1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 256 if (Subtarget.is64Bit()) { 257 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 259 } 260 } else { 261 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 262 // pattern match it directly in isel. 263 setOperationAction(ISD::BSWAP, XLenVT, 264 Subtarget.hasStdExtZbb() ? Legal : Expand); 265 } 266 267 if (Subtarget.hasStdExtZbb()) { 268 setOperationAction(ISD::SMIN, XLenVT, Legal); 269 setOperationAction(ISD::SMAX, XLenVT, Legal); 270 setOperationAction(ISD::UMIN, XLenVT, Legal); 271 setOperationAction(ISD::UMAX, XLenVT, Legal); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 275 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 276 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 277 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 278 } 279 } else { 280 setOperationAction(ISD::CTTZ, XLenVT, Expand); 281 setOperationAction(ISD::CTLZ, XLenVT, Expand); 282 setOperationAction(ISD::CTPOP, XLenVT, Expand); 283 } 284 285 if (Subtarget.hasStdExtZbt()) { 286 setOperationAction(ISD::FSHL, XLenVT, Custom); 287 setOperationAction(ISD::FSHR, XLenVT, Custom); 288 setOperationAction(ISD::SELECT, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::FSHL, MVT::i32, Custom); 292 setOperationAction(ISD::FSHR, MVT::i32, Custom); 293 } 294 } else { 295 setOperationAction(ISD::SELECT, XLenVT, Custom); 296 } 297 298 ISD::CondCode FPCCToExpand[] = { 299 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 300 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 301 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 302 303 ISD::NodeType FPOpToExpand[] = { 304 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 305 ISD::FP_TO_FP16}; 306 307 if (Subtarget.hasStdExtZfh()) 308 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 309 310 if (Subtarget.hasStdExtZfh()) { 311 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 312 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 313 for (auto CC : FPCCToExpand) 314 setCondCodeAction(CC, MVT::f16, Expand); 315 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 316 setOperationAction(ISD::SELECT, MVT::f16, Custom); 317 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 318 for (auto Op : FPOpToExpand) 319 setOperationAction(Op, MVT::f16, Expand); 320 } 321 322 if (Subtarget.hasStdExtF()) { 323 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 325 for (auto CC : FPCCToExpand) 326 setCondCodeAction(CC, MVT::f32, Expand); 327 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 328 setOperationAction(ISD::SELECT, MVT::f32, Custom); 329 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 330 for (auto Op : FPOpToExpand) 331 setOperationAction(Op, MVT::f32, Expand); 332 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 333 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 334 } 335 336 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 337 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 338 339 if (Subtarget.hasStdExtD()) { 340 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 341 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 342 for (auto CC : FPCCToExpand) 343 setCondCodeAction(CC, MVT::f64, Expand); 344 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 345 setOperationAction(ISD::SELECT, MVT::f64, Custom); 346 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 347 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 348 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 349 for (auto Op : FPOpToExpand) 350 setOperationAction(Op, MVT::f64, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 352 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 353 } 354 355 if (Subtarget.is64Bit()) { 356 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 357 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 358 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 359 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 360 } 361 362 if (Subtarget.hasStdExtF()) { 363 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 364 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 365 } 366 367 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 368 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 369 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 370 setOperationAction(ISD::JumpTable, XLenVT, Custom); 371 372 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 373 374 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 375 // Unfortunately this can't be determined just from the ISA naming string. 376 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 377 Subtarget.is64Bit() ? Legal : Custom); 378 379 setOperationAction(ISD::TRAP, MVT::Other, Legal); 380 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 381 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 382 if (Subtarget.is64Bit()) 383 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 384 385 if (Subtarget.hasStdExtA()) { 386 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 387 setMinCmpXchgSizeInBits(32); 388 } else { 389 setMaxAtomicSizeInBitsSupported(0); 390 } 391 392 setBooleanContents(ZeroOrOneBooleanContent); 393 394 if (Subtarget.hasStdExtV()) { 395 setBooleanVectorContents(ZeroOrOneBooleanContent); 396 397 setOperationAction(ISD::VSCALE, XLenVT, Custom); 398 399 // RVV intrinsics may have illegal operands. 400 // We also need to custom legalize vmv.x.s. 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 403 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 404 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 405 if (Subtarget.is64Bit()) { 406 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 407 } else { 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 410 } 411 412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 413 414 if (!Subtarget.is64Bit()) { 415 // We must custom-lower certain vXi64 operations on RV32 due to the vector 416 // element type being illegal. 417 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 419 420 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 421 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 422 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 423 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 424 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 425 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 426 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 427 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 428 } 429 430 for (MVT VT : BoolVecVTs) { 431 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 432 433 // Mask VTs are custom-expanded into a series of standard nodes 434 setOperationAction(ISD::TRUNCATE, VT, Custom); 435 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 436 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 437 438 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 439 440 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 441 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 442 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 443 444 // Expand all extending loads to types larger than this, and truncating 445 // stores from types larger than this. 446 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 447 setTruncStoreAction(OtherVT, VT, Expand); 448 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 449 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 450 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 451 } 452 } 453 454 for (MVT VT : IntVecVTs) { 455 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 456 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 457 458 setOperationAction(ISD::SMIN, VT, Legal); 459 setOperationAction(ISD::SMAX, VT, Legal); 460 setOperationAction(ISD::UMIN, VT, Legal); 461 setOperationAction(ISD::UMAX, VT, Legal); 462 463 setOperationAction(ISD::ROTL, VT, Expand); 464 setOperationAction(ISD::ROTR, VT, Expand); 465 466 // Custom-lower extensions and truncations from/to mask types. 467 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 468 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 469 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 470 471 // RVV has native int->float & float->int conversions where the 472 // element type sizes are within one power-of-two of each other. Any 473 // wider distances between type sizes have to be lowered as sequences 474 // which progressively narrow the gap in stages. 475 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 476 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 477 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 478 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 479 480 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 481 // nodes which truncate by one power of two at a time. 482 setOperationAction(ISD::TRUNCATE, VT, Custom); 483 484 // Custom-lower insert/extract operations to simplify patterns. 485 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 486 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 487 488 // Custom-lower reduction operations to set up the corresponding custom 489 // nodes' operands. 490 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 491 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 492 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 493 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 494 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 495 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 496 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 497 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 498 499 setOperationAction(ISD::MLOAD, VT, Custom); 500 setOperationAction(ISD::MSTORE, VT, Custom); 501 setOperationAction(ISD::MGATHER, VT, Custom); 502 setOperationAction(ISD::MSCATTER, VT, Custom); 503 504 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 505 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 506 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 507 508 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 509 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 510 511 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 512 setTruncStoreAction(VT, OtherVT, Expand); 513 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 514 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 515 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 516 } 517 } 518 519 // Expand various CCs to best match the RVV ISA, which natively supports UNE 520 // but no other unordered comparisons, and supports all ordered comparisons 521 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 522 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 523 // and we pattern-match those back to the "original", swapping operands once 524 // more. This way we catch both operations and both "vf" and "fv" forms with 525 // fewer patterns. 526 ISD::CondCode VFPCCToExpand[] = { 527 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 528 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 529 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 530 }; 531 532 // Sets common operation actions on RVV floating-point vector types. 533 const auto SetCommonVFPActions = [&](MVT VT) { 534 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 535 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 536 // sizes are within one power-of-two of each other. Therefore conversions 537 // between vXf16 and vXf64 must be lowered as sequences which convert via 538 // vXf32. 539 setOperationAction(ISD::FP_ROUND, VT, Custom); 540 setOperationAction(ISD::FP_EXTEND, VT, Custom); 541 // Custom-lower insert/extract operations to simplify patterns. 542 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 543 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 544 // Expand various condition codes (explained above). 545 for (auto CC : VFPCCToExpand) 546 setCondCodeAction(CC, VT, Expand); 547 548 setOperationAction(ISD::FMINNUM, VT, Legal); 549 setOperationAction(ISD::FMAXNUM, VT, Legal); 550 551 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 552 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 553 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 554 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 555 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 556 557 setOperationAction(ISD::MLOAD, VT, Custom); 558 setOperationAction(ISD::MSTORE, VT, Custom); 559 setOperationAction(ISD::MGATHER, VT, Custom); 560 setOperationAction(ISD::MSCATTER, VT, Custom); 561 562 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 563 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 564 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 565 566 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 567 }; 568 569 // Sets common extload/truncstore actions on RVV floating-point vector 570 // types. 571 const auto SetCommonVFPExtLoadTruncStoreActions = 572 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 573 for (auto SmallVT : SmallerVTs) { 574 setTruncStoreAction(VT, SmallVT, Expand); 575 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 576 } 577 }; 578 579 if (Subtarget.hasStdExtZfh()) 580 for (MVT VT : F16VecVTs) 581 SetCommonVFPActions(VT); 582 583 for (MVT VT : F32VecVTs) { 584 if (Subtarget.hasStdExtF()) 585 SetCommonVFPActions(VT); 586 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 587 } 588 589 for (MVT VT : F64VecVTs) { 590 if (Subtarget.hasStdExtD()) 591 SetCommonVFPActions(VT); 592 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 593 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 594 } 595 596 if (Subtarget.useRVVForFixedLengthVectors()) { 597 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 598 if (!useRVVForFixedLengthVectorVT(VT)) 599 continue; 600 601 // By default everything must be expanded. 602 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 603 setOperationAction(Op, VT, Expand); 604 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 605 setTruncStoreAction(VT, OtherVT, Expand); 606 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 607 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 608 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 609 } 610 611 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 612 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 613 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 614 615 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 616 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 617 618 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 619 620 setOperationAction(ISD::LOAD, VT, Custom); 621 setOperationAction(ISD::STORE, VT, Custom); 622 623 setOperationAction(ISD::SETCC, VT, Custom); 624 625 setOperationAction(ISD::TRUNCATE, VT, Custom); 626 627 setOperationAction(ISD::BITCAST, VT, Custom); 628 629 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 630 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 631 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 632 633 // Operations below are different for between masks and other vectors. 634 if (VT.getVectorElementType() == MVT::i1) { 635 setOperationAction(ISD::AND, VT, Custom); 636 setOperationAction(ISD::OR, VT, Custom); 637 setOperationAction(ISD::XOR, VT, Custom); 638 continue; 639 } 640 641 // Use SPLAT_VECTOR to prevent type legalization from destroying the 642 // splats when type legalizing i64 scalar on RV32. 643 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 644 // improvements first. 645 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 646 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 647 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 648 } 649 650 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 651 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 652 653 setOperationAction(ISD::MLOAD, VT, Custom); 654 setOperationAction(ISD::MSTORE, VT, Custom); 655 setOperationAction(ISD::MGATHER, VT, Custom); 656 setOperationAction(ISD::MSCATTER, VT, Custom); 657 setOperationAction(ISD::ADD, VT, Custom); 658 setOperationAction(ISD::MUL, VT, Custom); 659 setOperationAction(ISD::SUB, VT, Custom); 660 setOperationAction(ISD::AND, VT, Custom); 661 setOperationAction(ISD::OR, VT, Custom); 662 setOperationAction(ISD::XOR, VT, Custom); 663 setOperationAction(ISD::SDIV, VT, Custom); 664 setOperationAction(ISD::SREM, VT, Custom); 665 setOperationAction(ISD::UDIV, VT, Custom); 666 setOperationAction(ISD::UREM, VT, Custom); 667 setOperationAction(ISD::SHL, VT, Custom); 668 setOperationAction(ISD::SRA, VT, Custom); 669 setOperationAction(ISD::SRL, VT, Custom); 670 671 setOperationAction(ISD::SMIN, VT, Custom); 672 setOperationAction(ISD::SMAX, VT, Custom); 673 setOperationAction(ISD::UMIN, VT, Custom); 674 setOperationAction(ISD::UMAX, VT, Custom); 675 setOperationAction(ISD::ABS, VT, Custom); 676 677 setOperationAction(ISD::MULHS, VT, Custom); 678 setOperationAction(ISD::MULHU, VT, Custom); 679 680 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 681 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 682 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 683 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 684 685 setOperationAction(ISD::VSELECT, VT, Custom); 686 687 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 688 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 689 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 690 691 // Custom-lower reduction operations to set up the corresponding custom 692 // nodes' operands. 693 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 694 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 695 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 696 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 697 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 698 } 699 700 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 701 if (!useRVVForFixedLengthVectorVT(VT)) 702 continue; 703 704 // By default everything must be expanded. 705 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 706 setOperationAction(Op, VT, Expand); 707 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 708 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 709 setTruncStoreAction(VT, OtherVT, Expand); 710 } 711 712 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 713 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 714 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 715 716 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 717 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 718 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 719 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 720 721 setOperationAction(ISD::LOAD, VT, Custom); 722 setOperationAction(ISD::STORE, VT, Custom); 723 setOperationAction(ISD::MLOAD, VT, Custom); 724 setOperationAction(ISD::MSTORE, VT, Custom); 725 setOperationAction(ISD::MGATHER, VT, Custom); 726 setOperationAction(ISD::MSCATTER, VT, Custom); 727 setOperationAction(ISD::FADD, VT, Custom); 728 setOperationAction(ISD::FSUB, VT, Custom); 729 setOperationAction(ISD::FMUL, VT, Custom); 730 setOperationAction(ISD::FDIV, VT, Custom); 731 setOperationAction(ISD::FNEG, VT, Custom); 732 setOperationAction(ISD::FABS, VT, Custom); 733 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 734 setOperationAction(ISD::FSQRT, VT, Custom); 735 setOperationAction(ISD::FMA, VT, Custom); 736 setOperationAction(ISD::FMINNUM, VT, Custom); 737 setOperationAction(ISD::FMAXNUM, VT, Custom); 738 739 setOperationAction(ISD::FP_ROUND, VT, Custom); 740 setOperationAction(ISD::FP_EXTEND, VT, Custom); 741 742 for (auto CC : VFPCCToExpand) 743 setCondCodeAction(CC, VT, Expand); 744 745 setOperationAction(ISD::VSELECT, VT, Custom); 746 747 setOperationAction(ISD::BITCAST, VT, Custom); 748 749 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 750 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 751 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 752 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 753 } 754 755 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 756 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 757 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 758 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 759 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 760 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 761 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 762 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 763 } 764 } 765 766 // Function alignments. 767 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 768 setMinFunctionAlignment(FunctionAlignment); 769 setPrefFunctionAlignment(FunctionAlignment); 770 771 setMinimumJumpTableEntries(5); 772 773 // Jumps are expensive, compared to logic 774 setJumpIsExpensive(); 775 776 // We can use any register for comparisons 777 setHasMultipleConditionRegisters(); 778 779 setTargetDAGCombine(ISD::AND); 780 setTargetDAGCombine(ISD::OR); 781 setTargetDAGCombine(ISD::XOR); 782 if (Subtarget.hasStdExtV()) { 783 setTargetDAGCombine(ISD::FCOPYSIGN); 784 setTargetDAGCombine(ISD::MGATHER); 785 setTargetDAGCombine(ISD::MSCATTER); 786 } 787 } 788 789 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 790 LLVMContext &Context, 791 EVT VT) const { 792 if (!VT.isVector()) 793 return getPointerTy(DL); 794 if (Subtarget.hasStdExtV() && 795 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 796 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 797 return VT.changeVectorElementTypeToInteger(); 798 } 799 800 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 801 const CallInst &I, 802 MachineFunction &MF, 803 unsigned Intrinsic) const { 804 switch (Intrinsic) { 805 default: 806 return false; 807 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 808 case Intrinsic::riscv_masked_atomicrmw_add_i32: 809 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 810 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 811 case Intrinsic::riscv_masked_atomicrmw_max_i32: 812 case Intrinsic::riscv_masked_atomicrmw_min_i32: 813 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 814 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 815 case Intrinsic::riscv_masked_cmpxchg_i32: 816 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 817 Info.opc = ISD::INTRINSIC_W_CHAIN; 818 Info.memVT = MVT::getVT(PtrTy->getElementType()); 819 Info.ptrVal = I.getArgOperand(0); 820 Info.offset = 0; 821 Info.align = Align(4); 822 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 823 MachineMemOperand::MOVolatile; 824 return true; 825 } 826 } 827 828 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 829 const AddrMode &AM, Type *Ty, 830 unsigned AS, 831 Instruction *I) const { 832 // No global is ever allowed as a base. 833 if (AM.BaseGV) 834 return false; 835 836 // Require a 12-bit signed offset. 837 if (!isInt<12>(AM.BaseOffs)) 838 return false; 839 840 switch (AM.Scale) { 841 case 0: // "r+i" or just "i", depending on HasBaseReg. 842 break; 843 case 1: 844 if (!AM.HasBaseReg) // allow "r+i". 845 break; 846 return false; // disallow "r+r" or "r+r+i". 847 default: 848 return false; 849 } 850 851 return true; 852 } 853 854 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 855 return isInt<12>(Imm); 856 } 857 858 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 859 return isInt<12>(Imm); 860 } 861 862 // On RV32, 64-bit integers are split into their high and low parts and held 863 // in two different registers, so the trunc is free since the low register can 864 // just be used. 865 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 866 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 867 return false; 868 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 869 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 870 return (SrcBits == 64 && DestBits == 32); 871 } 872 873 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 874 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 875 !SrcVT.isInteger() || !DstVT.isInteger()) 876 return false; 877 unsigned SrcBits = SrcVT.getSizeInBits(); 878 unsigned DestBits = DstVT.getSizeInBits(); 879 return (SrcBits == 64 && DestBits == 32); 880 } 881 882 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 883 // Zexts are free if they can be combined with a load. 884 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 885 EVT MemVT = LD->getMemoryVT(); 886 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 887 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 888 (LD->getExtensionType() == ISD::NON_EXTLOAD || 889 LD->getExtensionType() == ISD::ZEXTLOAD)) 890 return true; 891 } 892 893 return TargetLowering::isZExtFree(Val, VT2); 894 } 895 896 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 897 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 898 } 899 900 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 901 return Subtarget.hasStdExtZbb(); 902 } 903 904 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 905 return Subtarget.hasStdExtZbb(); 906 } 907 908 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 909 bool ForCodeSize) const { 910 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 911 return false; 912 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 913 return false; 914 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 915 return false; 916 if (Imm.isNegZero()) 917 return false; 918 return Imm.isZero(); 919 } 920 921 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 922 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 923 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 924 (VT == MVT::f64 && Subtarget.hasStdExtD()); 925 } 926 927 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 928 CallingConv::ID CC, 929 EVT VT) const { 930 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 931 // end up using a GPR but that will be decided based on ABI. 932 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 933 return MVT::f32; 934 935 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 936 } 937 938 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 939 CallingConv::ID CC, 940 EVT VT) const { 941 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 942 // end up using a GPR but that will be decided based on ABI. 943 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 944 return 1; 945 946 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 947 } 948 949 // Changes the condition code and swaps operands if necessary, so the SetCC 950 // operation matches one of the comparisons supported directly by branches 951 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 952 // with 1/-1. 953 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 954 ISD::CondCode &CC, SelectionDAG &DAG) { 955 // Convert X > -1 to X >= 0. 956 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 957 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 958 CC = ISD::SETGE; 959 return; 960 } 961 // Convert X < 1 to 0 >= X. 962 if (CC == ISD::SETLT && isOneConstant(RHS)) { 963 RHS = LHS; 964 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 965 CC = ISD::SETGE; 966 return; 967 } 968 969 switch (CC) { 970 default: 971 break; 972 case ISD::SETGT: 973 case ISD::SETLE: 974 case ISD::SETUGT: 975 case ISD::SETULE: 976 CC = ISD::getSetCCSwappedOperands(CC); 977 std::swap(LHS, RHS); 978 break; 979 } 980 } 981 982 // Return the RISC-V branch opcode that matches the given DAG integer 983 // condition code. The CondCode must be one of those supported by the RISC-V 984 // ISA (see translateSetCCForBranch). 985 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 986 switch (CC) { 987 default: 988 llvm_unreachable("Unsupported CondCode"); 989 case ISD::SETEQ: 990 return RISCV::BEQ; 991 case ISD::SETNE: 992 return RISCV::BNE; 993 case ISD::SETLT: 994 return RISCV::BLT; 995 case ISD::SETGE: 996 return RISCV::BGE; 997 case ISD::SETULT: 998 return RISCV::BLTU; 999 case ISD::SETUGE: 1000 return RISCV::BGEU; 1001 } 1002 } 1003 1004 RISCVVLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1005 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1006 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1007 if (VT.getVectorElementType() == MVT::i1) 1008 KnownSize *= 8; 1009 1010 switch (KnownSize) { 1011 default: 1012 llvm_unreachable("Invalid LMUL."); 1013 case 8: 1014 return RISCVVLMUL::LMUL_F8; 1015 case 16: 1016 return RISCVVLMUL::LMUL_F4; 1017 case 32: 1018 return RISCVVLMUL::LMUL_F2; 1019 case 64: 1020 return RISCVVLMUL::LMUL_1; 1021 case 128: 1022 return RISCVVLMUL::LMUL_2; 1023 case 256: 1024 return RISCVVLMUL::LMUL_4; 1025 case 512: 1026 return RISCVVLMUL::LMUL_8; 1027 } 1028 } 1029 1030 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVVLMUL LMul) { 1031 switch (LMul) { 1032 default: 1033 llvm_unreachable("Invalid LMUL."); 1034 case RISCVVLMUL::LMUL_F8: 1035 case RISCVVLMUL::LMUL_F4: 1036 case RISCVVLMUL::LMUL_F2: 1037 case RISCVVLMUL::LMUL_1: 1038 return RISCV::VRRegClassID; 1039 case RISCVVLMUL::LMUL_2: 1040 return RISCV::VRM2RegClassID; 1041 case RISCVVLMUL::LMUL_4: 1042 return RISCV::VRM4RegClassID; 1043 case RISCVVLMUL::LMUL_8: 1044 return RISCV::VRM8RegClassID; 1045 } 1046 } 1047 1048 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1049 RISCVVLMUL LMUL = getLMUL(VT); 1050 if (LMUL == RISCVVLMUL::LMUL_F8 || LMUL == RISCVVLMUL::LMUL_F4 || 1051 LMUL == RISCVVLMUL::LMUL_F2 || LMUL == RISCVVLMUL::LMUL_1) { 1052 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1053 "Unexpected subreg numbering"); 1054 return RISCV::sub_vrm1_0 + Index; 1055 } 1056 if (LMUL == RISCVVLMUL::LMUL_2) { 1057 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1058 "Unexpected subreg numbering"); 1059 return RISCV::sub_vrm2_0 + Index; 1060 } 1061 if (LMUL == RISCVVLMUL::LMUL_4) { 1062 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1063 "Unexpected subreg numbering"); 1064 return RISCV::sub_vrm4_0 + Index; 1065 } 1066 llvm_unreachable("Invalid vector type."); 1067 } 1068 1069 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1070 if (VT.getVectorElementType() == MVT::i1) 1071 return RISCV::VRRegClassID; 1072 return getRegClassIDForLMUL(getLMUL(VT)); 1073 } 1074 1075 // Attempt to decompose a subvector insert/extract between VecVT and 1076 // SubVecVT via subregister indices. Returns the subregister index that 1077 // can perform the subvector insert/extract with the given element index, as 1078 // well as the index corresponding to any leftover subvectors that must be 1079 // further inserted/extracted within the register class for SubVecVT. 1080 std::pair<unsigned, unsigned> 1081 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1082 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1083 const RISCVRegisterInfo *TRI) { 1084 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1085 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1086 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1087 "Register classes not ordered"); 1088 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1089 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1090 // Try to compose a subregister index that takes us from the incoming 1091 // LMUL>1 register class down to the outgoing one. At each step we half 1092 // the LMUL: 1093 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1094 // Note that this is not guaranteed to find a subregister index, such as 1095 // when we are extracting from one VR type to another. 1096 unsigned SubRegIdx = RISCV::NoSubRegister; 1097 for (const unsigned RCID : 1098 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1099 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1100 VecVT = VecVT.getHalfNumVectorElementsVT(); 1101 bool IsHi = 1102 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1103 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1104 getSubregIndexByMVT(VecVT, IsHi)); 1105 if (IsHi) 1106 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1107 } 1108 return {SubRegIdx, InsertExtractIdx}; 1109 } 1110 1111 static bool useRVVForFixedLengthVectorVT(MVT VT, 1112 const RISCVSubtarget &Subtarget) { 1113 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1114 if (!Subtarget.useRVVForFixedLengthVectors()) 1115 return false; 1116 1117 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1118 1119 // Don't use RVV for vectors we cannot scalarize if required. 1120 switch (VT.getVectorElementType().SimpleTy) { 1121 // i1 is supported but has different rules. 1122 default: 1123 return false; 1124 case MVT::i1: 1125 // Masks can only use a single register. 1126 if (VT.getVectorNumElements() > MinVLen) 1127 return false; 1128 MinVLen /= 8; 1129 break; 1130 case MVT::i8: 1131 case MVT::i16: 1132 case MVT::i32: 1133 case MVT::i64: 1134 break; 1135 case MVT::f16: 1136 if (!Subtarget.hasStdExtZfh()) 1137 return false; 1138 break; 1139 case MVT::f32: 1140 if (!Subtarget.hasStdExtF()) 1141 return false; 1142 break; 1143 case MVT::f64: 1144 if (!Subtarget.hasStdExtD()) 1145 return false; 1146 break; 1147 } 1148 1149 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1150 // Don't use RVV for types that don't fit. 1151 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1152 return false; 1153 1154 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1155 // the base fixed length RVV support in place. 1156 if (!VT.isPow2VectorType()) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1163 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1164 } 1165 1166 // Return the largest legal scalable vector type that matches VT's element type. 1167 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1168 const RISCVSubtarget &Subtarget) { 1169 // This may be called before legal types are setup. 1170 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1171 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1172 "Expected legal fixed length vector!"); 1173 1174 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1175 1176 MVT EltVT = VT.getVectorElementType(); 1177 switch (EltVT.SimpleTy) { 1178 default: 1179 llvm_unreachable("unexpected element type for RVV container"); 1180 case MVT::i1: { 1181 // Masks are calculated assuming 8-bit elements since that's when we need 1182 // the most elements. 1183 MinVLen /= 8; 1184 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1185 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8; 1186 return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock); 1187 } 1188 case MVT::i8: 1189 case MVT::i16: 1190 case MVT::i32: 1191 case MVT::i64: 1192 case MVT::f16: 1193 case MVT::f32: 1194 case MVT::f64: { 1195 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1196 unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits(); 1197 return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock); 1198 } 1199 } 1200 } 1201 1202 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1203 const RISCVSubtarget &Subtarget) { 1204 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1205 Subtarget); 1206 } 1207 1208 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1209 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1210 } 1211 1212 // Grow V to consume an entire RVV register. 1213 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1214 const RISCVSubtarget &Subtarget) { 1215 assert(VT.isScalableVector() && 1216 "Expected to convert into a scalable vector!"); 1217 assert(V.getValueType().isFixedLengthVector() && 1218 "Expected a fixed length vector operand!"); 1219 SDLoc DL(V); 1220 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1221 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1222 } 1223 1224 // Shrink V so it's just big enough to maintain a VT's worth of data. 1225 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1226 const RISCVSubtarget &Subtarget) { 1227 assert(VT.isFixedLengthVector() && 1228 "Expected to convert into a fixed length vector!"); 1229 assert(V.getValueType().isScalableVector() && 1230 "Expected a scalable vector operand!"); 1231 SDLoc DL(V); 1232 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1233 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1234 } 1235 1236 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1237 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1238 // the vector type that it is contained in. 1239 static std::pair<SDValue, SDValue> 1240 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1241 const RISCVSubtarget &Subtarget) { 1242 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1243 MVT XLenVT = Subtarget.getXLenVT(); 1244 SDValue VL = VecVT.isFixedLengthVector() 1245 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1246 : DAG.getRegister(RISCV::X0, XLenVT); 1247 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1248 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1249 return {Mask, VL}; 1250 } 1251 1252 // As above but assuming the given type is a scalable vector type. 1253 static std::pair<SDValue, SDValue> 1254 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1255 const RISCVSubtarget &Subtarget) { 1256 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1257 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1258 } 1259 1260 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1261 // of either is (currently) supported. This can get us into an infinite loop 1262 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1263 // as a ..., etc. 1264 // Until either (or both) of these can reliably lower any node, reporting that 1265 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1266 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1267 // which is not desirable. 1268 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1269 EVT VT, unsigned DefinedValues) const { 1270 return false; 1271 } 1272 1273 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1274 // Only splats are currently supported. 1275 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1276 return true; 1277 1278 return false; 1279 } 1280 1281 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1282 const RISCVSubtarget &Subtarget) { 1283 MVT VT = Op.getSimpleValueType(); 1284 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1285 1286 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1287 1288 SDLoc DL(Op); 1289 SDValue Mask, VL; 1290 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1291 1292 unsigned Opc = 1293 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1294 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1295 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1296 } 1297 1298 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1299 const RISCVSubtarget &Subtarget) { 1300 MVT VT = Op.getSimpleValueType(); 1301 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1302 1303 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1304 1305 SDLoc DL(Op); 1306 SDValue Mask, VL; 1307 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1308 1309 MVT XLenVT = Subtarget.getXLenVT(); 1310 unsigned NumElts = Op.getNumOperands(); 1311 1312 if (VT.getVectorElementType() == MVT::i1) { 1313 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1314 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1315 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1316 } 1317 1318 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1319 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1320 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1321 } 1322 1323 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1324 // scalar integer chunks whose bit-width depends on the number of mask 1325 // bits and XLEN. 1326 // First, determine the most appropriate scalar integer type to use. This 1327 // is at most XLenVT, but may be shrunk to a smaller vector element type 1328 // according to the size of the final vector - use i8 chunks rather than 1329 // XLenVT if we're producing a v8i1. This results in more consistent 1330 // codegen across RV32 and RV64. 