1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
494         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SEXT,
495         ISD::VP_ZEXT,        ISD::VP_TRUNC};
496 
497     static const unsigned FloatingPointVPOps[] = {
498         ISD::VP_FADD,        ISD::VP_FSUB,
499         ISD::VP_FMUL,        ISD::VP_FDIV,
500         ISD::VP_FNEG,        ISD::VP_FMA,
501         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
502         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
503         ISD::VP_MERGE,       ISD::VP_SELECT,
504         ISD::VP_SITOFP,      ISD::VP_UITOFP,
505         ISD::VP_SETCC,       ISD::VP_FP_ROUND};
506 
507     if (!Subtarget.is64Bit()) {
508       // We must custom-lower certain vXi64 operations on RV32 due to the vector
509       // element type being illegal.
510       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
511       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
512 
513       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
515       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
516       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
517       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
518       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
519       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
520       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
521 
522       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
524       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
525       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
526       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
527       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
528       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
529       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
530     }
531 
532     for (MVT VT : BoolVecVTs) {
533       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
534 
535       // Mask VTs are custom-expanded into a series of standard nodes
536       setOperationAction(ISD::TRUNCATE, VT, Custom);
537       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
538       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
539       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
540 
541       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
542       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
543 
544       setOperationAction(ISD::SELECT, VT, Custom);
545       setOperationAction(ISD::SELECT_CC, VT, Expand);
546       setOperationAction(ISD::VSELECT, VT, Expand);
547       setOperationAction(ISD::VP_MERGE, VT, Expand);
548       setOperationAction(ISD::VP_SELECT, VT, Expand);
549 
550       setOperationAction(ISD::VP_AND, VT, Custom);
551       setOperationAction(ISD::VP_OR, VT, Custom);
552       setOperationAction(ISD::VP_XOR, VT, Custom);
553 
554       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
555       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
556       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
557 
558       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
559       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
560       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
561 
562       // RVV has native int->float & float->int conversions where the
563       // element type sizes are within one power-of-two of each other. Any
564       // wider distances between type sizes have to be lowered as sequences
565       // which progressively narrow the gap in stages.
566       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
567       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
568       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
569       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
570 
571       // Expand all extending loads to types larger than this, and truncating
572       // stores from types larger than this.
573       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
574         setTruncStoreAction(OtherVT, VT, Expand);
575         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
576         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
577         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
578       }
579 
580       setOperationAction(ISD::VP_FPTOSI, VT, Custom);
581       setOperationAction(ISD::VP_FPTOUI, VT, Custom);
582       setOperationAction(ISD::VP_TRUNC, VT, Custom);
583     }
584 
585     for (MVT VT : IntVecVTs) {
586       if (VT.getVectorElementType() == MVT::i64 &&
587           !Subtarget.hasVInstructionsI64())
588         continue;
589 
590       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
591       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
592 
593       // Vectors implement MULHS/MULHU.
594       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
595       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
596 
597       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
598       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
599         setOperationAction(ISD::MULHU, VT, Expand);
600         setOperationAction(ISD::MULHS, VT, Expand);
601       }
602 
603       setOperationAction(ISD::SMIN, VT, Legal);
604       setOperationAction(ISD::SMAX, VT, Legal);
605       setOperationAction(ISD::UMIN, VT, Legal);
606       setOperationAction(ISD::UMAX, VT, Legal);
607 
608       setOperationAction(ISD::ROTL, VT, Expand);
609       setOperationAction(ISD::ROTR, VT, Expand);
610 
611       setOperationAction(ISD::CTTZ, VT, Expand);
612       setOperationAction(ISD::CTLZ, VT, Expand);
613       setOperationAction(ISD::CTPOP, VT, Expand);
614 
615       setOperationAction(ISD::BSWAP, VT, Expand);
616 
617       // Custom-lower extensions and truncations from/to mask types.
618       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
619       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
620       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
621 
622       // RVV has native int->float & float->int conversions where the
623       // element type sizes are within one power-of-two of each other. Any
624       // wider distances between type sizes have to be lowered as sequences
625       // which progressively narrow the gap in stages.
626       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
627       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
628       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
629       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
630 
631       setOperationAction(ISD::SADDSAT, VT, Legal);
632       setOperationAction(ISD::UADDSAT, VT, Legal);
633       setOperationAction(ISD::SSUBSAT, VT, Legal);
634       setOperationAction(ISD::USUBSAT, VT, Legal);
635 
636       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
637       // nodes which truncate by one power of two at a time.
638       setOperationAction(ISD::TRUNCATE, VT, Custom);
639 
640       // Custom-lower insert/extract operations to simplify patterns.
641       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
642       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
643 
644       // Custom-lower reduction operations to set up the corresponding custom
645       // nodes' operands.
646       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
647       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
648       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
649       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
650       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
651       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
652       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
653       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
654 
655       for (unsigned VPOpc : IntegerVPOps)
656         setOperationAction(VPOpc, VT, Custom);
657 
658       setOperationAction(ISD::LOAD, VT, Custom);
659       setOperationAction(ISD::STORE, VT, Custom);
660 
661       setOperationAction(ISD::MLOAD, VT, Custom);
662       setOperationAction(ISD::MSTORE, VT, Custom);
663       setOperationAction(ISD::MGATHER, VT, Custom);
664       setOperationAction(ISD::MSCATTER, VT, Custom);
665 
666       setOperationAction(ISD::VP_LOAD, VT, Custom);
667       setOperationAction(ISD::VP_STORE, VT, Custom);
668       setOperationAction(ISD::VP_GATHER, VT, Custom);
669       setOperationAction(ISD::VP_SCATTER, VT, Custom);
670 
671       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
672       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
673       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
674 
675       setOperationAction(ISD::SELECT, VT, Custom);
676       setOperationAction(ISD::SELECT_CC, VT, Expand);
677 
678       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
679       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
680 
681       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
682         setTruncStoreAction(VT, OtherVT, Expand);
683         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
684         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
685         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
686       }
687 
688       // Splice
689       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
690 
691       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
692       // type that can represent the value exactly.
693       if (VT.getVectorElementType() != MVT::i64) {
694         MVT FloatEltVT =
695             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
696         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
697         if (isTypeLegal(FloatVT)) {
698           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
699           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
700         }
701       }
702     }
703 
704     // Expand various CCs to best match the RVV ISA, which natively supports UNE
705     // but no other unordered comparisons, and supports all ordered comparisons
706     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
707     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
708     // and we pattern-match those back to the "original", swapping operands once
709     // more. This way we catch both operations and both "vf" and "fv" forms with
710     // fewer patterns.
711     static const ISD::CondCode VFPCCToExpand[] = {
712         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
713         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
714         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
715     };
716 
717     // Sets common operation actions on RVV floating-point vector types.
718     const auto SetCommonVFPActions = [&](MVT VT) {
719       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
720       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
721       // sizes are within one power-of-two of each other. Therefore conversions
722       // between vXf16 and vXf64 must be lowered as sequences which convert via
723       // vXf32.
724       setOperationAction(ISD::FP_ROUND, VT, Custom);
725       setOperationAction(ISD::FP_EXTEND, VT, Custom);
726       // Custom-lower insert/extract operations to simplify patterns.
727       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
728       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
729       // Expand various condition codes (explained above).
730       for (auto CC : VFPCCToExpand)
731         setCondCodeAction(CC, VT, Expand);
732 
733       setOperationAction(ISD::FMINNUM, VT, Legal);
734       setOperationAction(ISD::FMAXNUM, VT, Legal);
735 
736       setOperationAction(ISD::FTRUNC, VT, Custom);
737       setOperationAction(ISD::FCEIL, VT, Custom);
738       setOperationAction(ISD::FFLOOR, VT, Custom);
739       setOperationAction(ISD::FROUND, VT, Custom);
740 
741       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
742       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
743       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
744       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
745 
746       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
747 
748       setOperationAction(ISD::LOAD, VT, Custom);
749       setOperationAction(ISD::STORE, VT, Custom);
750 
751       setOperationAction(ISD::MLOAD, VT, Custom);
752       setOperationAction(ISD::MSTORE, VT, Custom);
753       setOperationAction(ISD::MGATHER, VT, Custom);
754       setOperationAction(ISD::MSCATTER, VT, Custom);
755 
756       setOperationAction(ISD::VP_LOAD, VT, Custom);
757       setOperationAction(ISD::VP_STORE, VT, Custom);
758       setOperationAction(ISD::VP_GATHER, VT, Custom);
759       setOperationAction(ISD::VP_SCATTER, VT, Custom);
760 
761       setOperationAction(ISD::SELECT, VT, Custom);
762       setOperationAction(ISD::SELECT_CC, VT, Expand);
763 
764       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
765       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
766       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
767 
768       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
769       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
770 
771       for (unsigned VPOpc : FloatingPointVPOps)
772         setOperationAction(VPOpc, VT, Custom);
773     };
774 
775     // Sets common extload/truncstore actions on RVV floating-point vector
776     // types.
777     const auto SetCommonVFPExtLoadTruncStoreActions =
778         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
779           for (auto SmallVT : SmallerVTs) {
780             setTruncStoreAction(VT, SmallVT, Expand);
781             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
782           }
783         };
784 
785     if (Subtarget.hasVInstructionsF16())
786       for (MVT VT : F16VecVTs)
787         SetCommonVFPActions(VT);
788 
789     for (MVT VT : F32VecVTs) {
790       if (Subtarget.hasVInstructionsF32())
791         SetCommonVFPActions(VT);
792       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
793     }
794 
795     for (MVT VT : F64VecVTs) {
796       if (Subtarget.hasVInstructionsF64())
797         SetCommonVFPActions(VT);
798       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
799       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
800     }
801 
802     if (Subtarget.useRVVForFixedLengthVectors()) {
803       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
804         if (!useRVVForFixedLengthVectorVT(VT))
805           continue;
806 
807         // By default everything must be expanded.
808         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
809           setOperationAction(Op, VT, Expand);
810         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
811           setTruncStoreAction(VT, OtherVT, Expand);
812           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
813           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
814           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
815         }
816 
817         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
818         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
819         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
820 
821         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
822         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
823 
824         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
825         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
826 
827         setOperationAction(ISD::LOAD, VT, Custom);
828         setOperationAction(ISD::STORE, VT, Custom);
829 
830         setOperationAction(ISD::SETCC, VT, Custom);
831 
832         setOperationAction(ISD::SELECT, VT, Custom);
833 
834         setOperationAction(ISD::TRUNCATE, VT, Custom);
835 
836         setOperationAction(ISD::BITCAST, VT, Custom);
837 
838         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
839         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
840         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
841 
842         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
843         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
844         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
845 
846         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
847         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
848         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
849         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
850 
851         // Operations below are different for between masks and other vectors.
852         if (VT.getVectorElementType() == MVT::i1) {
853           setOperationAction(ISD::VP_AND, VT, Custom);
854           setOperationAction(ISD::VP_OR, VT, Custom);
855           setOperationAction(ISD::VP_XOR, VT, Custom);
856           setOperationAction(ISD::AND, VT, Custom);
857           setOperationAction(ISD::OR, VT, Custom);
858           setOperationAction(ISD::XOR, VT, Custom);
859 
860           setOperationAction(ISD::VP_FPTOSI, VT, Custom);
861           setOperationAction(ISD::VP_FPTOUI, VT, Custom);
862           setOperationAction(ISD::VP_SETCC, VT, Custom);
863           setOperationAction(ISD::VP_TRUNC, VT, Custom);
864           continue;
865         }
866 
867         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
868         // it before type legalization for i64 vectors on RV32. It will then be
869         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
870         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
871         // improvements first.
872         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
873           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
874           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
875         }
876 
877         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
878         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
879 
880         setOperationAction(ISD::MLOAD, VT, Custom);
881         setOperationAction(ISD::MSTORE, VT, Custom);
882         setOperationAction(ISD::MGATHER, VT, Custom);
883         setOperationAction(ISD::MSCATTER, VT, Custom);
884 
885         setOperationAction(ISD::VP_LOAD, VT, Custom);
886         setOperationAction(ISD::VP_STORE, VT, Custom);
887         setOperationAction(ISD::VP_GATHER, VT, Custom);
888         setOperationAction(ISD::VP_SCATTER, VT, Custom);
889 
890         setOperationAction(ISD::ADD, VT, Custom);
891         setOperationAction(ISD::MUL, VT, Custom);
892         setOperationAction(ISD::SUB, VT, Custom);
893         setOperationAction(ISD::AND, VT, Custom);
894         setOperationAction(ISD::OR, VT, Custom);
895         setOperationAction(ISD::XOR, VT, Custom);
896         setOperationAction(ISD::SDIV, VT, Custom);
897         setOperationAction(ISD::SREM, VT, Custom);
898         setOperationAction(ISD::UDIV, VT, Custom);
899         setOperationAction(ISD::UREM, VT, Custom);
900         setOperationAction(ISD::SHL, VT, Custom);
901         setOperationAction(ISD::SRA, VT, Custom);
902         setOperationAction(ISD::SRL, VT, Custom);
903 
904         setOperationAction(ISD::SMIN, VT, Custom);
905         setOperationAction(ISD::SMAX, VT, Custom);
906         setOperationAction(ISD::UMIN, VT, Custom);
907         setOperationAction(ISD::UMAX, VT, Custom);
908         setOperationAction(ISD::ABS,  VT, Custom);
909 
910         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
911         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
912           setOperationAction(ISD::MULHS, VT, Custom);
913           setOperationAction(ISD::MULHU, VT, Custom);
914         }
915 
916         setOperationAction(ISD::SADDSAT, VT, Custom);
917         setOperationAction(ISD::UADDSAT, VT, Custom);
918         setOperationAction(ISD::SSUBSAT, VT, Custom);
919         setOperationAction(ISD::USUBSAT, VT, Custom);
920 
921         setOperationAction(ISD::VSELECT, VT, Custom);
922         setOperationAction(ISD::SELECT_CC, VT, Expand);
923 
924         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
925         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
926         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
927 
928         // Custom-lower reduction operations to set up the corresponding custom
929         // nodes' operands.
930         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
931         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
932         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
933         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
934         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
935 
936         for (unsigned VPOpc : IntegerVPOps)
937           setOperationAction(VPOpc, VT, Custom);
938 
939         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
940         // type that can represent the value exactly.
941         if (VT.getVectorElementType() != MVT::i64) {
942           MVT FloatEltVT =
943               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
944           EVT FloatVT =
945               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
946           if (isTypeLegal(FloatVT)) {
947             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
948             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
949           }
950         }
951       }
952 
953       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
954         if (!useRVVForFixedLengthVectorVT(VT))
955           continue;
956 
957         // By default everything must be expanded.
958         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
959           setOperationAction(Op, VT, Expand);
960         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
961           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
962           setTruncStoreAction(VT, OtherVT, Expand);
963         }
964 
965         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
966         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
967         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
968 
969         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
970         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
971         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
972         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
973         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
974 
975         setOperationAction(ISD::LOAD, VT, Custom);
976         setOperationAction(ISD::STORE, VT, Custom);
977         setOperationAction(ISD::MLOAD, VT, Custom);
978         setOperationAction(ISD::MSTORE, VT, Custom);
979         setOperationAction(ISD::MGATHER, VT, Custom);
980         setOperationAction(ISD::MSCATTER, VT, Custom);
981 
982         setOperationAction(ISD::VP_LOAD, VT, Custom);
983         setOperationAction(ISD::VP_STORE, VT, Custom);
984         setOperationAction(ISD::VP_GATHER, VT, Custom);
985         setOperationAction(ISD::VP_SCATTER, VT, Custom);
986 
987         setOperationAction(ISD::FADD, VT, Custom);
988         setOperationAction(ISD::FSUB, VT, Custom);
989         setOperationAction(ISD::FMUL, VT, Custom);
990         setOperationAction(ISD::FDIV, VT, Custom);
991         setOperationAction(ISD::FNEG, VT, Custom);
992         setOperationAction(ISD::FABS, VT, Custom);
993         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
994         setOperationAction(ISD::FSQRT, VT, Custom);
995         setOperationAction(ISD::FMA, VT, Custom);
996         setOperationAction(ISD::FMINNUM, VT, Custom);
997         setOperationAction(ISD::FMAXNUM, VT, Custom);
998 
999         setOperationAction(ISD::FP_ROUND, VT, Custom);
1000         setOperationAction(ISD::FP_EXTEND, VT, Custom);
1001 
1002         setOperationAction(ISD::FTRUNC, VT, Custom);
1003         setOperationAction(ISD::FCEIL, VT, Custom);
1004         setOperationAction(ISD::FFLOOR, VT, Custom);
1005         setOperationAction(ISD::FROUND, VT, Custom);
1006 
1007         for (auto CC : VFPCCToExpand)
1008           setCondCodeAction(CC, VT, Expand);
1009 
1010         setOperationAction(ISD::VSELECT, VT, Custom);
1011         setOperationAction(ISD::SELECT, VT, Custom);
1012         setOperationAction(ISD::SELECT_CC, VT, Expand);
1013 
1014         setOperationAction(ISD::BITCAST, VT, Custom);
1015 
1016         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1017         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1018         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1019         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1020 
1021         for (unsigned VPOpc : FloatingPointVPOps)
1022           setOperationAction(VPOpc, VT, Custom);
1023       }
1024 
1025       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1026       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1027       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1028       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1029       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1030       if (Subtarget.hasStdExtZfh())
1031         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1032       if (Subtarget.hasStdExtF())
1033         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1034       if (Subtarget.hasStdExtD())
1035         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1036     }
1037   }
1038 
1039   // Function alignments.
1040   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1041   setMinFunctionAlignment(FunctionAlignment);
1042   setPrefFunctionAlignment(FunctionAlignment);
1043 
1044   setMinimumJumpTableEntries(5);
1045 
1046   // Jumps are expensive, compared to logic
1047   setJumpIsExpensive();
1048 
1049   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
1050                        ISD::OR, ISD::XOR});
1051 
1052   if (Subtarget.hasStdExtZbp())
1053     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
1054   if (Subtarget.hasStdExtZbkb())
1055     setTargetDAGCombine(ISD::BITREVERSE);
1056   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1057     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1058   if (Subtarget.hasStdExtF())
1059     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
1060                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
1061   if (Subtarget.hasVInstructions())
1062     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
1063                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
1064                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
1065 
1066   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1067   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1068 }
1069 
1070 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1071                                             LLVMContext &Context,
1072                                             EVT VT) const {
1073   if (!VT.isVector())
1074     return getPointerTy(DL);
1075   if (Subtarget.hasVInstructions() &&
1076       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1077     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1078   return VT.changeVectorElementTypeToInteger();
1079 }
1080 
1081 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1082   return Subtarget.getXLenVT();
1083 }
1084 
1085 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1086                                              const CallInst &I,
1087                                              MachineFunction &MF,
1088                                              unsigned Intrinsic) const {
1089   auto &DL = I.getModule()->getDataLayout();
1090   switch (Intrinsic) {
1091   default:
1092     return false;
1093   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1094   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1095   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1099   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1100   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1101   case Intrinsic::riscv_masked_cmpxchg_i32:
1102     Info.opc = ISD::INTRINSIC_W_CHAIN;
1103     Info.memVT = MVT::i32;
1104     Info.ptrVal = I.getArgOperand(0);
1105     Info.offset = 0;
1106     Info.align = Align(4);
1107     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1108                  MachineMemOperand::MOVolatile;
1109     return true;
1110   case Intrinsic::riscv_masked_strided_load:
1111     Info.opc = ISD::INTRINSIC_W_CHAIN;
1112     Info.ptrVal = I.getArgOperand(1);
1113     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1114     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1115     Info.size = MemoryLocation::UnknownSize;
1116     Info.flags |= MachineMemOperand::MOLoad;
1117     return true;
1118   case Intrinsic::riscv_masked_strided_store:
1119     Info.opc = ISD::INTRINSIC_VOID;
1120     Info.ptrVal = I.getArgOperand(1);
1121     Info.memVT =
1122         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1123     Info.align = Align(
1124         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1125         8);
1126     Info.size = MemoryLocation::UnknownSize;
1127     Info.flags |= MachineMemOperand::MOStore;
1128     return true;
1129   case Intrinsic::riscv_seg2_load:
1130   case Intrinsic::riscv_seg3_load:
1131   case Intrinsic::riscv_seg4_load:
1132   case Intrinsic::riscv_seg5_load:
1133   case Intrinsic::riscv_seg6_load:
1134   case Intrinsic::riscv_seg7_load:
1135   case Intrinsic::riscv_seg8_load:
1136     Info.opc = ISD::INTRINSIC_W_CHAIN;
1137     Info.ptrVal = I.getArgOperand(0);
1138     Info.memVT =
1139         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1140     Info.align =
1141         Align(DL.getTypeSizeInBits(
1142                   I.getType()->getStructElementType(0)->getScalarType()) /
1143               8);
1144     Info.size = MemoryLocation::UnknownSize;
1145     Info.flags |= MachineMemOperand::MOLoad;
1146     return true;
1147   }
1148 }
1149 
1150 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1151                                                 const AddrMode &AM, Type *Ty,
1152                                                 unsigned AS,
1153                                                 Instruction *I) const {
1154   // No global is ever allowed as a base.
1155   if (AM.BaseGV)
1156     return false;
1157 
1158   // Require a 12-bit signed offset.
1159   if (!isInt<12>(AM.BaseOffs))
1160     return false;
1161 
1162   switch (AM.Scale) {
1163   case 0: // "r+i" or just "i", depending on HasBaseReg.
1164     break;
1165   case 1:
1166     if (!AM.HasBaseReg) // allow "r+i".
1167       break;
1168     return false; // disallow "r+r" or "r+r+i".
1169   default:
1170     return false;
1171   }
1172 
1173   return true;
1174 }
1175 
1176 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1177   return isInt<12>(Imm);
1178 }
1179 
1180 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1181   return isInt<12>(Imm);
1182 }
1183 
1184 // On RV32, 64-bit integers are split into their high and low parts and held
1185 // in two different registers, so the trunc is free since the low register can
1186 // just be used.
1187 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1188   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1189     return false;
1190   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1191   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1192   return (SrcBits == 64 && DestBits == 32);
1193 }
1194 
1195 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1196   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1197       !SrcVT.isInteger() || !DstVT.isInteger())
1198     return false;
1199   unsigned SrcBits = SrcVT.getSizeInBits();
1200   unsigned DestBits = DstVT.getSizeInBits();
1201   return (SrcBits == 64 && DestBits == 32);
1202 }
1203 
1204 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1205   // Zexts are free if they can be combined with a load.
1206   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1207   // poorly with type legalization of compares preferring sext.
1208   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1209     EVT MemVT = LD->getMemoryVT();
1210     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1211         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1212          LD->getExtensionType() == ISD::ZEXTLOAD))
1213       return true;
1214   }
1215 
1216   return TargetLowering::isZExtFree(Val, VT2);
1217 }
1218 
1219 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1220   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1221 }
1222 
1223 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1224   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1225 }
1226 
1227 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1228   return Subtarget.hasStdExtZbb();
1229 }
1230 
1231 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1232   return Subtarget.hasStdExtZbb();
1233 }
1234 
1235 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1236   EVT VT = Y.getValueType();
1237 
1238   // FIXME: Support vectors once we have tests.
1239   if (VT.isVector())
1240     return false;
1241 
1242   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1243           Subtarget.hasStdExtZbkb()) &&
1244          !isa<ConstantSDNode>(Y);
1245 }
1246 
1247 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1248   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1249   auto *C = dyn_cast<ConstantSDNode>(Y);
1250   return C && C->getAPIntValue().ule(10);
1251 }
1252 
1253 /// Check if sinking \p I's operands to I's basic block is profitable, because
1254 /// the operands can be folded into a target instruction, e.g.
1255 /// splats of scalars can fold into vector instructions.
1256 bool RISCVTargetLowering::shouldSinkOperands(
1257     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1258   using namespace llvm::PatternMatch;
1259 
1260   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1261     return false;
1262 
1263   auto IsSinker = [&](Instruction *I, int Operand) {
1264     switch (I->getOpcode()) {
1265     case Instruction::Add:
1266     case Instruction::Sub:
1267     case Instruction::Mul:
1268     case Instruction::And:
1269     case Instruction::Or:
1270     case Instruction::Xor:
1271     case Instruction::FAdd:
1272     case Instruction::FSub:
1273     case Instruction::FMul:
1274     case Instruction::FDiv:
1275     case Instruction::ICmp:
1276     case Instruction::FCmp:
1277       return true;
1278     case Instruction::Shl:
1279     case Instruction::LShr:
1280     case Instruction::AShr:
1281     case Instruction::UDiv:
1282     case Instruction::SDiv:
1283     case Instruction::URem:
1284     case Instruction::SRem:
1285       return Operand == 1;
1286     case Instruction::Call:
1287       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1288         switch (II->getIntrinsicID()) {
1289         case Intrinsic::fma:
1290         case Intrinsic::vp_fma:
1291           return Operand == 0 || Operand == 1;
1292         // FIXME: Our patterns can only match vx/vf instructions when the splat
1293         // it on the RHS, because TableGen doesn't recognize our VP operations
1294         // as commutative.
1295         case Intrinsic::vp_add:
1296         case Intrinsic::vp_mul:
1297         case Intrinsic::vp_and:
1298         case Intrinsic::vp_or:
1299         case Intrinsic::vp_xor:
1300         case Intrinsic::vp_fadd:
1301         case Intrinsic::vp_fmul:
1302         case Intrinsic::vp_shl:
1303         case Intrinsic::vp_lshr:
1304         case Intrinsic::vp_ashr:
1305         case Intrinsic::vp_udiv:
1306         case Intrinsic::vp_sdiv:
1307         case Intrinsic::vp_urem:
1308         case Intrinsic::vp_srem:
1309           return Operand == 1;
1310         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1311         // explicit patterns for both LHS and RHS (as 'vr' versions).
1312         case Intrinsic::vp_sub:
1313         case Intrinsic::vp_fsub:
1314         case Intrinsic::vp_fdiv:
1315           return Operand == 0 || Operand == 1;
1316         default:
1317           return false;
1318         }
1319       }
1320       return false;
1321     default:
1322       return false;
1323     }
1324   };
1325 
1326   for (auto OpIdx : enumerate(I->operands())) {
1327     if (!IsSinker(I, OpIdx.index()))
1328       continue;
1329 
1330     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1331     // Make sure we are not already sinking this operand
1332     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1333       continue;
1334 
1335     // We are looking for a splat that can be sunk.
1336     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1337                              m_Undef(), m_ZeroMask())))
1338       continue;
1339 
1340     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1341     // and vector registers
1342     for (Use &U : Op->uses()) {
1343       Instruction *Insn = cast<Instruction>(U.getUser());
1344       if (!IsSinker(Insn, U.getOperandNo()))
1345         return false;
1346     }
1347 
1348     Ops.push_back(&Op->getOperandUse(0));
1349     Ops.push_back(&OpIdx.value());
1350   }
1351   return true;
1352 }
1353 
1354 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1355                                        bool ForCodeSize) const {
1356   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1357   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1358     return false;
1359   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1360     return false;
1361   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1362     return false;
1363   return Imm.isZero();
1364 }
1365 
1366 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1367   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1368          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1369          (VT == MVT::f64 && Subtarget.hasStdExtD());
1370 }
1371 
1372 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1373                                                       CallingConv::ID CC,
1374                                                       EVT VT) const {
1375   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1376   // We might still end up using a GPR but that will be decided based on ABI.
1377   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1378   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1379     return MVT::f32;
1380 
1381   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1382 }
1383 
1384 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1385                                                            CallingConv::ID CC,
1386                                                            EVT VT) const {
1387   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1388   // We might still end up using a GPR but that will be decided based on ABI.
1389   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1390   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1391     return 1;
1392 
1393   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1394 }
1395 
1396 // Changes the condition code and swaps operands if necessary, so the SetCC
1397 // operation matches one of the comparisons supported directly by branches
1398 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1399 // with 1/-1.
1400 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1401                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1402   // Convert X > -1 to X >= 0.
1403   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1404     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1405     CC = ISD::SETGE;
1406     return;
1407   }
1408   // Convert X < 1 to 0 >= X.
1409   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1410     RHS = LHS;
1411     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1412     CC = ISD::SETGE;
1413     return;
1414   }
1415 
1416   switch (CC) {
1417   default:
1418     break;
1419   case ISD::SETGT:
1420   case ISD::SETLE:
1421   case ISD::SETUGT:
1422   case ISD::SETULE:
1423     CC = ISD::getSetCCSwappedOperands(CC);
1424     std::swap(LHS, RHS);
1425     break;
1426   }
1427 }
1428 
1429 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1430   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1431   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1432   if (VT.getVectorElementType() == MVT::i1)
1433     KnownSize *= 8;
1434 
1435   switch (KnownSize) {
1436   default:
1437     llvm_unreachable("Invalid LMUL.");
1438   case 8:
1439     return RISCVII::VLMUL::LMUL_F8;
1440   case 16:
1441     return RISCVII::VLMUL::LMUL_F4;
1442   case 32:
1443     return RISCVII::VLMUL::LMUL_F2;
1444   case 64:
1445     return RISCVII::VLMUL::LMUL_1;
1446   case 128:
1447     return RISCVII::VLMUL::LMUL_2;
1448   case 256:
1449     return RISCVII::VLMUL::LMUL_4;
1450   case 512:
1451     return RISCVII::VLMUL::LMUL_8;
1452   }
1453 }
1454 
1455 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1456   switch (LMul) {
1457   default:
1458     llvm_unreachable("Invalid LMUL.");
1459   case RISCVII::VLMUL::LMUL_F8:
1460   case RISCVII::VLMUL::LMUL_F4:
1461   case RISCVII::VLMUL::LMUL_F2:
1462   case RISCVII::VLMUL::LMUL_1:
1463     return RISCV::VRRegClassID;
1464   case RISCVII::VLMUL::LMUL_2:
1465     return RISCV::VRM2RegClassID;
1466   case RISCVII::VLMUL::LMUL_4:
1467     return RISCV::VRM4RegClassID;
1468   case RISCVII::VLMUL::LMUL_8:
1469     return RISCV::VRM8RegClassID;
1470   }
1471 }
1472 
1473 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1474   RISCVII::VLMUL LMUL = getLMUL(VT);
1475   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1476       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1477       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1478       LMUL == RISCVII::VLMUL::LMUL_1) {
1479     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1480                   "Unexpected subreg numbering");
1481     return RISCV::sub_vrm1_0 + Index;
1482   }
1483   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1484     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1485                   "Unexpected subreg numbering");
1486     return RISCV::sub_vrm2_0 + Index;
1487   }
1488   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1489     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1490                   "Unexpected subreg numbering");
1491     return RISCV::sub_vrm4_0 + Index;
1492   }
1493   llvm_unreachable("Invalid vector type.");
1494 }
1495 
1496 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1497   if (VT.getVectorElementType() == MVT::i1)
1498     return RISCV::VRRegClassID;
1499   return getRegClassIDForLMUL(getLMUL(VT));
1500 }
1501 
1502 // Attempt to decompose a subvector insert/extract between VecVT and
1503 // SubVecVT via subregister indices. Returns the subregister index that
1504 // can perform the subvector insert/extract with the given element index, as
1505 // well as the index corresponding to any leftover subvectors that must be
1506 // further inserted/extracted within the register class for SubVecVT.
1507 std::pair<unsigned, unsigned>
1508 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1509     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1510     const RISCVRegisterInfo *TRI) {
1511   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1512                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1513                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1514                 "Register classes not ordered");
1515   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1516   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1517   // Try to compose a subregister index that takes us from the incoming
1518   // LMUL>1 register class down to the outgoing one. At each step we half
1519   // the LMUL:
1520   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1521   // Note that this is not guaranteed to find a subregister index, such as
1522   // when we are extracting from one VR type to another.
1523   unsigned SubRegIdx = RISCV::NoSubRegister;
1524   for (const unsigned RCID :
1525        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1526     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1527       VecVT = VecVT.getHalfNumVectorElementsVT();
1528       bool IsHi =
1529           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1530       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1531                                             getSubregIndexByMVT(VecVT, IsHi));
1532       if (IsHi)
1533         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1534     }
1535   return {SubRegIdx, InsertExtractIdx};
1536 }
1537 
1538 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1539 // stores for those types.
1540 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1541   return !Subtarget.useRVVForFixedLengthVectors() ||
1542          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1543 }
1544 
1545 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1546   if (ScalarTy->isPointerTy())
1547     return true;
1548 
1549   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1550       ScalarTy->isIntegerTy(32))
1551     return true;
1552 
1553   if (ScalarTy->isIntegerTy(64))
1554     return Subtarget.hasVInstructionsI64();
1555 
1556   if (ScalarTy->isHalfTy())
1557     return Subtarget.hasVInstructionsF16();
1558   if (ScalarTy->isFloatTy())
1559     return Subtarget.hasVInstructionsF32();
1560   if (ScalarTy->isDoubleTy())
1561     return Subtarget.hasVInstructionsF64();
1562 
1563   return false;
1564 }
1565 
1566 static SDValue getVLOperand(SDValue Op) {
1567   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1568           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1569          "Unexpected opcode");
1570   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1571   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1572   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1573       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1574   if (!II)
1575     return SDValue();
1576   return Op.getOperand(II->VLOperand + 1 + HasChain);
1577 }
1578 
1579 static bool useRVVForFixedLengthVectorVT(MVT VT,
1580                                          const RISCVSubtarget &Subtarget) {
1581   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1582   if (!Subtarget.useRVVForFixedLengthVectors())
1583     return false;
1584 
1585   // We only support a set of vector types with a consistent maximum fixed size
1586   // across all supported vector element types to avoid legalization issues.
1587   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1588   // fixed-length vector type we support is 1024 bytes.
1589   if (VT.getFixedSizeInBits() > 1024 * 8)
1590     return false;
1591 
1592   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1593 
1594   MVT EltVT = VT.getVectorElementType();
1595 
1596   // Don't use RVV for vectors we cannot scalarize if required.
1597   switch (EltVT.SimpleTy) {
1598   // i1 is supported but has different rules.
1599   default:
1600     return false;
1601   case MVT::i1:
1602     // Masks can only use a single register.
1603     if (VT.getVectorNumElements() > MinVLen)
1604       return false;
1605     MinVLen /= 8;
1606     break;
1607   case MVT::i8:
1608   case MVT::i16:
1609   case MVT::i32:
1610     break;
1611   case MVT::i64:
1612     if (!Subtarget.hasVInstructionsI64())
1613       return false;
1614     break;
1615   case MVT::f16:
1616     if (!Subtarget.hasVInstructionsF16())
1617       return false;
1618     break;
1619   case MVT::f32:
1620     if (!Subtarget.hasVInstructionsF32())
1621       return false;
1622     break;
1623   case MVT::f64:
1624     if (!Subtarget.hasVInstructionsF64())
1625       return false;
1626     break;
1627   }
1628 
1629   // Reject elements larger than ELEN.
1630   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1631     return false;
1632 
1633   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1634   // Don't use RVV for types that don't fit.
1635   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1636     return false;
1637 
1638   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1639   // the base fixed length RVV support in place.
1640   if (!VT.isPow2VectorType())
1641     return false;
1642 
1643   return true;
1644 }
1645 
1646 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1647   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1648 }
1649 
1650 // Return the largest legal scalable vector type that matches VT's element type.
1651 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1652                                             const RISCVSubtarget &Subtarget) {
1653   // This may be called before legal types are setup.
1654   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1655           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1656          "Expected legal fixed length vector!");
1657 
1658   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1659   unsigned MaxELen = Subtarget.getELEN();
1660 
1661   MVT EltVT = VT.getVectorElementType();
1662   switch (EltVT.SimpleTy) {
1663   default:
1664     llvm_unreachable("unexpected element type for RVV container");
1665   case MVT::i1:
1666   case MVT::i8:
1667   case MVT::i16:
1668   case MVT::i32:
1669   case MVT::i64:
1670   case MVT::f16:
1671   case MVT::f32:
1672   case MVT::f64: {
1673     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1674     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1675     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1676     unsigned NumElts =
1677         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1678     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1679     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1680     return MVT::getScalableVectorVT(EltVT, NumElts);
1681   }
1682   }
1683 }
1684 
1685 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1686                                             const RISCVSubtarget &Subtarget) {
1687   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1688                                           Subtarget);
1689 }
1690 
1691 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1692   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1693 }
1694 
1695 // Grow V to consume an entire RVV register.
1696 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1697                                        const RISCVSubtarget &Subtarget) {
1698   assert(VT.isScalableVector() &&
1699          "Expected to convert into a scalable vector!");
1700   assert(V.getValueType().isFixedLengthVector() &&
1701          "Expected a fixed length vector operand!");
1702   SDLoc DL(V);
1703   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1704   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1705 }
1706 
1707 // Shrink V so it's just big enough to maintain a VT's worth of data.
1708 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1709                                          const RISCVSubtarget &Subtarget) {
1710   assert(VT.isFixedLengthVector() &&
1711          "Expected to convert into a fixed length vector!");
1712   assert(V.getValueType().isScalableVector() &&
1713          "Expected a scalable vector operand!");
1714   SDLoc DL(V);
1715   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1716   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1717 }
1718 
1719 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1720 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1721 // the vector type that it is contained in.
1722 static std::pair<SDValue, SDValue>
1723 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1724                 const RISCVSubtarget &Subtarget) {
1725   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1726   MVT XLenVT = Subtarget.getXLenVT();
1727   SDValue VL = VecVT.isFixedLengthVector()
1728                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1729                    : DAG.getRegister(RISCV::X0, XLenVT);
1730   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1731   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1732   return {Mask, VL};
1733 }
1734 
1735 // As above but assuming the given type is a scalable vector type.
1736 static std::pair<SDValue, SDValue>
1737 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1738                         const RISCVSubtarget &Subtarget) {
1739   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1740   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1741 }
1742 
1743 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1744 // of either is (currently) supported. This can get us into an infinite loop
1745 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1746 // as a ..., etc.
1747 // Until either (or both) of these can reliably lower any node, reporting that
1748 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1749 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1750 // which is not desirable.
1751 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1752     EVT VT, unsigned DefinedValues) const {
1753   return false;
1754 }
1755 
1756 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1757                                   const RISCVSubtarget &Subtarget) {
1758   // RISCV FP-to-int conversions saturate to the destination register size, but
1759   // don't produce 0 for nan. We can use a conversion instruction and fix the
1760   // nan case with a compare and a select.
1761   SDValue Src = Op.getOperand(0);
1762 
1763   EVT DstVT = Op.getValueType();
1764   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1765 
1766   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1767   unsigned Opc;
1768   if (SatVT == DstVT)
1769     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1770   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1771     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1772   else
1773     return SDValue();
1774   // FIXME: Support other SatVTs by clamping before or after the conversion.
1775 
1776   SDLoc DL(Op);
1777   SDValue FpToInt = DAG.getNode(
1778       Opc, DL, DstVT, Src,
1779       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1780 
1781   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1782   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1783 }
1784 
1785 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1786 // and back. Taking care to avoid converting values that are nan or already
1787 // correct.
1788 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1789 // have FRM dependencies modeled yet.
1790 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1791   MVT VT = Op.getSimpleValueType();
1792   assert(VT.isVector() && "Unexpected type");
1793 
1794   SDLoc DL(Op);
1795 
1796   // Freeze the source since we are increasing the number of uses.
1797   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1798 
1799   // Truncate to integer and convert back to FP.
1800   MVT IntVT = VT.changeVectorElementTypeToInteger();
1801   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1802   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1803 
1804   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1805 
1806   if (Op.getOpcode() == ISD::FCEIL) {
1807     // If the truncated value is the greater than or equal to the original
1808     // value, we've computed the ceil. Otherwise, we went the wrong way and
1809     // need to increase by 1.
1810     // FIXME: This should use a masked operation. Handle here or in isel?
1811     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1812                                  DAG.getConstantFP(1.0, DL, VT));
1813     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1814     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1815   } else if (Op.getOpcode() == ISD::FFLOOR) {
1816     // If the truncated value is the less than or equal to the original value,
1817     // we've computed the floor. Otherwise, we went the wrong way and need to
1818     // decrease by 1.
1819     // FIXME: This should use a masked operation. Handle here or in isel?
1820     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1821                                  DAG.getConstantFP(1.0, DL, VT));
1822     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1823     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1824   }
1825 
1826   // Restore the original sign so that -0.0 is preserved.
1827   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1828 
1829   // Determine the largest integer that can be represented exactly. This and
1830   // values larger than it don't have any fractional bits so don't need to
1831   // be converted.
1832   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1833   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1834   APFloat MaxVal = APFloat(FltSem);
1835   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1836                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1837   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1838 
1839   // If abs(Src) was larger than MaxVal or nan, keep it.
1840   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1841   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1842   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1843 }
1844 
1845 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1846 // This mode isn't supported in vector hardware on RISCV. But as long as we
1847 // aren't compiling with trapping math, we can emulate this with
1848 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1849 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1850 // dependencies modeled yet.
1851 // FIXME: Use masked operations to avoid final merge.
1852 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1853   MVT VT = Op.getSimpleValueType();
1854   assert(VT.isVector() && "Unexpected type");
1855 
1856   SDLoc DL(Op);
1857 
1858   // Freeze the source since we are increasing the number of uses.
1859   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1860 
1861   // We do the conversion on the absolute value and fix the sign at the end.
1862   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1863 
1864   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1865   bool Ignored;
1866   APFloat Point5Pred = APFloat(0.5f);
1867   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1868   Point5Pred.next(/*nextDown*/ true);
1869 
1870   // Add the adjustment.
1871   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1872                                DAG.getConstantFP(Point5Pred, DL, VT));
1873 
1874   // Truncate to integer and convert back to fp.
1875   MVT IntVT = VT.changeVectorElementTypeToInteger();
1876   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1877   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1878 
1879   // Restore the original sign.
1880   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1881 
1882   // Determine the largest integer that can be represented exactly. This and
1883   // values larger than it don't have any fractional bits so don't need to
1884   // be converted.
1885   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1886   APFloat MaxVal = APFloat(FltSem);
1887   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1888                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1889   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1890 
1891   // If abs(Src) was larger than MaxVal or nan, keep it.
1892   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1893   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1894   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1895 }
1896 
1897 struct VIDSequence {
1898   int64_t StepNumerator;
1899   unsigned StepDenominator;
1900   int64_t Addend;
1901 };
1902 
1903 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1904 // to the (non-zero) step S and start value X. This can be then lowered as the
1905 // RVV sequence (VID * S) + X, for example.
1906 // The step S is represented as an integer numerator divided by a positive
1907 // denominator. Note that the implementation currently only identifies
1908 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1909 // cannot detect 2/3, for example.
1910 // Note that this method will also match potentially unappealing index
1911 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1912 // determine whether this is worth generating code for.
1913 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1914   unsigned NumElts = Op.getNumOperands();
1915   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1916   if (!Op.getValueType().isInteger())
1917     return None;
1918 
1919   Optional<unsigned> SeqStepDenom;
1920   Optional<int64_t> SeqStepNum, SeqAddend;
1921   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1922   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1923   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1924     // Assume undef elements match the sequence; we just have to be careful
1925     // when interpolating across them.
1926     if (Op.getOperand(Idx).isUndef())
1927       continue;
1928     // The BUILD_VECTOR must be all constants.
