785 case RISCVISD::GORCI: 3786 return RISCVISD::GORCIW; 3787 } 3788 } 3789 3790 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 3791 // Because i32 isn't a legal type for RV64, these operations would otherwise 3792 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 3793 // later one because the fact the operation was originally of type i32 is 3794 // lost. 3795 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 3796 unsigned ExtOpc = ISD::ANY_EXTEND) { 3797 SDLoc DL(N); 3798 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 3799 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 3800 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 3801 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 3802 // ReplaceNodeResults requires we maintain the same type for the return value. 3803 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 3804 } 3805 3806 // Converts the given 32-bit operation to a i64 operation with signed extension 3807 // semantic to reduce the signed extension instructions. 3808 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 3809 SDLoc DL(N); 3810 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3811 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 3812 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 3813 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 3814 DAG.getValueType(MVT::i32)); 3815 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 3816 } 3817 3818 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 3819 SmallVectorImpl<SDValue> &Results, 3820 SelectionDAG &DAG) const { 3821 SDLoc DL(N); 3822 switch (N->getOpcode()) { 3823 default: 3824 llvm_unreachable("Don't know how to custom type legalize this operation!"); 3825 case ISD::STRICT_FP_TO_SINT: 3826 case ISD::STRICT_FP_TO_UINT: 3827 case ISD::FP_TO_SINT: 3828 case ISD::FP_TO_UINT: { 3829 bool IsStrict = N->isStrictFPOpcode(); 3830 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3831 "Unexpected custom legalisation"); 3832 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 3833 // If the FP type needs to be softened, emit a library call using the 'si' 3834 // version. If we left it to default legalization we'd end up with 'di'. If 3835 // the FP type doesn't need to be softened just let generic type 3836 // legalization promote the result type. 3837 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 3838 TargetLowering::TypeSoftenFloat) 3839 return; 3840 RTLIB::Libcall LC; 3841 if (N->getOpcode() == ISD::FP_TO_SINT || 3842 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 3843 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 3844 else 3845 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 3846 MakeLibCallOptions CallOptions; 3847 EVT OpVT = Op0.getValueType(); 3848 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 3849 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 3850 SDValue Result; 3851 std::tie(Result, Chain) = 3852 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 3853 Results.push_back(Result); 3854 if (IsStrict) 3855 Results.push_back(Chain); 3856 break; 3857 } 3858 case ISD::READCYCLECOUNTER: { 3859 assert(!Subtarget.is64Bit() && 3860 "READCYCLECOUNTER only has custom type legalization on riscv32"); 3861 3862 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 3863 SDValue RCW = 3864 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 3865 3866 Results.push_back( 3867 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 3868 Results.push_back(RCW.getValue(2)); 3869 break; 3870 } 3871 case ISD::ADD: 3872 case ISD::SUB: 3873 case ISD::MUL: 3874 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3875 "Unexpected custom legalisation"); 3876 if (N->getOperand(1).getOpcode() == ISD::Constant) 3877 return; 3878 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 3879 break; 3880 case ISD::SHL: 3881 case ISD::SRA: 3882 case ISD::SRL: 3883 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3884 "Unexpected custom legalisation"); 3885 if (N->getOperand(1).getOpcode() == ISD::Constant) 3886 return; 3887 Results.push_back(customLegalizeToWOp(N, DAG)); 3888 break; 3889 case ISD::ROTL: 3890 case ISD::ROTR: 3891 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3892 "Unexpected custom legalisation"); 3893 Results.push_back(customLegalizeToWOp(N, DAG)); 3894 break; 3895 case ISD::CTTZ: 3896 case ISD::CTTZ_ZERO_UNDEF: 3897 case ISD::CTLZ: 3898 case ISD::CTLZ_ZERO_UNDEF: { 3899 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3900 "Unexpected custom legalisation"); 3901 3902 SDValue NewOp0 = 3903 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3904 bool IsCTZ = 3905 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 3906 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 3907 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 3908 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 3909 return; 3910 } 3911 case ISD::SDIV: 3912 case ISD::UDIV: 3913 case ISD::UREM: { 3914 MVT VT = N->getSimpleValueType(0); 3915 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 3916 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 3917 "Unexpected custom legalisation"); 3918 if (N->getOperand(0).getOpcode() == ISD::Constant || 3919 N->getOperand(1).getOpcode() == ISD::Constant) 3920 return; 3921 3922 // If the input is i32, use ANY_EXTEND since the W instructions don't read 3923 // the upper 32 bits. For other types we need to sign or zero extend 3924 // based on the opcode. 3925 unsigned ExtOpc = ISD::ANY_EXTEND; 3926 if (VT != MVT::i32) 3927 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 3928 : ISD::ZERO_EXTEND; 3929 3930 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 3931 break; 3932 } 3933 case ISD::UADDO: 3934 case ISD::USUBO: { 3935 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3936 "Unexpected custom legalisation"); 3937 bool IsAdd = N->getOpcode() == ISD::UADDO; 3938 // Create an ADDW or SUBW. 3939 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 3940 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 3941 SDValue Res = 3942 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 3943 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 3944 DAG.getValueType(MVT::i32)); 3945 3946 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 3947 // Since the inputs are sign extended from i32, this is equivalent to 3948 // comparing the lower 32 bits. 3949 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 3950 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 3951 IsAdd ? ISD::SETULT : ISD::SETUGT); 3952 3953 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 3954 Results.push_back(Overflow); 3955 return; 3956 } 3957 case ISD::UADDSAT: 3958 case ISD::USUBSAT: { 3959 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3960 "Unexpected custom legalisation"); 3961 if (Subtarget.hasStdExtZbb()) { 3962 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 3963 // sign extend allows overflow of the lower 32 bits to be detected on 3964 // the promoted size. 3965 SDValue LHS = 3966 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 3967 SDValue RHS = 3968 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 3969 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 3970 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 3971 return; 3972 } 3973 3974 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 3975 // promotion for UADDO/USUBO. 3976 Results.push_back(expandAddSubSat(N, DAG)); 3977 return; 3978 } 3979 case ISD::BITCAST: { 3980 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3981 Subtarget.hasStdExtF()) || 3982 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 3983 "Unexpected custom legalisation"); 3984 SDValue Op0 = N->getOperand(0); 3985 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 3986 if (Op0.getValueType() != MVT::f16) 3987 return; 3988 SDValue FPConv = 3989 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 3990 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 3991 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 3992 Subtarget.hasStdExtF()) { 3993 if (Op0.getValueType() != MVT::f32) 3994 return; 3995 SDValue FPConv = 3996 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 3997 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 3998 } 3999 break; 4000 } 4001 case RISCVISD::GREVI: 4002 case RISCVISD::GORCI: { 4003 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4004 "Unexpected custom legalisation"); 4005 // This is similar to customLegalizeToWOp, except that we pass the second 4006 // operand (a TargetConstant) straight through: it is already of type 4007 // XLenVT. 4008 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4009 SDValue NewOp0 = 4010 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4011 SDValue NewRes = 4012 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 4013 // ReplaceNodeResults requires we maintain the same type for the return 4014 // value. 4015 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4016 break; 4017 } 4018 case RISCVISD::SHFLI: { 4019 // There is no SHFLIW instruction, but we can just promote the operation. 4020 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4021 "Unexpected custom legalisation"); 4022 SDValue NewOp0 = 4023 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4024 SDValue NewRes = 4025 DAG.getNode(RISCVISD::SHFLI, DL, MVT::i64, NewOp0, N->getOperand(1)); 4026 // ReplaceNodeResults requires we maintain the same type for the return 4027 // value. 4028 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4029 break; 4030 } 4031 case ISD::BSWAP: 4032 case ISD::BITREVERSE: { 4033 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4034 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4035 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4036 N->getOperand(0)); 4037 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4038 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 4039 DAG.getTargetConstant(Imm, DL, 4040 Subtarget.getXLenVT())); 4041 // ReplaceNodeResults requires we maintain the same type for the return 4042 // value. 4043 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4044 break; 4045 } 4046 case ISD::FSHL: 4047 case ISD::FSHR: { 4048 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4049 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4050 SDValue NewOp0 = 4051 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4052 SDValue NewOp1 = 4053 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4054 SDValue NewOp2 = 4055 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4056 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4057 // Mask the shift amount to 5 bits. 4058 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4059 DAG.getConstant(0x1f, DL, MVT::i64)); 4060 unsigned Opc = 4061 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4062 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4063 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4064 break; 4065 } 4066 case ISD::EXTRACT_VECTOR_ELT: { 4067 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4068 // type is illegal (currently only vXi64 RV32). 4069 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4070 // transferred to the destination register. We issue two of these from the 4071 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4072 // first element. 4073 SDValue Vec = N->getOperand(0); 4074 SDValue Idx = N->getOperand(1); 4075 4076 // The vector type hasn't been legalized yet so we can't issue target 4077 // specific nodes if it needs legalization. 4078 // FIXME: We would manually legalize if it's important. 4079 if (!isTypeLegal(Vec.getValueType())) 4080 return; 4081 4082 MVT VecVT = Vec.getSimpleValueType(); 4083 4084 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4085 VecVT.getVectorElementType() == MVT::i64 && 4086 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4087 4088 // If this is a fixed vector, we need to convert it to a scalable vector. 4089 MVT ContainerVT = VecVT; 4090 if (VecVT.isFixedLengthVector()) { 4091 ContainerVT = getContainerForFixedLengthVector(VecVT); 4092 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4093 } 4094 4095 MVT XLenVT = Subtarget.getXLenVT(); 4096 4097 // Use a VL of 1 to avoid processing more elements than we need. 4098 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4099 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4100 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4101 4102 // Unless the index is known to be 0, we must slide the vector down to get 4103 // the desired element into index 0. 4104 if (!isNullConstant(Idx)) { 4105 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4106 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4107 } 4108 4109 // Extract the lower XLEN bits of the correct vector element. 4110 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4111 4112 // To extract the upper XLEN bits of the vector element, shift the first 4113 // element right by 32 bits and re-extract the lower XLEN bits. 4114 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4115 DAG.getConstant(32, DL, XLenVT), VL); 4116 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4117 ThirtyTwoV, Mask, VL); 4118 4119 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4120 4121 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4122 break; 4123 } 4124 case ISD::INTRINSIC_WO_CHAIN: { 4125 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4126 switch (IntNo) { 4127 default: 4128 llvm_unreachable( 4129 "Don't know how to custom type legalize this intrinsic!"); 4130 case Intrinsic::riscv_vmv_x_s: { 4131 EVT VT = N->getValueType(0); 4132 MVT XLenVT = Subtarget.getXLenVT(); 4133 if (VT.bitsLT(XLenVT)) { 4134 // Simple case just extract using vmv.x.s and truncate. 4135 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 4136 Subtarget.getXLenVT(), N->getOperand(1)); 4137 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 4138 return; 4139 } 4140 4141 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 4142 "Unexpected custom legalization"); 4143 4144 // We need to do the move in two steps. 4145 SDValue Vec = N->getOperand(1); 4146 MVT VecVT = Vec.getSimpleValueType(); 4147 4148 // First extract the lower XLEN bits of the element. 4149 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4150 4151 // To extract the upper XLEN bits of the vector element, shift the first 4152 // element right by 32 bits and re-extract the lower XLEN bits. 4153 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4154 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4155 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4156 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 4157 DAG.getConstant(32, DL, XLenVT), VL); 4158 SDValue LShr32 = 4159 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 4160 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4161 4162 Results.push_back( 4163 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4164 break; 4165 } 4166 } 4167 break; 4168 } 4169 case ISD::VECREDUCE_ADD: 4170 case ISD::VECREDUCE_AND: 4171 case ISD::VECREDUCE_OR: 4172 case ISD::VECREDUCE_XOR: 4173 case ISD::VECREDUCE_SMAX: 4174 case ISD::VECREDUCE_UMAX: 4175 case ISD::VECREDUCE_SMIN: 4176 case ISD::VECREDUCE_UMIN: 4177 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 4178 Results.push_back(V); 4179 break; 4180 } 4181 } 4182 4183 // A structure to hold one of the bit-manipulation patterns below. Together, a 4184 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 4185 // (or (and (shl x, 1), 0xAAAAAAAA), 4186 // (and (srl x, 1), 0x55555555)) 4187 struct RISCVBitmanipPat { 4188 SDValue Op; 4189 unsigned ShAmt; 4190 bool IsSHL; 4191 4192 bool formsPairWith(const RISCVBitmanipPat &Other) const { 4193 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 4194 } 4195 }; 4196 4197 // Matches patterns of the form 4198 // (and (shl x, C2), (C1 << C2)) 4199 // (and (srl x, C2), C1) 4200 // (shl (and x, C1), C2) 4201 // (srl (and x, (C1 << C2)), C2) 4202 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 4203 // The expected masks for each shift amount are specified in BitmanipMasks where 4204 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 4205 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 4206 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 4207 // XLen is 64. 4208 static Optional<RISCVBitmanipPat> 4209 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 4210 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 4211 "Unexpected number of masks"); 4212 Optional<uint64_t> Mask; 4213 // Optionally consume a mask around the shift operation. 4214 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 4215 Mask = Op.getConstantOperandVal(1); 4216 Op = Op.getOperand(0); 4217 } 4218 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 4219 return None; 4220 bool IsSHL = Op.getOpcode() == ISD::SHL; 4221 4222 if (!isa<ConstantSDNode>(Op.getOperand(1))) 4223 return None; 4224 uint64_t ShAmt = Op.getConstantOperandVal(1); 4225 4226 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 4227 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 4228 return None; 4229 // If we don't have enough masks for 64 bit, then we must be trying to 4230 // match SHFL so we're only allowed to shift 1/4 of the width. 4231 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 4232 return None; 4233 4234 SDValue Src = Op.getOperand(0); 4235 4236 // The expected mask is shifted left when the AND is found around SHL 4237 // patterns. 