1331 // If we have to use more than one INSERT_VECTOR_ELT then this optimization 1332 // is likely to increase code size; avoid peforming it in such a case. 1333 unsigned NumViaIntegerBits = 1334 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1335 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1336 (!DAG.shouldOptForSize() || NumElts <= NumViaIntegerBits)) { 1337 // Now we can create our integer vector type. Note that it may be larger 1338 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1339 MVT IntegerViaVecVT = 1340 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1341 divideCeil(NumElts, NumViaIntegerBits)); 1342 1343 uint64_t Bits = 0; 1344 unsigned BitPos = 0, IntegerEltIdx = 0; 1345 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1346 1347 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1348 // Once we accumulate enough bits to fill our scalar type, insert into 1349 // our vector and clear our accumulated data. 1350 if (I != 0 && I % NumViaIntegerBits == 0) { 1351 if (NumViaIntegerBits <= 32) 1352 Bits = SignExtend64(Bits, 32); 1353 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1354 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1355 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1356 Bits = 0; 1357 BitPos = 0; 1358 IntegerEltIdx++; 1359 } 1360 SDValue V = Op.getOperand(I); 1361 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1362 Bits |= ((uint64_t)BitValue << BitPos); 1363 } 1364 1365 // Insert the (remaining) scalar value into position in our integer 1366 // vector type. 1367 if (NumViaIntegerBits <= 32) 1368 Bits = SignExtend64(Bits, 32); 1369 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1370 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1371 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1372 1373 if (NumElts < NumViaIntegerBits) { 1374 // If we're producing a smaller vector than our minimum legal integer 1375 // type, bitcast to the equivalent (known-legal) mask type, and extract 1376 // our final mask. 1377 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1378 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1379 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1380 DAG.getConstant(0, DL, XLenVT)); 1381 } else { 1382 // Else we must have produced an integer type with the same size as the 1383 // mask type; bitcast for the final result. 1384 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1385 Vec = DAG.getBitcast(VT, Vec); 1386 } 1387 1388 return Vec; 1389 } 1390 1391 return SDValue(); 1392 } 1393 1394 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1395 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1396 : RISCVISD::VMV_V_X_VL; 1397 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1398 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1399 } 1400 1401 // Try and match an index sequence, which we can lower directly to the vid 1402 // instruction. An all-undef vector is matched by getSplatValue, above. 1403 if (VT.isInteger()) { 1404 bool IsVID = true; 1405 for (unsigned I = 0; I < NumElts && IsVID; I++) 1406 IsVID &= Op.getOperand(I).isUndef() || 1407 (isa<ConstantSDNode>(Op.getOperand(I)) && 1408 Op.getConstantOperandVal(I) == I); 1409 1410 if (IsVID) { 1411 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1412 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1413 } 1414 } 1415 1416 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1417 // when re-interpreted as a vector with a larger element type. For example, 1418 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1419 // could be instead splat as 1420 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1421 // TODO: This optimization could also work on non-constant splats, but it 1422 // would require bit-manipulation instructions to construct the splat value. 1423 SmallVector<SDValue> Sequence; 1424 unsigned EltBitSize = VT.getScalarSizeInBits(); 1425 const auto *BV = cast<BuildVectorSDNode>(Op); 1426 if (VT.isInteger() && EltBitSize < 64 && 1427 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1428 BV->getRepeatedSequence(Sequence) && 1429 (Sequence.size() * EltBitSize) <= 64) { 1430 unsigned SeqLen = Sequence.size(); 1431 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1432 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1433 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1434 ViaIntVT == MVT::i64) && 1435 "Unexpected sequence type"); 1436 1437 unsigned EltIdx = 0; 1438 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1439 uint64_t SplatValue = 0; 1440 // Construct the amalgamated value which can be splatted as this larger 1441 // vector type. 1442 for (const auto &SeqV : Sequence) { 1443 if (!SeqV.isUndef()) 1444 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1445 << (EltIdx * EltBitSize)); 1446 EltIdx++; 1447 } 1448 1449 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1450 // achieve better constant materializion. 1451 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1452 SplatValue = SignExtend64(SplatValue, 32); 1453 1454 // Since we can't introduce illegal i64 types at this stage, we can only 1455 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1456 // way we can use RVV instructions to splat. 1457 assert((ViaIntVT.bitsLE(XLenVT) || 1458 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1459 "Unexpected bitcast sequence"); 1460 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1461 SDValue ViaVL = 1462 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1463 MVT ViaContainerVT = 1464 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1465 SDValue Splat = 1466 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1467 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1468 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1469 return DAG.getBitcast(VT, Splat); 1470 } 1471 } 1472 1473 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1474 // which constitute a large proportion of the elements. In such cases we can 1475 // splat a vector with the dominant element and make up the shortfall with 1476 // INSERT_VECTOR_ELTs. 1477 // Note that this includes vectors of 2 elements by association. The 1478 // upper-most element is the "dominant" one, allowing us to use a splat to 1479 // "insert" the upper element, and an insert of the lower element at position 1480 // 0, which improves codegen. 1481 SDValue DominantValue; 1482 unsigned MostCommonCount = 0; 1483 DenseMap<SDValue, unsigned> ValueCounts; 1484 unsigned NumUndefElts = 1485 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1486 1487 for (SDValue V : Op->op_values()) { 1488 if (V.isUndef()) 1489 continue; 1490 1491 ValueCounts.insert(std::make_pair(V, 0)); 1492 unsigned &Count = ValueCounts[V]; 1493 1494 // Is this value dominant? In case of a tie, prefer the highest element as 1495 // it's cheaper to insert near the beginning of a vector than it is at the 1496 // end. 1497 if (++Count >= MostCommonCount) { 1498 DominantValue = V; 1499 MostCommonCount = Count; 1500 } 1501 } 1502 1503 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1504 unsigned NumDefElts = NumElts - NumUndefElts; 1505 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1506 1507 // Don't perform this optimization when optimizing for size, since 1508 // materializing elements and inserting them tends to cause code bloat. 1509 if (!DAG.shouldOptForSize() && 1510 ((MostCommonCount > DominantValueCountThreshold) || 1511 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1512 // Start by splatting the most common element. 1513 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1514 1515 DenseSet<SDValue> Processed{DominantValue}; 1516 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1517 for (const auto &OpIdx : enumerate(Op->ops())) { 1518 const SDValue &V = OpIdx.value(); 1519 if (V.isUndef() || !Processed.insert(V).second) 1520 continue; 1521 if (ValueCounts[V] == 1) { 1522 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1523 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1524 } else { 1525 // Blend in all instances of this value using a VSELECT, using a 1526 // mask where each bit signals whether that element is the one 1527 // we're after. 1528 SmallVector<SDValue> Ops; 1529 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1530 return DAG.getConstant(V == V1, DL, XLenVT); 1531 }); 1532 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1533 DAG.getBuildVector(SelMaskTy, DL, Ops), 1534 DAG.getSplatBuildVector(VT, DL, V), Vec); 1535 } 1536 } 1537 1538 return Vec; 1539 } 1540 1541 return SDValue(); 1542 } 1543 1544 // Use a stack slot to splat the two i32 values in Lo/Hi to the vector desired 1545 // vector nxvXi64 VT. 1546 static SDValue splatPartsI64ThroughStack(const SDLoc &DL, MVT VT, SDValue Lo, 1547 SDValue Hi, SDValue VL, 1548 SelectionDAG &DAG) { 1549 assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() && 1550 Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 && 1551 "Unexpected VTs!"); 1552 MachineFunction &MF = DAG.getMachineFunction(); 1553 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1554 1555 // We use the same frame index we use for moving two i32s into 64-bit FPR. 1556 // This is an analogous operation. 1557 int FI = FuncInfo->getMoveF64FrameIndex(MF); 1558 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1560 SDValue StackSlot = 1561 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout())); 1562 1563 SDValue Chain = DAG.getEntryNode(); 1564 Lo = DAG.getStore(Chain, DL, Lo, StackSlot, MPI, Align(8)); 1565 1566 SDValue OffsetSlot = 1567 DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL); 1568 Hi = DAG.getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), Align(8)); 1569 1570 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 1571 1572 SDVTList VTs = DAG.getVTList({VT, MVT::Other}); 1573 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64); 1574 SDValue Ops[] = {Chain, IntID, StackSlot, 1575 DAG.getRegister(RISCV::X0, MVT::i64), VL}; 1576 1577 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MVT::i64, 1578 MPI, Align(8), MachineMemOperand::MOLoad); 1579 } 1580 1581 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1582 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1583 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1584 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1585 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1586 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1587 // node in order to try and match RVV vector/scalar instructions. 1588 if ((LoC >> 31) == HiC) 1589 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1590 } 1591 1592 // Fall back to a stack store and stride x0 vector load. 1593 return splatPartsI64ThroughStack(DL, VT, Lo, Hi, VL, DAG); 1594 } 1595 1596 // Called by type legalization to handle splat of i64 on RV32. 1597 // FIXME: We can optimize this when the type has sign or zero bits in one 1598 // of the halves. 1599 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1600 SDValue VL, SelectionDAG &DAG) { 1601 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1602 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1603 DAG.getConstant(0, DL, MVT::i32)); 1604 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1605 DAG.getConstant(1, DL, MVT::i32)); 1606 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1607 } 1608 1609 // This function lowers a splat of a scalar operand Splat with the vector 1610 // length VL. It ensures the final sequence is type legal, which is useful when 1611 // lowering a splat after type legalization. 1612 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1613 SelectionDAG &DAG, 1614 const RISCVSubtarget &Subtarget) { 1615 if (VT.isFloatingPoint()) 1616 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1617 1618 MVT XLenVT = Subtarget.getXLenVT(); 1619 1620 // Simplest case is that the operand needs to be promoted to XLenVT. 1621 if (Scalar.getValueType().bitsLE(XLenVT)) { 1622 // If the operand is a constant, sign extend to increase our chances 1623 // of being able to use a .vi instruction. ANY_EXTEND would become a 1624 // a zero extend and the simm5 check in isel would fail. 1625 // FIXME: Should we ignore the upper bits in isel instead? 1626 unsigned ExtOpc = 1627 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1628 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1629 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1630 } 1631 1632 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1633 "Unexpected scalar for splat lowering!"); 1634 1635 // Otherwise use the more complicated splatting algorithm. 1636 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1637 } 1638 1639 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1640 const RISCVSubtarget &Subtarget) { 1641 SDValue V1 = Op.getOperand(0); 1642 SDValue V2 = Op.getOperand(1); 1643 SDLoc DL(Op); 1644 MVT XLenVT = Subtarget.getXLenVT(); 1645 MVT VT = Op.getSimpleValueType(); 1646 unsigned NumElts = VT.getVectorNumElements(); 1647 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1648 1649 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1650 1651 SDValue TrueMask, VL; 1652 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1653 1654 if (SVN->isSplat()) { 1655 const int Lane = SVN->getSplatIndex(); 1656 if (Lane >= 0) { 1657 MVT SVT = VT.getVectorElementType(); 1658 1659 // Turn splatted vector load into a strided load with an X0 stride. 1660 SDValue V = V1; 1661 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1662 // with undef. 1663 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1664 int Offset = Lane; 1665 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1666 int OpElements = 1667 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1668 V = V.getOperand(Offset / OpElements); 1669 Offset %= OpElements; 1670 } 1671 1672 // We need to ensure the load isn't atomic or volatile. 1673 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1674 auto *Ld = cast<LoadSDNode>(V); 1675 Offset *= SVT.getStoreSize(); 1676 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1677 TypeSize::Fixed(Offset), DL); 1678 1679 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1680 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1681 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1682 SDValue IntID = 1683 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1684 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1685 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1686 SDValue NewLoad = DAG.getMemIntrinsicNode( 1687 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1688 DAG.getMachineFunction().getMachineMemOperand( 1689 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1690 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1691 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1692 } 1693 1694 // Otherwise use a scalar load and splat. This will give the best 1695 // opportunity to fold a splat into the operation. ISel can turn it into 1696 // the x0 strided load if we aren't able to fold away the select. 1697 if (SVT.isFloatingPoint()) 1698 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1699 Ld->getPointerInfo().getWithOffset(Offset), 1700 Ld->getOriginalAlign(), 1701 Ld->getMemOperand()->getFlags()); 1702 else 1703 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1704 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1705 Ld->getOriginalAlign(), 1706 Ld->getMemOperand()->getFlags()); 1707 DAG.makeEquivalentMemoryOrdering(Ld, V); 1708 1709 unsigned Opc = 1710 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1711 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1712 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1713 } 1714 1715 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1716 assert(Lane < (int)NumElts && "Unexpected lane!"); 1717 SDValue Gather = 1718 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1719 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1720 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1721 } 1722 } 1723 1724 // Detect shuffles which can be re-expressed as vector selects; these are 1725 // shuffles in which each element in the destination is taken from an element 1726 // at the corresponding index in either source vectors. 1727 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1728 int MaskIndex = MaskIdx.value(); 1729 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1730 }); 1731 1732 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1733 1734 SmallVector<SDValue> MaskVals; 1735 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1736 // merged with a second vrgather. 1737 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1738 1739 // By default we preserve the original operand order, and use a mask to 1740 // select LHS as true and RHS as false. However, since RVV vector selects may 1741 // feature splats but only on the LHS, we may choose to invert our mask and 1742 // instead select between RHS and LHS. 1743 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1744 bool InvertMask = IsSelect == SwapOps; 1745 1746 // Now construct the mask that will be used by the vselect or blended 1747 // vrgather operation. For vrgathers, construct the appropriate indices into 1748 // each vector. 1749 for (int MaskIndex : SVN->getMask()) { 1750 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1751 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1752 if (!IsSelect) { 1753 bool IsLHS = MaskIndex < (int)NumElts; 1754 // For "undef" elements of -1, shuffle in element 0 instead. 1755 GatherIndicesLHS.push_back( 1756 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1757 // TODO: If we're masking out unused elements anyway, it might produce 1758 // better code if we use the most-common element index instead of 0. 1759 GatherIndicesRHS.push_back( 1760 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1761 } 1762 } 1763 1764 if (SwapOps) { 1765 std::swap(V1, V2); 1766 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1767 } 1768 1769 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1770 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1771 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1772 1773 if (IsSelect) 1774 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1775 1776 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1777 // On such a large vector we're unable to use i8 as the index type. 1778 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1779 // may involve vector splitting if we're already at LMUL=8, or our 1780 // user-supplied maximum fixed-length LMUL. 1781 return SDValue(); 1782 } 1783 1784 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1785 MVT IndexVT = VT.changeTypeToInteger(); 1786 // Since we can't introduce illegal index types at this stage, use i16 and 1787 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1788 // than XLenVT. 1789 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1790 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1791 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1792 } 1793 1794 MVT IndexContainerVT = 1795 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1796 1797 SDValue Gather; 1798 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1799 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1800 if (SDValue SplatValue = DAG.getSplatValue(V1)) { 1801 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1802 } else { 1803 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1804 LHSIndices = 1805 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1806 1807 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1808 Gather = 1809 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1810 } 1811 1812 // If a second vector operand is used by this shuffle, blend it in with an 1813 // additional vrgather. 1814 if (!V2.isUndef()) { 1815 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1816 SelectMask = 1817 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1818 1819 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1820 RHSIndices = 1821 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1822 1823 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1824 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1825 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1826 Gather, VL); 1827 } 1828 1829 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1830 } 1831 1832 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1833 SDLoc DL, SelectionDAG &DAG, 1834 const RISCVSubtarget &Subtarget) { 1835 if (VT.isScalableVector()) 1836 return DAG.getFPExtendOrRound(Op, DL, VT); 1837 assert(VT.isFixedLengthVector() && 1838 "Unexpected value type for RVV FP extend/round lowering"); 1839 SDValue Mask, VL; 1840 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1841 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1842 ? RISCVISD::FP_EXTEND_VL 1843 : RISCVISD::FP_ROUND_VL; 1844 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1845 } 1846 1847 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1848 SelectionDAG &DAG) const { 1849 switch (Op.getOpcode()) { 1850 default: 1851 report_fatal_error("unimplemented operand"); 1852 case ISD::GlobalAddress: 1853 return lowerGlobalAddress(Op, DAG); 1854 case ISD::BlockAddress: 1855 return lowerBlockAddress(Op, DAG); 1856 case ISD::ConstantPool: 1857 return lowerConstantPool(Op, DAG); 1858 case ISD::JumpTable: 1859 return lowerJumpTable(Op, DAG); 1860 case ISD::GlobalTLSAddress: 1861 return lowerGlobalTLSAddress(Op, DAG); 1862 case ISD::SELECT: 1863 return lowerSELECT(Op, DAG); 1864 case ISD::BRCOND: 1865 return lowerBRCOND(Op, DAG); 1866 case ISD::VASTART: 1867 return lowerVASTART(Op, DAG); 1868 case ISD::FRAMEADDR: 1869 return lowerFRAMEADDR(Op, DAG); 1870 case ISD::RETURNADDR: 1871 return lowerRETURNADDR(Op, DAG); 1872 case ISD::SHL_PARTS: 1873 return lowerShiftLeftParts(Op, DAG); 1874 case ISD::SRA_PARTS: 1875 return lowerShiftRightParts(Op, DAG, true); 1876 case ISD::SRL_PARTS: 1877 return lowerShiftRightParts(Op, DAG, false); 1878 case ISD::BITCAST: { 1879 SDLoc DL(Op); 1880 EVT VT = Op.getValueType(); 1881 SDValue Op0 = Op.getOperand(0); 1882 EVT Op0VT = Op0.getValueType(); 1883 MVT XLenVT = Subtarget.getXLenVT(); 1884 if (VT.isFixedLengthVector()) { 1885 // We can handle fixed length vector bitcasts with a simple replacement 1886 // in isel. 1887 if (Op0VT.isFixedLengthVector()) 1888 return Op; 1889 // When bitcasting from scalar to fixed-length vector, insert the scalar 1890 // into a one-element vector of the result type, and perform a vector 1891 // bitcast. 1892 if (!Op0VT.isVector()) { 1893 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 1894 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 1895 DAG.getUNDEF(BVT), Op0, 1896 DAG.getConstant(0, DL, XLenVT))); 1897 } 1898 return SDValue(); 1899 } 1900 // Custom-legalize bitcasts from fixed-length vector types to scalar types 1901 // thus: bitcast the vector to a one-element vector type whose element type 1902 // is the same as the result type, and extract the first element. 1903 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 1904 LLVMContext &Context = *DAG.getContext(); 1905 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 1906 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 1907 DAG.getConstant(0, DL, XLenVT)); 1908 } 1909 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 1910 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 1911 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1912 return FPConv; 1913 } 1914 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 1915 Subtarget.hasStdExtF()) { 1916 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1917 SDValue FPConv = 1918 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1919 return FPConv; 1920 } 1921 return SDValue(); 1922 } 1923 case ISD::INTRINSIC_WO_CHAIN: 1924 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1925 case ISD::INTRINSIC_W_CHAIN: 1926 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1927 case ISD::BSWAP: 1928 case ISD::BITREVERSE: { 1929 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1930 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1931 MVT VT = Op.getSimpleValueType(); 1932 SDLoc DL(Op); 1933 // Start with the maximum immediate value which is the bitwidth - 1. 1934 unsigned Imm = VT.getSizeInBits() - 1; 1935 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 1936 if (Op.getOpcode() == ISD::BSWAP) 1937 Imm &= ~0x7U; 1938 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 1939 DAG.getConstant(Imm, DL, VT)); 1940 } 1941 case ISD::FSHL: 1942 case ISD::FSHR: { 1943 MVT VT = Op.getSimpleValueType(); 1944 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 1945 SDLoc DL(Op); 1946 if (Op.getOperand(2).getOpcode() == ISD::Constant) 1947 return Op; 1948 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 1949 // use log(XLen) bits. Mask the shift amount accordingly. 1950 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 1951 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 1952 DAG.getConstant(ShAmtWidth, DL, VT)); 1953 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 1954 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 1955 } 1956 case ISD::TRUNCATE: { 1957 SDLoc DL(Op); 1958 MVT VT = Op.getSimpleValueType(); 1959 // Only custom-lower vector truncates 1960 if (!VT.isVector()) 1961 return Op; 1962 1963 // Truncates to mask types are handled differently 1964 if (VT.getVectorElementType() == MVT::i1) 1965 return lowerVectorMaskTrunc(Op, DAG); 1966 1967 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 1968 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 1969 // truncate by one power of two at a time. 1970 MVT DstEltVT = VT.getVectorElementType(); 1971 1972 SDValue Src = Op.getOperand(0); 1973 MVT SrcVT = Src.getSimpleValueType(); 1974 MVT SrcEltVT = SrcVT.getVectorElementType(); 1975 1976 assert(DstEltVT.bitsLT(SrcEltVT) && 1977 isPowerOf2_64(DstEltVT.getSizeInBits()) && 1978 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 1979 "Unexpected vector truncate lowering"); 1980 1981 MVT ContainerVT = SrcVT; 1982 if (SrcVT.isFixedLengthVector()) { 1983 ContainerVT = getContainerForFixedLengthVector(SrcVT); 1984 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 1985 } 1986 1987 SDValue Result = Src; 1988 SDValue Mask, VL; 1989 std::tie(Mask, VL) = 1990 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 1991 LLVMContext &Context = *DAG.getContext(); 1992 const ElementCount Count = ContainerVT.getVectorElementCount(); 1993 do { 1994 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 1995 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 1996 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 1997 Mask, VL); 1998 } while (SrcEltVT != DstEltVT); 1999 2000 if (SrcVT.isFixedLengthVector()) 2001 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2002 2003 return Result; 2004 } 2005 case ISD::ANY_EXTEND: 2006 case ISD::ZERO_EXTEND: 2007 if (Op.getOperand(0).getValueType().isVector() && 2008 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2009 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2010 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2011 case ISD::SIGN_EXTEND: 2012 if (Op.getOperand(0).getValueType().isVector() && 2013 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2014 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2015 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2016 case ISD::SPLAT_VECTOR_PARTS: 2017 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2018 case ISD::INSERT_VECTOR_ELT: 2019 return lowerINSERT_VECTOR_ELT(Op, DAG); 2020 case ISD::EXTRACT_VECTOR_ELT: 2021 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2022 case ISD::VSCALE: { 2023 MVT VT = Op.getSimpleValueType(); 2024 SDLoc DL(Op); 2025 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2026 // We define our scalable vector types for lmul=1 to use a 64 bit known 2027 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2028 // vscale as VLENB / 8. 2029 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2030 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2031 DAG.getConstant(3, DL, VT)); 2032 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2033 } 2034 case ISD::FP_EXTEND: { 2035 // RVV can only do fp_extend to types double the size as the source. We 2036 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2037 // via f32. 2038 SDLoc DL(Op); 2039 MVT VT = Op.getSimpleValueType(); 2040 SDValue Src = Op.getOperand(0); 2041 MVT SrcVT = Src.getSimpleValueType(); 2042 2043 // Prepare any fixed-length vector operands. 2044 MVT ContainerVT = VT; 2045 if (SrcVT.isFixedLengthVector()) { 2046 ContainerVT = getContainerForFixedLengthVector(VT); 2047 MVT SrcContainerVT = 2048 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2049 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2050 } 2051 2052 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2053 SrcVT.getVectorElementType() != MVT::f16) { 2054 // For scalable vectors, we only need to close the gap between 2055 // vXf16->vXf64. 2056 if (!VT.isFixedLengthVector()) 2057 return Op; 2058 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2059 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2060 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2061 } 2062 2063 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2064 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2065 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2066 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2067 2068 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2069 DL, DAG, Subtarget); 2070 if (VT.isFixedLengthVector()) 2071 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2072 return Extend; 2073 } 2074 case ISD::FP_ROUND: { 2075 // RVV can only do fp_round to types half the size as the source. We 2076 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2077 // conversion instruction. 2078 SDLoc DL(Op); 2079 MVT VT = Op.getSimpleValueType(); 2080 SDValue Src = Op.getOperand(0); 2081 MVT SrcVT = Src.getSimpleValueType(); 2082 2083 // Prepare any fixed-length vector operands. 2084 MVT ContainerVT = VT; 2085 if (VT.isFixedLengthVector()) { 2086 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2087 ContainerVT = 2088 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2089 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2090 } 2091 2092 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2093 SrcVT.getVectorElementType() != MVT::f64) { 2094 // For scalable vectors, we only need to close the gap between 2095 // vXf64<->vXf16. 2096 if (!VT.isFixedLengthVector()) 2097 return Op; 2098 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2099 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2100 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2101 } 2102 2103 SDValue Mask, VL; 2104 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2105 2106 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2107 SDValue IntermediateRound = 2108 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2109 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2110 DL, DAG, Subtarget); 2111 2112 if (VT.isFixedLengthVector()) 2113 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2114 return Round; 2115 } 2116 case ISD::FP_TO_SINT: 2117 case ISD::FP_TO_UINT: 2118 case ISD::SINT_TO_FP: 2119 case ISD::UINT_TO_FP: { 2120 // RVV can only do fp<->int conversions to types half/double the size as 2121 // the source. We custom-lower any conversions that do two hops into 2122 // sequences. 2123 MVT VT = Op.getSimpleValueType(); 2124 if (!VT.isVector()) 2125 return Op; 2126 SDLoc DL(Op); 2127 SDValue Src = Op.getOperand(0); 2128 MVT EltVT = VT.getVectorElementType(); 2129 MVT SrcVT = Src.getSimpleValueType(); 2130 MVT SrcEltVT = SrcVT.getVectorElementType(); 2131 unsigned EltSize = EltVT.getSizeInBits(); 2132 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2133 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2134 "Unexpected vector element types"); 2135 2136 bool IsInt2FP = SrcEltVT.isInteger(); 2137 // Widening conversions 2138 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2139 if (IsInt2FP) { 2140 // Do a regular integer sign/zero extension then convert to float. 2141 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2142 VT.getVectorElementCount()); 2143 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2144 ? ISD::ZERO_EXTEND 2145 : ISD::SIGN_EXTEND; 2146 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2147 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2148 } 2149 // FP2Int 2150 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2151 // Do one doubling fp_extend then complete the operation by converting 2152 // to int. 2153 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2154 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2155 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2156 } 2157 2158 // Narrowing conversions 2159 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2160 if (IsInt2FP) { 2161 // One narrowing int_to_fp, then an fp_round. 2162 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2163 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2164 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2165 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2166 } 2167 // FP2Int 2168 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2169 // representable by the integer, the result is poison. 2170 MVT IVecVT = 2171 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2172 VT.getVectorElementCount()); 2173 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2174 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2175 } 2176 2177 // Scalable vectors can exit here. Patterns will handle equally-sized 2178 // conversions halving/doubling ones. 2179 if (!VT.isFixedLengthVector()) 2180 return Op; 2181 2182 // For fixed-length vectors we lower to a custom "VL" node. 2183 unsigned RVVOpc = 0; 2184 switch (Op.getOpcode()) { 2185 default: 2186 llvm_unreachable("Impossible opcode"); 2187 case ISD::FP_TO_SINT: 2188 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2189 break; 2190 case ISD::FP_TO_UINT: 2191 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2192 break; 2193 case ISD::SINT_TO_FP: 2194 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2195 break; 2196 case ISD::UINT_TO_FP: 2197 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2198 break; 2199 } 2200 2201 MVT ContainerVT, SrcContainerVT; 2202 // Derive the reference container type from the larger vector type. 2203 if (SrcEltSize > EltSize) { 2204 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2205 ContainerVT = 2206 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2207 } else { 2208 ContainerVT = getContainerForFixedLengthVector(VT); 2209 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2210 } 2211 2212 SDValue Mask, VL; 2213 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2214 2215 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2216 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2217 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2218 } 2219 case ISD::VECREDUCE_ADD: 2220 case ISD::VECREDUCE_UMAX: 2221 case ISD::VECREDUCE_SMAX: 2222 case ISD::VECREDUCE_UMIN: 2223 case ISD::VECREDUCE_SMIN: 2224 return lowerVECREDUCE(Op, DAG); 2225 case ISD::VECREDUCE_AND: 2226 case ISD::VECREDUCE_OR: 2227 case ISD::VECREDUCE_XOR: 2228 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2229 return lowerVectorMaskVECREDUCE(Op, DAG); 2230 return lowerVECREDUCE(Op, DAG); 2231 case ISD::VECREDUCE_FADD: 2232 case ISD::VECREDUCE_SEQ_FADD: 2233 case ISD::VECREDUCE_FMIN: 2234 case ISD::VECREDUCE_FMAX: 2235 return lowerFPVECREDUCE(Op, DAG); 2236 case ISD::INSERT_SUBVECTOR: 2237 return lowerINSERT_SUBVECTOR(Op, DAG); 2238 case ISD::EXTRACT_SUBVECTOR: 2239 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2240 case ISD::STEP_VECTOR: 2241 return lowerSTEP_VECTOR(Op, DAG); 2242 case ISD::VECTOR_REVERSE: 2243 return lowerVECTOR_REVERSE(Op, DAG); 2244 case ISD::BUILD_VECTOR: 2245 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2246 case ISD::SPLAT_VECTOR: 2247 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2248 case ISD::VECTOR_SHUFFLE: 2249 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2250 case ISD::CONCAT_VECTORS: { 2251 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2252 // better than going through the stack, as the default expansion does. 2253 SDLoc DL(Op); 2254 MVT VT = Op.getSimpleValueType(); 2255 unsigned NumOpElts = 2256 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2257 SDValue Vec = DAG.getUNDEF(VT); 2258 for (const auto &OpIdx : enumerate(Op->ops())) 2259 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2260 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2261 return Vec; 2262 } 2263 case ISD::LOAD: 2264 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2265 case ISD::STORE: 2266 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2267 case ISD::MLOAD: 2268 return lowerMLOAD(Op, DAG); 2269 case ISD::MSTORE: 2270 return lowerMSTORE(Op, DAG); 2271 case ISD::SETCC: 2272 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2273 case ISD::ADD: 2274 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2275 case ISD::SUB: 2276 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2277 case ISD::MUL: 2278 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2279 case ISD::MULHS: 2280 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2281 case ISD::MULHU: 2282 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2283 case ISD::AND: 2284 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2285 RISCVISD::AND_VL); 2286 case ISD::OR: 2287 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2288 RISCVISD::OR_VL); 2289 case ISD::XOR: 2290 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2291 RISCVISD::XOR_VL); 2292 case ISD::SDIV: 2293 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2294 case ISD::SREM: 2295 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2296 case ISD::UDIV: 2297 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2298 case ISD::UREM: 2299 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2300 case ISD::SHL: 2301 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 2302 case ISD::SRA: 2303 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 2304 case ISD::SRL: 2305 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 2306 case ISD::FADD: 2307 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2308 case ISD::FSUB: 2309 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2310 case ISD::FMUL: 2311 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2312 case ISD::FDIV: 2313 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2314 case ISD::FNEG: 2315 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2316 case ISD::FABS: 2317 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2318 case ISD::FSQRT: 2319 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2320 case ISD::FMA: 2321 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2322 case ISD::SMIN: 2323 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2324 case ISD::SMAX: 2325 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2326 case ISD::UMIN: 2327 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2328 case ISD::UMAX: 2329 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2330 case ISD::FMINNUM: 2331 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2332 case ISD::FMAXNUM: 2333 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2334 case ISD::ABS: 2335 return lowerABS(Op, DAG); 2336 case ISD::VSELECT: 2337 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2338 case ISD::FCOPYSIGN: 2339 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2340 case ISD::MGATHER: 2341 return lowerMGATHER(Op, DAG); 2342 case ISD::MSCATTER: 2343 return lowerMSCATTER(Op, DAG); 2344 case ISD::FLT_ROUNDS_: 2345 return lowerGET_ROUNDING(Op, DAG); 2346 case ISD::SET_ROUNDING: 2347 return lowerSET_ROUNDING(Op, DAG); 2348 } 2349 } 2350 2351 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2352 SelectionDAG &DAG, unsigned Flags) { 2353 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2354 } 2355 2356 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2357 SelectionDAG &DAG, unsigned Flags) { 2358 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2359 Flags); 2360 } 2361 2362 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2363 SelectionDAG &DAG, unsigned Flags) { 2364 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2365 N->getOffset(), Flags); 2366 } 2367 2368 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2369 SelectionDAG &DAG, unsigned Flags) { 2370 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2371 } 2372 2373 template <class NodeTy> 2374 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2375 bool IsLocal) const { 2376 SDLoc DL(N); 2377 EVT Ty = getPointerTy(DAG.getDataLayout()); 2378 2379 if (isPositionIndependent()) { 2380 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2381 if (IsLocal) 2382 // Use PC-relative addressing to access the symbol. This generates the 2383 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2384 // %pcrel_lo(auipc)). 