1929     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1930       return None;
1931 
1932     uint64_t Val = Op.getConstantOperandVal(Idx) &
1933                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1934 
1935     if (PrevElt) {
1936       // Calculate the step since the last non-undef element, and ensure
1937       // it's consistent across the entire sequence.
1938       unsigned IdxDiff = Idx - PrevElt->second;
1939       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1940 
1941       // A zero-value value difference means that we're somewhere in the middle
1942       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1943       // step change before evaluating the sequence.
1944       if (ValDiff == 0)
1945         continue;
1946 
1947       int64_t Remainder = ValDiff % IdxDiff;
1948       // Normalize the step if it's greater than 1.
1949       if (Remainder != ValDiff) {
1950         // The difference must cleanly divide the element span.
1951         if (Remainder != 0)
1952           return None;
1953         ValDiff /= IdxDiff;
1954         IdxDiff = 1;
1955       }
1956 
1957       if (!SeqStepNum)
1958         SeqStepNum = ValDiff;
1959       else if (ValDiff != SeqStepNum)
1960         return None;
1961 
1962       if (!SeqStepDenom)
1963         SeqStepDenom = IdxDiff;
1964       else if (IdxDiff != *SeqStepDenom)
1965         return None;
1966     }
1967 
1968     // Record this non-undef element for later.
1969     if (!PrevElt || PrevElt->first != Val)
1970       PrevElt = std::make_pair(Val, Idx);
1971   }
1972 
1973   // We need to have logged a step for this to count as a legal index sequence.
1974   if (!SeqStepNum || !SeqStepDenom)
1975     return None;
1976 
1977   // Loop back through the sequence and validate elements we might have skipped
1978   // while waiting for a valid step. While doing this, log any sequence addend.
1979   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1980     if (Op.getOperand(Idx).isUndef())
1981       continue;
1982     uint64_t Val = Op.getConstantOperandVal(Idx) &
1983                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1984     uint64_t ExpectedVal =
1985         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1986     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1987     if (!SeqAddend)
1988       SeqAddend = Addend;
1989     else if (Addend != SeqAddend)
1990       return None;
1991   }
1992 
1993   assert(SeqAddend && "Must have an addend if we have a step");
1994 
1995   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1996 }
1997 
1998 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1999 // and lower it as a VRGATHER_VX_VL from the source vector.
2000 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
2001                                   SelectionDAG &DAG,
2002                                   const RISCVSubtarget &Subtarget) {
2003   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2004     return SDValue();
2005   SDValue Vec = SplatVal.getOperand(0);
2006   // Only perform this optimization on vectors of the same size for simplicity.
2007   if (Vec.getValueType() != VT)
2008     return SDValue();
2009   SDValue Idx = SplatVal.getOperand(1);
2010   // The index must be a legal type.
2011   if (Idx.getValueType() != Subtarget.getXLenVT())
2012     return SDValue();
2013 
2014   MVT ContainerVT = VT;
2015   if (VT.isFixedLengthVector()) {
2016     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2017     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2018   }
2019 
2020   SDValue Mask, VL;
2021   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2022 
2023   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2024                                Idx, Mask, VL);
2025 
2026   if (!VT.isFixedLengthVector())
2027     return Gather;
2028 
2029   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2030 }
2031 
2032 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2033                                  const RISCVSubtarget &Subtarget) {
2034   MVT VT = Op.getSimpleValueType();
2035   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2036 
2037   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2038 
2039   SDLoc DL(Op);
2040   SDValue Mask, VL;
2041   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2042 
2043   MVT XLenVT = Subtarget.getXLenVT();
2044   unsigned NumElts = Op.getNumOperands();
2045 
2046   if (VT.getVectorElementType() == MVT::i1) {
2047     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2048       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2049       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2050     }
2051 
2052     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2053       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2054       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2055     }
2056 
2057     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2058     // scalar integer chunks whose bit-width depends on the number of mask
2059     // bits and XLEN.
2060     // First, determine the most appropriate scalar integer type to use. This
2061     // is at most XLenVT, but may be shrunk to a smaller vector element type
2062     // according to the size of the final vector - use i8 chunks rather than
2063     // XLenVT if we're producing a v8i1. This results in more consistent
2064     // codegen across RV32 and RV64.
2065     unsigned NumViaIntegerBits =
2066         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2067     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2068     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2069       // If we have to use more than one INSERT_VECTOR_ELT then this
2070       // optimization is likely to increase code size; avoid peforming it in
2071       // such a case. We can use a load from a constant pool in this case.
2072       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2073         return SDValue();
2074       // Now we can create our integer vector type. Note that it may be larger
2075       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2076       MVT IntegerViaVecVT =
2077           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2078                            divideCeil(NumElts, NumViaIntegerBits));
2079 
2080       uint64_t Bits = 0;
2081       unsigned BitPos = 0, IntegerEltIdx = 0;
2082       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2083 
2084       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2085         // Once we accumulate enough bits to fill our scalar type, insert into
2086         // our vector and clear our accumulated data.
2087         if (I != 0 && I % NumViaIntegerBits == 0) {
2088           if (NumViaIntegerBits <= 32)
2089             Bits = SignExtend64(Bits, 32);
2090           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2091           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2092                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2093           Bits = 0;
2094           BitPos = 0;
2095           IntegerEltIdx++;
2096         }
2097         SDValue V = Op.getOperand(I);
2098         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2099         Bits |= ((uint64_t)BitValue << BitPos);
2100       }
2101 
2102       // Insert the (remaining) scalar value into position in our integer
2103       // vector type.
2104       if (NumViaIntegerBits <= 32)
2105         Bits = SignExtend64(Bits, 32);
2106       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2107       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2108                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2109 
2110       if (NumElts < NumViaIntegerBits) {
2111         // If we're producing a smaller vector than our minimum legal integer
2112         // type, bitcast to the equivalent (known-legal) mask type, and extract
2113         // our final mask.
2114         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2115         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2116         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2117                           DAG.getConstant(0, DL, XLenVT));
2118       } else {
2119         // Else we must have produced an integer type with the same size as the
2120         // mask type; bitcast for the final result.
2121         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2122         Vec = DAG.getBitcast(VT, Vec);
2123       }
2124 
2125       return Vec;
2126     }
2127 
2128     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2129     // vector type, we have a legal equivalently-sized i8 type, so we can use
2130     // that.
2131     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2132     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2133 
2134     SDValue WideVec;
2135     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2136       // For a splat, perform a scalar truncate before creating the wider
2137       // vector.
2138       assert(Splat.getValueType() == XLenVT &&
2139              "Unexpected type for i1 splat value");
2140       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2141                           DAG.getConstant(1, DL, XLenVT));
2142       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2143     } else {
2144       SmallVector<SDValue, 8> Ops(Op->op_values());
2145       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2146       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2147       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2148     }
2149 
2150     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2151   }
2152 
2153   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2154     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2155       return Gather;
2156     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2157                                         : RISCVISD::VMV_V_X_VL;
2158     Splat =
2159         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2160     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2161   }
2162 
2163   // Try and match index sequences, which we can lower to the vid instruction
2164   // with optional modifications. An all-undef vector is matched by
2165   // getSplatValue, above.
2166   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2167     int64_t StepNumerator = SimpleVID->StepNumerator;
2168     unsigned StepDenominator = SimpleVID->StepDenominator;
2169     int64_t Addend = SimpleVID->Addend;
2170 
2171     assert(StepNumerator != 0 && "Invalid step");
2172     bool Negate = false;
2173     int64_t SplatStepVal = StepNumerator;
2174     unsigned StepOpcode = ISD::MUL;
2175     if (StepNumerator != 1) {
2176       if (isPowerOf2_64(std::abs(StepNumerator))) {
2177         Negate = StepNumerator < 0;
2178         StepOpcode = ISD::SHL;
2179         SplatStepVal = Log2_64(std::abs(StepNumerator));
2180       }
2181     }
2182 
2183     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2184     // threshold since it's the immediate value many RVV instructions accept.
2185     // There is no vmul.vi instruction so ensure multiply constant can fit in
2186     // a single addi instruction.
2187     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2188          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2189         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2190       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2191       // Convert right out of the scalable type so we can use standard ISD
2192       // nodes for the rest of the computation. If we used scalable types with
2193       // these, we'd lose the fixed-length vector info and generate worse
2194       // vsetvli code.
2195       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2196       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2197           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2198         SDValue SplatStep = DAG.getSplatBuildVector(
2199             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2200         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2201       }
2202       if (StepDenominator != 1) {
2203         SDValue SplatStep = DAG.getSplatBuildVector(
2204             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2205         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2206       }
2207       if (Addend != 0 || Negate) {
2208         SDValue SplatAddend = DAG.getSplatBuildVector(
2209             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2210         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2211       }
2212       return VID;
2213     }
2214   }
2215 
2216   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2217   // when re-interpreted as a vector with a larger element type. For example,
2218   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2219   // could be instead splat as
2220   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2221   // TODO: This optimization could also work on non-constant splats, but it
2222   // would require bit-manipulation instructions to construct the splat value.
2223   SmallVector<SDValue> Sequence;
2224   unsigned EltBitSize = VT.getScalarSizeInBits();
2225   const auto *BV = cast<BuildVectorSDNode>(Op);
2226   if (VT.isInteger() && EltBitSize < 64 &&
2227       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2228       BV->getRepeatedSequence(Sequence) &&
2229       (Sequence.size() * EltBitSize) <= 64) {
2230     unsigned SeqLen = Sequence.size();
2231     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2232     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2233     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2234             ViaIntVT == MVT::i64) &&
2235            "Unexpected sequence type");
2236 
2237     unsigned EltIdx = 0;
2238     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2239     uint64_t SplatValue = 0;
2240     // Construct the amalgamated value which can be splatted as this larger
2241     // vector type.
2242     for (const auto &SeqV : Sequence) {
2243       if (!SeqV.isUndef())
2244         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2245                        << (EltIdx * EltBitSize));
2246       EltIdx++;
2247     }
2248 
2249     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2250     // achieve better constant materializion.
2251     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2252       SplatValue = SignExtend64(SplatValue, 32);
2253 
2254     // Since we can't introduce illegal i64 types at this stage, we can only
2255     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2256     // way we can use RVV instructions to splat.
2257     assert((ViaIntVT.bitsLE(XLenVT) ||
2258             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2259            "Unexpected bitcast sequence");
2260     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2261       SDValue ViaVL =
2262           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2263       MVT ViaContainerVT =
2264           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2265       SDValue Splat =
2266           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2267                       DAG.getUNDEF(ViaContainerVT),
2268                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2269       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2270       return DAG.getBitcast(VT, Splat);
2271     }
2272   }
2273 
2274   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2275   // which constitute a large proportion of the elements. In such cases we can
2276   // splat a vector with the dominant element and make up the shortfall with
2277   // INSERT_VECTOR_ELTs.
2278   // Note that this includes vectors of 2 elements by association. The
2279   // upper-most element is the "dominant" one, allowing us to use a splat to
2280   // "insert" the upper element, and an insert of the lower element at position
2281   // 0, which improves codegen.
2282   SDValue DominantValue;
2283   unsigned MostCommonCount = 0;
2284   DenseMap<SDValue, unsigned> ValueCounts;
2285   unsigned NumUndefElts =
2286       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2287 
2288   // Track the number of scalar loads we know we'd be inserting, estimated as
2289   // any non-zero floating-point constant. Other kinds of element are either
2290   // already in registers or are materialized on demand. The threshold at which
2291   // a vector load is more desirable than several scalar materializion and
2292   // vector-insertion instructions is not known.
2293   unsigned NumScalarLoads = 0;
2294 
2295   for (SDValue V : Op->op_values()) {
2296     if (V.isUndef())
2297       continue;
2298 
2299     ValueCounts.insert(std::make_pair(V, 0));
2300     unsigned &Count = ValueCounts[V];
2301 
2302     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2303       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2304 
2305     // Is this value dominant? In case of a tie, prefer the highest element as
2306     // it's cheaper to insert near the beginning of a vector than it is at the
2307     // end.
2308     if (++Count >= MostCommonCount) {
2309       DominantValue = V;
2310       MostCommonCount = Count;
2311     }
2312   }
2313 
2314   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2315   unsigned NumDefElts = NumElts - NumUndefElts;
2316   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2317 
2318   // Don't perform this optimization when optimizing for size, since
2319   // materializing elements and inserting them tends to cause code bloat.
2320   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2321       ((MostCommonCount > DominantValueCountThreshold) ||
2322        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2323     // Start by splatting the most common element.
2324     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2325 
2326     DenseSet<SDValue> Processed{DominantValue};
2327     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2328     for (const auto &OpIdx : enumerate(Op->ops())) {
2329       const SDValue &V = OpIdx.value();
2330       if (V.isUndef() || !Processed.insert(V).second)
2331         continue;
2332       if (ValueCounts[V] == 1) {
2333         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2334                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2335       } else {
2336         // Blend in all instances of this value using a VSELECT, using a
2337         // mask where each bit signals whether that element is the one
2338         // we're after.
2339         SmallVector<SDValue> Ops;
2340         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2341           return DAG.getConstant(V == V1, DL, XLenVT);
2342         });
2343         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2344                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2345                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2346       }
2347     }
2348 
2349     return Vec;
2350   }
2351 
2352   return SDValue();
2353 }
2354 
2355 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2356                                    SDValue Lo, SDValue Hi, SDValue VL,
2357                                    SelectionDAG &DAG) {
2358   if (!Passthru)
2359     Passthru = DAG.getUNDEF(VT);
2360   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2361     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2362     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2363     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2364     // node in order to try and match RVV vector/scalar instructions.
2365     if ((LoC >> 31) == HiC)
2366       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2367 
2368     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2369     // vmv.v.x whose EEW = 32 to lower it.
2370     auto *Const = dyn_cast<ConstantSDNode>(VL);
2371     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2372       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2373       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2374       // access the subtarget here now.
2375       auto InterVec = DAG.getNode(
2376           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2377                                   DAG.getRegister(RISCV::X0, MVT::i32));
2378       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2379     }
2380   }
2381 
2382   // Fall back to a stack store and stride x0 vector load.
2383   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2384                      Hi, VL);
2385 }
2386 
2387 // Called by type legalization to handle splat of i64 on RV32.
2388 // FIXME: We can optimize this when the type has sign or zero bits in one
2389 // of the halves.
2390 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2391                                    SDValue Scalar, SDValue VL,
2392                                    SelectionDAG &DAG) {
2393   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2394   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2395                            DAG.getConstant(0, DL, MVT::i32));
2396   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2397                            DAG.getConstant(1, DL, MVT::i32));
2398   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2399 }
2400 
2401 // This function lowers a splat of a scalar operand Splat with the vector
2402 // length VL. It ensures the final sequence is type legal, which is useful when
2403 // lowering a splat after type legalization.
2404 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2405                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2406                                 const RISCVSubtarget &Subtarget) {
2407   bool HasPassthru = Passthru && !Passthru.isUndef();
2408   if (!HasPassthru && !Passthru)
2409     Passthru = DAG.getUNDEF(VT);
2410   if (VT.isFloatingPoint()) {
2411     // If VL is 1, we could use vfmv.s.f.
2412     if (isOneConstant(VL))
2413       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2414     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2415   }
2416 
2417   MVT XLenVT = Subtarget.getXLenVT();
2418 
2419   // Simplest case is that the operand needs to be promoted to XLenVT.
2420   if (Scalar.getValueType().bitsLE(XLenVT)) {
2421     // If the operand is a constant, sign extend to increase our chances
2422     // of being able to use a .vi instruction. ANY_EXTEND would become a
2423     // a zero extend and the simm5 check in isel would fail.
2424     // FIXME: Should we ignore the upper bits in isel instead?
2425     unsigned ExtOpc =
2426         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2427     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2428     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2429     // If VL is 1 and the scalar value won't benefit from immediate, we could
2430     // use vmv.s.x.
2431     if (isOneConstant(VL) &&
2432         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2433       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2434     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2435   }
2436 
2437   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2438          "Unexpected scalar for splat lowering!");
2439 
2440   if (isOneConstant(VL) && isNullConstant(Scalar))
2441     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2442                        DAG.getConstant(0, DL, XLenVT), VL);
2443 
2444   // Otherwise use the more complicated splatting algorithm.
2445   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2446 }
2447 
2448 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2449                                 const RISCVSubtarget &Subtarget) {
2450   // We need to be able to widen elements to the next larger integer type.
2451   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2452     return false;
2453 
2454   int Size = Mask.size();
2455   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2456 
2457   int Srcs[] = {-1, -1};
2458   for (int i = 0; i != Size; ++i) {
2459     // Ignore undef elements.
2460     if (Mask[i] < 0)
2461       continue;
2462 
2463     // Is this an even or odd element.
2464     int Pol = i % 2;
2465 
2466     // Ensure we consistently use the same source for this element polarity.
2467     int Src = Mask[i] / Size;
2468     if (Srcs[Pol] < 0)
2469       Srcs[Pol] = Src;
2470     if (Srcs[Pol] != Src)
2471       return false;
2472 
2473     // Make sure the element within the source is appropriate for this element
2474     // in the destination.
2475     int Elt = Mask[i] % Size;
2476     if (Elt != i / 2)
2477       return false;
2478   }
2479 
2480   // We need to find a source for each polarity and they can't be the same.
2481   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2482     return false;
2483 
2484   // Swap the sources if the second source was in the even polarity.
2485   SwapSources = Srcs[0] > Srcs[1];
2486 
2487   return true;
2488 }
2489 
2490 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2491 /// and then extract the original number of elements from the rotated result.
2492 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2493 /// returned rotation amount is for a rotate right, where elements move from
2494 /// higher elements to lower elements. \p LoSrc indicates the first source
2495 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2496 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2497 /// 0 or 1 if a rotation is found.
2498 ///
2499 /// NOTE: We talk about rotate to the right which matches how bit shift and
2500 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2501 /// and the table below write vectors with the lowest elements on the left.
2502 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2503   int Size = Mask.size();
2504 
2505   // We need to detect various ways of spelling a rotation:
2506   //   [11, 12, 13, 14, 15,  0,  1,  2]
2507   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2508   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2509   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2510   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2511   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2512   int Rotation = 0;
2513   LoSrc = -1;
2514   HiSrc = -1;
2515   for (int i = 0; i != Size; ++i) {
2516     int M = Mask[i];
2517     if (M < 0)
2518       continue;
2519 
2520     // Determine where a rotate vector would have started.
2521     int StartIdx = i - (M % Size);
2522     // The identity rotation isn't interesting, stop.
2523     if (StartIdx == 0)
2524       return -1;
2525 
2526     // If we found the tail of a vector the rotation must be the missing
2527     // front. If we found the head of a vector, it must be how much of the
2528     // head.
2529     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2530 
2531     if (Rotation == 0)
2532       Rotation = CandidateRotation;
2533     else if (Rotation != CandidateRotation)
2534       // The rotations don't match, so we can't match this mask.
2535       return -1;
2536 
2537     // Compute which value this mask is pointing at.
2538     int MaskSrc = M < Size ? 0 : 1;
2539 
2540     // Compute which of the two target values this index should be assigned to.
2541     // This reflects whether the high elements are remaining or the low elemnts
2542     // are remaining.
2543     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2544 
2545     // Either set up this value if we've not encountered it before, or check
2546     // that it remains consistent.
2547     if (TargetSrc < 0)
2548       TargetSrc = MaskSrc;
2549     else if (TargetSrc != MaskSrc)
2550       // This may be a rotation, but it pulls from the inputs in some
2551       // unsupported interleaving.
2552       return -1;
2553   }
2554 
2555   // Check that we successfully analyzed the mask, and normalize the results.
2556   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2557   assert((LoSrc >= 0 || HiSrc >= 0) &&
2558          "Failed to find a rotated input vector!");
2559 
2560   return Rotation;
2561 }
2562 
2563 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2564                                    const RISCVSubtarget &Subtarget) {
2565   SDValue V1 = Op.getOperand(0);
2566   SDValue V2 = Op.getOperand(1);
2567   SDLoc DL(Op);
2568   MVT XLenVT = Subtarget.getXLenVT();
2569   MVT VT = Op.getSimpleValueType();
2570   unsigned NumElts = VT.getVectorNumElements();
2571   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2572 
2573   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2574 
2575   SDValue TrueMask, VL;
2576   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2577 
2578   if (SVN->isSplat()) {
2579     const int Lane = SVN->getSplatIndex();
2580     if (Lane >= 0) {
2581       MVT SVT = VT.getVectorElementType();
2582 
2583       // Turn splatted vector load into a strided load with an X0 stride.
2584       SDValue V = V1;
2585       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2586       // with undef.
2587       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2588       int Offset = Lane;
2589       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2590         int OpElements =
2591             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2592         V = V.getOperand(Offset / OpElements);
2593         Offset %= OpElements;
2594       }
2595 
2596       // We need to ensure the load isn't atomic or volatile.
2597       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2598         auto *Ld = cast<LoadSDNode>(V);
2599         Offset *= SVT.getStoreSize();
2600         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2601                                                    TypeSize::Fixed(Offset), DL);
2602 
2603         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2604         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2605           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2606           SDValue IntID =
2607               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2608           SDValue Ops[] = {Ld->getChain(),
2609                            IntID,
2610                            DAG.getUNDEF(ContainerVT),
2611                            NewAddr,
2612                            DAG.getRegister(RISCV::X0, XLenVT),
2613                            VL};
2614           SDValue NewLoad = DAG.getMemIntrinsicNode(
2615               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2616               DAG.getMachineFunction().getMachineMemOperand(
2617                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2618           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2619           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2620         }
2621 
2622         // Otherwise use a scalar load and splat. This will give the best
2623         // opportunity to fold a splat into the operation. ISel can turn it into
2624         // the x0 strided load if we aren't able to fold away the select.
2625         if (SVT.isFloatingPoint())
2626           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2627                           Ld->getPointerInfo().getWithOffset(Offset),
2628                           Ld->getOriginalAlign(),
2629                           Ld->getMemOperand()->getFlags());
2630         else
2631           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2632                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2633                              Ld->getOriginalAlign(),
2634                              Ld->getMemOperand()->getFlags());
2635         DAG.makeEquivalentMemoryOrdering(Ld, V);
2636 
2637         unsigned Opc =
2638             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2639         SDValue Splat =
2640             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2641         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2642       }
2643 
2644       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2645       assert(Lane < (int)NumElts && "Unexpected lane!");
2646       SDValue Gather =
2647           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2648                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2649       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2650     }
2651   }
2652 
2653   ArrayRef<int> Mask = SVN->getMask();
2654 
2655   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2656   // be undef which can be handled with a single SLIDEDOWN/UP.
2657   int LoSrc, HiSrc;
2658   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2659   if (Rotation > 0) {
2660     SDValue LoV, HiV;
2661     if (LoSrc >= 0) {
2662       LoV = LoSrc == 0 ? V1 : V2;
2663       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2664     }
2665     if (HiSrc >= 0) {
2666       HiV = HiSrc == 0 ? V1 : V2;
2667       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2668     }
2669 
2670     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2671     // to slide LoV up by (NumElts - Rotation).
2672     unsigned InvRotate = NumElts - Rotation;
2673 
2674     SDValue Res = DAG.getUNDEF(ContainerVT);
2675     if (HiV) {
2676       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2677       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2678       // causes multiple vsetvlis in some test cases such as lowering
2679       // reduce.mul
2680       SDValue DownVL = VL;
2681       if (LoV)
2682         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2683       Res =
2684           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2685                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2686     }
2687     if (LoV)
2688       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2689                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2690 
2691     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2692   }
2693 
2694   // Detect an interleave shuffle and lower to
2695   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2696   bool SwapSources;
2697   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2698     // Swap sources if needed.
2699     if (SwapSources)
2700       std::swap(V1, V2);
2701 
2702     // Extract the lower half of the vectors.
2703     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2704     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2705                      DAG.getConstant(0, DL, XLenVT));
2706     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2707                      DAG.getConstant(0, DL, XLenVT));
2708 
2709     // Double the element width and halve the number of elements in an int type.
2710     unsigned EltBits = VT.getScalarSizeInBits();
2711     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2712     MVT WideIntVT =
2713         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2714     // Convert this to a scalable vector. We need to base this on the
2715     // destination size to ensure there's always a type with a smaller LMUL.
2716     MVT WideIntContainerVT =
2717         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2718 
2719     // Convert sources to scalable vectors with the same element count as the
2720     // larger type.
2721     MVT HalfContainerVT = MVT::getVectorVT(
2722         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2723     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2724     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2725 
2726     // Cast sources to integer.
2727     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2728     MVT IntHalfVT =
2729         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2730     V1 = DAG.getBitcast(IntHalfVT, V1);
2731     V2 = DAG.getBitcast(IntHalfVT, V2);
2732 
2733     // Freeze V2 since we use it twice and we need to be sure that the add and
2734     // multiply see the same value.
2735     V2 = DAG.getFreeze(V2);
2736 
2737     // Recreate TrueMask using the widened type's element count.
2738     MVT MaskVT =
2739         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2740     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2741 
2742     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2743     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2744                               V2, TrueMask, VL);
2745     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2746     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2747                                      DAG.getUNDEF(IntHalfVT),
2748                                      DAG.getAllOnesConstant(DL, XLenVT));
2749     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2750                                    V2, Multiplier, TrueMask, VL);
2751     // Add the new copies to our previous addition giving us 2^eltbits copies of
2752     // V2. This is equivalent to shifting V2 left by eltbits. This should
2753     // combine with the vwmulu.vv above to form vwmaccu.vv.
2754     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2755                       TrueMask, VL);
2756     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2757     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2758     // vector VT.
2759     ContainerVT =
2760         MVT::getVectorVT(VT.getVectorElementType(),
2761                          WideIntContainerVT.getVectorElementCount() * 2);
2762     Add = DAG.getBitcast(ContainerVT, Add);
2763     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2764   }
2765 
2766   // Detect shuffles which can be re-expressed as vector selects; these are
2767   // shuffles in which each element in the destination is taken from an element
2768   // at the corresponding index in either source vectors.
2769   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2770     int MaskIndex = MaskIdx.value();
2771     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2772   });
2773 
2774   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2775 
2776   SmallVector<SDValue> MaskVals;
2777   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2778   // merged with a second vrgather.
2779   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2780 
2781   // By default we preserve the original operand order, and use a mask to
2782   // select LHS as true and RHS as false. However, since RVV vector selects may
2783   // feature splats but only on the LHS, we may choose to invert our mask and
2784   // instead select between RHS and LHS.
2785   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2786   bool InvertMask = IsSelect == SwapOps;
2787 
2788   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2789   // half.
2790   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2791 
2792   // Now construct the mask that will be used by the vselect or blended
2793   // vrgather operation. For vrgathers, construct the appropriate indices into
2794   // each vector.
2795   for (int MaskIndex : Mask) {
2796     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2797     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2798     if (!IsSelect) {
2799       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2800       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2801                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2802                                      : DAG.getUNDEF(XLenVT));
2803       GatherIndicesRHS.push_back(
2804           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2805                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2806       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2807         ++LHSIndexCounts[MaskIndex];
2808       if (!IsLHSOrUndefIndex)
2809         ++RHSIndexCounts[MaskIndex - NumElts];
2810     }
2811   }
2812 
2813   if (SwapOps) {
2814     std::swap(V1, V2);
2815     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2816   }
2817 
2818   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2819   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2820   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2821 
2822   if (IsSelect)
2823     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2824 
2825   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2826     // On such a large vector we're unable to use i8 as the index type.
2827     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2828     // may involve vector splitting if we're already at LMUL=8, or our
2829     // user-supplied maximum fixed-length LMUL.
2830     return SDValue();
2831   }
2832 
2833   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2834   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2835   MVT IndexVT = VT.changeTypeToInteger();
2836   // Since we can't introduce illegal index types at this stage, use i16 and
2837   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2838   // than XLenVT.
2839   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2840     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2841     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2842   }
2843 
2844   MVT IndexContainerVT =
2845       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2846 
2847   SDValue Gather;
2848   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2849   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2850   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2851     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2852                               Subtarget);
2853   } else {
2854     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2855     // If only one index is used, we can use a "splat" vrgather.
2856     // TODO: We can splat the most-common index and fix-up any stragglers, if
2857     // that's beneficial.
2858     if (LHSIndexCounts.size() == 1) {
2859       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2860       Gather =
2861           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2862                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2863     } else {
2864       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2865       LHSIndices =
2866           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2867 
2868       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2869                            TrueMask, VL);
2870     }
2871   }
2872 
2873   // If a second vector operand is used by this shuffle, blend it in with an
2874   // additional vrgather.
2875   if (!V2.isUndef()) {
2876     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2877     // If only one index is used, we can use a "splat" vrgather.
2878     // TODO: We can splat the most-common index and fix-up any stragglers, if
2879     // that's beneficial.
2880     if (RHSIndexCounts.size() == 1) {
2881       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2882       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2883                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2884     } else {
2885       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2886       RHSIndices =
2887           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2888       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2889                        VL);
2890     }
2891 
2892     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2893     SelectMask =
2894         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2895 
2896     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2897                          Gather, VL);
2898   }
2899 
2900   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2901 }
2902 
2903 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2904   // Support splats for any type. These should type legalize well.
2905   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2906     return true;
2907 
2908   // Only support legal VTs for other shuffles for now.
2909   if (!isTypeLegal(VT))
2910     return false;
2911 
2912   MVT SVT = VT.getSimpleVT();
2913 
2914   bool SwapSources;
2915   int LoSrc, HiSrc;
2916   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2917          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2918 }
2919 
2920 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2921                                      SDLoc DL, SelectionDAG &DAG,
2922                                      const RISCVSubtarget &Subtarget) {
2923   if (VT.isScalableVector())
2924     return DAG.getFPExtendOrRound(Op, DL, VT);
2925   assert(VT.isFixedLengthVector() &&
2926          "Unexpected value type for RVV FP extend/round lowering");
2927   SDValue Mask, VL;
2928   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2929   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2930                         ? RISCVISD::FP_EXTEND_VL
2931                         : RISCVISD::FP_ROUND_VL;
2932   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2933 }
2934 
2935 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2936 // the exponent.
2937 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2938   MVT VT = Op.getSimpleValueType();
2939   unsigned EltSize = VT.getScalarSizeInBits();
2940   SDValue Src = Op.getOperand(0);
2941   SDLoc DL(Op);
2942 
2943   // We need a FP type that can represent the value.
2944   // TODO: Use f16 for i8 when possible?
2945   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2946   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2947 
2948   // Legal types should have been checked in the RISCVTargetLowering
2949   // constructor.
2950   // TODO: Splitting may make sense in some cases.
2951   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2952          "Expected legal float type!");
2953 
2954   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2955   // The trailing zero count is equal to log2 of this single bit value.
2956   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2957     SDValue Neg =
2958         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2959     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2960   }
2961 
2962   // We have a legal FP type, convert to it.
2963   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2964   // Bitcast to integer and shift the exponent to the LSB.
2965   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2966   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2967   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2968   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2969                               DAG.getConstant(ShiftAmt, DL, IntVT));
2970   // Truncate back to original type to allow vnsrl.
2971   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2972   // The exponent contains log2 of the value in biased form.
2973   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2974 
2975   // For trailing zeros, we just need to subtract the bias.
2976   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2977     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2978                        DAG.getConstant(ExponentBias, DL, VT));
2979 
2980   // For leading zeros, we need to remove the bias and convert from log2 to
2981   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2982   unsigned Adjust = ExponentBias + (EltSize - 1);
2983   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2984 }
2985 
2986 // While RVV has alignment restrictions, we should always be able to load as a
2987 // legal equivalently-sized byte-typed vector instead. This method is
2988 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2989 // the load is already correctly-aligned, it returns SDValue().
2990 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2991                                                     SelectionDAG &DAG) const {
2992   auto *Load = cast<LoadSDNode>(Op);
2993   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2994 
2995   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2996                                      Load->getMemoryVT(),
2997                                      *Load->getMemOperand()))
2998     return SDValue();
2999 
3000   SDLoc DL(Op);
3001   MVT VT = Op.getSimpleValueType();
3002   unsigned EltSizeBits = VT.getScalarSizeInBits();
3003   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3004          "Unexpected unaligned RVV load type");
3005   MVT NewVT =
3006       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3007   assert(NewVT.isValid() &&
3008          "Expecting equally-sized RVV vector types to be legal");
3009   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
3010                           Load->getPointerInfo(), Load->getOriginalAlign(),
3011                           Load->getMemOperand()->getFlags());
3012   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
3013 }
3014 
3015 // While RVV has alignment restrictions, we should always be able to store as a
3016 // legal equivalently-sized byte-typed vector instead. This method is
3017 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3018 // returns SDValue() if the store is already correctly aligned.
3019 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3020                                                      SelectionDAG &DAG) const {
3021   auto *Store = cast<StoreSDNode>(Op);
3022   assert(Store && Store->getValue().getValueType().isVector() &&
3023          "Expected vector store");
3024 
3025   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3026                                      Store->getMemoryVT(),
3027                                      *Store->getMemOperand()))
3028     return SDValue();
3029 
3030   SDLoc DL(Op);
3031   SDValue StoredVal = Store->getValue();
3032   MVT VT = StoredVal.getSimpleValueType();
3033   unsigned EltSizeBits = VT.getScalarSizeInBits();
3034   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3035          "Unexpected unaligned RVV store type");
3036   MVT NewVT =
3037       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3038   assert(NewVT.isValid() &&
3039          "Expecting equally-sized RVV vector types to be legal");
3040   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3041   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3042                       Store->getPointerInfo(), Store->getOriginalAlign(),
3043                       Store->getMemOperand()->getFlags());
3044 }
3045 
3046 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3047                                             SelectionDAG &DAG) const {
3048   switch (Op.getOpcode()) {
3049   default:
3050     report_fatal_error("unimplemented operand");
3051   case ISD::GlobalAddress:
3052     return lowerGlobalAddress(Op, DAG);
3053   case ISD::BlockAddress:
3054     return lowerBlockAddress(Op, DAG);
3055   case ISD::ConstantPool:
3056     return lowerConstantPool(Op, DAG);
3057   case ISD::JumpTable:
3058     return lowerJumpTable(Op, DAG);
3059   case ISD::GlobalTLSAddress:
3060     return lowerGlobalTLSAddress(Op, DAG);
3061   case ISD::SELECT:
3062     return lowerSELECT(Op, DAG);
3063   case ISD::BRCOND:
3064     return lowerBRCOND(Op, DAG);
3065   case ISD::VASTART:
3066     return lowerVASTART(Op, DAG);
3067   case ISD::FRAMEADDR:
3068     return lowerFRAMEADDR(Op, DAG);
3069   case ISD::RETURNADDR:
3070     return lowerRETURNADDR(Op, DAG);
3071   case ISD::SHL_PARTS:
3072     return lowerShiftLeftParts(Op, DAG);
3073   case ISD::SRA_PARTS:
3074     return lowerShiftRightParts(Op, DAG, true);
3075   case ISD::SRL_PARTS:
3076     return lowerShiftRightParts(Op, DAG, false);
3077   case ISD::BITCAST: {
3078     SDLoc DL(Op);
3079     EVT VT = Op.getValueType();
3080     SDValue Op0 = Op.getOperand(0);
3081     EVT Op0VT = Op0.getValueType();
3082     MVT XLenVT = Subtarget.getXLenVT();
3083     if (VT.isFixedLengthVector()) {
3084       // We can handle fixed length vector bitcasts with a simple replacement
3085       // in isel.
3086       if (Op0VT.isFixedLengthVector())
3087         return Op;
3088       // When bitcasting from scalar to fixed-length vector, insert the scalar
3089       // into a one-element vector of the result type, and perform a vector
3090       // bitcast.
3091       if (!Op0VT.isVector()) {
3092         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3093         if (!isTypeLegal(BVT))
3094           return SDValue();
3095         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3096                                               DAG.getUNDEF(BVT), Op0,
3097                                               DAG.getConstant(0, DL, XLenVT)));
3098       }
3099       return SDValue();
3100     }
3101     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3102     // thus: bitcast the vector to a one-element vector type whose element type
3103     // is the same as the result type, and extract the first element.
3104     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3105       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3106       if (!isTypeLegal(BVT))
3107         return SDValue();
3108       SDValue BVec = DAG.getBitcast(BVT, Op0);
3109       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3110                          DAG.getConstant(0, DL, XLenVT));
3111     }
3112     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3113       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3114       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3115       return FPConv;
3116     }
3117     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3118         Subtarget.hasStdExtF()) {
3119       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3120       SDValue FPConv =
3121           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3122       return FPConv;
3123     }
3124     return SDValue();
3125   }
3126   case ISD::INTRINSIC_WO_CHAIN:
3127     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3128   case ISD::INTRINSIC_W_CHAIN:
3129     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3130   case ISD::INTRINSIC_VOID:
3131     return LowerINTRINSIC_VOID(Op, DAG);
3132   case ISD::BSWAP:
3133   case ISD::BITREVERSE: {
3134     MVT VT = Op.getSimpleValueType();
3135     SDLoc DL(Op);
3136     if (Subtarget.hasStdExtZbp()) {
3137       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3138       // Start with the maximum immediate value which is the bitwidth - 1.
3139       unsigned Imm = VT.getSizeInBits() - 1;
3140       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3141       if (Op.getOpcode() == ISD::BSWAP)
3142         Imm &= ~0x7U;
3143       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3144                          DAG.getConstant(Imm, DL, VT));
3145     }
3146     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3147     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3148     // Expand bitreverse to a bswap(rev8) followed by brev8.
3149     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3150     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3151     // as brev8 by an isel pattern.
3152     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3153                        DAG.getConstant(7, DL, VT));
3154   }
3155   case ISD::FSHL:
3156   case ISD::FSHR: {
3157     MVT VT = Op.getSimpleValueType();
3158     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3159     SDLoc DL(Op);
3160     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3161     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3162     // accidentally setting the extra bit.
3163     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3164     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3165                                 DAG.getConstant(ShAmtWidth, DL, VT));
3166     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3167     // instruction use different orders. fshl will return its first operand for
3168     // shift of zero, fshr will return its second operand. fsl and fsr both
3169     // return rs1 so the ISD nodes need to have different operand orders.
3170     // Shift amount is in rs2.
3171     SDValue Op0 = Op.getOperand(0);
3172     SDValue Op1 = Op.getOperand(1);
3173     unsigned Opc = RISCVISD::FSL;
3174     if (Op.getOpcode() == ISD::FSHR) {
3175       std::swap(Op0, Op1);
3176       Opc = RISCVISD::FSR;
3177     }
3178     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3179   }
3180   case ISD::TRUNCATE:
3181     // Only custom-lower vector truncates
3182     if (!Op.getSimpleValueType().isVector())
3183       return Op;
3184     return lowerVectorTruncLike(Op, DAG);
3185   case ISD::ANY_EXTEND:
3186   case ISD::ZERO_EXTEND:
3187     if (Op.getOperand(0).getValueType().isVector() &&
3188         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3189       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3190     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3191   case ISD::SIGN_EXTEND:
3192     if (Op.getOperand(0).getValueType().isVector() &&
3193         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3194       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3195     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3196   case ISD::SPLAT_VECTOR_PARTS:
3197     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3198   case ISD::INSERT_VECTOR_ELT:
3199     return lowerINSERT_VECTOR_ELT(Op, DAG);
3200   case ISD::EXTRACT_VECTOR_ELT:
3201     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3202   case ISD::VSCALE: {
3203     MVT VT = Op.getSimpleValueType();
3204     SDLoc DL(Op);
3205     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3206     // We define our scalable vector types for lmul=1 to use a 64 bit known
3207     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3208     // vscale as VLENB / 8.
3209     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3210     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3211       report_fatal_error("Support for VLEN==32 is incomplete.");
3212     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3213       // We assume VLENB is a multiple of 8. We manually choose the best shift
3214       // here because SimplifyDemandedBits isn't always able to simplify it.
3215       uint64_t Val = Op.getConstantOperandVal(0);
3216       if (isPowerOf2_64(Val)) {
3217         uint64_t Log2 = Log2_64(Val);
3218         if (Log2 < 3)
3219           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3220                              DAG.getConstant(3 - Log2, DL, VT));
3221         if (Log2 > 3)
3222           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3223                              DAG.getConstant(Log2 - 3, DL, VT));
3224         return VLENB;
3225       }
3226       // If the multiplier is a multiple of 8, scale it down to avoid needing
3227       // to shift the VLENB value.
3228       if ((Val % 8) == 0)
3229         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3230                            DAG.getConstant(Val / 8, DL, VT));
3231     }
3232 
3233     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3234                                  DAG.getConstant(3, DL, VT));
3235     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3236   }
3237   case ISD::FPOWI: {
3238     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3239     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3240     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3241         Op.getOperand(1).getValueType() == MVT::i32) {
3242       SDLoc DL(Op);
3243       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3244       SDValue Powi =
3245           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3246       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3247                          DAG.getIntPtrConstant(0, DL));
3248     }
3249     return SDValue();
3250   }
3251   case ISD::FP_EXTEND: {
3252     // RVV can only do fp_extend to types double the size as the source. We
3253     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3254     // via f32.
3255     SDLoc DL(Op);
3256     MVT VT = Op.getSimpleValueType();
3257     SDValue Src = Op.getOperand(0);
3258     MVT SrcVT = Src.getSimpleValueType();
3259 
3260     // Prepare any fixed-length vector operands.
3261     MVT ContainerVT = VT;
3262     if (SrcVT.isFixedLengthVector()) {
3263       ContainerVT = getContainerForFixedLengthVector(VT);
3264       MVT SrcContainerVT =
3265           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3266       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3267     }
3268 
3269     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3270         SrcVT.getVectorElementType() != MVT::f16) {
3271       // For scalable vectors, we only need to close the gap between
3272       // vXf16->vXf64.
3273       if (!VT.isFixedLengthVector())
3274         return Op;
3275       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3276       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3277       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3278     }
3279 
3280     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3281     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3282     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3283         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3284 
3285     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3286                                            DL, DAG, Subtarget);
3287     if (VT.isFixedLengthVector())
3288       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3289     return Extend;
3290   }
3291   case ISD::FP_ROUND:
3292     if (!Op.getValueType().isVector())
3293       return Op;
3294     return lowerVectorFPRoundLike(Op, DAG);
3295   case ISD::FP_TO_SINT:
3296   case ISD::FP_TO_UINT:
3297   case ISD::SINT_TO_FP:
3298   case ISD::UINT_TO_FP: {
3299     // RVV can only do fp<->int conversions to types half/double the size as
3300     // the source. We custom-lower any conversions that do two hops into
3301     // sequences.
3302     MVT VT = Op.getSimpleValueType();
3303     if (!VT.isVector())
3304       return Op;
3305     SDLoc DL(Op);
3306     SDValue Src = Op.getOperand(0);
3307     MVT EltVT = VT.getVectorElementType();
3308     MVT SrcVT = Src.getSimpleValueType();
3309     MVT SrcEltVT = SrcVT.getVectorElementType();
3310     unsigned EltSize = EltVT.getSizeInBits();
3311     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3312     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3313            "Unexpected vector element types");
3314 
3315     bool IsInt2FP = SrcEltVT.isInteger();
3316     // Widening conversions
3317     if (EltSize > (2 * SrcEltSize)) {
3318       if (IsInt2FP) {
3319         // Do a regular integer sign/zero extension then convert to float.
3320         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3321                                       VT.getVectorElementCount());
3322         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3323                                  ? ISD::ZERO_EXTEND
3324                                  : ISD::SIGN_EXTEND;
3325         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3326         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3327       }
3328       // FP2Int
3329       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3330       // Do one doubling fp_extend then complete the operation by converting
3331       // to int.