4238 // ((x >> 1) & 0x55555555) 4239 // ((x << 1) & 0xAAAAAAAA) 4240 bool SHLExpMask = IsSHL; 4241 4242 if (!Mask) { 4243 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 4244 // the mask is all ones: consume that now. 4245 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 4246 Mask = Src.getConstantOperandVal(1); 4247 Src = Src.getOperand(0); 4248 // The expected mask is now in fact shifted left for SRL, so reverse the 4249 // decision. 4250 // ((x & 0xAAAAAAAA) >> 1) 4251 // ((x & 0x55555555) << 1) 4252 SHLExpMask = !SHLExpMask; 4253 } else { 4254 // Use a default shifted mask of all-ones if there's no AND, truncated 4255 // down to the expected width. This simplifies the logic later on. 4256 Mask = maskTrailingOnes<uint64_t>(Width); 4257 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 4258 } 4259 } 4260 4261 unsigned MaskIdx = Log2_32(ShAmt); 4262 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 4263 4264 if (SHLExpMask) 4265 ExpMask <<= ShAmt; 4266 4267 if (Mask != ExpMask) 4268 return None; 4269 4270 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 4271 } 4272 4273 // Matches any of the following bit-manipulation patterns: 4274 // (and (shl x, 1), (0x55555555 << 1)) 4275 // (and (srl x, 1), 0x55555555) 4276 // (shl (and x, 0x55555555), 1) 4277 // (srl (and x, (0x55555555 << 1)), 1) 4278 // where the shift amount and mask may vary thus: 4279 // [1] = 0x55555555 / 0xAAAAAAAA 4280 // [2] = 0x33333333 / 0xCCCCCCCC 4281 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 4282 // [8] = 0x00FF00FF / 0xFF00FF00 4283 // [16] = 0x0000FFFF / 0xFFFFFFFF 4284 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 4285 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 4286 // These are the unshifted masks which we use to match bit-manipulation 4287 // patterns. They may be shifted left in certain circumstances. 4288 static const uint64_t BitmanipMasks[] = { 4289 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 4290 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 4291 4292 return matchRISCVBitmanipPat(Op, BitmanipMasks); 4293 } 4294 4295 // Match the following pattern as a GREVI(W) operation 4296 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 4297 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 4298 const RISCVSubtarget &Subtarget) { 4299 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4300 EVT VT = Op.getValueType(); 4301 4302 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 4303 auto LHS = matchGREVIPat(Op.getOperand(0)); 4304 auto RHS = matchGREVIPat(Op.getOperand(1)); 4305 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 4306 SDLoc DL(Op); 4307 return DAG.getNode( 4308 RISCVISD::GREVI, DL, VT, LHS->Op, 4309 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 4310 } 4311 } 4312 return SDValue(); 4313 } 4314 4315 // Matches any the following pattern as a GORCI(W) operation 4316 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 4317 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 4318 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 4319 // Note that with the variant of 3., 4320 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 4321 // the inner pattern will first be matched as GREVI and then the outer 4322 // pattern will be matched to GORC via the first rule above. 4323 // 4. (or (rotl/rotr x, bitwidth/2), x) 4324 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 4325 const RISCVSubtarget &Subtarget) { 4326 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4327 EVT VT = Op.getValueType(); 4328 4329 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 4330 SDLoc DL(Op); 4331 SDValue Op0 = Op.getOperand(0); 4332 SDValue Op1 = Op.getOperand(1); 4333 4334 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 4335 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 4336 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 4337 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 4338 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 4339 if ((Reverse.getOpcode() == ISD::ROTL || 4340 Reverse.getOpcode() == ISD::ROTR) && 4341 Reverse.getOperand(0) == X && 4342 isa<ConstantSDNode>(Reverse.getOperand(1))) { 4343 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 4344 if (RotAmt == (VT.getSizeInBits() / 2)) 4345 return DAG.getNode( 4346 RISCVISD::GORCI, DL, VT, X, 4347 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 4348 } 4349 return SDValue(); 4350 }; 4351 4352 // Check for either commutable permutation of (or (GREVI x, shamt), x) 4353 if (SDValue V = MatchOROfReverse(Op0, Op1)) 4354 return V; 4355 if (SDValue V = MatchOROfReverse(Op1, Op0)) 4356 return V; 4357 4358 // OR is commutable so canonicalize its OR operand to the left 4359 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 4360 std::swap(Op0, Op1); 4361 if (Op0.getOpcode() != ISD::OR) 4362 return SDValue(); 4363 SDValue OrOp0 = Op0.getOperand(0); 4364 SDValue OrOp1 = Op0.getOperand(1); 4365 auto LHS = matchGREVIPat(OrOp0); 4366 // OR is commutable so swap the operands and try again: x might have been 4367 // on the left 4368 if (!LHS) { 4369 std::swap(OrOp0, OrOp1); 4370 LHS = matchGREVIPat(OrOp0); 4371 } 4372 auto RHS = matchGREVIPat(Op1); 4373 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 4374 return DAG.getNode( 4375 RISCVISD::GORCI, DL, VT, LHS->Op, 4376 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 4377 } 4378 } 4379 return SDValue(); 4380 } 4381 4382 // Matches any of the following bit-manipulation patterns: 4383 // (and (shl x, 1), (0x22222222 << 1)) 4384 // (and (srl x, 1), 0x22222222) 4385 // (shl (and x, 0x22222222), 1) 4386 // (srl (and x, (0x22222222 << 1)), 1) 4387 // where the shift amount and mask may vary thus: 4388 // [1] = 0x22222222 / 0x44444444 4389 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 4390 // [4] = 0x00F000F0 / 0x0F000F00 4391 // [8] = 0x0000FF00 / 0x00FF0000 4392 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 4393 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 4394 // These are the unshifted masks which we use to match bit-manipulation 4395 // patterns. They may be shifted left in certain circumstances. 4396 static const uint64_t BitmanipMasks[] = { 4397 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 4398 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 4399 4400 return matchRISCVBitmanipPat(Op, BitmanipMasks); 4401 } 4402 4403 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 4404 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 4405 const RISCVSubtarget &Subtarget) { 4406 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 4407 EVT VT = Op.getValueType(); 4408 4409 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 4410 return SDValue(); 4411 4412 SDValue Op0 = Op.getOperand(0); 4413 SDValue Op1 = Op.getOperand(1); 4414 4415 // Or is commutable so canonicalize the second OR to the LHS. 4416 if (Op0.getOpcode() != ISD::OR) 4417 std::swap(Op0, Op1); 4418 if (Op0.getOpcode() != ISD::OR) 4419 return SDValue(); 4420 4421 // We found an inner OR, so our operands are the operands of the inner OR 4422 // and the other operand of the outer OR. 4423 SDValue A = Op0.getOperand(0); 4424 SDValue B = Op0.getOperand(1); 4425 SDValue C = Op1; 4426 4427 auto Match1 = matchSHFLPat(A); 4428 auto Match2 = matchSHFLPat(B); 4429 4430 // If neither matched, we failed. 4431 if (!Match1 && !Match2) 4432 return SDValue(); 4433 4434 // We had at least one match. if one failed, try the remaining C operand. 4435 if (!Match1) { 4436 std::swap(A, C); 4437 Match1 = matchSHFLPat(A); 4438 if (!Match1) 4439 return SDValue(); 4440 } else if (!Match2) { 4441 std::swap(B, C); 4442 Match2 = matchSHFLPat(B); 4443 if (!Match2) 4444 return SDValue(); 4445 } 4446 assert(Match1 && Match2); 4447 4448 // Make sure our matches pair up. 4449 if (!Match1->formsPairWith(*Match2)) 4450 return SDValue(); 4451 4452 // All the remains is to make sure C is an AND with the same input, that masks 4453 // out the bits that are being shuffled. 4454 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 4455 C.getOperand(0) != Match1->Op) 4456 return SDValue(); 4457 4458 uint64_t Mask = C.getConstantOperandVal(1); 4459 4460 static const uint64_t BitmanipMasks[] = { 4461 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 4462 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 4463 }; 4464 4465 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 4466 unsigned MaskIdx = Log2_32(Match1->ShAmt); 4467 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 4468 4469 if (Mask != ExpMask) 4470 return SDValue(); 4471 4472 SDLoc DL(Op); 4473 return DAG.getNode( 4474 RISCVISD::SHFLI, DL, VT, Match1->Op, 4475 DAG.getTargetConstant(Match1->ShAmt, DL, Subtarget.getXLenVT())); 4476 } 4477 4478 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 4479 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 4480 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 4481 // not undo itself, but they are redundant. 4482 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 4483 unsigned ShAmt1 = N->getConstantOperandVal(1); 4484 SDValue Src = N->getOperand(0); 4485 4486 if (Src.getOpcode() != N->getOpcode()) 4487 return SDValue(); 4488 4489 unsigned ShAmt2 = Src.getConstantOperandVal(1); 4490 Src = Src.getOperand(0); 4491 4492 unsigned CombinedShAmt; 4493 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 4494 CombinedShAmt = ShAmt1 | ShAmt2; 4495 else 4496 CombinedShAmt = ShAmt1 ^ ShAmt2; 4497 4498 if (CombinedShAmt == 0) 4499 return Src; 4500 4501 SDLoc DL(N); 4502 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 4503 DAG.getTargetConstant(CombinedShAmt, DL, 4504 N->getOperand(1).getValueType())); 4505 } 4506 4507 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 4508 DAGCombinerInfo &DCI) const { 4509 SelectionDAG &DAG = DCI.DAG; 4510 4511 switch (N->getOpcode()) { 4512 default: 4513 break; 4514 case RISCVISD::SplitF64: { 4515 SDValue Op0 = N->getOperand(0); 4516 // If the input to SplitF64 is just BuildPairF64 then the operation is 4517 // redundant. Instead, use BuildPairF64's operands directly. 4518 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 4519 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 4520 4521 SDLoc DL(N); 4522 4523 // It's cheaper to materialise two 32-bit integers than to load a double 4524 // from the constant pool and transfer it to integer registers through the 4525 // stack. 4526 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 4527 APInt V = C->getValueAPF().bitcastToAPInt(); 4528 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 4529 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 4530 return DCI.CombineTo(N, Lo, Hi); 4531 } 4532 4533 // This is a target-specific version of a DAGCombine performed in 4534 // DAGCombiner::visitBITCAST. It performs the equivalent of: 4535 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 4536 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 4537 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 4538 !Op0.getNode()->hasOneUse()) 4539 break; 4540 SDValue NewSplitF64 = 4541 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 4542 Op0.getOperand(0)); 4543 SDValue Lo = NewSplitF64.getValue(0); 4544 SDValue Hi = NewSplitF64.getValue(1); 4545 APInt SignBit = APInt::getSignMask(32); 4546 if (Op0.getOpcode() == ISD::FNEG) { 4547 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 4548 DAG.getConstant(SignBit, DL, MVT::i32)); 4549 return DCI.CombineTo(N, Lo, NewHi); 4550 } 4551 assert(Op0.getOpcode() == ISD::FABS); 4552 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 4553 DAG.getConstant(~SignBit, DL, MVT::i32)); 4554 return DCI.CombineTo(N, Lo, NewHi); 4555 } 4556 case RISCVISD::SLLW: 4557 case RISCVISD::SRAW: 4558 case RISCVISD::SRLW: 4559 case RISCVISD::ROLW: 4560 case RISCVISD::RORW: { 4561 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 4562 SDValue LHS = N->getOperand(0); 4563 SDValue RHS = N->getOperand(1); 4564 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 4565 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 4566 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 4567 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 4568 if (N->getOpcode() != ISD::DELETED_NODE) 4569 DCI.AddToWorklist(N); 4570 return SDValue(N, 0); 4571 } 4572 break; 4573 } 4574 case RISCVISD::CLZW: 4575 case RISCVISD::CTZW: { 4576 // Only the lower 32 bits of the first operand are read 4577 SDValue Op0 = N->getOperand(0); 4578 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 4579 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 4580 if (N->getOpcode() != ISD::DELETED_NODE) 4581 DCI.AddToWorklist(N); 4582 return SDValue(N, 0); 4583 } 4584 break; 4585 } 4586 case RISCVISD::FSL: 4587 case RISCVISD::FSR: { 4588 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 4589 SDValue ShAmt = N->getOperand(2); 4590 unsigned BitWidth = ShAmt.getValueSizeInBits(); 4591 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 4592 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 4593 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 4594 if (N->getOpcode() != ISD::DELETED_NODE) 4595 DCI.AddToWorklist(N); 4596 return SDValue(N, 0); 4597 } 4598 break; 4599 } 4600 case RISCVISD::FSLW: 4601 case RISCVISD::FSRW: { 4602 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 4603 // read. 4604 SDValue Op0 = N->getOperand(0); 4605 SDValue Op1 = N->getOperand(1); 4606 SDValue ShAmt = N->getOperand(2); 4607 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 4608 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 4609 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 4610 SimplifyDemandedBits(Op1, OpMask, DCI) || 4611 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 4612 if (N->getOpcode() != ISD::DELETED_NODE) 4613 DCI.AddToWorklist(N); 4614 return SDValue(N, 0); 4615 } 4616 break; 4617 } 4618 case RISCVISD::GREVIW: 4619 case RISCVISD::GORCIW: { 4620 // Only the lower 32 bits of the first operand are read 4621 SDValue Op0 = N->getOperand(0); 4622 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 4623 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 4624 if (N->getOpcode() != ISD::DELETED_NODE) 4625 DCI.AddToWorklist(N); 4626 return SDValue(N, 0); 4627 } 4628 4629 return combineGREVI_GORCI(N, DCI.DAG); 4630 } 4631 case RISCVISD::FMV_X_ANYEXTW_RV64: { 4632 SDLoc DL(N); 4633 SDValue Op0 = N->getOperand(0); 4634 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 4635 // conversion is unnecessary and can be replaced with an ANY_EXTEND 4636 // of the FMV_W_X_RV64 operand. 4637 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 4638 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 4639 "Unexpected value type!"); 4640 return Op0.getOperand(0); 4641 } 4642 4643 // This is a target-specific version of a DAGCombine performed in 4644 // DAGCombiner::visitBITCAST. It performs the equivalent of: 4645 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 4646 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 4647 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 4648 !Op0.getNode()->hasOneUse()) 4649 break; 4650 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 4651 Op0.getOperand(0)); 4652 APInt SignBit = APInt::getSignMask(32).sext(64); 4653 if (Op0.getOpcode() == ISD::FNEG) 4654 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 4655 DAG.getConstant(SignBit, DL, MVT::i64)); 4656 4657 assert(Op0.getOpcode() == ISD::FABS); 4658 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 4659 DAG.getConstant(~SignBit, DL, MVT::i64)); 4660 } 4661 case RISCVISD::GREVI: 4662 case RISCVISD::GORCI: 4663 return combineGREVI_GORCI(N, DCI.DAG); 4664 case ISD::OR: 4665 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 4666 return GREV; 4667 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 4668 return GORC; 4669 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DCI.DAG, Subtarget)) 4670 return SHFL; 4671 break; 4672 case RISCVISD::SELECT_CC: { 4673 // Transform 4674 SDValue LHS = N->getOperand(0); 4675 SDValue RHS = N->getOperand(1); 4676 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 4677 if (!ISD::isIntEqualitySetCC(CCVal)) 4678 break; 4679 4680 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 4681 // (select_cc X, Y, lt, trueV, falseV) 4682 // Sometimes the setcc is introduced after select_cc has been formed. 4683 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 4684 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 4685 // If we're looking for eq 0 instead of ne 0, we need to invert the 4686 // condition. 4687 bool Invert = CCVal == ISD::SETEQ; 4688 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 4689 if (Invert) 4690 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4691 4692 SDLoc DL(N); 4693 RHS = LHS.getOperand(1); 4694 LHS = LHS.getOperand(0); 4695 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4696 4697 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 4698 return DAG.getNode( 4699 RISCVISD::SELECT_CC, DL, N->getValueType(0), 4700 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 4701 } 4702 4703 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 4704 // (select_cc X, Y, eq/ne, trueV, falseV) 4705 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 4706 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 4707 {LHS.getOperand(0), LHS.getOperand(1), 4708 N->getOperand(2), N->getOperand(3), 4709 N->getOperand(4)}); 4710 // (select_cc X, 1, setne, trueV, falseV) -> 4711 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 4712 // This can occur when legalizing some floating point comparisons. 