2385 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2386 2387 // Use PC-relative addressing to access the GOT for this symbol, then load 2388 // the address from the GOT. This generates the pattern (PseudoLA sym), 2389 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2390 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2391 } 2392 2393 switch (getTargetMachine().getCodeModel()) { 2394 default: 2395 report_fatal_error("Unsupported code model for lowering"); 2396 case CodeModel::Small: { 2397 // Generate a sequence for accessing addresses within the first 2 GiB of 2398 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2399 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2400 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2401 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2402 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2403 } 2404 case CodeModel::Medium: { 2405 // Generate a sequence for accessing addresses within any 2GiB range within 2406 // the address space. This generates the pattern (PseudoLLA sym), which 2407 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2408 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2409 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2410 } 2411 } 2412 } 2413 2414 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2415 SelectionDAG &DAG) const { 2416 SDLoc DL(Op); 2417 EVT Ty = Op.getValueType(); 2418 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2419 int64_t Offset = N->getOffset(); 2420 MVT XLenVT = Subtarget.getXLenVT(); 2421 2422 const GlobalValue *GV = N->getGlobal(); 2423 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2424 SDValue Addr = getAddr(N, DAG, IsLocal); 2425 2426 // In order to maximise the opportunity for common subexpression elimination, 2427 // emit a separate ADD node for the global address offset instead of folding 2428 // it in the global address node. Later peephole optimisations may choose to 2429 // fold it back in when profitable. 2430 if (Offset != 0) 2431 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2432 DAG.getConstant(Offset, DL, XLenVT)); 2433 return Addr; 2434 } 2435 2436 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2437 SelectionDAG &DAG) const { 2438 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2439 2440 return getAddr(N, DAG); 2441 } 2442 2443 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2444 SelectionDAG &DAG) const { 2445 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2446 2447 return getAddr(N, DAG); 2448 } 2449 2450 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2451 SelectionDAG &DAG) const { 2452 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2453 2454 return getAddr(N, DAG); 2455 } 2456 2457 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2458 SelectionDAG &DAG, 2459 bool UseGOT) const { 2460 SDLoc DL(N); 2461 EVT Ty = getPointerTy(DAG.getDataLayout()); 2462 const GlobalValue *GV = N->getGlobal(); 2463 MVT XLenVT = Subtarget.getXLenVT(); 2464 2465 if (UseGOT) { 2466 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2467 // load the address from the GOT and add the thread pointer. This generates 2468 // the pattern (PseudoLA_TLS_IE sym), which expands to 2469 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2470 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2471 SDValue Load = 2472 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2473 2474 // Add the thread pointer. 2475 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2476 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2477 } 2478 2479 // Generate a sequence for accessing the address relative to the thread 2480 // pointer, with the appropriate adjustment for the thread pointer offset. 2481 // This generates the pattern 2482 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2483 SDValue AddrHi = 2484 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2485 SDValue AddrAdd = 2486 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2487 SDValue AddrLo = 2488 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2489 2490 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2491 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2492 SDValue MNAdd = SDValue( 2493 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2494 0); 2495 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2496 } 2497 2498 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2499 SelectionDAG &DAG) const { 2500 SDLoc DL(N); 2501 EVT Ty = getPointerTy(DAG.getDataLayout()); 2502 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2503 const GlobalValue *GV = N->getGlobal(); 2504 2505 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2506 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2507 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2508 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2509 SDValue Load = 2510 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2511 2512 // Prepare argument list to generate call. 2513 ArgListTy Args; 2514 ArgListEntry Entry; 2515 Entry.Node = Load; 2516 Entry.Ty = CallTy; 2517 Args.push_back(Entry); 2518 2519 // Setup call to __tls_get_addr. 2520 TargetLowering::CallLoweringInfo CLI(DAG); 2521 CLI.setDebugLoc(DL) 2522 .setChain(DAG.getEntryNode()) 2523 .setLibCallee(CallingConv::C, CallTy, 2524 DAG.getExternalSymbol("__tls_get_addr", Ty), 2525 std::move(Args)); 2526 2527 return LowerCallTo(CLI).first; 2528 } 2529 2530 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2531 SelectionDAG &DAG) const { 2532 SDLoc DL(Op); 2533 EVT Ty = Op.getValueType(); 2534 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2535 int64_t Offset = N->getOffset(); 2536 MVT XLenVT = Subtarget.getXLenVT(); 2537 2538 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2539 2540 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2541 CallingConv::GHC) 2542 report_fatal_error("In GHC calling convention TLS is not supported"); 2543 2544 SDValue Addr; 2545 switch (Model) { 2546 case TLSModel::LocalExec: 2547 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2548 break; 2549 case TLSModel::InitialExec: 2550 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2551 break; 2552 case TLSModel::LocalDynamic: 2553 case TLSModel::GeneralDynamic: 2554 Addr = getDynamicTLSAddr(N, DAG); 2555 break; 2556 } 2557 2558 // In order to maximise the opportunity for common subexpression elimination, 2559 // emit a separate ADD node for the global address offset instead of folding 2560 // it in the global address node. Later peephole optimisations may choose to 2561 // fold it back in when profitable. 2562 if (Offset != 0) 2563 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2564 DAG.getConstant(Offset, DL, XLenVT)); 2565 return Addr; 2566 } 2567 2568 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2569 SDValue CondV = Op.getOperand(0); 2570 SDValue TrueV = Op.getOperand(1); 2571 SDValue FalseV = Op.getOperand(2); 2572 SDLoc DL(Op); 2573 MVT XLenVT = Subtarget.getXLenVT(); 2574 2575 // If the result type is XLenVT and CondV is the output of a SETCC node 2576 // which also operated on XLenVT inputs, then merge the SETCC node into the 2577 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2578 // compare+branch instructions. i.e.: 2579 // (select (setcc lhs, rhs, cc), truev, falsev) 2580 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2581 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2582 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2583 SDValue LHS = CondV.getOperand(0); 2584 SDValue RHS = CondV.getOperand(1); 2585 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2586 ISD::CondCode CCVal = CC->get(); 2587 2588 // Special case for a select of 2 constants that have a diffence of 1. 2589 // Normally this is done by DAGCombine, but if the select is introduced by 2590 // type legalization or op legalization, we miss it. Restricting to SETLT 2591 // case for now because that is what signed saturating add/sub need. 2592 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2593 // but we would probably want to swap the true/false values if the condition 2594 // is SETGE/SETLE to avoid an XORI. 2595 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2596 CCVal == ISD::SETLT) { 2597 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2598 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2599 if (TrueVal - 1 == FalseVal) 2600 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2601 if (TrueVal + 1 == FalseVal) 2602 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2603 } 2604 2605 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2606 2607 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2608 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2609 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2610 } 2611 2612 // Otherwise: 2613 // (select condv, truev, falsev) 2614 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2615 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2616 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2617 2618 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2619 2620 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2621 } 2622 2623 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2624 SDValue CondV = Op.getOperand(1); 2625 SDLoc DL(Op); 2626 MVT XLenVT = Subtarget.getXLenVT(); 2627 2628 if (CondV.getOpcode() == ISD::SETCC && 2629 CondV.getOperand(0).getValueType() == XLenVT) { 2630 SDValue LHS = CondV.getOperand(0); 2631 SDValue RHS = CondV.getOperand(1); 2632 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2633 2634 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2635 2636 SDValue TargetCC = DAG.getCondCode(CCVal); 2637 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2638 LHS, RHS, TargetCC, Op.getOperand(2)); 2639 } 2640 2641 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2642 CondV, DAG.getConstant(0, DL, XLenVT), 2643 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2644 } 2645 2646 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2647 MachineFunction &MF = DAG.getMachineFunction(); 2648 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2649 2650 SDLoc DL(Op); 2651 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2652 getPointerTy(MF.getDataLayout())); 2653 2654 // vastart just stores the address of the VarArgsFrameIndex slot into the 2655 // memory location argument. 2656 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2657 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2658 MachinePointerInfo(SV)); 2659 } 2660 2661 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2662 SelectionDAG &DAG) const { 2663 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2664 MachineFunction &MF = DAG.getMachineFunction(); 2665 MachineFrameInfo &MFI = MF.getFrameInfo(); 2666 MFI.setFrameAddressIsTaken(true); 2667 Register FrameReg = RI.getFrameRegister(MF); 2668 int XLenInBytes = Subtarget.getXLen() / 8; 2669 2670 EVT VT = Op.getValueType(); 2671 SDLoc DL(Op); 2672 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2673 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2674 while (Depth--) { 2675 int Offset = -(XLenInBytes * 2); 2676 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2677 DAG.getIntPtrConstant(Offset, DL)); 2678 FrameAddr = 2679 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2680 } 2681 return FrameAddr; 2682 } 2683 2684 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2685 SelectionDAG &DAG) const { 2686 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2687 MachineFunction &MF = DAG.getMachineFunction(); 2688 MachineFrameInfo &MFI = MF.getFrameInfo(); 2689 MFI.setReturnAddressIsTaken(true); 2690 MVT XLenVT = Subtarget.getXLenVT(); 2691 int XLenInBytes = Subtarget.getXLen() / 8; 2692 2693 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2694 return SDValue(); 2695 2696 EVT VT = Op.getValueType(); 2697 SDLoc DL(Op); 2698 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2699 if (Depth) { 2700 int Off = -XLenInBytes; 2701 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2702 SDValue Offset = DAG.getConstant(Off, DL, VT); 2703 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2704 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2705 MachinePointerInfo()); 2706 } 2707 2708 // Return the value of the return address register, marking it an implicit 2709 // live-in. 2710 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2711 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2712 } 2713 2714 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2715 SelectionDAG &DAG) const { 2716 SDLoc DL(Op); 2717 SDValue Lo = Op.getOperand(0); 2718 SDValue Hi = Op.getOperand(1); 2719 SDValue Shamt = Op.getOperand(2); 2720 EVT VT = Lo.getValueType(); 2721 2722 // if Shamt-XLEN < 0: // Shamt < XLEN 2723 // Lo = Lo << Shamt 2724 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2725 // else: 2726 // Lo = 0 2727 // Hi = Lo << (Shamt-XLEN) 2728 2729 SDValue Zero = DAG.getConstant(0, DL, VT); 2730 SDValue One = DAG.getConstant(1, DL, VT); 2731 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2732 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2733 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2734 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2735 2736 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2737 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2738 SDValue ShiftRightLo = 2739 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2740 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2741 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2742 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2743 2744 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2745 2746 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2747 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2748 2749 SDValue Parts[2] = {Lo, Hi}; 2750 return DAG.getMergeValues(Parts, DL); 2751 } 2752 2753 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2754 bool IsSRA) const { 2755 SDLoc DL(Op); 2756 SDValue Lo = Op.getOperand(0); 2757 SDValue Hi = Op.getOperand(1); 2758 SDValue Shamt = Op.getOperand(2); 2759 EVT VT = Lo.getValueType(); 2760 2761 // SRA expansion: 2762 // if Shamt-XLEN < 0: // Shamt < XLEN 2763 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2764 // Hi = Hi >>s Shamt 2765 // else: 2766 // Lo = Hi >>s (Shamt-XLEN); 2767 // Hi = Hi >>s (XLEN-1) 2768 // 2769 // SRL expansion: 2770 // if Shamt-XLEN < 0: // Shamt < XLEN 2771 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2772 // Hi = Hi >>u Shamt 2773 // else: 2774 // Lo = Hi >>u (Shamt-XLEN); 2775 // Hi = 0; 2776 2777 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2778 2779 SDValue Zero = DAG.getConstant(0, DL, VT); 2780 SDValue One = DAG.getConstant(1, DL, VT); 2781 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2782 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2783 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2784 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2785 2786 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2787 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2788 SDValue ShiftLeftHi = 2789 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2790 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2791 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2792 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2793 SDValue HiFalse = 2794 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2795 2796 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2797 2798 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2799 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2800 2801 SDValue Parts[2] = {Lo, Hi}; 2802 return DAG.getMergeValues(Parts, DL); 2803 } 2804 2805 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2806 // illegal (currently only vXi64 RV32). 2807 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2808 // them to SPLAT_VECTOR_I64 2809 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2810 SelectionDAG &DAG) const { 2811 SDLoc DL(Op); 2812 MVT VecVT = Op.getSimpleValueType(); 2813 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2814 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2815 2816 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2817 SDValue Lo = Op.getOperand(0); 2818 SDValue Hi = Op.getOperand(1); 2819 2820 if (VecVT.isFixedLengthVector()) { 2821 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2822 SDLoc DL(Op); 2823 SDValue Mask, VL; 2824 std::tie(Mask, VL) = 2825 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2826 2827 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 2828 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 2829 } 2830 2831 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2832 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2833 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2834 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2835 // node in order to try and match RVV vector/scalar instructions. 2836 if ((LoC >> 31) == HiC) 2837 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2838 } 2839 2840 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 2841 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 2842 isa<ConstantSDNode>(Hi.getOperand(1)) && 2843 Hi.getConstantOperandVal(1) == 31) 2844 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2845 2846 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 2847 return splatPartsI64ThroughStack(DL, VecVT, Lo, Hi, 2848 DAG.getRegister(RISCV::X0, MVT::i64), DAG); 2849 } 2850 2851 // Custom-lower extensions from mask vectors by using a vselect either with 1 2852 // for zero/any-extension or -1 for sign-extension: 2853 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2854 // Note that any-extension is lowered identically to zero-extension. 2855 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2856 int64_t ExtTrueVal) const { 2857 SDLoc DL(Op); 2858 MVT VecVT = Op.getSimpleValueType(); 2859 SDValue Src = Op.getOperand(0); 2860 // Only custom-lower extensions from mask types 2861 assert(Src.getValueType().isVector() && 2862 Src.getValueType().getVectorElementType() == MVT::i1); 2863 2864 MVT XLenVT = Subtarget.getXLenVT(); 2865 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2866 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2867 2868 if (VecVT.isScalableVector()) { 2869 // Be careful not to introduce illegal scalar types at this stage, and be 2870 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2871 // illegal and must be expanded. Since we know that the constants are 2872 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2873 bool IsRV32E64 = 2874 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2875 2876 if (!IsRV32E64) { 2877 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2878 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2879 } else { 2880 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 2881 SplatTrueVal = 2882 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 2883 } 2884 2885 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 2886 } 2887 2888 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2889 MVT I1ContainerVT = 2890 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 2891 2892 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 2893 2894 SDValue Mask, VL; 2895 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2896 2897 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 2898 SplatTrueVal = 2899 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 2900 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 2901 SplatTrueVal, SplatZero, VL); 2902 2903 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 2904 } 2905 2906 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 2907 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 2908 MVT ExtVT = Op.getSimpleValueType(); 2909 // Only custom-lower extensions from fixed-length vector types. 2910 if (!ExtVT.isFixedLengthVector()) 2911 return Op; 2912 MVT VT = Op.getOperand(0).getSimpleValueType(); 2913 // Grab the canonical container type for the extended type. Infer the smaller 2914 // type from that to ensure the same number of vector elements, as we know 2915 // the LMUL will be sufficient to hold the smaller type. 2916 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 2917 // Get the extended container type manually to ensure the same number of 2918 // vector elements between source and dest. 2919 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 2920 ContainerExtVT.getVectorElementCount()); 2921 2922 SDValue Op1 = 2923 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 2924 2925 SDLoc DL(Op); 2926 SDValue Mask, VL; 2927 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2928 2929 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 2930 2931 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 2932 } 2933 2934 // Custom-lower truncations from vectors to mask vectors by using a mask and a 2935 // setcc operation: 2936 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 2937 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 2938 SelectionDAG &DAG) const { 2939 SDLoc DL(Op); 2940 EVT MaskVT = Op.getValueType(); 2941 // Only expect to custom-lower truncations to mask types 2942 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 2943 "Unexpected type for vector mask lowering"); 2944 SDValue Src = Op.getOperand(0); 2945 MVT VecVT = Src.getSimpleValueType(); 2946 2947 // If this is a fixed vector, we need to convert it to a scalable vector. 2948 MVT ContainerVT = VecVT; 2949 if (VecVT.isFixedLengthVector()) { 2950 ContainerVT = getContainerForFixedLengthVector(VecVT); 2951 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2952 } 2953 2954 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 2955 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 2956 2957 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 2958 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 2959 2960 if (VecVT.isScalableVector()) { 2961 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 2962 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 2963 } 2964 2965 SDValue Mask, VL; 2966 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2967 2968 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2969 SDValue Trunc = 2970 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 2971 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 2972 DAG.getCondCode(ISD::SETNE), Mask, VL); 2973 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 2974 } 2975 2976 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 2977 // first position of a vector, and that vector is slid up to the insert index. 2978 // By limiting the active vector length to index+1 and merging with the 2979 // original vector (with an undisturbed tail policy for elements >= VL), we 2980 // achieve the desired result of leaving all elements untouched except the one 2981 // at VL-1, which is replaced with the desired value. 2982 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2983 SelectionDAG &DAG) const { 2984 SDLoc DL(Op); 2985 MVT VecVT = Op.getSimpleValueType(); 2986 SDValue Vec = Op.getOperand(0); 2987 SDValue Val = Op.getOperand(1); 2988 SDValue Idx = Op.getOperand(2); 2989 2990 MVT ContainerVT = VecVT; 2991 // If the operand is a fixed-length vector, convert to a scalable one. 2992 if (VecVT.isFixedLengthVector()) { 2993 ContainerVT = getContainerForFixedLengthVector(VecVT); 2994 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2995 } 2996 2997 MVT XLenVT = Subtarget.getXLenVT(); 2998 2999 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3000 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3001 // Even i64-element vectors on RV32 can be lowered without scalar 3002 // legalization if the most-significant 32 bits of the value are not affected 3003 // by the sign-extension of the lower 32 bits. 3004 // TODO: We could also catch sign extensions of a 32-bit value. 3005 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3006 const auto *CVal = cast<ConstantSDNode>(Val); 3007 if (isInt<32>(CVal->getSExtValue())) { 3008 IsLegalInsert = true; 3009 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3010 } 3011 } 3012 3013 SDValue Mask, VL; 3014 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3015 3016 SDValue ValInVec; 3017 3018 if (IsLegalInsert) { 3019 unsigned Opc = 3020 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3021 if (isNullConstant(Idx)) { 3022 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3023 if (!VecVT.isFixedLengthVector()) 3024 return Vec; 3025 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3026 } 3027 ValInVec = 3028 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3029 } else { 3030 // On RV32, i64-element vectors must be specially handled to place the 3031 // value at element 0, by using two vslide1up instructions in sequence on 3032 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3033 // this. 3034 SDValue One = DAG.getConstant(1, DL, XLenVT); 3035 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3036 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3037 MVT I32ContainerVT = 3038 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3039 SDValue I32Mask = 3040 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3041 // Limit the active VL to two. 3042 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3043 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3044 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3045 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3046 InsertI64VL); 3047 // First slide in the hi value, then the lo in underneath it. 3048 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3049 ValHi, I32Mask, InsertI64VL); 3050 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3051 ValLo, I32Mask, InsertI64VL); 3052 // Bitcast back to the right container type. 3053 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3054 } 3055 3056 // Now that the value is in a vector, slide it into position. 3057 SDValue InsertVL = 3058 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3059 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3060 ValInVec, Idx, Mask, InsertVL); 3061 if (!VecVT.isFixedLengthVector()) 3062 return Slideup; 3063 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3064 } 3065 3066 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3067 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3068 // types this is done using VMV_X_S to allow us to glean information about the 3069 // sign bits of the result. 3070 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3071 SelectionDAG &DAG) const { 3072 SDLoc DL(Op); 3073 SDValue Idx = Op.getOperand(1); 3074 SDValue Vec = Op.getOperand(0); 3075 EVT EltVT = Op.getValueType(); 3076 MVT VecVT = Vec.getSimpleValueType(); 3077 MVT XLenVT = Subtarget.getXLenVT(); 3078 3079 if (VecVT.getVectorElementType() == MVT::i1) { 3080 // FIXME: For now we just promote to an i8 vector and extract from that, 3081 // but this is probably not optimal. 3082 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3083 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3084 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3085 } 3086 3087 // If this is a fixed vector, we need to convert it to a scalable vector. 3088 MVT ContainerVT = VecVT; 3089 if (VecVT.isFixedLengthVector()) { 3090 ContainerVT = getContainerForFixedLengthVector(VecVT); 3091 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3092 } 3093 3094 // If the index is 0, the vector is already in the right position. 3095 if (!isNullConstant(Idx)) { 3096 // Use a VL of 1 to avoid processing more elements than we need. 3097 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3098 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3099 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3100 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3101 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3102 } 3103 3104 if (!EltVT.isInteger()) { 3105 // Floating-point extracts are handled in TableGen. 3106 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3107 DAG.getConstant(0, DL, XLenVT)); 3108 } 3109 3110 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3111 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3112 } 3113 3114 // Some RVV intrinsics may claim that they want an integer operand to be 3115 // promoted or expanded. 3116 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3117 const RISCVSubtarget &Subtarget) { 3118 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3119 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3120 "Unexpected opcode"); 3121 3122 if (!Subtarget.hasStdExtV()) 3123 return SDValue(); 3124 3125 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3126 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3127 SDLoc DL(Op); 3128 3129 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3130 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3131 if (!II || !II->SplatOperand) 3132 return SDValue(); 3133 3134 unsigned SplatOp = II->SplatOperand + HasChain; 3135 assert(SplatOp < Op.getNumOperands()); 3136 3137 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3138 SDValue &ScalarOp = Operands[SplatOp]; 3139 MVT OpVT = ScalarOp.getSimpleValueType(); 3140 MVT XLenVT = Subtarget.getXLenVT(); 3141 3142 // If this isn't a scalar, or its type is XLenVT we're done. 3143 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3144 return SDValue(); 3145 3146 // Simplest case is that the operand needs to be promoted to XLenVT. 3147 if (OpVT.bitsLT(XLenVT)) { 3148 // If the operand is a constant, sign extend to increase our chances 3149 // of being able to use a .vi instruction. ANY_EXTEND would become a 3150 // a zero extend and the simm5 check in isel would fail. 3151 // FIXME: Should we ignore the upper bits in isel instead? 3152 unsigned ExtOpc = 3153 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3154 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3155 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3156 } 3157 3158 // Use the previous operand to get the vXi64 VT. The result might be a mask 3159 // VT for compares. Using the previous operand assumes that the previous 3160 // operand will never have a smaller element size than a scalar operand and 3161 // that a widening operation never uses SEW=64. 3162 // NOTE: If this fails the below assert, we can probably just find the 3163 // element count from any operand or result and use it to construct the VT. 3164 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3165 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3166 3167 // The more complex case is when the scalar is larger than XLenVT. 3168 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3169 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3170 3171 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3172 // on the instruction to sign-extend since SEW>XLEN. 3173 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3174 if (isInt<32>(CVal->getSExtValue())) { 3175 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3176 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3177 } 3178 } 3179 3180 // We need to convert the scalar to a splat vector. 3181 // FIXME: Can we implicitly truncate the scalar if it is known to 3182 // be sign extended? 3183 // VL should be the last operand. 3184 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3185 assert(VL.getValueType() == XLenVT); 3186 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3187 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3188 } 3189 3190 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3191 SelectionDAG &DAG) const { 3192 unsigned IntNo = Op.getConstantOperandVal(0); 3193 SDLoc DL(Op); 3194 MVT XLenVT = Subtarget.getXLenVT(); 3195 3196 switch (IntNo) { 3197 default: 3198 break; // Don't custom lower most intrinsics. 3199 case Intrinsic::thread_pointer: { 3200 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3201 return DAG.getRegister(RISCV::X4, PtrVT); 3202 } 3203 case Intrinsic::riscv_orc_b: 3204 // Lower to the GORCI encoding for orc.b. 3205 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3206 DAG.getConstant(7, DL, XLenVT)); 3207 case Intrinsic::riscv_grev: 3208 case Intrinsic::riscv_gorc: { 3209 unsigned Opc = 3210 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3211 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3212 } 3213 case Intrinsic::riscv_shfl: 3214 case Intrinsic::riscv_unshfl: { 3215 unsigned Opc = 3216 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3217 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3218 } 3219 case Intrinsic::riscv_bcompress: 3220 case Intrinsic::riscv_bdecompress: { 3221 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3222 : RISCVISD::BDECOMPRESS; 3223 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3224 } 3225 case Intrinsic::riscv_vmv_x_s: 3226 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3227 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3228 Op.getOperand(1)); 3229 case Intrinsic::riscv_vmv_v_x: 3230 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3231 Op.getSimpleValueType(), DL, DAG, Subtarget); 3232 case Intrinsic::riscv_vfmv_v_f: 3233 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3234 Op.getOperand(1), Op.getOperand(2)); 3235 case Intrinsic::riscv_vmv_s_x: { 3236 SDValue Scalar = Op.getOperand(2); 3237 3238 if (Scalar.getValueType().bitsLE(XLenVT)) { 3239 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3240 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3241 Op.getOperand(1), Scalar, Op.getOperand(3)); 3242 } 3243 3244 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3245 3246 // This is an i64 value that lives in two scalar registers. We have to 3247 // insert this in a convoluted way. First we build vXi64 splat containing 3248 // the/ two values that we assemble using some bit math. Next we'll use 3249 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3250 // to merge element 0 from our splat into the source vector. 3251 // FIXME: This is probably not the best way to do this, but it is 3252 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3253 // point. 3254 // sw lo, (a0) 3255 // sw hi, 4(a0) 3256 // vlse vX, (a0) 3257 // 3258 // vid.v vVid 3259 // vmseq.vx mMask, vVid, 0 3260 // vmerge.vvm vDest, vSrc, vVal, mMask 3261 MVT VT = Op.getSimpleValueType(); 3262 SDValue Vec = Op.getOperand(1); 3263 SDValue VL = Op.getOperand(3); 3264 3265 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3266 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3267 DAG.getConstant(0, DL, MVT::i32), VL); 3268 3269 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3270 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3271 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3272 SDValue SelectCond = 3273 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3274 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3275 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3276 Vec, VL); 3277 } 3278 case Intrinsic::riscv_vslide1up: 3279 case Intrinsic::riscv_vslide1down: 3280 case Intrinsic::riscv_vslide1up_mask: 3281 case Intrinsic::riscv_vslide1down_mask: { 3282 // We need to special case these when the scalar is larger than XLen. 3283 unsigned NumOps = Op.getNumOperands(); 3284 bool IsMasked = NumOps == 6; 3285 unsigned OpOffset = IsMasked ? 