3332       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3333       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3334       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3335     }
3336 
3337     // Narrowing conversions
3338     if (SrcEltSize > (2 * EltSize)) {
3339       if (IsInt2FP) {
3340         // One narrowing int_to_fp, then an fp_round.
3341         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3342         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3343         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3344         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3345       }
3346       // FP2Int
3347       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3348       // representable by the integer, the result is poison.
3349       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3350                                     VT.getVectorElementCount());
3351       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3352       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3353     }
3354 
3355     // Scalable vectors can exit here. Patterns will handle equally-sized
3356     // conversions halving/doubling ones.
3357     if (!VT.isFixedLengthVector())
3358       return Op;
3359 
3360     // For fixed-length vectors we lower to a custom "VL" node.
3361     unsigned RVVOpc = 0;
3362     switch (Op.getOpcode()) {
3363     default:
3364       llvm_unreachable("Impossible opcode");
3365     case ISD::FP_TO_SINT:
3366       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3367       break;
3368     case ISD::FP_TO_UINT:
3369       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3370       break;
3371     case ISD::SINT_TO_FP:
3372       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3373       break;
3374     case ISD::UINT_TO_FP:
3375       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3376       break;
3377     }
3378 
3379     MVT ContainerVT, SrcContainerVT;
3380     // Derive the reference container type from the larger vector type.
3381     if (SrcEltSize > EltSize) {
3382       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3383       ContainerVT =
3384           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3385     } else {
3386       ContainerVT = getContainerForFixedLengthVector(VT);
3387       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3388     }
3389 
3390     SDValue Mask, VL;
3391     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3392 
3393     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3394     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3395     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3396   }
3397   case ISD::FP_TO_SINT_SAT:
3398   case ISD::FP_TO_UINT_SAT:
3399     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3400   case ISD::FTRUNC:
3401   case ISD::FCEIL:
3402   case ISD::FFLOOR:
3403     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3404   case ISD::FROUND:
3405     return lowerFROUND(Op, DAG);
3406   case ISD::VECREDUCE_ADD:
3407   case ISD::VECREDUCE_UMAX:
3408   case ISD::VECREDUCE_SMAX:
3409   case ISD::VECREDUCE_UMIN:
3410   case ISD::VECREDUCE_SMIN:
3411     return lowerVECREDUCE(Op, DAG);
3412   case ISD::VECREDUCE_AND:
3413   case ISD::VECREDUCE_OR:
3414   case ISD::VECREDUCE_XOR:
3415     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3416       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3417     return lowerVECREDUCE(Op, DAG);
3418   case ISD::VECREDUCE_FADD:
3419   case ISD::VECREDUCE_SEQ_FADD:
3420   case ISD::VECREDUCE_FMIN:
3421   case ISD::VECREDUCE_FMAX:
3422     return lowerFPVECREDUCE(Op, DAG);
3423   case ISD::VP_REDUCE_ADD:
3424   case ISD::VP_REDUCE_UMAX:
3425   case ISD::VP_REDUCE_SMAX:
3426   case ISD::VP_REDUCE_UMIN:
3427   case ISD::VP_REDUCE_SMIN:
3428   case ISD::VP_REDUCE_FADD:
3429   case ISD::VP_REDUCE_SEQ_FADD:
3430   case ISD::VP_REDUCE_FMIN:
3431   case ISD::VP_REDUCE_FMAX:
3432     return lowerVPREDUCE(Op, DAG);
3433   case ISD::VP_REDUCE_AND:
3434   case ISD::VP_REDUCE_OR:
3435   case ISD::VP_REDUCE_XOR:
3436     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3437       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3438     return lowerVPREDUCE(Op, DAG);
3439   case ISD::INSERT_SUBVECTOR:
3440     return lowerINSERT_SUBVECTOR(Op, DAG);
3441   case ISD::EXTRACT_SUBVECTOR:
3442     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3443   case ISD::STEP_VECTOR:
3444     return lowerSTEP_VECTOR(Op, DAG);
3445   case ISD::VECTOR_REVERSE:
3446     return lowerVECTOR_REVERSE(Op, DAG);
3447   case ISD::VECTOR_SPLICE:
3448     return lowerVECTOR_SPLICE(Op, DAG);
3449   case ISD::BUILD_VECTOR:
3450     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3451   case ISD::SPLAT_VECTOR:
3452     if (Op.getValueType().getVectorElementType() == MVT::i1)
3453       return lowerVectorMaskSplat(Op, DAG);
3454     return SDValue();
3455   case ISD::VECTOR_SHUFFLE:
3456     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3457   case ISD::CONCAT_VECTORS: {
3458     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3459     // better than going through the stack, as the default expansion does.
3460     SDLoc DL(Op);
3461     MVT VT = Op.getSimpleValueType();
3462     unsigned NumOpElts =
3463         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3464     SDValue Vec = DAG.getUNDEF(VT);
3465     for (const auto &OpIdx : enumerate(Op->ops())) {
3466       SDValue SubVec = OpIdx.value();
3467       // Don't insert undef subvectors.
3468       if (SubVec.isUndef())
3469         continue;
3470       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3471                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3472     }
3473     return Vec;
3474   }
3475   case ISD::LOAD:
3476     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3477       return V;
3478     if (Op.getValueType().isFixedLengthVector())
3479       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3480     return Op;
3481   case ISD::STORE:
3482     if (auto V = expandUnalignedRVVStore(Op, DAG))
3483       return V;
3484     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3485       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3486     return Op;
3487   case ISD::MLOAD:
3488   case ISD::VP_LOAD:
3489     return lowerMaskedLoad(Op, DAG);
3490   case ISD::MSTORE:
3491   case ISD::VP_STORE:
3492     return lowerMaskedStore(Op, DAG);
3493   case ISD::SETCC:
3494     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3495   case ISD::ADD:
3496     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3497   case ISD::SUB:
3498     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3499   case ISD::MUL:
3500     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3501   case ISD::MULHS:
3502     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3503   case ISD::MULHU:
3504     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3505   case ISD::AND:
3506     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3507                                               RISCVISD::AND_VL);
3508   case ISD::OR:
3509     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3510                                               RISCVISD::OR_VL);
3511   case ISD::XOR:
3512     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3513                                               RISCVISD::XOR_VL);
3514   case ISD::SDIV:
3515     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3516   case ISD::SREM:
3517     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3518   case ISD::UDIV:
3519     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3520   case ISD::UREM:
3521     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3522   case ISD::SHL:
3523   case ISD::SRA:
3524   case ISD::SRL:
3525     if (Op.getSimpleValueType().isFixedLengthVector())
3526       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3527     // This can be called for an i32 shift amount that needs to be promoted.
3528     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3529            "Unexpected custom legalisation");
3530     return SDValue();
3531   case ISD::SADDSAT:
3532     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3533   case ISD::UADDSAT:
3534     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3535   case ISD::SSUBSAT:
3536     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3537   case ISD::USUBSAT:
3538     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3539   case ISD::FADD:
3540     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3541   case ISD::FSUB:
3542     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3543   case ISD::FMUL:
3544     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3545   case ISD::FDIV:
3546     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3547   case ISD::FNEG:
3548     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3549   case ISD::FABS:
3550     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3551   case ISD::FSQRT:
3552     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3553   case ISD::FMA:
3554     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3555   case ISD::SMIN:
3556     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3557   case ISD::SMAX:
3558     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3559   case ISD::UMIN:
3560     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3561   case ISD::UMAX:
3562     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3563   case ISD::FMINNUM:
3564     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3565   case ISD::FMAXNUM:
3566     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3567   case ISD::ABS:
3568     return lowerABS(Op, DAG);
3569   case ISD::CTLZ_ZERO_UNDEF:
3570   case ISD::CTTZ_ZERO_UNDEF:
3571     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3572   case ISD::VSELECT:
3573     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3574   case ISD::FCOPYSIGN:
3575     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3576   case ISD::MGATHER:
3577   case ISD::VP_GATHER:
3578     return lowerMaskedGather(Op, DAG);
3579   case ISD::MSCATTER:
3580   case ISD::VP_SCATTER:
3581     return lowerMaskedScatter(Op, DAG);
3582   case ISD::FLT_ROUNDS_:
3583     return lowerGET_ROUNDING(Op, DAG);
3584   case ISD::SET_ROUNDING:
3585     return lowerSET_ROUNDING(Op, DAG);
3586   case ISD::VP_SELECT:
3587     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3588   case ISD::VP_MERGE:
3589     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3590   case ISD::VP_ADD:
3591     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3592   case ISD::VP_SUB:
3593     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3594   case ISD::VP_MUL:
3595     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3596   case ISD::VP_SDIV:
3597     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3598   case ISD::VP_UDIV:
3599     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3600   case ISD::VP_SREM:
3601     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3602   case ISD::VP_UREM:
3603     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3604   case ISD::VP_AND:
3605     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3606   case ISD::VP_OR:
3607     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3608   case ISD::VP_XOR:
3609     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3610   case ISD::VP_ASHR:
3611     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3612   case ISD::VP_LSHR:
3613     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3614   case ISD::VP_SHL:
3615     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3616   case ISD::VP_FADD:
3617     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3618   case ISD::VP_FSUB:
3619     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3620   case ISD::VP_FMUL:
3621     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3622   case ISD::VP_FDIV:
3623     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3624   case ISD::VP_FNEG:
3625     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3626   case ISD::VP_FMA:
3627     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3628   case ISD::VP_SEXT:
3629   case ISD::VP_ZEXT:
3630     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3631       return lowerVPExtMaskOp(Op, DAG);
3632     return lowerVPOp(Op, DAG,
3633                      Op.getOpcode() == ISD::VP_SEXT ? RISCVISD::VSEXT_VL
3634                                                     : RISCVISD::VZEXT_VL);
3635   case ISD::VP_TRUNC:
3636     return lowerVectorTruncLike(Op, DAG);
3637   case ISD::VP_FP_ROUND:
3638     return lowerVectorFPRoundLike(Op, DAG);
3639   case ISD::VP_FPTOSI:
3640     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3641   case ISD::VP_FPTOUI:
3642     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3643   case ISD::VP_SITOFP:
3644     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3645   case ISD::VP_UITOFP:
3646     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3647   case ISD::VP_SETCC:
3648     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3649   }
3650 }
3651 
3652 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3653                              SelectionDAG &DAG, unsigned Flags) {
3654   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3655 }
3656 
3657 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3658                              SelectionDAG &DAG, unsigned Flags) {
3659   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3660                                    Flags);
3661 }
3662 
3663 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3664                              SelectionDAG &DAG, unsigned Flags) {
3665   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3666                                    N->getOffset(), Flags);
3667 }
3668 
3669 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3670                              SelectionDAG &DAG, unsigned Flags) {
3671   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3672 }
3673 
3674 template <class NodeTy>
3675 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3676                                      bool IsLocal) const {
3677   SDLoc DL(N);
3678   EVT Ty = getPointerTy(DAG.getDataLayout());
3679 
3680   if (isPositionIndependent()) {
3681     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3682     if (IsLocal)
3683       // Use PC-relative addressing to access the symbol. This generates the
3684       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3685       // %pcrel_lo(auipc)).
3686       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3687 
3688     // Use PC-relative addressing to access the GOT for this symbol, then load
3689     // the address from the GOT. This generates the pattern (PseudoLA sym),
3690     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3691     SDValue Load =
3692         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3693     MachineFunction &MF = DAG.getMachineFunction();
3694     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3695         MachinePointerInfo::getGOT(MF),
3696         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3697             MachineMemOperand::MOInvariant,
3698         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3699     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3700     return Load;
3701   }
3702 
3703   switch (getTargetMachine().getCodeModel()) {
3704   default:
3705     report_fatal_error("Unsupported code model for lowering");
3706   case CodeModel::Small: {
3707     // Generate a sequence for accessing addresses within the first 2 GiB of
3708     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3709     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3710     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3711     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3712     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3713   }
3714   case CodeModel::Medium: {
3715     // Generate a sequence for accessing addresses within any 2GiB range within
3716     // the address space. This generates the pattern (PseudoLLA sym), which
3717     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3718     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3719     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3720   }
3721   }
3722 }
3723 
3724 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3725     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3726 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3727     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3728 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3729     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3730 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3731     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3732 
3733 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3734                                                 SelectionDAG &DAG) const {
3735   SDLoc DL(Op);
3736   EVT Ty = Op.getValueType();
3737   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3738   int64_t Offset = N->getOffset();
3739   MVT XLenVT = Subtarget.getXLenVT();
3740 
3741   const GlobalValue *GV = N->getGlobal();
3742   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3743   SDValue Addr = getAddr(N, DAG, IsLocal);
3744 
3745   // In order to maximise the opportunity for common subexpression elimination,
3746   // emit a separate ADD node for the global address offset instead of folding
3747   // it in the global address node. Later peephole optimisations may choose to
3748   // fold it back in when profitable.
3749   if (Offset != 0)
3750     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3751                        DAG.getConstant(Offset, DL, XLenVT));
3752   return Addr;
3753 }
3754 
3755 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3756                                                SelectionDAG &DAG) const {
3757   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3758 
3759   return getAddr(N, DAG);
3760 }
3761 
3762 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3763                                                SelectionDAG &DAG) const {
3764   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3765 
3766   return getAddr(N, DAG);
3767 }
3768 
3769 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3770                                             SelectionDAG &DAG) const {
3771   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3772 
3773   return getAddr(N, DAG);
3774 }
3775 
3776 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3777                                               SelectionDAG &DAG,
3778                                               bool UseGOT) const {
3779   SDLoc DL(N);
3780   EVT Ty = getPointerTy(DAG.getDataLayout());
3781   const GlobalValue *GV = N->getGlobal();
3782   MVT XLenVT = Subtarget.getXLenVT();
3783 
3784   if (UseGOT) {
3785     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3786     // load the address from the GOT and add the thread pointer. This generates
3787     // the pattern (PseudoLA_TLS_IE sym), which expands to
3788     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3789     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3790     SDValue Load =
3791         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3792     MachineFunction &MF = DAG.getMachineFunction();
3793     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3794         MachinePointerInfo::getGOT(MF),
3795         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3796             MachineMemOperand::MOInvariant,
3797         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3798     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3799 
3800     // Add the thread pointer.
3801     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3802     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3803   }
3804 
3805   // Generate a sequence for accessing the address relative to the thread
3806   // pointer, with the appropriate adjustment for the thread pointer offset.
3807   // This generates the pattern
3808   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3809   SDValue AddrHi =
3810       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3811   SDValue AddrAdd =
3812       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3813   SDValue AddrLo =
3814       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3815 
3816   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3817   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3818   SDValue MNAdd = SDValue(
3819       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3820       0);
3821   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3822 }
3823 
3824 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3825                                                SelectionDAG &DAG) const {
3826   SDLoc DL(N);
3827   EVT Ty = getPointerTy(DAG.getDataLayout());
3828   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3829   const GlobalValue *GV = N->getGlobal();
3830 
3831   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3832   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3833   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3834   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3835   SDValue Load =
3836       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3837 
3838   // Prepare argument list to generate call.
3839   ArgListTy Args;
3840   ArgListEntry Entry;
3841   Entry.Node = Load;
3842   Entry.Ty = CallTy;
3843   Args.push_back(Entry);
3844 
3845   // Setup call to __tls_get_addr.
3846   TargetLowering::CallLoweringInfo CLI(DAG);
3847   CLI.setDebugLoc(DL)
3848       .setChain(DAG.getEntryNode())
3849       .setLibCallee(CallingConv::C, CallTy,
3850                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3851                     std::move(Args));
3852 
3853   return LowerCallTo(CLI).first;
3854 }
3855 
3856 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3857                                                    SelectionDAG &DAG) const {
3858   SDLoc DL(Op);
3859   EVT Ty = Op.getValueType();
3860   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3861   int64_t Offset = N->getOffset();
3862   MVT XLenVT = Subtarget.getXLenVT();
3863 
3864   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3865 
3866   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3867       CallingConv::GHC)
3868     report_fatal_error("In GHC calling convention TLS is not supported");
3869 
3870   SDValue Addr;
3871   switch (Model) {
3872   case TLSModel::LocalExec:
3873     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3874     break;
3875   case TLSModel::InitialExec:
3876     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3877     break;
3878   case TLSModel::LocalDynamic:
3879   case TLSModel::GeneralDynamic:
3880     Addr = getDynamicTLSAddr(N, DAG);
3881     break;
3882   }
3883 
3884   // In order to maximise the opportunity for common subexpression elimination,
3885   // emit a separate ADD node for the global address offset instead of folding
3886   // it in the global address node. Later peephole optimisations may choose to
3887   // fold it back in when profitable.
3888   if (Offset != 0)
3889     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3890                        DAG.getConstant(Offset, DL, XLenVT));
3891   return Addr;
3892 }
3893 
3894 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3895   SDValue CondV = Op.getOperand(0);
3896   SDValue TrueV = Op.getOperand(1);
3897   SDValue FalseV = Op.getOperand(2);
3898   SDLoc DL(Op);
3899   MVT VT = Op.getSimpleValueType();
3900   MVT XLenVT = Subtarget.getXLenVT();
3901 
3902   // Lower vector SELECTs to VSELECTs by splatting the condition.
3903   if (VT.isVector()) {
3904     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3905     SDValue CondSplat = VT.isScalableVector()
3906                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3907                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3908     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3909   }
3910 
3911   // If the result type is XLenVT and CondV is the output of a SETCC node
3912   // which also operated on XLenVT inputs, then merge the SETCC node into the
3913   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3914   // compare+branch instructions. i.e.:
3915   // (select (setcc lhs, rhs, cc), truev, falsev)
3916   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3917   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3918       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3919     SDValue LHS = CondV.getOperand(0);
3920     SDValue RHS = CondV.getOperand(1);
3921     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3922     ISD::CondCode CCVal = CC->get();
3923 
3924     // Special case for a select of 2 constants that have a diffence of 1.
3925     // Normally this is done by DAGCombine, but if the select is introduced by
3926     // type legalization or op legalization, we miss it. Restricting to SETLT
3927     // case for now because that is what signed saturating add/sub need.
3928     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3929     // but we would probably want to swap the true/false values if the condition
3930     // is SETGE/SETLE to avoid an XORI.
3931     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3932         CCVal == ISD::SETLT) {
3933       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3934       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3935       if (TrueVal - 1 == FalseVal)
3936         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3937       if (TrueVal + 1 == FalseVal)
3938         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3939     }
3940 
3941     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3942 
3943     SDValue TargetCC = DAG.getCondCode(CCVal);
3944     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3945     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3946   }
3947 
3948   // Otherwise:
3949   // (select condv, truev, falsev)
3950   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3951   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3952   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3953 
3954   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3955 
3956   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3957 }
3958 
3959 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3960   SDValue CondV = Op.getOperand(1);
3961   SDLoc DL(Op);
3962   MVT XLenVT = Subtarget.getXLenVT();
3963 
3964   if (CondV.getOpcode() == ISD::SETCC &&
3965       CondV.getOperand(0).getValueType() == XLenVT) {
3966     SDValue LHS = CondV.getOperand(0);
3967     SDValue RHS = CondV.getOperand(1);
3968     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3969 
3970     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3971 
3972     SDValue TargetCC = DAG.getCondCode(CCVal);
3973     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3974                        LHS, RHS, TargetCC, Op.getOperand(2));
3975   }
3976 
3977   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3978                      CondV, DAG.getConstant(0, DL, XLenVT),
3979                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3980 }
3981 
3982 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3983   MachineFunction &MF = DAG.getMachineFunction();
3984   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3985 
3986   SDLoc DL(Op);
3987   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3988                                  getPointerTy(MF.getDataLayout()));
3989 
3990   // vastart just stores the address of the VarArgsFrameIndex slot into the
3991   // memory location argument.
3992   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3993   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3994                       MachinePointerInfo(SV));
3995 }
3996 
3997 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3998                                             SelectionDAG &DAG) const {
3999   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4000   MachineFunction &MF = DAG.getMachineFunction();
4001   MachineFrameInfo &MFI = MF.getFrameInfo();
4002   MFI.setFrameAddressIsTaken(true);
4003   Register FrameReg = RI.getFrameRegister(MF);
4004   int XLenInBytes = Subtarget.getXLen() / 8;
4005 
4006   EVT VT = Op.getValueType();
4007   SDLoc DL(Op);
4008   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4009   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4010   while (Depth--) {
4011     int Offset = -(XLenInBytes * 2);
4012     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4013                               DAG.getIntPtrConstant(Offset, DL));
4014     FrameAddr =
4015         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4016   }
4017   return FrameAddr;
4018 }
4019 
4020 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4021                                              SelectionDAG &DAG) const {
4022   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4023   MachineFunction &MF = DAG.getMachineFunction();
4024   MachineFrameInfo &MFI = MF.getFrameInfo();
4025   MFI.setReturnAddressIsTaken(true);
4026   MVT XLenVT = Subtarget.getXLenVT();
4027   int XLenInBytes = Subtarget.getXLen() / 8;
4028 
4029   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4030     return SDValue();
4031 
4032   EVT VT = Op.getValueType();
4033   SDLoc DL(Op);
4034   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4035   if (Depth) {
4036     int Off = -XLenInBytes;
4037     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4038     SDValue Offset = DAG.getConstant(Off, DL, VT);
4039     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4040                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4041                        MachinePointerInfo());
4042   }
4043 
4044   // Return the value of the return address register, marking it an implicit
4045   // live-in.
4046   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4047   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4048 }
4049 
4050 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4051                                                  SelectionDAG &DAG) const {
4052   SDLoc DL(Op);
4053   SDValue Lo = Op.getOperand(0);
4054   SDValue Hi = Op.getOperand(1);
4055   SDValue Shamt = Op.getOperand(2);
4056   EVT VT = Lo.getValueType();
4057 
4058   // if Shamt-XLEN < 0: // Shamt < XLEN
4059   //   Lo = Lo << Shamt
4060   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4061   // else:
4062   //   Lo = 0
4063   //   Hi = Lo << (Shamt-XLEN)
4064 
4065   SDValue Zero = DAG.getConstant(0, DL, VT);
4066   SDValue One = DAG.getConstant(1, DL, VT);
4067   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4068   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4069   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4070   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4071 
4072   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4073   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4074   SDValue ShiftRightLo =
4075       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4076   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4077   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4078   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4079 
4080   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4081 
4082   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4083   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4084 
4085   SDValue Parts[2] = {Lo, Hi};
4086   return DAG.getMergeValues(Parts, DL);
4087 }
4088 
4089 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4090                                                   bool IsSRA) const {
4091   SDLoc DL(Op);
4092   SDValue Lo = Op.getOperand(0);
4093   SDValue Hi = Op.getOperand(1);
4094   SDValue Shamt = Op.getOperand(2);
4095   EVT VT = Lo.getValueType();
4096 
4097   // SRA expansion:
4098   //   if Shamt-XLEN < 0: // Shamt < XLEN
4099   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4100   //     Hi = Hi >>s Shamt
4101   //   else:
4102   //     Lo = Hi >>s (Shamt-XLEN);
4103   //     Hi = Hi >>s (XLEN-1)
4104   //
4105   // SRL expansion:
4106   //   if Shamt-XLEN < 0: // Shamt < XLEN
4107   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4108   //     Hi = Hi >>u Shamt
4109   //   else:
4110   //     Lo = Hi >>u (Shamt-XLEN);
4111   //     Hi = 0;
4112 
4113   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4114 
4115   SDValue Zero = DAG.getConstant(0, DL, VT);
4116   SDValue One = DAG.getConstant(1, DL, VT);
4117   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4118   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4119   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4120   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4121 
4122   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4123   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4124   SDValue ShiftLeftHi =
4125       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4126   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4127   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4128   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4129   SDValue HiFalse =
4130       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4131 
4132   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4133 
4134   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4135   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4136 
4137   SDValue Parts[2] = {Lo, Hi};
4138   return DAG.getMergeValues(Parts, DL);
4139 }
4140 
4141 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4142 // legal equivalently-sized i8 type, so we can use that as a go-between.
4143 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4144                                                   SelectionDAG &DAG) const {
4145   SDLoc DL(Op);
4146   MVT VT = Op.getSimpleValueType();
4147   SDValue SplatVal = Op.getOperand(0);
4148   // All-zeros or all-ones splats are handled specially.
4149   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4150     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4151     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4152   }
4153   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4154     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4155     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4156   }
4157   MVT XLenVT = Subtarget.getXLenVT();
4158   assert(SplatVal.getValueType() == XLenVT &&
4159          "Unexpected type for i1 splat value");
4160   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4161   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4162                          DAG.getConstant(1, DL, XLenVT));
4163   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4164   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4165   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4166 }
4167 
4168 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4169 // illegal (currently only vXi64 RV32).
4170 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4171 // them to VMV_V_X_VL.
4172 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4173                                                      SelectionDAG &DAG) const {
4174   SDLoc DL(Op);
4175   MVT VecVT = Op.getSimpleValueType();
4176   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4177          "Unexpected SPLAT_VECTOR_PARTS lowering");
4178 
4179   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4180   SDValue Lo = Op.getOperand(0);
4181   SDValue Hi = Op.getOperand(1);
4182 
4183   if (VecVT.isFixedLengthVector()) {
4184     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4185     SDLoc DL(Op);
4186     SDValue Mask, VL;
4187     std::tie(Mask, VL) =
4188         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4189 
4190     SDValue Res =
4191         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4192     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4193   }
4194 
4195   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4196     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4197     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4198     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4199     // node in order to try and match RVV vector/scalar instructions.
4200     if ((LoC >> 31) == HiC)
4201       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4202                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4203   }
4204 
4205   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4206   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4207       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4208       Hi.getConstantOperandVal(1) == 31)
4209     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4210                        DAG.getRegister(RISCV::X0, MVT::i32));
4211 
4212   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4213   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4214                      DAG.getUNDEF(VecVT), Lo, Hi,
4215                      DAG.getRegister(RISCV::X0, MVT::i32));
4216 }
4217 
4218 // Custom-lower extensions from mask vectors by using a vselect either with 1
4219 // for zero/any-extension or -1 for sign-extension:
4220 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4221 // Note that any-extension is lowered identically to zero-extension.
4222 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4223                                                 int64_t ExtTrueVal) const {
4224   SDLoc DL(Op);
4225   MVT VecVT = Op.getSimpleValueType();
4226   SDValue Src = Op.getOperand(0);
4227   // Only custom-lower extensions from mask types
4228   assert(Src.getValueType().isVector() &&
4229          Src.getValueType().getVectorElementType() == MVT::i1);
4230 
4231   if (VecVT.isScalableVector()) {
4232     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4233     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4234     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4235   }
4236 
4237   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4238   MVT I1ContainerVT =
4239       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4240 
4241   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4242 
4243   SDValue Mask, VL;
4244   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4245 
4246   MVT XLenVT = Subtarget.getXLenVT();
4247   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4248   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4249 
4250   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4251                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4252   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4253                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4254   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4255                                SplatTrueVal, SplatZero, VL);
4256 
4257   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4258 }
4259 
4260 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4261     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4262   MVT ExtVT = Op.getSimpleValueType();
4263   // Only custom-lower extensions from fixed-length vector types.
4264   if (!ExtVT.isFixedLengthVector())
4265     return Op;
4266   MVT VT = Op.getOperand(0).getSimpleValueType();
4267   // Grab the canonical container type for the extended type. Infer the smaller
4268   // type from that to ensure the same number of vector elements, as we know
4269   // the LMUL will be sufficient to hold the smaller type.
4270   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4271   // Get the extended container type manually to ensure the same number of
4272   // vector elements between source and dest.
4273   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4274                                      ContainerExtVT.getVectorElementCount());
4275 
4276   SDValue Op1 =
4277       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4278 
4279   SDLoc DL(Op);
4280   SDValue Mask, VL;
4281   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4282 
4283   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4284 
4285   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4286 }
4287 
4288 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4289 // setcc operation:
4290 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4291 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4292                                                       SelectionDAG &DAG) const {
4293   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC;
4294   SDLoc DL(Op);
4295   EVT MaskVT = Op.getValueType();
4296   // Only expect to custom-lower truncations to mask types
4297   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4298          "Unexpected type for vector mask lowering");
4299   SDValue Src = Op.getOperand(0);
4300   MVT VecVT = Src.getSimpleValueType();
4301   SDValue Mask, VL;
4302   if (IsVPTrunc) {
4303     Mask = Op.getOperand(1);
4304     VL = Op.getOperand(2);
4305   }
4306   // If this is a fixed vector, we need to convert it to a scalable vector.
4307   MVT ContainerVT = VecVT;
4308 
4309   if (VecVT.isFixedLengthVector()) {
4310     ContainerVT = getContainerForFixedLengthVector(VecVT);
4311     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4312     if (IsVPTrunc) {
4313       MVT MaskContainerVT =
4314           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4315       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4316     }
4317   }
4318 
4319   if (!IsVPTrunc) {
4320     std::tie(Mask, VL) =
4321         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4322   }
4323 
4324   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4325   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4326 
4327   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4328                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4329   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4330                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4331 
4332   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4333   SDValue Trunc =
4334       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4335   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4336                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4337   if (MaskVT.isFixedLengthVector())
4338     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4339   return Trunc;
4340 }
4341 
4342 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4343                                                   SelectionDAG &DAG) const {
4344   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC;
4345   SDLoc DL(Op);
4346 
4347   MVT VT = Op.getSimpleValueType();
4348   // Only custom-lower vector truncates
4349   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4350 
4351   // Truncates to mask types are handled differently
4352   if (VT.getVectorElementType() == MVT::i1)
4353     return lowerVectorMaskTruncLike(Op, DAG);
4354 
4355   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4356   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4357   // truncate by one power of two at a time.
4358   MVT DstEltVT = VT.getVectorElementType();
4359 
4360   SDValue Src = Op.getOperand(0);
4361   MVT SrcVT = Src.getSimpleValueType();
4362   MVT SrcEltVT = SrcVT.getVectorElementType();
4363 
4364   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4365          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4366          "Unexpected vector truncate lowering");
4367 
4368   MVT ContainerVT = SrcVT;
4369   SDValue Mask, VL;
4370   if (IsVPTrunc) {
4371     Mask = Op.getOperand(1);
4372     VL = Op.getOperand(2);
4373   }
4374   if (SrcVT.isFixedLengthVector()) {
4375     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4376     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4377     if (IsVPTrunc) {
4378       MVT MaskVT =
4379           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4380       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4381     }
4382   }
4383 
4384   SDValue Result = Src;
4385   if (!IsVPTrunc) {
4386     std::tie(Mask, VL) =
4387         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4388   }
4389 
4390   LLVMContext &Context = *DAG.getContext();
4391   const ElementCount Count = ContainerVT.getVectorElementCount();
4392   do {
4393     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4394     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4395     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4396                          Mask, VL);
4397   } while (SrcEltVT != DstEltVT);
4398 
4399   if (SrcVT.isFixedLengthVector())
4400     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4401 
4402   return Result;
4403 }
4404 
4405 SDValue RISCVTargetLowering::lowerVectorFPRoundLike(SDValue Op,
4406                                                     SelectionDAG &DAG) const {
4407   bool IsVPFPTrunc = Op.getOpcode() == ISD::VP_FP_ROUND;
4408   // RVV can only do truncate fp to types half the size as the source. We
4409   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4410   // conversion instruction.
4411   SDLoc DL(Op);
4412   MVT VT = Op.getSimpleValueType();
4413 
4414   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4415 
4416   SDValue Src = Op.getOperand(0);
4417   MVT SrcVT = Src.getSimpleValueType();
4418 
4419   bool IsDirectConv = VT.getVectorElementType() != MVT::f16 ||
4420                       SrcVT.getVectorElementType() != MVT::f64;
4421 
4422   // For FP_ROUND of scalable vectors, leave it to the pattern.
4423   if (!VT.isFixedLengthVector() && !IsVPFPTrunc && IsDirectConv)
4424     return Op;
4425 
4426   // Prepare any fixed-length vector operands.
4427   MVT ContainerVT = VT;
4428   SDValue Mask, VL;
4429   if (IsVPFPTrunc) {
4430     Mask = Op.getOperand(1);
4431     VL = Op.getOperand(2);
4432   }
4433   if (VT.isFixedLengthVector()) {
4434     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4435     ContainerVT =
4436         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4437     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4438     if (IsVPFPTrunc) {
4439       MVT MaskVT =
4440           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4441       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4442     }
4443   }
4444 
4445   if (!IsVPFPTrunc)
4446     std::tie(Mask, VL) =
4447         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4448 
4449   if (IsDirectConv) {
4450     Src = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT, Src, Mask, VL);
4451     if (VT.isFixedLengthVector())
4452       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4453     return Src;
4454   }
4455 
4456   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4457   SDValue IntermediateRound =
4458       DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
4459   SDValue Round = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT,
4460                               IntermediateRound, Mask, VL);
4461   if (VT.isFixedLengthVector())
4462     return convertFromScalableVector(VT, Round, DAG, Subtarget);
4463   return Round;
4464 }
4465 
4466 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4467 // first position of a vector, and that vector is slid up to the insert index.
4468 // By limiting the active vector length to index+1 and merging with the
4469 // original vector (with an undisturbed tail policy for elements >= VL), we
4470 // achieve the desired result of leaving all elements untouched except the one
4471 // at VL-1, which is replaced with the desired value.
4472 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4473                                                     SelectionDAG &DAG) const {
4474   SDLoc DL(Op);
4475   MVT VecVT = Op.getSimpleValueType();
4476   SDValue Vec = Op.getOperand(0);
4477   SDValue Val = Op.getOperand(1);
4478   SDValue Idx = Op.getOperand(2);
4479 
4480   if (VecVT.getVectorElementType() == MVT::i1) {
4481     // FIXME: For now we just promote to an i8 vector and insert into that,
4482     // but this is probably not optimal.
4483     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4484     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4485     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4486     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4487   }
4488 
4489   MVT ContainerVT = VecVT;
4490   // If the operand is a fixed-length vector, convert to a scalable one.
4491   if (VecVT.isFixedLengthVector()) {
4492     ContainerVT = getContainerForFixedLengthVector(VecVT);
4493     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4494   }
4495 
4496   MVT XLenVT = Subtarget.getXLenVT();
4497 
4498   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4499   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4500   // Even i64-element vectors on RV32 can be lowered without scalar
4501   // legalization if the most-significant 32 bits of the value are not affected
4502   // by the sign-extension of the lower 32 bits.
4503   // TODO: We could also catch sign extensions of a 32-bit value.
4504   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4505     const auto *CVal = cast<ConstantSDNode>(Val);
4506     if (isInt<32>(CVal->getSExtValue())) {
4507       IsLegalInsert = true;
4508       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4509     }
4510   }
4511 
4512   SDValue Mask, VL;
4513   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4514 
4515   SDValue ValInVec;
4516 
4517   if (IsLegalInsert) {
4518     unsigned Opc =
4519         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4520     if (isNullConstant(Idx)) {
4521       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4522       if (!VecVT.isFixedLengthVector())
4523         return Vec;
4524       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4525     }
4526     ValInVec =
4527         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4528   } else {
4529     // On RV32, i64-element vectors must be specially handled to place the
4530     // value at element 0, by using two vslide1up instructions in sequence on
4531     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4532     // this.
4533     SDValue One = DAG.getConstant(1, DL, XLenVT);
4534     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4535     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4536     MVT I32ContainerVT =
4537         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4538     SDValue I32Mask =
4539         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4540     // Limit the active VL to two.
4541     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4542     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4543     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4544     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4545                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4546     // First slide in the hi value, then the lo in underneath it.
4547     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4548                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4549                            I32Mask, InsertI64VL);
4550     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4551                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4552                            I32Mask, InsertI64VL);
4553     // Bitcast back to the right container type.
4554     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4555   }
4556 
4557   // Now that the value is in a vector, slide it into position.
4558   SDValue InsertVL =
4559       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4560   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4561                                 ValInVec, Idx, Mask, InsertVL);
4562   if (!VecVT.isFixedLengthVector())
4563     return Slideup;
4564   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4565 }
4566 
4567 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4568 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4569 // types this is done using VMV_X_S to allow us to glean information about the
4570 // sign bits of the result.
4571 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4572                                                      SelectionDAG &DAG) const {
4573   SDLoc DL(Op);
4574   SDValue Idx = Op.getOperand(1);
4575   SDValue Vec = Op.getOperand(0);
4576   EVT EltVT = Op.getValueType();
4577   MVT VecVT = Vec.getSimpleValueType();
4578   MVT XLenVT = Subtarget.getXLenVT();
4579 
4580   if (VecVT.getVectorElementType() == MVT::i1) {
4581     if (VecVT.isFixedLengthVector()) {
4582       unsigned NumElts = VecVT.getVectorNumElements();
4583       if (NumElts >= 8) {
4584         MVT WideEltVT;
4585         unsigned WidenVecLen;
4586         SDValue ExtractElementIdx;
4587         SDValue ExtractBitIdx;
4588         unsigned MaxEEW = Subtarget.getELEN();
4589         MVT LargestEltVT = MVT::getIntegerVT(
4590             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4591         if (NumElts <= LargestEltVT.getSizeInBits()) {
4592           assert(isPowerOf2_32(NumElts) &&
4593                  "the number of elements should be power of 2");
4594           WideEltVT = MVT::getIntegerVT(NumElts);
4595           WidenVecLen = 1;
4596           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4597           ExtractBitIdx = Idx;
4598         } else {
4599           WideEltVT = LargestEltVT;
4600           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4601           // extract element index = index / element width
4602           ExtractElementIdx = DAG.getNode(
4603               ISD::SRL, DL, XLenVT, Idx,
4604               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4605           // mask bit index = index % element width
4606           ExtractBitIdx = DAG.getNode(
4607               ISD::AND, DL, XLenVT, Idx,
4608               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4609         }
4610         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4611         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4612         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4613                                          Vec, ExtractElementIdx);
4614         // Extract the bit from GPR.
4615         SDValue ShiftRight =
4616             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4617         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4618                            DAG.getConstant(1, DL, XLenVT));
4619       }
4620     }
4621     // Otherwise, promote to an i8 vector and extract from that.
4622     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4623     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4624     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4625   }
4626 
4627   // If this is a fixed vector, we need to convert it to a scalable vector.
4628   MVT ContainerVT = VecVT;
4629   if (VecVT.isFixedLengthVector()) {
4630     ContainerVT = getContainerForFixedLengthVector(VecVT);
4631     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4632   }
4633 
4634   // If the index is 0, the vector is already in the right position.
4635   if (!isNullConstant(Idx)) {
4636     // Use a VL of 1 to avoid processing more elements than we need.
4637     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4638     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4639     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4640     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4641                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4642   }
4643 
4644   if (!EltVT.isInteger()) {
4645     // Floating-point extracts are handled in TableGen.
4646     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4647                        DAG.getConstant(0, DL, XLenVT));
4648   }
4649 
4650   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4651   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4652 }
4653 
4654 // Some RVV intrinsics may claim that they want an integer operand to be
4655 // promoted or expanded.
4656 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4657                                            const RISCVSubtarget &Subtarget) {
4658   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4659           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4660          "Unexpected opcode");
4661 
4662   if (!Subtarget.hasVInstructions())
4663     return SDValue();
4664 
4665   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4666   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4667   SDLoc DL(Op);
4668 
4669   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4670       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4671   if (!II || !II->hasScalarOperand())
4672     return SDValue();
4673 
4674   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4675   assert(SplatOp < Op.getNumOperands());
4676 
4677   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4678   SDValue &ScalarOp = Operands[SplatOp];
4679   MVT OpVT = ScalarOp.getSimpleValueType();
4680   MVT XLenVT = Subtarget.getXLenVT();
4681 
4682   // If this isn't a scalar, or its type is XLenVT we're done.
4683   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4684     return SDValue();
4685 
4686   // Simplest case is that the operand needs to be promoted to XLenVT.
4687   if (OpVT.bitsLT(XLenVT)) {
4688     // If the operand is a constant, sign extend to increase our chances
4689     // of being able to use a .vi instruction. ANY_EXTEND would become a
4690     // a zero extend and the simm5 check in isel would fail.
4691     // FIXME: Should we ignore the upper bits in isel instead?
4692     unsigned ExtOpc =
4693         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4694     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4695     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4696   }
4697 
4698   // Use the previous operand to get the vXi64 VT. The result might be a mask
4699   // VT for compares. Using the previous operand assumes that the previous
4700   // operand will never have a smaller element size than a scalar operand and
4701   // that a widening operation never uses SEW=64.
4702   // NOTE: If this fails the below assert, we can probably just find the
4703   // element count from any operand or result and use it to construct the VT.
4704   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4705   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4706 
4707   // The more complex case is when the scalar is larger than XLenVT.
4708   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4709          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4710 
4711   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4712   // instruction to sign-extend since SEW>XLEN.
4713   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4714     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4715     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4716   }
4717 
4718   switch (IntNo) {
4719   case Intrinsic::riscv_vslide1up:
4720   case Intrinsic::riscv_vslide1down:
4721   case Intrinsic::riscv_vslide1up_mask:
4722   case Intrinsic::riscv_vslide1down_mask: {
4723     // We need to special case these when the scalar is larger than XLen.
4724     unsigned NumOps = Op.getNumOperands();
4725     bool IsMasked = NumOps == 7;
4726 
4727     // Convert the vector source to the equivalent nxvXi32 vector.
4728     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4729     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4730 
4731     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4732                                    DAG.getConstant(0, DL, XLenVT));
4733     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4734                                    DAG.getConstant(1, DL, XLenVT));
4735 
4736     // Double the VL since we halved SEW.
4737     SDValue AVL = getVLOperand(Op);
4738     SDValue I32VL;
4739 
4740     // Optimize for constant AVL
4741     if (isa<ConstantSDNode>(AVL)) {
4742       unsigned EltSize = VT.getScalarSizeInBits();
4743       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4744 
4745       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4746       unsigned MaxVLMAX =
4747           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4748 
4749       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4750       unsigned MinVLMAX =
4751           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4752 
4753       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4754       if (AVLInt <= MinVLMAX) {
4755         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4756       } else if (AVLInt >= 2 * MaxVLMAX) {
4757         // Just set vl to VLMAX in this situation
4758         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4759         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4760         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4761         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4762         SDValue SETVLMAX = DAG.getTargetConstant(
4763             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4764         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4765                             LMUL);
4766       } else {
4767         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4768         // is related to the hardware implementation.
4769         // So let the following code handle
4770       }
4771     }
4772     if (!I32VL) {
4773       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4774       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4775       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4776       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4777       SDValue SETVL =
4778           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4779       // Using vsetvli instruction to get actually used length which related to
4780       // the hardware implementation
4781       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4782                                SEW, LMUL);
4783       I32VL =
4784           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4785     }
4786 
4787     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4788     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4789 
4790     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4791     // instructions.
4792     SDValue Passthru;
4793     if (IsMasked)
4794       Passthru = DAG.getUNDEF(I32VT);
4795     else
4796       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4797 
4798     if (IntNo == Intrinsic::riscv_vslide1up ||
4799         IntNo == Intrinsic::riscv_vslide1up_mask) {
4800       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4801                         ScalarHi, I32Mask, I32VL);
4802       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4803                         ScalarLo, I32Mask, I32VL);
4804     } else {
4805       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4806                         ScalarLo, I32Mask, I32VL);
4807       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4808                         ScalarHi, I32Mask, I32VL);
4809     }
4810 
4811     // Convert back to nxvXi64.