4713 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 4714 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 4715 SDLoc DL(N); 4716 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4717 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 4718 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 4719 return DAG.getNode( 4720 RISCVISD::SELECT_CC, DL, N->getValueType(0), 4721 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 4722 } 4723 4724 break; 4725 } 4726 case RISCVISD::BR_CC: { 4727 SDValue LHS = N->getOperand(1); 4728 SDValue RHS = N->getOperand(2); 4729 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 4730 if (!ISD::isIntEqualitySetCC(CCVal)) 4731 break; 4732 4733 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 4734 // (br_cc X, Y, lt, dest) 4735 // Sometimes the setcc is introduced after br_cc has been formed. 4736 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 4737 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 4738 // If we're looking for eq 0 instead of ne 0, we need to invert the 4739 // condition. 4740 bool Invert = CCVal == ISD::SETEQ; 4741 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 4742 if (Invert) 4743 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4744 4745 SDLoc DL(N); 4746 RHS = LHS.getOperand(1); 4747 LHS = LHS.getOperand(0); 4748 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 4749 4750 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 4751 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 4752 N->getOperand(4)); 4753 } 4754 4755 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 4756 // (br_cc X, Y, eq/ne, trueV, falseV) 4757 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 4758 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 4759 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 4760 N->getOperand(3), N->getOperand(4)); 4761 4762 // (br_cc X, 1, setne, br_cc) -> 4763 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 4764 // This can occur when legalizing some floating point comparisons. 4765 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 4766 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 4767 SDLoc DL(N); 4768 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 4769 SDValue TargetCC = DAG.getCondCode(CCVal); 4770 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 4771 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 4772 N->getOperand(0), LHS, RHS, TargetCC, 4773 N->getOperand(4)); 4774 } 4775 break; 4776 } 4777 case ISD::FCOPYSIGN: { 4778 EVT VT = N->getValueType(0); 4779 if (!VT.isVector()) 4780 break; 4781 // There is a form of VFSGNJ which injects the negated sign of its second 4782 // operand. Try and bubble any FNEG up after the extend/round to produce 4783 // this optimized pattern. Avoid modifying cases where FP_ROUND and 4784 // TRUNC=1. 4785 SDValue In2 = N->getOperand(1); 4786 // Avoid cases where the extend/round has multiple uses, as duplicating 4787 // those is typically more expensive than removing a fneg. 4788 if (!In2.hasOneUse()) 4789 break; 4790 if (In2.getOpcode() != ISD::FP_EXTEND && 4791 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 4792 break; 4793 In2 = In2.getOperand(0); 4794 if (In2.getOpcode() != ISD::FNEG) 4795 break; 4796 SDLoc DL(N); 4797 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 4798 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 4799 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 4800 } 4801 case ISD::MGATHER: 4802 case ISD::MSCATTER: { 4803 if (!DCI.isBeforeLegalize()) 4804 break; 4805 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 4806 SDValue Index = MGSN->getIndex(); 4807 EVT IndexVT = Index.getValueType(); 4808 MVT XLenVT = Subtarget.getXLenVT(); 4809 // RISCV indexed loads only support the "unsigned unscaled" addressing 4810 // mode, so anything else must be manually legalized. 4811 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 4812 (MGSN->isIndexSigned() && 4813 IndexVT.getVectorElementType().bitsLT(XLenVT)); 4814 if (!NeedsIdxLegalization) 4815 break; 4816 4817 SDLoc DL(N); 4818 4819 // Any index legalization should first promote to XLenVT, so we don't lose 4820 // bits when scaling. This may create an illegal index type so we let 4821 // LLVM's legalization take care of the splitting. 4822 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 4823 IndexVT = IndexVT.changeVectorElementType(XLenVT); 4824 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 4825 : ISD::ZERO_EXTEND, 4826 DL, IndexVT, Index); 4827 } 4828 4829 unsigned Scale = N->getConstantOperandVal(5); 4830 if (MGSN->isIndexScaled() && Scale != 1) { 4831 // Manually scale the indices by the element size. 4832 // TODO: Sanitize the scale operand here? 4833 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 4834 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 4835 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 4836 } 4837 4838 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 4839 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 4840 return DAG.getMaskedGather( 4841 N->getVTList(), MGSN->getMemoryVT(), DL, 4842 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 4843 MGSN->getBasePtr(), Index, MGN->getScale()}, 4844 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 4845 } 4846 const auto *MSN = cast<MaskedScatterSDNode>(N); 4847 return DAG.getMaskedScatter( 4848 N->getVTList(), MGSN->getMemoryVT(), DL, 4849 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 4850 Index, MGSN->getScale()}, 4851 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 4852 } 4853 } 4854 4855 return SDValue(); 4856 } 4857 4858 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 4859 const SDNode *N, CombineLevel Level) const { 4860 // The following folds are only desirable if `(OP _, c1 << c2)` can be 4861 // materialised in fewer instructions than `(OP _, c1)`: 4862 // 4863 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4864 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 4865 SDValue N0 = N->getOperand(0); 4866 EVT Ty = N0.getValueType(); 4867 if (Ty.isScalarInteger() && 4868 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 4869 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 4870 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 4871 if (C1 && C2) { 4872 const APInt &C1Int = C1->getAPIntValue(); 4873 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 4874 4875 // We can materialise `c1 << c2` into an add immediate, so it's "free", 4876 // and the combine should happen, to potentially allow further combines 4877 // later. 4878 if (ShiftedC1Int.getMinSignedBits() <= 64 && 4879 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 4880 return true; 4881 4882 // We can materialise `c1` in an add immediate, so it's "free", and the 4883 // combine should be prevented. 4884 if (C1Int.getMinSignedBits() <= 64 && 4885 isLegalAddImmediate(C1Int.getSExtValue())) 4886 return false; 4887 4888 // Neither constant will fit into an immediate, so find materialisation 4889 // costs. 4890 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 4891 Subtarget.is64Bit()); 4892 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 4893 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 4894 4895 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 4896 // combine should be prevented. 4897 if (C1Cost < ShiftedC1Cost) 4898 return false; 4899 } 4900 } 4901 return true; 4902 } 4903 4904 bool RISCVTargetLowering::targetShrinkDemandedConstant( 4905 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 4906 TargetLoweringOpt &TLO) const { 4907 // Delay this optimization as late as possible. 4908 if (!TLO.LegalOps) 4909 return false; 4910 4911 EVT VT = Op.getValueType(); 4912 if (VT.isVector()) 4913 return false; 4914 4915 // Only handle AND for now. 4916 if (Op.getOpcode() != ISD::AND) 4917 return false; 4918 4919 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 4920 if (!C) 4921 return false; 4922 4923 const APInt &Mask = C->getAPIntValue(); 4924 4925 // Clear all non-demanded bits initially. 4926 APInt ShrunkMask = Mask & DemandedBits; 4927 4928 // Try to make a smaller immediate by setting undemanded bits. 4929 4930 APInt ExpandedMask = Mask | ~DemandedBits; 4931 4932 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 4933 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 4934 }; 4935 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 4936 if (NewMask == Mask) 4937 return true; 4938 SDLoc DL(Op); 4939 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 4940 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 4941 return TLO.CombineTo(Op, NewOp); 4942 }; 4943 4944 // If the shrunk mask fits in sign extended 12 bits, let the target 4945 // independent code apply it. 4946 if (ShrunkMask.isSignedIntN(12)) 4947 return false; 4948 4949 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 4950 if (VT == MVT::i64) { 4951 APInt NewMask = APInt(64, 0xffffffff); 4952 if (IsLegalMask(NewMask)) 4953 return UseMask(NewMask); 4954 } 4955 4956 // For the remaining optimizations, we need to be able to make a negative 4957 // number through a combination of mask and undemanded bits. 4958 if (!ExpandedMask.isNegative()) 4959 return false; 4960 4961 // What is the fewest number of bits we need to represent the negative number. 4962 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 4963 4964 // Try to make a 12 bit negative immediate. If that fails try to make a 32 4965 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 4966 APInt NewMask = ShrunkMask; 4967 if (MinSignedBits <= 12) 4968 NewMask.setBitsFrom(11); 4969 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 4970 NewMask.setBitsFrom(31); 4971 else 4972 return false; 4973 4974 // Sanity check that our new mask is a subset of the demanded mask. 4975 assert(IsLegalMask(NewMask)); 4976 return UseMask(NewMask); 4977 } 4978 4979 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 4980 KnownBits &Known, 4981 const APInt &DemandedElts, 4982 const SelectionDAG &DAG, 4983 unsigned Depth) const { 4984 unsigned BitWidth = Known.getBitWidth(); 4985 unsigned Opc = Op.getOpcode(); 4986 assert((Opc >= ISD::BUILTIN_OP_END || 4987 Opc == ISD::INTRINSIC_WO_CHAIN || 4988 Opc == ISD::INTRINSIC_W_CHAIN || 4989 Opc == ISD::INTRINSIC_VOID) && 4990 "Should use MaskedValueIsZero if you don't know whether Op" 4991 " is a target node!"); 4992 4993 Known.resetAll(); 4994 switch (Opc) { 4995 default: break; 4996 case RISCVISD::SELECT_CC: { 4997 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 4998 // If we don't know any bits, early out. 4999 if (Known.isUnknown()) 5000 break; 5001 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 5002 5003 // Only known if known in both the LHS and RHS. 5004 Known = KnownBits::commonBits(Known, Known2); 5005 break; 5006 } 5007 case RISCVISD::REMUW: { 5008 KnownBits Known2; 5009 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5010 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5011 // We only care about the lower 32 bits. 5012 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 5013 // Restore the original width by sign extending. 5014 Known = Known.sext(BitWidth); 5015 break; 5016 } 5017 case RISCVISD::DIVUW: { 5018 KnownBits Known2; 5019 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5020 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5021 // We only care about the lower 32 bits. 5022 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 5023 // Restore the original width by sign extending. 5024 Known = Known.sext(BitWidth); 5025 break; 5026 } 5027 case RISCVISD::CTZW: { 5028 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5029 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 5030 unsigned LowBits = Log2_32(PossibleTZ) + 1; 5031 Known.Zero.setBitsFrom(LowBits); 5032 break; 5033 } 5034 case RISCVISD::CLZW: { 5035 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5036 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 5037 unsigned LowBits = Log2_32(PossibleLZ) + 1; 5038 Known.Zero.setBitsFrom(LowBits); 5039 break; 5040 } 5041 case RISCVISD::READ_VLENB: 5042 // We assume VLENB is at least 8 bytes. 5043 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 5044 Known.Zero.setLowBits(3); 5045 break; 5046 } 5047 } 5048 5049 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 5050 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 5051 unsigned Depth) const { 5052 switch (Op.getOpcode()) { 5053 default: 5054 break; 5055 case RISCVISD::SLLW: 5056 case RISCVISD::SRAW: 5057 case RISCVISD::SRLW: 5058 case RISCVISD::DIVW: 5059 case RISCVISD::DIVUW: 5060 case RISCVISD::REMUW: 5061 case RISCVISD::ROLW: 5062 case RISCVISD::RORW: 5063 case RISCVISD::GREVIW: 5064 case RISCVISD::GORCIW: 5065 case RISCVISD::FSLW: 5066 case RISCVISD::FSRW: 5067 // TODO: As the result is sign-extended, this is conservatively correct. A 5068 // more precise answer could be calculated for SRAW depending on known 5069 // bits in the shift amount. 5070 return 33; 5071 case RISCVISD::SHFLI: { 5072 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 5073 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 5074 // will stay within the upper 32 bits. If there were more than 32 sign bits 5075 // before there will be at least 33 sign bits after. 5076 if (Op.getValueType() == MVT::i64 && 5077 (Op.getConstantOperandVal(1) & 0x10) == 0) { 5078 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 5079 if (Tmp > 32) 5080 return 33; 5081 } 5082 break; 5083 } 5084 case RISCVISD::VMV_X_S: 5085 // The number of sign bits of the scalar result is computed by obtaining the 5086 // element type of the input vector operand, subtracting its width from the 5087 // XLEN, and then adding one (sign bit within the element type). If the 5088 // element type is wider than XLen, the least-significant XLEN bits are 5089 // taken. 5090 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 5091 return 1; 5092 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 5093 } 5094 5095 return 1; 5096 } 5097 5098 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 5099 MachineBasicBlock *BB) { 5100 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 5101 5102 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 5103 // Should the count have wrapped while it was being read, we need to try 5104 // again. 5105 // ... 5106 // read: 5107 // rdcycleh x3 # load high word of cycle 5108 // rdcycle x2 # load low word of cycle 5109 // rdcycleh x4 # load high word of cycle 5110 // bne x3, x4, read # check if high word reads match, otherwise try again 5111 // ... 5112 5113 MachineFunction &MF = *BB->getParent(); 5114 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5115 MachineFunction::iterator It = ++BB->getIterator(); 5116 5117 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 5118 MF.insert(It, LoopMBB); 5119 5120 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 5121 MF.insert(It, DoneMBB); 5122 5123 // Transfer the remainder of BB and its successor edges to DoneMBB. 5124 DoneMBB->splice(DoneMBB->begin(), BB, 5125 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 5126 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 5127 5128 BB->addSuccessor(LoopMBB); 5129 5130 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5131 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 5132 Register LoReg = MI.getOperand(0).getReg(); 5133 Register HiReg = MI.getOperand(1).getReg(); 5134 DebugLoc DL = MI.getDebugLoc(); 5135 5136 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 5137 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 5138 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 5139 .addReg(RISCV::X0); 5140 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 5141 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 5142 .addReg(RISCV::X0); 5143 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 5144 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 5145 .addReg(RISCV::X0); 5146 5147 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 5148 .addReg(HiReg) 5149 .addReg(ReadAgainReg) 5150 .addMBB(LoopMBB); 5151 5152 LoopMBB->addSuccessor(LoopMBB); 5153 LoopMBB->addSuccessor(DoneMBB); 5154 5155 MI.eraseFromParent(); 5156 5157 return DoneMBB; 5158 } 5159 5160 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 5161 MachineBasicBlock *BB) { 5162 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 5163 5164 MachineFunction &MF = *BB->getParent(); 5165 DebugLoc DL = MI.getDebugLoc(); 5166 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5167 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 5168 Register LoReg = MI.getOperand(0).getReg(); 5169 Register HiReg = MI.getOperand(1).getReg(); 5170 Register SrcReg = MI.getOperand(2).getReg(); 5171 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 5172 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 5173 5174 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 5175 RI); 5176 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 5177 MachineMemOperand *MMOLo = 5178 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 5179 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 5180 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 5181 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 5182 .addFrameIndex(FI) 5183 .addImm(0) 5184 .addMemOperand(MMOLo); 5185 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 5186 .addFrameIndex(FI) 5187 .addImm(4) 5188 .addMemOperand(MMOHi); 5189 MI.eraseFromParent(); // The pseudo instruction is gone now. 5190 return BB; 5191 } 5192 5193 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 5194 MachineBasicBlock *BB) { 5195 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 5196 "Unexpected instruction"); 5197 5198 MachineFunction &MF = *BB->getParent(); 5199 DebugLoc DL = MI.getDebugLoc(); 5200 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5201 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 5202 Register DstReg = MI.getOperand(0).getReg(); 5203 Register LoReg = MI.getOperand(1).getReg(); 5204 Register HiReg = MI.getOperand(2).getReg(); 5205 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 5206 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 5207 5208 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 5209 MachineMemOperand *MMOLo = 5210 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 5211 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 5212 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 5213 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 5214 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 5215 .addFrameIndex(FI) 5216 .addImm(0) 5217 .addMemOperand(MMOLo); 5218 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 5219 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 5220 .addFrameIndex(FI) 5221 .addImm(4) 5222 .addMemOperand(MMOHi); 5223 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 5224 MI.eraseFromParent(); // The pseudo instruction is gone now. 5225 return BB; 5226 } 5227 5228 static bool isSelectPseudo(MachineInstr &MI) { 5229 switch (MI.getOpcode()) { 5230 default: 5231 return false; 5232 case RISCV::Select_GPR_Using_CC_GPR: 5233 case RISCV::Select_FPR16_Using_CC_GPR: 5234 case RISCV::Select_FPR32_Using_CC_GPR: 5235 case RISCV::Select_FPR64_Using_CC_GPR: 5236 return true; 5237 } 5238 } 5239 5240 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 5241 MachineBasicBlock *BB) { 5242 // To "insert" Select_* instructions, we actually have to insert the triangle 5243 // control-flow pattern. The incoming instructions know the destination vreg 5244 // to set, the condition code register to branch on, the true/false values to 5245 // select between, and the condcode to use to select the appropriate branch. 