1 : 0; 3286 SDValue Scalar = Op.getOperand(2 + OpOffset); 3287 if (Scalar.getValueType().bitsLE(XLenVT)) 3288 break; 3289 3290 // Splatting a sign extended constant is fine. 3291 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3292 if (isInt<32>(CVal->getSExtValue())) 3293 break; 3294 3295 MVT VT = Op.getSimpleValueType(); 3296 assert(VT.getVectorElementType() == MVT::i64 && 3297 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3298 3299 // Convert the vector source to the equivalent nxvXi32 vector. 3300 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3301 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3302 3303 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3304 DAG.getConstant(0, DL, XLenVT)); 3305 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3306 DAG.getConstant(1, DL, XLenVT)); 3307 3308 // Double the VL since we halved SEW. 3309 SDValue VL = Op.getOperand(NumOps - 1); 3310 SDValue I32VL = 3311 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3312 3313 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3314 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3315 3316 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3317 // instructions. 3318 if (IntNo == Intrinsic::riscv_vslide1up || 3319 IntNo == Intrinsic::riscv_vslide1up_mask) { 3320 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3321 I32Mask, I32VL); 3322 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3323 I32Mask, I32VL); 3324 } else { 3325 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3326 I32Mask, I32VL); 3327 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3328 I32Mask, I32VL); 3329 } 3330 3331 // Convert back to nxvXi64. 3332 Vec = DAG.getBitcast(VT, Vec); 3333 3334 if (!IsMasked) 3335 return Vec; 3336 3337 // Apply mask after the operation. 3338 SDValue Mask = Op.getOperand(NumOps - 2); 3339 SDValue MaskedOff = Op.getOperand(1); 3340 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3341 } 3342 } 3343 3344 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3345 } 3346 3347 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3348 SelectionDAG &DAG) const { 3349 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3350 } 3351 3352 static MVT getLMUL1VT(MVT VT) { 3353 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3354 "Unexpected vector MVT"); 3355 return MVT::getScalableVectorVT( 3356 VT.getVectorElementType(), 3357 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3358 } 3359 3360 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3361 switch (ISDOpcode) { 3362 default: 3363 llvm_unreachable("Unhandled reduction"); 3364 case ISD::VECREDUCE_ADD: 3365 return RISCVISD::VECREDUCE_ADD_VL; 3366 case ISD::VECREDUCE_UMAX: 3367 return RISCVISD::VECREDUCE_UMAX_VL; 3368 case ISD::VECREDUCE_SMAX: 3369 return RISCVISD::VECREDUCE_SMAX_VL; 3370 case ISD::VECREDUCE_UMIN: 3371 return RISCVISD::VECREDUCE_UMIN_VL; 3372 case ISD::VECREDUCE_SMIN: 3373 return RISCVISD::VECREDUCE_SMIN_VL; 3374 case ISD::VECREDUCE_AND: 3375 return RISCVISD::VECREDUCE_AND_VL; 3376 case ISD::VECREDUCE_OR: 3377 return RISCVISD::VECREDUCE_OR_VL; 3378 case ISD::VECREDUCE_XOR: 3379 return RISCVISD::VECREDUCE_XOR_VL; 3380 } 3381 } 3382 3383 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3384 SelectionDAG &DAG) const { 3385 SDLoc DL(Op); 3386 SDValue Vec = Op.getOperand(0); 3387 MVT VecVT = Vec.getSimpleValueType(); 3388 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3389 Op.getOpcode() == ISD::VECREDUCE_OR || 3390 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3391 "Unexpected reduction lowering"); 3392 3393 MVT XLenVT = Subtarget.getXLenVT(); 3394 assert(Op.getValueType() == XLenVT && 3395 "Expected reduction output to be legalized to XLenVT"); 3396 3397 MVT ContainerVT = VecVT; 3398 if (VecVT.isFixedLengthVector()) { 3399 ContainerVT = getContainerForFixedLengthVector(VecVT); 3400 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3401 } 3402 3403 SDValue Mask, VL; 3404 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3405 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3406 3407 switch (Op.getOpcode()) { 3408 default: 3409 llvm_unreachable("Unhandled reduction"); 3410 case ISD::VECREDUCE_AND: 3411 // vpopc ~x == 0 3412 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3413 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3414 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3415 case ISD::VECREDUCE_OR: 3416 // vpopc x != 0 3417 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3418 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3419 case ISD::VECREDUCE_XOR: { 3420 // ((vpopc x) & 1) != 0 3421 SDValue One = DAG.getConstant(1, DL, XLenVT); 3422 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3423 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3424 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3425 } 3426 } 3427 } 3428 3429 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3430 SelectionDAG &DAG) const { 3431 SDLoc DL(Op); 3432 SDValue Vec = Op.getOperand(0); 3433 EVT VecEVT = Vec.getValueType(); 3434 3435 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3436 3437 // Due to ordering in legalize types we may have a vector type that needs to 3438 // be split. Do that manually so we can get down to a legal type. 3439 while (getTypeAction(*DAG.getContext(), VecEVT) == 3440 TargetLowering::TypeSplitVector) { 3441 SDValue Lo, Hi; 3442 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3443 VecEVT = Lo.getValueType(); 3444 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3445 } 3446 3447 // TODO: The type may need to be widened rather than split. Or widened before 3448 // it can be split. 3449 if (!isTypeLegal(VecEVT)) 3450 return SDValue(); 3451 3452 MVT VecVT = VecEVT.getSimpleVT(); 3453 MVT VecEltVT = VecVT.getVectorElementType(); 3454 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3455 3456 MVT ContainerVT = VecVT; 3457 if (VecVT.isFixedLengthVector()) { 3458 ContainerVT = getContainerForFixedLengthVector(VecVT); 3459 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3460 } 3461 3462 MVT M1VT = getLMUL1VT(ContainerVT); 3463 3464 SDValue Mask, VL; 3465 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3466 3467 // FIXME: This is a VLMAX splat which might be too large and can prevent 3468 // vsetvli removal. 3469 SDValue NeutralElem = 3470 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3471 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3472 SDValue Reduction = 3473 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3474 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3475 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3476 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3477 } 3478 3479 // Given a reduction op, this function returns the matching reduction opcode, 3480 // the vector SDValue and the scalar SDValue required to lower this to a 3481 // RISCVISD node. 3482 static std::tuple<unsigned, SDValue, SDValue> 3483 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3484 SDLoc DL(Op); 3485 auto Flags = Op->getFlags(); 3486 unsigned Opcode = Op.getOpcode(); 3487 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3488 switch (Opcode) { 3489 default: 3490 llvm_unreachable("Unhandled reduction"); 3491 case ISD::VECREDUCE_FADD: 3492 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3493 DAG.getConstantFP(0.0, DL, EltVT)); 3494 case ISD::VECREDUCE_SEQ_FADD: 3495 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3496 Op.getOperand(0)); 3497 case ISD::VECREDUCE_FMIN: 3498 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3499 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3500 case ISD::VECREDUCE_FMAX: 3501 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3502 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3503 } 3504 } 3505 3506 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3507 SelectionDAG &DAG) const { 3508 SDLoc DL(Op); 3509 MVT VecEltVT = Op.getSimpleValueType(); 3510 3511 unsigned RVVOpcode; 3512 SDValue VectorVal, ScalarVal; 3513 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3514 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3515 MVT VecVT = VectorVal.getSimpleValueType(); 3516 3517 MVT ContainerVT = VecVT; 3518 if (VecVT.isFixedLengthVector()) { 3519 ContainerVT = getContainerForFixedLengthVector(VecVT); 3520 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3521 } 3522 3523 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3524 3525 SDValue Mask, VL; 3526 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3527 3528 // FIXME: This is a VLMAX splat which might be too large and can prevent 3529 // vsetvli removal. 3530 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3531 SDValue Reduction = 3532 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3533 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3534 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3535 } 3536 3537 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3538 SelectionDAG &DAG) const { 3539 SDValue Vec = Op.getOperand(0); 3540 SDValue SubVec = Op.getOperand(1); 3541 MVT VecVT = Vec.getSimpleValueType(); 3542 MVT SubVecVT = SubVec.getSimpleValueType(); 3543 3544 SDLoc DL(Op); 3545 MVT XLenVT = Subtarget.getXLenVT(); 3546 unsigned OrigIdx = Op.getConstantOperandVal(2); 3547 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3548 3549 // We don't have the ability to slide mask vectors up indexed by their i1 3550 // elements; the smallest we can do is i8. Often we are able to bitcast to 3551 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3552 // into a scalable one, we might not necessarily have enough scalable 3553 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3554 if (SubVecVT.getVectorElementType() == MVT::i1 && 3555 (OrigIdx != 0 || !Vec.isUndef())) { 3556 if (VecVT.getVectorMinNumElements() >= 8 && 3557 SubVecVT.getVectorMinNumElements() >= 8) { 3558 assert(OrigIdx % 8 == 0 && "Invalid index"); 3559 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3560 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3561 "Unexpected mask vector lowering"); 3562 OrigIdx /= 8; 3563 SubVecVT = 3564 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3565 SubVecVT.isScalableVector()); 3566 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3567 VecVT.isScalableVector()); 3568 Vec = DAG.getBitcast(VecVT, Vec); 3569 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3570 } else { 3571 // We can't slide this mask vector up indexed by its i1 elements. 3572 // This poses a problem when we wish to insert a scalable vector which 3573 // can't be re-expressed as a larger type. Just choose the slow path and 3574 // extend to a larger type, then truncate back down. 3575 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3576 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3577 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3578 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3579 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3580 Op.getOperand(2)); 3581 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3582 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3583 } 3584 } 3585 3586 // If the subvector vector is a fixed-length type, we cannot use subregister 3587 // manipulation to simplify the codegen; we don't know which register of a 3588 // LMUL group contains the specific subvector as we only know the minimum 3589 // register size. Therefore we must slide the vector group up the full 3590 // amount. 3591 if (SubVecVT.isFixedLengthVector()) { 3592 if (OrigIdx == 0 && Vec.isUndef()) 3593 return Op; 3594 MVT ContainerVT = VecVT; 3595 if (VecVT.isFixedLengthVector()) { 3596 ContainerVT = getContainerForFixedLengthVector(VecVT); 3597 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3598 } 3599 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3600 DAG.getUNDEF(ContainerVT), SubVec, 3601 DAG.getConstant(0, DL, XLenVT)); 3602 SDValue Mask = 3603 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3604 // Set the vector length to only the number of elements we care about. Note 3605 // that for slideup this includes the offset. 3606 SDValue VL = 3607 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3608 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3609 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3610 SubVec, SlideupAmt, Mask, VL); 3611 if (VecVT.isFixedLengthVector()) 3612 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3613 return DAG.getBitcast(Op.getValueType(), Slideup); 3614 } 3615 3616 unsigned SubRegIdx, RemIdx; 3617 std::tie(SubRegIdx, RemIdx) = 3618 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3619 VecVT, SubVecVT, OrigIdx, TRI); 3620 3621 RISCVVLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3622 bool IsSubVecPartReg = SubVecLMUL == RISCVVLMUL::LMUL_F2 || 3623 SubVecLMUL == RISCVVLMUL::LMUL_F4 || 3624 SubVecLMUL == RISCVVLMUL::LMUL_F8; 3625 3626 // 1. If the Idx has been completely eliminated and this subvector's size is 3627 // a vector register or a multiple thereof, or the surrounding elements are 3628 // undef, then this is a subvector insert which naturally aligns to a vector 3629 // register. These can easily be handled using subregister manipulation. 3630 // 2. If the subvector is smaller than a vector register, then the insertion 3631 // must preserve the undisturbed elements of the register. We do this by 3632 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3633 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3634 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3635 // LMUL=1 type back into the larger vector (resolving to another subregister 3636 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3637 // to avoid allocating a large register group to hold our subvector. 3638 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3639 return Op; 3640 3641 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3642 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3643 // (in our case undisturbed). This means we can set up a subvector insertion 3644 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3645 // size of the subvector. 3646 MVT InterSubVT = VecVT; 3647 SDValue AlignedExtract = Vec; 3648 unsigned AlignedIdx = OrigIdx - RemIdx; 3649 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3650 InterSubVT = getLMUL1VT(VecVT); 3651 // Extract a subvector equal to the nearest full vector register type. This 3652 // should resolve to a EXTRACT_SUBREG instruction. 3653 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3654 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3655 } 3656 3657 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3658 // For scalable vectors this must be further multiplied by vscale. 3659 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3660 3661 SDValue Mask, VL; 3662 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3663 3664 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3665 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3666 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3667 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3668 3669 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3670 DAG.getUNDEF(InterSubVT), SubVec, 3671 DAG.getConstant(0, DL, XLenVT)); 3672 3673 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3674 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3675 3676 // If required, insert this subvector back into the correct vector register. 3677 // This should resolve to an INSERT_SUBREG instruction. 3678 if (VecVT.bitsGT(InterSubVT)) 3679 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3680 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3681 3682 // We might have bitcast from a mask type: cast back to the original type if 3683 // required. 3684 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3685 } 3686 3687 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3688 SelectionDAG &DAG) const { 3689 SDValue Vec = Op.getOperand(0); 3690 MVT SubVecVT = Op.getSimpleValueType(); 3691 MVT VecVT = Vec.getSimpleValueType(); 3692 3693 SDLoc DL(Op); 3694 MVT XLenVT = Subtarget.getXLenVT(); 3695 unsigned OrigIdx = Op.getConstantOperandVal(1); 3696 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3697 3698 // We don't have the ability to slide mask vectors down indexed by their i1 3699 // elements; the smallest we can do is i8. Often we are able to bitcast to 3700 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3701 // from a scalable one, we might not necessarily have enough scalable 3702 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3703 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3704 if (VecVT.getVectorMinNumElements() >= 8 && 3705 SubVecVT.getVectorMinNumElements() >= 8) { 3706 assert(OrigIdx % 8 == 0 && "Invalid index"); 3707 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3708 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3709 "Unexpected mask vector lowering"); 3710 OrigIdx /= 8; 3711 SubVecVT = 3712 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3713 SubVecVT.isScalableVector()); 3714 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3715 VecVT.isScalableVector()); 3716 Vec = DAG.getBitcast(VecVT, Vec); 3717 } else { 3718 // We can't slide this mask vector down, indexed by its i1 elements. 3719 // This poses a problem when we wish to extract a scalable vector which 3720 // can't be re-expressed as a larger type. Just choose the slow path and 3721 // extend to a larger type, then truncate back down. 3722 // TODO: We could probably improve this when extracting certain fixed 3723 // from fixed, where we can extract as i8 and shift the correct element 3724 // right to reach the desired subvector? 3725 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3726 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3727 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3728 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3729 Op.getOperand(1)); 3730 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3731 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3732 } 3733 } 3734 3735 // If the subvector vector is a fixed-length type, we cannot use subregister 3736 // manipulation to simplify the codegen; we don't know which register of a 3737 // LMUL group contains the specific subvector as we only know the minimum 3738 // register size. Therefore we must slide the vector group down the full 3739 // amount. 3740 if (SubVecVT.isFixedLengthVector()) { 3741 // With an index of 0 this is a cast-like subvector, which can be performed 3742 // with subregister operations. 3743 if (OrigIdx == 0) 3744 return Op; 3745 MVT ContainerVT = VecVT; 3746 if (VecVT.isFixedLengthVector()) { 3747 ContainerVT = getContainerForFixedLengthVector(VecVT); 3748 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3749 } 3750 SDValue Mask = 3751 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3752 // Set the vector length to only the number of elements we care about. This 3753 // avoids sliding down elements we're going to discard straight away. 3754 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3755 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3756 SDValue Slidedown = 3757 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3758 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3759 // Now we can use a cast-like subvector extract to get the result. 3760 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3761 DAG.getConstant(0, DL, XLenVT)); 3762 return DAG.getBitcast(Op.getValueType(), Slidedown); 3763 } 3764 3765 unsigned SubRegIdx, RemIdx; 3766 std::tie(SubRegIdx, RemIdx) = 3767 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3768 VecVT, SubVecVT, OrigIdx, TRI); 3769 3770 // If the Idx has been completely eliminated then this is a subvector extract 3771 // which naturally aligns to a vector register. These can easily be handled 3772 // using subregister manipulation. 3773 if (RemIdx == 0) 3774 return Op; 3775 3776 // Else we must shift our vector register directly to extract the subvector. 3777 // Do this using VSLIDEDOWN. 3778 3779 // If the vector type is an LMUL-group type, extract a subvector equal to the 3780 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3781 // instruction. 3782 MVT InterSubVT = VecVT; 3783 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3784 InterSubVT = getLMUL1VT(VecVT); 3785 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3786 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3787 } 3788 3789 // Slide this vector register down by the desired number of elements in order 3790 // to place the desired subvector starting at element 0. 3791 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3792 // For scalable vectors this must be further multiplied by vscale. 3793 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3794 3795 SDValue Mask, VL; 3796 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3797 SDValue Slidedown = 3798 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3799 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3800 3801 // Now the vector is in the right position, extract our final subvector. This 3802 // should resolve to a COPY. 3803 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3804 DAG.getConstant(0, DL, XLenVT)); 3805 3806 // We might have bitcast from a mask type: cast back to the original type if 3807 // required. 3808 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3809 } 3810 3811 // Lower step_vector to the vid instruction. Any non-identity step value must 3812 // be accounted for my manual expansion. 3813 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3814 SelectionDAG &DAG) const { 3815 SDLoc DL(Op); 3816 MVT VT = Op.getSimpleValueType(); 3817 MVT XLenVT = Subtarget.getXLenVT(); 3818 SDValue Mask, VL; 3819 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3820 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3821 uint64_t StepValImm = Op.getConstantOperandVal(0); 3822 if (StepValImm != 1) { 3823 assert(Op.getOperand(0).getValueType() == XLenVT && 3824 "Unexpected step value type"); 3825 if (isPowerOf2_64(StepValImm)) { 3826 SDValue StepVal = 3827 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3828 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 3829 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 3830 } else { 3831 SDValue StepVal = 3832 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 3833 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 3834 } 3835 } 3836 return StepVec; 3837 } 3838 3839 // Implement vector_reverse using vrgather.vv with indices determined by 3840 // subtracting the id of each element from (VLMAX-1). This will convert 3841 // the indices like so: 3842 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3843 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3844 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3845 SelectionDAG &DAG) const { 3846 SDLoc DL(Op); 3847 MVT VecVT = Op.getSimpleValueType(); 3848 unsigned EltSize = VecVT.getScalarSizeInBits(); 3849 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3850 3851 unsigned MaxVLMAX = 0; 3852 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3853 if (VectorBitsMax != 0) 3854 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3855 3856 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3857 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3858 3859 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3860 // to use vrgatherei16.vv. 3861 // TODO: It's also possible to use vrgatherei16.vv for other types to 3862 // decrease register width for the index calculation. 3863 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3864 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3865 // Reverse each half, then reassemble them in reverse order. 3866 // NOTE: It's also possible that after splitting that VLMAX no longer 3867 // requires vrgatherei16.vv. 3868 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 3869 SDValue Lo, Hi; 3870 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3871 EVT LoVT, HiVT; 3872 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 3873 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 3874 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 3875 // Reassemble the low and high pieces reversed. 3876 // FIXME: This is a CONCAT_VECTORS. 3877 SDValue Res = 3878 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 3879 DAG.getIntPtrConstant(0, DL)); 3880 return DAG.getNode( 3881 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 3882 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 3883 } 3884 3885 // Just promote the int type to i16 which will double the LMUL. 3886 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 3887 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 3888 } 3889 3890 MVT XLenVT = Subtarget.getXLenVT(); 3891 SDValue Mask, VL; 3892 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3893 3894 // Calculate VLMAX-1 for the desired SEW. 3895 unsigned MinElts = VecVT.getVectorMinNumElements(); 3896 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 3897 DAG.getConstant(MinElts, DL, XLenVT)); 3898 SDValue VLMinus1 = 3899 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 3900 3901 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 3902 bool IsRV32E64 = 3903 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 3904 SDValue SplatVL; 3905 if (!IsRV32E64) 3906 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 3907 else 3908 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 3909 3910 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 3911 SDValue Indices = 3912 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 3913 3914 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 3915 } 3916 3917 SDValue 3918 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 3919 SelectionDAG &DAG) const { 3920 auto *Load = cast<LoadSDNode>(Op); 3921 3922 SDLoc DL(Op); 3923 MVT VT = Op.getSimpleValueType(); 3924 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3925 3926 SDValue VL = 3927 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3928 3929 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3930 SDValue NewLoad = DAG.getMemIntrinsicNode( 3931 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 3932 Load->getMemoryVT(), Load->getMemOperand()); 3933 3934 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 3935 return DAG.getMergeValues({Result, Load->getChain()}, DL); 3936 } 3937 3938 SDValue 3939 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 3940 SelectionDAG &DAG) const { 3941 auto *Store = cast<StoreSDNode>(Op); 3942 3943 SDLoc DL(Op); 3944 SDValue StoreVal = Store->getValue(); 3945 MVT VT = StoreVal.getSimpleValueType(); 3946 3947 // If the size less than a byte, we need to pad with zeros to make a byte. 3948 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 3949 VT = MVT::v8i1; 3950 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3951 DAG.getConstant(0, DL, VT), StoreVal, 3952 DAG.getIntPtrConstant(0, DL)); 3953 } 3954 3955 MVT ContainerVT = getContainerForFixedLengthVector(VT); 3956 3957 SDValue VL = 3958 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 3959 3960 SDValue NewValue = 3961 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 3962 return DAG.getMemIntrinsicNode( 3963 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 3964 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 3965 Store->getMemoryVT(), Store->getMemOperand()); 3966 } 3967 3968 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 3969 auto *Load = cast<MaskedLoadSDNode>(Op); 3970 3971 SDLoc DL(Op); 3972 MVT VT = Op.getSimpleValueType(); 3973 MVT XLenVT = Subtarget.getXLenVT(); 3974 3975 SDValue Mask = Load->getMask(); 3976 SDValue PassThru = Load->getPassThru(); 3977 SDValue VL; 3978 3979 MVT ContainerVT = VT; 3980 if (VT.isFixedLengthVector()) { 3981 ContainerVT = getContainerForFixedLengthVector(VT); 3982 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3983 3984 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 3985 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 3986 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 3987 } else 3988 VL = DAG.getRegister(RISCV::X0, XLenVT); 3989 3990 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 3991 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 3992 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 3993 Load->getBasePtr(), Mask, VL}; 3994 SDValue Result = 3995 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 3996 Load->getMemoryVT(), Load->getMemOperand()); 3997 SDValue Chain = Result.getValue(1); 3998 3999 if (VT.isFixedLengthVector()) 4000 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4001 4002 return DAG.getMergeValues({Result, Chain}, DL); 4003 } 4004 4005 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4006 auto *Store = cast<MaskedStoreSDNode>(Op); 4007 4008 SDLoc DL(Op); 4009 SDValue Val = Store->getValue(); 4010 SDValue Mask = Store->getMask(); 4011 MVT VT = Val.getSimpleValueType(); 4012 MVT XLenVT = Subtarget.getXLenVT(); 4013 SDValue VL; 4014 4015 MVT ContainerVT = VT; 4016 if (VT.isFixedLengthVector()) { 4017 ContainerVT = getContainerForFixedLengthVector(VT); 4018 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4019 4020 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4021 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4022 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4023 } else 4024 VL = DAG.getRegister(RISCV::X0, XLenVT); 4025 4026 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4027 return DAG.getMemIntrinsicNode( 4028 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4029 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4030 Store->getMemoryVT(), Store->getMemOperand()); 4031 } 4032 4033 SDValue 4034 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4035 SelectionDAG &DAG) const { 4036 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4037 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4038 4039 MVT VT = Op.getSimpleValueType(); 4040 4041 SDValue Op1 = 4042 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4043 SDValue Op2 = 4044 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4045 4046 SDLoc DL(Op); 4047 SDValue VL = 4048 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4049 4050 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4051 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4052 4053 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4054 Op.getOperand(2), Mask, VL); 4055 4056 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4057 } 4058 4059 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4060 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4061 MVT VT = Op.getSimpleValueType(); 4062 4063 if (VT.getVectorElementType() == MVT::i1) 4064 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4065 4066 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4067 } 4068 4069 // Lower vector ABS to smax(X, sub(0, X)). 4070 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4071 SDLoc DL(Op); 4072 MVT VT = Op.getSimpleValueType(); 4073 SDValue X = Op.getOperand(0); 4074 4075 assert(VT.isFixedLengthVector() && "Unexpected type"); 4076 4077 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4078 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4079 4080 SDValue Mask, VL; 4081 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4082 4083 SDValue SplatZero = 4084 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4085 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4086 SDValue NegX = 4087 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4088 SDValue Max = 4089 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4090 4091 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4092 } 4093 4094 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4095 SDValue Op, SelectionDAG &DAG) const { 4096 SDLoc DL(Op); 4097 MVT VT = Op.getSimpleValueType(); 4098 SDValue Mag = Op.getOperand(0); 4099 SDValue Sign = Op.getOperand(1); 4100 assert(Mag.getValueType() == Sign.getValueType() && 4101 "Can only handle COPYSIGN with matching types."); 4102 4103 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4104 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4105 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4106 4107 SDValue Mask, VL; 4108 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4109 4110 SDValue CopySign = 4111 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4112 4113 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4114 } 4115 4116 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4117 SDValue Op, SelectionDAG &DAG) const { 4118 MVT VT = Op.getSimpleValueType(); 4119 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4120 4121 MVT I1ContainerVT = 4122 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4123 4124 SDValue CC = 4125 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4126 SDValue Op1 = 4127 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4128 SDValue Op2 = 4129 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4130 4131 SDLoc DL(Op); 4132 SDValue Mask, VL; 4133 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4134 4135 SDValue Select = 4136 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4137 4138 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4139 } 4140 4141 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4142 unsigned NewOpc, 4143 bool HasMask) const { 4144 MVT VT = Op.getSimpleValueType(); 4145 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4146 4147 // Create list of operands by converting existing ones to scalable types. 4148 SmallVector<SDValue, 6> Ops; 4149 for (const SDValue &V : Op->op_values()) { 4150 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4151 4152 // Pass through non-vector operands. 4153 if (!V.getValueType().isVector()) { 4154 Ops.push_back(V); 4155 continue; 4156 } 4157 4158 // "cast" fixed length vector to a scalable vector. 4159 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4160 "Only fixed length vectors are supported!"); 4161 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4162 } 4163 4164 SDLoc DL(Op); 4165 SDValue Mask, VL; 4166 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4167 if (HasMask) 4168 Ops.push_back(Mask); 4169 Ops.push_back(VL); 4170 4171 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4172 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4173 } 4174 4175 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4176 // a RVV indexed load. The RVV indexed load instructions only support the 4177 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4178 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4179 // indexing is extended to the XLEN value type and scaled accordingly. 4180 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4181 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4182 SDLoc DL(Op); 4183 4184 SDValue Index = MGN->getIndex(); 4185 SDValue Mask = MGN->getMask(); 4186 SDValue PassThru = MGN->getPassThru(); 4187 4188 MVT VT = Op.getSimpleValueType(); 4189 MVT IndexVT = Index.getSimpleValueType(); 4190 MVT XLenVT = Subtarget.getXLenVT(); 4191 4192 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4193 "Unexpected VTs!"); 4194 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4195 "Unexpected pointer type"); 4196 // Targets have to explicitly opt-in for extending vector loads. 4197 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4198 "Unexpected extending MGATHER"); 4199 4200 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4201 // the selection of the masked intrinsics doesn't do this for us. 4202 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4203 4204 SDValue VL; 4205 MVT ContainerVT = VT; 4206 if (VT.isFixedLengthVector()) { 4207 // We need to use the larger of the result and index type to determine the 4208 // scalable type to use so we don't increase LMUL for any operand/result. 4209 if (VT.bitsGE(IndexVT)) { 4210 ContainerVT = getContainerForFixedLengthVector(VT); 4211 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4212 ContainerVT.getVectorElementCount()); 4213 } else { 4214 IndexVT = getContainerForFixedLengthVector(IndexVT); 4215 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4216 IndexVT.getVectorElementCount()); 4217 } 4218 4219 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4220 4221 if (!IsUnmasked) { 4222 MVT MaskVT = 4223 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4224 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4225 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4226 } 4227 4228 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4229 } else 4230 VL = DAG.getRegister(RISCV::X0, XLenVT); 4231 4232 unsigned IntID = 4233 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4234 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4235 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4236 if (!IsUnmasked) 4237 Ops.push_back(PassThru); 4238 Ops.push_back(MGN->getBasePtr()); 4239 Ops.push_back(Index); 4240 if (!IsUnmasked) 4241 Ops.push_back(Mask); 4242 Ops.push_back(VL); 4243 4244 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4245 SDValue Result = 4246 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4247 MGN->getMemoryVT(), MGN->getMemOperand()); 4248 SDValue Chain = Result.getValue(1); 4249 4250 if (VT.isFixedLengthVector()) 4251 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4252 4253 return DAG.getMergeValues({Result, Chain}, DL); 4254 } 4255 4256 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4257 // a RVV indexed store. The RVV indexed store instructions only support the 4258 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4259 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4260 // indexing is extended to the XLEN value type and scaled accordingly. 4261 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4262 SelectionDAG &DAG) const { 4263 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4264 SDLoc DL(Op); 4265 SDValue Index = MSN->getIndex(); 4266 SDValue Mask = MSN->getMask(); 4267 SDValue Val = MSN->getValue(); 4268 4269 MVT VT = Val.getSimpleValueType(); 4270 MVT IndexVT = Index.getSimpleValueType(); 4271 MVT XLenVT = Subtarget.getXLenVT(); 4272 4273 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4274 "Unexpected VTs!"); 4275 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4276 "Unexpected pointer type"); 4277 // Targets have to explicitly opt-in for extending vector loads and 4278 // truncating vector stores. 4279 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4280 4281 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4282 // the selection of the masked intrinsics doesn't do this for us. 4283 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4284 4285 SDValue VL; 4286 if (VT.isFixedLengthVector()) { 4287 // We need to use the larger of the value and index type to determine the 4288 // scalable type to use so we don't increase LMUL for any operand/result. 