4812     Vec = DAG.getBitcast(VT, Vec);
4813 
4814     if (!IsMasked)
4815       return Vec;
4816     // Apply mask after the operation.
4817     SDValue Mask = Operands[NumOps - 3];
4818     SDValue MaskedOff = Operands[1];
4819     // Assume Policy operand is the last operand.
4820     uint64_t Policy =
4821         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4822     // We don't need to select maskedoff if it's undef.
4823     if (MaskedOff.isUndef())
4824       return Vec;
4825     // TAMU
4826     if (Policy == RISCVII::TAIL_AGNOSTIC)
4827       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4828                          AVL);
4829     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4830     // It's fine because vmerge does not care mask policy.
4831     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4832                        AVL);
4833   }
4834   }
4835 
4836   // We need to convert the scalar to a splat vector.
4837   SDValue VL = getVLOperand(Op);
4838   assert(VL.getValueType() == XLenVT);
4839   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4840   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4841 }
4842 
4843 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4844                                                      SelectionDAG &DAG) const {
4845   unsigned IntNo = Op.getConstantOperandVal(0);
4846   SDLoc DL(Op);
4847   MVT XLenVT = Subtarget.getXLenVT();
4848 
4849   switch (IntNo) {
4850   default:
4851     break; // Don't custom lower most intrinsics.
4852   case Intrinsic::thread_pointer: {
4853     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4854     return DAG.getRegister(RISCV::X4, PtrVT);
4855   }
4856   case Intrinsic::riscv_orc_b:
4857   case Intrinsic::riscv_brev8: {
4858     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4859     unsigned Opc =
4860         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4861     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4862                        DAG.getConstant(7, DL, XLenVT));
4863   }
4864   case Intrinsic::riscv_grev:
4865   case Intrinsic::riscv_gorc: {
4866     unsigned Opc =
4867         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4868     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4869   }
4870   case Intrinsic::riscv_zip:
4871   case Intrinsic::riscv_unzip: {
4872     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4873     // For i32 the immediate is 15. For i64 the immediate is 31.
4874     unsigned Opc =
4875         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4876     unsigned BitWidth = Op.getValueSizeInBits();
4877     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4878     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4879                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4880   }
4881   case Intrinsic::riscv_shfl:
4882   case Intrinsic::riscv_unshfl: {
4883     unsigned Opc =
4884         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4885     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4886   }
4887   case Intrinsic::riscv_bcompress:
4888   case Intrinsic::riscv_bdecompress: {
4889     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4890                                                        : RISCVISD::BDECOMPRESS;
4891     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4892   }
4893   case Intrinsic::riscv_bfp:
4894     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4895                        Op.getOperand(2));
4896   case Intrinsic::riscv_fsl:
4897     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4898                        Op.getOperand(2), Op.getOperand(3));
4899   case Intrinsic::riscv_fsr:
4900     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4901                        Op.getOperand(2), Op.getOperand(3));
4902   case Intrinsic::riscv_vmv_x_s:
4903     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4904     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4905                        Op.getOperand(1));
4906   case Intrinsic::riscv_vmv_v_x:
4907     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4908                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4909                             Subtarget);
4910   case Intrinsic::riscv_vfmv_v_f:
4911     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4912                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4913   case Intrinsic::riscv_vmv_s_x: {
4914     SDValue Scalar = Op.getOperand(2);
4915 
4916     if (Scalar.getValueType().bitsLE(XLenVT)) {
4917       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4918       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4919                          Op.getOperand(1), Scalar, Op.getOperand(3));
4920     }
4921 
4922     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4923 
4924     // This is an i64 value that lives in two scalar registers. We have to
4925     // insert this in a convoluted way. First we build vXi64 splat containing
4926     // the two values that we assemble using some bit math. Next we'll use
4927     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4928     // to merge element 0 from our splat into the source vector.
4929     // FIXME: This is probably not the best way to do this, but it is
4930     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4931     // point.
4932     //   sw lo, (a0)
4933     //   sw hi, 4(a0)
4934     //   vlse vX, (a0)
4935     //
4936     //   vid.v      vVid
4937     //   vmseq.vx   mMask, vVid, 0
4938     //   vmerge.vvm vDest, vSrc, vVal, mMask
4939     MVT VT = Op.getSimpleValueType();
4940     SDValue Vec = Op.getOperand(1);
4941     SDValue VL = getVLOperand(Op);
4942 
4943     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4944     if (Op.getOperand(1).isUndef())
4945       return SplattedVal;
4946     SDValue SplattedIdx =
4947         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4948                     DAG.getConstant(0, DL, MVT::i32), VL);
4949 
4950     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4951     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4952     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4953     SDValue SelectCond =
4954         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4955                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4956     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4957                        Vec, VL);
4958   }
4959   }
4960 
4961   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4962 }
4963 
4964 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4965                                                     SelectionDAG &DAG) const {
4966   unsigned IntNo = Op.getConstantOperandVal(1);
4967   switch (IntNo) {
4968   default:
4969     break;
4970   case Intrinsic::riscv_masked_strided_load: {
4971     SDLoc DL(Op);
4972     MVT XLenVT = Subtarget.getXLenVT();
4973 
4974     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4975     // the selection of the masked intrinsics doesn't do this for us.
4976     SDValue Mask = Op.getOperand(5);
4977     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4978 
4979     MVT VT = Op->getSimpleValueType(0);
4980     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4981 
4982     SDValue PassThru = Op.getOperand(2);
4983     if (!IsUnmasked) {
4984       MVT MaskVT =
4985           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4986       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4987       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4988     }
4989 
4990     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4991 
4992     SDValue IntID = DAG.getTargetConstant(
4993         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4994         XLenVT);
4995 
4996     auto *Load = cast<MemIntrinsicSDNode>(Op);
4997     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4998     if (IsUnmasked)
4999       Ops.push_back(DAG.getUNDEF(ContainerVT));
5000     else
5001       Ops.push_back(PassThru);
5002     Ops.push_back(Op.getOperand(3)); // Ptr
5003     Ops.push_back(Op.getOperand(4)); // Stride
5004     if (!IsUnmasked)
5005       Ops.push_back(Mask);
5006     Ops.push_back(VL);
5007     if (!IsUnmasked) {
5008       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
5009       Ops.push_back(Policy);
5010     }
5011 
5012     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5013     SDValue Result =
5014         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5015                                 Load->getMemoryVT(), Load->getMemOperand());
5016     SDValue Chain = Result.getValue(1);
5017     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5018     return DAG.getMergeValues({Result, Chain}, DL);
5019   }
5020   case Intrinsic::riscv_seg2_load:
5021   case Intrinsic::riscv_seg3_load:
5022   case Intrinsic::riscv_seg4_load:
5023   case Intrinsic::riscv_seg5_load:
5024   case Intrinsic::riscv_seg6_load:
5025   case Intrinsic::riscv_seg7_load:
5026   case Intrinsic::riscv_seg8_load: {
5027     SDLoc DL(Op);
5028     static const Intrinsic::ID VlsegInts[7] = {
5029         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
5030         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
5031         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
5032         Intrinsic::riscv_vlseg8};
5033     unsigned NF = Op->getNumValues() - 1;
5034     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
5035     MVT XLenVT = Subtarget.getXLenVT();
5036     MVT VT = Op->getSimpleValueType(0);
5037     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5038 
5039     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5040     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
5041     auto *Load = cast<MemIntrinsicSDNode>(Op);
5042     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
5043     ContainerVTs.push_back(MVT::Other);
5044     SDVTList VTs = DAG.getVTList(ContainerVTs);
5045     SDValue Result =
5046         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
5047                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
5048                                 Load->getMemoryVT(), Load->getMemOperand());
5049     SmallVector<SDValue, 9> Results;
5050     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
5051       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
5052                                                   DAG, Subtarget));
5053     Results.push_back(Result.getValue(NF));
5054     return DAG.getMergeValues(Results, DL);
5055   }
5056   }
5057 
5058   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5059 }
5060 
5061 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5062                                                  SelectionDAG &DAG) const {
5063   unsigned IntNo = Op.getConstantOperandVal(1);
5064   switch (IntNo) {
5065   default:
5066     break;
5067   case Intrinsic::riscv_masked_strided_store: {
5068     SDLoc DL(Op);
5069     MVT XLenVT = Subtarget.getXLenVT();
5070 
5071     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5072     // the selection of the masked intrinsics doesn't do this for us.
5073     SDValue Mask = Op.getOperand(5);
5074     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5075 
5076     SDValue Val = Op.getOperand(2);
5077     MVT VT = Val.getSimpleValueType();
5078     MVT ContainerVT = getContainerForFixedLengthVector(VT);
5079 
5080     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5081     if (!IsUnmasked) {
5082       MVT MaskVT =
5083           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5084       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5085     }
5086 
5087     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5088 
5089     SDValue IntID = DAG.getTargetConstant(
5090         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5091         XLenVT);
5092 
5093     auto *Store = cast<MemIntrinsicSDNode>(Op);
5094     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5095     Ops.push_back(Val);
5096     Ops.push_back(Op.getOperand(3)); // Ptr
5097     Ops.push_back(Op.getOperand(4)); // Stride
5098     if (!IsUnmasked)
5099       Ops.push_back(Mask);
5100     Ops.push_back(VL);
5101 
5102     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5103                                    Ops, Store->getMemoryVT(),
5104                                    Store->getMemOperand());
5105   }
5106   }
5107 
5108   return SDValue();
5109 }
5110 
5111 static MVT getLMUL1VT(MVT VT) {
5112   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5113          "Unexpected vector MVT");
5114   return MVT::getScalableVectorVT(
5115       VT.getVectorElementType(),
5116       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5117 }
5118 
5119 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5120   switch (ISDOpcode) {
5121   default:
5122     llvm_unreachable("Unhandled reduction");
5123   case ISD::VECREDUCE_ADD:
5124     return RISCVISD::VECREDUCE_ADD_VL;
5125   case ISD::VECREDUCE_UMAX:
5126     return RISCVISD::VECREDUCE_UMAX_VL;
5127   case ISD::VECREDUCE_SMAX:
5128     return RISCVISD::VECREDUCE_SMAX_VL;
5129   case ISD::VECREDUCE_UMIN:
5130     return RISCVISD::VECREDUCE_UMIN_VL;
5131   case ISD::VECREDUCE_SMIN:
5132     return RISCVISD::VECREDUCE_SMIN_VL;
5133   case ISD::VECREDUCE_AND:
5134     return RISCVISD::VECREDUCE_AND_VL;
5135   case ISD::VECREDUCE_OR:
5136     return RISCVISD::VECREDUCE_OR_VL;
5137   case ISD::VECREDUCE_XOR:
5138     return RISCVISD::VECREDUCE_XOR_VL;
5139   }
5140 }
5141 
5142 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5143                                                          SelectionDAG &DAG,
5144                                                          bool IsVP) const {
5145   SDLoc DL(Op);
5146   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5147   MVT VecVT = Vec.getSimpleValueType();
5148   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5149           Op.getOpcode() == ISD::VECREDUCE_OR ||
5150           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5151           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5152           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5153           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5154          "Unexpected reduction lowering");
5155 
5156   MVT XLenVT = Subtarget.getXLenVT();
5157   assert(Op.getValueType() == XLenVT &&
5158          "Expected reduction output to be legalized to XLenVT");
5159 
5160   MVT ContainerVT = VecVT;
5161   if (VecVT.isFixedLengthVector()) {
5162     ContainerVT = getContainerForFixedLengthVector(VecVT);
5163     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5164   }
5165 
5166   SDValue Mask, VL;
5167   if (IsVP) {
5168     Mask = Op.getOperand(2);
5169     VL = Op.getOperand(3);
5170   } else {
5171     std::tie(Mask, VL) =
5172         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5173   }
5174 
5175   unsigned BaseOpc;
5176   ISD::CondCode CC;
5177   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5178 
5179   switch (Op.getOpcode()) {
5180   default:
5181     llvm_unreachable("Unhandled reduction");
5182   case ISD::VECREDUCE_AND:
5183   case ISD::VP_REDUCE_AND: {
5184     // vcpop ~x == 0
5185     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5186     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5187     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5188     CC = ISD::SETEQ;
5189     BaseOpc = ISD::AND;
5190     break;
5191   }
5192   case ISD::VECREDUCE_OR:
5193   case ISD::VP_REDUCE_OR:
5194     // vcpop x != 0
5195     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5196     CC = ISD::SETNE;
5197     BaseOpc = ISD::OR;
5198     break;
5199   case ISD::VECREDUCE_XOR:
5200   case ISD::VP_REDUCE_XOR: {
5201     // ((vcpop x) & 1) != 0
5202     SDValue One = DAG.getConstant(1, DL, XLenVT);
5203     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5204     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5205     CC = ISD::SETNE;
5206     BaseOpc = ISD::XOR;
5207     break;
5208   }
5209   }
5210 
5211   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5212 
5213   if (!IsVP)
5214     return SetCC;
5215 
5216   // Now include the start value in the operation.
5217   // Note that we must return the start value when no elements are operated
5218   // upon. The vcpop instructions we've emitted in each case above will return
5219   // 0 for an inactive vector, and so we've already received the neutral value:
5220   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5221   // can simply include the start value.
5222   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5223 }
5224 
5225 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5226                                             SelectionDAG &DAG) const {
5227   SDLoc DL(Op);
5228   SDValue Vec = Op.getOperand(0);
5229   EVT VecEVT = Vec.getValueType();
5230 
5231   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5232 
5233   // Due to ordering in legalize types we may have a vector type that needs to
5234   // be split. Do that manually so we can get down to a legal type.
5235   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5236          TargetLowering::TypeSplitVector) {
5237     SDValue Lo, Hi;
5238     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5239     VecEVT = Lo.getValueType();
5240     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5241   }
5242 
5243   // TODO: The type may need to be widened rather than split. Or widened before
5244   // it can be split.
5245   if (!isTypeLegal(VecEVT))
5246     return SDValue();
5247 
5248   MVT VecVT = VecEVT.getSimpleVT();
5249   MVT VecEltVT = VecVT.getVectorElementType();
5250   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5251 
5252   MVT ContainerVT = VecVT;
5253   if (VecVT.isFixedLengthVector()) {
5254     ContainerVT = getContainerForFixedLengthVector(VecVT);
5255     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5256   }
5257 
5258   MVT M1VT = getLMUL1VT(ContainerVT);
5259   MVT XLenVT = Subtarget.getXLenVT();
5260 
5261   SDValue Mask, VL;
5262   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5263 
5264   SDValue NeutralElem =
5265       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5266   SDValue IdentitySplat =
5267       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5268                        M1VT, DL, DAG, Subtarget);
5269   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5270                                   IdentitySplat, Mask, VL);
5271   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5272                              DAG.getConstant(0, DL, XLenVT));
5273   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5274 }
5275 
5276 // Given a reduction op, this function returns the matching reduction opcode,
5277 // the vector SDValue and the scalar SDValue required to lower this to a
5278 // RISCVISD node.
5279 static std::tuple<unsigned, SDValue, SDValue>
5280 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5281   SDLoc DL(Op);
5282   auto Flags = Op->getFlags();
5283   unsigned Opcode = Op.getOpcode();
5284   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5285   switch (Opcode) {
5286   default:
5287     llvm_unreachable("Unhandled reduction");
5288   case ISD::VECREDUCE_FADD: {
5289     // Use positive zero if we can. It is cheaper to materialize.
5290     SDValue Zero =
5291         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5292     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5293   }
5294   case ISD::VECREDUCE_SEQ_FADD:
5295     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5296                            Op.getOperand(0));
5297   case ISD::VECREDUCE_FMIN:
5298     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5299                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5300   case ISD::VECREDUCE_FMAX:
5301     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5302                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5303   }
5304 }
5305 
5306 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5307                                               SelectionDAG &DAG) const {
5308   SDLoc DL(Op);
5309   MVT VecEltVT = Op.getSimpleValueType();
5310 
5311   unsigned RVVOpcode;
5312   SDValue VectorVal, ScalarVal;
5313   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5314       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5315   MVT VecVT = VectorVal.getSimpleValueType();
5316 
5317   MVT ContainerVT = VecVT;
5318   if (VecVT.isFixedLengthVector()) {
5319     ContainerVT = getContainerForFixedLengthVector(VecVT);
5320     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5321   }
5322 
5323   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5324   MVT XLenVT = Subtarget.getXLenVT();
5325 
5326   SDValue Mask, VL;
5327   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5328 
5329   SDValue ScalarSplat =
5330       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5331                        M1VT, DL, DAG, Subtarget);
5332   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5333                                   VectorVal, ScalarSplat, Mask, VL);
5334   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5335                      DAG.getConstant(0, DL, XLenVT));
5336 }
5337 
5338 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5339   switch (ISDOpcode) {
5340   default:
5341     llvm_unreachable("Unhandled reduction");
5342   case ISD::VP_REDUCE_ADD:
5343     return RISCVISD::VECREDUCE_ADD_VL;
5344   case ISD::VP_REDUCE_UMAX:
5345     return RISCVISD::VECREDUCE_UMAX_VL;
5346   case ISD::VP_REDUCE_SMAX:
5347     return RISCVISD::VECREDUCE_SMAX_VL;
5348   case ISD::VP_REDUCE_UMIN:
5349     return RISCVISD::VECREDUCE_UMIN_VL;
5350   case ISD::VP_REDUCE_SMIN:
5351     return RISCVISD::VECREDUCE_SMIN_VL;
5352   case ISD::VP_REDUCE_AND:
5353     return RISCVISD::VECREDUCE_AND_VL;
5354   case ISD::VP_REDUCE_OR:
5355     return RISCVISD::VECREDUCE_OR_VL;
5356   case ISD::VP_REDUCE_XOR:
5357     return RISCVISD::VECREDUCE_XOR_VL;
5358   case ISD::VP_REDUCE_FADD:
5359     return RISCVISD::VECREDUCE_FADD_VL;
5360   case ISD::VP_REDUCE_SEQ_FADD:
5361     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5362   case ISD::VP_REDUCE_FMAX:
5363     return RISCVISD::VECREDUCE_FMAX_VL;
5364   case ISD::VP_REDUCE_FMIN:
5365     return RISCVISD::VECREDUCE_FMIN_VL;
5366   }
5367 }
5368 
5369 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5370                                            SelectionDAG &DAG) const {
5371   SDLoc DL(Op);
5372   SDValue Vec = Op.getOperand(1);
5373   EVT VecEVT = Vec.getValueType();
5374 
5375   // TODO: The type may need to be widened rather than split. Or widened before
5376   // it can be split.
5377   if (!isTypeLegal(VecEVT))
5378     return SDValue();
5379 
5380   MVT VecVT = VecEVT.getSimpleVT();
5381   MVT VecEltVT = VecVT.getVectorElementType();
5382   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5383 
5384   MVT ContainerVT = VecVT;
5385   if (VecVT.isFixedLengthVector()) {
5386     ContainerVT = getContainerForFixedLengthVector(VecVT);
5387     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5388   }
5389 
5390   SDValue VL = Op.getOperand(3);
5391   SDValue Mask = Op.getOperand(2);
5392 
5393   MVT M1VT = getLMUL1VT(ContainerVT);
5394   MVT XLenVT = Subtarget.getXLenVT();
5395   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5396 
5397   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5398                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5399                                         DL, DAG, Subtarget);
5400   SDValue Reduction =
5401       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5402   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5403                              DAG.getConstant(0, DL, XLenVT));
5404   if (!VecVT.isInteger())
5405     return Elt0;
5406   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5407 }
5408 
5409 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5410                                                    SelectionDAG &DAG) const {
5411   SDValue Vec = Op.getOperand(0);
5412   SDValue SubVec = Op.getOperand(1);
5413   MVT VecVT = Vec.getSimpleValueType();
5414   MVT SubVecVT = SubVec.getSimpleValueType();
5415 
5416   SDLoc DL(Op);
5417   MVT XLenVT = Subtarget.getXLenVT();
5418   unsigned OrigIdx = Op.getConstantOperandVal(2);
5419   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5420 
5421   // We don't have the ability to slide mask vectors up indexed by their i1
5422   // elements; the smallest we can do is i8. Often we are able to bitcast to
5423   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5424   // into a scalable one, we might not necessarily have enough scalable
5425   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5426   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5427       (OrigIdx != 0 || !Vec.isUndef())) {
5428     if (VecVT.getVectorMinNumElements() >= 8 &&
5429         SubVecVT.getVectorMinNumElements() >= 8) {
5430       assert(OrigIdx % 8 == 0 && "Invalid index");
5431       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5432              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5433              "Unexpected mask vector lowering");
5434       OrigIdx /= 8;
5435       SubVecVT =
5436           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5437                            SubVecVT.isScalableVector());
5438       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5439                                VecVT.isScalableVector());
5440       Vec = DAG.getBitcast(VecVT, Vec);
5441       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5442     } else {
5443       // We can't slide this mask vector up indexed by its i1 elements.
5444       // This poses a problem when we wish to insert a scalable vector which
5445       // can't be re-expressed as a larger type. Just choose the slow path and
5446       // extend to a larger type, then truncate back down.
5447       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5448       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5449       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5450       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5451       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5452                         Op.getOperand(2));
5453       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5454       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5455     }
5456   }
5457 
5458   // If the subvector vector is a fixed-length type, we cannot use subregister
5459   // manipulation to simplify the codegen; we don't know which register of a
5460   // LMUL group contains the specific subvector as we only know the minimum
5461   // register size. Therefore we must slide the vector group up the full
5462   // amount.
5463   if (SubVecVT.isFixedLengthVector()) {
5464     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5465       return Op;
5466     MVT ContainerVT = VecVT;
5467     if (VecVT.isFixedLengthVector()) {
5468       ContainerVT = getContainerForFixedLengthVector(VecVT);
5469       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5470     }
5471     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5472                          DAG.getUNDEF(ContainerVT), SubVec,
5473                          DAG.getConstant(0, DL, XLenVT));
5474     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5475       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5476       return DAG.getBitcast(Op.getValueType(), SubVec);
5477     }
5478     SDValue Mask =
5479         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5480     // Set the vector length to only the number of elements we care about. Note
5481     // that for slideup this includes the offset.
5482     SDValue VL =
5483         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5484     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5485     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5486                                   SubVec, SlideupAmt, Mask, VL);
5487     if (VecVT.isFixedLengthVector())
5488       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5489     return DAG.getBitcast(Op.getValueType(), Slideup);
5490   }
5491 
5492   unsigned SubRegIdx, RemIdx;
5493   std::tie(SubRegIdx, RemIdx) =
5494       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5495           VecVT, SubVecVT, OrigIdx, TRI);
5496 
5497   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5498   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5499                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5500                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5501 
5502   // 1. If the Idx has been completely eliminated and this subvector's size is
5503   // a vector register or a multiple thereof, or the surrounding elements are
5504   // undef, then this is a subvector insert which naturally aligns to a vector
5505   // register. These can easily be handled using subregister manipulation.
5506   // 2. If the subvector is smaller than a vector register, then the insertion
5507   // must preserve the undisturbed elements of the register. We do this by
5508   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5509   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5510   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5511   // LMUL=1 type back into the larger vector (resolving to another subregister
5512   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5513   // to avoid allocating a large register group to hold our subvector.
5514   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5515     return Op;
5516 
5517   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5518   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5519   // (in our case undisturbed). This means we can set up a subvector insertion
5520   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5521   // size of the subvector.
5522   MVT InterSubVT = VecVT;
5523   SDValue AlignedExtract = Vec;
5524   unsigned AlignedIdx = OrigIdx - RemIdx;
5525   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5526     InterSubVT = getLMUL1VT(VecVT);
5527     // Extract a subvector equal to the nearest full vector register type. This
5528     // should resolve to a EXTRACT_SUBREG instruction.
5529     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5530                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5531   }
5532 
5533   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5534   // For scalable vectors this must be further multiplied by vscale.
5535   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5536 
5537   SDValue Mask, VL;
5538   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5539 
5540   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5541   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5542   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5543   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5544 
5545   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5546                        DAG.getUNDEF(InterSubVT), SubVec,
5547                        DAG.getConstant(0, DL, XLenVT));
5548 
5549   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5550                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5551 
5552   // If required, insert this subvector back into the correct vector register.
5553   // This should resolve to an INSERT_SUBREG instruction.
5554   if (VecVT.bitsGT(InterSubVT))
5555     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5556                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5557 
5558   // We might have bitcast from a mask type: cast back to the original type if
5559   // required.
5560   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5561 }
5562 
5563 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5564                                                     SelectionDAG &DAG) const {
5565   SDValue Vec = Op.getOperand(0);
5566   MVT SubVecVT = Op.getSimpleValueType();
5567   MVT VecVT = Vec.getSimpleValueType();
5568 
5569   SDLoc DL(Op);
5570   MVT XLenVT = Subtarget.getXLenVT();
5571   unsigned OrigIdx = Op.getConstantOperandVal(1);
5572   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5573 
5574   // We don't have the ability to slide mask vectors down indexed by their i1
5575   // elements; the smallest we can do is i8. Often we are able to bitcast to
5576   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5577   // from a scalable one, we might not necessarily have enough scalable
5578   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5579   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5580     if (VecVT.getVectorMinNumElements() >= 8 &&
5581         SubVecVT.getVectorMinNumElements() >= 8) {
5582       assert(OrigIdx % 8 == 0 && "Invalid index");
5583       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5584              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5585              "Unexpected mask vector lowering");
5586       OrigIdx /= 8;
5587       SubVecVT =
5588           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5589                            SubVecVT.isScalableVector());
5590       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5591                                VecVT.isScalableVector());
5592       Vec = DAG.getBitcast(VecVT, Vec);
5593     } else {
5594       // We can't slide this mask vector down, indexed by its i1 elements.
5595       // This poses a problem when we wish to extract a scalable vector which
5596       // can't be re-expressed as a larger type. Just choose the slow path and
5597       // extend to a larger type, then truncate back down.
5598       // TODO: We could probably improve this when extracting certain fixed
5599       // from fixed, where we can extract as i8 and shift the correct element
5600       // right to reach the desired subvector?
5601       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5602       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5603       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5604       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5605                         Op.getOperand(1));
5606       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5607       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5608     }
5609   }
5610 
5611   // If the subvector vector is a fixed-length type, we cannot use subregister
5612   // manipulation to simplify the codegen; we don't know which register of a
5613   // LMUL group contains the specific subvector as we only know the minimum
5614   // register size. Therefore we must slide the vector group down the full
5615   // amount.
5616   if (SubVecVT.isFixedLengthVector()) {
5617     // With an index of 0 this is a cast-like subvector, which can be performed
5618     // with subregister operations.
5619     if (OrigIdx == 0)
5620       return Op;
5621     MVT ContainerVT = VecVT;
5622     if (VecVT.isFixedLengthVector()) {
5623       ContainerVT = getContainerForFixedLengthVector(VecVT);
5624       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5625     }
5626     SDValue Mask =
5627         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5628     // Set the vector length to only the number of elements we care about. This
5629     // avoids sliding down elements we're going to discard straight away.
5630     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5631     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5632     SDValue Slidedown =
5633         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5634                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5635     // Now we can use a cast-like subvector extract to get the result.
5636     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5637                             DAG.getConstant(0, DL, XLenVT));
5638     return DAG.getBitcast(Op.getValueType(), Slidedown);
5639   }
5640 
5641   unsigned SubRegIdx, RemIdx;
5642   std::tie(SubRegIdx, RemIdx) =
5643       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5644           VecVT, SubVecVT, OrigIdx, TRI);
5645 
5646   // If the Idx has been completely eliminated then this is a subvector extract
5647   // which naturally aligns to a vector register. These can easily be handled
5648   // using subregister manipulation.
5649   if (RemIdx == 0)
5650     return Op;
5651 
5652   // Else we must shift our vector register directly to extract the subvector.
5653   // Do this using VSLIDEDOWN.
5654 
5655   // If the vector type is an LMUL-group type, extract a subvector equal to the
5656   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5657   // instruction.
5658   MVT InterSubVT = VecVT;
5659   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5660     InterSubVT = getLMUL1VT(VecVT);
5661     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5662                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5663   }
5664 
5665   // Slide this vector register down by the desired number of elements in order
5666   // to place the desired subvector starting at element 0.
5667   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5668   // For scalable vectors this must be further multiplied by vscale.
5669   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5670 
5671   SDValue Mask, VL;
5672   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5673   SDValue Slidedown =
5674       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5675                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5676 
5677   // Now the vector is in the right position, extract our final subvector. This
5678   // should resolve to a COPY.
5679   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5680                           DAG.getConstant(0, DL, XLenVT));
5681 
5682   // We might have bitcast from a mask type: cast back to the original type if
5683   // required.
5684   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5685 }
5686 
5687 // Lower step_vector to the vid instruction. Any non-identity step value must
5688 // be accounted for my manual expansion.
5689 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5690                                               SelectionDAG &DAG) const {
5691   SDLoc DL(Op);
5692   MVT VT = Op.getSimpleValueType();
5693   MVT XLenVT = Subtarget.getXLenVT();
5694   SDValue Mask, VL;
5695   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5696   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5697   uint64_t StepValImm = Op.getConstantOperandVal(0);
5698   if (StepValImm != 1) {
5699     if (isPowerOf2_64(StepValImm)) {
5700       SDValue StepVal =
5701           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5702                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5703       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5704     } else {
5705       SDValue StepVal = lowerScalarSplat(
5706           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5707           VL, VT, DL, DAG, Subtarget);
5708       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5709     }
5710   }
5711   return StepVec;
5712 }
5713 
5714 // Implement vector_reverse using vrgather.vv with indices determined by
5715 // subtracting the id of each element from (VLMAX-1). This will convert
5716 // the indices like so:
5717 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5718 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5719 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5720                                                  SelectionDAG &DAG) const {
5721   SDLoc DL(Op);
5722   MVT VecVT = Op.getSimpleValueType();
5723   unsigned EltSize = VecVT.getScalarSizeInBits();
5724   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5725 
5726   unsigned MaxVLMAX = 0;
5727   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5728   if (VectorBitsMax != 0)
5729     MaxVLMAX =
5730         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5731 
5732   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5733   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5734 
5735   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5736   // to use vrgatherei16.vv.
5737   // TODO: It's also possible to use vrgatherei16.vv for other types to
5738   // decrease register width for the index calculation.
5739   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5740     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5741     // Reverse each half, then reassemble them in reverse order.
5742     // NOTE: It's also possible that after splitting that VLMAX no longer
5743     // requires vrgatherei16.vv.
5744     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5745       SDValue Lo, Hi;
5746       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5747       EVT LoVT, HiVT;
5748       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5749       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5750       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5751       // Reassemble the low and high pieces reversed.
5752       // FIXME: This is a CONCAT_VECTORS.
5753       SDValue Res =
5754           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5755                       DAG.getIntPtrConstant(0, DL));
5756       return DAG.getNode(
5757           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5758           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5759     }
5760 
5761     // Just promote the int type to i16 which will double the LMUL.
5762     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5763     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5764   }
5765 
5766   MVT XLenVT = Subtarget.getXLenVT();
5767   SDValue Mask, VL;
5768   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5769 
5770   // Calculate VLMAX-1 for the desired SEW.
5771   unsigned MinElts = VecVT.getVectorMinNumElements();
5772   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5773                               DAG.getConstant(MinElts, DL, XLenVT));
5774   SDValue VLMinus1 =
5775       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5776 
5777   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5778   bool IsRV32E64 =
5779       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5780   SDValue SplatVL;
5781   if (!IsRV32E64)
5782     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5783   else
5784     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5785                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5786 
5787   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5788   SDValue Indices =
5789       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5790 
5791   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5792 }
5793 
5794 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5795                                                 SelectionDAG &DAG) const {
5796   SDLoc DL(Op);
5797   SDValue V1 = Op.getOperand(0);
5798   SDValue V2 = Op.getOperand(1);
5799   MVT XLenVT = Subtarget.getXLenVT();
5800   MVT VecVT = Op.getSimpleValueType();
5801 
5802   unsigned MinElts = VecVT.getVectorMinNumElements();
5803   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5804                               DAG.getConstant(MinElts, DL, XLenVT));
5805 
5806   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5807   SDValue DownOffset, UpOffset;
5808   if (ImmValue >= 0) {
5809     // The operand is a TargetConstant, we need to rebuild it as a regular
5810     // constant.
5811     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5812     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5813   } else {
5814     // The operand is a TargetConstant, we need to rebuild it as a regular
5815     // constant rather than negating the original operand.
5816     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5817     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5818   }
5819 
5820   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5821   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5822 
5823   SDValue SlideDown =
5824       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5825                   DownOffset, TrueMask, UpOffset);
5826   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5827                      TrueMask,
5828                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5829 }
5830 
5831 SDValue
5832 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5833                                                      SelectionDAG &DAG) const {
5834   SDLoc DL(Op);
5835   auto *Load = cast<LoadSDNode>(Op);
5836 
5837   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5838                                         Load->getMemoryVT(),
5839                                         *Load->getMemOperand()) &&
5840          "Expecting a correctly-aligned load");
5841 
5842   MVT VT = Op.getSimpleValueType();
5843   MVT XLenVT = Subtarget.getXLenVT();
5844   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5845 
5846   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5847 
5848   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5849   SDValue IntID = DAG.getTargetConstant(
5850       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5851   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5852   if (!IsMaskOp)
5853     Ops.push_back(DAG.getUNDEF(ContainerVT));
5854   Ops.push_back(Load->getBasePtr());
5855   Ops.push_back(VL);
5856   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5857   SDValue NewLoad =
5858       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5859                               Load->getMemoryVT(), Load->getMemOperand());
5860 
5861   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5862   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5863 }
5864 
5865 SDValue
5866 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5867                                                       SelectionDAG &DAG) const {
5868   SDLoc DL(Op);
5869   auto *Store = cast<StoreSDNode>(Op);
5870 
5871   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5872                                         Store->getMemoryVT(),
5873                                         *Store->getMemOperand()) &&
5874          "Expecting a correctly-aligned store");
5875 
5876   SDValue StoreVal = Store->getValue();
5877   MVT VT = StoreVal.getSimpleValueType();
5878   MVT XLenVT = Subtarget.getXLenVT();
5879 
5880   // If the size less than a byte, we need to pad with zeros to make a byte.
5881   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5882     VT = MVT::v8i1;
5883     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5884                            DAG.getConstant(0, DL, VT), StoreVal,
5885                            DAG.getIntPtrConstant(0, DL));
5886   }
5887 
5888   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5889 
5890   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5891 
5892   SDValue NewValue =
5893       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5894 
5895   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5896   SDValue IntID = DAG.getTargetConstant(
5897       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5898   return DAG.getMemIntrinsicNode(
5899       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5900       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5901       Store->getMemoryVT(), Store->getMemOperand());
5902 }
5903 
5904 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5905                                              SelectionDAG &DAG) const {
5906   SDLoc DL(Op);
5907   MVT VT = Op.getSimpleValueType();
5908 
5909   const auto *MemSD = cast<MemSDNode>(Op);
5910   EVT MemVT = MemSD->getMemoryVT();
5911   MachineMemOperand *MMO = MemSD->getMemOperand();
5912   SDValue Chain = MemSD->getChain();
5913   SDValue BasePtr = MemSD->getBasePtr();
5914 
5915   SDValue Mask, PassThru, VL;
5916   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5917     Mask = VPLoad->getMask();
5918     PassThru = DAG.getUNDEF(VT);
5919     VL = VPLoad->getVectorLength();
5920   } else {
5921     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5922     Mask = MLoad->getMask();
5923     PassThru = MLoad->getPassThru();
5924   }
5925 
5926   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5927 
5928   MVT XLenVT = Subtarget.getXLenVT();
5929 
5930   MVT ContainerVT = VT;
5931   if (VT.isFixedLengthVector()) {
5932     ContainerVT = getContainerForFixedLengthVector(VT);
5933     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5934     if (!IsUnmasked) {
5935       MVT MaskVT =
5936           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5937       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5938     }
5939   }
5940 
5941   if (!VL)
5942     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5943 
5944   unsigned IntID =
5945       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5946   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5947   if (IsUnmasked)
5948     Ops.push_back(DAG.getUNDEF(ContainerVT));
5949   else
5950     Ops.push_back(PassThru);
5951   Ops.push_back(BasePtr);
5952   if (!IsUnmasked)
5953     Ops.push_back(Mask);
5954   Ops.push_back(VL);
5955   if (!IsUnmasked)
5956     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5957 
5958   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5959 
5960   SDValue Result =
5961       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5962   Chain = Result.getValue(1);
5963 
5964   if (VT.isFixedLengthVector())
5965     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5966 
5967   return DAG.getMergeValues({Result, Chain}, DL);
5968 }
5969 
5970 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5971                                               SelectionDAG &DAG) const {
5972   SDLoc DL(Op);
5973 
5974   const auto *MemSD = cast<MemSDNode>(Op);
5975   EVT MemVT = MemSD->getMemoryVT();
5976   MachineMemOperand *MMO = MemSD->getMemOperand();
5977   SDValue Chain = MemSD->getChain();
5978   SDValue BasePtr = MemSD->getBasePtr();
5979   SDValue Val, Mask, VL;
5980 
5981   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5982     Val = VPStore->getValue();
5983     Mask = VPStore->getMask();
5984     VL = VPStore->getVectorLength();
5985   } else {
5986     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5987     Val = MStore->getValue();
5988     Mask = MStore->getMask();
5989   }
5990 
5991   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5992 
5993   MVT VT = Val.getSimpleValueType();
5994   MVT XLenVT = Subtarget.getXLenVT();
5995 
5996   MVT ContainerVT = VT;
5997   if (VT.isFixedLengthVector()) {
5998     ContainerVT = getContainerForFixedLengthVector(VT);
5999 
6000     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6001     if (!IsUnmasked) {
6002       MVT MaskVT =
6003           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6004       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6005     }
6006   }
6007 
6008   if (!VL)
6009     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6010 
6011   unsigned IntID =
6012       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
6013   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6014   Ops.push_back(Val);
6015   Ops.push_back(BasePtr);
6016   if (!IsUnmasked)
6017     Ops.push_back(Mask);
6018   Ops.push_back(VL);
6019 
6020   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6021                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6022 }
6023 
6024 SDValue
6025 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
6026                                                       SelectionDAG &DAG) const {
6027   MVT InVT = Op.getOperand(0).getSimpleValueType();
6028   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
6029 
6030   MVT VT = Op.getSimpleValueType();
6031 
6032   SDValue Op1 =
6033       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
6034   SDValue Op2 =
6035       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6036 
6037   SDLoc DL(Op);
6038   SDValue VL =
6039       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
6040 
6041   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6042   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6043 
6044   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
6045                             Op.getOperand(2), Mask, VL);
6046 
6047   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
6048 }
6049 
6050 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
6051     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
6052   MVT VT = Op.getSimpleValueType();
6053 
6054   if (VT.getVectorElementType() == MVT::i1)
6055     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
6056 
6057   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
6058 }
6059 
6060 SDValue
6061 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
6062                                                       SelectionDAG &DAG) const {
6063   unsigned Opc;
6064   switch (Op.getOpcode()) {
6065   default: llvm_unreachable("Unexpected opcode!");
6066   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
6067   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
6068   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
6069   }
6070 
6071   return lowerToScalableOp(Op, DAG, Opc);
6072 }
6073 
6074 // Lower vector ABS to smax(X, sub(0, X)).
6075 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6076   SDLoc DL(Op);
6077   MVT VT = Op.getSimpleValueType();
6078   SDValue X = Op.getOperand(0);
6079 
6080   assert(VT.isFixedLengthVector() && "Unexpected type");
6081 
6082   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6083   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6084 
6085   SDValue Mask, VL;
6086   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6087 
6088   SDValue SplatZero = DAG.getNode(
6089       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6090       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6091   SDValue NegX =
6092       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6093   SDValue Max =
6094       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6095 
6096   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6097 }
6098 
6099 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6100     SDValue Op, SelectionDAG &DAG) const {
6101   SDLoc DL(Op);
6102   MVT VT = Op.getSimpleValueType();
6103   SDValue Mag = Op.getOperand(0);
6104   SDValue Sign = Op.getOperand(1);
6105   assert(Mag.getValueType() == Sign.getValueType() &&
6106          "Can only handle COPYSIGN with matching types.");
6107 
6108   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6109   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6110   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6111 
6112   SDValue Mask, VL;
6113   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6114 
6115   SDValue CopySign =
6116       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6117 
6118   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6119 }
6120 
6121 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6122     SDValue Op, SelectionDAG &DAG) const {
6123   MVT VT = Op.getSimpleValueType();
6124   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6125 
6126   MVT I1ContainerVT =
6127       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6128 
6129   SDValue CC =
6130       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6131   SDValue Op1 =
6132       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6133   SDValue Op2 =
6134       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6135 
6136   SDLoc DL(Op);
6137   SDValue Mask, VL;
6138   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6139 
6140   SDValue Select =
6141       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6142 
6143   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6144 }
6145 
6146 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6147                                                unsigned NewOpc,
6148                                                bool HasMask) const {
6149   MVT VT = Op.getSimpleValueType();
6150   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6151 
6152   // Create list of operands by converting existing ones to scalable types.
6153   SmallVector<SDValue, 6> Ops;
6154   for (const SDValue &V : Op->op_values()) {
6155     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6156 
6157     // Pass through non-vector operands.
6158     if (!V.getValueType().isVector()) {
6159       Ops.push_back(V);
6160       continue;
6161     }
6162 
6163     // "cast" fixed length vector to a scalable vector.
6164     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6165            "Only fixed length vectors are supported!");
6166     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6167   }
6168 
6169   SDLoc DL(Op);
6170   SDValue Mask, VL;
6171   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6172   if (HasMask)
6173     Ops.push_back(Mask);
6174   Ops.push_back(VL);
6175 
6176   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6177   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6178 }
6179 
6180 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6181 // * Operands of each node are assumed to be in the same order.
6182 // * The EVL operand is promoted from i32 to i64 on RV64.
6183 // * Fixed-length vectors are converted to their scalable-vector container
6184 //   types.
6185 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6186                                        unsigned RISCVISDOpc) const {
6187   SDLoc DL(Op);
6188   MVT VT = Op.getSimpleValueType();
6189   SmallVector<SDValue, 4> Ops;
6190 
6191   for (const auto &OpIdx : enumerate(Op->ops())) {
6192     SDValue V = OpIdx.value();
6193     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6194     // Pass through operands which aren't fixed-length vectors.
6195     if (!V.getValueType().isFixedLengthVector()) {
6196       Ops.push_back(V);
6197       continue;
6198     }
6199     // "cast" fixed length vector to a scalable vector.
6200     MVT OpVT = V.getSimpleValueType();
6201     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6202     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6203            "Only fixed length vectors are supported!");
6204     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6205   }
6206 
6207   if (!VT.isFixedLengthVector())
6208     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6209 
6210   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6211 
6212   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6213 
6214   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6215 }
6216 
6217 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6218                                               SelectionDAG &DAG) const {
6219   SDLoc DL(Op);
6220   MVT VT = Op.getSimpleValueType();
6221 
6222   SDValue Src = Op.getOperand(0);
6223   // NOTE: Mask is dropped.