5246 // 5247 // We produce the following control flow: 5248 // HeadMBB 5249 // | \ 5250 // | IfFalseMBB 5251 // | / 5252 // TailMBB 5253 // 5254 // When we find a sequence of selects we attempt to optimize their emission 5255 // by sharing the control flow. Currently we only handle cases where we have 5256 // multiple selects with the exact same condition (same LHS, RHS and CC). 5257 // The selects may be interleaved with other instructions if the other 5258 // instructions meet some requirements we deem safe: 5259 // - They are debug instructions. Otherwise, 5260 // - They do not have side-effects, do not access memory and their inputs do 5261 // not depend on the results of the select pseudo-instructions. 5262 // The TrueV/FalseV operands of the selects cannot depend on the result of 5263 // previous selects in the sequence. 5264 // These conditions could be further relaxed. See the X86 target for a 5265 // related approach and more information. 5266 Register LHS = MI.getOperand(1).getReg(); 5267 Register RHS = MI.getOperand(2).getReg(); 5268 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 5269 5270 SmallVector<MachineInstr *, 4> SelectDebugValues; 5271 SmallSet<Register, 4> SelectDests; 5272 SelectDests.insert(MI.getOperand(0).getReg()); 5273 5274 MachineInstr *LastSelectPseudo = &MI; 5275 5276 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 5277 SequenceMBBI != E; ++SequenceMBBI) { 5278 if (SequenceMBBI->isDebugInstr()) 5279 continue; 5280 else if (isSelectPseudo(*SequenceMBBI)) { 5281 if (SequenceMBBI->getOperand(1).getReg() != LHS || 5282 SequenceMBBI->getOperand(2).getReg() != RHS || 5283 SequenceMBBI->getOperand(3).getImm() != CC || 5284 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 5285 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 5286 break; 5287 LastSelectPseudo = &*SequenceMBBI; 5288 SequenceMBBI->collectDebugValues(SelectDebugValues); 5289 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 5290 } else { 5291 if (SequenceMBBI->hasUnmodeledSideEffects() || 5292 SequenceMBBI->mayLoadOrStore()) 5293 break; 5294 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 5295 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 5296 })) 5297 break; 5298 } 5299 } 5300 5301 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 5302 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5303 DebugLoc DL = MI.getDebugLoc(); 5304 MachineFunction::iterator I = ++BB->getIterator(); 5305 5306 MachineBasicBlock *HeadMBB = BB; 5307 MachineFunction *F = BB->getParent(); 5308 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 5309 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 5310 5311 F->insert(I, IfFalseMBB); 5312 F->insert(I, TailMBB); 5313 5314 // Transfer debug instructions associated with the selects to TailMBB. 5315 for (MachineInstr *DebugInstr : SelectDebugValues) { 5316 TailMBB->push_back(DebugInstr->removeFromParent()); 5317 } 5318 5319 // Move all instructions after the sequence to TailMBB. 5320 TailMBB->splice(TailMBB->end(), HeadMBB, 5321 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 5322 // Update machine-CFG edges by transferring all successors of the current 5323 // block to the new block which will contain the Phi nodes for the selects. 5324 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 5325 // Set the successors for HeadMBB. 5326 HeadMBB->addSuccessor(IfFalseMBB); 5327 HeadMBB->addSuccessor(TailMBB); 5328 5329 // Insert appropriate branch. 5330 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 5331 5332 BuildMI(HeadMBB, DL, TII.get(Opcode)) 5333 .addReg(LHS) 5334 .addReg(RHS) 5335 .addMBB(TailMBB); 5336 5337 // IfFalseMBB just falls through to TailMBB. 5338 IfFalseMBB->addSuccessor(TailMBB); 5339 5340 // Create PHIs for all of the select pseudo-instructions. 5341 auto SelectMBBI = MI.getIterator(); 5342 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 5343 auto InsertionPoint = TailMBB->begin(); 5344 while (SelectMBBI != SelectEnd) { 5345 auto Next = std::next(SelectMBBI); 5346 if (isSelectPseudo(*SelectMBBI)) { 5347 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 5348 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 5349 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 5350 .addReg(SelectMBBI->getOperand(4).getReg()) 5351 .addMBB(HeadMBB) 5352 .addReg(SelectMBBI->getOperand(5).getReg()) 5353 .addMBB(IfFalseMBB); 5354 SelectMBBI->eraseFromParent(); 5355 } 5356 SelectMBBI = Next; 5357 } 5358 5359 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 5360 return TailMBB; 5361 } 5362 5363 static MachineInstr *elideCopies(MachineInstr *MI, 5364 const MachineRegisterInfo &MRI) { 5365 while (true) { 5366 if (!MI->isFullCopy()) 5367 return MI; 5368 if (!Register::isVirtualRegister(MI->getOperand(1).getReg())) 5369 return nullptr; 5370 MI = MRI.getVRegDef(MI->getOperand(1).getReg()); 5371 if (!MI) 5372 return nullptr; 5373 } 5374 } 5375 5376 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 5377 int VLIndex, unsigned SEWIndex, 5378 RISCVVLMUL VLMul, bool ForceTailAgnostic) { 5379 MachineFunction &MF = *BB->getParent(); 5380 DebugLoc DL = MI.getDebugLoc(); 5381 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 5382 5383 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 5384 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 5385 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 5386 5387 MachineRegisterInfo &MRI = MF.getRegInfo(); 5388 5389 auto BuildVSETVLI = [&]() { 5390 if (VLIndex >= 0) { 5391 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 5392 Register VLReg = MI.getOperand(VLIndex).getReg(); 5393 5394 // VL might be a compile time constant, but isel would have to put it 5395 // in a register. See if VL comes from an ADDI X0, imm. 5396 if (VLReg.isVirtual()) { 5397 MachineInstr *Def = MRI.getVRegDef(VLReg); 5398 if (Def && Def->getOpcode() == RISCV::ADDI && 5399 Def->getOperand(1).getReg() == RISCV::X0 && 5400 Def->getOperand(2).isImm()) { 5401 uint64_t Imm = Def->getOperand(2).getImm(); 5402 // VSETIVLI allows a 5-bit zero extended immediate. 5403 if (isUInt<5>(Imm)) 5404 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI)) 5405 .addReg(DestReg, RegState::Define | RegState::Dead) 5406 .addImm(Imm); 5407 } 5408 } 5409 5410 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 5411 .addReg(DestReg, RegState::Define | RegState::Dead) 5412 .addReg(VLReg); 5413 } 5414 5415 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 5416 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 5417 .addReg(RISCV::X0, RegState::Define | RegState::Dead) 5418 .addReg(RISCV::X0, RegState::Kill); 5419 }; 5420 5421 MachineInstrBuilder MIB = BuildVSETVLI(); 5422 5423 // Default to tail agnostic unless the destination is tied to a source. In 5424 // that case the user would have some control over the tail values. The tail 5425 // policy is also ignored on instructions that only update element 0 like 5426 // vmv.s.x or reductions so use agnostic there to match the common case. 5427 // FIXME: This is conservatively correct, but we might want to detect that 5428 // the input is undefined. 5429 bool TailAgnostic = true; 5430 unsigned UseOpIdx; 5431 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 5432 TailAgnostic = false; 5433 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 5434 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 5435 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 5436 if (UseMI) { 5437 UseMI = elideCopies(UseMI, MRI); 5438 if (UseMI && UseMI->isImplicitDef()) 5439 TailAgnostic = true; 5440 } 5441 } 5442 5443 // For simplicity we reuse the vtype representation here. 5444 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 5445 /*TailAgnostic*/ TailAgnostic, 5446 /*MaskAgnostic*/ false)); 5447 5448 // Remove (now) redundant operands from pseudo 5449 if (VLIndex >= 0) { 5450 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 5451 MI.getOperand(VLIndex).setIsKill(false); 5452 } 5453 5454 return BB; 5455 } 5456 5457 MachineBasicBlock * 5458 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 5459 MachineBasicBlock *BB) const { 5460 uint64_t TSFlags = MI.getDesc().TSFlags; 5461 5462 if (TSFlags & RISCVII::HasSEWOpMask) { 5463 unsigned NumOperands = MI.getNumExplicitOperands(); 5464 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 5465 unsigned SEWIndex = NumOperands - 1; 5466 bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask; 5467 5468 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 5469 RISCVII::VLMulShift); 5470 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 5471 } 5472 5473 switch (MI.getOpcode()) { 5474 default: 5475 llvm_unreachable("Unexpected instr type to insert"); 5476 case RISCV::ReadCycleWide: 5477 assert(!Subtarget.is64Bit() && 5478 "ReadCycleWrite is only to be used on riscv32"); 5479 return emitReadCycleWidePseudo(MI, BB); 5480 case RISCV::Select_GPR_Using_CC_GPR: 5481 case RISCV::Select_FPR16_Using_CC_GPR: 5482 case RISCV::Select_FPR32_Using_CC_GPR: 5483 case RISCV::Select_FPR64_Using_CC_GPR: 5484 return emitSelectPseudo(MI, BB); 5485 case RISCV::BuildPairF64Pseudo: 5486 return emitBuildPairF64Pseudo(MI, BB); 5487 case RISCV::SplitF64Pseudo: 5488 return emitSplitF64Pseudo(MI, BB); 5489 } 5490 } 5491 5492 // Calling Convention Implementation. 5493 // The expectations for frontend ABI lowering vary from target to target. 5494 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 5495 // details, but this is a longer term goal. For now, we simply try to keep the 5496 // role of the frontend as simple and well-defined as possible. The rules can 5497 // be summarised as: 5498 // * Never split up large scalar arguments. We handle them here. 5499 // * If a hardfloat calling convention is being used, and the struct may be 5500 // passed in a pair of registers (fp+fp, int+fp), and both registers are 5501 // available, then pass as two separate arguments. If either the GPRs or FPRs 5502 // are exhausted, then pass according to the rule below. 5503 // * If a struct could never be passed in registers or directly in a stack 5504 // slot (as it is larger than 2*XLEN and the floating point rules don't 5505 // apply), then pass it using a pointer with the byval attribute. 5506 // * If a struct is less than 2*XLEN, then coerce to either a two-element 5507 // word-sized array or a 2*XLEN scalar (depending on alignment). 5508 // * The frontend can determine whether a struct is returned by reference or 5509 // not based on its size and fields. If it will be returned by reference, the 5510 // frontend must modify the prototype so a pointer with the sret annotation is 5511 // passed as the first argument. This is not necessary for large scalar 5512 // returns. 5513 // * Struct return values and varargs should be coerced to structs containing 5514 // register-size fields in the same situations they would be for fixed 5515 // arguments. 5516 5517 static const MCPhysReg ArgGPRs[] = { 5518 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 5519 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 5520 }; 5521 static const MCPhysReg ArgFPR16s[] = { 5522 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 5523 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 5524 }; 5525 static const MCPhysReg ArgFPR32s[] = { 5526 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 5527 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 5528 }; 5529 static const MCPhysReg ArgFPR64s[] = { 5530 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 5531 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 5532 }; 5533 // This is an interim calling convention and it may be changed in the future. 5534 static const MCPhysReg ArgVRs[] = { 5535 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 5536 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 5537 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 5538 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 5539 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 5540 RISCV::V20M2, RISCV::V22M2}; 5541 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 5542 RISCV::V20M4}; 5543 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 5544 5545 // Pass a 2*XLEN argument that has been split into two XLEN values through 5546 // registers or the stack as necessary. 5547 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 5548 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 5549 MVT ValVT2, MVT LocVT2, 5550 ISD::ArgFlagsTy ArgFlags2) { 5551 unsigned XLenInBytes = XLen / 8; 5552 if (Register Reg = State.AllocateReg(ArgGPRs)) { 5553 // At least one half can be passed via register. 5554 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 5555 VA1.getLocVT(), CCValAssign::Full)); 5556 } else { 5557 // Both halves must be passed on the stack, with proper alignment. 5558 Align StackAlign = 5559 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 5560 State.addLoc( 5561 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 5562 State.AllocateStack(XLenInBytes, StackAlign), 5563 VA1.getLocVT(), CCValAssign::Full)); 5564 State.addLoc(CCValAssign::getMem( 5565 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 5566 LocVT2, CCValAssign::Full)); 5567 return false; 5568 } 5569 5570 if (Register Reg = State.AllocateReg(ArgGPRs)) { 5571 // The second half can also be passed via register. 5572 State.addLoc( 5573 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 5574 } else { 5575 // The second half is passed via the stack, without additional alignment. 5576 State.addLoc(CCValAssign::getMem( 5577 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 5578 LocVT2, CCValAssign::Full)); 5579 } 5580 5581 return false; 5582 } 5583 5584 // Implements the RISC-V calling convention. Returns true upon failure. 5585 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 5586 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 5587 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 5588 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 5589 Optional<unsigned> FirstMaskArgument) { 5590 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 5591 assert(XLen == 32 || XLen == 64); 5592 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 5593 5594 // Any return value split in to more than two values can't be returned 5595 // directly. Vectors are returned via the available vector registers. 5596 if (!LocVT.isVector() && IsRet && ValNo > 1) 5597 return true; 5598 5599 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 5600 // variadic argument, or if no F16/F32 argument registers are available. 5601 bool UseGPRForF16_F32 = true; 5602 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 5603 // variadic argument, or if no F64 argument registers are available. 5604 bool UseGPRForF64 = true; 5605 5606 switch (ABI) { 5607 default: 5608 llvm_unreachable("Unexpected ABI"); 5609 case RISCVABI::ABI_ILP32: 5610 case RISCVABI::ABI_LP64: 5611 break; 5612 case RISCVABI::ABI_ILP32F: 5613 case RISCVABI::ABI_LP64F: 5614 UseGPRForF16_F32 = !IsFixed; 5615 break; 5616 case RISCVABI::ABI_ILP32D: 5617 case RISCVABI::ABI_LP64D: 5618 UseGPRForF16_F32 = !IsFixed; 5619 UseGPRForF64 = !IsFixed; 5620 break; 5621 } 5622 5623 // FPR16, FPR32, and FPR64 alias each other. 