4289 if (VT.bitsGE(IndexVT)) { 4290 VT = getContainerForFixedLengthVector(VT); 4291 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4292 VT.getVectorElementCount()); 4293 } else { 4294 IndexVT = getContainerForFixedLengthVector(IndexVT); 4295 VT = MVT::getVectorVT(VT.getVectorElementType(), 4296 IndexVT.getVectorElementCount()); 4297 } 4298 4299 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4300 Val = convertToScalableVector(VT, Val, DAG, Subtarget); 4301 4302 if (!IsUnmasked) { 4303 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4304 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4305 } 4306 4307 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4308 } else 4309 VL = DAG.getRegister(RISCV::X0, XLenVT); 4310 4311 unsigned IntID = 4312 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4313 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4314 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4315 Ops.push_back(Val); 4316 Ops.push_back(MSN->getBasePtr()); 4317 Ops.push_back(Index); 4318 if (!IsUnmasked) 4319 Ops.push_back(Mask); 4320 Ops.push_back(VL); 4321 4322 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4323 MSN->getMemoryVT(), MSN->getMemOperand()); 4324 } 4325 4326 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4327 SelectionDAG &DAG) const { 4328 const MVT XLenVT = Subtarget.getXLenVT(); 4329 SDLoc DL(Op); 4330 SDValue Chain = Op->getOperand(0); 4331 SDValue SysRegNo = DAG.getConstant( 4332 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4333 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4334 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4335 4336 // Encoding used for rounding mode in RISCV differs from that used in 4337 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4338 // table, which consists of a sequence of 4-bit fields, each representing 4339 // corresponding FLT_ROUNDS mode. 4340 static const int Table = 4341 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4342 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4343 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4344 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4345 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4346 4347 SDValue Shift = 4348 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4349 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4350 DAG.getConstant(Table, DL, XLenVT), Shift); 4351 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4352 DAG.getConstant(7, DL, XLenVT)); 4353 4354 return DAG.getMergeValues({Masked, Chain}, DL); 4355 } 4356 4357 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4358 SelectionDAG &DAG) const { 4359 const MVT XLenVT = Subtarget.getXLenVT(); 4360 SDLoc DL(Op); 4361 SDValue Chain = Op->getOperand(0); 4362 SDValue RMValue = Op->getOperand(1); 4363 SDValue SysRegNo = DAG.getConstant( 4364 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4365 4366 // Encoding used for rounding mode in RISCV differs from that used in 4367 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4368 // a table, which consists of a sequence of 4-bit fields, each representing 4369 // corresponding RISCV mode. 4370 static const unsigned Table = 4371 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4372 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4373 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4374 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4375 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4376 4377 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4378 DAG.getConstant(2, DL, XLenVT)); 4379 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4380 DAG.getConstant(Table, DL, XLenVT), Shift); 4381 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4382 DAG.getConstant(0x7, DL, XLenVT)); 4383 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4384 RMValue); 4385 } 4386 4387 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4388 // form of the given Opcode. 4389 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4390 switch (Opcode) { 4391 default: 4392 llvm_unreachable("Unexpected opcode"); 4393 case ISD::SHL: 4394 return RISCVISD::SLLW; 4395 case ISD::SRA: 4396 return RISCVISD::SRAW; 4397 case ISD::SRL: 4398 return RISCVISD::SRLW; 4399 case ISD::SDIV: 4400 return RISCVISD::DIVW; 4401 case ISD::UDIV: 4402 return RISCVISD::DIVUW; 4403 case ISD::UREM: 4404 return RISCVISD::REMUW; 4405 case ISD::ROTL: 4406 return RISCVISD::ROLW; 4407 case ISD::ROTR: 4408 return RISCVISD::RORW; 4409 case RISCVISD::GREV: 4410 return RISCVISD::GREVW; 4411 case RISCVISD::GORC: 4412 return RISCVISD::GORCW; 4413 } 4414 } 4415 4416 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4417 // Because i32 isn't a legal type for RV64, these operations would otherwise 4418 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4419 // later one because the fact the operation was originally of type i32 is 4420 // lost. 4421 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4422 unsigned ExtOpc = ISD::ANY_EXTEND) { 4423 SDLoc DL(N); 4424 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4425 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4426 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4427 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4428 // ReplaceNodeResults requires we maintain the same type for the return value. 4429 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4430 } 4431 4432 // Converts the given 32-bit operation to a i64 operation with signed extension 4433 // semantic to reduce the signed extension instructions. 4434 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4435 SDLoc DL(N); 4436 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4437 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4438 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4439 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4440 DAG.getValueType(MVT::i32)); 4441 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4442 } 4443 4444 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4445 SmallVectorImpl<SDValue> &Results, 4446 SelectionDAG &DAG) const { 4447 SDLoc DL(N); 4448 switch (N->getOpcode()) { 4449 default: 4450 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4451 case ISD::STRICT_FP_TO_SINT: 4452 case ISD::STRICT_FP_TO_UINT: 4453 case ISD::FP_TO_SINT: 4454 case ISD::FP_TO_UINT: { 4455 bool IsStrict = N->isStrictFPOpcode(); 4456 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4457 "Unexpected custom legalisation"); 4458 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4459 // If the FP type needs to be softened, emit a library call using the 'si' 4460 // version. If we left it to default legalization we'd end up with 'di'. If 4461 // the FP type doesn't need to be softened just let generic type 4462 // legalization promote the result type. 4463 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4464 TargetLowering::TypeSoftenFloat) 4465 return; 4466 RTLIB::Libcall LC; 4467 if (N->getOpcode() == ISD::FP_TO_SINT || 4468 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4469 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4470 else 4471 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4472 MakeLibCallOptions CallOptions; 4473 EVT OpVT = Op0.getValueType(); 4474 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4475 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4476 SDValue Result; 4477 std::tie(Result, Chain) = 4478 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4479 Results.push_back(Result); 4480 if (IsStrict) 4481 Results.push_back(Chain); 4482 break; 4483 } 4484 case ISD::READCYCLECOUNTER: { 4485 assert(!Subtarget.is64Bit() && 4486 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4487 4488 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4489 SDValue RCW = 4490 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4491 4492 Results.push_back( 4493 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4494 Results.push_back(RCW.getValue(2)); 4495 break; 4496 } 4497 case ISD::MUL: { 4498 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4499 unsigned XLen = Subtarget.getXLen(); 4500 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4501 if (Size > XLen) { 4502 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4503 SDValue LHS = N->getOperand(0); 4504 SDValue RHS = N->getOperand(1); 4505 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4506 4507 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4508 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4509 // We need exactly one side to be unsigned. 4510 if (LHSIsU == RHSIsU) 4511 return; 4512 4513 auto MakeMULPair = [&](SDValue S, SDValue U) { 4514 MVT XLenVT = Subtarget.getXLenVT(); 4515 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4516 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4517 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4518 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4519 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4520 }; 4521 4522 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4523 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4524 4525 // The other operand should be signed, but still prefer MULH when 4526 // possible. 4527 if (RHSIsU && LHSIsS && !RHSIsS) 4528 Results.push_back(MakeMULPair(LHS, RHS)); 4529 else if (LHSIsU && RHSIsS && !LHSIsS) 4530 Results.push_back(MakeMULPair(RHS, LHS)); 4531 4532 return; 4533 } 4534 LLVM_FALLTHROUGH; 4535 } 4536 case ISD::ADD: 4537 case ISD::SUB: 4538 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4539 "Unexpected custom legalisation"); 4540 if (N->getOperand(1).getOpcode() == ISD::Constant) 4541 return; 4542 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4543 break; 4544 case ISD::SHL: 4545 case ISD::SRA: 4546 case ISD::SRL: 4547 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4548 "Unexpected custom legalisation"); 4549 if (N->getOperand(1).getOpcode() == ISD::Constant) 4550 return; 4551 Results.push_back(customLegalizeToWOp(N, DAG)); 4552 break; 4553 case ISD::ROTL: 4554 case ISD::ROTR: 4555 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4556 "Unexpected custom legalisation"); 4557 Results.push_back(customLegalizeToWOp(N, DAG)); 4558 break; 4559 case ISD::CTTZ: 4560 case ISD::CTTZ_ZERO_UNDEF: 4561 case ISD::CTLZ: 4562 case ISD::CTLZ_ZERO_UNDEF: { 4563 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4564 "Unexpected custom legalisation"); 4565 4566 SDValue NewOp0 = 4567 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4568 bool IsCTZ = 4569 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4570 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4571 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4572 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4573 return; 4574 } 4575 case ISD::SDIV: 4576 case ISD::UDIV: 4577 case ISD::UREM: { 4578 MVT VT = N->getSimpleValueType(0); 4579 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4580 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4581 "Unexpected custom legalisation"); 4582 if (N->getOperand(0).getOpcode() == ISD::Constant || 4583 N->getOperand(1).getOpcode() == ISD::Constant) 4584 return; 4585 4586 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4587 // the upper 32 bits. For other types we need to sign or zero extend 4588 // based on the opcode. 4589 unsigned ExtOpc = ISD::ANY_EXTEND; 4590 if (VT != MVT::i32) 4591 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4592 : ISD::ZERO_EXTEND; 4593 4594 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4595 break; 4596 } 4597 case ISD::UADDO: 4598 case ISD::USUBO: { 4599 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4600 "Unexpected custom legalisation"); 4601 bool IsAdd = N->getOpcode() == ISD::UADDO; 4602 // Create an ADDW or SUBW. 4603 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4604 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4605 SDValue Res = 4606 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4607 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4608 DAG.getValueType(MVT::i32)); 4609 4610 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4611 // Since the inputs are sign extended from i32, this is equivalent to 4612 // comparing the lower 32 bits. 4613 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4614 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4615 IsAdd ? ISD::SETULT : ISD::SETUGT); 4616 4617 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4618 Results.push_back(Overflow); 4619 return; 4620 } 4621 case ISD::UADDSAT: 4622 case ISD::USUBSAT: { 4623 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4624 "Unexpected custom legalisation"); 4625 if (Subtarget.hasStdExtZbb()) { 4626 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4627 // sign extend allows overflow of the lower 32 bits to be detected on 4628 // the promoted size. 4629 SDValue LHS = 4630 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4631 SDValue RHS = 4632 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4633 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4634 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4635 return; 4636 } 4637 4638 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4639 // promotion for UADDO/USUBO. 4640 Results.push_back(expandAddSubSat(N, DAG)); 4641 return; 4642 } 4643 case ISD::BITCAST: { 4644 EVT VT = N->getValueType(0); 4645 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4646 SDValue Op0 = N->getOperand(0); 4647 EVT Op0VT = Op0.getValueType(); 4648 MVT XLenVT = Subtarget.getXLenVT(); 4649 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4650 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4651 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4652 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4653 Subtarget.hasStdExtF()) { 4654 SDValue FPConv = 4655 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4656 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4657 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4658 isTypeLegal(Op0VT)) { 4659 // Custom-legalize bitcasts from fixed-length vector types to illegal 4660 // scalar types in order to improve codegen. Bitcast the vector to a 4661 // one-element vector type whose element type is the same as the result 4662 // type, and extract the first element. 4663 LLVMContext &Context = *DAG.getContext(); 4664 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4665 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4666 DAG.getConstant(0, DL, XLenVT))); 4667 } 4668 break; 4669 } 4670 case RISCVISD::GREV: 4671 case RISCVISD::GORC: { 4672 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4673 "Unexpected custom legalisation"); 4674 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4675 // This is similar to customLegalizeToWOp, except that we pass the second 4676 // operand (a TargetConstant) straight through: it is already of type 4677 // XLenVT. 4678 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4679 SDValue NewOp0 = 4680 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4681 SDValue NewOp1 = 4682 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4683 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4684 // ReplaceNodeResults requires we maintain the same type for the return 4685 // value. 4686 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4687 break; 4688 } 4689 case RISCVISD::SHFL: { 4690 // There is no SHFLIW instruction, but we can just promote the operation. 4691 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4692 "Unexpected custom legalisation"); 4693 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4694 SDValue NewOp0 = 4695 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4696 SDValue NewOp1 = 4697 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4698 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4699 // ReplaceNodeResults requires we maintain the same type for the return 4700 // value. 4701 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4702 break; 4703 } 4704 case ISD::BSWAP: 4705 case ISD::BITREVERSE: { 4706 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4707 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4708 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4709 N->getOperand(0)); 4710 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4711 SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0, 4712 DAG.getConstant(Imm, DL, MVT::i64)); 4713 // ReplaceNodeResults requires we maintain the same type for the return 4714 // value. 4715 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4716 break; 4717 } 4718 case ISD::FSHL: 4719 case ISD::FSHR: { 4720 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4721 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4722 SDValue NewOp0 = 4723 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4724 SDValue NewOp1 = 4725 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4726 SDValue NewOp2 = 4727 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4728 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4729 // Mask the shift amount to 5 bits. 4730 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4731 DAG.getConstant(0x1f, DL, MVT::i64)); 4732 unsigned Opc = 4733 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4734 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4735 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4736 break; 4737 } 4738 case ISD::EXTRACT_VECTOR_ELT: { 4739 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4740 // type is illegal (currently only vXi64 RV32). 4741 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4742 // transferred to the destination register. We issue two of these from the 4743 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4744 // first element. 4745 SDValue Vec = N->getOperand(0); 4746 SDValue Idx = N->getOperand(1); 4747 4748 // The vector type hasn't been legalized yet so we can't issue target 4749 // specific nodes if it needs legalization. 4750 // FIXME: We would manually legalize if it's important. 4751 if (!isTypeLegal(Vec.getValueType())) 4752 return; 4753 4754 MVT VecVT = Vec.getSimpleValueType(); 4755 4756 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4757 VecVT.getVectorElementType() == MVT::i64 && 4758 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4759 4760 // If this is a fixed vector, we need to convert it to a scalable vector. 4761 MVT ContainerVT = VecVT; 4762 if (VecVT.isFixedLengthVector()) { 4763 ContainerVT = getContainerForFixedLengthVector(VecVT); 4764 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4765 } 4766 4767 MVT XLenVT = Subtarget.getXLenVT(); 4768 4769 // Use a VL of 1 to avoid processing more elements than we need. 4770 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4771 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4772 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4773 4774 // Unless the index is known to be 0, we must slide the vector down to get 4775 // the desired element into index 0. 4776 if (!isNullConstant(Idx)) { 4777 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4778 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4779 } 4780 4781 // Extract the lower XLEN bits of the correct vector element. 4782 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4783 4784 // To extract the upper XLEN bits of the vector element, shift the first 4785 // element right by 32 bits and re-extract the lower XLEN bits. 4786 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4787 DAG.getConstant(32, DL, XLenVT), VL); 4788 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4789 ThirtyTwoV, Mask, VL); 4790 4791 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4792 4793 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4794 break; 4795 } 4796 case ISD::INTRINSIC_WO_CHAIN: { 4797 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4798 switch (IntNo) { 4799 default: 4800 llvm_unreachable( 4801 "Don't know how to custom type legalize this intrinsic!"); 4802 case Intrinsic::riscv_orc_b: { 4803 // Lower to the GORCI encoding for orc.b with the operand extended. 4804 SDValue NewOp = 4805 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4806 // If Zbp is enabled, use GORCIW which will sign extend the result. 4807 unsigned Opc = 4808 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 4809 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 4810 DAG.getConstant(7, DL, MVT::i64)); 4811 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4812 return; 4813 } 4814 case Intrinsic::riscv_grev: 4815 case Intrinsic::riscv_gorc: { 4816 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4817 "Unexpected custom legalisation"); 4818 SDValue NewOp1 = 4819 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4820 SDValue NewOp2 = 4821 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4822 unsigned Opc = 4823 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 4824 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4825 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4826 break; 4827 } 4828 case Intrinsic::riscv_shfl: 4829 case Intrinsic::riscv_unshfl: { 4830 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4831 "Unexpected custom legalisation"); 4832 SDValue NewOp1 = 4833 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4834 SDValue NewOp2 = 4835 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4836 unsigned Opc = 4837 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 4838 if (isa<ConstantSDNode>(N->getOperand(2))) { 4839 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4840 DAG.getConstant(0xf, DL, MVT::i64)); 4841 Opc = 4842 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4843 } 4844 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4845 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4846 break; 4847 } 4848 case Intrinsic::riscv_bcompress: 4849 case Intrinsic::riscv_bdecompress: { 4850 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4851 "Unexpected custom legalisation"); 4852 SDValue NewOp1 = 4853 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4854 SDValue NewOp2 = 4855 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4856 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 4857 ? RISCVISD::BCOMPRESSW 4858 : RISCVISD::BDECOMPRESSW; 4859 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4860 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4861 break; 4862 } 4863 case Intrinsic::riscv_vmv_x_s: { 4864 EVT VT = N->getValueType(0); 4865 MVT XLenVT = Subtarget.getXLenVT(); 4866 if (VT.bitsLT(XLenVT)) { 4867 // Simple case just extract using vmv.x.s and truncate. 4868 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 4869 Subtarget.getXLenVT(), N->getOperand(1)); 4870 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 4871 return; 4872 } 4873 4874 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 4875 "Unexpected custom legalization"); 4876 4877 // We need to do the move in two steps. 4878 SDValue Vec = N->getOperand(1); 4879 MVT VecVT = Vec.getSimpleValueType(); 4880 4881 // First extract the lower XLEN bits of the element. 4882 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4883 4884 // To extract the upper XLEN bits of the vector element, shift the first 4885 // element right by 32 bits and re-extract the lower XLEN bits. 4886 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4887 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4888 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4889 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 4890 DAG.getConstant(32, DL, XLenVT), VL); 4891 SDValue LShr32 = 4892 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 4893 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4894 4895 Results.push_back( 4896 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4897 break; 4898 } 4899 } 4900 break; 4901 } 4902 case ISD::VECREDUCE_ADD: 4903 case ISD::VECREDUCE_AND: 4904 case ISD::VECREDUCE_OR: 4905 case ISD::VECREDUCE_XOR: 4906 case ISD::VECREDUCE_SMAX: 4907 case ISD::VECREDUCE_UMAX: 4908 case ISD::VECREDUCE_SMIN: 4909 case ISD::VECREDUCE_UMIN: 4910 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 4911 Results.push_back(V); 4912 break; 4913 case ISD::FLT_ROUNDS_: { 4914 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 4915 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 4916 Results.push_back(Res.getValue(0)); 4917 Results.push_back(Res.getValue(1)); 4918 break; 4919 } 4920 } 4921 } 4922 4923 // A structure to hold one of the bit-manipulation patterns below. Together, a 4924 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 4925 // (or (and (shl x, 1), 0xAAAAAAAA), 4926 // (and (srl x, 1), 0x55555555)) 4927 struct RISCVBitmanipPat { 4928 SDValue Op; 4929 unsigned ShAmt; 4930 bool IsSHL; 4931 4932 bool formsPairWith(const RISCVBitmanipPat &Other) const { 4933 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 4934 } 4935 }; 4936 4937 // Matches patterns of the form 4938 // (and (shl x, C2), (C1 << C2)) 4939 // (and (srl x, C2), C1) 4940 // (shl (and x, C1), C2) 4941 // (srl (and x, (C1 << C2)), C2) 4942 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 4943 // The expected masks for each shift amount are specified in BitmanipMasks where 4944 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 4945 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 4946 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 4947 // XLen is 64. 4948 static Optional<RISCVBitmanipPat> 4949 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 4950 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 4951 "Unexpected number of masks"); 4952 Optional<uint64_t> Mask; 4953 // Optionally consume a mask around the shift operation. 4954 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 4955 Mask = Op.getConstantOperandVal(1); 4956 Op = Op.getOperand(0); 4957 } 4958 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 4959 return None; 4960 bool IsSHL = Op.getOpcode() == ISD::SHL; 4961 4962 if (!isa<ConstantSDNode>(Op.getOperand(1))) 4963 return None; 4964 uint64_t ShAmt = Op.getConstantOperandVal(1); 4965 4966 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 4967 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 4968 return None; 4969 // If we don't have enough masks for 64 bit, then we must be trying to 4970 // match SHFL so we're only allowed to shift 1/4 of the width. 4971 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 4972 return None; 4973 4974 SDValue Src = Op.getOperand(0); 4975 4976 // The expected mask is shifted left when the AND is found around SHL 4977 // patterns. 4978 // ((x >> 1) & 0x55555555) 4979 // ((x << 1) & 0xAAAAAAAA) 4980 bool SHLExpMask = IsSHL; 4981 4982 if (!Mask) { 4983 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 4984 // the mask is all ones: consume that now. 4985 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 4986 Mask = Src.getConstantOperandVal(1); 4987 Src = Src.getOperand(0); 4988 // The expected mask is now in fact shifted left for SRL, so reverse the 4989 // decision. 4990 // ((x & 0xAAAAAAAA) >> 1) 4991 // ((x & 0x55555555) << 1) 4992 SHLExpMask = !SHLExpMask; 4993 } else { 4994 // Use a default shifted mask of all-ones if there's no AND, truncated 4995 // down to the expected width. This simplifies the logic later on. 4996 Mask = maskTrailingOnes<uint64_t>(Width); 4997 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 4998 } 4999 } 5000 5001 unsigned MaskIdx = Log2_32(ShAmt); 5002 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5003 5004 if (SHLExpMask) 5005 ExpMask <<= ShAmt; 5006 5007 if (Mask != ExpMask) 5008 return None; 5009 5010 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5011 } 5012 5013 // Matches any of the following bit-manipulation patterns: 5014 // (and (shl x, 1), (0x55555555 << 1)) 5015 // (and (srl x, 1), 0x55555555) 5016 // (shl (and x, 0x55555555), 1) 5017 // (srl (and x, (0x55555555 << 1)), 1) 5018 // where the shift amount and mask may vary thus: 5019 // [1] = 0x55555555 / 0xAAAAAAAA 5020 // [2] = 0x33333333 / 0xCCCCCCCC 5021 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5022 // [8] = 0x00FF00FF / 0xFF00FF00 5023 // [16] = 0x0000FFFF / 0xFFFFFFFF 5024 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5025 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5026 // These are the unshifted masks which we use to match bit-manipulation 5027 // patterns. They may be shifted left in certain circumstances. 5028 static const uint64_t BitmanipMasks[] = { 5029 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5030 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5031 5032 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5033 } 5034 5035 // Match the following pattern as a GREVI(W) operation 5036 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5037 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5038 const RISCVSubtarget &Subtarget) { 5039 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5040 EVT VT = Op.getValueType(); 5041 5042 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5043 auto LHS = matchGREVIPat(Op.getOperand(0)); 5044 auto RHS = matchGREVIPat(Op.getOperand(1)); 5045 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5046 SDLoc DL(Op); 5047 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5048 DAG.getConstant(LHS->ShAmt, DL, VT)); 5049 } 5050 } 5051 return SDValue(); 5052 } 5053 5054 // Matches any the following pattern as a GORCI(W) operation 5055 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5056 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5057 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5058 // Note that with the variant of 3., 5059 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5060 // the inner pattern will first be matched as GREVI and then the outer 5061 // pattern will be matched to GORC via the first rule above. 5062 // 4. (or (rotl/rotr x, bitwidth/2), x) 5063 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5064 const RISCVSubtarget &Subtarget) { 5065 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5066 EVT VT = Op.getValueType(); 5067 5068 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5069 SDLoc DL(Op); 5070 SDValue Op0 = Op.getOperand(0); 5071 SDValue Op1 = Op.getOperand(1); 5072 5073 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5074 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5075 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5076 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5077 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5078 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5079 if ((Reverse.getOpcode() == ISD::ROTL || 5080 Reverse.getOpcode() == ISD::ROTR) && 5081 Reverse.getOperand(0) == X && 5082 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5083 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5084 if (RotAmt == (VT.getSizeInBits() / 2)) 5085 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5086 DAG.getConstant(RotAmt, DL, VT)); 5087 } 5088 return SDValue(); 5089 }; 5090 5091 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5092 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5093 return V; 5094 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5095 return V; 5096 5097 // OR is commutable so canonicalize its OR operand to the left 5098 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5099 std::swap(Op0, Op1); 5100 if (Op0.getOpcode() != ISD::OR) 5101 return SDValue(); 5102 SDValue OrOp0 = Op0.getOperand(0); 5103 SDValue OrOp1 = Op0.getOperand(1); 5104 auto LHS = matchGREVIPat(OrOp0); 5105 // OR is commutable so swap the operands and try again: x might have been 5106 // on the left 5107 if (!LHS) { 5108 std::swap(OrOp0, OrOp1); 5109 LHS = matchGREVIPat(OrOp0); 5110 } 5111 auto RHS = matchGREVIPat(Op1); 5112 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5113 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5114 DAG.getConstant(LHS->ShAmt, DL, VT)); 5115 } 5116 } 5117 return SDValue(); 5118 } 5119 5120 // Matches any of the following bit-manipulation patterns: 5121 // (and (shl x, 1), (0x22222222 << 1)) 5122 // (and (srl x, 1), 0x22222222) 5123 // (shl (and x, 0x22222222), 1) 5124 // (srl (and x, (0x22222222 << 1)), 1) 5125 // where the shift amount and mask may vary thus: 5126 // [1] = 0x22222222 / 0x44444444 5127 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5128 // [4] = 0x00F000F0 / 0x0F000F00 5129 // [8] = 0x0000FF00 / 0x00FF0000 5130 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5131 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5132 // These are the unshifted masks which we use to match bit-manipulation 5133 // patterns. They may be shifted left in certain circumstances. 5134 static const uint64_t BitmanipMasks[] = { 5135 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5136 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5137 5138 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5139 } 5140 5141 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5142 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5143 const RISCVSubtarget &Subtarget) { 5144 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5145 EVT VT = Op.getValueType(); 5146 5147 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5148 return SDValue(); 5149 5150 SDValue Op0 = Op.getOperand(0); 5151 SDValue Op1 = Op.getOperand(1); 5152 5153 // Or is commutable so canonicalize the second OR to the LHS. 5154 if (Op0.getOpcode() != ISD::OR) 5155 std::swap(Op0, Op1); 5156 if (Op0.getOpcode() != ISD::OR) 5157 return SDValue(); 5158 5159 // We found an inner OR, so our operands are the operands of the inner OR 5160 // and the other operand of the outer OR. 5161 SDValue A = Op0.getOperand(0); 5162 SDValue B = Op0.getOperand(1); 5163 SDValue C = Op1; 5164 5165 auto Match1 = matchSHFLPat(A); 5166 auto Match2 = matchSHFLPat(B); 5167 5168 // If neither matched, we failed. 5169 if (!Match1 && !Match2) 5170 return SDValue(); 5171 5172 // We had at least one match. if one failed, try the remaining C operand. 5173 if (!Match1) { 5174 std::swap(A, C); 5175 Match1 = matchSHFLPat(A); 5176 if (!Match1) 5177 return SDValue(); 5178 } else if (!Match2) { 5179 std::swap(B, C); 5180 Match2 = matchSHFLPat(B); 5181 if (!Match2) 5182 return SDValue(); 5183 } 5184 assert(Match1 && Match2); 5185 5186 // Make sure our matches pair up. 5187 if (!Match1->formsPairWith(*Match2)) 5188 return SDValue(); 5189 5190 // All the remains is to make sure C is an AND with the same input, that masks 5191 // out the bits that are being shuffled. 5192 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5193 C.getOperand(0) != Match1->Op) 5194 return SDValue(); 5195 5196 uint64_t Mask = C.getConstantOperandVal(1); 5197 5198 static const uint64_t BitmanipMasks[] = { 5199 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5200 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5201 }; 5202 5203 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5204 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5205 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5206 5207 if (Mask != ExpMask) 5208 return SDValue(); 5209 5210 SDLoc DL(Op); 5211 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5212 DAG.getConstant(Match1->ShAmt, DL, VT)); 5213 } 5214 5215 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5216 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5217 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5218 // not undo itself, but they are redundant. 5219 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5220 SDValue Src = N->getOperand(0); 5221 5222 if (Src.getOpcode() != N->getOpcode()) 5223 return SDValue(); 5224 5225 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5226 !isa<ConstantSDNode>(Src.getOperand(1))) 5227 return SDValue(); 5228 5229 unsigned ShAmt1 = N->getConstantOperandVal(1); 5230 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5231 Src = Src.getOperand(0); 5232 5233 unsigned CombinedShAmt; 5234 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5235 CombinedShAmt = ShAmt1 | ShAmt2; 5236 else 5237 CombinedShAmt = ShAmt1 ^ ShAmt2; 5238 5239 if (CombinedShAmt == 0) 5240 return Src; 5241 5242 SDLoc DL(N); 5243 return DAG.getNode( 5244 N->getOpcode(), DL, N->getValueType(0), Src, 5245 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5246 } 5247 5248 // Combine a constant select operand into its use: 5249 // 5250 // (and (select_cc lhs, rhs, cc, -1, c), x) 5251 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5252 // (or (select_cc lhs, rhs, cc, 0, c), x) 5253 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5254 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5255 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5256 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5257 SelectionDAG &DAG, bool AllOnes) { 5258 EVT VT = N->getValueType(0); 5259 5260 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5261 return SDValue(); 5262 5263 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5264 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5265 }; 5266 5267 bool SwapSelectOps; 5268 SDValue TrueVal = Slct.getOperand(3); 5269 SDValue FalseVal = Slct.getOperand(4); 5270 SDValue NonConstantVal; 5271 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5272 SwapSelectOps = false; 5273 NonConstantVal = FalseVal; 5274 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5275 SwapSelectOps = true; 5276 NonConstantVal = TrueVal; 5277 } else 5278 return SDValue(); 5279 5280 // Slct is now know to be the desired identity constant when CC is true. 5281 TrueVal = OtherOp; 5282 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5283 // Unless SwapSelectOps says CC should be false. 