6224   SDValue VL = Op.getOperand(2);
6225 
6226   MVT ContainerVT = VT;
6227   if (VT.isFixedLengthVector()) {
6228     ContainerVT = getContainerForFixedLengthVector(VT);
6229     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6230     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6231   }
6232 
6233   MVT XLenVT = Subtarget.getXLenVT();
6234   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6235   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6236                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6237 
6238   SDValue SplatValue =
6239       DAG.getConstant(Op.getOpcode() == ISD::VP_ZEXT ? 1 : -1, DL, XLenVT);
6240   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6241                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6242 
6243   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6244                                Splat, ZeroSplat, VL);
6245   if (!VT.isFixedLengthVector())
6246     return Result;
6247   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6248 }
6249 
6250 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6251 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6252                                                 unsigned RISCVISDOpc) const {
6253   SDLoc DL(Op);
6254 
6255   SDValue Src = Op.getOperand(0);
6256   SDValue Mask = Op.getOperand(1);
6257   SDValue VL = Op.getOperand(2);
6258 
6259   MVT DstVT = Op.getSimpleValueType();
6260   MVT SrcVT = Src.getSimpleValueType();
6261   if (DstVT.isFixedLengthVector()) {
6262     DstVT = getContainerForFixedLengthVector(DstVT);
6263     SrcVT = getContainerForFixedLengthVector(SrcVT);
6264     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6265     MVT MaskVT = MVT::getVectorVT(MVT::i1, DstVT.getVectorElementCount());
6266     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6267   }
6268 
6269   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6270                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6271                                 ? RISCVISD::VSEXT_VL
6272                                 : RISCVISD::VZEXT_VL;
6273 
6274   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6275   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6276 
6277   SDValue Result;
6278   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6279     if (SrcVT.isInteger()) {
6280       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6281 
6282       // Do we need to do any pre-widening before converting?
6283       if (SrcEltSize == 1) {
6284         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6285         MVT XLenVT = Subtarget.getXLenVT();
6286         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6287         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6288                                         DAG.getUNDEF(IntVT), Zero, VL);
6289         SDValue One = DAG.getConstant(
6290             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6291         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6292                                        DAG.getUNDEF(IntVT), One, VL);
6293         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6294                           ZeroSplat, VL);
6295       } else if (DstEltSize > (2 * SrcEltSize)) {
6296         // Widen before converting.
6297         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6298                                      DstVT.getVectorElementCount());
6299         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6300       }
6301 
6302       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6303     } else {
6304       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6305              "Wrong input/output vector types");
6306 
6307       // Convert f16 to f32 then convert f32 to i64.
6308       if (DstEltSize > (2 * SrcEltSize)) {
6309         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6310         MVT InterimFVT =
6311             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6312         Src =
6313             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6314       }
6315 
6316       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6317     }
6318   } else { // Narrowing + Conversion
6319     if (SrcVT.isInteger()) {
6320       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6321       // First do a narrowing convert to an FP type half the size, then round
6322       // the FP type to a small FP type if needed.
6323 
6324       MVT InterimFVT = DstVT;
6325       if (SrcEltSize > (2 * DstEltSize)) {
6326         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6327         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6328         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6329       }
6330 
6331       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6332 
6333       if (InterimFVT != DstVT) {
6334         Src = Result;
6335         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6336       }
6337     } else {
6338       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6339              "Wrong input/output vector types");
6340       // First do a narrowing conversion to an integer half the size, then
6341       // truncate if needed.
6342 
6343       if (DstEltSize == 1) {
6344         // First convert to the same size integer, then convert to mask using
6345         // setcc.
6346         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6347         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6348                                           DstVT.getVectorElementCount());
6349         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6350 
6351         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6352         // otherwise the conversion was undefined.
6353         MVT XLenVT = Subtarget.getXLenVT();
6354         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6355         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6356                                 DAG.getUNDEF(InterimIVT), SplatZero);
6357         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6358                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6359       } else {
6360         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6361                                           DstVT.getVectorElementCount());
6362 
6363         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6364 
6365         while (InterimIVT != DstVT) {
6366           SrcEltSize /= 2;
6367           Src = Result;
6368           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6369                                         DstVT.getVectorElementCount());
6370           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6371                                Src, Mask, VL);
6372         }
6373       }
6374     }
6375   }
6376 
6377   MVT VT = Op.getSimpleValueType();
6378   if (!VT.isFixedLengthVector())
6379     return Result;
6380   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6381 }
6382 
6383 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6384                                             unsigned MaskOpc,
6385                                             unsigned VecOpc) const {
6386   MVT VT = Op.getSimpleValueType();
6387   if (VT.getVectorElementType() != MVT::i1)
6388     return lowerVPOp(Op, DAG, VecOpc);
6389 
6390   // It is safe to drop mask parameter as masked-off elements are undef.
6391   SDValue Op1 = Op->getOperand(0);
6392   SDValue Op2 = Op->getOperand(1);
6393   SDValue VL = Op->getOperand(3);
6394 
6395   MVT ContainerVT = VT;
6396   const bool IsFixed = VT.isFixedLengthVector();
6397   if (IsFixed) {
6398     ContainerVT = getContainerForFixedLengthVector(VT);
6399     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6400     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6401   }
6402 
6403   SDLoc DL(Op);
6404   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6405   if (!IsFixed)
6406     return Val;
6407   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6408 }
6409 
6410 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6411 // matched to a RVV indexed load. The RVV indexed load instructions only
6412 // support the "unsigned unscaled" addressing mode; indices are implicitly
6413 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6414 // signed or scaled indexing is extended to the XLEN value type and scaled
6415 // accordingly.
6416 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6417                                                SelectionDAG &DAG) const {
6418   SDLoc DL(Op);
6419   MVT VT = Op.getSimpleValueType();
6420 
6421   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6422   EVT MemVT = MemSD->getMemoryVT();
6423   MachineMemOperand *MMO = MemSD->getMemOperand();
6424   SDValue Chain = MemSD->getChain();
6425   SDValue BasePtr = MemSD->getBasePtr();
6426 
6427   ISD::LoadExtType LoadExtType;
6428   SDValue Index, Mask, PassThru, VL;
6429 
6430   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6431     Index = VPGN->getIndex();
6432     Mask = VPGN->getMask();
6433     PassThru = DAG.getUNDEF(VT);
6434     VL = VPGN->getVectorLength();
6435     // VP doesn't support extending loads.
6436     LoadExtType = ISD::NON_EXTLOAD;
6437   } else {
6438     // Else it must be a MGATHER.
6439     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6440     Index = MGN->getIndex();
6441     Mask = MGN->getMask();
6442     PassThru = MGN->getPassThru();
6443     LoadExtType = MGN->getExtensionType();
6444   }
6445 
6446   MVT IndexVT = Index.getSimpleValueType();
6447   MVT XLenVT = Subtarget.getXLenVT();
6448 
6449   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6450          "Unexpected VTs!");
6451   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6452   // Targets have to explicitly opt-in for extending vector loads.
6453   assert(LoadExtType == ISD::NON_EXTLOAD &&
6454          "Unexpected extending MGATHER/VP_GATHER");
6455   (void)LoadExtType;
6456 
6457   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6458   // the selection of the masked intrinsics doesn't do this for us.
6459   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6460 
6461   MVT ContainerVT = VT;
6462   if (VT.isFixedLengthVector()) {
6463     // We need to use the larger of the result and index type to determine the
6464     // scalable type to use so we don't increase LMUL for any operand/result.
6465     if (VT.bitsGE(IndexVT)) {
6466       ContainerVT = getContainerForFixedLengthVector(VT);
6467       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6468                                  ContainerVT.getVectorElementCount());
6469     } else {
6470       IndexVT = getContainerForFixedLengthVector(IndexVT);
6471       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6472                                      IndexVT.getVectorElementCount());
6473     }
6474 
6475     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6476 
6477     if (!IsUnmasked) {
6478       MVT MaskVT =
6479           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6480       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6481       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6482     }
6483   }
6484 
6485   if (!VL)
6486     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6487 
6488   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6489     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6490     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6491                                    VL);
6492     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6493                         TrueMask, VL);
6494   }
6495 
6496   unsigned IntID =
6497       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6498   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6499   if (IsUnmasked)
6500     Ops.push_back(DAG.getUNDEF(ContainerVT));
6501   else
6502     Ops.push_back(PassThru);
6503   Ops.push_back(BasePtr);
6504   Ops.push_back(Index);
6505   if (!IsUnmasked)
6506     Ops.push_back(Mask);
6507   Ops.push_back(VL);
6508   if (!IsUnmasked)
6509     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6510 
6511   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6512   SDValue Result =
6513       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6514   Chain = Result.getValue(1);
6515 
6516   if (VT.isFixedLengthVector())
6517     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6518 
6519   return DAG.getMergeValues({Result, Chain}, DL);
6520 }
6521 
6522 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6523 // matched to a RVV indexed store. The RVV indexed store instructions only
6524 // support the "unsigned unscaled" addressing mode; indices are implicitly
6525 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6526 // signed or scaled indexing is extended to the XLEN value type and scaled
6527 // accordingly.
6528 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6529                                                 SelectionDAG &DAG) const {
6530   SDLoc DL(Op);
6531   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6532   EVT MemVT = MemSD->getMemoryVT();
6533   MachineMemOperand *MMO = MemSD->getMemOperand();
6534   SDValue Chain = MemSD->getChain();
6535   SDValue BasePtr = MemSD->getBasePtr();
6536 
6537   bool IsTruncatingStore = false;
6538   SDValue Index, Mask, Val, VL;
6539 
6540   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6541     Index = VPSN->getIndex();
6542     Mask = VPSN->getMask();
6543     Val = VPSN->getValue();
6544     VL = VPSN->getVectorLength();
6545     // VP doesn't support truncating stores.
6546     IsTruncatingStore = false;
6547   } else {
6548     // Else it must be a MSCATTER.
6549     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6550     Index = MSN->getIndex();
6551     Mask = MSN->getMask();
6552     Val = MSN->getValue();
6553     IsTruncatingStore = MSN->isTruncatingStore();
6554   }
6555 
6556   MVT VT = Val.getSimpleValueType();
6557   MVT IndexVT = Index.getSimpleValueType();
6558   MVT XLenVT = Subtarget.getXLenVT();
6559 
6560   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6561          "Unexpected VTs!");
6562   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6563   // Targets have to explicitly opt-in for extending vector loads and
6564   // truncating vector stores.
6565   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6566   (void)IsTruncatingStore;
6567 
6568   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6569   // the selection of the masked intrinsics doesn't do this for us.
6570   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6571 
6572   MVT ContainerVT = VT;
6573   if (VT.isFixedLengthVector()) {
6574     // We need to use the larger of the value and index type to determine the
6575     // scalable type to use so we don't increase LMUL for any operand/result.
6576     if (VT.bitsGE(IndexVT)) {
6577       ContainerVT = getContainerForFixedLengthVector(VT);
6578       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6579                                  ContainerVT.getVectorElementCount());
6580     } else {
6581       IndexVT = getContainerForFixedLengthVector(IndexVT);
6582       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6583                                      IndexVT.getVectorElementCount());
6584     }
6585 
6586     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6587     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6588 
6589     if (!IsUnmasked) {
6590       MVT MaskVT =
6591           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6592       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6593     }
6594   }
6595 
6596   if (!VL)
6597     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6598 
6599   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6600     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6601     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6602                                    VL);
6603     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6604                         TrueMask, VL);
6605   }
6606 
6607   unsigned IntID =
6608       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6609   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6610   Ops.push_back(Val);
6611   Ops.push_back(BasePtr);
6612   Ops.push_back(Index);
6613   if (!IsUnmasked)
6614     Ops.push_back(Mask);
6615   Ops.push_back(VL);
6616 
6617   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6618                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6619 }
6620 
6621 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6622                                                SelectionDAG &DAG) const {
6623   const MVT XLenVT = Subtarget.getXLenVT();
6624   SDLoc DL(Op);
6625   SDValue Chain = Op->getOperand(0);
6626   SDValue SysRegNo = DAG.getTargetConstant(
6627       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6628   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6629   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6630 
6631   // Encoding used for rounding mode in RISCV differs from that used in
6632   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6633   // table, which consists of a sequence of 4-bit fields, each representing
6634   // corresponding FLT_ROUNDS mode.
6635   static const int Table =
6636       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6637       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6638       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6639       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6640       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6641 
6642   SDValue Shift =
6643       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6644   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6645                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6646   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6647                                DAG.getConstant(7, DL, XLenVT));
6648 
6649   return DAG.getMergeValues({Masked, Chain}, DL);
6650 }
6651 
6652 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6653                                                SelectionDAG &DAG) const {
6654   const MVT XLenVT = Subtarget.getXLenVT();
6655   SDLoc DL(Op);
6656   SDValue Chain = Op->getOperand(0);
6657   SDValue RMValue = Op->getOperand(1);
6658   SDValue SysRegNo = DAG.getTargetConstant(
6659       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6660 
6661   // Encoding used for rounding mode in RISCV differs from that used in
6662   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6663   // a table, which consists of a sequence of 4-bit fields, each representing
6664   // corresponding RISCV mode.
6665   static const unsigned Table =
6666       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6667       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6668       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6669       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6670       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6671 
6672   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6673                               DAG.getConstant(2, DL, XLenVT));
6674   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6675                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6676   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6677                         DAG.getConstant(0x7, DL, XLenVT));
6678   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6679                      RMValue);
6680 }
6681 
6682 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6683   switch (IntNo) {
6684   default:
6685     llvm_unreachable("Unexpected Intrinsic");
6686   case Intrinsic::riscv_bcompress:
6687     return RISCVISD::BCOMPRESSW;
6688   case Intrinsic::riscv_bdecompress:
6689     return RISCVISD::BDECOMPRESSW;
6690   case Intrinsic::riscv_bfp:
6691     return RISCVISD::BFPW;
6692   case Intrinsic::riscv_fsl:
6693     return RISCVISD::FSLW;
6694   case Intrinsic::riscv_fsr:
6695     return RISCVISD::FSRW;
6696   }
6697 }
6698 
6699 // Converts the given intrinsic to a i64 operation with any extension.
6700 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6701                                          unsigned IntNo) {
6702   SDLoc DL(N);
6703   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6704   // Deal with the Instruction Operands
6705   SmallVector<SDValue, 3> NewOps;
6706   for (SDValue Op : drop_begin(N->ops()))
6707     // Promote the operand to i64 type
6708     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6709   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6710   // ReplaceNodeResults requires we maintain the same type for the return value.
6711   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6712 }
6713 
6714 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6715 // form of the given Opcode.
6716 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6717   switch (Opcode) {
6718   default:
6719     llvm_unreachable("Unexpected opcode");
6720   case ISD::SHL:
6721     return RISCVISD::SLLW;
6722   case ISD::SRA:
6723     return RISCVISD::SRAW;
6724   case ISD::SRL:
6725     return RISCVISD::SRLW;
6726   case ISD::SDIV:
6727     return RISCVISD::DIVW;
6728   case ISD::UDIV:
6729     return RISCVISD::DIVUW;
6730   case ISD::UREM:
6731     return RISCVISD::REMUW;
6732   case ISD::ROTL:
6733     return RISCVISD::ROLW;
6734   case ISD::ROTR:
6735     return RISCVISD::RORW;
6736   }
6737 }
6738 
6739 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6740 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6741 // otherwise be promoted to i64, making it difficult to select the
6742 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6743 // type i8/i16/i32 is lost.
6744 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6745                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6746   SDLoc DL(N);
6747   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6748   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6749   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6750   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6751   // ReplaceNodeResults requires we maintain the same type for the return value.
6752   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6753 }
6754 
6755 // Converts the given 32-bit operation to a i64 operation with signed extension
6756 // semantic to reduce the signed extension instructions.
6757 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6758   SDLoc DL(N);
6759   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6760   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6761   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6762   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6763                                DAG.getValueType(MVT::i32));
6764   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6765 }
6766 
6767 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6768                                              SmallVectorImpl<SDValue> &Results,
6769                                              SelectionDAG &DAG) const {
6770   SDLoc DL(N);
6771   switch (N->getOpcode()) {
6772   default:
6773     llvm_unreachable("Don't know how to custom type legalize this operation!");
6774   case ISD::STRICT_FP_TO_SINT:
6775   case ISD::STRICT_FP_TO_UINT:
6776   case ISD::FP_TO_SINT:
6777   case ISD::FP_TO_UINT: {
6778     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6779            "Unexpected custom legalisation");
6780     bool IsStrict = N->isStrictFPOpcode();
6781     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6782                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6783     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6784     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6785         TargetLowering::TypeSoftenFloat) {
6786       if (!isTypeLegal(Op0.getValueType()))
6787         return;
6788       if (IsStrict) {
6789         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6790                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6791         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6792         SDValue Res = DAG.getNode(
6793             Opc, DL, VTs, N->getOperand(0), Op0,
6794             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6795         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6796         Results.push_back(Res.getValue(1));
6797         return;
6798       }
6799       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6800       SDValue Res =
6801           DAG.getNode(Opc, DL, MVT::i64, Op0,
6802                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6803       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6804       return;
6805     }
6806     // If the FP type needs to be softened, emit a library call using the 'si'
6807     // version. If we left it to default legalization we'd end up with 'di'. If
6808     // the FP type doesn't need to be softened just let generic type
6809     // legalization promote the result type.
6810     RTLIB::Libcall LC;
6811     if (IsSigned)
6812       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6813     else
6814       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6815     MakeLibCallOptions CallOptions;
6816     EVT OpVT = Op0.getValueType();
6817     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6818     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6819     SDValue Result;
6820     std::tie(Result, Chain) =
6821         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6822     Results.push_back(Result);
6823     if (IsStrict)
6824       Results.push_back(Chain);
6825     break;
6826   }
6827   case ISD::READCYCLECOUNTER: {
6828     assert(!Subtarget.is64Bit() &&
6829            "READCYCLECOUNTER only has custom type legalization on riscv32");
6830 
6831     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6832     SDValue RCW =
6833         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6834 
6835     Results.push_back(
6836         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6837     Results.push_back(RCW.getValue(2));
6838     break;
6839   }
6840   case ISD::MUL: {
6841     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6842     unsigned XLen = Subtarget.getXLen();
6843     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6844     if (Size > XLen) {
6845       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6846       SDValue LHS = N->getOperand(0);
6847       SDValue RHS = N->getOperand(1);
6848       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6849 
6850       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6851       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6852       // We need exactly one side to be unsigned.
6853       if (LHSIsU == RHSIsU)
6854         return;
6855 
6856       auto MakeMULPair = [&](SDValue S, SDValue U) {
6857         MVT XLenVT = Subtarget.getXLenVT();
6858         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6859         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6860         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6861         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6862         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6863       };
6864 
6865       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6866       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6867 
6868       // The other operand should be signed, but still prefer MULH when
6869       // possible.
6870       if (RHSIsU && LHSIsS && !RHSIsS)
6871         Results.push_back(MakeMULPair(LHS, RHS));
6872       else if (LHSIsU && RHSIsS && !LHSIsS)
6873         Results.push_back(MakeMULPair(RHS, LHS));
6874 
6875       return;
6876     }
6877     LLVM_FALLTHROUGH;
6878   }
6879   case ISD::ADD:
6880   case ISD::SUB:
6881     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6882            "Unexpected custom legalisation");
6883     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6884     break;
6885   case ISD::SHL:
6886   case ISD::SRA:
6887   case ISD::SRL:
6888     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6889            "Unexpected custom legalisation");
6890     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6891       Results.push_back(customLegalizeToWOp(N, DAG));
6892       break;
6893     }
6894 
6895     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6896     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6897     // shift amount.
6898     if (N->getOpcode() == ISD::SHL) {
6899       SDLoc DL(N);
6900       SDValue NewOp0 =
6901           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6902       SDValue NewOp1 =
6903           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6904       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6905       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6906                                    DAG.getValueType(MVT::i32));
6907       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6908     }
6909 
6910     break;
6911   case ISD::ROTL:
6912   case ISD::ROTR:
6913     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6914            "Unexpected custom legalisation");
6915     Results.push_back(customLegalizeToWOp(N, DAG));
6916     break;
6917   case ISD::CTTZ:
6918   case ISD::CTTZ_ZERO_UNDEF:
6919   case ISD::CTLZ:
6920   case ISD::CTLZ_ZERO_UNDEF: {
6921     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6922            "Unexpected custom legalisation");
6923 
6924     SDValue NewOp0 =
6925         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6926     bool IsCTZ =
6927         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6928     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6929     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6930     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6931     return;
6932   }
6933   case ISD::SDIV:
6934   case ISD::UDIV:
6935   case ISD::UREM: {
6936     MVT VT = N->getSimpleValueType(0);
6937     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6938            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6939            "Unexpected custom legalisation");
6940     // Don't promote division/remainder by constant since we should expand those
6941     // to multiply by magic constant.
6942     // FIXME: What if the expansion is disabled for minsize.
6943     if (N->getOperand(1).getOpcode() == ISD::Constant)
6944       return;
6945 
6946     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6947     // the upper 32 bits. For other types we need to sign or zero extend
6948     // based on the opcode.
6949     unsigned ExtOpc = ISD::ANY_EXTEND;
6950     if (VT != MVT::i32)
6951       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6952                                            : ISD::ZERO_EXTEND;
6953 
6954     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6955     break;
6956   }
6957   case ISD::UADDO:
6958   case ISD::USUBO: {
6959     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6960            "Unexpected custom legalisation");
6961     bool IsAdd = N->getOpcode() == ISD::UADDO;
6962     // Create an ADDW or SUBW.
6963     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6964     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6965     SDValue Res =
6966         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6967     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6968                       DAG.getValueType(MVT::i32));
6969 
6970     SDValue Overflow;
6971     if (IsAdd && isOneConstant(RHS)) {
6972       // Special case uaddo X, 1 overflowed if the addition result is 0.
6973       // FIXME: We can do this for any constant RHS by using (X + C) < C.
6974       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6975                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6976     } else {
6977       // Sign extend the LHS and perform an unsigned compare with the ADDW
6978       // result. Since the inputs are sign extended from i32, this is equivalent
6979       // to comparing the lower 32 bits.
6980       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6981       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6982                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6983     }
6984 
6985     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6986     Results.push_back(Overflow);
6987     return;
6988   }
6989   case ISD::UADDSAT:
6990   case ISD::USUBSAT: {
6991     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6992            "Unexpected custom legalisation");
6993     if (Subtarget.hasStdExtZbb()) {
6994       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6995       // sign extend allows overflow of the lower 32 bits to be detected on
6996       // the promoted size.
6997       SDValue LHS =
6998           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6999       SDValue RHS =
7000           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7001       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7002       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7003       return;
7004     }
7005 
7006     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7007     // promotion for UADDO/USUBO.
7008     Results.push_back(expandAddSubSat(N, DAG));
7009     return;
7010   }
7011   case ISD::ABS: {
7012     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7013            "Unexpected custom legalisation");
7014           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7015 
7016     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7017 
7018     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7019 
7020     // Freeze the source so we can increase it's use count.
7021     Src = DAG.getFreeze(Src);
7022 
7023     // Copy sign bit to all bits using the sraiw pattern.
7024     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7025                                    DAG.getValueType(MVT::i32));
7026     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7027                            DAG.getConstant(31, DL, MVT::i64));
7028 
7029     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7030     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7031 
7032     // NOTE: The result is only required to be anyextended, but sext is
7033     // consistent with type legalization of sub.
7034     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7035                          DAG.getValueType(MVT::i32));
7036     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7037     return;
7038   }
7039   case ISD::BITCAST: {
7040     EVT VT = N->getValueType(0);
7041     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7042     SDValue Op0 = N->getOperand(0);
7043     EVT Op0VT = Op0.getValueType();
7044     MVT XLenVT = Subtarget.getXLenVT();
7045     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7046       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7047       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7048     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7049                Subtarget.hasStdExtF()) {
7050       SDValue FPConv =
7051           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7052       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7053     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7054                isTypeLegal(Op0VT)) {
7055       // Custom-legalize bitcasts from fixed-length vector types to illegal
7056       // scalar types in order to improve codegen. Bitcast the vector to a
7057       // one-element vector type whose element type is the same as the result
7058       // type, and extract the first element.
7059       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7060       if (isTypeLegal(BVT)) {
7061         SDValue BVec = DAG.getBitcast(BVT, Op0);
7062         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7063                                       DAG.getConstant(0, DL, XLenVT)));
7064       }
7065     }
7066     break;
7067   }
7068   case RISCVISD::GREV:
7069   case RISCVISD::GORC:
7070   case RISCVISD::SHFL: {
7071     MVT VT = N->getSimpleValueType(0);
7072     MVT XLenVT = Subtarget.getXLenVT();
7073     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7074            "Unexpected custom legalisation");
7075     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7076     assert((Subtarget.hasStdExtZbp() ||
7077             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7078              N->getConstantOperandVal(1) == 7)) &&
7079            "Unexpected extension");
7080     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7081     SDValue NewOp1 =
7082         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7083     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7084     // ReplaceNodeResults requires we maintain the same type for the return
7085     // value.
7086     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7087     break;
7088   }
7089   case ISD::BSWAP:
7090   case ISD::BITREVERSE: {
7091     MVT VT = N->getSimpleValueType(0);
7092     MVT XLenVT = Subtarget.getXLenVT();
7093     assert((VT == MVT::i8 || VT == MVT::i16 ||
7094             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7095            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7096     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7097     unsigned Imm = VT.getSizeInBits() - 1;
7098     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7099     if (N->getOpcode() == ISD::BSWAP)
7100       Imm &= ~0x7U;
7101     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7102                                 DAG.getConstant(Imm, DL, XLenVT));
7103     // ReplaceNodeResults requires we maintain the same type for the return
7104     // value.
7105     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7106     break;
7107   }
7108   case ISD::FSHL:
7109   case ISD::FSHR: {
7110     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7111            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7112     SDValue NewOp0 =
7113         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7114     SDValue NewOp1 =
7115         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7116     SDValue NewShAmt =
7117         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7118     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7119     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7120     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7121                            DAG.getConstant(0x1f, DL, MVT::i64));
7122     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7123     // instruction use different orders. fshl will return its first operand for
7124     // shift of zero, fshr will return its second operand. fsl and fsr both
7125     // return rs1 so the ISD nodes need to have different operand orders.
7126     // Shift amount is in rs2.
7127     unsigned Opc = RISCVISD::FSLW;
7128     if (N->getOpcode() == ISD::FSHR) {
7129       std::swap(NewOp0, NewOp1);
7130       Opc = RISCVISD::FSRW;
7131     }
7132     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7133     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7134     break;
7135   }
7136   case ISD::EXTRACT_VECTOR_ELT: {
7137     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7138     // type is illegal (currently only vXi64 RV32).
7139     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7140     // transferred to the destination register. We issue two of these from the
7141     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7142     // first element.
7143     SDValue Vec = N->getOperand(0);
7144     SDValue Idx = N->getOperand(1);
7145 
7146     // The vector type hasn't been legalized yet so we can't issue target
7147     // specific nodes if it needs legalization.
7148     // FIXME: We would manually legalize if it's important.
7149     if (!isTypeLegal(Vec.getValueType()))
7150       return;
7151 
7152     MVT VecVT = Vec.getSimpleValueType();
7153 
7154     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7155            VecVT.getVectorElementType() == MVT::i64 &&
7156            "Unexpected EXTRACT_VECTOR_ELT legalization");
7157 
7158     // If this is a fixed vector, we need to convert it to a scalable vector.
7159     MVT ContainerVT = VecVT;
7160     if (VecVT.isFixedLengthVector()) {
7161       ContainerVT = getContainerForFixedLengthVector(VecVT);
7162       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7163     }
7164 
7165     MVT XLenVT = Subtarget.getXLenVT();
7166 
7167     // Use a VL of 1 to avoid processing more elements than we need.
7168     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
7169     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7170     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7171 
7172     // Unless the index is known to be 0, we must slide the vector down to get
7173     // the desired element into index 0.
7174     if (!isNullConstant(Idx)) {
7175       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7176                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7177     }
7178 
7179     // Extract the lower XLEN bits of the correct vector element.
7180     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7181 
7182     // To extract the upper XLEN bits of the vector element, shift the first
7183     // element right by 32 bits and re-extract the lower XLEN bits.
7184     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7185                                      DAG.getUNDEF(ContainerVT),
7186                                      DAG.getConstant(32, DL, XLenVT), VL);
7187     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7188                                  ThirtyTwoV, Mask, VL);
7189 
7190     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7191 
7192     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7193     break;
7194   }
7195   case ISD::INTRINSIC_WO_CHAIN: {
7196     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7197     switch (IntNo) {
7198     default:
7199       llvm_unreachable(
7200           "Don't know how to custom type legalize this intrinsic!");
7201     case Intrinsic::riscv_grev:
7202     case Intrinsic::riscv_gorc: {
7203       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7204              "Unexpected custom legalisation");
7205       SDValue NewOp1 =
7206           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7207       SDValue NewOp2 =
7208           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7209       unsigned Opc =
7210           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7211       // If the control is a constant, promote the node by clearing any extra
7212       // bits bits in the control. isel will form greviw/gorciw if the result is
7213       // sign extended.
7214       if (isa<ConstantSDNode>(NewOp2)) {
7215         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7216                              DAG.getConstant(0x1f, DL, MVT::i64));
7217         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7218       }
7219       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7220       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7221       break;
7222     }
7223     case Intrinsic::riscv_bcompress:
7224     case Intrinsic::riscv_bdecompress:
7225     case Intrinsic::riscv_bfp:
7226     case Intrinsic::riscv_fsl:
7227     case Intrinsic::riscv_fsr: {
7228       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7229              "Unexpected custom legalisation");
7230       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7231       break;
7232     }
7233     case Intrinsic::riscv_orc_b: {
7234       // Lower to the GORCI encoding for orc.b with the operand extended.
7235       SDValue NewOp =
7236           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7237       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7238                                 DAG.getConstant(7, DL, MVT::i64));
7239       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7240       return;
7241     }
7242     case Intrinsic::riscv_shfl:
7243     case Intrinsic::riscv_unshfl: {
7244       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7245              "Unexpected custom legalisation");
7246       SDValue NewOp1 =
7247           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7248       SDValue NewOp2 =
7249           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7250       unsigned Opc =
7251           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7252       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7253       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7254       // will be shuffled the same way as the lower 32 bit half, but the two
7255       // halves won't cross.
7256       if (isa<ConstantSDNode>(NewOp2)) {
7257         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7258                              DAG.getConstant(0xf, DL, MVT::i64));
7259         Opc =
7260             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7261       }
7262       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7263       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7264       break;
7265     }
7266     case Intrinsic::riscv_vmv_x_s: {
7267       EVT VT = N->getValueType(0);
7268       MVT XLenVT = Subtarget.getXLenVT();
7269       if (VT.bitsLT(XLenVT)) {
7270         // Simple case just extract using vmv.x.s and truncate.
7271         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7272                                       Subtarget.getXLenVT(), N->getOperand(1));
7273         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7274         return;
7275       }
7276 
7277       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7278              "Unexpected custom legalization");
7279 
7280       // We need to do the move in two steps.
7281       SDValue Vec = N->getOperand(1);
7282       MVT VecVT = Vec.getSimpleValueType();
7283 
7284       // First extract the lower XLEN bits of the element.
7285       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7286 
7287       // To extract the upper XLEN bits of the vector element, shift the first
7288       // element right by 32 bits and re-extract the lower XLEN bits.
7289       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7290       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7291       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7292       SDValue ThirtyTwoV =
7293           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7294                       DAG.getConstant(32, DL, XLenVT), VL);
7295       SDValue LShr32 =
7296           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7297       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7298 
7299       Results.push_back(
7300           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7301       break;
7302     }
7303     }
7304     break;
7305   }
7306   case ISD::VECREDUCE_ADD:
7307   case ISD::VECREDUCE_AND:
7308   case ISD::VECREDUCE_OR:
7309   case ISD::VECREDUCE_XOR:
7310   case ISD::VECREDUCE_SMAX:
7311   case ISD::VECREDUCE_UMAX:
7312   case ISD::VECREDUCE_SMIN:
7313   case ISD::VECREDUCE_UMIN:
7314     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7315       Results.push_back(V);
7316     break;
7317   case ISD::VP_REDUCE_ADD:
7318   case ISD::VP_REDUCE_AND:
7319   case ISD::VP_REDUCE_OR:
7320   case ISD::VP_REDUCE_XOR:
7321   case ISD::VP_REDUCE_SMAX:
7322   case ISD::VP_REDUCE_UMAX:
7323   case ISD::VP_REDUCE_SMIN:
7324   case ISD::VP_REDUCE_UMIN:
7325     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7326       Results.push_back(V);
7327     break;
7328   case ISD::FLT_ROUNDS_: {
7329     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7330     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7331     Results.push_back(Res.getValue(0));
7332     Results.push_back(Res.getValue(1));
7333     break;
7334   }
7335   }
7336 }
7337 
7338 // A structure to hold one of the bit-manipulation patterns below. Together, a
7339 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7340 //   (or (and (shl x, 1), 0xAAAAAAAA),
7341 //       (and (srl x, 1), 0x55555555))
7342 struct RISCVBitmanipPat {
7343   SDValue Op;
7344   unsigned ShAmt;
7345   bool IsSHL;
7346 
7347   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7348     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7349   }
7350 };
7351 
7352 // Matches patterns of the form
7353 //   (and (shl x, C2), (C1 << C2))
7354 //   (and (srl x, C2), C1)
7355 //   (shl (and x, C1), C2)
7356 //   (srl (and x, (C1 << C2)), C2)
7357 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7358 // The expected masks for each shift amount are specified in BitmanipMasks where
7359 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7360 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7361 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7362 // XLen is 64.
7363 static Optional<RISCVBitmanipPat>
7364 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7365   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7366          "Unexpected number of masks");
7367   Optional<uint64_t> Mask;
7368   // Optionally consume a mask around the shift operation.
7369   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7370     Mask = Op.getConstantOperandVal(1);
7371     Op = Op.getOperand(0);
7372   }
7373   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7374     return None;
7375   bool IsSHL = Op.getOpcode() == ISD::SHL;
7376 
7377   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7378     return None;
7379   uint64_t ShAmt = Op.getConstantOperandVal(1);
7380 
7381   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7382   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7383     return None;
7384   // If we don't have enough masks for 64 bit, then we must be trying to
7385   // match SHFL so we're only allowed to shift 1/4 of the width.
7386   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7387     return None;
7388 
7389   SDValue Src = Op.getOperand(0);
7390 
7391   // The expected mask is shifted left when the AND is found around SHL
7392   // patterns.
7393   //   ((x >> 1) & 0x55555555)
7394   //   ((x << 1) & 0xAAAAAAAA)
7395   bool SHLExpMask = IsSHL;
7396 
7397   if (!Mask) {
7398     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7399     // the mask is all ones: consume that now.
7400     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7401       Mask = Src.getConstantOperandVal(1);
7402       Src = Src.getOperand(0);
7403       // The expected mask is now in fact shifted left for SRL, so reverse the
7404       // decision.
7405       //   ((x & 0xAAAAAAAA) >> 1)
7406       //   ((x & 0x55555555) << 1)
7407       SHLExpMask = !SHLExpMask;
7408     } else {
7409       // Use a default shifted mask of all-ones if there's no AND, truncated
7410       // down to the expected width. This simplifies the logic later on.
7411       Mask = maskTrailingOnes<uint64_t>(Width);
7412       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7413     }
7414   }
7415 
7416   unsigned MaskIdx = Log2_32(ShAmt);
7417   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7418 
7419   if (SHLExpMask)
7420     ExpMask <<= ShAmt;
7421 
7422   if (Mask != ExpMask)
7423     return None;
7424 
7425   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7426 }
7427 
7428 // Matches any of the following bit-manipulation patterns:
7429 //   (and (shl x, 1), (0x55555555 << 1))
7430 //   (and (srl x, 1), 0x55555555)
7431 //   (shl (and x, 0x55555555), 1)
7432 //   (srl (and x, (0x55555555 << 1)), 1)
7433 // where the shift amount and mask may vary thus:
7434 //   [1]  = 0x55555555 / 0xAAAAAAAA
7435 //   [2]  = 0x33333333 / 0xCCCCCCCC
7436 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7437 //   [8]  = 0x00FF00FF / 0xFF00FF00
7438 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7439 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7440 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7441   // These are the unshifted masks which we use to match bit-manipulation
7442   // patterns. They may be shifted left in certain circumstances.
7443   static const uint64_t BitmanipMasks[] = {
7444       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7445       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7446 
7447   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7448 }
7449 
7450 // Match the following pattern as a GREVI(W) operation
7451 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7452 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7453                                const RISCVSubtarget &Subtarget) {
7454   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7455   EVT VT = Op.getValueType();
7456 
7457   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7458     auto LHS = matchGREVIPat(Op.getOperand(0));
7459     auto RHS = matchGREVIPat(Op.getOperand(1));
7460     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7461       SDLoc DL(Op);
7462       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7463                          DAG.getConstant(LHS->ShAmt, DL, VT));
7464     }
7465   }
7466   return SDValue();
7467 }
7468 
7469 // Matches any the following pattern as a GORCI(W) operation
7470 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7471 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7472 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7473 // Note that with the variant of 3.,
7474 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7475 // the inner pattern will first be matched as GREVI and then the outer
7476 // pattern will be matched to GORC via the first rule above.
7477 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7478 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7479                                const RISCVSubtarget &Subtarget) {
7480   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7481   EVT VT = Op.getValueType();
7482 
7483   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7484     SDLoc DL(Op);
7485     SDValue Op0 = Op.getOperand(0);
7486     SDValue Op1 = Op.getOperand(1);
7487 
7488     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7489       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7490           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7491           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7492         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7493       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7494       if ((Reverse.getOpcode() == ISD::ROTL ||
7495            Reverse.getOpcode() == ISD::ROTR) &&
7496           Reverse.getOperand(0) == X &&
7497           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7498         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7499         if (RotAmt == (VT.getSizeInBits() / 2))
7500           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7501                              DAG.getConstant(RotAmt, DL, VT));
7502       }
7503       return SDValue();
7504     };
7505 
7506     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7507     if (SDValue V = MatchOROfReverse(Op0, Op1))
7508       return V;
7509     if (SDValue V = MatchOROfReverse(Op1, Op0))
7510       return V;
7511 
7512     // OR is commutable so canonicalize its OR operand to the left
7513     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7514       std::swap(Op0, Op1);
7515     if (Op0.getOpcode() != ISD::OR)
7516       return SDValue();
7517     SDValue OrOp0 = Op0.getOperand(0);
7518     SDValue OrOp1 = Op0.getOperand(1);
7519     auto LHS = matchGREVIPat(OrOp0);
7520     // OR is commutable so swap the operands and try again: x might have been
7521     // on the left
7522     if (!LHS) {
7523       std::swap(OrOp0, OrOp1);
7524       LHS = matchGREVIPat(OrOp0);
7525     }
7526     auto RHS = matchGREVIPat(Op1);
7527     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7528       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7529                          DAG.getConstant(LHS->ShAmt, DL, VT));
7530     }
7531   }
7532   return SDValue();
7533 }
7534 
7535 // Matches any of the following bit-manipulation patterns:
7536 //   (and (shl x, 1), (0x22222222 << 1))
7537 //   (and (srl x, 1), 0x22222222)
7538 //   (shl (and x, 0x22222222), 1)
7539 //   (srl (and x, (0x22222222 << 1)), 1)
7540 // where the shift amount and mask may vary thus:
7541 //   [1]  = 0x22222222 / 0x44444444
7542 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7543 //   [4]  = 0x00F000F0 / 0x0F000F00
7544 //   [8]  = 0x0000FF00 / 0x00FF0000
7545 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7546 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7547   // These are the unshifted masks which we use to match bit-manipulation
7548   // patterns. They may be shifted left in certain circumstances.
7549   static const uint64_t BitmanipMasks[] = {
7550       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7551       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7552 
7553   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7554 }
7555 
7556 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7557 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7558                                const RISCVSubtarget &Subtarget) {
7559   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7560   EVT VT = Op.getValueType();
7561 
7562   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7563     return SDValue();
7564 
7565   SDValue Op0 = Op.getOperand(0);
7566   SDValue Op1 = Op.getOperand(1);
7567 
7568   // Or is commutable so canonicalize the second OR to the LHS.
7569   if (Op0.getOpcode() != ISD::OR)
7570     std::swap(Op0, Op1);
7571   if (Op0.getOpcode() != ISD::OR)
7572     return SDValue();
7573 
7574   // We found an inner OR, so our operands are the operands of the inner OR
7575   // and the other operand of the outer OR.
7576   SDValue A = Op0.getOperand(0);
7577   SDValue B = Op0.getOperand(1);
7578   SDValue C = Op1;
7579 
7580   auto Match1 = matchSHFLPat(A);
7581   auto Match2 = matchSHFLPat(B);
7582 
7583   // If neither matched, we failed.
7584   if (!Match1 && !Match2)
7585     return SDValue();
7586 
7587   // We had at least one match. if one failed, try the remaining C operand.
7588   if (!Match1) {
7589     std::swap(A, C);
7590     Match1 = matchSHFLPat(A);
7591     if (!Match1)
7592       return SDValue();
7593   } else if (!Match2) {
7594     std::swap(B, C);
7595     Match2 = matchSHFLPat(B);
7596     if (!Match2)
7597       return SDValue();
7598   }
7599   assert(Match1 && Match2);
7600 
7601   // Make sure our matches pair up.
7602   if (!Match1->formsPairWith(*Match2))
7603     return SDValue();
7604 
7605   // All the remains is to make sure C is an AND with the same input, that masks
7606   // out the bits that are being shuffled.
7607   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7608       C.getOperand(0) != Match1->Op)
7609     return SDValue();
7610 
7611   uint64_t Mask = C.getConstantOperandVal(1);
7612 
7613   static const uint64_t BitmanipMasks[] = {
7614       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7615       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7616   };
7617 
7618   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7619   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7620   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7621 
7622   if (Mask != ExpMask)
7623     return SDValue();
7624 
7625   SDLoc DL(Op);
7626   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7627                      DAG.getConstant(Match1->ShAmt, DL, VT));
7628 }
7629 
7630 // Optimize (add (shl x, c0), (shl y, c1)) ->
7631 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7632 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7633                                   const RISCVSubtarget &Subtarget) {
7634   // Perform this optimization only in the zba extension.
7635   if (!Subtarget.hasStdExtZba())
7636     return SDValue();
7637 
7638   // Skip for vector types and larger types.
7639   EVT VT = N->getValueType(0);
7640   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7641     return SDValue();
7642 
7643   // The two operand nodes must be SHL and have no other use.
7644   SDValue N0 = N->getOperand(0);
7645   SDValue N1 = N->getOperand(1);
7646   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7647       !N0->hasOneUse() || !N1->hasOneUse())
7648     return SDValue();
7649 
7650   // Check c0 and c1.
7651   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7652   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7653   if (!N0C || !N1C)
7654     return SDValue();
7655   int64_t C0 = N0C->getSExtValue();
7656   int64_t C1 = N1C->getSExtValue();
7657   if (C0 <= 0 || C1 <= 0)
7658     return SDValue();
7659 
7660   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7661   int64_t Bits = std::min(C0, C1);
7662   int64_t Diff = std::abs(C0 - C1);
7663   if (Diff != 1 && Diff != 2 && Diff != 3)
7664     return SDValue();
7665 
7666   // Build nodes.