5624 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 5625 UseGPRForF16_F32 = true; 5626 UseGPRForF64 = true; 5627 } 5628 5629 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 5630 // similar local variables rather than directly checking against the target 5631 // ABI. 5632 5633 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 5634 LocVT = XLenVT; 5635 LocInfo = CCValAssign::BCvt; 5636 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 5637 LocVT = MVT::i64; 5638 LocInfo = CCValAssign::BCvt; 5639 } 5640 5641 // If this is a variadic argument, the RISC-V calling convention requires 5642 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 5643 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 5644 // be used regardless of whether the original argument was split during 5645 // legalisation or not. The argument will not be passed by registers if the 5646 // original type is larger than 2*XLEN, so the register alignment rule does 5647 // not apply. 5648 unsigned TwoXLenInBytes = (2 * XLen) / 8; 5649 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 5650 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 5651 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 5652 // Skip 'odd' register if necessary. 5653 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 5654 State.AllocateReg(ArgGPRs); 5655 } 5656 5657 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 5658 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 5659 State.getPendingArgFlags(); 5660 5661 assert(PendingLocs.size() == PendingArgFlags.size() && 5662 "PendingLocs and PendingArgFlags out of sync"); 5663 5664 // Handle passing f64 on RV32D with a soft float ABI or when floating point 5665 // registers are exhausted. 5666 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 5667 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 5668 "Can't lower f64 if it is split"); 5669 // Depending on available argument GPRS, f64 may be passed in a pair of 5670 // GPRs, split between a GPR and the stack, or passed completely on the 5671 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 5672 // cases. 5673 Register Reg = State.AllocateReg(ArgGPRs); 5674 LocVT = MVT::i32; 5675 if (!Reg) { 5676 unsigned StackOffset = State.AllocateStack(8, Align(8)); 5677 State.addLoc( 5678 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 5679 return false; 5680 } 5681 if (!State.AllocateReg(ArgGPRs)) 5682 State.AllocateStack(4, Align(4)); 5683 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 5684 return false; 5685 } 5686 5687 // Fixed-length vectors are located in the corresponding scalable-vector 5688 // container types. 5689 if (ValVT.isFixedLengthVector()) 5690 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 5691 5692 // Split arguments might be passed indirectly, so keep track of the pending 5693 // values. Split vectors are passed via a mix of registers and indirectly, so 5694 // treat them as we would any other argument. 5695 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 5696 LocVT = XLenVT; 5697 LocInfo = CCValAssign::Indirect; 5698 PendingLocs.push_back( 5699 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 5700 PendingArgFlags.push_back(ArgFlags); 5701 if (!ArgFlags.isSplitEnd()) { 5702 return false; 5703 } 5704 } 5705 5706 // If the split argument only had two elements, it should be passed directly 5707 // in registers or on the stack. 5708 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 5709 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 5710 // Apply the normal calling convention rules to the first half of the 5711 // split argument. 5712 CCValAssign VA = PendingLocs[0]; 5713 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 5714 PendingLocs.clear(); 5715 PendingArgFlags.clear(); 5716 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 5717 ArgFlags); 5718 } 5719 5720 // Allocate to a register if possible, or else a stack slot. 5721 Register Reg; 5722 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 5723 Reg = State.AllocateReg(ArgFPR16s); 5724 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 5725 Reg = State.AllocateReg(ArgFPR32s); 5726 else if (ValVT == MVT::f64 && !UseGPRForF64) 5727 Reg = State.AllocateReg(ArgFPR64s); 5728 else if (ValVT.isVector()) { 5729 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 5730 if (RC == &RISCV::VRRegClass) { 5731 // Assign the first mask argument to V0. 5732 // This is an interim calling convention and it may be changed in the 5733 // future. 5734 if (FirstMaskArgument.hasValue() && 5735 ValNo == FirstMaskArgument.getValue()) { 5736 Reg = State.AllocateReg(RISCV::V0); 5737 } else { 5738 Reg = State.AllocateReg(ArgVRs); 5739 } 5740 } else if (RC == &RISCV::VRM2RegClass) { 5741 Reg = State.AllocateReg(ArgVRM2s); 5742 } else if (RC == &RISCV::VRM4RegClass) { 5743 Reg = State.AllocateReg(ArgVRM4s); 5744 } else if (RC == &RISCV::VRM8RegClass) { 5745 Reg = State.AllocateReg(ArgVRM8s); 5746 } else { 5747 llvm_unreachable("Unhandled class register for ValueType"); 5748 } 5749 if (!Reg) { 5750 // For return values, the vector must be passed fully via registers or 5751 // via the stack. 5752 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 5753 // but we're using all of them. 5754 if (IsRet) 5755 return true; 5756 LocInfo = CCValAssign::Indirect; 5757 // Try using a GPR to pass the address 5758 Reg = State.AllocateReg(ArgGPRs); 5759 LocVT = XLenVT; 5760 } 5761 } else 5762 Reg = State.AllocateReg(ArgGPRs); 5763 unsigned StackOffset = 5764 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 5765 5766 // If we reach this point and PendingLocs is non-empty, we must be at the 5767 // end of a split argument that must be passed indirectly. 5768 if (!PendingLocs.empty()) { 5769 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 5770 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 5771 5772 for (auto &It : PendingLocs) { 5773 if (Reg) 5774 It.convertToReg(Reg); 5775 else 5776 It.convertToMem(StackOffset); 5777 State.addLoc(It); 5778 } 5779 PendingLocs.clear(); 5780 PendingArgFlags.clear(); 5781 return false; 5782 } 5783 5784 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 5785 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 5786 "Expected an XLenVT or vector types at this stage"); 5787 5788 if (Reg) { 5789 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 5790 return false; 5791 } 5792 5793 // When a floating-point value is passed on the stack, no bit-conversion is 5794 // needed. 5795 if (ValVT.isFloatingPoint()) { 5796 LocVT = ValVT; 5797 LocInfo = CCValAssign::Full; 5798 } 5799 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 5800 return false; 5801 } 5802 5803 template <typename ArgTy> 5804 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 5805 for (const auto &ArgIdx : enumerate(Args)) { 5806 MVT ArgVT = ArgIdx.value().VT; 5807 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 5808 return ArgIdx.index(); 5809 } 5810 return None; 5811 } 5812 5813 void RISCVTargetLowering::analyzeInputArgs( 5814 MachineFunction &MF, CCState &CCInfo, 5815 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 5816 unsigned NumArgs = Ins.size(); 5817 FunctionType *FType = MF.getFunction().getFunctionType(); 5818 5819 Optional<unsigned> FirstMaskArgument; 5820 if (Subtarget.hasStdExtV()) 5821 FirstMaskArgument = preAssignMask(Ins); 5822 5823 for (unsigned i = 0; i != NumArgs; ++i) { 5824 MVT ArgVT = Ins[i].VT; 5825 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 5826 5827 Type *ArgTy = nullptr; 5828 if (IsRet) 5829 ArgTy = FType->getReturnType(); 5830 else if (Ins[i].isOrigArg()) 5831 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 5832 5833 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 5834 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 5835 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 5836 FirstMaskArgument)) { 5837 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 5838 << EVT(ArgVT).getEVTString() << '\n'); 5839 llvm_unreachable(nullptr); 5840 } 5841 } 5842 } 5843 5844 void RISCVTargetLowering::analyzeOutputArgs( 5845 MachineFunction &MF, CCState &CCInfo, 5846 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 5847 CallLoweringInfo *CLI) const { 5848 unsigned NumArgs = Outs.size(); 5849 5850 Optional<unsigned> FirstMaskArgument; 5851 if (Subtarget.hasStdExtV()) 5852 FirstMaskArgument = preAssignMask(Outs); 5853 5854 for (unsigned i = 0; i != NumArgs; i++) { 5855 MVT ArgVT = Outs[i].VT; 5856 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5857 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 5858 5859 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 5860 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 5861 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 5862 FirstMaskArgument)) { 5863 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 5864 << EVT(ArgVT).getEVTString() << "\n"); 5865 llvm_unreachable(nullptr); 5866 } 5867 } 5868 } 5869 5870 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 5871 // values. 5872 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 5873 const CCValAssign &VA, const SDLoc &DL, 5874 const RISCVSubtarget &Subtarget) { 5875 switch (VA.getLocInfo()) { 5876 default: 5877 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 5878 case CCValAssign::Full: 5879 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 5880 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 5881 break; 5882 case CCValAssign::BCvt: 5883 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 5884 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 5885 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 5886 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 5887 else 5888 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 5889 break; 5890 } 5891 return Val; 5892 } 5893 5894 // The caller is responsible for loading the full value if the argument is 5895 // passed with CCValAssign::Indirect. 5896 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 5897 const CCValAssign &VA, const SDLoc &DL, 5898 const RISCVTargetLowering &TLI) { 5899 MachineFunction &MF = DAG.getMachineFunction(); 5900 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5901 EVT LocVT = VA.getLocVT(); 5902 SDValue Val; 5903 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 5904 Register VReg = RegInfo.createVirtualRegister(RC); 5905 RegInfo.addLiveIn(VA.getLocReg(), VReg); 5906 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 5907 5908 if (VA.getLocInfo() == CCValAssign::Indirect) 5909 return Val; 5910 5911 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 5912 } 5913 5914 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 5915 const CCValAssign &VA, const SDLoc &DL, 5916 const RISCVSubtarget &Subtarget) { 5917 EVT LocVT = VA.getLocVT(); 5918 5919 switch (VA.getLocInfo()) { 5920 default: 5921 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 5922 case CCValAssign::Full: 5923 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 5924 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 5925 break; 5926 case CCValAssign::BCvt: 5927 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 5928 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 5929 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 5930 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 5931 else 5932 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 5933 break; 5934 } 5935 return Val; 5936 } 5937 5938 // The caller is responsible for loading the full value if the argument is 5939 // passed with CCValAssign::Indirect. 5940 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 5941 const CCValAssign &VA, const SDLoc &DL) { 5942 MachineFunction &MF = DAG.getMachineFunction(); 5943 MachineFrameInfo &MFI = MF.getFrameInfo(); 5944 EVT LocVT = VA.getLocVT(); 5945 EVT ValVT = VA.getValVT(); 5946 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 5947 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 5948 VA.getLocMemOffset(), /*Immutable=*/true); 5949 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 5950 SDValue Val; 5951 5952 ISD::LoadExtType ExtType; 5953 switch (VA.getLocInfo()) { 5954 default: 5955 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 5956 case CCValAssign::Full: 5957 case CCValAssign::Indirect: 5958 case CCValAssign::BCvt: 5959 ExtType = ISD::NON_EXTLOAD; 5960 break; 5961 } 5962 Val = DAG.getExtLoad( 5963 ExtType, DL, LocVT, Chain, FIN, 5964 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 5965 return Val; 5966 } 5967 5968 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 5969 const CCValAssign &VA, const SDLoc &DL) { 5970 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 5971 "Unexpected VA"); 5972 MachineFunction &MF = DAG.getMachineFunction(); 5973 MachineFrameInfo &MFI = MF.getFrameInfo(); 5974 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5975 5976 if (VA.isMemLoc()) { 5977 // f64 is passed on the stack. 5978 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 5979 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 5980 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 5981 MachinePointerInfo::getFixedStack(MF, FI)); 5982 } 5983 5984 assert(VA.isRegLoc() && "Expected register VA assignment"); 5985 5986 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 5987 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 5988 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 5989 SDValue Hi; 5990 if (VA.getLocReg() == RISCV::X17) { 5991 // Second half of f64 is passed on the stack. 5992 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 5993 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 5994 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 5995 MachinePointerInfo::getFixedStack(MF, FI)); 5996 } else { 5997 // Second half of f64 is passed in another GPR. 5998 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 5999 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 6000 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 6001 } 6002 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 6003 } 6004 6005 // FastCC has less than 1% performance improvement for some particular 6006 // benchmark. But theoretically, it may has benenfit for some cases. 6007 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 6008 CCValAssign::LocInfo LocInfo, 6009 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6010 6011 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6012 // X5 and X6 might be used for save-restore libcall. 6013 static const MCPhysReg GPRList[] = { 6014 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 6015 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 6016 RISCV::X29, RISCV::X30, RISCV::X31}; 6017 if (unsigned Reg = State.AllocateReg(GPRList)) { 6018 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6019 return false; 6020 } 6021 } 6022 6023 if (LocVT == MVT::f16) { 6024 static const MCPhysReg FPR16List[] = { 6025 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 6026 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 6027 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 6028 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 6029 if (unsigned Reg = State.AllocateReg(FPR16List)) { 6030 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6031 return false; 6032 } 6033 } 6034 6035 if (LocVT == MVT::f32) { 6036 static const MCPhysReg FPR32List[] = { 6037 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 6038 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 6039 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 6040 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 6041 if (unsigned Reg = State.AllocateReg(FPR32List)) { 6042 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6043 return false; 6044 } 6045 } 6046 6047 if (LocVT == MVT::f64) { 6048 static const MCPhysReg FPR64List[] = { 6049 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 6050 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 6051 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 6052 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 6053 if (unsigned Reg = State.AllocateReg(FPR64List)) { 6054 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6055 return false; 6056 } 6057 } 6058 6059 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 6060 unsigned Offset4 = State.AllocateStack(4, Align(4)); 6061 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 6062 return false; 6063 } 6064 6065 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 6066 unsigned Offset5 = State.AllocateStack(8, Align(8)); 6067 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 6068 return false; 6069 } 6070 6071 return true; // CC didn't match. 6072 } 6073 6074 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 6075 CCValAssign::LocInfo LocInfo, 6076 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6077 6078 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6079 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 6080 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 6081 static const MCPhysReg GPRList[] = { 6082 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 6083 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 6084 if (unsigned Reg = State.AllocateReg(GPRList)) { 6085 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6086 return false; 6087 } 6088 } 6089 6090 if (LocVT == MVT::f32) { 6091 // Pass in STG registers: F1, ..., F6 6092 // fs0 ... fs5 6093 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 6094 RISCV::F18_F, RISCV::F19_F, 6095 RISCV::F20_F, RISCV::F21_F}; 6096 if (unsigned Reg = State.AllocateReg(FPR32List)) { 6097 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6098 return false; 6099 } 6100 } 6101 6102 if (LocVT == MVT::f64) { 6103 // Pass in STG registers: D1, ..., D6 6104 // fs6 ... fs11 6105 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 6106 RISCV::F24_D, RISCV::F25_D, 6107 RISCV::F26_D, RISCV::F27_D}; 6108 if (unsigned Reg = State.AllocateReg(FPR64List)) { 6109 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6110 return false; 6111 } 6112 } 6113 6114 report_fatal_error("No registers left in GHC calling convention"); 6115 return true; 6116 } 6117 6118 // Transform physical registers into virtual registers. 