5284 if (SwapSelectOps) 5285 std::swap(TrueVal, FalseVal); 5286 5287 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5288 {Slct.getOperand(0), Slct.getOperand(1), 5289 Slct.getOperand(2), TrueVal, FalseVal}); 5290 } 5291 5292 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5293 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5294 bool AllOnes) { 5295 SDValue N0 = N->getOperand(0); 5296 SDValue N1 = N->getOperand(1); 5297 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5298 return Result; 5299 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5300 return Result; 5301 return SDValue(); 5302 } 5303 5304 static SDValue performANDCombine(SDNode *N, 5305 TargetLowering::DAGCombinerInfo &DCI, 5306 const RISCVSubtarget &Subtarget) { 5307 SelectionDAG &DAG = DCI.DAG; 5308 5309 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5310 // (select lhs, rhs, cc, x, (and x, y)) 5311 return combineSelectCCAndUseCommutative(N, DAG, true); 5312 } 5313 5314 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5315 const RISCVSubtarget &Subtarget) { 5316 SelectionDAG &DAG = DCI.DAG; 5317 if (Subtarget.hasStdExtZbp()) { 5318 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5319 return GREV; 5320 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5321 return GORC; 5322 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5323 return SHFL; 5324 } 5325 5326 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5327 // (select lhs, rhs, cc, x, (or x, y)) 5328 return combineSelectCCAndUseCommutative(N, DAG, false); 5329 } 5330 5331 static SDValue performXORCombine(SDNode *N, 5332 TargetLowering::DAGCombinerInfo &DCI, 5333 const RISCVSubtarget &Subtarget) { 5334 SelectionDAG &DAG = DCI.DAG; 5335 5336 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5337 // (select lhs, rhs, cc, x, (xor x, y)) 5338 return combineSelectCCAndUseCommutative(N, DAG, false); 5339 } 5340 5341 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5342 DAGCombinerInfo &DCI) const { 5343 SelectionDAG &DAG = DCI.DAG; 5344 5345 switch (N->getOpcode()) { 5346 default: 5347 break; 5348 case RISCVISD::SplitF64: { 5349 SDValue Op0 = N->getOperand(0); 5350 // If the input to SplitF64 is just BuildPairF64 then the operation is 5351 // redundant. Instead, use BuildPairF64's operands directly. 5352 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5353 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5354 5355 SDLoc DL(N); 5356 5357 // It's cheaper to materialise two 32-bit integers than to load a double 5358 // from the constant pool and transfer it to integer registers through the 5359 // stack. 5360 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5361 APInt V = C->getValueAPF().bitcastToAPInt(); 5362 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5363 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5364 return DCI.CombineTo(N, Lo, Hi); 5365 } 5366 5367 // This is a target-specific version of a DAGCombine performed in 5368 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5369 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5370 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5371 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5372 !Op0.getNode()->hasOneUse()) 5373 break; 5374 SDValue NewSplitF64 = 5375 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5376 Op0.getOperand(0)); 5377 SDValue Lo = NewSplitF64.getValue(0); 5378 SDValue Hi = NewSplitF64.getValue(1); 5379 APInt SignBit = APInt::getSignMask(32); 5380 if (Op0.getOpcode() == ISD::FNEG) { 5381 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5382 DAG.getConstant(SignBit, DL, MVT::i32)); 5383 return DCI.CombineTo(N, Lo, NewHi); 5384 } 5385 assert(Op0.getOpcode() == ISD::FABS); 5386 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5387 DAG.getConstant(~SignBit, DL, MVT::i32)); 5388 return DCI.CombineTo(N, Lo, NewHi); 5389 } 5390 case RISCVISD::SLLW: 5391 case RISCVISD::SRAW: 5392 case RISCVISD::SRLW: 5393 case RISCVISD::ROLW: 5394 case RISCVISD::RORW: { 5395 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5396 SDValue LHS = N->getOperand(0); 5397 SDValue RHS = N->getOperand(1); 5398 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5399 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5400 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5401 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5402 if (N->getOpcode() != ISD::DELETED_NODE) 5403 DCI.AddToWorklist(N); 5404 return SDValue(N, 0); 5405 } 5406 break; 5407 } 5408 case RISCVISD::CLZW: 5409 case RISCVISD::CTZW: { 5410 // Only the lower 32 bits of the first operand are read 5411 SDValue Op0 = N->getOperand(0); 5412 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5413 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5414 if (N->getOpcode() != ISD::DELETED_NODE) 5415 DCI.AddToWorklist(N); 5416 return SDValue(N, 0); 5417 } 5418 break; 5419 } 5420 case RISCVISD::FSL: 5421 case RISCVISD::FSR: { 5422 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5423 SDValue ShAmt = N->getOperand(2); 5424 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5425 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5426 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5427 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5428 if (N->getOpcode() != ISD::DELETED_NODE) 5429 DCI.AddToWorklist(N); 5430 return SDValue(N, 0); 5431 } 5432 break; 5433 } 5434 case RISCVISD::FSLW: 5435 case RISCVISD::FSRW: { 5436 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5437 // read. 5438 SDValue Op0 = N->getOperand(0); 5439 SDValue Op1 = N->getOperand(1); 5440 SDValue ShAmt = N->getOperand(2); 5441 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5442 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5443 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5444 SimplifyDemandedBits(Op1, OpMask, DCI) || 5445 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5446 if (N->getOpcode() != ISD::DELETED_NODE) 5447 DCI.AddToWorklist(N); 5448 return SDValue(N, 0); 5449 } 5450 break; 5451 } 5452 case RISCVISD::GREV: 5453 case RISCVISD::GORC: { 5454 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5455 SDValue ShAmt = N->getOperand(1); 5456 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5457 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5458 APInt ShAmtMask(BitWidth, BitWidth - 1); 5459 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5460 if (N->getOpcode() != ISD::DELETED_NODE) 5461 DCI.AddToWorklist(N); 5462 return SDValue(N, 0); 5463 } 5464 5465 return combineGREVI_GORCI(N, DCI.DAG); 5466 } 5467 case RISCVISD::GREVW: 5468 case RISCVISD::GORCW: { 5469 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5470 SDValue LHS = N->getOperand(0); 5471 SDValue RHS = N->getOperand(1); 5472 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5473 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5474 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5475 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5476 if (N->getOpcode() != ISD::DELETED_NODE) 5477 DCI.AddToWorklist(N); 5478 return SDValue(N, 0); 5479 } 5480 5481 return combineGREVI_GORCI(N, DCI.DAG); 5482 } 5483 case RISCVISD::SHFL: 5484 case RISCVISD::UNSHFL: { 5485 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5486 SDValue ShAmt = N->getOperand(1); 5487 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5488 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5489 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5490 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5491 if (N->getOpcode() != ISD::DELETED_NODE) 5492 DCI.AddToWorklist(N); 5493 return SDValue(N, 0); 5494 } 5495 5496 break; 5497 } 5498 case RISCVISD::SHFLW: 5499 case RISCVISD::UNSHFLW: { 5500 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5501 SDValue LHS = N->getOperand(0); 5502 SDValue RHS = N->getOperand(1); 5503 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5504 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5505 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5506 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5507 if (N->getOpcode() != ISD::DELETED_NODE) 5508 DCI.AddToWorklist(N); 5509 return SDValue(N, 0); 5510 } 5511 5512 break; 5513 } 5514 case RISCVISD::BCOMPRESSW: 5515 case RISCVISD::BDECOMPRESSW: { 5516 // Only the lower 32 bits of LHS and RHS are read. 5517 SDValue LHS = N->getOperand(0); 5518 SDValue RHS = N->getOperand(1); 5519 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5520 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5521 SimplifyDemandedBits(RHS, Mask, DCI)) { 5522 if (N->getOpcode() != ISD::DELETED_NODE) 5523 DCI.AddToWorklist(N); 5524 return SDValue(N, 0); 5525 } 5526 5527 break; 5528 } 5529 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5530 SDLoc DL(N); 5531 SDValue Op0 = N->getOperand(0); 5532 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5533 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5534 // of the FMV_W_X_RV64 operand. 5535 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5536 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5537 "Unexpected value type!"); 5538 return Op0.getOperand(0); 5539 } 5540 5541 // This is a target-specific version of a DAGCombine performed in 5542 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5543 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5544 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5545 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5546 !Op0.getNode()->hasOneUse()) 5547 break; 5548 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5549 Op0.getOperand(0)); 5550 APInt SignBit = APInt::getSignMask(32).sext(64); 5551 if (Op0.getOpcode() == ISD::FNEG) 5552 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5553 DAG.getConstant(SignBit, DL, MVT::i64)); 5554 5555 assert(Op0.getOpcode() == ISD::FABS); 5556 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5557 DAG.getConstant(~SignBit, DL, MVT::i64)); 5558 } 5559 case ISD::AND: 5560 return performANDCombine(N, DCI, Subtarget); 5561 case ISD::OR: 5562 return performORCombine(N, DCI, Subtarget); 5563 case ISD::XOR: 5564 return performXORCombine(N, DCI, Subtarget); 5565 case RISCVISD::SELECT_CC: { 5566 // Transform 5567 SDValue LHS = N->getOperand(0); 5568 SDValue RHS = N->getOperand(1); 5569 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5570 if (!ISD::isIntEqualitySetCC(CCVal)) 5571 break; 5572 5573 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5574 // (select_cc X, Y, lt, trueV, falseV) 5575 // Sometimes the setcc is introduced after select_cc has been formed. 5576 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5577 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5578 // If we're looking for eq 0 instead of ne 0, we need to invert the 5579 // condition. 5580 bool Invert = CCVal == ISD::SETEQ; 5581 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5582 if (Invert) 5583 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5584 5585 SDLoc DL(N); 5586 RHS = LHS.getOperand(1); 5587 LHS = LHS.getOperand(0); 5588 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5589 5590 SDValue TargetCC = 5591 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5592 return DAG.getNode( 5593 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5594 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5595 } 5596 5597 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5598 // (select_cc X, Y, eq/ne, trueV, falseV) 5599 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5600 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5601 {LHS.getOperand(0), LHS.getOperand(1), 5602 N->getOperand(2), N->getOperand(3), 5603 N->getOperand(4)}); 5604 // (select_cc X, 1, setne, trueV, falseV) -> 5605 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5606 // This can occur when legalizing some floating point comparisons. 5607 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5608 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5609 SDLoc DL(N); 5610 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5611 SDValue TargetCC = 5612 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5613 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5614 return DAG.getNode( 5615 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5616 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5617 } 5618 5619 break; 5620 } 5621 case RISCVISD::BR_CC: { 5622 SDValue LHS = N->getOperand(1); 5623 SDValue RHS = N->getOperand(2); 5624 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5625 if (!ISD::isIntEqualitySetCC(CCVal)) 5626 break; 5627 5628 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5629 // (br_cc X, Y, lt, dest) 5630 // Sometimes the setcc is introduced after br_cc has been formed. 5631 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5632 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5633 // If we're looking for eq 0 instead of ne 0, we need to invert the 5634 // condition. 5635 bool Invert = CCVal == ISD::SETEQ; 5636 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5637 if (Invert) 5638 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5639 5640 SDLoc DL(N); 5641 RHS = LHS.getOperand(1); 5642 LHS = LHS.getOperand(0); 5643 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5644 5645 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5646 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 5647 N->getOperand(4)); 5648 } 5649 5650 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 5651 // (br_cc X, Y, eq/ne, trueV, falseV) 5652 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5653 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 5654 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 5655 N->getOperand(3), N->getOperand(4)); 5656 5657 // (br_cc X, 1, setne, br_cc) -> 5658 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 5659 // This can occur when legalizing some floating point comparisons. 5660 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5661 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5662 SDLoc DL(N); 5663 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5664 SDValue TargetCC = DAG.getCondCode(CCVal); 5665 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5666 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5667 N->getOperand(0), LHS, RHS, TargetCC, 5668 N->getOperand(4)); 5669 } 5670 break; 5671 } 5672 case ISD::FCOPYSIGN: { 5673 EVT VT = N->getValueType(0); 5674 if (!VT.isVector()) 5675 break; 5676 // There is a form of VFSGNJ which injects the negated sign of its second 5677 // operand. Try and bubble any FNEG up after the extend/round to produce 5678 // this optimized pattern. Avoid modifying cases where FP_ROUND and 5679 // TRUNC=1. 5680 SDValue In2 = N->getOperand(1); 5681 // Avoid cases where the extend/round has multiple uses, as duplicating 5682 // those is typically more expensive than removing a fneg. 5683 if (!In2.hasOneUse()) 5684 break; 5685 if (In2.getOpcode() != ISD::FP_EXTEND && 5686 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 5687 break; 5688 In2 = In2.getOperand(0); 5689 if (In2.getOpcode() != ISD::FNEG) 5690 break; 5691 SDLoc DL(N); 5692 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 5693 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 5694 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 5695 } 5696 case ISD::MGATHER: 5697 case ISD::MSCATTER: { 5698 if (!DCI.isBeforeLegalize()) 5699 break; 5700 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 5701 SDValue Index = MGSN->getIndex(); 5702 EVT IndexVT = Index.getValueType(); 5703 MVT XLenVT = Subtarget.getXLenVT(); 5704 // RISCV indexed loads only support the "unsigned unscaled" addressing 5705 // mode, so anything else must be manually legalized. 5706 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 5707 (MGSN->isIndexSigned() && 5708 IndexVT.getVectorElementType().bitsLT(XLenVT)); 5709 if (!NeedsIdxLegalization) 5710 break; 5711 5712 SDLoc DL(N); 5713 5714 // Any index legalization should first promote to XLenVT, so we don't lose 5715 // bits when scaling. This may create an illegal index type so we let 5716 // LLVM's legalization take care of the splitting. 5717 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 5718 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5719 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 5720 : ISD::ZERO_EXTEND, 5721 DL, IndexVT, Index); 5722 } 5723 5724 unsigned Scale = N->getConstantOperandVal(5); 5725 if (MGSN->isIndexScaled() && Scale != 1) { 5726 // Manually scale the indices by the element size. 5727 // TODO: Sanitize the scale operand here? 5728 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 5729 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 5730 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 5731 } 5732 5733 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 5734 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 5735 return DAG.getMaskedGather( 5736 N->getVTList(), MGSN->getMemoryVT(), DL, 5737 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 5738 MGSN->getBasePtr(), Index, MGN->getScale()}, 5739 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 5740 } 5741 const auto *MSN = cast<MaskedScatterSDNode>(N); 5742 return DAG.getMaskedScatter( 5743 N->getVTList(), MGSN->getMemoryVT(), DL, 5744 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5745 Index, MGSN->getScale()}, 5746 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5747 } 5748 } 5749 5750 return SDValue(); 5751 } 5752 5753 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 5754 const SDNode *N, CombineLevel Level) const { 5755 // The following folds are only desirable if `(OP _, c1 << c2)` can be 5756 // materialised in fewer instructions than `(OP _, c1)`: 5757 // 5758 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 5759 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 5760 SDValue N0 = N->getOperand(0); 5761 EVT Ty = N0.getValueType(); 5762 if (Ty.isScalarInteger() && 5763 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 5764 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 5765 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5766 if (C1 && C2) { 5767 const APInt &C1Int = C1->getAPIntValue(); 5768 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 5769 5770 // We can materialise `c1 << c2` into an add immediate, so it's "free", 5771 // and the combine should happen, to potentially allow further combines 5772 // later. 5773 if (ShiftedC1Int.getMinSignedBits() <= 64 && 5774 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 5775 return true; 5776 5777 // We can materialise `c1` in an add immediate, so it's "free", and the 5778 // combine should be prevented. 5779 if (C1Int.getMinSignedBits() <= 64 && 5780 isLegalAddImmediate(C1Int.getSExtValue())) 5781 return false; 5782 5783 // Neither constant will fit into an immediate, so find materialisation 5784 // costs. 5785 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 5786 Subtarget.is64Bit()); 5787 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 5788 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 5789 5790 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 5791 // combine should be prevented. 5792 if (C1Cost < ShiftedC1Cost) 5793 return false; 5794 } 5795 } 5796 return true; 5797 } 5798 5799 bool RISCVTargetLowering::targetShrinkDemandedConstant( 5800 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 5801 TargetLoweringOpt &TLO) const { 5802 // Delay this optimization as late as possible. 5803 if (!TLO.LegalOps) 5804 return false; 5805 5806 EVT VT = Op.getValueType(); 5807 if (VT.isVector()) 5808 return false; 5809 5810 // Only handle AND for now. 5811 if (Op.getOpcode() != ISD::AND) 5812 return false; 5813 5814 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 5815 if (!C) 5816 return false; 5817 5818 const APInt &Mask = C->getAPIntValue(); 5819 5820 // Clear all non-demanded bits initially. 5821 APInt ShrunkMask = Mask & DemandedBits; 5822 5823 // Try to make a smaller immediate by setting undemanded bits. 5824 5825 APInt ExpandedMask = Mask | ~DemandedBits; 5826 5827 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 5828 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 5829 }; 5830 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 5831 if (NewMask == Mask) 5832 return true; 5833 SDLoc DL(Op); 5834 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 5835 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 5836 return TLO.CombineTo(Op, NewOp); 5837 }; 5838 5839 // If the shrunk mask fits in sign extended 12 bits, let the target 5840 // independent code apply it. 5841 if (ShrunkMask.isSignedIntN(12)) 5842 return false; 5843 5844 // Preserve (and X, 0xffff) when zext.h is supported. 5845 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 5846 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 5847 if (IsLegalMask(NewMask)) 5848 return UseMask(NewMask); 5849 } 5850 5851 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 5852 if (VT == MVT::i64) { 5853 APInt NewMask = APInt(64, 0xffffffff); 5854 if (IsLegalMask(NewMask)) 5855 return UseMask(NewMask); 5856 } 5857 5858 // For the remaining optimizations, we need to be able to make a negative 5859 // number through a combination of mask and undemanded bits. 5860 if (!ExpandedMask.isNegative()) 5861 return false; 5862 5863 // What is the fewest number of bits we need to represent the negative number. 5864 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 5865 5866 // Try to make a 12 bit negative immediate. If that fails try to make a 32 5867 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 5868 APInt NewMask = ShrunkMask; 5869 if (MinSignedBits <= 12) 5870 NewMask.setBitsFrom(11); 5871 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 5872 NewMask.setBitsFrom(31); 5873 else 5874 return false; 5875 5876 // Sanity check that our new mask is a subset of the demanded mask. 5877 assert(IsLegalMask(NewMask)); 5878 return UseMask(NewMask); 5879 } 5880 5881 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5882 KnownBits &Known, 5883 const APInt &DemandedElts, 5884 const SelectionDAG &DAG, 5885 unsigned Depth) const { 5886 unsigned BitWidth = Known.getBitWidth(); 5887 unsigned Opc = Op.getOpcode(); 5888 assert((Opc >= ISD::BUILTIN_OP_END || 5889 Opc == ISD::INTRINSIC_WO_CHAIN || 5890 Opc == ISD::INTRINSIC_W_CHAIN || 5891 Opc == ISD::INTRINSIC_VOID) && 5892 "Should use MaskedValueIsZero if you don't know whether Op" 5893 " is a target node!"); 5894 5895 Known.resetAll(); 5896 switch (Opc) { 5897 default: break; 5898 case RISCVISD::SELECT_CC: { 5899 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 5900 // If we don't know any bits, early out. 5901 if (Known.isUnknown()) 5902 break; 5903 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 5904 5905 // Only known if known in both the LHS and RHS. 5906 Known = KnownBits::commonBits(Known, Known2); 5907 break; 5908 } 5909 case RISCVISD::REMUW: { 5910 KnownBits Known2; 5911 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5912 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5913 // We only care about the lower 32 bits. 5914 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 5915 // Restore the original width by sign extending. 5916 Known = Known.sext(BitWidth); 5917 break; 5918 } 5919 case RISCVISD::DIVUW: { 5920 KnownBits Known2; 5921 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 5922 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 5923 // We only care about the lower 32 bits. 5924 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 5925 // Restore the original width by sign extending. 5926 Known = Known.sext(BitWidth); 5927 break; 5928 } 5929 case RISCVISD::CTZW: { 5930 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5931 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 5932 unsigned LowBits = Log2_32(PossibleTZ) + 1; 5933 Known.Zero.setBitsFrom(LowBits); 5934 break; 5935 } 5936 case RISCVISD::CLZW: { 5937 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 5938 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 5939 unsigned LowBits = Log2_32(PossibleLZ) + 1; 5940 Known.Zero.setBitsFrom(LowBits); 5941 break; 5942 } 5943 case RISCVISD::READ_VLENB: 5944 // We assume VLENB is at least 16 bytes. 5945 Known.Zero.setLowBits(4); 5946 break; 5947 case ISD::INTRINSIC_W_CHAIN: { 5948 unsigned IntNo = Op.getConstantOperandVal(1); 5949 switch (IntNo) { 5950 default: 5951 // We can't do anything for most intrinsics. 5952 break; 5953 case Intrinsic::riscv_vsetvli: 5954 case Intrinsic::riscv_vsetvlimax: 5955 // Assume that VL output is positive and would fit in an int32_t. 5956 // TODO: VLEN might be capped at 16 bits in a future V spec update. 5957 if (BitWidth >= 32) 5958 Known.Zero.setBitsFrom(31); 5959 break; 5960 } 5961 break; 5962 } 5963 } 5964 } 5965 5966 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 5967 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 5968 unsigned Depth) const { 5969 switch (Op.getOpcode()) { 5970 default: 5971 break; 5972 case RISCVISD::SLLW: 5973 case RISCVISD::SRAW: 5974 case RISCVISD::SRLW: 5975 case RISCVISD::DIVW: 5976 case RISCVISD::DIVUW: 5977 case RISCVISD::REMUW: 5978 case RISCVISD::ROLW: 5979 case RISCVISD::RORW: 5980 case RISCVISD::GREVW: 5981 case RISCVISD::GORCW: 5982 case RISCVISD::FSLW: 5983 case RISCVISD::FSRW: 5984 case RISCVISD::SHFLW: 5985 case RISCVISD::UNSHFLW: 5986 case RISCVISD::BCOMPRESSW: 5987 case RISCVISD::BDECOMPRESSW: 5988 // TODO: As the result is sign-extended, this is conservatively correct. A 5989 // more precise answer could be calculated for SRAW depending on known 5990 // bits in the shift amount. 5991 return 33; 5992 case RISCVISD::SHFL: 5993 case RISCVISD::UNSHFL: { 5994 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 5995 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 5996 // will stay within the upper 32 bits. If there were more than 32 sign bits 5997 // before there will be at least 33 sign bits after. 5998 if (Op.getValueType() == MVT::i64 && 5999 isa<ConstantSDNode>(Op.getOperand(1)) && 6000 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6001 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6002 if (Tmp > 32) 6003 return 33; 6004 } 6005 break; 6006 } 6007 case RISCVISD::VMV_X_S: 6008 // The number of sign bits of the scalar result is computed by obtaining the 6009 // element type of the input vector operand, subtracting its width from the 6010 // XLEN, and then adding one (sign bit within the element type). If the 6011 // element type is wider than XLen, the least-significant XLEN bits are 6012 // taken. 6013 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6014 return 1; 6015 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6016 } 6017 6018 return 1; 6019 } 6020 6021 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6022 MachineBasicBlock *BB) { 6023 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6024 6025 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6026 // Should the count have wrapped while it was being read, we need to try 6027 // again. 6028 // ... 6029 // read: 6030 // rdcycleh x3 # load high word of cycle 6031 // rdcycle x2 # load low word of cycle 6032 // rdcycleh x4 # load high word of cycle 6033 // bne x3, x4, read # check if high word reads match, otherwise try again 6034 // ... 6035 6036 MachineFunction &MF = *BB->getParent(); 6037 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6038 MachineFunction::iterator It = ++BB->getIterator(); 6039 6040 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6041 MF.insert(It, LoopMBB); 6042 6043 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6044 MF.insert(It, DoneMBB); 6045 6046 // Transfer the remainder of BB and its successor edges to DoneMBB. 6047 DoneMBB->splice(DoneMBB->begin(), BB, 6048 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6049 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6050 6051 BB->addSuccessor(LoopMBB); 6052 6053 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6054 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6055 Register LoReg = MI.getOperand(0).getReg(); 6056 Register HiReg = MI.getOperand(1).getReg(); 6057 DebugLoc DL = MI.getDebugLoc(); 6058 6059 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6060 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6061 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6062 .addReg(RISCV::X0); 6063 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6064 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6065 .addReg(RISCV::X0); 6066 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6067 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6068 .addReg(RISCV::X0); 6069 6070 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6071 .addReg(HiReg) 6072 .addReg(ReadAgainReg) 6073 .addMBB(LoopMBB); 6074 6075 LoopMBB->addSuccessor(LoopMBB); 6076 LoopMBB->addSuccessor(DoneMBB); 6077 6078 MI.eraseFromParent(); 6079 6080 return DoneMBB; 6081 } 6082 6083 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6084 MachineBasicBlock *BB) { 6085 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6086 6087 MachineFunction &MF = *BB->getParent(); 6088 DebugLoc DL = MI.getDebugLoc(); 6089 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6090 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6091 Register LoReg = MI.getOperand(0).getReg(); 6092 Register HiReg = MI.getOperand(1).getReg(); 6093 Register SrcReg = MI.getOperand(2).getReg(); 6094 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6095 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6096 6097 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6098 RI); 6099 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6100 MachineMemOperand *MMOLo = 6101 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6102 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6103 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6104 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6105 .addFrameIndex(FI) 6106 .addImm(0) 6107 .addMemOperand(MMOLo); 6108 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6109 .addFrameIndex(FI) 6110 .addImm(4) 6111 .addMemOperand(MMOHi); 6112 MI.eraseFromParent(); // The pseudo instruction is gone now. 6113 return BB; 6114 } 6115 6116 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6117 MachineBasicBlock *BB) { 6118 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6119 "Unexpected instruction"); 6120 6121 MachineFunction &MF = *BB->getParent(); 6122 DebugLoc DL = MI.getDebugLoc(); 6123 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6124 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6125 Register DstReg = MI.getOperand(0).getReg(); 6126 Register LoReg = MI.getOperand(1).getReg(); 6127 Register HiReg = MI.getOperand(2).getReg(); 6128 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6129 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6130 6131 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6132 MachineMemOperand *MMOLo = 6133 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6134 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6135 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6136 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6137 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6138 .addFrameIndex(FI) 6139 .addImm(0) 6140 .addMemOperand(MMOLo); 6141 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6142 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6143 .addFrameIndex(FI) 6144 .addImm(4) 6145 .addMemOperand(MMOHi); 6146 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6147 MI.eraseFromParent(); // The pseudo instruction is gone now. 6148 return BB; 6149 } 6150 6151 static bool isSelectPseudo(MachineInstr &MI) { 6152 switch (MI.getOpcode()) { 6153 default: 6154 return false; 6155 case RISCV::Select_GPR_Using_CC_GPR: 6156 case RISCV::Select_FPR16_Using_CC_GPR: 6157 case RISCV::Select_FPR32_Using_CC_GPR: 6158 case RISCV::Select_FPR64_Using_CC_GPR: 6159 return true; 6160 } 6161 } 6162 6163 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6164 MachineBasicBlock *BB) { 6165 // To "insert" Select_* instructions, we actually have to insert the triangle 6166 // control-flow pattern. The incoming instructions know the destination vreg 6167 // to set, the condition code register to branch on, the true/false values to 6168 // select between, and the condcode to use to select the appropriate branch. 6169 // 6170 // We produce the following control flow: 6171 // HeadMBB 6172 // | \ 6173 // | IfFalseMBB 6174 // | / 6175 // TailMBB 6176 // 6177 // When we find a sequence of selects we attempt to optimize their emission 6178 // by sharing the control flow. Currently we only handle cases where we have 6179 // multiple selects with the exact same condition (same LHS, RHS and CC). 6180 // The selects may be interleaved with other instructions if the other 6181 // instructions meet some requirements we deem safe: 6182 // - They are debug instructions. Otherwise, 6183 // - They do not have side-effects, do not access memory and their inputs do 6184 // not depend on the results of the select pseudo-instructions. 6185 // The TrueV/FalseV operands of the selects cannot depend on the result of 6186 // previous selects in the sequence. 6187 // These conditions could be further relaxed. See the X86 target for a 6188 // related approach and more information. 6189 Register LHS = MI.getOperand(1).getReg(); 6190 Register RHS = MI.getOperand(2).getReg(); 6191 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6192 6193 SmallVector<MachineInstr *, 4> SelectDebugValues; 6194 SmallSet<Register, 4> SelectDests; 6195 SelectDests.insert(MI.getOperand(0).getReg()); 6196 6197 MachineInstr *LastSelectPseudo = &MI; 6198 6199 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6200 SequenceMBBI != E; ++SequenceMBBI) { 6201 if (SequenceMBBI->isDebugInstr()) 6202 continue; 6203 else if (isSelectPseudo(*SequenceMBBI)) { 6204 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6205 SequenceMBBI->getOperand(2).getReg() != RHS || 6206 SequenceMBBI->getOperand(3).getImm() != CC || 6207 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6208 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6209 break; 6210 LastSelectPseudo = &*SequenceMBBI; 6211 SequenceMBBI->collectDebugValues(SelectDebugValues); 6212 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6213 } else { 6214 if (SequenceMBBI->hasUnmodeledSideEffects() || 6215 SequenceMBBI->mayLoadOrStore()) 6216 break; 6217 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6218 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6219 })) 6220 break; 6221 } 6222 } 6223 6224 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6225 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6226 DebugLoc DL = MI.getDebugLoc(); 6227 MachineFunction::iterator I = ++BB->getIterator(); 6228 6229 MachineBasicBlock *HeadMBB = BB; 6230 MachineFunction *F = BB->getParent(); 6231 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6232 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6233 6234 F->insert(I, IfFalseMBB); 6235 F->insert(I, TailMBB); 6236 6237 // Transfer debug instructions associated with the selects to TailMBB. 6238 for (MachineInstr *DebugInstr : SelectDebugValues) { 6239 TailMBB->push_back(DebugInstr->removeFromParent()); 6240 } 6241 6242 // Move all instructions after the sequence to TailMBB. 6243 TailMBB->splice(TailMBB->end(), HeadMBB, 6244 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6245 // Update machine-CFG edges by transferring all successors of the current 6246 // block to the new block which will contain the Phi nodes for the selects. 6247 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6248 // Set the successors for HeadMBB. 6249 HeadMBB->addSuccessor(IfFalseMBB); 6250 HeadMBB->addSuccessor(TailMBB); 6251 6252 // Insert appropriate branch. 6253 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6254 6255 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6256 .addReg(LHS) 6257 .addReg(RHS) 6258 .addMBB(TailMBB); 6259 6260 // IfFalseMBB just falls through to TailMBB. 6261 IfFalseMBB->addSuccessor(TailMBB); 6262 6263 // Create PHIs for all of the select pseudo-instructions. 6264 auto SelectMBBI = MI.getIterator(); 6265 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6266 auto InsertionPoint = TailMBB->begin(); 6267 while (SelectMBBI != SelectEnd) { 6268 auto Next = std::next(SelectMBBI); 6269 if (isSelectPseudo(*SelectMBBI)) { 6270 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6271 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6272 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6273 .addReg(SelectMBBI->getOperand(4).getReg()) 6274 .addMBB(HeadMBB) 6275 .addReg(SelectMBBI->getOperand(5).getReg()) 6276 .addMBB(IfFalseMBB); 6277 SelectMBBI->eraseFromParent(); 6278 } 6279 SelectMBBI = Next; 6280 } 6281 6282 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6283 return TailMBB; 6284 } 6285 6286 static MachineInstr *elideCopies(MachineInstr *MI, 6287 const MachineRegisterInfo &MRI) { 6288 while (true) { 6289 if (!MI->isFullCopy()) 6290 return MI; 6291 if (!Register::isVirtualRegister(MI->getOperand(1).getReg())) 6292 return nullptr; 6293 MI = MRI.getVRegDef(MI->getOperand(1).getReg()); 6294 if (!MI) 6295 return nullptr; 6296 } 6297 } 6298 6299 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 6300 int VLIndex, unsigned SEWIndex, 6301 RISCVVLMUL VLMul, bool ForceTailAgnostic) { 6302 MachineFunction &MF = *BB->getParent(); 6303 DebugLoc DL = MI.getDebugLoc(); 6304 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6305 6306 unsigned Log2SEW = MI.getOperand(SEWIndex).getImm(); 6307 assert(RISCVVType::isValidSEW(1 << Log2SEW) && "Unexpected SEW"); 6308 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2SEW - 3); 6309 6310 MachineRegisterInfo &MRI = MF.getRegInfo(); 6311 6312 auto BuildVSETVLI = [&]() { 6313 if (VLIndex >= 0) { 6314 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 6315 const MachineOperand &VLOp = MI.getOperand(VLIndex); 6316 6317 // VL can be a register or an immediate. 6318 if (VLOp.isImm()) 6319 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI)) 6320 .addReg(DestReg, RegState::Define | RegState::Dead) 6321 .addImm(VLOp.getImm()); 6322 6323 Register VLReg = MI.getOperand(VLIndex).getReg(); 6324 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 6325 .addReg(DestReg, RegState::Define | RegState::Dead) 6326 .addReg(VLReg); 6327 } 6328 6329 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 6330 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 6331 .addReg(RISCV::X0, RegState::Define | RegState::Dead) 6332 .addReg(RISCV::X0, RegState::Kill); 6333 }; 6334 6335 MachineInstrBuilder MIB = BuildVSETVLI(); 6336 6337 // Default to tail agnostic unless the destination is tied to a source. In 6338 // that case the user would have some control over the tail values. The tail 6339 // policy is also ignored on instructions that only update element 0 like 6340 // vmv.s.x or reductions so use agnostic there to match the common case. 6341 // FIXME: This is conservatively correct, but we might want to detect that 6342 // the input is undefined. 