7667   SDLoc DL(N);
7668   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7669   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7670   SDValue NA0 =
7671       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7672   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7673   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7674 }
7675 
7676 // Combine
7677 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7678 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7679 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7680 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7681 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7682 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7683 // The grev patterns represents BSWAP.
7684 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7685 // off the grev.
7686 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7687                                           const RISCVSubtarget &Subtarget) {
7688   bool IsWInstruction =
7689       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7690   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7691           IsWInstruction) &&
7692          "Unexpected opcode!");
7693   SDValue Src = N->getOperand(0);
7694   EVT VT = N->getValueType(0);
7695   SDLoc DL(N);
7696 
7697   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7698     return SDValue();
7699 
7700   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7701       !isa<ConstantSDNode>(Src.getOperand(1)))
7702     return SDValue();
7703 
7704   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7705   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7706 
7707   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7708   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7709   unsigned ShAmt1 = N->getConstantOperandVal(1);
7710   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7711   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7712     return SDValue();
7713 
7714   Src = Src.getOperand(0);
7715 
7716   // Toggle bit the MSB of the shift.
7717   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7718   if (CombinedShAmt == 0)
7719     return Src;
7720 
7721   SDValue Res = DAG.getNode(
7722       RISCVISD::GREV, DL, VT, Src,
7723       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7724   if (!IsWInstruction)
7725     return Res;
7726 
7727   // Sign extend the result to match the behavior of the rotate. This will be
7728   // selected to GREVIW in isel.
7729   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7730                      DAG.getValueType(MVT::i32));
7731 }
7732 
7733 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7734 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7735 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7736 // not undo itself, but they are redundant.
7737 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7738   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7739   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7740   SDValue Src = N->getOperand(0);
7741 
7742   if (Src.getOpcode() != N->getOpcode())
7743     return SDValue();
7744 
7745   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7746       !isa<ConstantSDNode>(Src.getOperand(1)))
7747     return SDValue();
7748 
7749   unsigned ShAmt1 = N->getConstantOperandVal(1);
7750   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7751   Src = Src.getOperand(0);
7752 
7753   unsigned CombinedShAmt;
7754   if (IsGORC)
7755     CombinedShAmt = ShAmt1 | ShAmt2;
7756   else
7757     CombinedShAmt = ShAmt1 ^ ShAmt2;
7758 
7759   if (CombinedShAmt == 0)
7760     return Src;
7761 
7762   SDLoc DL(N);
7763   return DAG.getNode(
7764       N->getOpcode(), DL, N->getValueType(0), Src,
7765       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7766 }
7767 
7768 // Combine a constant select operand into its use:
7769 //
7770 // (and (select cond, -1, c), x)
7771 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7772 // (or  (select cond, 0, c), x)
7773 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7774 // (xor (select cond, 0, c), x)
7775 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7776 // (add (select cond, 0, c), x)
7777 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7778 // (sub x, (select cond, 0, c))
7779 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7780 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7781                                    SelectionDAG &DAG, bool AllOnes) {
7782   EVT VT = N->getValueType(0);
7783 
7784   // Skip vectors.
7785   if (VT.isVector())
7786     return SDValue();
7787 
7788   if ((Slct.getOpcode() != ISD::SELECT &&
7789        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7790       !Slct.hasOneUse())
7791     return SDValue();
7792 
7793   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7794     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7795   };
7796 
7797   bool SwapSelectOps;
7798   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7799   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7800   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7801   SDValue NonConstantVal;
7802   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7803     SwapSelectOps = false;
7804     NonConstantVal = FalseVal;
7805   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7806     SwapSelectOps = true;
7807     NonConstantVal = TrueVal;
7808   } else
7809     return SDValue();
7810 
7811   // Slct is now know to be the desired identity constant when CC is true.
7812   TrueVal = OtherOp;
7813   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7814   // Unless SwapSelectOps says the condition should be false.
7815   if (SwapSelectOps)
7816     std::swap(TrueVal, FalseVal);
7817 
7818   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7819     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7820                        {Slct.getOperand(0), Slct.getOperand(1),
7821                         Slct.getOperand(2), TrueVal, FalseVal});
7822 
7823   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7824                      {Slct.getOperand(0), TrueVal, FalseVal});
7825 }
7826 
7827 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7828 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7829                                               bool AllOnes) {
7830   SDValue N0 = N->getOperand(0);
7831   SDValue N1 = N->getOperand(1);
7832   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7833     return Result;
7834   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7835     return Result;
7836   return SDValue();
7837 }
7838 
7839 // Transform (add (mul x, c0), c1) ->
7840 //           (add (mul (add x, c1/c0), c0), c1%c0).
7841 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7842 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7843 // to an infinite loop in DAGCombine if transformed.
7844 // Or transform (add (mul x, c0), c1) ->
7845 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7846 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7847 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7848 // lead to an infinite loop in DAGCombine if transformed.
7849 // Or transform (add (mul x, c0), c1) ->
7850 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7851 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7852 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7853 // lead to an infinite loop in DAGCombine if transformed.
7854 // Or transform (add (mul x, c0), c1) ->
7855 //              (mul (add x, c1/c0), c0).
7856 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7857 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7858                                      const RISCVSubtarget &Subtarget) {
7859   // Skip for vector types and larger types.
7860   EVT VT = N->getValueType(0);
7861   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7862     return SDValue();
7863   // The first operand node must be a MUL and has no other use.
7864   SDValue N0 = N->getOperand(0);
7865   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7866     return SDValue();
7867   // Check if c0 and c1 match above conditions.
7868   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7869   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7870   if (!N0C || !N1C)
7871     return SDValue();
7872   // If N0C has multiple uses it's possible one of the cases in
7873   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7874   // in an infinite loop.
7875   if (!N0C->hasOneUse())
7876     return SDValue();
7877   int64_t C0 = N0C->getSExtValue();
7878   int64_t C1 = N1C->getSExtValue();
7879   int64_t CA, CB;
7880   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7881     return SDValue();
7882   // Search for proper CA (non-zero) and CB that both are simm12.
7883   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7884       !isInt<12>(C0 * (C1 / C0))) {
7885     CA = C1 / C0;
7886     CB = C1 % C0;
7887   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7888              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7889     CA = C1 / C0 + 1;
7890     CB = C1 % C0 - C0;
7891   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7892              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7893     CA = C1 / C0 - 1;
7894     CB = C1 % C0 + C0;
7895   } else
7896     return SDValue();
7897   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7898   SDLoc DL(N);
7899   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7900                              DAG.getConstant(CA, DL, VT));
7901   SDValue New1 =
7902       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7903   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7904 }
7905 
7906 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7907                                  const RISCVSubtarget &Subtarget) {
7908   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7909     return V;
7910   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7911     return V;
7912   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7913   //      (select lhs, rhs, cc, x, (add x, y))
7914   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7915 }
7916 
7917 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7918   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7919   //      (select lhs, rhs, cc, x, (sub x, y))
7920   SDValue N0 = N->getOperand(0);
7921   SDValue N1 = N->getOperand(1);
7922   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7923 }
7924 
7925 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7926   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7927   //      (select lhs, rhs, cc, x, (and x, y))
7928   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7929 }
7930 
7931 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7932                                 const RISCVSubtarget &Subtarget) {
7933   if (Subtarget.hasStdExtZbp()) {
7934     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7935       return GREV;
7936     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7937       return GORC;
7938     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7939       return SHFL;
7940   }
7941 
7942   // fold (or (select cond, 0, y), x) ->
7943   //      (select cond, x, (or x, y))
7944   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7945 }
7946 
7947 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7948   SDValue N0 = N->getOperand(0);
7949   SDValue N1 = N->getOperand(1);
7950 
7951   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
7952   // NOTE: Assumes ROL being legal means ROLW is legal.
7953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7954   if (N0.getOpcode() == RISCVISD::SLLW &&
7955       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
7956       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
7957     SDLoc DL(N);
7958     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
7959                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
7960   }
7961 
7962   // fold (xor (select cond, 0, y), x) ->
7963   //      (select cond, x, (xor x, y))
7964   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7965 }
7966 
7967 static SDValue
7968 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7969                                 const RISCVSubtarget &Subtarget) {
7970   SDValue Src = N->getOperand(0);
7971   EVT VT = N->getValueType(0);
7972 
7973   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7974   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7975       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7976     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7977                        Src.getOperand(0));
7978 
7979   // Fold (i64 (sext_inreg (abs X), i32)) ->
7980   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7981   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7982   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7983   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7984   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7985   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7986   // may get combined into an earlier operation so we need to use
7987   // ComputeNumSignBits.
7988   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7989   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7990   // we can't assume that X has 33 sign bits. We must check.
7991   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7992       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7993       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7994       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7995     SDLoc DL(N);
7996     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7997     SDValue Neg =
7998         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7999     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8000                       DAG.getValueType(MVT::i32));
8001     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8002   }
8003 
8004   return SDValue();
8005 }
8006 
8007 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8008 // vwadd(u).vv/vx or vwsub(u).vv/vx.
8009 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8010                                              bool Commute = false) {
8011   assert((N->getOpcode() == RISCVISD::ADD_VL ||
8012           N->getOpcode() == RISCVISD::SUB_VL) &&
8013          "Unexpected opcode");
8014   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8015   SDValue Op0 = N->getOperand(0);
8016   SDValue Op1 = N->getOperand(1);
8017   if (Commute)
8018     std::swap(Op0, Op1);
8019 
8020   MVT VT = N->getSimpleValueType(0);
8021 
8022   // Determine the narrow size for a widening add/sub.
8023   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8024   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8025                                   VT.getVectorElementCount());
8026 
8027   SDValue Mask = N->getOperand(2);
8028   SDValue VL = N->getOperand(3);
8029 
8030   SDLoc DL(N);
8031 
8032   // If the RHS is a sext or zext, we can form a widening op.
8033   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8034        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8035       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8036     unsigned ExtOpc = Op1.getOpcode();
8037     Op1 = Op1.getOperand(0);
8038     // Re-introduce narrower extends if needed.
8039     if (Op1.getValueType() != NarrowVT)
8040       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8041 
8042     unsigned WOpc;
8043     if (ExtOpc == RISCVISD::VSEXT_VL)
8044       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8045     else
8046       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8047 
8048     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8049   }
8050 
8051   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8052   // sext/zext?
8053 
8054   return SDValue();
8055 }
8056 
8057 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8058 // vwsub(u).vv/vx.
8059 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8060   SDValue Op0 = N->getOperand(0);
8061   SDValue Op1 = N->getOperand(1);
8062   SDValue Mask = N->getOperand(2);
8063   SDValue VL = N->getOperand(3);
8064 
8065   MVT VT = N->getSimpleValueType(0);
8066   MVT NarrowVT = Op1.getSimpleValueType();
8067   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8068 
8069   unsigned VOpc;
8070   switch (N->getOpcode()) {
8071   default: llvm_unreachable("Unexpected opcode");
8072   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8073   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8074   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8075   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8076   }
8077 
8078   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8079                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8080 
8081   SDLoc DL(N);
8082 
8083   // If the LHS is a sext or zext, we can narrow this op to the same size as
8084   // the RHS.
8085   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8086        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8087       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8088     unsigned ExtOpc = Op0.getOpcode();
8089     Op0 = Op0.getOperand(0);
8090     // Re-introduce narrower extends if needed.
8091     if (Op0.getValueType() != NarrowVT)
8092       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8093     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8094   }
8095 
8096   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8097                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8098 
8099   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8100   // to commute and use a vwadd(u).vx instead.
8101   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8102       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8103     Op0 = Op0.getOperand(1);
8104 
8105     // See if have enough sign bits or zero bits in the scalar to use a
8106     // widening add/sub by splatting to smaller element size.
8107     unsigned EltBits = VT.getScalarSizeInBits();
8108     unsigned ScalarBits = Op0.getValueSizeInBits();
8109     // Make sure we're getting all element bits from the scalar register.
8110     // FIXME: Support implicit sign extension of vmv.v.x?
8111     if (ScalarBits < EltBits)
8112       return SDValue();
8113 
8114     if (IsSigned) {
8115       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8116         return SDValue();
8117     } else {
8118       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8119       if (!DAG.MaskedValueIsZero(Op0, Mask))
8120         return SDValue();
8121     }
8122 
8123     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8124                       DAG.getUNDEF(NarrowVT), Op0, VL);
8125     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8126   }
8127 
8128   return SDValue();
8129 }
8130 
8131 // Try to form VWMUL, VWMULU or VWMULSU.
8132 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8133 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8134                                        bool Commute) {
8135   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8136   SDValue Op0 = N->getOperand(0);
8137   SDValue Op1 = N->getOperand(1);
8138   if (Commute)
8139     std::swap(Op0, Op1);
8140 
8141   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8142   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8143   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8144   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8145     return SDValue();
8146 
8147   SDValue Mask = N->getOperand(2);
8148   SDValue VL = N->getOperand(3);
8149 
8150   // Make sure the mask and VL match.
8151   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8152     return SDValue();
8153 
8154   MVT VT = N->getSimpleValueType(0);
8155 
8156   // Determine the narrow size for a widening multiply.
8157   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8158   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8159                                   VT.getVectorElementCount());
8160 
8161   SDLoc DL(N);
8162 
8163   // See if the other operand is the same opcode.
8164   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8165     if (!Op1.hasOneUse())
8166       return SDValue();
8167 
8168     // Make sure the mask and VL match.
8169     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8170       return SDValue();
8171 
8172     Op1 = Op1.getOperand(0);
8173   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8174     // The operand is a splat of a scalar.
8175 
8176     // The pasthru must be undef for tail agnostic
8177     if (!Op1.getOperand(0).isUndef())
8178       return SDValue();
8179     // The VL must be the same.
8180     if (Op1.getOperand(2) != VL)
8181       return SDValue();
8182 
8183     // Get the scalar value.
8184     Op1 = Op1.getOperand(1);
8185 
8186     // See if have enough sign bits or zero bits in the scalar to use a
8187     // widening multiply by splatting to smaller element size.
8188     unsigned EltBits = VT.getScalarSizeInBits();
8189     unsigned ScalarBits = Op1.getValueSizeInBits();
8190     // Make sure we're getting all element bits from the scalar register.
8191     // FIXME: Support implicit sign extension of vmv.v.x?
8192     if (ScalarBits < EltBits)
8193       return SDValue();
8194 
8195     // If the LHS is a sign extend, try to use vwmul.
8196     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8197       // Can use vwmul.
8198     } else {
8199       // Otherwise try to use vwmulu or vwmulsu.
8200       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8201       if (DAG.MaskedValueIsZero(Op1, Mask))
8202         IsVWMULSU = IsSignExt;
8203       else
8204         return SDValue();
8205     }
8206 
8207     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8208                       DAG.getUNDEF(NarrowVT), Op1, VL);
8209   } else
8210     return SDValue();
8211 
8212   Op0 = Op0.getOperand(0);
8213 
8214   // Re-introduce narrower extends if needed.
8215   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8216   if (Op0.getValueType() != NarrowVT)
8217     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8218   // vwmulsu requires second operand to be zero extended.
8219   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8220   if (Op1.getValueType() != NarrowVT)
8221     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8222 
8223   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8224   if (!IsVWMULSU)
8225     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8226   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8227 }
8228 
8229 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8230   switch (Op.getOpcode()) {
8231   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8232   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8233   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8234   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8235   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8236   }
8237 
8238   return RISCVFPRndMode::Invalid;
8239 }
8240 
8241 // Fold
8242 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8243 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8244 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8245 //   (fp_to_int (fceil X))      -> fcvt X, rup
8246 //   (fp_to_int (fround X))     -> fcvt X, rmm
8247 static SDValue performFP_TO_INTCombine(SDNode *N,
8248                                        TargetLowering::DAGCombinerInfo &DCI,
8249                                        const RISCVSubtarget &Subtarget) {
8250   SelectionDAG &DAG = DCI.DAG;
8251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8252   MVT XLenVT = Subtarget.getXLenVT();
8253 
8254   // Only handle XLen or i32 types. Other types narrower than XLen will
8255   // eventually be legalized to XLenVT.
8256   EVT VT = N->getValueType(0);
8257   if (VT != MVT::i32 && VT != XLenVT)
8258     return SDValue();
8259 
8260   SDValue Src = N->getOperand(0);
8261 
8262   // Ensure the FP type is also legal.
8263   if (!TLI.isTypeLegal(Src.getValueType()))
8264     return SDValue();
8265 
8266   // Don't do this for f16 with Zfhmin and not Zfh.
8267   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8268     return SDValue();
8269 
8270   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8271   if (FRM == RISCVFPRndMode::Invalid)
8272     return SDValue();
8273 
8274   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8275 
8276   unsigned Opc;
8277   if (VT == XLenVT)
8278     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8279   else
8280     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8281 
8282   SDLoc DL(N);
8283   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8284                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8285   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8286 }
8287 
8288 // Fold
8289 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8290 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8291 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8292 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8293 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8294 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8295                                        TargetLowering::DAGCombinerInfo &DCI,
8296                                        const RISCVSubtarget &Subtarget) {
8297   SelectionDAG &DAG = DCI.DAG;
8298   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8299   MVT XLenVT = Subtarget.getXLenVT();
8300 
8301   // Only handle XLen types. Other types narrower than XLen will eventually be
8302   // legalized to XLenVT.
8303   EVT DstVT = N->getValueType(0);
8304   if (DstVT != XLenVT)
8305     return SDValue();
8306 
8307   SDValue Src = N->getOperand(0);
8308 
8309   // Ensure the FP type is also legal.
8310   if (!TLI.isTypeLegal(Src.getValueType()))
8311     return SDValue();
8312 
8313   // Don't do this for f16 with Zfhmin and not Zfh.
8314   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8315     return SDValue();
8316 
8317   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8318 
8319   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8320   if (FRM == RISCVFPRndMode::Invalid)
8321     return SDValue();
8322 
8323   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8324 
8325   unsigned Opc;
8326   if (SatVT == DstVT)
8327     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8328   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8329     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8330   else
8331     return SDValue();
8332   // FIXME: Support other SatVTs by clamping before or after the conversion.
8333 
8334   Src = Src.getOperand(0);
8335 
8336   SDLoc DL(N);
8337   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8338                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8339 
8340   // RISCV FP-to-int conversions saturate to the destination register size, but
8341   // don't produce 0 for nan.
8342   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8343   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8344 }
8345 
8346 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8347 // smaller than XLenVT.
8348 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8349                                         const RISCVSubtarget &Subtarget) {
8350   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8351 
8352   SDValue Src = N->getOperand(0);
8353   if (Src.getOpcode() != ISD::BSWAP)
8354     return SDValue();
8355 
8356   EVT VT = N->getValueType(0);
8357   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8358       !isPowerOf2_32(VT.getSizeInBits()))
8359     return SDValue();
8360 
8361   SDLoc DL(N);
8362   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8363                      DAG.getConstant(7, DL, VT));
8364 }
8365 
8366 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8367                                                DAGCombinerInfo &DCI) const {
8368   SelectionDAG &DAG = DCI.DAG;
8369 
8370   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8371   // bits are demanded. N will be added to the Worklist if it was not deleted.
8372   // Caller should return SDValue(N, 0) if this returns true.
8373   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8374     SDValue Op = N->getOperand(OpNo);
8375     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8376     if (!SimplifyDemandedBits(Op, Mask, DCI))
8377       return false;
8378 
8379     if (N->getOpcode() != ISD::DELETED_NODE)
8380       DCI.AddToWorklist(N);
8381     return true;
8382   };
8383 
8384   switch (N->getOpcode()) {
8385   default:
8386     break;
8387   case RISCVISD::SplitF64: {
8388     SDValue Op0 = N->getOperand(0);
8389     // If the input to SplitF64 is just BuildPairF64 then the operation is
8390     // redundant. Instead, use BuildPairF64's operands directly.
8391     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8392       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8393 
8394     if (Op0->isUndef()) {
8395       SDValue Lo = DAG.getUNDEF(MVT::i32);
8396       SDValue Hi = DAG.getUNDEF(MVT::i32);
8397       return DCI.CombineTo(N, Lo, Hi);
8398     }
8399 
8400     SDLoc DL(N);
8401 
8402     // It's cheaper to materialise two 32-bit integers than to load a double
8403     // from the constant pool and transfer it to integer registers through the
8404     // stack.
8405     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8406       APInt V = C->getValueAPF().bitcastToAPInt();
8407       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8408       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8409       return DCI.CombineTo(N, Lo, Hi);
8410     }
8411 
8412     // This is a target-specific version of a DAGCombine performed in
8413     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8414     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8415     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8416     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8417         !Op0.getNode()->hasOneUse())
8418       break;
8419     SDValue NewSplitF64 =
8420         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8421                     Op0.getOperand(0));
8422     SDValue Lo = NewSplitF64.getValue(0);
8423     SDValue Hi = NewSplitF64.getValue(1);
8424     APInt SignBit = APInt::getSignMask(32);
8425     if (Op0.getOpcode() == ISD::FNEG) {
8426       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8427                                   DAG.getConstant(SignBit, DL, MVT::i32));
8428       return DCI.CombineTo(N, Lo, NewHi);
8429     }
8430     assert(Op0.getOpcode() == ISD::FABS);
8431     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8432                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8433     return DCI.CombineTo(N, Lo, NewHi);
8434   }
8435   case RISCVISD::SLLW:
8436   case RISCVISD::SRAW:
8437   case RISCVISD::SRLW: {
8438     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8439     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8440         SimplifyDemandedLowBitsHelper(1, 5))
8441       return SDValue(N, 0);
8442 
8443     break;
8444   }
8445   case ISD::ROTR:
8446   case ISD::ROTL:
8447   case RISCVISD::RORW:
8448   case RISCVISD::ROLW: {
8449     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8450       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8451       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8452           SimplifyDemandedLowBitsHelper(1, 5))
8453         return SDValue(N, 0);
8454     }
8455 
8456     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8457   }
8458   case RISCVISD::CLZW:
8459   case RISCVISD::CTZW: {
8460     // Only the lower 32 bits of the first operand are read
8461     if (SimplifyDemandedLowBitsHelper(0, 32))
8462       return SDValue(N, 0);
8463     break;
8464   }
8465   case RISCVISD::GREV:
8466   case RISCVISD::GORC: {
8467     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8468     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8469     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8470     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8471       return SDValue(N, 0);
8472 
8473     return combineGREVI_GORCI(N, DAG);
8474   }
8475   case RISCVISD::GREVW:
8476   case RISCVISD::GORCW: {
8477     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8478     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8479         SimplifyDemandedLowBitsHelper(1, 5))
8480       return SDValue(N, 0);
8481 
8482     break;
8483   }
8484   case RISCVISD::SHFL:
8485   case RISCVISD::UNSHFL: {
8486     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8487     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8488     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8489     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8490       return SDValue(N, 0);
8491 
8492     break;
8493   }
8494   case RISCVISD::SHFLW:
8495   case RISCVISD::UNSHFLW: {
8496     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8497     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8498         SimplifyDemandedLowBitsHelper(1, 4))
8499       return SDValue(N, 0);
8500 
8501     break;
8502   }
8503   case RISCVISD::BCOMPRESSW:
8504   case RISCVISD::BDECOMPRESSW: {
8505     // Only the lower 32 bits of LHS and RHS are read.
8506     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8507         SimplifyDemandedLowBitsHelper(1, 32))
8508       return SDValue(N, 0);
8509 
8510     break;
8511   }
8512   case RISCVISD::FSR:
8513   case RISCVISD::FSL:
8514   case RISCVISD::FSRW:
8515   case RISCVISD::FSLW: {
8516     bool IsWInstruction =
8517         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8518     unsigned BitWidth =
8519         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8520     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8521     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8522     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8523       return SDValue(N, 0);
8524 
8525     break;
8526   }
8527   case RISCVISD::FMV_X_ANYEXTH:
8528   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8529     SDLoc DL(N);
8530     SDValue Op0 = N->getOperand(0);
8531     MVT VT = N->getSimpleValueType(0);
8532     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8533     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8534     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8535     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8536          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8537         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8538          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8539       assert(Op0.getOperand(0).getValueType() == VT &&
8540              "Unexpected value type!");
8541       return Op0.getOperand(0);
8542     }
8543 
8544     // This is a target-specific version of a DAGCombine performed in
8545     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8546     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8547     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8548     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8549         !Op0.getNode()->hasOneUse())
8550       break;
8551     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8552     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8553     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8554     if (Op0.getOpcode() == ISD::FNEG)
8555       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8556                          DAG.getConstant(SignBit, DL, VT));
8557 
8558     assert(Op0.getOpcode() == ISD::FABS);
8559     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8560                        DAG.getConstant(~SignBit, DL, VT));
8561   }
8562   case ISD::ADD:
8563     return performADDCombine(N, DAG, Subtarget);
8564   case ISD::SUB:
8565     return performSUBCombine(N, DAG);
8566   case ISD::AND:
8567     return performANDCombine(N, DAG);
8568   case ISD::OR:
8569     return performORCombine(N, DAG, Subtarget);
8570   case ISD::XOR:
8571     return performXORCombine(N, DAG);
8572   case ISD::SIGN_EXTEND_INREG:
8573     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8574   case ISD::ZERO_EXTEND:
8575     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8576     // type legalization. This is safe because fp_to_uint produces poison if
8577     // it overflows.
8578     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8579       SDValue Src = N->getOperand(0);
8580       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8581           isTypeLegal(Src.getOperand(0).getValueType()))
8582         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8583                            Src.getOperand(0));
8584       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8585           isTypeLegal(Src.getOperand(1).getValueType())) {
8586         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8587         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8588                                   Src.getOperand(0), Src.getOperand(1));
8589         DCI.CombineTo(N, Res);
8590         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8591         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8592         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8593       }
8594     }
8595     return SDValue();
8596   case RISCVISD::SELECT_CC: {
8597     // Transform
8598     SDValue LHS = N->getOperand(0);
8599     SDValue RHS = N->getOperand(1);
8600     SDValue TrueV = N->getOperand(3);
8601     SDValue FalseV = N->getOperand(4);
8602 
8603     // If the True and False values are the same, we don't need a select_cc.
8604     if (TrueV == FalseV)
8605       return TrueV;
8606 
8607     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8608     if (!ISD::isIntEqualitySetCC(CCVal))
8609       break;
8610 
8611     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8612     //      (select_cc X, Y, lt, trueV, falseV)
8613     // Sometimes the setcc is introduced after select_cc has been formed.
8614     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8615         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8616       // If we're looking for eq 0 instead of ne 0, we need to invert the
8617       // condition.
8618       bool Invert = CCVal == ISD::SETEQ;
8619       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8620       if (Invert)
8621         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8622 
8623       SDLoc DL(N);
8624       RHS = LHS.getOperand(1);
8625       LHS = LHS.getOperand(0);
8626       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8627 
8628       SDValue TargetCC = DAG.getCondCode(CCVal);
8629       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8630                          {LHS, RHS, TargetCC, TrueV, FalseV});
8631     }
8632 
8633     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8634     //      (select_cc X, Y, eq/ne, trueV, falseV)
8635     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8636       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8637                          {LHS.getOperand(0), LHS.getOperand(1),
8638                           N->getOperand(2), TrueV, FalseV});
8639     // (select_cc X, 1, setne, trueV, falseV) ->
8640     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8641     // This can occur when legalizing some floating point comparisons.
8642     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8643     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8644       SDLoc DL(N);
8645       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8646       SDValue TargetCC = DAG.getCondCode(CCVal);
8647       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8648       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8649                          {LHS, RHS, TargetCC, TrueV, FalseV});
8650     }
8651 
8652     break;
8653   }
8654   case RISCVISD::BR_CC: {
8655     SDValue LHS = N->getOperand(1);
8656     SDValue RHS = N->getOperand(2);
8657     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8658     if (!ISD::isIntEqualitySetCC(CCVal))
8659       break;
8660 
8661     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8662     //      (br_cc X, Y, lt, dest)
8663     // Sometimes the setcc is introduced after br_cc has been formed.
8664     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8665         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8666       // If we're looking for eq 0 instead of ne 0, we need to invert the
8667       // condition.
8668       bool Invert = CCVal == ISD::SETEQ;
8669       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8670       if (Invert)
8671         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8672 
8673       SDLoc DL(N);
8674       RHS = LHS.getOperand(1);
8675       LHS = LHS.getOperand(0);
8676       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8677 
8678       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8679                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8680                          N->getOperand(4));
8681     }
8682 
8683     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8684     //      (br_cc X, Y, eq/ne, trueV, falseV)
8685     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8686       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8687                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8688                          N->getOperand(3), N->getOperand(4));
8689 
8690     // (br_cc X, 1, setne, br_cc) ->
8691     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8692     // This can occur when legalizing some floating point comparisons.
8693     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8694     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8695       SDLoc DL(N);
8696       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8697       SDValue TargetCC = DAG.getCondCode(CCVal);
8698       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8699       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8700                          N->getOperand(0), LHS, RHS, TargetCC,
8701                          N->getOperand(4));
8702     }
8703     break;
8704   }
8705   case ISD::BITREVERSE:
8706     return performBITREVERSECombine(N, DAG, Subtarget);
8707   case ISD::FP_TO_SINT:
8708   case ISD::FP_TO_UINT:
8709     return performFP_TO_INTCombine(N, DCI, Subtarget);
8710   case ISD::FP_TO_SINT_SAT:
8711   case ISD::FP_TO_UINT_SAT:
8712     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8713   case ISD::FCOPYSIGN: {
8714     EVT VT = N->getValueType(0);
8715     if (!VT.isVector())
8716       break;
8717     // There is a form of VFSGNJ which injects the negated sign of its second
8718     // operand. Try and bubble any FNEG up after the extend/round to produce
8719     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8720     // TRUNC=1.
8721     SDValue In2 = N->getOperand(1);
8722     // Avoid cases where the extend/round has multiple uses, as duplicating
8723     // those is typically more expensive than removing a fneg.
8724     if (!In2.hasOneUse())
8725       break;
8726     if (In2.getOpcode() != ISD::FP_EXTEND &&
8727         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8728       break;
8729     In2 = In2.getOperand(0);
8730     if (In2.getOpcode() != ISD::FNEG)
8731       break;
8732     SDLoc DL(N);
8733     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8734     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8735                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8736   }
8737   case ISD::MGATHER:
8738   case ISD::MSCATTER:
8739   case ISD::VP_GATHER:
8740   case ISD::VP_SCATTER: {
8741     if (!DCI.isBeforeLegalize())
8742       break;
8743     SDValue Index, ScaleOp;
8744     bool IsIndexScaled = false;
8745     bool IsIndexSigned = false;
8746     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8747       Index = VPGSN->getIndex();
8748       ScaleOp = VPGSN->getScale();
8749       IsIndexScaled = VPGSN->isIndexScaled();
8750       IsIndexSigned = VPGSN->isIndexSigned();
8751     } else {
8752       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8753       Index = MGSN->getIndex();
8754       ScaleOp = MGSN->getScale();
8755       IsIndexScaled = MGSN->isIndexScaled();
8756       IsIndexSigned = MGSN->isIndexSigned();
8757     }
8758     EVT IndexVT = Index.getValueType();
8759     MVT XLenVT = Subtarget.getXLenVT();
8760     // RISCV indexed loads only support the "unsigned unscaled" addressing
8761     // mode, so anything else must be manually legalized.
8762     bool NeedsIdxLegalization =
8763         IsIndexScaled ||
8764         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8765     if (!NeedsIdxLegalization)
8766       break;
8767 
8768     SDLoc DL(N);
8769 
8770     // Any index legalization should first promote to XLenVT, so we don't lose
8771     // bits when scaling. This may create an illegal index type so we let
8772     // LLVM's legalization take care of the splitting.
8773     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8774     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8775       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8776       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8777                           DL, IndexVT, Index);
8778     }
8779 
8780     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8781     if (IsIndexScaled && Scale != 1) {
8782       // Manually scale the indices by the element size.
8783       // TODO: Sanitize the scale operand here?
8784       // TODO: For VP nodes, should we use VP_SHL here?
8785       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8786       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8787       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8788     }
8789 
8790     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8791     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8792       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8793                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8794                               VPGN->getScale(), VPGN->getMask(),
8795                               VPGN->getVectorLength()},
8796                              VPGN->getMemOperand(), NewIndexTy);
8797     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8798       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8799                               {VPSN->getChain(), VPSN->getValue(),
8800                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8801                                VPSN->getMask(), VPSN->getVectorLength()},
8802                               VPSN->getMemOperand(), NewIndexTy);
8803     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8804       return DAG.getMaskedGather(
8805           N->getVTList(), MGN->getMemoryVT(), DL,
8806           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8807            MGN->getBasePtr(), Index, MGN->getScale()},
8808           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8809     const auto *MSN = cast<MaskedScatterSDNode>(N);
8810     return DAG.getMaskedScatter(
8811         N->getVTList(), MSN->getMemoryVT(), DL,
8812         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8813          Index, MSN->getScale()},
8814         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8815   }
8816   case RISCVISD::SRA_VL:
8817   case RISCVISD::SRL_VL:
8818   case RISCVISD::SHL_VL: {
8819     SDValue ShAmt = N->getOperand(1);
8820     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8821       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8822       SDLoc DL(N);
8823       SDValue VL = N->getOperand(3);
8824       EVT VT = N->getValueType(0);
8825       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8826                           ShAmt.getOperand(1), VL);
8827       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8828                          N->getOperand(2), N->getOperand(3));
8829     }
8830     break;
8831   }
8832   case ISD::SRA:
8833   case ISD::SRL:
8834   case ISD::SHL: {
8835     SDValue ShAmt = N->getOperand(1);
8836     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8837       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8838       SDLoc DL(N);
8839       EVT VT = N->getValueType(0);
8840       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8841                           ShAmt.getOperand(1),
8842                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8843       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8844     }
8845     break;
8846   }
8847   case RISCVISD::ADD_VL:
8848     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8849       return V;
8850     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8851   case RISCVISD::SUB_VL:
8852     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8853   case RISCVISD::VWADD_W_VL:
8854   case RISCVISD::VWADDU_W_VL:
8855   case RISCVISD::VWSUB_W_VL:
8856   case RISCVISD::VWSUBU_W_VL:
8857     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8858   case RISCVISD::MUL_VL:
8859     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8860       return V;
8861     // Mul is commutative.
8862     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8863   case ISD::STORE: {
8864     auto *Store = cast<StoreSDNode>(N);
8865     SDValue Val = Store->getValue();
8866     // Combine store of vmv.x.s to vse with VL of 1.
8867     // FIXME: Support FP.
8868     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8869       SDValue Src = Val.getOperand(0);
8870       EVT VecVT = Src.getValueType();
8871       EVT MemVT = Store->getMemoryVT();
8872       // The memory VT and the element type must match.
8873       if (VecVT.getVectorElementType() == MemVT) {
8874         SDLoc DL(N);
8875         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8876         return DAG.getStoreVP(
8877             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8878             DAG.getConstant(1, DL, MaskVT),
8879             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8880             Store->getMemOperand(), Store->getAddressingMode(),
8881             Store->isTruncatingStore(), /*IsCompress*/ false);
8882       }
8883     }
8884 
8885     break;
8886   }
8887   case ISD::SPLAT_VECTOR: {
8888     EVT VT = N->getValueType(0);
8889     // Only perform this combine on legal MVT types.
8890     if (!isTypeLegal(VT))
8891       break;
8892     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8893                                          DAG, Subtarget))
8894       return Gather;
8895     break;
8896   }
8897   case RISCVISD::VMV_V_X_VL: {
8898     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8899     // scalar input.
8900     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8901     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8902     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8903       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8904         return SDValue(N, 0);
8905 
8906     break;
8907   }
8908   case ISD::INTRINSIC_WO_CHAIN: {
8909     unsigned IntNo = N->getConstantOperandVal(0);
8910     switch (IntNo) {
8911       // By default we do not combine any intrinsic.
8912     default:
8913       return SDValue();
8914     case Intrinsic::riscv_vcpop:
8915     case Intrinsic::riscv_vcpop_mask:
8916     case Intrinsic::riscv_vfirst:
8917     case Intrinsic::riscv_vfirst_mask: {
8918       SDValue VL = N->getOperand(2);
8919       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8920           IntNo == Intrinsic::riscv_vfirst_mask)
8921         VL = N->getOperand(3);
8922       if (!isNullConstant(VL))
8923         return SDValue();
8924       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8925       SDLoc DL(N);
8926       EVT VT = N->getValueType(0);
8927       if (IntNo == Intrinsic::riscv_vfirst ||
8928           IntNo == Intrinsic::riscv_vfirst_mask)
8929         return DAG.getConstant(-1, DL, VT);
8930       return DAG.getConstant(0, DL, VT);
8931     }
8932     }
8933   }
8934   }
8935 
8936   return SDValue();
8937 }
8938 
8939 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8940     const SDNode *N, CombineLevel Level) const {
8941   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8942   // materialised in fewer instructions than `(OP _, c1)`:
8943   //
8944   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8945   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8946   SDValue N0 = N->getOperand(0);
8947   EVT Ty = N0.getValueType();
8948   if (Ty.isScalarInteger() &&
8949       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8950     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8951     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8952     if (C1 && C2) {
8953       const APInt &C1Int = C1->getAPIntValue();
8954       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8955 
8956       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8957       // and the combine should happen, to potentially allow further combines
8958       // later.
8959       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8960           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8961         return true;
8962 
8963       // We can materialise `c1` in an add immediate, so it's "free", and the
8964       // combine should be prevented.
8965       if (C1Int.getMinSignedBits() <= 64 &&
8966           isLegalAddImmediate(C1Int.getSExtValue()))
8967         return false;
8968 
8969       // Neither constant will fit into an immediate, so find materialisation
8970       // costs.
8971       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8972                                               Subtarget.getFeatureBits(),
8973                                               /*CompressionCost*/true);
8974       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8975           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8976           /*CompressionCost*/true);
8977 
8978       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8979       // combine should be prevented.
8980       if (C1Cost < ShiftedC1Cost)
8981         return false;
8982     }
8983   }
8984   return true;
8985 }
8986 
8987 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8988     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8989     TargetLoweringOpt &TLO) const {
8990   // Delay this optimization as late as possible.
8991   if (!TLO.LegalOps)
8992     return false;
8993 
8994   EVT VT = Op.getValueType();
8995   if (VT.isVector())
8996     return false;
8997 
8998   // Only handle AND for now.
8999   if (Op.getOpcode() != ISD::AND)
9000     return false;
9001 
9002   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9003   if (!C)
9004     return false;
9005 
9006   const APInt &Mask = C->getAPIntValue();
9007 
9008   // Clear all non-demanded bits initially.
9009   APInt ShrunkMask = Mask & DemandedBits;
9010 
9011   // Try to make a smaller immediate by setting undemanded bits.
9012 
9013   APInt ExpandedMask = Mask | ~DemandedBits;
9014 
9015   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9016     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9017   };
9018   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
9019     if (NewMask == Mask)
9020       return true;
9021     SDLoc DL(Op);
9022     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
9023     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
9024     return TLO.CombineTo(Op, NewOp);
9025   };
9026 
9027   // If the shrunk mask fits in sign extended 12 bits, let the target
9028   // independent code apply it.
9029   if (ShrunkMask.isSignedIntN(12))
9030     return false;
9031 
9032   // Preserve (and X, 0xffff) when zext.h is supported.
9033   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9034     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9035     if (IsLegalMask(NewMask))
9036       return UseMask(NewMask);
9037   }
9038 
9039   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9040   if (VT == MVT::i64) {
9041     APInt NewMask = APInt(64, 0xffffffff);
9042     if (IsLegalMask(NewMask))
9043       return UseMask(NewMask);
9044   }
9045 
9046   // For the remaining optimizations, we need to be able to make a negative
9047   // number through a combination of mask and undemanded bits.
9048   if (!ExpandedMask.isNegative())
9049     return false;
9050 
9051   // What is the fewest number of bits we need to represent the negative number.
9052   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9053 
9054   // Try to make a 12 bit negative immediate. If that fails try to make a 32
9055   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9056   APInt NewMask = ShrunkMask;
9057   if (MinSignedBits <= 12)
9058     NewMask.setBitsFrom(11);
9059   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9060     NewMask.setBitsFrom(31);
9061   else
9062     return false;
9063 
9064   // Check that our new mask is a subset of the demanded mask.
9065   assert(IsLegalMask(NewMask));
9066   return UseMask(NewMask);
9067 }
9068 
9069 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9070   static const uint64_t GREVMasks[] = {
9071       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9072       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9073 
9074   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9075     unsigned Shift = 1 << Stage;
9076     if (ShAmt & Shift) {
9077       uint64_t Mask = GREVMasks[Stage];
9078       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9079       if (IsGORC)
9080         Res |= x;
9081       x = Res;
9082     }
9083   }
9084 
9085   return x;
9086 }
9087 
9088 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9089                                                         KnownBits &Known,
9090                                                         const APInt &DemandedElts,
9091                                                         const SelectionDAG &DAG,
9092                                                         unsigned Depth) const {
9093   unsigned BitWidth = Known.getBitWidth();
9094   unsigned Opc = Op.getOpcode();
9095   assert((Opc >= ISD::BUILTIN_OP_END ||
9096           Opc == ISD::INTRINSIC_WO_CHAIN ||
9097           Opc == ISD::INTRINSIC_W_CHAIN ||
9098           Opc == ISD::INTRINSIC_VOID) &&
9099          "Should use MaskedValueIsZero if you don't know whether Op"
9100          " is a target node!");
9101 
9102   Known.resetAll();
9103   switch (Opc) {
9104   default: break;
9105   case RISCVISD::SELECT_CC: {
9106     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9107     // If we don't know any bits, early out.
9108     if (Known.isUnknown())
9109       break;
9110     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9111 
9112     // Only known if known in both the LHS and RHS.
9113     Known = KnownBits::commonBits(Known, Known2);
9114     break;
9115   }
9116   case RISCVISD::REMUW: {
9117     KnownBits Known2;
9118     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9119     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9120     // We only care about the lower 32 bits.
9121     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9122     // Restore the original width by sign extending.
9123     Known = Known.sext(BitWidth);
9124     break;
9125   }
9126   case RISCVISD::DIVUW: {
9127     KnownBits Known2;
9128     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9129     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9130     // We only care about the lower 32 bits.
9131     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9132     // Restore the original width by sign extending.
9133     Known = Known.sext(BitWidth);
9134     break;
9135   }
9136   case RISCVISD::CTZW: {
9137     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9138     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9139     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9140     Known.Zero.setBitsFrom(LowBits);
9141     break;
9142   }
9143   case RISCVISD::CLZW: {
9144     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9145     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9146     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9147     Known.Zero.setBitsFrom(LowBits);
9148     break;
9149   }
9150   case RISCVISD::GREV:
9151   case RISCVISD::GORC: {
9152     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9153       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9154       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9155       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9156       // To compute zeros, we need to invert the value and invert it back after.
9157       Known.Zero =
9158           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9159       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9160     }
9161     break;
9162   }
9163   case RISCVISD::READ_VLENB: {
9164     // If we know the minimum VLen from Zvl extensions, we can use that to
9165     // determine the trailing zeros of VLENB.
9166     // FIXME: Limit to 128 bit vectors until we have more testing.
9167     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9168     if (MinVLenB > 0)
9169       Known.Zero.setLowBits(Log2_32(MinVLenB));
9170     // We assume VLENB is no more than 65536 / 8 bytes.
9171     Known.Zero.setBitsFrom(14);
9172     break;
9173   }
9174   case ISD::INTRINSIC_W_CHAIN:
9175   case ISD::INTRINSIC_WO_CHAIN: {
9176     unsigned IntNo =
9177         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9178     switch (IntNo) {
9179     default:
9180       // We can't do anything for most intrinsics.