6119 SDValue RISCVTargetLowering::LowerFormalArguments( 6120 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 6121 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 6122 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6123 6124 MachineFunction &MF = DAG.getMachineFunction(); 6125 6126 switch (CallConv) { 6127 default: 6128 report_fatal_error("Unsupported calling convention"); 6129 case CallingConv::C: 6130 case CallingConv::Fast: 6131 break; 6132 case CallingConv::GHC: 6133 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 6134 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 6135 report_fatal_error( 6136 "GHC calling convention requires the F and D instruction set extensions"); 6137 } 6138 6139 const Function &Func = MF.getFunction(); 6140 if (Func.hasFnAttribute("interrupt")) { 6141 if (!Func.arg_empty()) 6142 report_fatal_error( 6143 "Functions with the interrupt attribute cannot have arguments!"); 6144 6145 StringRef Kind = 6146 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 6147 6148 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 6149 report_fatal_error( 6150 "Function interrupt attribute argument not supported!"); 6151 } 6152 6153 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6154 MVT XLenVT = Subtarget.getXLenVT(); 6155 unsigned XLenInBytes = Subtarget.getXLen() / 8; 6156 // Used with vargs to acumulate store chains. 6157 std::vector<SDValue> OutChains; 6158 6159 // Assign locations to all of the incoming arguments. 6160 SmallVector<CCValAssign, 16> ArgLocs; 6161 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 6162 6163 if (CallConv == CallingConv::Fast) 6164 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 6165 else if (CallConv == CallingConv::GHC) 6166 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 6167 else 6168 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 6169 6170 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 6171 CCValAssign &VA = ArgLocs[i]; 6172 SDValue ArgValue; 6173 // Passing f64 on RV32D with a soft float ABI must be handled as a special 6174 // case. 6175 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 6176 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 6177 else if (VA.isRegLoc()) 6178 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 6179 else 6180 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 6181 6182 if (VA.getLocInfo() == CCValAssign::Indirect) { 6183 // If the original argument was split and passed by reference (e.g. i128 6184 // on RV32), we need to load all parts of it here (using the same 6185 // address). Vectors may be partly split to registers and partly to the 6186 // stack, in which case the base address is partly offset and subsequent 6187 // stores are relative to that. 6188 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 6189 MachinePointerInfo())); 6190 unsigned ArgIndex = Ins[i].OrigArgIndex; 6191 unsigned ArgPartOffset = Ins[i].PartOffset; 6192 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 6193 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 6194 CCValAssign &PartVA = ArgLocs[i + 1]; 6195 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 6196 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 6197 DAG.getIntPtrConstant(PartOffset, DL)); 6198 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 6199 MachinePointerInfo())); 6200 ++i; 6201 } 6202 continue; 6203 } 6204 InVals.push_back(ArgValue); 6205 } 6206 6207 if (IsVarArg) { 6208 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 6209 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 6210 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 6211 MachineFrameInfo &MFI = MF.getFrameInfo(); 6212 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6213 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 6214 6215 // Offset of the first variable argument from stack pointer, and size of 6216 // the vararg save area. For now, the varargs save area is either zero or 6217 // large enough to hold a0-a7. 6218 int VaArgOffset, VarArgsSaveSize; 6219 6220 // If all registers are allocated, then all varargs must be passed on the 6221 // stack and we don't need to save any argregs. 6222 if (ArgRegs.size() == Idx) { 6223 VaArgOffset = CCInfo.getNextStackOffset(); 6224 VarArgsSaveSize = 0; 6225 } else { 6226 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 6227 VaArgOffset = -VarArgsSaveSize; 6228 } 6229 6230 // Record the frame index of the first variable argument 6231 // which is a value necessary to VASTART. 6232 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 6233 RVFI->setVarArgsFrameIndex(FI); 6234 6235 // If saving an odd number of registers then create an extra stack slot to 6236 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 6237 // offsets to even-numbered registered remain 2*XLEN-aligned. 6238 if (Idx % 2) { 6239 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 6240 VarArgsSaveSize += XLenInBytes; 6241 } 6242 6243 // Copy the integer registers that may have been used for passing varargs 6244 // to the vararg save area. 6245 for (unsigned I = Idx; I < ArgRegs.size(); 6246 ++I, VaArgOffset += XLenInBytes) { 6247 const Register Reg = RegInfo.createVirtualRegister(RC); 6248 RegInfo.addLiveIn(ArgRegs[I], Reg); 6249 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 6250 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 6251 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 6252 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 6253 MachinePointerInfo::getFixedStack(MF, FI)); 6254 cast<StoreSDNode>(Store.getNode()) 6255 ->getMemOperand() 6256 ->setValue((Value *)nullptr); 6257 OutChains.push_back(Store); 6258 } 6259 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 6260 } 6261 6262 // All stores are grouped in one node to allow the matching between 6263 // the size of Ins and InVals. This only happens for vararg functions. 6264 if (!OutChains.empty()) { 6265 OutChains.push_back(Chain); 6266 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 6267 } 6268 6269 return Chain; 6270 } 6271 6272 /// isEligibleForTailCallOptimization - Check whether the call is eligible 6273 /// for tail call optimization. 6274 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 6275 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 6276 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 6277 const SmallVector<CCValAssign, 16> &ArgLocs) const { 6278 6279 auto &Callee = CLI.Callee; 6280 auto CalleeCC = CLI.CallConv; 6281 auto &Outs = CLI.Outs; 6282 auto &Caller = MF.getFunction(); 6283 auto CallerCC = Caller.getCallingConv(); 6284 6285 // Exception-handling functions need a special set of instructions to 6286 // indicate a return to the hardware. Tail-calling another function would 6287 // probably break this. 6288 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 6289 // should be expanded as new function attributes are introduced. 6290 if (Caller.hasFnAttribute("interrupt")) 6291 return false; 6292 6293 // Do not tail call opt if the stack is used to pass parameters. 6294 if (CCInfo.getNextStackOffset() != 0) 6295 return false; 6296 6297 // Do not tail call opt if any parameters need to be passed indirectly. 6298 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 6299 // passed indirectly. So the address of the value will be passed in a 6300 // register, or if not available, then the address is put on the stack. In 6301 // order to pass indirectly, space on the stack often needs to be allocated 6302 // in order to store the value. In this case the CCInfo.getNextStackOffset() 6303 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 6304 // are passed CCValAssign::Indirect. 6305 for (auto &VA : ArgLocs) 6306 if (VA.getLocInfo() == CCValAssign::Indirect) 6307 return false; 6308 6309 // Do not tail call opt if either caller or callee uses struct return 6310 // semantics. 6311 auto IsCallerStructRet = Caller.hasStructRetAttr(); 6312 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 6313 if (IsCallerStructRet || IsCalleeStructRet) 6314 return false; 6315 6316 // Externally-defined functions with weak linkage should not be 6317 // tail-called. The behaviour of branch instructions in this situation (as 6318 // used for tail calls) is implementation-defined, so we cannot rely on the 6319 // linker replacing the tail call with a return. 6320 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 6321 const GlobalValue *GV = G->getGlobal(); 6322 if (GV->hasExternalWeakLinkage()) 6323 return false; 6324 } 6325 6326 // The callee has to preserve all registers the caller needs to preserve. 6327 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6328 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 6329 if (CalleeCC != CallerCC) { 6330 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 6331 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 6332 return false; 6333 } 6334 6335 // Byval parameters hand the function a pointer directly into the stack area 6336 // we want to reuse during a tail call. Working around this *is* possible 6337 // but less efficient and uglier in LowerCall. 6338 for (auto &Arg : Outs) 6339 if (Arg.Flags.isByVal()) 6340 return false; 6341 6342 return true; 6343 } 6344 6345 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 6346 // and output parameter nodes. 6347 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 6348 SmallVectorImpl<SDValue> &InVals) const { 6349 SelectionDAG &DAG = CLI.DAG; 6350 SDLoc &DL = CLI.DL; 6351 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 6352 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 6353 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 6354 SDValue Chain = CLI.Chain; 6355 SDValue Callee = CLI.Callee; 6356 bool &IsTailCall = CLI.IsTailCall; 6357 CallingConv::ID CallConv = CLI.CallConv; 6358 bool IsVarArg = CLI.IsVarArg; 6359 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6360 MVT XLenVT = Subtarget.getXLenVT(); 6361 6362 MachineFunction &MF = DAG.getMachineFunction(); 6363 6364 // Analyze the operands of the call, assigning locations to each operand. 6365 SmallVector<CCValAssign, 16> ArgLocs; 6366 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 6367 6368 if (CallConv == CallingConv::Fast) 6369 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 6370 else if (CallConv == CallingConv::GHC) 6371 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 6372 else 6373 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 6374 6375 // Check if it's really possible to do a tail call. 6376 if (IsTailCall) 6377 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 6378 6379 if (IsTailCall) 6380 ++NumTailCalls; 6381 else if (CLI.CB && CLI.CB->isMustTailCall()) 6382 report_fatal_error("failed to perform tail call elimination on a call " 6383 "site marked musttail"); 6384 6385 // Get a count of how many bytes are to be pushed on the stack. 6386 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 6387 6388 // Create local copies for byval args 6389 SmallVector<SDValue, 8> ByValArgs; 6390 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 6391 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6392 if (!Flags.isByVal()) 6393 continue; 6394 6395 SDValue Arg = OutVals[i]; 6396 unsigned Size = Flags.getByValSize(); 6397 Align Alignment = Flags.getNonZeroByValAlign(); 6398 6399 int FI = 6400 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 6401 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 6402 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 6403 6404 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 6405 /*IsVolatile=*/false, 6406 /*AlwaysInline=*/false, IsTailCall, 6407 MachinePointerInfo(), MachinePointerInfo()); 6408 ByValArgs.push_back(FIPtr); 6409 } 6410 6411 if (!IsTailCall) 6412 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 6413 6414 // Copy argument values to their designated locations. 6415 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 6416 SmallVector<SDValue, 8> MemOpChains; 6417 SDValue StackPtr; 6418 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 6419 CCValAssign &VA = ArgLocs[i]; 6420 SDValue ArgValue = OutVals[i]; 6421 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6422 6423 // Handle passing f64 on RV32D with a soft float ABI as a special case. 6424 bool IsF64OnRV32DSoftABI = 6425 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 6426 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 6427 SDValue SplitF64 = DAG.getNode( 6428 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 6429 SDValue Lo = SplitF64.getValue(0); 6430 SDValue Hi = SplitF64.getValue(1); 6431 6432 Register RegLo = VA.getLocReg(); 6433 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 6434 6435 if (RegLo == RISCV::X17) { 6436 // Second half of f64 is passed on the stack. 6437 // Work out the address of the stack slot. 6438 if (!StackPtr.getNode()) 6439 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 6440 // Emit the store. 6441 MemOpChains.push_back( 6442 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 6443 } else { 6444 // Second half of f64 is passed in another GPR. 6445 assert(RegLo < RISCV::X31 && "Invalid register pair"); 6446 Register RegHigh = RegLo + 1; 6447 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 6448 } 6449 continue; 6450 } 6451 6452 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 6453 // as any other MemLoc. 6454 6455 // Promote the value if needed. 6456 // For now, only handle fully promoted and indirect arguments. 6457 if (VA.getLocInfo() == CCValAssign::Indirect) { 6458 // Store the argument in a stack slot and pass its address. 6459 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 6460 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 6461 MemOpChains.push_back( 6462 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 6463 MachinePointerInfo::getFixedStack(MF, FI))); 6464 // If the original argument was split (e.g. i128), we need 6465 // to store the required parts of it here (and pass just one address). 6466 // Vectors may be partly split to registers and partly to the stack, in 6467 // which case the base address is partly offset and subsequent stores are 6468 // relative to that. 6469 unsigned ArgIndex = Outs[i].OrigArgIndex; 6470 unsigned ArgPartOffset = Outs[i].PartOffset; 6471 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 6472 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 6473 SDValue PartValue = OutVals[i + 1]; 6474 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 6475 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 6476 DAG.getIntPtrConstant(PartOffset, DL)); 6477 MemOpChains.push_back( 6478 DAG.getStore(Chain, DL, PartValue, Address, 6479 MachinePointerInfo::getFixedStack(MF, FI))); 6480 ++i; 6481 } 6482 ArgValue = SpillSlot; 6483 } else { 6484 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 6485 } 6486 6487 // Use local copy if it is a byval arg. 6488 if (Flags.isByVal()) 6489 ArgValue = ByValArgs[j++]; 6490 6491 if (VA.isRegLoc()) { 6492 // Queue up the argument copies and emit them at the end. 6493 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 6494 } else { 6495 assert(VA.isMemLoc() && "Argument not register or memory"); 6496 assert(!IsTailCall && "Tail call not allowed if stack is used " 6497 "for passing parameters"); 6498 6499 // Work out the address of the stack slot. 6500 if (!StackPtr.getNode()) 6501 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 6502 SDValue Address = 6503 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 6504 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 6505 6506 // Emit the store. 6507 MemOpChains.push_back( 6508 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 6509 } 6510 } 6511 6512 // Join the stores, which are independent of one another. 6513 if (!MemOpChains.empty()) 6514 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 6515 6516 SDValue Glue; 6517 6518 // Build a sequence of copy-to-reg nodes, chained and glued together. 6519 for (auto &Reg : RegsToPass) { 6520 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 6521 Glue = Chain.getValue(1); 6522 } 6523 6524 // Validate that none of the argument registers have been marked as 6525 // reserved, if so report an error. Do the same for the return address if this 6526 // is not a tailcall. 6527 validateCCReservedRegs(RegsToPass, MF); 6528 if (!IsTailCall && 6529 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 6530 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 6531 MF.getFunction(), 6532 "Return address register required, but has been reserved."}); 6533 6534 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 6535 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 6536 // split it and then direct call can be matched by PseudoCALL. 