6343 bool TailAgnostic = true; 6344 unsigned UseOpIdx; 6345 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 6346 TailAgnostic = false; 6347 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 6348 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 6349 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 6350 if (UseMI) { 6351 UseMI = elideCopies(UseMI, MRI); 6352 if (UseMI && UseMI->isImplicitDef()) 6353 TailAgnostic = true; 6354 } 6355 } 6356 6357 // For simplicity we reuse the vtype representation here. 6358 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 6359 /*TailAgnostic*/ TailAgnostic, 6360 /*MaskAgnostic*/ false)); 6361 6362 // Remove (now) redundant operands from pseudo 6363 if (VLIndex >= 0 && MI.getOperand(VLIndex).isReg()) { 6364 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 6365 MI.getOperand(VLIndex).setIsKill(false); 6366 } 6367 6368 return BB; 6369 } 6370 6371 MachineBasicBlock * 6372 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6373 MachineBasicBlock *BB) const { 6374 uint64_t TSFlags = MI.getDesc().TSFlags; 6375 6376 if (TSFlags & RISCVII::HasSEWOpMask) { 6377 unsigned NumOperands = MI.getNumExplicitOperands(); 6378 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 6379 unsigned SEWIndex = NumOperands - 1; 6380 bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask; 6381 6382 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 6383 RISCVII::VLMulShift); 6384 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 6385 } 6386 6387 switch (MI.getOpcode()) { 6388 default: 6389 llvm_unreachable("Unexpected instr type to insert"); 6390 case RISCV::ReadCycleWide: 6391 assert(!Subtarget.is64Bit() && 6392 "ReadCycleWrite is only to be used on riscv32"); 6393 return emitReadCycleWidePseudo(MI, BB); 6394 case RISCV::Select_GPR_Using_CC_GPR: 6395 case RISCV::Select_FPR16_Using_CC_GPR: 6396 case RISCV::Select_FPR32_Using_CC_GPR: 6397 case RISCV::Select_FPR64_Using_CC_GPR: 6398 return emitSelectPseudo(MI, BB); 6399 case RISCV::BuildPairF64Pseudo: 6400 return emitBuildPairF64Pseudo(MI, BB); 6401 case RISCV::SplitF64Pseudo: 6402 return emitSplitF64Pseudo(MI, BB); 6403 } 6404 } 6405 6406 // Calling Convention Implementation. 6407 // The expectations for frontend ABI lowering vary from target to target. 6408 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6409 // details, but this is a longer term goal. For now, we simply try to keep the 6410 // role of the frontend as simple and well-defined as possible. The rules can 6411 // be summarised as: 6412 // * Never split up large scalar arguments. We handle them here. 6413 // * If a hardfloat calling convention is being used, and the struct may be 6414 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6415 // available, then pass as two separate arguments. If either the GPRs or FPRs 6416 // are exhausted, then pass according to the rule below. 6417 // * If a struct could never be passed in registers or directly in a stack 6418 // slot (as it is larger than 2*XLEN and the floating point rules don't 6419 // apply), then pass it using a pointer with the byval attribute. 6420 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6421 // word-sized array or a 2*XLEN scalar (depending on alignment). 6422 // * The frontend can determine whether a struct is returned by reference or 6423 // not based on its size and fields. If it will be returned by reference, the 6424 // frontend must modify the prototype so a pointer with the sret annotation is 6425 // passed as the first argument. This is not necessary for large scalar 6426 // returns. 6427 // * Struct return values and varargs should be coerced to structs containing 6428 // register-size fields in the same situations they would be for fixed 6429 // arguments. 6430 6431 static const MCPhysReg ArgGPRs[] = { 6432 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6433 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6434 }; 6435 static const MCPhysReg ArgFPR16s[] = { 6436 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6437 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6438 }; 6439 static const MCPhysReg ArgFPR32s[] = { 6440 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6441 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6442 }; 6443 static const MCPhysReg ArgFPR64s[] = { 6444 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6445 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6446 }; 6447 // This is an interim calling convention and it may be changed in the future. 6448 static const MCPhysReg ArgVRs[] = { 6449 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6450 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6451 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6452 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6453 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6454 RISCV::V20M2, RISCV::V22M2}; 6455 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6456 RISCV::V20M4}; 6457 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6458 6459 // Pass a 2*XLEN argument that has been split into two XLEN values through 6460 // registers or the stack as necessary. 6461 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6462 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6463 MVT ValVT2, MVT LocVT2, 6464 ISD::ArgFlagsTy ArgFlags2) { 6465 unsigned XLenInBytes = XLen / 8; 6466 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6467 // At least one half can be passed via register. 6468 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6469 VA1.getLocVT(), CCValAssign::Full)); 6470 } else { 6471 // Both halves must be passed on the stack, with proper alignment. 6472 Align StackAlign = 6473 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6474 State.addLoc( 6475 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6476 State.AllocateStack(XLenInBytes, StackAlign), 6477 VA1.getLocVT(), CCValAssign::Full)); 6478 State.addLoc(CCValAssign::getMem( 6479 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6480 LocVT2, CCValAssign::Full)); 6481 return false; 6482 } 6483 6484 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6485 // The second half can also be passed via register. 6486 State.addLoc( 6487 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6488 } else { 6489 // The second half is passed via the stack, without additional alignment. 6490 State.addLoc(CCValAssign::getMem( 6491 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6492 LocVT2, CCValAssign::Full)); 6493 } 6494 6495 return false; 6496 } 6497 6498 // Implements the RISC-V calling convention. Returns true upon failure. 6499 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6500 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6501 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6502 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6503 Optional<unsigned> FirstMaskArgument) { 6504 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6505 assert(XLen == 32 || XLen == 64); 6506 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6507 6508 // Any return value split in to more than two values can't be returned 6509 // directly. Vectors are returned via the available vector registers. 6510 if (!LocVT.isVector() && IsRet && ValNo > 1) 6511 return true; 6512 6513 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6514 // variadic argument, or if no F16/F32 argument registers are available. 6515 bool UseGPRForF16_F32 = true; 6516 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6517 // variadic argument, or if no F64 argument registers are available. 6518 bool UseGPRForF64 = true; 6519 6520 switch (ABI) { 6521 default: 6522 llvm_unreachable("Unexpected ABI"); 6523 case RISCVABI::ABI_ILP32: 6524 case RISCVABI::ABI_LP64: 6525 break; 6526 case RISCVABI::ABI_ILP32F: 6527 case RISCVABI::ABI_LP64F: 6528 UseGPRForF16_F32 = !IsFixed; 6529 break; 6530 case RISCVABI::ABI_ILP32D: 6531 case RISCVABI::ABI_LP64D: 6532 UseGPRForF16_F32 = !IsFixed; 6533 UseGPRForF64 = !IsFixed; 6534 break; 6535 } 6536 6537 // FPR16, FPR32, and FPR64 alias each other. 6538 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6539 UseGPRForF16_F32 = true; 6540 UseGPRForF64 = true; 6541 } 6542 6543 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6544 // similar local variables rather than directly checking against the target 6545 // ABI. 6546 6547 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6548 LocVT = XLenVT; 6549 LocInfo = CCValAssign::BCvt; 6550 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6551 LocVT = MVT::i64; 6552 LocInfo = CCValAssign::BCvt; 6553 } 6554 6555 // If this is a variadic argument, the RISC-V calling convention requires 6556 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6557 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6558 // be used regardless of whether the original argument was split during 6559 // legalisation or not. The argument will not be passed by registers if the 6560 // original type is larger than 2*XLEN, so the register alignment rule does 6561 // not apply. 6562 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6563 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6564 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6565 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6566 // Skip 'odd' register if necessary. 6567 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6568 State.AllocateReg(ArgGPRs); 6569 } 6570 6571 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6572 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6573 State.getPendingArgFlags(); 6574 6575 assert(PendingLocs.size() == PendingArgFlags.size() && 6576 "PendingLocs and PendingArgFlags out of sync"); 6577 6578 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6579 // registers are exhausted. 6580 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6581 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6582 "Can't lower f64 if it is split"); 6583 // Depending on available argument GPRS, f64 may be passed in a pair of 6584 // GPRs, split between a GPR and the stack, or passed completely on the 6585 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6586 // cases. 6587 Register Reg = State.AllocateReg(ArgGPRs); 6588 LocVT = MVT::i32; 6589 if (!Reg) { 6590 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6591 State.addLoc( 6592 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6593 return false; 6594 } 6595 if (!State.AllocateReg(ArgGPRs)) 6596 State.AllocateStack(4, Align(4)); 6597 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6598 return false; 6599 } 6600 6601 // Fixed-length vectors are located in the corresponding scalable-vector 6602 // container types. 6603 if (ValVT.isFixedLengthVector()) 6604 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6605 6606 // Split arguments might be passed indirectly, so keep track of the pending 6607 // values. Split vectors are passed via a mix of registers and indirectly, so 6608 // treat them as we would any other argument. 6609 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6610 LocVT = XLenVT; 6611 LocInfo = CCValAssign::Indirect; 6612 PendingLocs.push_back( 6613 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6614 PendingArgFlags.push_back(ArgFlags); 6615 if (!ArgFlags.isSplitEnd()) { 6616 return false; 6617 } 6618 } 6619 6620 // If the split argument only had two elements, it should be passed directly 6621 // in registers or on the stack. 6622 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6623 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6624 // Apply the normal calling convention rules to the first half of the 6625 // split argument. 6626 CCValAssign VA = PendingLocs[0]; 6627 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6628 PendingLocs.clear(); 6629 PendingArgFlags.clear(); 6630 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6631 ArgFlags); 6632 } 6633 6634 // Allocate to a register if possible, or else a stack slot. 6635 Register Reg; 6636 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6637 Reg = State.AllocateReg(ArgFPR16s); 6638 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6639 Reg = State.AllocateReg(ArgFPR32s); 6640 else if (ValVT == MVT::f64 && !UseGPRForF64) 6641 Reg = State.AllocateReg(ArgFPR64s); 6642 else if (ValVT.isVector()) { 6643 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6644 if (RC == &RISCV::VRRegClass) { 6645 // Assign the first mask argument to V0. 6646 // This is an interim calling convention and it may be changed in the 6647 // future. 6648 if (FirstMaskArgument.hasValue() && 6649 ValNo == FirstMaskArgument.getValue()) { 6650 Reg = State.AllocateReg(RISCV::V0); 6651 } else { 6652 Reg = State.AllocateReg(ArgVRs); 6653 } 6654 } else if (RC == &RISCV::VRM2RegClass) { 6655 Reg = State.AllocateReg(ArgVRM2s); 6656 } else if (RC == &RISCV::VRM4RegClass) { 6657 Reg = State.AllocateReg(ArgVRM4s); 6658 } else if (RC == &RISCV::VRM8RegClass) { 6659 Reg = State.AllocateReg(ArgVRM8s); 6660 } else { 6661 llvm_unreachable("Unhandled class register for ValueType"); 6662 } 6663 if (!Reg) { 6664 // For return values, the vector must be passed fully via registers or 6665 // via the stack. 6666 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 6667 // but we're using all of them. 6668 if (IsRet) 6669 return true; 6670 LocInfo = CCValAssign::Indirect; 6671 // Try using a GPR to pass the address 6672 Reg = State.AllocateReg(ArgGPRs); 6673 LocVT = XLenVT; 6674 } 6675 } else 6676 Reg = State.AllocateReg(ArgGPRs); 6677 unsigned StackOffset = 6678 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 6679 6680 // If we reach this point and PendingLocs is non-empty, we must be at the 6681 // end of a split argument that must be passed indirectly. 6682 if (!PendingLocs.empty()) { 6683 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 6684 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 6685 6686 for (auto &It : PendingLocs) { 6687 if (Reg) 6688 It.convertToReg(Reg); 6689 else 6690 It.convertToMem(StackOffset); 6691 State.addLoc(It); 6692 } 6693 PendingLocs.clear(); 6694 PendingArgFlags.clear(); 6695 return false; 6696 } 6697 6698 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 6699 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 6700 "Expected an XLenVT or vector types at this stage"); 6701 6702 if (Reg) { 6703 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6704 return false; 6705 } 6706 6707 // When a floating-point value is passed on the stack, no bit-conversion is 6708 // needed. 6709 if (ValVT.isFloatingPoint()) { 6710 LocVT = ValVT; 6711 LocInfo = CCValAssign::Full; 6712 } 6713 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6714 return false; 6715 } 6716 6717 template <typename ArgTy> 6718 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 6719 for (const auto &ArgIdx : enumerate(Args)) { 6720 MVT ArgVT = ArgIdx.value().VT; 6721 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 6722 return ArgIdx.index(); 6723 } 6724 return None; 6725 } 6726 6727 void RISCVTargetLowering::analyzeInputArgs( 6728 MachineFunction &MF, CCState &CCInfo, 6729 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 6730 unsigned NumArgs = Ins.size(); 6731 FunctionType *FType = MF.getFunction().getFunctionType(); 6732 6733 Optional<unsigned> FirstMaskArgument; 6734 if (Subtarget.hasStdExtV()) 6735 FirstMaskArgument = preAssignMask(Ins); 6736 6737 for (unsigned i = 0; i != NumArgs; ++i) { 6738 MVT ArgVT = Ins[i].VT; 6739 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 6740 6741 Type *ArgTy = nullptr; 6742 if (IsRet) 6743 ArgTy = FType->getReturnType(); 6744 else if (Ins[i].isOrigArg()) 6745 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 6746 6747 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6748 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6749 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 6750 FirstMaskArgument)) { 6751 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 6752 << EVT(ArgVT).getEVTString() << '\n'); 6753 llvm_unreachable(nullptr); 6754 } 6755 } 6756 } 6757 6758 void RISCVTargetLowering::analyzeOutputArgs( 6759 MachineFunction &MF, CCState &CCInfo, 6760 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6761 CallLoweringInfo *CLI) const { 6762 unsigned NumArgs = Outs.size(); 6763 6764 Optional<unsigned> FirstMaskArgument; 6765 if (Subtarget.hasStdExtV()) 6766 FirstMaskArgument = preAssignMask(Outs); 6767 6768 for (unsigned i = 0; i != NumArgs; i++) { 6769 MVT ArgVT = Outs[i].VT; 6770 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6771 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6772 6773 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6774 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6775 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6776 FirstMaskArgument)) { 6777 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 6778 << EVT(ArgVT).getEVTString() << "\n"); 6779 llvm_unreachable(nullptr); 6780 } 6781 } 6782 } 6783 6784 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 6785 // values. 6786 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 6787 const CCValAssign &VA, const SDLoc &DL, 6788 const RISCVSubtarget &Subtarget) { 6789 switch (VA.getLocInfo()) { 6790 default: 6791 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6792 case CCValAssign::Full: 6793 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 6794 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 6795 break; 6796 case CCValAssign::BCvt: 6797 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6798 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 6799 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6800 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 6801 else 6802 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 6803 break; 6804 } 6805 return Val; 6806 } 6807 6808 // The caller is responsible for loading the full value if the argument is 6809 // passed with CCValAssign::Indirect. 6810 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 6811 const CCValAssign &VA, const SDLoc &DL, 6812 const RISCVTargetLowering &TLI) { 6813 MachineFunction &MF = DAG.getMachineFunction(); 6814 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6815 EVT LocVT = VA.getLocVT(); 6816 SDValue Val; 6817 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 6818 Register VReg = RegInfo.createVirtualRegister(RC); 6819 RegInfo.addLiveIn(VA.getLocReg(), VReg); 6820 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 6821 6822 if (VA.getLocInfo() == CCValAssign::Indirect) 6823 return Val; 6824 6825 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 6826 } 6827 6828 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 6829 const CCValAssign &VA, const SDLoc &DL, 6830 const RISCVSubtarget &Subtarget) { 6831 EVT LocVT = VA.getLocVT(); 6832 6833 switch (VA.getLocInfo()) { 6834 default: 6835 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6836 case CCValAssign::Full: 6837 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 6838 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 6839 break; 6840 case CCValAssign::BCvt: 6841 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6842 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 6843 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6844 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 6845 else 6846 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 6847 break; 6848 } 6849 return Val; 6850 } 6851 6852 // The caller is responsible for loading the full value if the argument is 6853 // passed with CCValAssign::Indirect. 6854 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 6855 const CCValAssign &VA, const SDLoc &DL) { 6856 MachineFunction &MF = DAG.getMachineFunction(); 6857 MachineFrameInfo &MFI = MF.getFrameInfo(); 6858 EVT LocVT = VA.getLocVT(); 6859 EVT ValVT = VA.getValVT(); 6860 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 6861 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 6862 VA.getLocMemOffset(), /*Immutable=*/true); 6863 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6864 SDValue Val; 6865 6866 ISD::LoadExtType ExtType; 6867 switch (VA.getLocInfo()) { 6868 default: 6869 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6870 case CCValAssign::Full: 6871 case CCValAssign::Indirect: 6872 case CCValAssign::BCvt: 6873 ExtType = ISD::NON_EXTLOAD; 6874 break; 6875 } 6876 Val = DAG.getExtLoad( 6877 ExtType, DL, LocVT, Chain, FIN, 6878 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 6879 return Val; 6880 } 6881 6882 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 6883 const CCValAssign &VA, const SDLoc &DL) { 6884 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 6885 "Unexpected VA"); 6886 MachineFunction &MF = DAG.getMachineFunction(); 6887 MachineFrameInfo &MFI = MF.getFrameInfo(); 6888 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6889 6890 if (VA.isMemLoc()) { 6891 // f64 is passed on the stack. 6892 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 6893 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6894 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 6895 MachinePointerInfo::getFixedStack(MF, FI)); 6896 } 6897 6898 assert(VA.isRegLoc() && "Expected register VA assignment"); 6899 6900 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6901 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 6902 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 6903 SDValue Hi; 6904 if (VA.getLocReg() == RISCV::X17) { 6905 // Second half of f64 is passed on the stack. 6906 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 6907 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 6908 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 6909 MachinePointerInfo::getFixedStack(MF, FI)); 6910 } else { 6911 // Second half of f64 is passed in another GPR. 6912 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6913 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 6914 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 6915 } 6916 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 6917 } 6918 6919 // FastCC has less than 1% performance improvement for some particular 6920 // benchmark. But theoretically, it may has benenfit for some cases. 6921 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 6922 CCValAssign::LocInfo LocInfo, 6923 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6924 6925 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6926 // X5 and X6 might be used for save-restore libcall. 6927 static const MCPhysReg GPRList[] = { 6928 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 6929 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 6930 RISCV::X29, RISCV::X30, RISCV::X31}; 6931 if (unsigned Reg = State.AllocateReg(GPRList)) { 6932 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6933 return false; 6934 } 6935 } 6936 6937 if (LocVT == MVT::f16) { 6938 static const MCPhysReg FPR16List[] = { 6939 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 6940 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 6941 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 6942 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 6943 if (unsigned Reg = State.AllocateReg(FPR16List)) { 6944 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6945 return false; 6946 } 6947 } 6948 6949 if (LocVT == MVT::f32) { 6950 static const MCPhysReg FPR32List[] = { 6951 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 6952 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 6953 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 6954 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 6955 if (unsigned Reg = State.AllocateReg(FPR32List)) { 6956 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6957 return false; 6958 } 6959 } 6960 6961 if (LocVT == MVT::f64) { 6962 static const MCPhysReg FPR64List[] = { 6963 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 6964 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 6965 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 6966 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 6967 if (unsigned Reg = State.AllocateReg(FPR64List)) { 6968 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6969 return false; 6970 } 6971 } 6972 6973 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 6974 unsigned Offset4 = State.AllocateStack(4, Align(4)); 6975 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 6976 return false; 6977 } 6978 6979 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 6980 unsigned Offset5 = State.AllocateStack(8, Align(8)); 6981 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 6982 return false; 6983 } 6984 6985 return true; // CC didn't match. 6986 } 6987 6988 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 6989 CCValAssign::LocInfo LocInfo, 6990 ISD::ArgFlagsTy ArgFlags, CCState &State) { 6991 6992 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 6993 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 6994 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 6995 static const MCPhysReg GPRList[] = { 6996 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 6997 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 6998 if (unsigned Reg = State.AllocateReg(GPRList)) { 6999 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7000 return false; 7001 } 7002 } 7003 7004 if (LocVT == MVT::f32) { 7005 // Pass in STG registers: F1, ..., F6 7006 // fs0 ... fs5 7007 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7008 RISCV::F18_F, RISCV::F19_F, 7009 RISCV::F20_F, RISCV::F21_F}; 7010 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7011 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7012 return false; 7013 } 7014 } 7015 7016 if (LocVT == MVT::f64) { 7017 // Pass in STG registers: D1, ..., D6 7018 // fs6 ... fs11 7019 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7020 RISCV::F24_D, RISCV::F25_D, 7021 RISCV::F26_D, RISCV::F27_D}; 7022 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7023 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7024 return false; 7025 } 7026 } 7027 7028 report_fatal_error("No registers left in GHC calling convention"); 7029 return true; 7030 } 7031 7032 // Transform physical registers into virtual registers. 7033 SDValue RISCVTargetLowering::LowerFormalArguments( 7034 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7035 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7036 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7037 7038 MachineFunction &MF = DAG.getMachineFunction(); 7039 7040 switch (CallConv) { 7041 default: 7042 report_fatal_error("Unsupported calling convention"); 7043 case CallingConv::C: 7044 case CallingConv::Fast: 7045 break; 7046 case CallingConv::GHC: 7047 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7048 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7049 report_fatal_error( 7050 "GHC calling convention requires the F and D instruction set extensions"); 7051 } 7052 7053 const Function &Func = MF.getFunction(); 7054 if (Func.hasFnAttribute("interrupt")) { 7055 if (!Func.arg_empty()) 7056 report_fatal_error( 7057 "Functions with the interrupt attribute cannot have arguments!"); 7058 7059 StringRef Kind = 7060 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7061 7062 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7063 report_fatal_error( 7064 "Function interrupt attribute argument not supported!"); 7065 } 7066 7067 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7068 MVT XLenVT = Subtarget.getXLenVT(); 7069 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7070 // Used with vargs to acumulate store chains. 7071 std::vector<SDValue> OutChains; 7072 7073 // Assign locations to all of the incoming arguments. 7074 SmallVector<CCValAssign, 16> ArgLocs; 7075 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7076 7077 if (CallConv == CallingConv::Fast) 7078 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 7079 else if (CallConv == CallingConv::GHC) 7080 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7081 else 7082 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 7083 7084 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7085 CCValAssign &VA = ArgLocs[i]; 7086 SDValue ArgValue; 7087 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7088 // case. 7089 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7090 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7091 else if (VA.isRegLoc()) 7092 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7093 else 7094 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7095 7096 if (VA.getLocInfo() == CCValAssign::Indirect) { 7097 // If the original argument was split and passed by reference (e.g. i128 7098 // on RV32), we need to load all parts of it here (using the same 7099 // address). Vectors may be partly split to registers and partly to the 7100 // stack, in which case the base address is partly offset and subsequent 7101 // stores are relative to that. 7102 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7103 MachinePointerInfo())); 7104 unsigned ArgIndex = Ins[i].OrigArgIndex; 7105 unsigned ArgPartOffset = Ins[i].PartOffset; 7106 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7107 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7108 CCValAssign &PartVA = ArgLocs[i + 1]; 7109 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7110 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 7111 DAG.getIntPtrConstant(PartOffset, DL)); 7112 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7113 MachinePointerInfo())); 7114 ++i; 7115 } 7116 continue; 7117 } 7118 InVals.push_back(ArgValue); 7119 } 7120 7121 if (IsVarArg) { 7122 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7123 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7124 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7125 MachineFrameInfo &MFI = MF.getFrameInfo(); 7126 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7127 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7128 7129 // Offset of the first variable argument from stack pointer, and size of 7130 // the vararg save area. For now, the varargs save area is either zero or 7131 // large enough to hold a0-a7. 7132 int VaArgOffset, VarArgsSaveSize; 7133 7134 // If all registers are allocated, then all varargs must be passed on the 7135 // stack and we don't need to save any argregs. 7136 if (ArgRegs.size() == Idx) { 7137 VaArgOffset = CCInfo.getNextStackOffset(); 7138 VarArgsSaveSize = 0; 7139 } else { 7140 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7141 VaArgOffset = -VarArgsSaveSize; 7142 } 7143 7144 // Record the frame index of the first variable argument 7145 // which is a value necessary to VASTART. 7146 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7147 RVFI->setVarArgsFrameIndex(FI); 7148 7149 // If saving an odd number of registers then create an extra stack slot to 7150 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7151 // offsets to even-numbered registered remain 2*XLEN-aligned. 7152 if (Idx % 2) { 7153 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7154 VarArgsSaveSize += XLenInBytes; 7155 } 7156 7157 // Copy the integer registers that may have been used for passing varargs 7158 // to the vararg save area. 7159 for (unsigned I = Idx; I < ArgRegs.size(); 7160 ++I, VaArgOffset += XLenInBytes) { 7161 const Register Reg = RegInfo.createVirtualRegister(RC); 7162 RegInfo.addLiveIn(ArgRegs[I], Reg); 7163 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7164 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7165 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7166 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7167 MachinePointerInfo::getFixedStack(MF, FI)); 7168 cast<StoreSDNode>(Store.getNode()) 7169 ->getMemOperand() 7170 ->setValue((Value *)nullptr); 7171 OutChains.push_back(Store); 7172 } 7173 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7174 } 7175 7176 // All stores are grouped in one node to allow the matching between 7177 // the size of Ins and InVals. This only happens for vararg functions. 7178 if (!OutChains.empty()) { 7179 OutChains.push_back(Chain); 7180 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7181 } 7182 7183 return Chain; 7184 } 7185 7186 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7187 /// for tail call optimization. 7188 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7189 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7190 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7191 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7192 7193 auto &Callee = CLI.Callee; 7194 auto CalleeCC = CLI.CallConv; 7195 auto &Outs = CLI.Outs; 7196 auto &Caller = MF.getFunction(); 7197 auto CallerCC = Caller.getCallingConv(); 7198 7199 // Exception-handling functions need a special set of instructions to 7200 // indicate a return to the hardware. Tail-calling another function would 7201 // probably break this. 7202 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7203 // should be expanded as new function attributes are introduced. 7204 if (Caller.hasFnAttribute("interrupt")) 7205 return false; 7206 7207 // Do not tail call opt if the stack is used to pass parameters. 7208 if (CCInfo.getNextStackOffset() != 0) 7209 return false; 7210 7211 // Do not tail call opt if any parameters need to be passed indirectly. 7212 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7213 // passed indirectly. So the address of the value will be passed in a 7214 // register, or if not available, then the address is put on the stack. In 7215 // order to pass indirectly, space on the stack often needs to be allocated 7216 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7217 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7218 // are passed CCValAssign::Indirect. 7219 for (auto &VA : ArgLocs) 7220 if (VA.getLocInfo() == CCValAssign::Indirect) 7221 return false; 7222 7223 // Do not tail call opt if either caller or callee uses struct return 7224 // semantics. 7225 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7226 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7227 if (IsCallerStructRet || IsCalleeStructRet) 7228 return false; 7229 7230 // Externally-defined functions with weak linkage should not be 7231 // tail-called. The behaviour of branch instructions in this situation (as 7232 // used for tail calls) is implementation-defined, so we cannot rely on the 7233 // linker replacing the tail call with a return. 7234 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7235 const GlobalValue *GV = G->getGlobal(); 7236 if (GV->hasExternalWeakLinkage()) 7237 return false; 7238 } 7239 7240 // The callee has to preserve all registers the caller needs to preserve. 7241 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7242 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7243 if (CalleeCC != CallerCC) { 7244 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7245 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7246 return false; 7247 } 7248 7249 // Byval parameters hand the function a pointer directly into the stack area 7250 // we want to reuse during a tail call. Working around this *is* possible 7251 // but less efficient and uglier in LowerCall. 7252 for (auto &Arg : Outs) 7253 if (Arg.Flags.isByVal()) 7254 return false; 7255 7256 return true; 7257 } 7258 7259 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7260 return DAG.getDataLayout().getPrefTypeAlign( 7261 VT.getTypeForEVT(*DAG.getContext())); 7262 } 7263 7264 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7265 // and output parameter nodes. 7266 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7267 SmallVectorImpl<SDValue> &InVals) const { 7268 SelectionDAG &DAG = CLI.DAG; 7269 SDLoc &DL = CLI.DL; 7270 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7271 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7272 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7273 SDValue Chain = CLI.Chain; 7274 SDValue Callee = CLI.Callee; 7275 bool &IsTailCall = CLI.IsTailCall; 7276 CallingConv::ID CallConv = CLI.CallConv; 7277 bool IsVarArg = CLI.IsVarArg; 7278 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7279 MVT XLenVT = Subtarget.getXLenVT(); 7280 7281 MachineFunction &MF = DAG.getMachineFunction(); 7282 7283 // Analyze the operands of the call, assigning locations to each operand. 7284 SmallVector<CCValAssign, 16> ArgLocs; 7285 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7286 7287 if (CallConv == CallingConv::Fast) 7288 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 7289 else if (CallConv == CallingConv::GHC) 7290 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7291 else 7292 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 7293 7294 // Check if it's really possible to do a tail call. 7295 if (IsTailCall) 7296 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7297 7298 if (IsTailCall) 7299 ++NumTailCalls; 7300 else if (CLI.CB && CLI.CB->isMustTailCall()) 7301 report_fatal_error("failed to perform tail call elimination on a call " 7302 "site marked musttail"); 7303 7304 // Get a count of how many bytes are to be pushed on the stack. 7305 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7306 7307 // Create local copies for byval args 7308 SmallVector<SDValue, 8> ByValArgs; 7309 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7310 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7311 if (!Flags.isByVal()) 7312 continue; 7313 7314 SDValue Arg = OutVals[i]; 7315 unsigned Size = Flags.getByValSize(); 7316 Align Alignment = Flags.getNonZeroByValAlign(); 7317 7318 int FI = 7319 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7320 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7321 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7322 7323 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7324 /*IsVolatile=*/false, 7325 /*AlwaysInline=*/false, IsTailCall, 7326 MachinePointerInfo(), MachinePointerInfo()); 7327 ByValArgs.push_back(FIPtr); 7328 } 7329 7330 if (!IsTailCall) 7331 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7332 7333 // Copy argument values to their designated locations. 7334 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7335 SmallVector<SDValue, 8> MemOpChains; 7336 SDValue StackPtr; 7337 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7338 CCValAssign &VA = ArgLocs[i]; 7339 SDValue ArgValue = OutVals[i]; 7340 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7341 7342 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7343 bool IsF64OnRV32DSoftABI = 7344 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7345 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7346 SDValue SplitF64 = DAG.getNode( 7347 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7348 SDValue Lo = SplitF64.getValue(0); 7349 SDValue Hi = SplitF64.getValue(1); 7350 7351 Register RegLo = VA.getLocReg(); 7352 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7353 7354 if (RegLo == RISCV::X17) { 7355 // Second half of f64 is passed on the stack. 7356 // Work out the address of the stack slot. 7357 if (!StackPtr.getNode()) 7358 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7359 // Emit the store. 