9181       break;
9182     case Intrinsic::riscv_vsetvli:
9183     case Intrinsic::riscv_vsetvlimax:
9184     case Intrinsic::riscv_vsetvli_opt:
9185     case Intrinsic::riscv_vsetvlimax_opt:
9186       // Assume that VL output is positive and would fit in an int32_t.
9187       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9188       if (BitWidth >= 32)
9189         Known.Zero.setBitsFrom(31);
9190       break;
9191     }
9192     break;
9193   }
9194   }
9195 }
9196 
9197 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9198     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9199     unsigned Depth) const {
9200   switch (Op.getOpcode()) {
9201   default:
9202     break;
9203   case RISCVISD::SELECT_CC: {
9204     unsigned Tmp =
9205         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9206     if (Tmp == 1) return 1;  // Early out.
9207     unsigned Tmp2 =
9208         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9209     return std::min(Tmp, Tmp2);
9210   }
9211   case RISCVISD::SLLW:
9212   case RISCVISD::SRAW:
9213   case RISCVISD::SRLW:
9214   case RISCVISD::DIVW:
9215   case RISCVISD::DIVUW:
9216   case RISCVISD::REMUW:
9217   case RISCVISD::ROLW:
9218   case RISCVISD::RORW:
9219   case RISCVISD::GREVW:
9220   case RISCVISD::GORCW:
9221   case RISCVISD::FSLW:
9222   case RISCVISD::FSRW:
9223   case RISCVISD::SHFLW:
9224   case RISCVISD::UNSHFLW:
9225   case RISCVISD::BCOMPRESSW:
9226   case RISCVISD::BDECOMPRESSW:
9227   case RISCVISD::BFPW:
9228   case RISCVISD::FCVT_W_RV64:
9229   case RISCVISD::FCVT_WU_RV64:
9230   case RISCVISD::STRICT_FCVT_W_RV64:
9231   case RISCVISD::STRICT_FCVT_WU_RV64:
9232     // TODO: As the result is sign-extended, this is conservatively correct. A
9233     // more precise answer could be calculated for SRAW depending on known
9234     // bits in the shift amount.
9235     return 33;
9236   case RISCVISD::SHFL:
9237   case RISCVISD::UNSHFL: {
9238     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9239     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9240     // will stay within the upper 32 bits. If there were more than 32 sign bits
9241     // before there will be at least 33 sign bits after.
9242     if (Op.getValueType() == MVT::i64 &&
9243         isa<ConstantSDNode>(Op.getOperand(1)) &&
9244         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9245       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9246       if (Tmp > 32)
9247         return 33;
9248     }
9249     break;
9250   }
9251   case RISCVISD::VMV_X_S: {
9252     // The number of sign bits of the scalar result is computed by obtaining the
9253     // element type of the input vector operand, subtracting its width from the
9254     // XLEN, and then adding one (sign bit within the element type). If the
9255     // element type is wider than XLen, the least-significant XLEN bits are
9256     // taken.
9257     unsigned XLen = Subtarget.getXLen();
9258     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9259     if (EltBits <= XLen)
9260       return XLen - EltBits + 1;
9261     break;
9262   }
9263   }
9264 
9265   return 1;
9266 }
9267 
9268 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9269                                                   MachineBasicBlock *BB) {
9270   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9271 
9272   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9273   // Should the count have wrapped while it was being read, we need to try
9274   // again.
9275   // ...
9276   // read:
9277   // rdcycleh x3 # load high word of cycle
9278   // rdcycle  x2 # load low word of cycle
9279   // rdcycleh x4 # load high word of cycle
9280   // bne x3, x4, read # check if high word reads match, otherwise try again
9281   // ...
9282 
9283   MachineFunction &MF = *BB->getParent();
9284   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9285   MachineFunction::iterator It = ++BB->getIterator();
9286 
9287   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9288   MF.insert(It, LoopMBB);
9289 
9290   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9291   MF.insert(It, DoneMBB);
9292 
9293   // Transfer the remainder of BB and its successor edges to DoneMBB.
9294   DoneMBB->splice(DoneMBB->begin(), BB,
9295                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9296   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9297 
9298   BB->addSuccessor(LoopMBB);
9299 
9300   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9301   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9302   Register LoReg = MI.getOperand(0).getReg();
9303   Register HiReg = MI.getOperand(1).getReg();
9304   DebugLoc DL = MI.getDebugLoc();
9305 
9306   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9307   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9308       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9309       .addReg(RISCV::X0);
9310   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9311       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9312       .addReg(RISCV::X0);
9313   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9314       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9315       .addReg(RISCV::X0);
9316 
9317   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9318       .addReg(HiReg)
9319       .addReg(ReadAgainReg)
9320       .addMBB(LoopMBB);
9321 
9322   LoopMBB->addSuccessor(LoopMBB);
9323   LoopMBB->addSuccessor(DoneMBB);
9324 
9325   MI.eraseFromParent();
9326 
9327   return DoneMBB;
9328 }
9329 
9330 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9331                                              MachineBasicBlock *BB) {
9332   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9333 
9334   MachineFunction &MF = *BB->getParent();
9335   DebugLoc DL = MI.getDebugLoc();
9336   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9337   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9338   Register LoReg = MI.getOperand(0).getReg();
9339   Register HiReg = MI.getOperand(1).getReg();
9340   Register SrcReg = MI.getOperand(2).getReg();
9341   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9342   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9343 
9344   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9345                           RI);
9346   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9347   MachineMemOperand *MMOLo =
9348       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9349   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9350       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9351   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9352       .addFrameIndex(FI)
9353       .addImm(0)
9354       .addMemOperand(MMOLo);
9355   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9356       .addFrameIndex(FI)
9357       .addImm(4)
9358       .addMemOperand(MMOHi);
9359   MI.eraseFromParent(); // The pseudo instruction is gone now.
9360   return BB;
9361 }
9362 
9363 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9364                                                  MachineBasicBlock *BB) {
9365   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9366          "Unexpected instruction");
9367 
9368   MachineFunction &MF = *BB->getParent();
9369   DebugLoc DL = MI.getDebugLoc();
9370   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9371   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9372   Register DstReg = MI.getOperand(0).getReg();
9373   Register LoReg = MI.getOperand(1).getReg();
9374   Register HiReg = MI.getOperand(2).getReg();
9375   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9376   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9377 
9378   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9379   MachineMemOperand *MMOLo =
9380       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9381   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9382       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9383   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9384       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9385       .addFrameIndex(FI)
9386       .addImm(0)
9387       .addMemOperand(MMOLo);
9388   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9389       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9390       .addFrameIndex(FI)
9391       .addImm(4)
9392       .addMemOperand(MMOHi);
9393   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9394   MI.eraseFromParent(); // The pseudo instruction is gone now.
9395   return BB;
9396 }
9397 
9398 static bool isSelectPseudo(MachineInstr &MI) {
9399   switch (MI.getOpcode()) {
9400   default:
9401     return false;
9402   case RISCV::Select_GPR_Using_CC_GPR:
9403   case RISCV::Select_FPR16_Using_CC_GPR:
9404   case RISCV::Select_FPR32_Using_CC_GPR:
9405   case RISCV::Select_FPR64_Using_CC_GPR:
9406     return true;
9407   }
9408 }
9409 
9410 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9411                                         unsigned RelOpcode, unsigned EqOpcode,
9412                                         const RISCVSubtarget &Subtarget) {
9413   DebugLoc DL = MI.getDebugLoc();
9414   Register DstReg = MI.getOperand(0).getReg();
9415   Register Src1Reg = MI.getOperand(1).getReg();
9416   Register Src2Reg = MI.getOperand(2).getReg();
9417   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9418   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9419   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9420 
9421   // Save the current FFLAGS.
9422   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9423 
9424   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9425                  .addReg(Src1Reg)
9426                  .addReg(Src2Reg);
9427   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9428     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9429 
9430   // Restore the FFLAGS.
9431   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9432       .addReg(SavedFFlags, RegState::Kill);
9433 
9434   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9435   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9436                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9437                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9438   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9439     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9440 
9441   // Erase the pseudoinstruction.
9442   MI.eraseFromParent();
9443   return BB;
9444 }
9445 
9446 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9447                                            MachineBasicBlock *BB,
9448                                            const RISCVSubtarget &Subtarget) {
9449   // To "insert" Select_* instructions, we actually have to insert the triangle
9450   // control-flow pattern.  The incoming instructions know the destination vreg
9451   // to set, the condition code register to branch on, the true/false values to
9452   // select between, and the condcode to use to select the appropriate branch.
9453   //
9454   // We produce the following control flow:
9455   //     HeadMBB
9456   //     |  \
9457   //     |  IfFalseMBB
9458   //     | /
9459   //    TailMBB
9460   //
9461   // When we find a sequence of selects we attempt to optimize their emission
9462   // by sharing the control flow. Currently we only handle cases where we have
9463   // multiple selects with the exact same condition (same LHS, RHS and CC).
9464   // The selects may be interleaved with other instructions if the other
9465   // instructions meet some requirements we deem safe:
9466   // - They are debug instructions. Otherwise,
9467   // - They do not have side-effects, do not access memory and their inputs do
9468   //   not depend on the results of the select pseudo-instructions.
9469   // The TrueV/FalseV operands of the selects cannot depend on the result of
9470   // previous selects in the sequence.
9471   // These conditions could be further relaxed. See the X86 target for a
9472   // related approach and more information.
9473   Register LHS = MI.getOperand(1).getReg();
9474   Register RHS = MI.getOperand(2).getReg();
9475   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9476 
9477   SmallVector<MachineInstr *, 4> SelectDebugValues;
9478   SmallSet<Register, 4> SelectDests;
9479   SelectDests.insert(MI.getOperand(0).getReg());
9480 
9481   MachineInstr *LastSelectPseudo = &MI;
9482 
9483   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9484        SequenceMBBI != E; ++SequenceMBBI) {
9485     if (SequenceMBBI->isDebugInstr())
9486       continue;
9487     else if (isSelectPseudo(*SequenceMBBI)) {
9488       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9489           SequenceMBBI->getOperand(2).getReg() != RHS ||
9490           SequenceMBBI->getOperand(3).getImm() != CC ||
9491           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9492           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9493         break;
9494       LastSelectPseudo = &*SequenceMBBI;
9495       SequenceMBBI->collectDebugValues(SelectDebugValues);
9496       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9497     } else {
9498       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9499           SequenceMBBI->mayLoadOrStore())
9500         break;
9501       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9502             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9503           }))
9504         break;
9505     }
9506   }
9507 
9508   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9509   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9510   DebugLoc DL = MI.getDebugLoc();
9511   MachineFunction::iterator I = ++BB->getIterator();
9512 
9513   MachineBasicBlock *HeadMBB = BB;
9514   MachineFunction *F = BB->getParent();
9515   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9516   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9517 
9518   F->insert(I, IfFalseMBB);
9519   F->insert(I, TailMBB);
9520 
9521   // Transfer debug instructions associated with the selects to TailMBB.
9522   for (MachineInstr *DebugInstr : SelectDebugValues) {
9523     TailMBB->push_back(DebugInstr->removeFromParent());
9524   }
9525 
9526   // Move all instructions after the sequence to TailMBB.
9527   TailMBB->splice(TailMBB->end(), HeadMBB,
9528                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9529   // Update machine-CFG edges by transferring all successors of the current
9530   // block to the new block which will contain the Phi nodes for the selects.
9531   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9532   // Set the successors for HeadMBB.
9533   HeadMBB->addSuccessor(IfFalseMBB);
9534   HeadMBB->addSuccessor(TailMBB);
9535 
9536   // Insert appropriate branch.
9537   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9538     .addReg(LHS)
9539     .addReg(RHS)
9540     .addMBB(TailMBB);
9541 
9542   // IfFalseMBB just falls through to TailMBB.
9543   IfFalseMBB->addSuccessor(TailMBB);
9544 
9545   // Create PHIs for all of the select pseudo-instructions.
9546   auto SelectMBBI = MI.getIterator();
9547   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9548   auto InsertionPoint = TailMBB->begin();
9549   while (SelectMBBI != SelectEnd) {
9550     auto Next = std::next(SelectMBBI);
9551     if (isSelectPseudo(*SelectMBBI)) {
9552       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9553       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9554               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9555           .addReg(SelectMBBI->getOperand(4).getReg())
9556           .addMBB(HeadMBB)
9557           .addReg(SelectMBBI->getOperand(5).getReg())
9558           .addMBB(IfFalseMBB);
9559       SelectMBBI->eraseFromParent();
9560     }
9561     SelectMBBI = Next;
9562   }
9563 
9564   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9565   return TailMBB;
9566 }
9567 
9568 MachineBasicBlock *
9569 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9570                                                  MachineBasicBlock *BB) const {
9571   switch (MI.getOpcode()) {
9572   default:
9573     llvm_unreachable("Unexpected instr type to insert");
9574   case RISCV::ReadCycleWide:
9575     assert(!Subtarget.is64Bit() &&
9576            "ReadCycleWrite is only to be used on riscv32");
9577     return emitReadCycleWidePseudo(MI, BB);
9578   case RISCV::Select_GPR_Using_CC_GPR:
9579   case RISCV::Select_FPR16_Using_CC_GPR:
9580   case RISCV::Select_FPR32_Using_CC_GPR:
9581   case RISCV::Select_FPR64_Using_CC_GPR:
9582     return emitSelectPseudo(MI, BB, Subtarget);
9583   case RISCV::BuildPairF64Pseudo:
9584     return emitBuildPairF64Pseudo(MI, BB);
9585   case RISCV::SplitF64Pseudo:
9586     return emitSplitF64Pseudo(MI, BB);
9587   case RISCV::PseudoQuietFLE_H:
9588     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9589   case RISCV::PseudoQuietFLT_H:
9590     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9591   case RISCV::PseudoQuietFLE_S:
9592     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9593   case RISCV::PseudoQuietFLT_S:
9594     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9595   case RISCV::PseudoQuietFLE_D:
9596     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9597   case RISCV::PseudoQuietFLT_D:
9598     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9599   }
9600 }
9601 
9602 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9603                                                         SDNode *Node) const {
9604   // Add FRM dependency to any instructions with dynamic rounding mode.
9605   unsigned Opc = MI.getOpcode();
9606   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9607   if (Idx < 0)
9608     return;
9609   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9610     return;
9611   // If the instruction already reads FRM, don't add another read.
9612   if (MI.readsRegister(RISCV::FRM))
9613     return;
9614   MI.addOperand(
9615       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9616 }
9617 
9618 // Calling Convention Implementation.
9619 // The expectations for frontend ABI lowering vary from target to target.
9620 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9621 // details, but this is a longer term goal. For now, we simply try to keep the
9622 // role of the frontend as simple and well-defined as possible. The rules can
9623 // be summarised as:
9624 // * Never split up large scalar arguments. We handle them here.
9625 // * If a hardfloat calling convention is being used, and the struct may be
9626 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9627 // available, then pass as two separate arguments. If either the GPRs or FPRs
9628 // are exhausted, then pass according to the rule below.
9629 // * If a struct could never be passed in registers or directly in a stack
9630 // slot (as it is larger than 2*XLEN and the floating point rules don't
9631 // apply), then pass it using a pointer with the byval attribute.
9632 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9633 // word-sized array or a 2*XLEN scalar (depending on alignment).
9634 // * The frontend can determine whether a struct is returned by reference or
9635 // not based on its size and fields. If it will be returned by reference, the
9636 // frontend must modify the prototype so a pointer with the sret annotation is
9637 // passed as the first argument. This is not necessary for large scalar
9638 // returns.
9639 // * Struct return values and varargs should be coerced to structs containing
9640 // register-size fields in the same situations they would be for fixed
9641 // arguments.
9642 
9643 static const MCPhysReg ArgGPRs[] = {
9644   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9645   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9646 };
9647 static const MCPhysReg ArgFPR16s[] = {
9648   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9649   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9650 };
9651 static const MCPhysReg ArgFPR32s[] = {
9652   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9653   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9654 };
9655 static const MCPhysReg ArgFPR64s[] = {
9656   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9657   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9658 };
9659 // This is an interim calling convention and it may be changed in the future.
9660 static const MCPhysReg ArgVRs[] = {
9661     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9662     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9663     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9664 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9665                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9666                                      RISCV::V20M2, RISCV::V22M2};
9667 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9668                                      RISCV::V20M4};
9669 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9670 
9671 // Pass a 2*XLEN argument that has been split into two XLEN values through
9672 // registers or the stack as necessary.
9673 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9674                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9675                                 MVT ValVT2, MVT LocVT2,
9676                                 ISD::ArgFlagsTy ArgFlags2) {
9677   unsigned XLenInBytes = XLen / 8;
9678   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9679     // At least one half can be passed via register.
9680     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9681                                      VA1.getLocVT(), CCValAssign::Full));
9682   } else {
9683     // Both halves must be passed on the stack, with proper alignment.
9684     Align StackAlign =
9685         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9686     State.addLoc(
9687         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9688                             State.AllocateStack(XLenInBytes, StackAlign),
9689                             VA1.getLocVT(), CCValAssign::Full));
9690     State.addLoc(CCValAssign::getMem(
9691         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9692         LocVT2, CCValAssign::Full));
9693     return false;
9694   }
9695 
9696   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9697     // The second half can also be passed via register.
9698     State.addLoc(
9699         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9700   } else {
9701     // The second half is passed via the stack, without additional alignment.
9702     State.addLoc(CCValAssign::getMem(
9703         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9704         LocVT2, CCValAssign::Full));
9705   }
9706 
9707   return false;
9708 }
9709 
9710 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9711                                Optional<unsigned> FirstMaskArgument,
9712                                CCState &State, const RISCVTargetLowering &TLI) {
9713   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9714   if (RC == &RISCV::VRRegClass) {
9715     // Assign the first mask argument to V0.
9716     // This is an interim calling convention and it may be changed in the
9717     // future.
9718     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9719       return State.AllocateReg(RISCV::V0);
9720     return State.AllocateReg(ArgVRs);
9721   }
9722   if (RC == &RISCV::VRM2RegClass)
9723     return State.AllocateReg(ArgVRM2s);
9724   if (RC == &RISCV::VRM4RegClass)
9725     return State.AllocateReg(ArgVRM4s);
9726   if (RC == &RISCV::VRM8RegClass)
9727     return State.AllocateReg(ArgVRM8s);
9728   llvm_unreachable("Unhandled register class for ValueType");
9729 }
9730 
9731 // Implements the RISC-V calling convention. Returns true upon failure.
9732 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9733                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9734                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9735                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9736                      Optional<unsigned> FirstMaskArgument) {
9737   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9738   assert(XLen == 32 || XLen == 64);
9739   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9740 
9741   // Any return value split in to more than two values can't be returned
9742   // directly. Vectors are returned via the available vector registers.
9743   if (!LocVT.isVector() && IsRet && ValNo > 1)
9744     return true;
9745 
9746   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9747   // variadic argument, or if no F16/F32 argument registers are available.
9748   bool UseGPRForF16_F32 = true;
9749   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9750   // variadic argument, or if no F64 argument registers are available.
9751   bool UseGPRForF64 = true;
9752 
9753   switch (ABI) {
9754   default:
9755     llvm_unreachable("Unexpected ABI");
9756   case RISCVABI::ABI_ILP32:
9757   case RISCVABI::ABI_LP64:
9758     break;
9759   case RISCVABI::ABI_ILP32F:
9760   case RISCVABI::ABI_LP64F:
9761     UseGPRForF16_F32 = !IsFixed;
9762     break;
9763   case RISCVABI::ABI_ILP32D:
9764   case RISCVABI::ABI_LP64D:
9765     UseGPRForF16_F32 = !IsFixed;
9766     UseGPRForF64 = !IsFixed;
9767     break;
9768   }
9769 
9770   // FPR16, FPR32, and FPR64 alias each other.
9771   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9772     UseGPRForF16_F32 = true;
9773     UseGPRForF64 = true;
9774   }
9775 
9776   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9777   // similar local variables rather than directly checking against the target
9778   // ABI.
9779 
9780   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9781     LocVT = XLenVT;
9782     LocInfo = CCValAssign::BCvt;
9783   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9784     LocVT = MVT::i64;
9785     LocInfo = CCValAssign::BCvt;
9786   }
9787 
9788   // If this is a variadic argument, the RISC-V calling convention requires
9789   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9790   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9791   // be used regardless of whether the original argument was split during
9792   // legalisation or not. The argument will not be passed by registers if the
9793   // original type is larger than 2*XLEN, so the register alignment rule does
9794   // not apply.
9795   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9796   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9797       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9798     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9799     // Skip 'odd' register if necessary.
9800     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9801       State.AllocateReg(ArgGPRs);
9802   }
9803 
9804   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9805   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9806       State.getPendingArgFlags();
9807 
9808   assert(PendingLocs.size() == PendingArgFlags.size() &&
9809          "PendingLocs and PendingArgFlags out of sync");
9810 
9811   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9812   // registers are exhausted.
9813   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9814     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9815            "Can't lower f64 if it is split");
9816     // Depending on available argument GPRS, f64 may be passed in a pair of
9817     // GPRs, split between a GPR and the stack, or passed completely on the
9818     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9819     // cases.
9820     Register Reg = State.AllocateReg(ArgGPRs);
9821     LocVT = MVT::i32;
9822     if (!Reg) {
9823       unsigned StackOffset = State.AllocateStack(8, Align(8));
9824       State.addLoc(
9825           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9826       return false;
9827     }
9828     if (!State.AllocateReg(ArgGPRs))
9829       State.AllocateStack(4, Align(4));
9830     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9831     return false;
9832   }
9833 
9834   // Fixed-length vectors are located in the corresponding scalable-vector
9835   // container types.
9836   if (ValVT.isFixedLengthVector())
9837     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9838 
9839   // Split arguments might be passed indirectly, so keep track of the pending
9840   // values. Split vectors are passed via a mix of registers and indirectly, so
9841   // treat them as we would any other argument.
9842   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9843     LocVT = XLenVT;
9844     LocInfo = CCValAssign::Indirect;
9845     PendingLocs.push_back(
9846         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9847     PendingArgFlags.push_back(ArgFlags);
9848     if (!ArgFlags.isSplitEnd()) {
9849       return false;
9850     }
9851   }
9852 
9853   // If the split argument only had two elements, it should be passed directly
9854   // in registers or on the stack.
9855   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9856       PendingLocs.size() <= 2) {
9857     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9858     // Apply the normal calling convention rules to the first half of the
9859     // split argument.
9860     CCValAssign VA = PendingLocs[0];
9861     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9862     PendingLocs.clear();
9863     PendingArgFlags.clear();
9864     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9865                                ArgFlags);
9866   }
9867 
9868   // Allocate to a register if possible, or else a stack slot.
9869   Register Reg;
9870   unsigned StoreSizeBytes = XLen / 8;
9871   Align StackAlign = Align(XLen / 8);
9872 
9873   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9874     Reg = State.AllocateReg(ArgFPR16s);
9875   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9876     Reg = State.AllocateReg(ArgFPR32s);
9877   else if (ValVT == MVT::f64 && !UseGPRForF64)
9878     Reg = State.AllocateReg(ArgFPR64s);
9879   else if (ValVT.isVector()) {
9880     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9881     if (!Reg) {
9882       // For return values, the vector must be passed fully via registers or
9883       // via the stack.
9884       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9885       // but we're using all of them.
9886       if (IsRet)
9887         return true;
9888       // Try using a GPR to pass the address
9889       if ((Reg = State.AllocateReg(ArgGPRs))) {
9890         LocVT = XLenVT;
9891         LocInfo = CCValAssign::Indirect;
9892       } else if (ValVT.isScalableVector()) {
9893         LocVT = XLenVT;
9894         LocInfo = CCValAssign::Indirect;
9895       } else {
9896         // Pass fixed-length vectors on the stack.
9897         LocVT = ValVT;
9898         StoreSizeBytes = ValVT.getStoreSize();
9899         // Align vectors to their element sizes, being careful for vXi1
9900         // vectors.
9901         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9902       }
9903     }
9904   } else {
9905     Reg = State.AllocateReg(ArgGPRs);
9906   }
9907 
9908   unsigned StackOffset =
9909       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9910 
9911   // If we reach this point and PendingLocs is non-empty, we must be at the
9912   // end of a split argument that must be passed indirectly.
9913   if (!PendingLocs.empty()) {
9914     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9915     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9916 
9917     for (auto &It : PendingLocs) {
9918       if (Reg)
9919         It.convertToReg(Reg);
9920       else
9921         It.convertToMem(StackOffset);
9922       State.addLoc(It);
9923     }
9924     PendingLocs.clear();
9925     PendingArgFlags.clear();
9926     return false;
9927   }
9928 
9929   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9930           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9931          "Expected an XLenVT or vector types at this stage");
9932 
9933   if (Reg) {
9934     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9935     return false;
9936   }
9937 
9938   // When a floating-point value is passed on the stack, no bit-conversion is
9939   // needed.
9940   if (ValVT.isFloatingPoint()) {
9941     LocVT = ValVT;
9942     LocInfo = CCValAssign::Full;
9943   }
9944   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9945   return false;
9946 }
9947 
9948 template <typename ArgTy>
9949 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9950   for (const auto &ArgIdx : enumerate(Args)) {
9951     MVT ArgVT = ArgIdx.value().VT;
9952     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9953       return ArgIdx.index();
9954   }
9955   return None;
9956 }
9957 
9958 void RISCVTargetLowering::analyzeInputArgs(
9959     MachineFunction &MF, CCState &CCInfo,
9960     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9961     RISCVCCAssignFn Fn) const {
9962   unsigned NumArgs = Ins.size();
9963   FunctionType *FType = MF.getFunction().getFunctionType();
9964 
9965   Optional<unsigned> FirstMaskArgument;
9966   if (Subtarget.hasVInstructions())
9967     FirstMaskArgument = preAssignMask(Ins);
9968 
9969   for (unsigned i = 0; i != NumArgs; ++i) {
9970     MVT ArgVT = Ins[i].VT;
9971     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9972 
9973     Type *ArgTy = nullptr;
9974     if (IsRet)
9975       ArgTy = FType->getReturnType();
9976     else if (Ins[i].isOrigArg())
9977       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9978 
9979     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9980     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9981            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9982            FirstMaskArgument)) {
9983       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9984                         << EVT(ArgVT).getEVTString() << '\n');
9985       llvm_unreachable(nullptr);
9986     }
9987   }
9988 }
9989 
9990 void RISCVTargetLowering::analyzeOutputArgs(
9991     MachineFunction &MF, CCState &CCInfo,
9992     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9993     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9994   unsigned NumArgs = Outs.size();
9995 
9996   Optional<unsigned> FirstMaskArgument;
9997   if (Subtarget.hasVInstructions())
9998     FirstMaskArgument = preAssignMask(Outs);
9999 
10000   for (unsigned i = 0; i != NumArgs; i++) {
10001     MVT ArgVT = Outs[i].VT;
10002     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10003     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10004 
10005     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10006     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10007            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10008            FirstMaskArgument)) {
10009       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10010                         << EVT(ArgVT).getEVTString() << "\n");
10011       llvm_unreachable(nullptr);
10012     }
10013   }
10014 }
10015 
10016 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10017 // values.
10018 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10019                                    const CCValAssign &VA, const SDLoc &DL,
10020                                    const RISCVSubtarget &Subtarget) {
10021   switch (VA.getLocInfo()) {
10022   default:
10023     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10024   case CCValAssign::Full:
10025     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10026       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10027     break;
10028   case CCValAssign::BCvt:
10029     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10030       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10031     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10032       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10033     else
10034       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10035     break;
10036   }
10037   return Val;
10038 }
10039 
10040 // The caller is responsible for loading the full value if the argument is
10041 // passed with CCValAssign::Indirect.
10042 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10043                                 const CCValAssign &VA, const SDLoc &DL,
10044                                 const RISCVTargetLowering &TLI) {
10045   MachineFunction &MF = DAG.getMachineFunction();
10046   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10047   EVT LocVT = VA.getLocVT();
10048   SDValue Val;
10049   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10050   Register VReg = RegInfo.createVirtualRegister(RC);
10051   RegInfo.addLiveIn(VA.getLocReg(), VReg);
10052   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10053 
10054   if (VA.getLocInfo() == CCValAssign::Indirect)
10055     return Val;
10056 
10057   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10058 }
10059 
10060 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10061                                    const CCValAssign &VA, const SDLoc &DL,
10062                                    const RISCVSubtarget &Subtarget) {
10063   EVT LocVT = VA.getLocVT();
10064 
10065   switch (VA.getLocInfo()) {
10066   default:
10067     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10068   case CCValAssign::Full:
10069     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10070       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10071     break;
10072   case CCValAssign::BCvt:
10073     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10074       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10075     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10076       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10077     else
10078       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10079     break;
10080   }
10081   return Val;
10082 }
10083 
10084 // The caller is responsible for loading the full value if the argument is
10085 // passed with CCValAssign::Indirect.
10086 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10087                                 const CCValAssign &VA, const SDLoc &DL) {
10088   MachineFunction &MF = DAG.getMachineFunction();
10089   MachineFrameInfo &MFI = MF.getFrameInfo();
10090   EVT LocVT = VA.getLocVT();
10091   EVT ValVT = VA.getValVT();
10092   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10093   if (ValVT.isScalableVector()) {
10094     // When the value is a scalable vector, we save the pointer which points to
10095     // the scalable vector value in the stack. The ValVT will be the pointer
10096     // type, instead of the scalable vector type.
10097     ValVT = LocVT;
10098   }
10099   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10100                                  /*IsImmutable=*/true);
10101   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10102   SDValue Val;
10103 
10104   ISD::LoadExtType ExtType;
10105   switch (VA.getLocInfo()) {
10106   default:
10107     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10108   case CCValAssign::Full:
10109   case CCValAssign::Indirect:
10110   case CCValAssign::BCvt:
10111     ExtType = ISD::NON_EXTLOAD;
10112     break;
10113   }
10114   Val = DAG.getExtLoad(
10115       ExtType, DL, LocVT, Chain, FIN,
10116       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10117   return Val;
10118 }
10119 
10120 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10121                                        const CCValAssign &VA, const SDLoc &DL) {
10122   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10123          "Unexpected VA");
10124   MachineFunction &MF = DAG.getMachineFunction();
10125   MachineFrameInfo &MFI = MF.getFrameInfo();
10126   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10127 
10128   if (VA.isMemLoc()) {
10129     // f64 is passed on the stack.
10130     int FI =
10131         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10132     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10133     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10134                        MachinePointerInfo::getFixedStack(MF, FI));
10135   }
10136 
10137   assert(VA.isRegLoc() && "Expected register VA assignment");
10138 
10139   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10140   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10141   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10142   SDValue Hi;
10143   if (VA.getLocReg() == RISCV::X17) {
10144     // Second half of f64 is passed on the stack.
10145     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10146     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10147     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10148                      MachinePointerInfo::getFixedStack(MF, FI));
10149   } else {
10150     // Second half of f64 is passed in another GPR.
10151     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10152     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10153     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10154   }
10155   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10156 }
10157 
10158 // FastCC has less than 1% performance improvement for some particular
10159 // benchmark. But theoretically, it may has benenfit for some cases.
10160 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10161                             unsigned ValNo, MVT ValVT, MVT LocVT,
10162                             CCValAssign::LocInfo LocInfo,
10163                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10164                             bool IsFixed, bool IsRet, Type *OrigTy,
10165                             const RISCVTargetLowering &TLI,
10166                             Optional<unsigned> FirstMaskArgument) {
10167 
10168   // X5 and X6 might be used for save-restore libcall.
10169   static const MCPhysReg GPRList[] = {
10170       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10171       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10172       RISCV::X29, RISCV::X30, RISCV::X31};
10173 
10174   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10175     if (unsigned Reg = State.AllocateReg(GPRList)) {
10176       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10177       return false;
10178     }
10179   }
10180 
10181   if (LocVT == MVT::f16) {
10182     static const MCPhysReg FPR16List[] = {
10183         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10184         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10185         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10186         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10187     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10188       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10189       return false;
10190     }
10191   }
10192 
10193   if (LocVT == MVT::f32) {
10194     static const MCPhysReg FPR32List[] = {
10195         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10196         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10197         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10198         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10199     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10200       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10201       return false;
10202     }
10203   }
10204 
10205   if (LocVT == MVT::f64) {
10206     static const MCPhysReg FPR64List[] = {
10207         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10208         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10209         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10210         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10211     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10212       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10213       return false;
10214     }
10215   }
10216 
10217   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10218     unsigned Offset4 = State.AllocateStack(4, Align(4));
10219     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10220     return false;
10221   }
10222 
10223   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10224     unsigned Offset5 = State.AllocateStack(8, Align(8));
10225     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10226     return false;
10227   }
10228 
10229   if (LocVT.isVector()) {
10230     if (unsigned Reg =
10231             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10232       // Fixed-length vectors are located in the corresponding scalable-vector
10233       // container types.
10234       if (ValVT.isFixedLengthVector())
10235         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10236       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10237     } else {
10238       // Try and pass the address via a "fast" GPR.
10239       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10240         LocInfo = CCValAssign::Indirect;
10241         LocVT = TLI.getSubtarget().getXLenVT();
10242         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10243       } else if (ValVT.isFixedLengthVector()) {
10244         auto StackAlign =
10245             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10246         unsigned StackOffset =
10247             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10248         State.addLoc(
10249             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10250       } else {
10251         // Can't pass scalable vectors on the stack.
10252         return true;
10253       }
10254     }
10255 
10256     return false;
10257   }
10258 
10259   return true; // CC didn't match.
10260 }
10261 
10262 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10263                          CCValAssign::LocInfo LocInfo,
10264                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10265 
10266   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10267     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10268     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10269     static const MCPhysReg GPRList[] = {
10270         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10271         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10272     if (unsigned Reg = State.AllocateReg(GPRList)) {
10273       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10274       return false;
10275     }
10276   }
10277 
10278   if (LocVT == MVT::f32) {
10279     // Pass in STG registers: F1, ..., F6
10280     //                        fs0 ... fs5
10281     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10282                                           RISCV::F18_F, RISCV::F19_F,
10283                                           RISCV::F20_F, RISCV::F21_F};
10284     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10285       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10286       return false;
10287     }
10288   }
10289 
10290   if (LocVT == MVT::f64) {
10291     // Pass in STG registers: D1, ..., D6
10292     //                        fs6 ... fs11
10293     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10294                                           RISCV::F24_D, RISCV::F25_D,
10295                                           RISCV::F26_D, RISCV::F27_D};
10296     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10297       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10298       return false;
10299     }
10300   }
10301 
10302   report_fatal_error("No registers left in GHC calling convention");
10303   return true;
10304 }
10305 
10306 // Transform physical registers into virtual registers.
10307 SDValue RISCVTargetLowering::LowerFormalArguments(
10308     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10309     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10310     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10311 
10312   MachineFunction &MF = DAG.getMachineFunction();
10313 
10314   switch (CallConv) {
10315   default:
10316     report_fatal_error("Unsupported calling convention");
10317   case CallingConv::C:
10318   case CallingConv::Fast:
10319     break;
10320   case CallingConv::GHC:
10321     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10322         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10323       report_fatal_error(
10324         "GHC calling convention requires the F and D instruction set extensions");
10325   }
10326 
10327   const Function &Func = MF.getFunction();
10328   if (Func.hasFnAttribute("interrupt")) {
10329     if (!Func.arg_empty())
10330       report_fatal_error(
10331         "Functions with the interrupt attribute cannot have arguments!");
10332 
10333     StringRef Kind =
10334       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10335 
10336     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10337       report_fatal_error(
10338         "Function interrupt attribute argument not supported!");
10339   }
10340 
10341   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10342   MVT XLenVT = Subtarget.getXLenVT();
10343   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10344   // Used with vargs to acumulate store chains.
10345   std::vector<SDValue> OutChains;
10346 
10347   // Assign locations to all of the incoming arguments.
10348   SmallVector<CCValAssign, 16> ArgLocs;
10349   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10350 
10351   if (CallConv == CallingConv::GHC)
10352     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10353   else
10354     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10355                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10356                                                    : CC_RISCV);
10357 
10358   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10359     CCValAssign &VA = ArgLocs[i];
10360     SDValue ArgValue;
10361     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10362     // case.
10363     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10364       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10365     else if (VA.isRegLoc())
10366       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10367     else
10368       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10369 
10370     if (VA.getLocInfo() == CCValAssign::Indirect) {
10371       // If the original argument was split and passed by reference (e.g. i128
10372       // on RV32), we need to load all parts of it here (using the same
10373       // address). Vectors may be partly split to registers and partly to the
10374       // stack, in which case the base address is partly offset and subsequent
10375       // stores are relative to that.
10376       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10377                                    MachinePointerInfo()));
10378       unsigned ArgIndex = Ins[i].OrigArgIndex;
10379       unsigned ArgPartOffset = Ins[i].PartOffset;
10380       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10381       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10382         CCValAssign &PartVA = ArgLocs[i + 1];
10383         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10384         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10385         if (PartVA.getValVT().isScalableVector())
10386           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10387         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10388         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10389                                      MachinePointerInfo()));
10390         ++i;
10391       }
10392       continue;
10393     }
10394     InVals.push_back(ArgValue);
10395   }
10396 
10397   if (IsVarArg) {
10398     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10399     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10400     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10401     MachineFrameInfo &MFI = MF.getFrameInfo();
10402     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10403     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10404 
10405     // Offset of the first variable argument from stack pointer, and size of
10406     // the vararg save area. For now, the varargs save area is either zero or
10407     // large enough to hold a0-a7.
10408     int VaArgOffset, VarArgsSaveSize;
10409 
10410     // If all registers are allocated, then all varargs must be passed on the
10411     // stack and we don't need to save any argregs.
10412     if (ArgRegs.size() == Idx) {
10413       VaArgOffset = CCInfo.getNextStackOffset();
10414       VarArgsSaveSize = 0;
10415     } else {
10416       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10417       VaArgOffset = -VarArgsSaveSize;
10418     }
10419 
10420     // Record the frame index of the first variable argument
10421     // which is a value necessary to VASTART.
10422     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10423     RVFI->setVarArgsFrameIndex(FI);
10424 
10425     // If saving an odd number of registers then create an extra stack slot to
10426     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10427     // offsets to even-numbered registered remain 2*XLEN-aligned.
10428     if (Idx % 2) {
10429       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10430       VarArgsSaveSize += XLenInBytes;
10431     }
10432 
10433     // Copy the integer registers that may have been used for passing varargs
10434     // to the vararg save area.
10435     for (unsigned I = Idx; I < ArgRegs.size();
10436          ++I, VaArgOffset += XLenInBytes) {
10437       const Register Reg = RegInfo.createVirtualRegister(RC);
10438       RegInfo.addLiveIn(ArgRegs[I], Reg);
10439       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10440       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10441       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10442       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10443                                    MachinePointerInfo::getFixedStack(MF, FI));
10444       cast<StoreSDNode>(Store.getNode())
10445           ->getMemOperand()
10446           ->setValue((Value *)nullptr);
10447       OutChains.push_back(Store);
10448     }
10449     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10450   }
10451 
10452   // All stores are grouped in one node to allow the matching between
10453   // the size of Ins and InVals. This only happens for vararg functions.
10454   if (!OutChains.empty()) {
10455     OutChains.push_back(Chain);
10456     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10457   }
10458 
10459   return Chain;
10460 }
10461 
10462 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10463 /// for tail call optimization.
10464 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10465 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10466     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10467     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10468 
10469   auto &Callee = CLI.Callee;
10470   auto CalleeCC = CLI.CallConv;
10471   auto &Outs = CLI.Outs;
10472   auto &Caller = MF.getFunction();
10473   auto CallerCC = Caller.getCallingConv();
10474 
10475   // Exception-handling functions need a special set of instructions to
10476   // indicate a return to the hardware. Tail-calling another function would
10477   // probably break this.
10478   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10479   // should be expanded as new function attributes are introduced.
10480   if (Caller.hasFnAttribute("interrupt"))
10481     return false;
10482 
10483   // Do not tail call opt if the stack is used to pass parameters.
10484   if (CCInfo.getNextStackOffset() != 0)
10485     return false;
10486 
10487   // Do not tail call opt if any parameters need to be passed indirectly.
10488   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10489   // passed indirectly. So the address of the value will be passed in a
10490   // register, or if not available, then the address is put on the stack. In
10491   // order to pass indirectly, space on the stack often needs to be allocated
10492   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10493   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10494   // are passed CCValAssign::Indirect.
10495   for (auto &VA : ArgLocs)
10496     if (VA.getLocInfo() == CCValAssign::Indirect)
10497       return false;
10498 
10499   // Do not tail call opt if either caller or callee uses struct return
10500   // semantics.
10501   auto IsCallerStructRet = Caller.hasStructRetAttr();
10502   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10503   if (IsCallerStructRet || IsCalleeStructRet)
10504     return false;
10505 
10506   // Externally-defined functions with weak linkage should not be
10507   // tail-called. The behaviour of branch instructions in this situation (as
10508   // used for tail calls) is implementation-defined, so we cannot rely on the
10509   // linker replacing the tail call with a return.
10510   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10511     const GlobalValue *GV = G->getGlobal();
10512     if (GV->hasExternalWeakLinkage())
10513       return false;
10514   }
10515 
10516   // The callee has to preserve all registers the caller needs to preserve.
10517   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10518   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10519   if (CalleeCC != CallerCC) {
10520     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10521     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10522       return false;
10523   }
10524 
10525   // Byval parameters hand the function a pointer directly into the stack area
10526   // we want to reuse during a tail call. Working around this *is* possible
10527   // but less efficient and uglier in LowerCall.
10528   for (auto &Arg : Outs)
10529     if (Arg.Flags.isByVal())
10530       return false;
10531 
10532   return true;
10533 }
10534 
10535 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10536   return DAG.getDataLayout().getPrefTypeAlign(
10537       VT.getTypeForEVT(*DAG.getContext()));
10538 }
10539 
10540 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10541 // and output parameter nodes.
10542 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10543                                        SmallVectorImpl<SDValue> &InVals) const {
10544   SelectionDAG &DAG = CLI.DAG;
10545   SDLoc &DL = CLI.DL;
10546   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10547   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10548   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10549   SDValue Chain = CLI.Chain;
10550   SDValue Callee = CLI.Callee;
10551   bool &IsTailCall = CLI.IsTailCall;
10552   CallingConv::ID CallConv = CLI.CallConv;
10553   bool IsVarArg = CLI.IsVarArg;
10554   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10555   MVT XLenVT = Subtarget.getXLenVT();
10556 
10557   MachineFunction &MF = DAG.getMachineFunction();
10558 
10559   // Analyze the operands of the call, assigning locations to each operand.
10560   SmallVector<CCValAssign, 16> ArgLocs;
10561   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10562 
10563   if (CallConv == CallingConv::GHC)
10564     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10565   else
10566     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10567                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10568                                                     : CC_RISCV);
10569 
10570   // Check if it's really possible to do a tail call.
10571   if (IsTailCall)
10572     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10573 
10574   if (IsTailCall)
10575     ++NumTailCalls;
10576   else if (CLI.CB && CLI.CB->isMustTailCall())
10577     report_fatal_error("failed to perform tail call elimination on a call "
10578                        "site marked musttail");
10579 
10580   // Get a count of how many bytes are to be pushed on the stack.