6537 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 6538 const GlobalValue *GV = S->getGlobal(); 6539 6540 unsigned OpFlags = RISCVII::MO_CALL; 6541 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 6542 OpFlags = RISCVII::MO_PLT; 6543 6544 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 6545 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 6546 unsigned OpFlags = RISCVII::MO_CALL; 6547 6548 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 6549 nullptr)) 6550 OpFlags = RISCVII::MO_PLT; 6551 6552 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 6553 } 6554 6555 // The first call operand is the chain and the second is the target address. 6556 SmallVector<SDValue, 8> Ops; 6557 Ops.push_back(Chain); 6558 Ops.push_back(Callee); 6559 6560 // Add argument registers to the end of the list so that they are 6561 // known live into the call. 6562 for (auto &Reg : RegsToPass) 6563 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 6564 6565 if (!IsTailCall) { 6566 // Add a register mask operand representing the call-preserved registers. 6567 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 6568 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 6569 assert(Mask && "Missing call preserved mask for calling convention"); 6570 Ops.push_back(DAG.getRegisterMask(Mask)); 6571 } 6572 6573 // Glue the call to the argument copies, if any. 6574 if (Glue.getNode()) 6575 Ops.push_back(Glue); 6576 6577 // Emit the call. 6578 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6579 6580 if (IsTailCall) { 6581 MF.getFrameInfo().setHasTailCall(); 6582 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 6583 } 6584 6585 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 6586 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 6587 Glue = Chain.getValue(1); 6588 6589 // Mark the end of the call, which is glued to the call itself. 6590 Chain = DAG.getCALLSEQ_END(Chain, 6591 DAG.getConstant(NumBytes, DL, PtrVT, true), 6592 DAG.getConstant(0, DL, PtrVT, true), 6593 Glue, DL); 6594 Glue = Chain.getValue(1); 6595 6596 // Assign locations to each value returned by this call. 6597 SmallVector<CCValAssign, 16> RVLocs; 6598 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 6599 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 6600 6601 // Copy all of the result registers out of their specified physreg. 6602 for (auto &VA : RVLocs) { 6603 // Copy the value out 6604 SDValue RetValue = 6605 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 6606 // Glue the RetValue to the end of the call sequence 6607 Chain = RetValue.getValue(1); 6608 Glue = RetValue.getValue(2); 6609 6610 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 6611 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 6612 SDValue RetValue2 = 6613 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 6614 Chain = RetValue2.getValue(1); 6615 Glue = RetValue2.getValue(2); 6616 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 6617 RetValue2); 6618 } 6619 6620 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 6621 6622 InVals.push_back(RetValue); 6623 } 6624 6625 return Chain; 6626 } 6627 6628 bool RISCVTargetLowering::CanLowerReturn( 6629 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 6630 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 6631 SmallVector<CCValAssign, 16> RVLocs; 6632 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 6633 6634 Optional<unsigned> FirstMaskArgument; 6635 if (Subtarget.hasStdExtV()) 6636 FirstMaskArgument = preAssignMask(Outs); 6637 6638 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 6639 MVT VT = Outs[i].VT; 6640 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6641 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6642 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 6643 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 6644 *this, FirstMaskArgument)) 6645 return false; 6646 } 6647 return true; 6648 } 6649 6650 SDValue 6651 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 6652 bool IsVarArg, 6653 const SmallVectorImpl<ISD::OutputArg> &Outs, 6654 const SmallVectorImpl<SDValue> &OutVals, 6655 const SDLoc &DL, SelectionDAG &DAG) const { 6656 const MachineFunction &MF = DAG.getMachineFunction(); 6657 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 6658 6659 // Stores the assignment of the return value to a location. 6660 SmallVector<CCValAssign, 16> RVLocs; 6661 6662 // Info about the registers and stack slot. 6663 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 6664 *DAG.getContext()); 6665 6666 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 6667 nullptr); 6668 6669 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 6670 report_fatal_error("GHC functions return void only"); 6671 6672 SDValue Glue; 6673 SmallVector<SDValue, 4> RetOps(1, Chain); 6674 6675 // Copy the result values into the output registers. 6676 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 6677 SDValue Val = OutVals[i]; 6678 CCValAssign &VA = RVLocs[i]; 6679 assert(VA.isRegLoc() && "Can only return in registers!"); 6680 6681 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 6682 // Handle returning f64 on RV32D with a soft float ABI. 6683 assert(VA.isRegLoc() && "Expected return via registers"); 6684 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 6685 DAG.getVTList(MVT::i32, MVT::i32), Val); 6686 SDValue Lo = SplitF64.getValue(0); 6687 SDValue Hi = SplitF64.getValue(1); 6688 Register RegLo = VA.getLocReg(); 6689 assert(RegLo < RISCV::X31 && "Invalid register pair"); 6690 Register RegHi = RegLo + 1; 6691 6692 if (STI.isRegisterReservedByUser(RegLo) || 6693 STI.isRegisterReservedByUser(RegHi)) 6694 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 6695 MF.getFunction(), 6696 "Return value register required, but has been reserved."}); 6697 6698 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 6699 Glue = Chain.getValue(1); 6700 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 6701 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 6702 Glue = Chain.getValue(1); 6703 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 6704 } else { 6705 // Handle a 'normal' return. 6706 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 6707 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 6708 6709 if (STI.isRegisterReservedByUser(VA.getLocReg())) 6710 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 6711 MF.getFunction(), 6712 "Return value register required, but has been reserved."}); 6713 6714 // Guarantee that all emitted copies are stuck together. 6715 Glue = Chain.getValue(1); 6716 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 6717 } 6718 } 6719 6720 RetOps[0] = Chain; // Update chain. 6721 6722 // Add the glue node if we have it. 6723 if (Glue.getNode()) { 6724 RetOps.push_back(Glue); 6725 } 6726 6727 // Interrupt service routines use different return instructions. 6728 const Function &Func = DAG.getMachineFunction().getFunction(); 6729 if (Func.hasFnAttribute("interrupt")) { 6730 if (!Func.getReturnType()->isVoidTy()) 6731 report_fatal_error( 6732 "Functions with the interrupt attribute must have void return type!"); 6733 6734 MachineFunction &MF = DAG.getMachineFunction(); 6735 StringRef Kind = 6736 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 6737 6738 unsigned RetOpc; 6739 if (Kind == "user") 6740 RetOpc = RISCVISD::URET_FLAG; 6741 else if (Kind == "supervisor") 6742 RetOpc = RISCVISD::SRET_FLAG; 6743 else 6744 RetOpc = RISCVISD::MRET_FLAG; 6745 6746 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 6747 } 6748 6749 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 6750 } 6751 6752 void RISCVTargetLowering::validateCCReservedRegs( 6753 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 6754 MachineFunction &MF) const { 6755 const Function &F = MF.getFunction(); 6756 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 6757 6758 if (llvm::any_of(Regs, [&STI](auto Reg) { 6759 return STI.isRegisterReservedByUser(Reg.first); 6760 })) 6761 F.getContext().diagnose(DiagnosticInfoUnsupported{ 6762 F, "Argument register required, but has been reserved."}); 6763 } 6764 6765 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 6766 return CI->isTailCall(); 6767 } 6768 6769 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 6770 #define NODE_NAME_CASE(NODE) \ 6771 case RISCVISD::NODE: \ 6772 return "RISCVISD::" #NODE; 6773 // clang-format off 6774 switch ((RISCVISD::NodeType)Opcode) { 6775 case RISCVISD::FIRST_NUMBER: 6776 break; 6777 NODE_NAME_CASE(RET_FLAG) 6778 NODE_NAME_CASE(URET_FLAG) 6779 NODE_NAME_CASE(SRET_FLAG) 6780 NODE_NAME_CASE(MRET_FLAG) 6781 NODE_NAME_CASE(CALL) 6782 NODE_NAME_CASE(SELECT_CC) 6783 NODE_NAME_CASE(BR_CC) 6784 NODE_NAME_CASE(BuildPairF64) 6785 NODE_NAME_CASE(SplitF64) 6786 NODE_NAME_CASE(TAIL) 6787 NODE_NAME_CASE(SLLW) 6788 NODE_NAME_CASE(SRAW) 6789 NODE_NAME_CASE(SRLW) 6790 NODE_NAME_CASE(DIVW) 6791 NODE_NAME_CASE(DIVUW) 6792 NODE_NAME_CASE(REMUW) 6793 NODE_NAME_CASE(ROLW) 6794 NODE_NAME_CASE(RORW) 6795 NODE_NAME_CASE(CLZW) 6796 NODE_NAME_CASE(CTZW) 6797 NODE_NAME_CASE(FSLW) 6798 NODE_NAME_CASE(FSRW) 6799 NODE_NAME_CASE(FSL) 6800 NODE_NAME_CASE(FSR) 6801 NODE_NAME_CASE(FMV_H_X) 6802 NODE_NAME_CASE(FMV_X_ANYEXTH) 6803 NODE_NAME_CASE(FMV_W_X_RV64) 6804 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 6805 NODE_NAME_CASE(READ_CYCLE_WIDE) 6806 NODE_NAME_CASE(GREVI) 6807 NODE_NAME_CASE(GREVIW) 6808 NODE_NAME_CASE(GORCI) 6809 NODE_NAME_CASE(GORCIW) 6810 NODE_NAME_CASE(SHFLI) 6811 NODE_NAME_CASE(VMV_V_X_VL) 6812 NODE_NAME_CASE(VFMV_V_F_VL) 6813 NODE_NAME_CASE(VMV_X_S) 6814 NODE_NAME_CASE(VMV_S_XF_VL) 6815 NODE_NAME_CASE(SPLAT_VECTOR_I64) 6816 NODE_NAME_CASE(READ_VLENB) 6817 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 6818 NODE_NAME_CASE(VLEFF) 6819 NODE_NAME_CASE(VLEFF_MASK) 6820 NODE_NAME_CASE(VSLIDEUP_VL) 6821 NODE_NAME_CASE(VSLIDE1UP_VL) 6822 NODE_NAME_CASE(VSLIDEDOWN_VL) 6823 NODE_NAME_CASE(VID_VL) 6824 NODE_NAME_CASE(VFNCVT_ROD_VL) 6825 NODE_NAME_CASE(VECREDUCE_ADD_VL) 6826 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 6827 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 6828 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 6829 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 6830 NODE_NAME_CASE(VECREDUCE_AND_VL) 6831 NODE_NAME_CASE(VECREDUCE_OR_VL) 6832 NODE_NAME_CASE(VECREDUCE_XOR_VL) 6833 NODE_NAME_CASE(VECREDUCE_FADD_VL) 6834 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 6835 NODE_NAME_CASE(ADD_VL) 6836 NODE_NAME_CASE(AND_VL) 6837 NODE_NAME_CASE(MUL_VL) 6838 NODE_NAME_CASE(OR_VL) 6839 NODE_NAME_CASE(SDIV_VL) 6840 NODE_NAME_CASE(SHL_VL) 6841 NODE_NAME_CASE(SREM_VL) 6842 NODE_NAME_CASE(SRA_VL) 6843 NODE_NAME_CASE(SRL_VL) 6844 NODE_NAME_CASE(SUB_VL) 6845 NODE_NAME_CASE(UDIV_VL) 6846 NODE_NAME_CASE(UREM_VL) 6847 NODE_NAME_CASE(XOR_VL) 6848 NODE_NAME_CASE(FADD_VL) 6849 NODE_NAME_CASE(FSUB_VL) 6850 NODE_NAME_CASE(FMUL_VL) 6851 NODE_NAME_CASE(FDIV_VL) 6852 NODE_NAME_CASE(FNEG_VL) 6853 NODE_NAME_CASE(FABS_VL) 6854 NODE_NAME_CASE(FSQRT_VL) 6855 NODE_NAME_CASE(FMA_VL) 6856 NODE_NAME_CASE(FCOPYSIGN_VL) 6857 NODE_NAME_CASE(SMIN_VL) 6858 NODE_NAME_CASE(SMAX_VL) 6859 NODE_NAME_CASE(UMIN_VL) 6860 NODE_NAME_CASE(UMAX_VL) 6861 NODE_NAME_CASE(MULHS_VL) 6862 NODE_NAME_CASE(MULHU_VL) 6863 NODE_NAME_CASE(FP_TO_SINT_VL) 6864 NODE_NAME_CASE(FP_TO_UINT_VL) 6865 NODE_NAME_CASE(SINT_TO_FP_VL) 6866 NODE_NAME_CASE(UINT_TO_FP_VL) 6867 NODE_NAME_CASE(FP_EXTEND_VL) 6868 NODE_NAME_CASE(FP_ROUND_VL) 6869 NODE_NAME_CASE(SETCC_VL) 6870 NODE_NAME_CASE(VSELECT_VL) 6871 NODE_NAME_CASE(VMAND_VL) 6872 NODE_NAME_CASE(VMOR_VL) 6873 NODE_NAME_CASE(VMXOR_VL) 6874 NODE_NAME_CASE(VMCLR_VL) 6875 NODE_NAME_CASE(VMSET_VL) 6876 NODE_NAME_CASE(VRGATHER_VX_VL) 6877 NODE_NAME_CASE(VRGATHER_VV_VL) 6878 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 6879 NODE_NAME_CASE(VSEXT_VL) 6880 NODE_NAME_CASE(VZEXT_VL) 6881 NODE_NAME_CASE(VLE_VL) 6882 NODE_NAME_CASE(VSE_VL) 6883 } 6884 // clang-format on 6885 return nullptr; 6886 #undef NODE_NAME_CASE 6887 } 6888 6889 /// getConstraintType - Given a constraint letter, return the type of 6890 /// constraint it is for this target. 6891 RISCVTargetLowering::ConstraintType 6892 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 6893 if (Constraint.size() == 1) { 6894 switch (Constraint[0]) { 6895 default: 6896 break; 6897 case 'f': 6898 case 'v': 6899 return C_RegisterClass; 6900 case 'I': 6901 case 'J': 6902 case 'K': 6903 return C_Immediate; 6904 case 'A': 6905 return C_Memory; 6906 } 6907 } 6908 return TargetLowering::getConstraintType(Constraint); 6909 } 6910 6911 std::pair<unsigned, const TargetRegisterClass *> 6912 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 6913 StringRef Constraint, 6914 MVT VT) const { 6915 // First, see if this is a constraint that directly corresponds to a 6916 // RISCV register class. 6917 if (Constraint.size() == 1) { 6918 switch (Constraint[0]) { 6919 case 'r': 6920 return std::make_pair(0U, &RISCV::GPRRegClass); 6921 case 'f': 6922 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 6923 return std::make_pair(0U, &RISCV::FPR16RegClass); 6924 if (Subtarget.hasStdExtF() && VT == MVT::f32) 6925 return std::make_pair(0U, &RISCV::FPR32RegClass); 6926 if (Subtarget.hasStdExtD() && VT == MVT::f64) 6927 return std::make_pair(0U, &RISCV::FPR64RegClass); 6928 break; 6929 case 'v': 6930 for (const auto *RC : 6931 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 6932 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 6933 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 6934 return std::make_pair(0U, RC); 6935 } 6936 break; 6937 default: 6938 break; 6939 } 6940 } 6941 6942 // Clang will correctly decode the usage of register name aliases into their 6943 // official names. However, other frontends like `rustc` do not. This allows 6944 // users of these frontends to use the ABI names for registers in LLVM-style 6945 // register constraints. 6946 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 6947 .Case("{zero}", RISCV::X0) 6948 .Case("{ra}", RISCV::X1) 6949 .Case("{sp}", RISCV::X2) 6950 .Case("{gp}", RISCV::X3) 6951 .Case("{tp}", RISCV::X4) 6952 .Case("{t0}", RISCV::X5) 6953 .Case("{t1}", RISCV::X6) 6954 .Case("{t2}", RISCV::X7) 6955 .Cases("{s0}", "{fp}", RISCV::X8) 6956 .Case("{s1}", RISCV::X9) 6957 .Case("{a0}", RISCV::X10) 6958 .Case("{a1}", RISCV::X11) 6959 .Case("{a2}", RISCV::X12) 6960 .Case("{a3}", RISCV::X13) 6961 .Case("{a4}", RISCV::X14) 6962 .Case("{a5}", RISCV::X15) 6963 .Case("{a6}", RISCV::X16) 6964 .Case("{a7}", RISCV::X17) 6965 .Case("{s2}", RISCV::X18) 6966 .Case("{s3}", RISCV::X19) 6967 .Case("{s4}", RISCV::X20) 6968 .Case("{s5}", RISCV::X21) 6969 .Case("{s6}", RISCV::X22) 6970 .Case("{s7}", RISCV::X23) 6971 .Case("{s8}", RISCV::X24) 6972 .Case("{s9}", RISCV::X25) 6973 .Case("{s10}", RISCV::X26) 6974 .Case("{s11}", RISCV::X27) 6975 .Case("{t3}", RISCV::X28) 6976 .Case("{t4}", RISCV::X29) 6977 .Case("{t5}", RISCV::X30) 6978 .Case("{t6}", RISCV::X31) 6979 .Default(RISCV::NoRegister); 6980 if (XRegFromAlias != RISCV::NoRegister) 6981 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 6982 6983 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 6984 // TableGen record rather than the AsmName to choose registers for InlineAsm 6985 // constraints, plus we want to match those names to the widest floating point 6986 // register type available, manually select floating point registers here. 6987 // 6988 // The second case is the ABI name of the register, so that frontends can also 6989 // use the ABI names in register constraint lists. 6990 if (Subtarget.hasStdExtF()) { 6991 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 6992 .Cases("{f0}", "{ft0}", RISCV::F0_F) 6993 .Cases("{f1}", "{ft1}", RISCV::F1_F) 6994 .Cases("{f2}", "{ft2}", RISCV::F2_F) 6995 .Cases("{f3}", "{ft3}", RISCV::F3_F) 6996 .Cases("{f4}", "{ft4}", RISCV::F4_F) 6997 .Cases("{f5}", "{ft5}", RISCV::F5_F) 6998 .Cases("{f6}", "{ft6}", RISCV::F6_F) 6999 .Cases("{f7}", "{ft7}", RISCV::F7_F) 7000 .Cases("{f8}", "{fs0}", RISCV::F8_F) 7001 .Cases("{f9}", "{fs1}", RISCV::F9_F) 7002 .Cases("{f10}", "{fa0}", RISCV::F10_F) 7003 .Cases("{f11}", "{fa1}", RISCV::F11_F) 7004 .Cases("{f12}", "{fa2}", RISCV::F12_F) 7005 .Cases("{f13}", "{fa3}", RISCV::F13_F) 7006 .Cases("{f14}", "{fa4}", RISCV::F14_F) 7007 .Cases("{f15}", "{fa5}", RISCV::F15_F) 7008 .Cases("{f16}", "{fa6}", RISCV::F16_F) 7009 .Cases("{f17}", "{fa7}", RISCV::F17_F) 7010 .Cases("{f18}", "{fs2}", RISCV::F18_F) 7011 .Cases("{f19}", "{fs3}", RISCV::F19_F) 7012 .Cases("{f20}", "{fs4}", RISCV::F20_F) 7013 .Cases("{f21}", "{fs5}", RISCV::F21_F) 7014 .Cases("{f22}", "{fs6}", RISCV::F22_F) 7015 .Cases("{f23}", "{fs7}", RISCV::F23_F) 7016 .Cases("{f24}", "{fs8}", RISCV::F24_F) 7017 .Cases("{f25}", "{fs9}", RISCV::F25_F) 7018 .Cases("{f26}", "{fs10}", RISCV::F26_F) 7019 .Cases("{f27}", "{fs11}", RISCV::F27_F) 7020 .Cases("{f28}", "{ft8}", RISCV::F28_F) 7021 .Cases("{f29}", "{ft9}", RISCV::F29_F) 7022 .Cases("{f30}", "{ft10}", RISCV::F30_F) 7023 .Cases("{f31}", "{ft11}", RISCV::F31_F) 7024 .Default(RISCV::NoRegister); 7025 if (FReg != RISCV::NoRegister) { 7026 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 7027 if (Subtarget.hasStdExtD()) { 7028 unsigned RegNo = FReg - RISCV::F0_F; 7029 unsigned DReg = RISCV::F0_D + RegNo; 7030 return std::make_pair(DReg, &RISCV::FPR64RegClass); 7031 } 7032 return std::make_pair(FReg, &RISCV::FPR32RegClass); 7033 } 7034 } 7035 7036 if (Subtarget.hasStdExtV()) { 7037 Register VReg = StringSwitch<Register>(Constraint.lower()) 7038 .Case("{v0}", RISCV::V0) 7039 .Case("{v1}", RISCV::V1) 7040 .Case("{v2}", RISCV::V2) 7041 .Case("{v3}", RISCV::V3) 7042 .Case("{v4}", RISCV::V4) 7043 .Case("{v5}", RISCV::V5) 7044 .Case("{v6}", RISCV::V6) 7045 .Case("{v7}", RISCV::V7) 7046 .Case("{v8}", RISCV::V8) 7047 .Case("{v9}", RISCV::V9) 7048 .Case("{v10}", RISCV::V10) 7049 .Case("{v11}", RISCV::V11) 7050 .Case("{v12}", RISCV::V12) 7051 .Case("{v13}", RISCV::V13) 7052 .Case("{v14}", RISCV::V14) 7053 .Case("{v15}", RISCV::V15) 7054 .Case("{v16}", RISCV::V16) 7055 .Case("{v17}", RISCV::V17) 7056 .Case("{v18}", RISCV::V18) 7057 .Case("{v19}", RISCV::V19) 7058 .Case("{v20}", RISCV::V20) 7059 .Case("{v21}", RISCV::V21) 7060 .Case("{v22}", RISCV::V22) 7061 .Case("{v23}", RISCV::V23) 7062 .Case("{v24}", RISCV::V24) 7063 .Case("{v25}", RISCV::V25) 7064 .Case("{v26}", RISCV::V26) 7065 .Case("{v27}", RISCV::V27) 7066 .Case("{v28}", RISCV::V28) 7067 .Case("{v29}", RISCV::V29) 7068 .Case("{v30}", RISCV::V30) 7069 .Case("{v31}", RISCV::V31) 7070 .Default(RISCV::NoRegister); 7071 if (VReg != RISCV::NoRegister) { 7072 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 7073 return std::make_pair(VReg, &RISCV::VMRegClass); 7074 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 7075 return std::make_pair(VReg, &RISCV::VRRegClass); 7076 for (const auto *RC : 7077 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7078 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 7079 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 7080 return std::make_pair(VReg, RC); 7081 } 7082 } 7083 } 7084 } 7085 7086 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 7087 } 7088 7089 unsigned 7090 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 7091 // Currently only support length 1 constraints. 