1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306   }
307 
308   if (Subtarget.hasStdExtZbt()) {
309     setOperationAction(ISD::FSHL, XLenVT, Custom);
310     setOperationAction(ISD::FSHR, XLenVT, Custom);
311     setOperationAction(ISD::SELECT, XLenVT, Legal);
312 
313     if (Subtarget.is64Bit()) {
314       setOperationAction(ISD::FSHL, MVT::i32, Custom);
315       setOperationAction(ISD::FSHR, MVT::i32, Custom);
316     }
317   } else {
318     setOperationAction(ISD::SELECT, XLenVT, Custom);
319   }
320 
321   static const ISD::CondCode FPCCToExpand[] = {
322       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
323       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
324       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
325 
326   static const ISD::NodeType FPOpToExpand[] = {
327       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
328       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
329 
330   if (Subtarget.hasStdExtZfh())
331     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
332 
333   if (Subtarget.hasStdExtZfh()) {
334     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
335     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
336     setOperationAction(ISD::LRINT, MVT::f16, Legal);
337     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
338     setOperationAction(ISD::LROUND, MVT::f16, Legal);
339     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
340     setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal);
341     setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal);
342     setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal);
343     setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal);
344     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
345     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
346     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
349     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
350     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
351     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
352     setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal);
353     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal);
354     for (auto CC : FPCCToExpand)
355       setCondCodeAction(CC, MVT::f16, Expand);
356     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
357     setOperationAction(ISD::SELECT, MVT::f16, Custom);
358     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
359 
360     setOperationAction(ISD::FREM,       MVT::f16, Promote);
361     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
362     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
363     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
364     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
365     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
366     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
367     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
368     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
369     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
370     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
371     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
372     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
373     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
374     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
375     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
376     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
377     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
378 
379     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
380     // complete support for all operations in LegalizeDAG.
381 
382     // We need to custom promote this.
383     if (Subtarget.is64Bit())
384       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
385   }
386 
387   if (Subtarget.hasStdExtF()) {
388     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
389     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
390     setOperationAction(ISD::LRINT, MVT::f32, Legal);
391     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
392     setOperationAction(ISD::LROUND, MVT::f32, Legal);
393     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
394     setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal);
395     setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal);
396     setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal);
397     setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal);
398     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
399     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
400     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
401     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
402     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
404     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
405     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
406     for (auto CC : FPCCToExpand)
407       setCondCodeAction(CC, MVT::f32, Expand);
408     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
409     setOperationAction(ISD::SELECT, MVT::f32, Custom);
410     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f32, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
418     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
419 
420   if (Subtarget.hasStdExtD()) {
421     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
422     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
423     setOperationAction(ISD::LRINT, MVT::f64, Legal);
424     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
425     setOperationAction(ISD::LROUND, MVT::f64, Legal);
426     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
427     setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal);
428     setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal);
429     setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal);
430     setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal);
431     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
432     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
433     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
434     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
435     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
436     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
437     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
438     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
439     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
440     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
441     for (auto CC : FPCCToExpand)
442       setCondCodeAction(CC, MVT::f64, Expand);
443     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
444     setOperationAction(ISD::SELECT, MVT::f64, Custom);
445     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
446     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
447     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
448     for (auto Op : FPOpToExpand)
449       setOperationAction(Op, MVT::f64, Expand);
450     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
451     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
452   }
453 
454   if (Subtarget.is64Bit()) {
455     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
456     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
457     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
459   }
460 
461   if (Subtarget.hasStdExtF()) {
462     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
463     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
464 
465     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
466     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
467     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
468     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
469 
470     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
471     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
472   }
473 
474   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
475   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
476   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
477   setOperationAction(ISD::JumpTable, XLenVT, Custom);
478 
479   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
480 
481   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
482   // Unfortunately this can't be determined just from the ISA naming string.
483   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
484                      Subtarget.is64Bit() ? Legal : Custom);
485 
486   setOperationAction(ISD::TRAP, MVT::Other, Legal);
487   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
488   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
489   if (Subtarget.is64Bit())
490     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
491 
492   if (Subtarget.hasStdExtA()) {
493     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
494     setMinCmpXchgSizeInBits(32);
495   } else {
496     setMaxAtomicSizeInBitsSupported(0);
497   }
498 
499   setBooleanContents(ZeroOrOneBooleanContent);
500 
501   if (Subtarget.hasVInstructions()) {
502     setBooleanVectorContents(ZeroOrOneBooleanContent);
503 
504     setOperationAction(ISD::VSCALE, XLenVT, Custom);
505 
506     // RVV intrinsics may have illegal operands.
507     // We also need to custom legalize vmv.x.s.
508     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
509     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
510     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
511     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
512     if (Subtarget.is64Bit()) {
513       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
514     } else {
515       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
516       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
517     }
518 
519     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
520     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
521 
522     static const unsigned IntegerVPOps[] = {
523         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
524         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
525         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
526         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
527         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
528         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
529         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
530         ISD::VP_MERGE,       ISD::VP_SELECT};
531 
532     static const unsigned FloatingPointVPOps[] = {
533         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
534         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
535         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
536         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
537 
538     if (!Subtarget.is64Bit()) {
539       // We must custom-lower certain vXi64 operations on RV32 due to the vector
540       // element type being illegal.