10581   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10582 
10583   // Create local copies for byval args
10584   SmallVector<SDValue, 8> ByValArgs;
10585   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10586     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10587     if (!Flags.isByVal())
10588       continue;
10589 
10590     SDValue Arg = OutVals[i];
10591     unsigned Size = Flags.getByValSize();
10592     Align Alignment = Flags.getNonZeroByValAlign();
10593 
10594     int FI =
10595         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10596     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10597     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10598 
10599     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10600                           /*IsVolatile=*/false,
10601                           /*AlwaysInline=*/false, IsTailCall,
10602                           MachinePointerInfo(), MachinePointerInfo());
10603     ByValArgs.push_back(FIPtr);
10604   }
10605 
10606   if (!IsTailCall)
10607     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10608 
10609   // Copy argument values to their designated locations.
10610   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10611   SmallVector<SDValue, 8> MemOpChains;
10612   SDValue StackPtr;
10613   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10614     CCValAssign &VA = ArgLocs[i];
10615     SDValue ArgValue = OutVals[i];
10616     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10617 
10618     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10619     bool IsF64OnRV32DSoftABI =
10620         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10621     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10622       SDValue SplitF64 = DAG.getNode(
10623           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10624       SDValue Lo = SplitF64.getValue(0);
10625       SDValue Hi = SplitF64.getValue(1);
10626 
10627       Register RegLo = VA.getLocReg();
10628       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10629 
10630       if (RegLo == RISCV::X17) {
10631         // Second half of f64 is passed on the stack.
10632         // Work out the address of the stack slot.
10633         if (!StackPtr.getNode())
10634           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10635         // Emit the store.
10636         MemOpChains.push_back(
10637             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10638       } else {
10639         // Second half of f64 is passed in another GPR.
10640         assert(RegLo < RISCV::X31 && "Invalid register pair");
10641         Register RegHigh = RegLo + 1;
10642         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10643       }
10644       continue;
10645     }
10646 
10647     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10648     // as any other MemLoc.
10649 
10650     // Promote the value if needed.
10651     // For now, only handle fully promoted and indirect arguments.
10652     if (VA.getLocInfo() == CCValAssign::Indirect) {
10653       // Store the argument in a stack slot and pass its address.
10654       Align StackAlign =
10655           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10656                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10657       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10658       // If the original argument was split (e.g. i128), we need
10659       // to store the required parts of it here (and pass just one address).
10660       // Vectors may be partly split to registers and partly to the stack, in
10661       // which case the base address is partly offset and subsequent stores are
10662       // relative to that.
10663       unsigned ArgIndex = Outs[i].OrigArgIndex;
10664       unsigned ArgPartOffset = Outs[i].PartOffset;
10665       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10666       // Calculate the total size to store. We don't have access to what we're
10667       // actually storing other than performing the loop and collecting the
10668       // info.
10669       SmallVector<std::pair<SDValue, SDValue>> Parts;
10670       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10671         SDValue PartValue = OutVals[i + 1];
10672         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10673         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10674         EVT PartVT = PartValue.getValueType();
10675         if (PartVT.isScalableVector())
10676           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10677         StoredSize += PartVT.getStoreSize();
10678         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10679         Parts.push_back(std::make_pair(PartValue, Offset));
10680         ++i;
10681       }
10682       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10683       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10684       MemOpChains.push_back(
10685           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10686                        MachinePointerInfo::getFixedStack(MF, FI)));
10687       for (const auto &Part : Parts) {
10688         SDValue PartValue = Part.first;
10689         SDValue PartOffset = Part.second;
10690         SDValue Address =
10691             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10692         MemOpChains.push_back(
10693             DAG.getStore(Chain, DL, PartValue, Address,
10694                          MachinePointerInfo::getFixedStack(MF, FI)));
10695       }
10696       ArgValue = SpillSlot;
10697     } else {
10698       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10699     }
10700 
10701     // Use local copy if it is a byval arg.
10702     if (Flags.isByVal())
10703       ArgValue = ByValArgs[j++];
10704 
10705     if (VA.isRegLoc()) {
10706       // Queue up the argument copies and emit them at the end.
10707       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10708     } else {
10709       assert(VA.isMemLoc() && "Argument not register or memory");
10710       assert(!IsTailCall && "Tail call not allowed if stack is used "
10711                             "for passing parameters");
10712 
10713       // Work out the address of the stack slot.
10714       if (!StackPtr.getNode())
10715         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10716       SDValue Address =
10717           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10718                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10719 
10720       // Emit the store.
10721       MemOpChains.push_back(
10722           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10723     }
10724   }
10725 
10726   // Join the stores, which are independent of one another.
10727   if (!MemOpChains.empty())
10728     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10729 
10730   SDValue Glue;
10731 
10732   // Build a sequence of copy-to-reg nodes, chained and glued together.
10733   for (auto &Reg : RegsToPass) {
10734     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10735     Glue = Chain.getValue(1);
10736   }
10737 
10738   // Validate that none of the argument registers have been marked as
10739   // reserved, if so report an error. Do the same for the return address if this
10740   // is not a tailcall.
10741   validateCCReservedRegs(RegsToPass, MF);
10742   if (!IsTailCall &&
10743       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10744     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10745         MF.getFunction(),
10746         "Return address register required, but has been reserved."});
10747 
10748   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10749   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10750   // split it and then direct call can be matched by PseudoCALL.
10751   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10752     const GlobalValue *GV = S->getGlobal();
10753 
10754     unsigned OpFlags = RISCVII::MO_CALL;
10755     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10756       OpFlags = RISCVII::MO_PLT;
10757 
10758     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10759   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10760     unsigned OpFlags = RISCVII::MO_CALL;
10761 
10762     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10763                                                  nullptr))
10764       OpFlags = RISCVII::MO_PLT;
10765 
10766     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10767   }
10768 
10769   // The first call operand is the chain and the second is the target address.
10770   SmallVector<SDValue, 8> Ops;
10771   Ops.push_back(Chain);
10772   Ops.push_back(Callee);
10773 
10774   // Add argument registers to the end of the list so that they are
10775   // known live into the call.
10776   for (auto &Reg : RegsToPass)
10777     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10778 
10779   if (!IsTailCall) {
10780     // Add a register mask operand representing the call-preserved registers.
10781     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10782     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10783     assert(Mask && "Missing call preserved mask for calling convention");
10784     Ops.push_back(DAG.getRegisterMask(Mask));
10785   }
10786 
10787   // Glue the call to the argument copies, if any.
10788   if (Glue.getNode())
10789     Ops.push_back(Glue);
10790 
10791   // Emit the call.
10792   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10793 
10794   if (IsTailCall) {
10795     MF.getFrameInfo().setHasTailCall();
10796     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10797   }
10798 
10799   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10800   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10801   Glue = Chain.getValue(1);
10802 
10803   // Mark the end of the call, which is glued to the call itself.
10804   Chain = DAG.getCALLSEQ_END(Chain,
10805                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10806                              DAG.getConstant(0, DL, PtrVT, true),
10807                              Glue, DL);
10808   Glue = Chain.getValue(1);
10809 
10810   // Assign locations to each value returned by this call.
10811   SmallVector<CCValAssign, 16> RVLocs;
10812   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10813   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10814 
10815   // Copy all of the result registers out of their specified physreg.
10816   for (auto &VA : RVLocs) {
10817     // Copy the value out
10818     SDValue RetValue =
10819         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10820     // Glue the RetValue to the end of the call sequence
10821     Chain = RetValue.getValue(1);
10822     Glue = RetValue.getValue(2);
10823 
10824     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10825       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10826       SDValue RetValue2 =
10827           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10828       Chain = RetValue2.getValue(1);
10829       Glue = RetValue2.getValue(2);
10830       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10831                              RetValue2);
10832     }
10833 
10834     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10835 
10836     InVals.push_back(RetValue);
10837   }
10838 
10839   return Chain;
10840 }
10841 
10842 bool RISCVTargetLowering::CanLowerReturn(
10843     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10844     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10845   SmallVector<CCValAssign, 16> RVLocs;
10846   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10847 
10848   Optional<unsigned> FirstMaskArgument;
10849   if (Subtarget.hasVInstructions())
10850     FirstMaskArgument = preAssignMask(Outs);
10851 
10852   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10853     MVT VT = Outs[i].VT;
10854     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10855     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10856     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10857                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10858                  *this, FirstMaskArgument))
10859       return false;
10860   }
10861   return true;
10862 }
10863 
10864 SDValue
10865 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10866                                  bool IsVarArg,
10867                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10868                                  const SmallVectorImpl<SDValue> &OutVals,
10869                                  const SDLoc &DL, SelectionDAG &DAG) const {
10870   const MachineFunction &MF = DAG.getMachineFunction();
10871   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10872 
10873   // Stores the assignment of the return value to a location.
10874   SmallVector<CCValAssign, 16> RVLocs;
10875 
10876   // Info about the registers and stack slot.
10877   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10878                  *DAG.getContext());
10879 
10880   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10881                     nullptr, CC_RISCV);
10882 
10883   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10884     report_fatal_error("GHC functions return void only");
10885 
10886   SDValue Glue;
10887   SmallVector<SDValue, 4> RetOps(1, Chain);
10888 
10889   // Copy the result values into the output registers.
10890   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10891     SDValue Val = OutVals[i];
10892     CCValAssign &VA = RVLocs[i];
10893     assert(VA.isRegLoc() && "Can only return in registers!");
10894 
10895     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10896       // Handle returning f64 on RV32D with a soft float ABI.
10897       assert(VA.isRegLoc() && "Expected return via registers");
10898       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10899                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10900       SDValue Lo = SplitF64.getValue(0);
10901       SDValue Hi = SplitF64.getValue(1);
10902       Register RegLo = VA.getLocReg();
10903       assert(RegLo < RISCV::X31 && "Invalid register pair");
10904       Register RegHi = RegLo + 1;
10905 
10906       if (STI.isRegisterReservedByUser(RegLo) ||
10907           STI.isRegisterReservedByUser(RegHi))
10908         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10909             MF.getFunction(),
10910             "Return value register required, but has been reserved."});
10911 
10912       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10913       Glue = Chain.getValue(1);
10914       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10915       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10916       Glue = Chain.getValue(1);
10917       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10918     } else {
10919       // Handle a 'normal' return.
10920       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10921       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10922 
10923       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10924         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10925             MF.getFunction(),
10926             "Return value register required, but has been reserved."});
10927 
10928       // Guarantee that all emitted copies are stuck together.
10929       Glue = Chain.getValue(1);
10930       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10931     }
10932   }
10933 
10934   RetOps[0] = Chain; // Update chain.
10935 
10936   // Add the glue node if we have it.
10937   if (Glue.getNode()) {
10938     RetOps.push_back(Glue);
10939   }
10940 
10941   unsigned RetOpc = RISCVISD::RET_FLAG;
10942   // Interrupt service routines use different return instructions.
10943   const Function &Func = DAG.getMachineFunction().getFunction();
10944   if (Func.hasFnAttribute("interrupt")) {
10945     if (!Func.getReturnType()->isVoidTy())
10946       report_fatal_error(
10947           "Functions with the interrupt attribute must have void return type!");
10948 
10949     MachineFunction &MF = DAG.getMachineFunction();
10950     StringRef Kind =
10951       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10952 
10953     if (Kind == "user")
10954       RetOpc = RISCVISD::URET_FLAG;
10955     else if (Kind == "supervisor")
10956       RetOpc = RISCVISD::SRET_FLAG;
10957     else
10958       RetOpc = RISCVISD::MRET_FLAG;
10959   }
10960 
10961   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10962 }
10963 
10964 void RISCVTargetLowering::validateCCReservedRegs(
10965     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10966     MachineFunction &MF) const {
10967   const Function &F = MF.getFunction();
10968   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10969 
10970   if (llvm::any_of(Regs, [&STI](auto Reg) {
10971         return STI.isRegisterReservedByUser(Reg.first);
10972       }))
10973     F.getContext().diagnose(DiagnosticInfoUnsupported{
10974         F, "Argument register required, but has been reserved."});
10975 }
10976 
10977 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10978   return CI->isTailCall();
10979 }
10980 
10981 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10982 #define NODE_NAME_CASE(NODE)                                                   \
10983   case RISCVISD::NODE:                                                         \
10984     return "RISCVISD::" #NODE;
10985   // clang-format off
10986   switch ((RISCVISD::NodeType)Opcode) {
10987   case RISCVISD::FIRST_NUMBER:
10988     break;
10989   NODE_NAME_CASE(RET_FLAG)
10990   NODE_NAME_CASE(URET_FLAG)
10991   NODE_NAME_CASE(SRET_FLAG)
10992   NODE_NAME_CASE(MRET_FLAG)
10993   NODE_NAME_CASE(CALL)
10994   NODE_NAME_CASE(SELECT_CC)
10995   NODE_NAME_CASE(BR_CC)
10996   NODE_NAME_CASE(BuildPairF64)
10997   NODE_NAME_CASE(SplitF64)
10998   NODE_NAME_CASE(TAIL)
10999   NODE_NAME_CASE(MULHSU)
11000   NODE_NAME_CASE(SLLW)
11001   NODE_NAME_CASE(SRAW)
11002   NODE_NAME_CASE(SRLW)
11003   NODE_NAME_CASE(DIVW)
11004   NODE_NAME_CASE(DIVUW)
11005   NODE_NAME_CASE(REMUW)
11006   NODE_NAME_CASE(ROLW)
11007   NODE_NAME_CASE(RORW)
11008   NODE_NAME_CASE(CLZW)
11009   NODE_NAME_CASE(CTZW)
11010   NODE_NAME_CASE(FSLW)
11011   NODE_NAME_CASE(FSRW)
11012   NODE_NAME_CASE(FSL)
11013   NODE_NAME_CASE(FSR)
11014   NODE_NAME_CASE(FMV_H_X)
11015   NODE_NAME_CASE(FMV_X_ANYEXTH)
11016   NODE_NAME_CASE(FMV_X_SIGNEXTH)
11017   NODE_NAME_CASE(FMV_W_X_RV64)
11018   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11019   NODE_NAME_CASE(FCVT_X)
11020   NODE_NAME_CASE(FCVT_XU)
11021   NODE_NAME_CASE(FCVT_W_RV64)
11022   NODE_NAME_CASE(FCVT_WU_RV64)
11023   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11024   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11025   NODE_NAME_CASE(READ_CYCLE_WIDE)
11026   NODE_NAME_CASE(GREV)
11027   NODE_NAME_CASE(GREVW)
11028   NODE_NAME_CASE(GORC)
11029   NODE_NAME_CASE(GORCW)
11030   NODE_NAME_CASE(SHFL)
11031   NODE_NAME_CASE(SHFLW)
11032   NODE_NAME_CASE(UNSHFL)
11033   NODE_NAME_CASE(UNSHFLW)
11034   NODE_NAME_CASE(BFP)
11035   NODE_NAME_CASE(BFPW)
11036   NODE_NAME_CASE(BCOMPRESS)
11037   NODE_NAME_CASE(BCOMPRESSW)
11038   NODE_NAME_CASE(BDECOMPRESS)
11039   NODE_NAME_CASE(BDECOMPRESSW)
11040   NODE_NAME_CASE(VMV_V_X_VL)
11041   NODE_NAME_CASE(VFMV_V_F_VL)
11042   NODE_NAME_CASE(VMV_X_S)
11043   NODE_NAME_CASE(VMV_S_X_VL)
11044   NODE_NAME_CASE(VFMV_S_F_VL)
11045   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11046   NODE_NAME_CASE(READ_VLENB)
11047   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11048   NODE_NAME_CASE(VSLIDEUP_VL)
11049   NODE_NAME_CASE(VSLIDE1UP_VL)
11050   NODE_NAME_CASE(VSLIDEDOWN_VL)
11051   NODE_NAME_CASE(VSLIDE1DOWN_VL)
11052   NODE_NAME_CASE(VID_VL)
11053   NODE_NAME_CASE(VFNCVT_ROD_VL)
11054   NODE_NAME_CASE(VECREDUCE_ADD_VL)
11055   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11056   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11057   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11058   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11059   NODE_NAME_CASE(VECREDUCE_AND_VL)
11060   NODE_NAME_CASE(VECREDUCE_OR_VL)
11061   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11062   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11063   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11064   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11065   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11066   NODE_NAME_CASE(ADD_VL)
11067   NODE_NAME_CASE(AND_VL)
11068   NODE_NAME_CASE(MUL_VL)
11069   NODE_NAME_CASE(OR_VL)
11070   NODE_NAME_CASE(SDIV_VL)
11071   NODE_NAME_CASE(SHL_VL)
11072   NODE_NAME_CASE(SREM_VL)
11073   NODE_NAME_CASE(SRA_VL)
11074   NODE_NAME_CASE(SRL_VL)
11075   NODE_NAME_CASE(SUB_VL)
11076   NODE_NAME_CASE(UDIV_VL)
11077   NODE_NAME_CASE(UREM_VL)
11078   NODE_NAME_CASE(XOR_VL)
11079   NODE_NAME_CASE(SADDSAT_VL)
11080   NODE_NAME_CASE(UADDSAT_VL)
11081   NODE_NAME_CASE(SSUBSAT_VL)
11082   NODE_NAME_CASE(USUBSAT_VL)
11083   NODE_NAME_CASE(FADD_VL)
11084   NODE_NAME_CASE(FSUB_VL)
11085   NODE_NAME_CASE(FMUL_VL)
11086   NODE_NAME_CASE(FDIV_VL)
11087   NODE_NAME_CASE(FNEG_VL)
11088   NODE_NAME_CASE(FABS_VL)
11089   NODE_NAME_CASE(FSQRT_VL)
11090   NODE_NAME_CASE(FMA_VL)
11091   NODE_NAME_CASE(FCOPYSIGN_VL)
11092   NODE_NAME_CASE(SMIN_VL)
11093   NODE_NAME_CASE(SMAX_VL)
11094   NODE_NAME_CASE(UMIN_VL)
11095   NODE_NAME_CASE(UMAX_VL)
11096   NODE_NAME_CASE(FMINNUM_VL)
11097   NODE_NAME_CASE(FMAXNUM_VL)
11098   NODE_NAME_CASE(MULHS_VL)
11099   NODE_NAME_CASE(MULHU_VL)
11100   NODE_NAME_CASE(FP_TO_SINT_VL)
11101   NODE_NAME_CASE(FP_TO_UINT_VL)
11102   NODE_NAME_CASE(SINT_TO_FP_VL)
11103   NODE_NAME_CASE(UINT_TO_FP_VL)
11104   NODE_NAME_CASE(FP_EXTEND_VL)
11105   NODE_NAME_CASE(FP_ROUND_VL)
11106   NODE_NAME_CASE(VWMUL_VL)
11107   NODE_NAME_CASE(VWMULU_VL)
11108   NODE_NAME_CASE(VWMULSU_VL)
11109   NODE_NAME_CASE(VWADD_VL)
11110   NODE_NAME_CASE(VWADDU_VL)
11111   NODE_NAME_CASE(VWSUB_VL)
11112   NODE_NAME_CASE(VWSUBU_VL)
11113   NODE_NAME_CASE(VWADD_W_VL)
11114   NODE_NAME_CASE(VWADDU_W_VL)
11115   NODE_NAME_CASE(VWSUB_W_VL)
11116   NODE_NAME_CASE(VWSUBU_W_VL)
11117   NODE_NAME_CASE(SETCC_VL)
11118   NODE_NAME_CASE(VSELECT_VL)
11119   NODE_NAME_CASE(VP_MERGE_VL)
11120   NODE_NAME_CASE(VMAND_VL)
11121   NODE_NAME_CASE(VMOR_VL)
11122   NODE_NAME_CASE(VMXOR_VL)
11123   NODE_NAME_CASE(VMCLR_VL)
11124   NODE_NAME_CASE(VMSET_VL)
11125   NODE_NAME_CASE(VRGATHER_VX_VL)
11126   NODE_NAME_CASE(VRGATHER_VV_VL)
11127   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11128   NODE_NAME_CASE(VSEXT_VL)
11129   NODE_NAME_CASE(VZEXT_VL)
11130   NODE_NAME_CASE(VCPOP_VL)
11131   NODE_NAME_CASE(READ_CSR)
11132   NODE_NAME_CASE(WRITE_CSR)
11133   NODE_NAME_CASE(SWAP_CSR)
11134   }
11135   // clang-format on
11136   return nullptr;
11137 #undef NODE_NAME_CASE
11138 }
11139 
11140 /// getConstraintType - Given a constraint letter, return the type of
11141 /// constraint it is for this target.
11142 RISCVTargetLowering::ConstraintType
11143 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11144   if (Constraint.size() == 1) {
11145     switch (Constraint[0]) {
11146     default:
11147       break;
11148     case 'f':
11149       return C_RegisterClass;
11150     case 'I':
11151     case 'J':
11152     case 'K':
11153       return C_Immediate;
11154     case 'A':
11155       return C_Memory;
11156     case 'S': // A symbolic address
11157       return C_Other;
11158     }
11159   } else {
11160     if (Constraint == "vr" || Constraint == "vm")
11161       return C_RegisterClass;
11162   }
11163   return TargetLowering::getConstraintType(Constraint);
11164 }
11165 
11166 std::pair<unsigned, const TargetRegisterClass *>
11167 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11168                                                   StringRef Constraint,
11169                                                   MVT VT) const {
11170   // First, see if this is a constraint that directly corresponds to a
11171   // RISCV register class.
11172   if (Constraint.size() == 1) {
11173     switch (Constraint[0]) {
11174     case 'r':
11175       // TODO: Support fixed vectors up to XLen for P extension?
11176       if (VT.isVector())
11177         break;
11178       return std::make_pair(0U, &RISCV::GPRRegClass);
11179     case 'f':
11180       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11181         return std::make_pair(0U, &RISCV::FPR16RegClass);
11182       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11183         return std::make_pair(0U, &RISCV::FPR32RegClass);
11184       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11185         return std::make_pair(0U, &RISCV::FPR64RegClass);
11186       break;
11187     default:
11188       break;
11189     }
11190   } else if (Constraint == "vr") {
11191     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11192                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11193       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11194         return std::make_pair(0U, RC);
11195     }
11196   } else if (Constraint == "vm") {
11197     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11198       return std::make_pair(0U, &RISCV::VMV0RegClass);
11199   }
11200 
11201   // Clang will correctly decode the usage of register name aliases into their
11202   // official names. However, other frontends like `rustc` do not. This allows
11203   // users of these frontends to use the ABI names for registers in LLVM-style
11204   // register constraints.
11205   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11206                                .Case("{zero}", RISCV::X0)
11207                                .Case("{ra}", RISCV::X1)
11208                                .Case("{sp}", RISCV::X2)
11209                                .Case("{gp}", RISCV::X3)
11210                                .Case("{tp}", RISCV::X4)
11211                                .Case("{t0}", RISCV::X5)
11212                                .Case("{t1}", RISCV::X6)
11213                                .Case("{t2}", RISCV::X7)
11214                                .Cases("{s0}", "{fp}", RISCV::X8)
11215                                .Case("{s1}", RISCV::X9)
11216                                .Case("{a0}", RISCV::X10)
11217                                .Case("{a1}", RISCV::X11)
11218                                .Case("{a2}", RISCV::X12)
11219                                .Case("{a3}", RISCV::X13)
11220                                .Case("{a4}", RISCV::X14)
11221                                .Case("{a5}", RISCV::X15)
11222                                .Case("{a6}", RISCV::X16)
11223                                .Case("{a7}", RISCV::X17)
11224                                .Case("{s2}", RISCV::X18)
11225                                .Case("{s3}", RISCV::X19)
11226                                .Case("{s4}", RISCV::X20)
11227                                .Case("{s5}", RISCV::X21)
11228                                .Case("{s6}", RISCV::X22)
11229                                .Case("{s7}", RISCV::X23)
11230                                .Case("{s8}", RISCV::X24)
11231                                .Case("{s9}", RISCV::X25)
11232                                .Case("{s10}", RISCV::X26)
11233                                .Case("{s11}", RISCV::X27)
11234                                .Case("{t3}", RISCV::X28)
11235                                .Case("{t4}", RISCV::X29)
11236                                .Case("{t5}", RISCV::X30)
11237                                .Case("{t6}", RISCV::X31)
11238                                .Default(RISCV::NoRegister);
11239   if (XRegFromAlias != RISCV::NoRegister)
11240     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11241 
11242   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11243   // TableGen record rather than the AsmName to choose registers for InlineAsm
11244   // constraints, plus we want to match those names to the widest floating point
11245   // register type available, manually select floating point registers here.
11246   //
11247   // The second case is the ABI name of the register, so that frontends can also
11248   // use the ABI names in register constraint lists.
11249   if (Subtarget.hasStdExtF()) {
11250     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11251                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11252                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11253                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11254                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11255                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11256                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11257                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11258                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11259                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11260                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11261                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11262                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11263                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11264                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11265                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11266                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11267                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11268                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11269                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11270                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11271                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11272                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11273                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11274                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11275                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11276                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11277                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11278                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11279                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11280                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11281                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11282                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11283                         .Default(RISCV::NoRegister);
11284     if (FReg != RISCV::NoRegister) {
11285       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11286       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11287         unsigned RegNo = FReg - RISCV::F0_F;
11288         unsigned DReg = RISCV::F0_D + RegNo;
11289         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11290       }
11291       if (VT == MVT::f32 || VT == MVT::Other)
11292         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11293       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11294         unsigned RegNo = FReg - RISCV::F0_F;
11295         unsigned HReg = RISCV::F0_H + RegNo;
11296         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11297       }
11298     }
11299   }
11300 
11301   if (Subtarget.hasVInstructions()) {
11302     Register VReg = StringSwitch<Register>(Constraint.lower())
11303                         .Case("{v0}", RISCV::V0)
11304                         .Case("{v1}", RISCV::V1)
11305                         .Case("{v2}", RISCV::V2)
11306                         .Case("{v3}", RISCV::V3)
11307                         .Case("{v4}", RISCV::V4)
11308                         .Case("{v5}", RISCV::V5)
11309                         .Case("{v6}", RISCV::V6)
11310                         .Case("{v7}", RISCV::V7)
11311                         .Case("{v8}", RISCV::V8)
11312                         .Case("{v9}", RISCV::V9)
11313                         .Case("{v10}", RISCV::V10)
11314                         .Case("{v11}", RISCV::V11)
11315                         .Case("{v12}", RISCV::V12)
11316                         .Case("{v13}", RISCV::V13)
11317                         .Case("{v14}", RISCV::V14)
11318                         .Case("{v15}", RISCV::V15)
11319                         .Case("{v16}", RISCV::V16)
11320                         .Case("{v17}", RISCV::V17)
11321                         .Case("{v18}", RISCV::V18)
11322                         .Case("{v19}", RISCV::V19)
11323                         .Case("{v20}", RISCV::V20)
11324                         .Case("{v21}", RISCV::V21)
11325                         .Case("{v22}", RISCV::V22)
11326                         .Case("{v23}", RISCV::V23)
11327                         .Case("{v24}", RISCV::V24)
11328                         .Case("{v25}", RISCV::V25)
11329                         .Case("{v26}", RISCV::V26)
11330                         .Case("{v27}", RISCV::V27)
11331                         .Case("{v28}", RISCV::V28)
11332                         .Case("{v29}", RISCV::V29)
11333                         .Case("{v30}", RISCV::V30)
11334                         .Case("{v31}", RISCV::V31)
11335                         .Default(RISCV::NoRegister);
11336     if (VReg != RISCV::NoRegister) {
11337       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11338         return std::make_pair(VReg, &RISCV::VMRegClass);
11339       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11340         return std::make_pair(VReg, &RISCV::VRRegClass);
11341       for (const auto *RC :
11342            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11343         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11344           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11345           return std::make_pair(VReg, RC);
11346         }
11347       }
11348     }
11349   }
11350 
11351   std::pair<Register, const TargetRegisterClass *> Res =
11352       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11353 
11354   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11355   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11356   // Subtarget into account.
11357   if (Res.second == &RISCV::GPRF16RegClass ||
11358       Res.second == &RISCV::GPRF32RegClass ||
11359       Res.second == &RISCV::GPRF64RegClass)
11360     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11361 
11362   return Res;
11363 }
11364 
11365 unsigned
11366 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11367   // Currently only support length 1 constraints.
11368   if (ConstraintCode.size() == 1) {
11369     switch (ConstraintCode[0]) {
11370     case 'A':
11371       return InlineAsm::Constraint_A;
11372     default:
11373       break;
11374     }
11375   }
11376 
11377   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11378 }
11379 
11380 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11381     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11382     SelectionDAG &DAG) const {
11383   // Currently only support length 1 constraints.
11384   if (Constraint.length() == 1) {
11385     switch (Constraint[0]) {
11386     case 'I':
11387       // Validate & create a 12-bit signed immediate operand.
11388       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11389         uint64_t CVal = C->getSExtValue();
11390         if (isInt<12>(CVal))
11391           Ops.push_back(
11392               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11393       }
11394       return;
11395     case 'J':
11396       // Validate & create an integer zero operand.
11397       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11398         if (C->getZExtValue() == 0)
11399           Ops.push_back(
11400               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11401       return;
11402     case 'K':
11403       // Validate & create a 5-bit unsigned immediate operand.
11404       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11405         uint64_t CVal = C->getZExtValue();
11406         if (isUInt<5>(CVal))
11407           Ops.push_back(
11408               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11409       }
11410       return;
11411     case 'S':
11412       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11413         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11414                                                  GA->getValueType(0)));
11415       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11416         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11417                                                 BA->getValueType(0)));
11418       }
11419       return;
11420     default:
11421       break;
11422     }
11423   }
11424   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11425 }
11426 
11427 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11428                                                    Instruction *Inst,
11429                                                    AtomicOrdering Ord) const {
11430   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11431     return Builder.CreateFence(Ord);
11432   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11433     return Builder.CreateFence(AtomicOrdering::Release);
11434   return nullptr;
11435 }
11436 
11437 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11438                                                     Instruction *Inst,
11439                                                     AtomicOrdering Ord) const {
11440   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11441     return Builder.CreateFence(AtomicOrdering::Acquire);
11442   return nullptr;
11443 }
11444 
11445 TargetLowering::AtomicExpansionKind
11446 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11447   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11448   // point operations can't be used in an lr/sc sequence without breaking the
11449   // forward-progress guarantee.
11450   if (AI->isFloatingPointOperation())
11451     return AtomicExpansionKind::CmpXChg;
11452 
11453   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11454   if (Size == 8 || Size == 16)
11455     return AtomicExpansionKind::MaskedIntrinsic;
11456   return AtomicExpansionKind::None;
11457 }
11458 
11459 static Intrinsic::ID
11460 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11461   if (XLen == 32) {
11462     switch (BinOp) {
11463     default:
11464       llvm_unreachable("Unexpected AtomicRMW BinOp");
11465     case AtomicRMWInst::Xchg:
11466       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11467     case AtomicRMWInst::Add:
11468       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11469     case AtomicRMWInst::Sub:
11470       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11471     case AtomicRMWInst::Nand:
11472       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11473     case AtomicRMWInst::Max:
11474       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11475     case AtomicRMWInst::Min:
11476       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11477     case AtomicRMWInst::UMax:
11478       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11479     case AtomicRMWInst::UMin:
11480       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11481     }
11482   }
11483 
11484   if (XLen == 64) {
11485     switch (BinOp) {
11486     default:
11487       llvm_unreachable("Unexpected AtomicRMW BinOp");
11488     case AtomicRMWInst::Xchg:
11489       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11490     case AtomicRMWInst::Add:
11491       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11492     case AtomicRMWInst::Sub:
11493       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11494     case AtomicRMWInst::Nand:
11495       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11496     case AtomicRMWInst::Max:
11497       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11498     case AtomicRMWInst::Min:
11499       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11500     case AtomicRMWInst::UMax:
11501       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11502     case AtomicRMWInst::UMin:
11503       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11504     }
11505   }
11506 
11507   llvm_unreachable("Unexpected XLen\n");
11508 }
11509 
11510 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11511     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11512     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11513   unsigned XLen = Subtarget.getXLen();
11514   Value *Ordering =
11515       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11516   Type *Tys[] = {AlignedAddr->getType()};
11517   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11518       AI->getModule(),
11519       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11520 
11521   if (XLen == 64) {
11522     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11523     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11524     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11525   }
11526 
11527   Value *Result;
11528 
11529   // Must pass the shift amount needed to sign extend the loaded value prior
11530   // to performing a signed comparison for min/max. ShiftAmt is the number of
11531   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11532   // is the number of bits to left+right shift the value in order to
11533   // sign-extend.
11534   if (AI->getOperation() == AtomicRMWInst::Min ||
11535       AI->getOperation() == AtomicRMWInst::Max) {
11536     const DataLayout &DL = AI->getModule()->getDataLayout();
11537     unsigned ValWidth =
11538         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11539     Value *SextShamt =
11540         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11541     Result = Builder.CreateCall(LrwOpScwLoop,
11542                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11543   } else {
11544     Result =
11545         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11546   }
11547 
11548   if (XLen == 64)
11549     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11550   return Result;
11551 }
11552 
11553 TargetLowering::AtomicExpansionKind
11554 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11555     AtomicCmpXchgInst *CI) const {
11556   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11557   if (Size == 8 || Size == 16)
11558     return AtomicExpansionKind::MaskedIntrinsic;
11559   return AtomicExpansionKind::None;
11560 }
11561 
11562 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11563     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11564     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11565   unsigned XLen = Subtarget.getXLen();
11566   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11567   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11568   if (XLen == 64) {
11569     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11570     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11571     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11572     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11573   }
11574   Type *Tys[] = {AlignedAddr->getType()};
11575   Function *MaskedCmpXchg =
11576       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11577   Value *Result = Builder.CreateCall(
11578       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11579   if (XLen == 64)
11580     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11581   return Result;
11582 }
11583 
11584 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11585   return false;
11586 }
11587 
11588 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11589                                                EVT VT) const {
11590   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11591     return false;
11592 
11593   switch (FPVT.getSimpleVT().SimpleTy) {
11594   case MVT::f16:
11595     return Subtarget.hasStdExtZfh();
11596   case MVT::f32:
11597     return Subtarget.hasStdExtF();
11598   case MVT::f64:
11599     return Subtarget.hasStdExtD();
11600   default:
11601     return false;
11602   }
11603 }
11604 
11605 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11606   // If we are using the small code model, we can reduce size of jump table
11607   // entry to 4 bytes.
11608   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11609       getTargetMachine().getCodeModel() == CodeModel::Small) {
11610     return MachineJumpTableInfo::EK_Custom32;
11611   }
11612   return TargetLowering::getJumpTableEncoding();
11613 }
11614 
11615 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11616     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11617     unsigned uid, MCContext &Ctx) const {
11618   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11619          getTargetMachine().getCodeModel() == CodeModel::Small);
11620   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11621 }
11622 
11623 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11624                                                      EVT VT) const {
11625   VT = VT.getScalarType();
11626 
11627   if (!VT.isSimple())
11628     return false;
11629 
11630   switch (VT.getSimpleVT().SimpleTy) {
11631   case MVT::f16:
11632     return Subtarget.hasStdExtZfh();
11633   case MVT::f32:
11634     return Subtarget.hasStdExtF();
11635   case MVT::f64:
11636     return Subtarget.hasStdExtD();
11637   default:
11638     break;
11639   }
11640 
11641   return false;
11642 }
11643 
11644 Register RISCVTargetLowering::getExceptionPointerRegister(
11645     const Constant *PersonalityFn) const {
11646   return RISCV::X10;
11647 }
11648 
11649 Register RISCVTargetLowering::getExceptionSelectorRegister(
11650     const Constant *PersonalityFn) const {
11651   return RISCV::X11;
11652 }
11653 
11654 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11655   // Return false to suppress the unnecessary extensions if the LibCall
11656   // arguments or return value is f32 type for LP64 ABI.
11657   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11658   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11659     return false;
11660 
11661   return true;
11662 }
11663 
11664 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11665   if (Subtarget.is64Bit() && Type == MVT::i32)
11666     return true;
11667 
11668   return IsSigned;
11669 }
11670 
11671 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11672                                                  SDValue C) const {
11673   // Check integral scalar types.
11674   if (VT.isScalarInteger()) {
11675     // Omit the optimization if the sub target has the M extension and the data
11676     // size exceeds XLen.
11677     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11678       return false;
11679     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11680       // Break the MUL to a SLLI and an ADD/SUB.
11681       const APInt &Imm = ConstNode->getAPIntValue();
11682       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11683           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11684         return true;
11685       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11686       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11687           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11688            (Imm - 8).isPowerOf2()))
11689         return true;
11690       // Omit the following optimization if the sub target has the M extension
11691       // and the data size >= XLen.
11692       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11693         return false;
11694       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11695       // a pair of LUI/ADDI.
11696       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11697         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11698         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11699             (1 - ImmS).isPowerOf2())
11700         return true;
11701       }
11702     }
11703   }
11704 
11705   return false;
11706 }
11707 
11708 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11709                                                       SDValue ConstNode) const {
11710   // Let the DAGCombiner decide for vectors.
11711   EVT VT = AddNode.getValueType();
11712   if (VT.isVector())
11713     return true;
11714 
11715   // Let the DAGCombiner decide for larger types.
11716   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11717     return true;
11718 
11719   // It is worse if c1 is simm12 while c1*c2 is not.
11720   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11721   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11722   const APInt &C1 = C1Node->getAPIntValue();
11723   const APInt &C2 = C2Node->getAPIntValue();
11724   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11725     return false;
11726 
11727   // Default to true and let the DAGCombiner decide.
11728   return true;
11729 }
11730 
11731 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11732     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11733     bool *Fast) const {
11734   if (!VT.isVector())
11735     return false;
11736 
11737   EVT ElemVT = VT.getVectorElementType();
11738   if (Alignment >= ElemVT.getStoreSize()) {
11739     if (Fast)
11740       *Fast = true;
11741     return true;
11742   }
11743 
11744   return false;
11745 }
11746 
11747 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11748     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11749     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11750   bool IsABIRegCopy = CC.hasValue();
11751   EVT ValueVT = Val.getValueType();
11752   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11753     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11754     // and cast to f32.
11755     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11756     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11757     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11758                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11759     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11760     Parts[0] = Val;
11761     return true;
11762   }
11763 
11764   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11765     LLVMContext &Context = *DAG.getContext();
11766     EVT ValueEltVT = ValueVT.getVectorElementType();
11767     EVT PartEltVT = PartVT.getVectorElementType();
11768     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11769     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11770     if (PartVTBitSize % ValueVTBitSize == 0) {
11771       assert(PartVTBitSize >= ValueVTBitSize);
11772       // If the element types are different, bitcast to the same element type of
11773       // PartVT first.
11774       // Give an example here, we want copy a <vscale x 1 x i8> value to
11775       // <vscale x 4 x i16>.
11776       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11777       // subvector, then we can bitcast to <vscale x 4 x i16>.
11778       if (ValueEltVT != PartEltVT) {
11779         if (PartVTBitSize > ValueVTBitSize) {
11780           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11781           assert(Count != 0 && "The number of element should not be zero.");
11782           EVT SameEltTypeVT =
11783               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11784           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11785                             DAG.getUNDEF(SameEltTypeVT), Val,
11786                             DAG.getVectorIdxConstant(0, DL));
11787         }
11788         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11789       } else {
11790         Val =
11791             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11792                         Val, DAG.getVectorIdxConstant(0, DL));
11793       }
11794       Parts[0] = Val;
11795       return true;
11796     }
11797   }
11798   return false;
11799 }
11800 
11801 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11802     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11803     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11804   bool IsABIRegCopy = CC.hasValue();
11805   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11806     SDValue Val = Parts[0];
11807 
11808     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11809     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11810     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11811     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11812     return Val;
11813   }
11814 
11815   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11816     LLVMContext &Context = *DAG.getContext();
11817     SDValue Val = Parts[0];
11818     EVT ValueEltVT = ValueVT.getVectorElementType();
11819     EVT PartEltVT = PartVT.getVectorElementType();
11820     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11821     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11822     if (PartVTBitSize % ValueVTBitSize == 0) {
11823       assert(PartVTBitSize >= ValueVTBitSize);
11824       EVT SameEltTypeVT = ValueVT;
11825       // If the element types are different, convert it to the same element type
11826       // of PartVT.
11827       // Give an example here, we want copy a <vscale x 1 x i8> value from
11828       // <vscale x 4 x i16>.
11829       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11830       // then we can extract <vscale x 1 x i8>.
11831       if (ValueEltVT != PartEltVT) {
11832         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11833         assert(Count != 0 && "The number of element should not be zero.");
11834         SameEltTypeVT =
11835             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11836         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11837       }
11838       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11839                         DAG.getVectorIdxConstant(0, DL));
11840       return Val;
11841     }
11842   }
11843   return SDValue();
11844 }
11845 
11846 SDValue
11847 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11848                                    SelectionDAG &DAG,
11849                                    SmallVectorImpl<SDNode *> &Created) const {
11850   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11851   if (isIntDivCheap(N->getValueType(0), Attr))
11852     return SDValue(N, 0); // Lower SDIV as SDIV
11853 
11854   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11855          "Unexpected divisor!");
11856 
11857   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11858   if (!Subtarget.hasStdExtZbt())
11859     return SDValue();
11860 
11861   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11862   // Besides, more critical path instructions will be generated when dividing
11863   // by 2. So we keep using the original DAGs for these cases.
11864   unsigned Lg2 = Divisor.countTrailingZeros();
11865   if (Lg2 == 1 || Lg2 >= 12)
11866     return SDValue();
11867 
11868   // fold (sdiv X, pow2)
11869   EVT VT = N->getValueType(0);
11870   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11871     return SDValue();
11872 
11873   SDLoc DL(N);
11874   SDValue N0 = N->getOperand(0);
11875   SDValue Zero = DAG.getConstant(0, DL, VT);
11876   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11877 
11878   // Add (N0 < 0) ? Pow2 - 1 : 0;
11879   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11880   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11881   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11882 
11883   Created.push_back(Cmp.getNode());
11884   Created.push_back(Add.getNode());
11885   Created.push_back(Sel.getNode());
11886 
11887   // Divide by pow2.
11888   SDValue SRA =
11889       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11890 
11891   // If we're dividing by a positive value, we're done.  Otherwise, we must
11892   // negate the result.
11893   if (Divisor.isNonNegative())
11894     return SRA;
11895 
11896   Created.push_back(SRA.getNode());
11897   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11898 }
11899 
11900 #define GET_REGISTER_MATCHER
11901 #include "RISCVGenAsmMatcher.inc"
11902 
11903 Register
11904 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11905                                        const MachineFunction &MF) const {
11906   Register Reg = MatchRegisterAltName(RegName);
11907   if (Reg == RISCV::NoRegister)
11908     Reg = MatchRegisterName(RegName);
11909   if (Reg == RISCV::NoRegister)
11910     report_fatal_error(
11911         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11912   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11913   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11914     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11915                              StringRef(RegName) + "\"."));
11916   return Reg;
11917 }
11918 
11919 namespace llvm {
11920 namespace RISCVVIntrinsicsTable {
11921 
11922 #define GET_RISCVVIntrinsicsTable_IMPL
11923 #include "RISCVGenSearchableTables.inc"
11924 
11925 } // namespace RISCVVIntrinsicsTable
11926 
11927 } // namespace llvm
11928