7092 if (ConstraintCode.size() == 1) { 7093 switch (ConstraintCode[0]) { 7094 case 'A': 7095 return InlineAsm::Constraint_A; 7096 default: 7097 break; 7098 } 7099 } 7100 7101 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 7102 } 7103 7104 void RISCVTargetLowering::LowerAsmOperandForConstraint( 7105 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 7106 SelectionDAG &DAG) const { 7107 // Currently only support length 1 constraints. 7108 if (Constraint.length() == 1) { 7109 switch (Constraint[0]) { 7110 case 'I': 7111 // Validate & create a 12-bit signed immediate operand. 7112 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 7113 uint64_t CVal = C->getSExtValue(); 7114 if (isInt<12>(CVal)) 7115 Ops.push_back( 7116 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 7117 } 7118 return; 7119 case 'J': 7120 // Validate & create an integer zero operand. 7121 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 7122 if (C->getZExtValue() == 0) 7123 Ops.push_back( 7124 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 7125 return; 7126 case 'K': 7127 // Validate & create a 5-bit unsigned immediate operand. 7128 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 7129 uint64_t CVal = C->getZExtValue(); 7130 if (isUInt<5>(CVal)) 7131 Ops.push_back( 7132 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 7133 } 7134 return; 7135 default: 7136 break; 7137 } 7138 } 7139 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 7140 } 7141 7142 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 7143 Instruction *Inst, 7144 AtomicOrdering Ord) const { 7145 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 7146 return Builder.CreateFence(Ord); 7147 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 7148 return Builder.CreateFence(AtomicOrdering::Release); 7149 return nullptr; 7150 } 7151 7152 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 7153 Instruction *Inst, 7154 AtomicOrdering Ord) const { 7155 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 7156 return Builder.CreateFence(AtomicOrdering::Acquire); 7157 return nullptr; 7158 } 7159 7160 TargetLowering::AtomicExpansionKind 7161 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 7162 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 7163 // point operations can't be used in an lr/sc sequence without breaking the 7164 // forward-progress guarantee. 7165 if (AI->isFloatingPointOperation()) 7166 return AtomicExpansionKind::CmpXChg; 7167 7168 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 7169 if (Size == 8 || Size == 16) 7170 return AtomicExpansionKind::MaskedIntrinsic; 7171 return AtomicExpansionKind::None; 7172 } 7173 7174 static Intrinsic::ID 7175 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 7176 if (XLen == 32) { 7177 switch (BinOp) { 7178 default: 7179 llvm_unreachable("Unexpected AtomicRMW BinOp"); 7180 case AtomicRMWInst::Xchg: 7181 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 7182 case AtomicRMWInst::Add: 7183 return Intrinsic::riscv_masked_atomicrmw_add_i32; 7184 case AtomicRMWInst::Sub: 7185 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 7186 case AtomicRMWInst::Nand: 7187 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 7188 case AtomicRMWInst::Max: 7189 return Intrinsic::riscv_masked_atomicrmw_max_i32; 7190 case AtomicRMWInst::Min: 7191 return Intrinsic::riscv_masked_atomicrmw_min_i32; 7192 case AtomicRMWInst::UMax: 7193 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 7194 case AtomicRMWInst::UMin: 7195 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 7196 } 7197 } 7198 7199 if (XLen == 64) { 7200 switch (BinOp) { 7201 default: 7202 llvm_unreachable("Unexpected AtomicRMW BinOp"); 7203 case AtomicRMWInst::Xchg: 7204 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 7205 case AtomicRMWInst::Add: 7206 return Intrinsic::riscv_masked_atomicrmw_add_i64; 7207 case AtomicRMWInst::Sub: 7208 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 7209 case AtomicRMWInst::Nand: 7210 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 7211 case AtomicRMWInst::Max: 7212 return Intrinsic::riscv_masked_atomicrmw_max_i64; 7213 case AtomicRMWInst::Min: 7214 return Intrinsic::riscv_masked_atomicrmw_min_i64; 7215 case AtomicRMWInst::UMax: 7216 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 7217 case AtomicRMWInst::UMin: 7218 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 7219 } 7220 } 7221 7222 llvm_unreachable("Unexpected XLen\n"); 7223 } 7224 7225 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 7226 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 7227 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 7228 unsigned XLen = Subtarget.getXLen(); 7229 Value *Ordering = 7230 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 7231 Type *Tys[] = {AlignedAddr->getType()}; 7232 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 7233 AI->getModule(), 7234 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 7235 7236 if (XLen == 64) { 7237 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 7238 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 7239 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 7240 } 7241 7242 Value *Result; 7243 7244 // Must pass the shift amount needed to sign extend the loaded value prior 7245 // to performing a signed comparison for min/max. ShiftAmt is the number of 7246 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 7247 // is the number of bits to left+right shift the value in order to 7248 // sign-extend. 7249 if (AI->getOperation() == AtomicRMWInst::Min || 7250 AI->getOperation() == AtomicRMWInst::Max) { 7251 const DataLayout &DL = AI->getModule()->getDataLayout(); 7252 unsigned ValWidth = 7253 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 7254 Value *SextShamt = 7255 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 7256 Result = Builder.CreateCall(LrwOpScwLoop, 7257 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 7258 } else { 7259 Result = 7260 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 7261 } 7262 7263 if (XLen == 64) 7264 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 7265 return Result; 7266 } 7267 7268 TargetLowering::AtomicExpansionKind 7269 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 7270 AtomicCmpXchgInst *CI) const { 7271 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 7272 if (Size == 8 || Size == 16) 7273 return AtomicExpansionKind::MaskedIntrinsic; 7274 return AtomicExpansionKind::None; 7275 } 7276 7277 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 7278 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 7279 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 7280 unsigned XLen = Subtarget.getXLen(); 7281 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 7282 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 7283 if (XLen == 64) { 7284 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 7285 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 7286 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 7287 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 7288 } 7289 Type *Tys[] = {AlignedAddr->getType()}; 7290 Function *MaskedCmpXchg = 7291 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 7292 Value *Result = Builder.CreateCall( 7293 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 7294 if (XLen == 64) 7295 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 7296 return Result; 7297 } 7298 7299 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 7300 return false; 7301 } 7302 7303 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 7304 EVT VT) const { 7305 VT = VT.getScalarType(); 7306 7307 if (!VT.isSimple()) 7308 return false; 7309 7310 switch (VT.getSimpleVT().SimpleTy) { 7311 case MVT::f16: 7312 return Subtarget.hasStdExtZfh(); 7313 case MVT::f32: 7314 return Subtarget.hasStdExtF(); 7315 case MVT::f64: 7316 return Subtarget.hasStdExtD(); 7317 default: 7318 break; 7319 } 7320 7321 return false; 7322 } 7323 7324 Register RISCVTargetLowering::getExceptionPointerRegister( 7325 const Constant *PersonalityFn) const { 7326 return RISCV::X10; 7327 } 7328 7329 Register RISCVTargetLowering::getExceptionSelectorRegister( 7330 const Constant *PersonalityFn) const { 7331 return RISCV::X11; 7332 } 7333 7334 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 7335 // Return false to suppress the unnecessary extensions if the LibCall 7336 // arguments or return value is f32 type for LP64 ABI. 7337 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 7338 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 7339 return false; 7340 7341 return true; 7342 } 7343 7344 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 7345 if (Subtarget.is64Bit() && Type == MVT::i32) 7346 return true; 7347 7348 return IsSigned; 7349 } 7350 7351 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 7352 SDValue C) const { 7353 // Check integral scalar types. 7354 if (VT.isScalarInteger()) { 7355 // Omit the optimization if the sub target has the M extension and the data 7356 // size exceeds XLen. 7357 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 7358 return false; 7359 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 7360 // Break the MUL to a SLLI and an ADD/SUB. 7361 const APInt &Imm = ConstNode->getAPIntValue(); 7362 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 7363 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 7364 return true; 7365 // Omit the following optimization if the sub target has the M extension 7366 // and the data size >= XLen. 7367 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 7368 return false; 7369 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 7370 // a pair of LUI/ADDI. 7371 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 7372 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 7373 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 7374 (1 - ImmS).isPowerOf2()) 7375 return true; 7376 } 7377 } 7378 } 7379 7380 return false; 7381 } 7382 7383 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 7384 if (!Subtarget.useRVVForFixedLengthVectors()) 7385 return false; 7386 7387 if (!VT.isFixedLengthVector()) 7388 return false; 7389 7390 // Don't use RVV for vectors we cannot scalarize if required. 7391 switch (VT.getVectorElementType().SimpleTy) { 7392 // i1 is supported but has different rules. 7393 default: 7394 return false; 7395 case MVT::i1: 7396 // Masks can only use a single register. 7397 if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits()) 7398 return false; 7399 break; 7400 case MVT::i8: 7401 case MVT::i16: 7402 case MVT::i32: 7403 case MVT::i64: 7404 break; 7405 case MVT::f16: 7406 if (!Subtarget.hasStdExtZfh()) 7407 return false; 7408 break; 7409 case MVT::f32: 7410 if (!Subtarget.hasStdExtF()) 7411 return false; 7412 break; 7413 case MVT::f64: 7414 if (!Subtarget.hasStdExtD()) 7415 return false; 7416 break; 7417 } 7418 7419 unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT); 7420 // Don't use RVV for types that don't fit. 7421 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 7422 return false; 7423 7424 // TODO: Perhaps an artificial restriction, but worth having whilst getting 7425 // the base fixed length RVV support in place. 7426 if (!VT.isPow2VectorType()) 7427 return false; 7428 7429 return true; 7430 } 7431 7432 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 7433 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 7434 bool *Fast) const { 7435 if (!VT.isScalableVector()) 7436 return false; 7437 7438 EVT ElemVT = VT.getVectorElementType(); 7439 if (Alignment >= ElemVT.getStoreSize()) { 7440 if (Fast) 7441 *Fast = true; 7442 return true; 7443 } 7444 7445 return false; 7446 } 7447 7448 bool RISCVTargetLowering::splitValueIntoRegisterParts( 7449 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 7450 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 7451 bool IsABIRegCopy = CC.hasValue(); 7452 EVT ValueVT = Val.getValueType(); 7453 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 7454 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 7455 // and cast to f32. 7456 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 7457 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 7458 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 7459 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 7460 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 7461 Parts[0] = Val; 7462 return true; 7463 } 7464 7465 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 7466 LLVMContext &Context = *DAG.getContext(); 7467 EVT ValueEltVT = ValueVT.getVectorElementType(); 7468 EVT PartEltVT = PartVT.getVectorElementType(); 7469 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 7470 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 7471 if (PartVTBitSize % ValueVTBitSize == 0) { 7472 // If the element types are different, bitcast to the same element type of 7473 // PartVT first. 7474 if (ValueEltVT != PartEltVT) { 7475 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 7476 assert(Count != 0 && "The number of element should not be zero."); 7477 EVT SameEltTypeVT = 7478 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 7479 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 7480 } 7481 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 7482 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 7483 Parts[0] = Val; 7484 return true; 7485 } 7486 } 7487 return false; 7488 } 7489 7490 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 7491 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 7492 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 7493 bool IsABIRegCopy = CC.hasValue(); 7494 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 7495 SDValue Val = Parts[0]; 7496 7497 // Cast the f32 to i32, truncate to i16, and cast back to f16. 7498 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 7499 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 7500 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 7501 return Val; 7502 } 7503 7504 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 7505 LLVMContext &Context = *DAG.getContext(); 7506 SDValue Val = Parts[0]; 7507 EVT ValueEltVT = ValueVT.getVectorElementType(); 7508 EVT PartEltVT = PartVT.getVectorElementType(); 7509 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 7510 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 7511 if (PartVTBitSize % ValueVTBitSize == 0) { 7512 EVT SameEltTypeVT = ValueVT; 7513 // If the element types are different, convert it to the same element type 7514 // of PartVT. 7515 if (ValueEltVT != PartEltVT) { 7516 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 7517 assert(Count != 0 && "The number of element should not be zero."); 7518 SameEltTypeVT = 7519 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 7520 } 7521 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 7522 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 7523 if (ValueEltVT != PartEltVT) 7524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 7525 return Val; 7526 } 7527 } 7528 return SDValue(); 7529 } 7530 7531 #define GET_REGISTER_MATCHER 7532 #include "RISCVGenAsmMatcher.inc" 7533 7534 Register 7535 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 7536 const MachineFunction &MF) const { 7537 Register Reg = MatchRegisterAltName(RegName); 7538 if (Reg == RISCV::NoRegister) 7539 Reg = MatchRegisterName(RegName); 7540 if (Reg == RISCV::NoRegister) 7541 report_fatal_error( 7542 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 7543 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 7544 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 7545 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 7546 StringRef(RegName) + "\".")); 7547 return Reg; 7548 } 7549 7550 namespace llvm { 7551 namespace RISCVVIntrinsicsTable { 7552 7553 #define GET_RISCVVIntrinsicsTable_IMPL 7554 #include "RISCVGenSearchableTables.inc" 7555 7556 } // namespace RISCVVIntrinsicsTable 7557 7558 } // namespace llvm 7559