7360 MemOpChains.push_back( 7361 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7362 } else { 7363 // Second half of f64 is passed in another GPR. 7364 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7365 Register RegHigh = RegLo + 1; 7366 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7367 } 7368 continue; 7369 } 7370 7371 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7372 // as any other MemLoc. 7373 7374 // Promote the value if needed. 7375 // For now, only handle fully promoted and indirect arguments. 7376 if (VA.getLocInfo() == CCValAssign::Indirect) { 7377 // Store the argument in a stack slot and pass its address. 7378 Align StackAlign = 7379 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7380 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7381 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7382 // If the original argument was split (e.g. i128), we need 7383 // to store the required parts of it here (and pass just one address). 7384 // Vectors may be partly split to registers and partly to the stack, in 7385 // which case the base address is partly offset and subsequent stores are 7386 // relative to that. 7387 unsigned ArgIndex = Outs[i].OrigArgIndex; 7388 unsigned ArgPartOffset = Outs[i].PartOffset; 7389 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7390 // Calculate the total size to store. We don't have access to what we're 7391 // actually storing other than performing the loop and collecting the 7392 // info. 7393 SmallVector<std::pair<SDValue, unsigned>> Parts; 7394 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7395 SDValue PartValue = OutVals[i + 1]; 7396 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7397 EVT PartVT = PartValue.getValueType(); 7398 StoredSize += PartVT.getStoreSize(); 7399 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7400 Parts.push_back(std::make_pair(PartValue, PartOffset)); 7401 ++i; 7402 } 7403 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7404 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7405 MemOpChains.push_back( 7406 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7407 MachinePointerInfo::getFixedStack(MF, FI))); 7408 for (const auto &Part : Parts) { 7409 SDValue PartValue = Part.first; 7410 unsigned PartOffset = Part.second; 7411 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 7412 DAG.getIntPtrConstant(PartOffset, DL)); 7413 MemOpChains.push_back( 7414 DAG.getStore(Chain, DL, PartValue, Address, 7415 MachinePointerInfo::getFixedStack(MF, FI))); 7416 } 7417 ArgValue = SpillSlot; 7418 } else { 7419 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7420 } 7421 7422 // Use local copy if it is a byval arg. 7423 if (Flags.isByVal()) 7424 ArgValue = ByValArgs[j++]; 7425 7426 if (VA.isRegLoc()) { 7427 // Queue up the argument copies and emit them at the end. 7428 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7429 } else { 7430 assert(VA.isMemLoc() && "Argument not register or memory"); 7431 assert(!IsTailCall && "Tail call not allowed if stack is used " 7432 "for passing parameters"); 7433 7434 // Work out the address of the stack slot. 7435 if (!StackPtr.getNode()) 7436 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7437 SDValue Address = 7438 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7439 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7440 7441 // Emit the store. 7442 MemOpChains.push_back( 7443 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7444 } 7445 } 7446 7447 // Join the stores, which are independent of one another. 7448 if (!MemOpChains.empty()) 7449 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7450 7451 SDValue Glue; 7452 7453 // Build a sequence of copy-to-reg nodes, chained and glued together. 7454 for (auto &Reg : RegsToPass) { 7455 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7456 Glue = Chain.getValue(1); 7457 } 7458 7459 // Validate that none of the argument registers have been marked as 7460 // reserved, if so report an error. Do the same for the return address if this 7461 // is not a tailcall. 7462 validateCCReservedRegs(RegsToPass, MF); 7463 if (!IsTailCall && 7464 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7465 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7466 MF.getFunction(), 7467 "Return address register required, but has been reserved."}); 7468 7469 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7470 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7471 // split it and then direct call can be matched by PseudoCALL. 7472 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7473 const GlobalValue *GV = S->getGlobal(); 7474 7475 unsigned OpFlags = RISCVII::MO_CALL; 7476 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7477 OpFlags = RISCVII::MO_PLT; 7478 7479 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7480 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7481 unsigned OpFlags = RISCVII::MO_CALL; 7482 7483 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7484 nullptr)) 7485 OpFlags = RISCVII::MO_PLT; 7486 7487 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7488 } 7489 7490 // The first call operand is the chain and the second is the target address. 7491 SmallVector<SDValue, 8> Ops; 7492 Ops.push_back(Chain); 7493 Ops.push_back(Callee); 7494 7495 // Add argument registers to the end of the list so that they are 7496 // known live into the call. 7497 for (auto &Reg : RegsToPass) 7498 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7499 7500 if (!IsTailCall) { 7501 // Add a register mask operand representing the call-preserved registers. 7502 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7503 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7504 assert(Mask && "Missing call preserved mask for calling convention"); 7505 Ops.push_back(DAG.getRegisterMask(Mask)); 7506 } 7507 7508 // Glue the call to the argument copies, if any. 7509 if (Glue.getNode()) 7510 Ops.push_back(Glue); 7511 7512 // Emit the call. 7513 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7514 7515 if (IsTailCall) { 7516 MF.getFrameInfo().setHasTailCall(); 7517 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7518 } 7519 7520 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7521 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7522 Glue = Chain.getValue(1); 7523 7524 // Mark the end of the call, which is glued to the call itself. 7525 Chain = DAG.getCALLSEQ_END(Chain, 7526 DAG.getConstant(NumBytes, DL, PtrVT, true), 7527 DAG.getConstant(0, DL, PtrVT, true), 7528 Glue, DL); 7529 Glue = Chain.getValue(1); 7530 7531 // Assign locations to each value returned by this call. 7532 SmallVector<CCValAssign, 16> RVLocs; 7533 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7534 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 7535 7536 // Copy all of the result registers out of their specified physreg. 7537 for (auto &VA : RVLocs) { 7538 // Copy the value out 7539 SDValue RetValue = 7540 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7541 // Glue the RetValue to the end of the call sequence 7542 Chain = RetValue.getValue(1); 7543 Glue = RetValue.getValue(2); 7544 7545 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7546 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7547 SDValue RetValue2 = 7548 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7549 Chain = RetValue2.getValue(1); 7550 Glue = RetValue2.getValue(2); 7551 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7552 RetValue2); 7553 } 7554 7555 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7556 7557 InVals.push_back(RetValue); 7558 } 7559 7560 return Chain; 7561 } 7562 7563 bool RISCVTargetLowering::CanLowerReturn( 7564 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7565 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7566 SmallVector<CCValAssign, 16> RVLocs; 7567 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7568 7569 Optional<unsigned> FirstMaskArgument; 7570 if (Subtarget.hasStdExtV()) 7571 FirstMaskArgument = preAssignMask(Outs); 7572 7573 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7574 MVT VT = Outs[i].VT; 7575 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7576 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7577 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7578 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7579 *this, FirstMaskArgument)) 7580 return false; 7581 } 7582 return true; 7583 } 7584 7585 SDValue 7586 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7587 bool IsVarArg, 7588 const SmallVectorImpl<ISD::OutputArg> &Outs, 7589 const SmallVectorImpl<SDValue> &OutVals, 7590 const SDLoc &DL, SelectionDAG &DAG) const { 7591 const MachineFunction &MF = DAG.getMachineFunction(); 7592 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7593 7594 // Stores the assignment of the return value to a location. 7595 SmallVector<CCValAssign, 16> RVLocs; 7596 7597 // Info about the registers and stack slot. 7598 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7599 *DAG.getContext()); 7600 7601 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7602 nullptr); 7603 7604 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7605 report_fatal_error("GHC functions return void only"); 7606 7607 SDValue Glue; 7608 SmallVector<SDValue, 4> RetOps(1, Chain); 7609 7610 // Copy the result values into the output registers. 7611 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7612 SDValue Val = OutVals[i]; 7613 CCValAssign &VA = RVLocs[i]; 7614 assert(VA.isRegLoc() && "Can only return in registers!"); 7615 7616 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7617 // Handle returning f64 on RV32D with a soft float ABI. 7618 assert(VA.isRegLoc() && "Expected return via registers"); 7619 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 7620 DAG.getVTList(MVT::i32, MVT::i32), Val); 7621 SDValue Lo = SplitF64.getValue(0); 7622 SDValue Hi = SplitF64.getValue(1); 7623 Register RegLo = VA.getLocReg(); 7624 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7625 Register RegHi = RegLo + 1; 7626 7627 if (STI.isRegisterReservedByUser(RegLo) || 7628 STI.isRegisterReservedByUser(RegHi)) 7629 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7630 MF.getFunction(), 7631 "Return value register required, but has been reserved."}); 7632 7633 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 7634 Glue = Chain.getValue(1); 7635 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 7636 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 7637 Glue = Chain.getValue(1); 7638 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 7639 } else { 7640 // Handle a 'normal' return. 7641 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 7642 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 7643 7644 if (STI.isRegisterReservedByUser(VA.getLocReg())) 7645 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7646 MF.getFunction(), 7647 "Return value register required, but has been reserved."}); 7648 7649 // Guarantee that all emitted copies are stuck together. 7650 Glue = Chain.getValue(1); 7651 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7652 } 7653 } 7654 7655 RetOps[0] = Chain; // Update chain. 7656 7657 // Add the glue node if we have it. 7658 if (Glue.getNode()) { 7659 RetOps.push_back(Glue); 7660 } 7661 7662 // Interrupt service routines use different return instructions. 7663 const Function &Func = DAG.getMachineFunction().getFunction(); 7664 if (Func.hasFnAttribute("interrupt")) { 7665 if (!Func.getReturnType()->isVoidTy()) 7666 report_fatal_error( 7667 "Functions with the interrupt attribute must have void return type!"); 7668 7669 MachineFunction &MF = DAG.getMachineFunction(); 7670 StringRef Kind = 7671 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7672 7673 unsigned RetOpc; 7674 if (Kind == "user") 7675 RetOpc = RISCVISD::URET_FLAG; 7676 else if (Kind == "supervisor") 7677 RetOpc = RISCVISD::SRET_FLAG; 7678 else 7679 RetOpc = RISCVISD::MRET_FLAG; 7680 7681 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 7682 } 7683 7684 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 7685 } 7686 7687 void RISCVTargetLowering::validateCCReservedRegs( 7688 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 7689 MachineFunction &MF) const { 7690 const Function &F = MF.getFunction(); 7691 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7692 7693 if (llvm::any_of(Regs, [&STI](auto Reg) { 7694 return STI.isRegisterReservedByUser(Reg.first); 7695 })) 7696 F.getContext().diagnose(DiagnosticInfoUnsupported{ 7697 F, "Argument register required, but has been reserved."}); 7698 } 7699 7700 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 7701 return CI->isTailCall(); 7702 } 7703 7704 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 7705 #define NODE_NAME_CASE(NODE) \ 7706 case RISCVISD::NODE: \ 7707 return "RISCVISD::" #NODE; 7708 // clang-format off 7709 switch ((RISCVISD::NodeType)Opcode) { 7710 case RISCVISD::FIRST_NUMBER: 7711 break; 7712 NODE_NAME_CASE(RET_FLAG) 7713 NODE_NAME_CASE(URET_FLAG) 7714 NODE_NAME_CASE(SRET_FLAG) 7715 NODE_NAME_CASE(MRET_FLAG) 7716 NODE_NAME_CASE(CALL) 7717 NODE_NAME_CASE(SELECT_CC) 7718 NODE_NAME_CASE(BR_CC) 7719 NODE_NAME_CASE(BuildPairF64) 7720 NODE_NAME_CASE(SplitF64) 7721 NODE_NAME_CASE(TAIL) 7722 NODE_NAME_CASE(MULHSU) 7723 NODE_NAME_CASE(SLLW) 7724 NODE_NAME_CASE(SRAW) 7725 NODE_NAME_CASE(SRLW) 7726 NODE_NAME_CASE(DIVW) 7727 NODE_NAME_CASE(DIVUW) 7728 NODE_NAME_CASE(REMUW) 7729 NODE_NAME_CASE(ROLW) 7730 NODE_NAME_CASE(RORW) 7731 NODE_NAME_CASE(CLZW) 7732 NODE_NAME_CASE(CTZW) 7733 NODE_NAME_CASE(FSLW) 7734 NODE_NAME_CASE(FSRW) 7735 NODE_NAME_CASE(FSL) 7736 NODE_NAME_CASE(FSR) 7737 NODE_NAME_CASE(FMV_H_X) 7738 NODE_NAME_CASE(FMV_X_ANYEXTH) 7739 NODE_NAME_CASE(FMV_W_X_RV64) 7740 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 7741 NODE_NAME_CASE(READ_CYCLE_WIDE) 7742 NODE_NAME_CASE(GREV) 7743 NODE_NAME_CASE(GREVW) 7744 NODE_NAME_CASE(GORC) 7745 NODE_NAME_CASE(GORCW) 7746 NODE_NAME_CASE(SHFL) 7747 NODE_NAME_CASE(SHFLW) 7748 NODE_NAME_CASE(UNSHFL) 7749 NODE_NAME_CASE(UNSHFLW) 7750 NODE_NAME_CASE(BCOMPRESS) 7751 NODE_NAME_CASE(BCOMPRESSW) 7752 NODE_NAME_CASE(BDECOMPRESS) 7753 NODE_NAME_CASE(BDECOMPRESSW) 7754 NODE_NAME_CASE(VMV_V_X_VL) 7755 NODE_NAME_CASE(VFMV_V_F_VL) 7756 NODE_NAME_CASE(VMV_X_S) 7757 NODE_NAME_CASE(VMV_S_X_VL) 7758 NODE_NAME_CASE(VFMV_S_F_VL) 7759 NODE_NAME_CASE(SPLAT_VECTOR_I64) 7760 NODE_NAME_CASE(READ_VLENB) 7761 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 7762 NODE_NAME_CASE(VLEFF) 7763 NODE_NAME_CASE(VLEFF_MASK) 7764 NODE_NAME_CASE(VSLIDEUP_VL) 7765 NODE_NAME_CASE(VSLIDE1UP_VL) 7766 NODE_NAME_CASE(VSLIDEDOWN_VL) 7767 NODE_NAME_CASE(VSLIDE1DOWN_VL) 7768 NODE_NAME_CASE(VID_VL) 7769 NODE_NAME_CASE(VFNCVT_ROD_VL) 7770 NODE_NAME_CASE(VECREDUCE_ADD_VL) 7771 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 7772 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 7773 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 7774 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 7775 NODE_NAME_CASE(VECREDUCE_AND_VL) 7776 NODE_NAME_CASE(VECREDUCE_OR_VL) 7777 NODE_NAME_CASE(VECREDUCE_XOR_VL) 7778 NODE_NAME_CASE(VECREDUCE_FADD_VL) 7779 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 7780 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 7781 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 7782 NODE_NAME_CASE(ADD_VL) 7783 NODE_NAME_CASE(AND_VL) 7784 NODE_NAME_CASE(MUL_VL) 7785 NODE_NAME_CASE(OR_VL) 7786 NODE_NAME_CASE(SDIV_VL) 7787 NODE_NAME_CASE(SHL_VL) 7788 NODE_NAME_CASE(SREM_VL) 7789 NODE_NAME_CASE(SRA_VL) 7790 NODE_NAME_CASE(SRL_VL) 7791 NODE_NAME_CASE(SUB_VL) 7792 NODE_NAME_CASE(UDIV_VL) 7793 NODE_NAME_CASE(UREM_VL) 7794 NODE_NAME_CASE(XOR_VL) 7795 NODE_NAME_CASE(FADD_VL) 7796 NODE_NAME_CASE(FSUB_VL) 7797 NODE_NAME_CASE(FMUL_VL) 7798 NODE_NAME_CASE(FDIV_VL) 7799 NODE_NAME_CASE(FNEG_VL) 7800 NODE_NAME_CASE(FABS_VL) 7801 NODE_NAME_CASE(FSQRT_VL) 7802 NODE_NAME_CASE(FMA_VL) 7803 NODE_NAME_CASE(FCOPYSIGN_VL) 7804 NODE_NAME_CASE(SMIN_VL) 7805 NODE_NAME_CASE(SMAX_VL) 7806 NODE_NAME_CASE(UMIN_VL) 7807 NODE_NAME_CASE(UMAX_VL) 7808 NODE_NAME_CASE(FMINNUM_VL) 7809 NODE_NAME_CASE(FMAXNUM_VL) 7810 NODE_NAME_CASE(MULHS_VL) 7811 NODE_NAME_CASE(MULHU_VL) 7812 NODE_NAME_CASE(FP_TO_SINT_VL) 7813 NODE_NAME_CASE(FP_TO_UINT_VL) 7814 NODE_NAME_CASE(SINT_TO_FP_VL) 7815 NODE_NAME_CASE(UINT_TO_FP_VL) 7816 NODE_NAME_CASE(FP_EXTEND_VL) 7817 NODE_NAME_CASE(FP_ROUND_VL) 7818 NODE_NAME_CASE(SETCC_VL) 7819 NODE_NAME_CASE(VSELECT_VL) 7820 NODE_NAME_CASE(VMAND_VL) 7821 NODE_NAME_CASE(VMOR_VL) 7822 NODE_NAME_CASE(VMXOR_VL) 7823 NODE_NAME_CASE(VMCLR_VL) 7824 NODE_NAME_CASE(VMSET_VL) 7825 NODE_NAME_CASE(VRGATHER_VX_VL) 7826 NODE_NAME_CASE(VRGATHER_VV_VL) 7827 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 7828 NODE_NAME_CASE(VSEXT_VL) 7829 NODE_NAME_CASE(VZEXT_VL) 7830 NODE_NAME_CASE(VPOPC_VL) 7831 NODE_NAME_CASE(VLE_VL) 7832 NODE_NAME_CASE(VSE_VL) 7833 NODE_NAME_CASE(READ_CSR) 7834 NODE_NAME_CASE(WRITE_CSR) 7835 NODE_NAME_CASE(SWAP_CSR) 7836 } 7837 // clang-format on 7838 return nullptr; 7839 #undef NODE_NAME_CASE 7840 } 7841 7842 /// getConstraintType - Given a constraint letter, return the type of 7843 /// constraint it is for this target. 7844 RISCVTargetLowering::ConstraintType 7845 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 7846 if (Constraint.size() == 1) { 7847 switch (Constraint[0]) { 7848 default: 7849 break; 7850 case 'f': 7851 case 'v': 7852 return C_RegisterClass; 7853 case 'I': 7854 case 'J': 7855 case 'K': 7856 return C_Immediate; 7857 case 'A': 7858 return C_Memory; 7859 } 7860 } 7861 return TargetLowering::getConstraintType(Constraint); 7862 } 7863 7864 std::pair<unsigned, const TargetRegisterClass *> 7865 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 7866 StringRef Constraint, 7867 MVT VT) const { 7868 // First, see if this is a constraint that directly corresponds to a 7869 // RISCV register class. 7870 if (Constraint.size() == 1) { 7871 switch (Constraint[0]) { 7872 case 'r': 7873 return std::make_pair(0U, &RISCV::GPRRegClass); 7874 case 'f': 7875 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 7876 return std::make_pair(0U, &RISCV::FPR16RegClass); 7877 if (Subtarget.hasStdExtF() && VT == MVT::f32) 7878 return std::make_pair(0U, &RISCV::FPR32RegClass); 7879 if (Subtarget.hasStdExtD() && VT == MVT::f64) 7880 return std::make_pair(0U, &RISCV::FPR64RegClass); 7881 break; 7882 case 'v': 7883 for (const auto *RC : 7884 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 7885 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 7886 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 7887 return std::make_pair(0U, RC); 7888 } 7889 break; 7890 default: 7891 break; 7892 } 7893 } 7894 7895 // Clang will correctly decode the usage of register name aliases into their 7896 // official names. However, other frontends like `rustc` do not. This allows 7897 // users of these frontends to use the ABI names for registers in LLVM-style 7898 // register constraints. 7899 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 7900 .Case("{zero}", RISCV::X0) 7901 .Case("{ra}", RISCV::X1) 7902 .Case("{sp}", RISCV::X2) 7903 .Case("{gp}", RISCV::X3) 7904 .Case("{tp}", RISCV::X4) 7905 .Case("{t0}", RISCV::X5) 7906 .Case("{t1}", RISCV::X6) 7907 .Case("{t2}", RISCV::X7) 7908 .Cases("{s0}", "{fp}", RISCV::X8) 7909 .Case("{s1}", RISCV::X9) 7910 .Case("{a0}", RISCV::X10) 7911 .Case("{a1}", RISCV::X11) 7912 .Case("{a2}", RISCV::X12) 7913 .Case("{a3}", RISCV::X13) 7914 .Case("{a4}", RISCV::X14) 7915 .Case("{a5}", RISCV::X15) 7916 .Case("{a6}", RISCV::X16) 7917 .Case("{a7}", RISCV::X17) 7918 .Case("{s2}", RISCV::X18) 7919 .Case("{s3}", RISCV::X19) 7920 .Case("{s4}", RISCV::X20) 7921 .Case("{s5}", RISCV::X21) 7922 .Case("{s6}", RISCV::X22) 7923 .Case("{s7}", RISCV::X23) 7924 .Case("{s8}", RISCV::X24) 7925 .Case("{s9}", RISCV::X25) 7926 .Case("{s10}", RISCV::X26) 7927 .Case("{s11}", RISCV::X27) 7928 .Case("{t3}", RISCV::X28) 7929 .Case("{t4}", RISCV::X29) 7930 .Case("{t5}", RISCV::X30) 7931 .Case("{t6}", RISCV::X31) 7932 .Default(RISCV::NoRegister); 7933 if (XRegFromAlias != RISCV::NoRegister) 7934 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 7935 7936 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 7937 // TableGen record rather than the AsmName to choose registers for InlineAsm 7938 // constraints, plus we want to match those names to the widest floating point 7939 // register type available, manually select floating point registers here. 7940 // 7941 // The second case is the ABI name of the register, so that frontends can also 7942 // use the ABI names in register constraint lists. 7943 if (Subtarget.hasStdExtF()) { 7944 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 7945 .Cases("{f0}", "{ft0}", RISCV::F0_F) 7946 .Cases("{f1}", "{ft1}", RISCV::F1_F) 7947 .Cases("{f2}", "{ft2}", RISCV::F2_F) 7948 .Cases("{f3}", "{ft3}", RISCV::F3_F) 7949 .Cases("{f4}", "{ft4}", RISCV::F4_F) 7950 .Cases("{f5}", "{ft5}", RISCV::F5_F) 7951 .Cases("{f6}", "{ft6}", RISCV::F6_F) 7952 .Cases("{f7}", "{ft7}", RISCV::F7_F) 7953 .Cases("{f8}", "{fs0}", RISCV::F8_F) 7954 .Cases("{f9}", "{fs1}", RISCV::F9_F) 7955 .Cases("{f10}", "{fa0}", RISCV::F10_F) 7956 .Cases("{f11}", "{fa1}", RISCV::F11_F) 7957 .Cases("{f12}", "{fa2}", RISCV::F12_F) 7958 .Cases("{f13}", "{fa3}", RISCV::F13_F) 7959 .Cases("{f14}", "{fa4}", RISCV::F14_F) 7960 .Cases("{f15}", "{fa5}", RISCV::F15_F) 7961 .Cases("{f16}", "{fa6}", RISCV::F16_F) 7962 .Cases("{f17}", "{fa7}", RISCV::F17_F) 7963 .Cases("{f18}", "{fs2}", RISCV::F18_F) 7964 .Cases("{f19}", "{fs3}", RISCV::F19_F) 7965 .Cases("{f20}", "{fs4}", RISCV::F20_F) 7966 .Cases("{f21}", "{fs5}", RISCV::F21_F) 7967 .Cases("{f22}", "{fs6}", RISCV::F22_F) 7968 .Cases("{f23}", "{fs7}", RISCV::F23_F) 7969 .Cases("{f24}", "{fs8}", RISCV::F24_F) 7970 .Cases("{f25}", "{fs9}", RISCV::F25_F) 7971 .Cases("{f26}", "{fs10}", RISCV::F26_F) 7972 .Cases("{f27}", "{fs11}", RISCV::F27_F) 7973 .Cases("{f28}", "{ft8}", RISCV::F28_F) 7974 .Cases("{f29}", "{ft9}", RISCV::F29_F) 7975 .Cases("{f30}", "{ft10}", RISCV::F30_F) 7976 .Cases("{f31}", "{ft11}", RISCV::F31_F) 7977 .Default(RISCV::NoRegister); 7978 if (FReg != RISCV::NoRegister) { 7979 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 7980 if (Subtarget.hasStdExtD()) { 7981 unsigned RegNo = FReg - RISCV::F0_F; 7982 unsigned DReg = RISCV::F0_D + RegNo; 7983 return std::make_pair(DReg, &RISCV::FPR64RegClass); 7984 } 7985 return std::make_pair(FReg, &RISCV::FPR32RegClass); 7986 } 7987 } 7988 7989 if (Subtarget.hasStdExtV()) { 7990 Register VReg = StringSwitch<Register>(Constraint.lower()) 7991 .Case("{v0}", RISCV::V0) 7992 .Case("{v1}", RISCV::V1) 7993 .Case("{v2}", RISCV::V2) 7994 .Case("{v3}", RISCV::V3) 7995 .Case("{v4}", RISCV::V4) 7996 .Case("{v5}", RISCV::V5) 7997 .Case("{v6}", RISCV::V6) 7998 .Case("{v7}", RISCV::V7) 7999 .Case("{v8}", RISCV::V8) 8000 .Case("{v9}", RISCV::V9) 8001 .Case("{v10}", RISCV::V10) 8002 .Case("{v11}", RISCV::V11) 8003 .Case("{v12}", RISCV::V12) 8004 .Case("{v13}", RISCV::V13) 8005 .Case("{v14}", RISCV::V14) 8006 .Case("{v15}", RISCV::V15) 8007 .Case("{v16}", RISCV::V16) 8008 .Case("{v17}", RISCV::V17) 8009 .Case("{v18}", RISCV::V18) 8010 .Case("{v19}", RISCV::V19) 8011 .Case("{v20}", RISCV::V20) 8012 .Case("{v21}", RISCV::V21) 8013 .Case("{v22}", RISCV::V22) 8014 .Case("{v23}", RISCV::V23) 8015 .Case("{v24}", RISCV::V24) 8016 .Case("{v25}", RISCV::V25) 8017 .Case("{v26}", RISCV::V26) 8018 .Case("{v27}", RISCV::V27) 8019 .Case("{v28}", RISCV::V28) 8020 .Case("{v29}", RISCV::V29) 8021 .Case("{v30}", RISCV::V30) 8022 .Case("{v31}", RISCV::V31) 8023 .Default(RISCV::NoRegister); 8024 if (VReg != RISCV::NoRegister) { 8025 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8026 return std::make_pair(VReg, &RISCV::VMRegClass); 8027 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8028 return std::make_pair(VReg, &RISCV::VRRegClass); 8029 for (const auto *RC : 8030 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8031 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8032 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8033 return std::make_pair(VReg, RC); 8034 } 8035 } 8036 } 8037 } 8038 8039 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8040 } 8041 8042 unsigned 8043 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8044 // Currently only support length 1 constraints. 8045 if (ConstraintCode.size() == 1) { 8046 switch (ConstraintCode[0]) { 8047 case 'A': 8048 return InlineAsm::Constraint_A; 8049 default: 8050 break; 8051 } 8052 } 8053 8054 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8055 } 8056 8057 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8058 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8059 SelectionDAG &DAG) const { 8060 // Currently only support length 1 constraints. 8061 if (Constraint.length() == 1) { 8062 switch (Constraint[0]) { 8063 case 'I': 8064 // Validate & create a 12-bit signed immediate operand. 8065 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8066 uint64_t CVal = C->getSExtValue(); 8067 if (isInt<12>(CVal)) 8068 Ops.push_back( 8069 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8070 } 8071 return; 8072 case 'J': 8073 // Validate & create an integer zero operand. 8074 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8075 if (C->getZExtValue() == 0) 8076 Ops.push_back( 8077 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8078 return; 8079 case 'K': 8080 // Validate & create a 5-bit unsigned immediate operand. 8081 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8082 uint64_t CVal = C->getZExtValue(); 8083 if (isUInt<5>(CVal)) 8084 Ops.push_back( 8085 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8086 } 8087 return; 8088 default: 8089 break; 8090 } 8091 } 8092 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8093 } 8094 8095 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8096 Instruction *Inst, 8097 AtomicOrdering Ord) const { 8098 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8099 return Builder.CreateFence(Ord); 8100 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8101 return Builder.CreateFence(AtomicOrdering::Release); 8102 return nullptr; 8103 } 8104 8105 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8106 Instruction *Inst, 8107 AtomicOrdering Ord) const { 8108 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8109 return Builder.CreateFence(AtomicOrdering::Acquire); 8110 return nullptr; 8111 } 8112 8113 TargetLowering::AtomicExpansionKind 8114 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8115 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8116 // point operations can't be used in an lr/sc sequence without breaking the 8117 // forward-progress guarantee. 8118 if (AI->isFloatingPointOperation()) 8119 return AtomicExpansionKind::CmpXChg; 8120 8121 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8122 if (Size == 8 || Size == 16) 8123 return AtomicExpansionKind::MaskedIntrinsic; 8124 return AtomicExpansionKind::None; 8125 } 8126 8127 static Intrinsic::ID 8128 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8129 if (XLen == 32) { 8130 switch (BinOp) { 8131 default: 8132 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8133 case AtomicRMWInst::Xchg: 8134 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8135 case AtomicRMWInst::Add: 8136 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8137 case AtomicRMWInst::Sub: 8138 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8139 case AtomicRMWInst::Nand: 8140 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8141 case AtomicRMWInst::Max: 8142 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8143 case AtomicRMWInst::Min: 8144 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8145 case AtomicRMWInst::UMax: 8146 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8147 case AtomicRMWInst::UMin: 8148 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8149 } 8150 } 8151 8152 if (XLen == 64) { 8153 switch (BinOp) { 8154 default: 8155 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8156 case AtomicRMWInst::Xchg: 8157 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8158 case AtomicRMWInst::Add: 8159 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8160 case AtomicRMWInst::Sub: 8161 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8162 case AtomicRMWInst::Nand: 8163 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8164 case AtomicRMWInst::Max: 8165 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8166 case AtomicRMWInst::Min: 8167 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8168 case AtomicRMWInst::UMax: 8169 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8170 case AtomicRMWInst::UMin: 8171 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8172 } 8173 } 8174 8175 llvm_unreachable("Unexpected XLen\n"); 8176 } 8177 8178 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8179 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8180 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8181 unsigned XLen = Subtarget.getXLen(); 8182 Value *Ordering = 8183 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8184 Type *Tys[] = {AlignedAddr->getType()}; 8185 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8186 AI->getModule(), 8187 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8188 8189 if (XLen == 64) { 8190 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8191 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8192 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8193 } 8194 8195 Value *Result; 8196 8197 // Must pass the shift amount needed to sign extend the loaded value prior 8198 // to performing a signed comparison for min/max. ShiftAmt is the number of 8199 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8200 // is the number of bits to left+right shift the value in order to 8201 // sign-extend. 8202 if (AI->getOperation() == AtomicRMWInst::Min || 8203 AI->getOperation() == AtomicRMWInst::Max) { 8204 const DataLayout &DL = AI->getModule()->getDataLayout(); 8205 unsigned ValWidth = 8206 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8207 Value *SextShamt = 8208 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8209 Result = Builder.CreateCall(LrwOpScwLoop, 8210 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8211 } else { 8212 Result = 8213 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8214 } 8215 8216 if (XLen == 64) 8217 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8218 return Result; 8219 } 8220 8221 TargetLowering::AtomicExpansionKind 8222 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8223 AtomicCmpXchgInst *CI) const { 8224 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8225 if (Size == 8 || Size == 16) 8226 return AtomicExpansionKind::MaskedIntrinsic; 8227 return AtomicExpansionKind::None; 8228 } 8229 8230 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8231 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8232 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8233 unsigned XLen = Subtarget.getXLen(); 8234 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8235 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8236 if (XLen == 64) { 8237 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8238 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8239 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8240 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8241 } 8242 Type *Tys[] = {AlignedAddr->getType()}; 8243 Function *MaskedCmpXchg = 8244 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8245 Value *Result = Builder.CreateCall( 8246 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8247 if (XLen == 64) 8248 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8249 return Result; 8250 } 8251 8252 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8253 return false; 8254 } 8255 8256 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8257 EVT VT) const { 8258 VT = VT.getScalarType(); 8259 8260 if (!VT.isSimple()) 8261 return false; 8262 8263 switch (VT.getSimpleVT().SimpleTy) { 8264 case MVT::f16: 8265 return Subtarget.hasStdExtZfh(); 8266 case MVT::f32: 8267 return Subtarget.hasStdExtF(); 8268 case MVT::f64: 8269 return Subtarget.hasStdExtD(); 8270 default: 8271 break; 8272 } 8273 8274 return false; 8275 } 8276 8277 Register RISCVTargetLowering::getExceptionPointerRegister( 8278 const Constant *PersonalityFn) const { 8279 return RISCV::X10; 8280 } 8281 8282 Register RISCVTargetLowering::getExceptionSelectorRegister( 8283 const Constant *PersonalityFn) const { 8284 return RISCV::X11; 8285 } 8286 8287 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8288 // Return false to suppress the unnecessary extensions if the LibCall 8289 // arguments or return value is f32 type for LP64 ABI. 8290 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8291 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8292 return false; 8293 8294 return true; 8295 } 8296 8297 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8298 if (Subtarget.is64Bit() && Type == MVT::i32) 8299 return true; 8300 8301 return IsSigned; 8302 } 8303 8304 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8305 SDValue C) const { 8306 // Check integral scalar types. 8307 if (VT.isScalarInteger()) { 8308 // Omit the optimization if the sub target has the M extension and the data 8309 // size exceeds XLen. 8310 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8311 return false; 8312 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8313 // Break the MUL to a SLLI and an ADD/SUB. 8314 const APInt &Imm = ConstNode->getAPIntValue(); 8315 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8316 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8317 return true; 8318 // Omit the following optimization if the sub target has the M extension 8319 // and the data size >= XLen. 8320 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8321 return false; 8322 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8323 // a pair of LUI/ADDI. 8324 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8325 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8326 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8327 (1 - ImmS).isPowerOf2()) 8328 return true; 8329 } 8330 } 8331 } 8332 8333 return false; 8334 } 8335 8336 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8337 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8338 bool *Fast) const { 8339 if (!VT.isScalableVector()) 8340 return false; 8341 8342 EVT ElemVT = VT.getVectorElementType(); 8343 if (Alignment >= ElemVT.getStoreSize()) { 8344 if (Fast) 8345 *Fast = true; 8346 return true; 8347 } 8348 8349 return false; 8350 } 8351 8352 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8353 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8354 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8355 bool IsABIRegCopy = CC.hasValue(); 8356 EVT ValueVT = Val.getValueType(); 8357 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8358 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8359 // and cast to f32. 8360 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8361 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8362 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8363 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8364 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8365 Parts[0] = Val; 8366 return true; 8367 } 8368 8369 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8370 LLVMContext &Context = *DAG.getContext(); 8371 EVT ValueEltVT = ValueVT.getVectorElementType(); 8372 EVT PartEltVT = PartVT.getVectorElementType(); 8373 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8374 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8375 if (PartVTBitSize % ValueVTBitSize == 0) { 8376 // If the element types are different, bitcast to the same element type of 8377 // PartVT first. 8378 if (ValueEltVT != PartEltVT) { 8379 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8380 assert(Count != 0 && "The number of element should not be zero."); 8381 EVT SameEltTypeVT = 8382 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8383 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8384 } 8385 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8386 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8387 Parts[0] = Val; 8388 return true; 8389 } 8390 } 8391 return false; 8392 } 8393 8394 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8395 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8396 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8397 bool IsABIRegCopy = CC.hasValue(); 8398 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8399 SDValue Val = Parts[0]; 8400 8401 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8402 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8403 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8404 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8405 return Val; 8406 } 8407 8408 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8409 LLVMContext &Context = *DAG.getContext(); 8410 SDValue Val = Parts[0]; 8411 EVT ValueEltVT = ValueVT.getVectorElementType(); 8412 EVT PartEltVT = PartVT.getVectorElementType(); 8413 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8414 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8415 if (PartVTBitSize % ValueVTBitSize == 0) { 8416 EVT SameEltTypeVT = ValueVT; 8417 // If the element types are different, convert it to the same element type 8418 // of PartVT. 8419 if (ValueEltVT != PartEltVT) { 8420 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8421 assert(Count != 0 && "The number of element should not be zero."); 8422 SameEltTypeVT = 8423 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8424 } 8425 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8426 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8427 if (ValueEltVT != PartEltVT) 8428 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8429 return Val; 8430 } 8431 } 8432 return SDValue(); 8433 } 8434 8435 #define GET_REGISTER_MATCHER 8436 #include "RISCVGenAsmMatcher.inc" 8437 8438 Register 8439 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8440 const MachineFunction &MF) const { 8441 Register Reg = MatchRegisterAltName(RegName); 8442 if (Reg == RISCV::NoRegister) 8443 Reg = MatchRegisterName(RegName); 8444 if (Reg == RISCV::NoRegister) 8445 report_fatal_error( 8446 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8447 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8448 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8449 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8450 StringRef(RegName) + "\".")); 8451 return Reg; 8452 } 8453 8454 namespace llvm { 8455 namespace RISCVVIntrinsicsTable { 8456 8457 #define GET_RISCVVIntrinsicsTable_IMPL 8458 #include "RISCVGenSearchableTables.inc" 8459 8460 } // namespace RISCVVIntrinsicsTable 8461 8462 } // namespace llvm 8463