541       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
542       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
543 
544       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
545       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
546       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
547       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
548       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
549       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
550       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
551       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
552 
553       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
554       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
555       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
556       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
557       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
558       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
559       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
560       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
561     }
562 
563     for (MVT VT : BoolVecVTs) {
564       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
565 
566       // Mask VTs are custom-expanded into a series of standard nodes
567       setOperationAction(ISD::TRUNCATE, VT, Custom);
568       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
569       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
570       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
571 
572       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
573       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
574 
575       setOperationAction(ISD::SELECT, VT, Custom);
576       setOperationAction(ISD::SELECT_CC, VT, Expand);
577       setOperationAction(ISD::VSELECT, VT, Expand);
578       setOperationAction(ISD::VP_MERGE, VT, Expand);
579       setOperationAction(ISD::VP_SELECT, VT, Expand);
580 
581       setOperationAction(ISD::VP_AND, VT, Custom);
582       setOperationAction(ISD::VP_OR, VT, Custom);
583       setOperationAction(ISD::VP_XOR, VT, Custom);
584 
585       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
586       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
587       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
588 
589       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
590       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
591       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
592 
593       // RVV has native int->float & float->int conversions where the
594       // element type sizes are within one power-of-two of each other. Any
595       // wider distances between type sizes have to be lowered as sequences
596       // which progressively narrow the gap in stages.
597       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
598       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
599       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
600       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
601 
602       // Expand all extending loads to types larger than this, and truncating
603       // stores from types larger than this.
604       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
605         setTruncStoreAction(OtherVT, VT, Expand);
606         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
607         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
608         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
609       }
610     }
611 
612     for (MVT VT : IntVecVTs) {
613       if (VT.getVectorElementType() == MVT::i64 &&
614           !Subtarget.hasVInstructionsI64())
615         continue;
616 
617       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
618       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
619 
620       // Vectors implement MULHS/MULHU.
621       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
623 
624       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
625       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
626         setOperationAction(ISD::MULHU, VT, Expand);
627         setOperationAction(ISD::MULHS, VT, Expand);
628       }
629 
630       setOperationAction(ISD::SMIN, VT, Legal);
631       setOperationAction(ISD::SMAX, VT, Legal);
632       setOperationAction(ISD::UMIN, VT, Legal);
633       setOperationAction(ISD::UMAX, VT, Legal);
634 
635       setOperationAction(ISD::ROTL, VT, Expand);
636       setOperationAction(ISD::ROTR, VT, Expand);
637 
638       setOperationAction(ISD::CTTZ, VT, Expand);
639       setOperationAction(ISD::CTLZ, VT, Expand);
640       setOperationAction(ISD::CTPOP, VT, Expand);
641 
642       setOperationAction(ISD::BSWAP, VT, Expand);
643 
644       // Custom-lower extensions and truncations from/to mask types.
645       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
646       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
647       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
648 
649       // RVV has native int->float & float->int conversions where the
650       // element type sizes are within one power-of-two of each other. Any
651       // wider distances between type sizes have to be lowered as sequences
652       // which progressively narrow the gap in stages.
653       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
654       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
655       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
656       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
657 
658       setOperationAction(ISD::SADDSAT, VT, Legal);
659       setOperationAction(ISD::UADDSAT, VT, Legal);
660       setOperationAction(ISD::SSUBSAT, VT, Legal);
661       setOperationAction(ISD::USUBSAT, VT, Legal);
662 
663       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
664       // nodes which truncate by one power of two at a time.
665       setOperationAction(ISD::TRUNCATE, VT, Custom);
666 
667       // Custom-lower insert/extract operations to simplify patterns.
668       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
669       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
670 
671       // Custom-lower reduction operations to set up the corresponding custom
672       // nodes' operands.
673       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
674       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
675       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
676       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
677       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
678       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
679       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
680       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
681 
682       for (unsigned VPOpc : IntegerVPOps)
683         setOperationAction(VPOpc, VT, Custom);
684 
685       setOperationAction(ISD::LOAD, VT, Custom);
686       setOperationAction(ISD::STORE, VT, Custom);
687 
688       setOperationAction(ISD::MLOAD, VT, Custom);
689       setOperationAction(ISD::MSTORE, VT, Custom);
690       setOperationAction(ISD::MGATHER, VT, Custom);
691       setOperationAction(ISD::MSCATTER, VT, Custom);
692 
693       setOperationAction(ISD::VP_LOAD, VT, Custom);
694       setOperationAction(ISD::VP_STORE, VT, Custom);
695       setOperationAction(ISD::VP_GATHER, VT, Custom);
696       setOperationAction(ISD::VP_SCATTER, VT, Custom);
697 
698       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
699       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
700       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
701 
702       setOperationAction(ISD::SELECT, VT, Custom);
703       setOperationAction(ISD::SELECT_CC, VT, Expand);
704 
705       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
706       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
707 
708       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
709         setTruncStoreAction(VT, OtherVT, Expand);
710         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
711         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
712         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
713       }
714 
715       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
716       // type that can represent the value exactly.
717       if (VT.getVectorElementType() != MVT::i64) {
718         MVT FloatEltVT =
719             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
720         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
721         if (isTypeLegal(FloatVT)) {
722           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
723           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
724         }
725       }
726     }
727 
728     // Expand various CCs to best match the RVV ISA, which natively supports UNE
729     // but no other unordered comparisons, and supports all ordered comparisons
730     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
731     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
732     // and we pattern-match those back to the "original", swapping operands once
733     // more. This way we catch both operations and both "vf" and "fv" forms with
734     // fewer patterns.
735     static const ISD::CondCode VFPCCToExpand[] = {
736         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
737         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
738         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
739     };
740 
741     // Sets common operation actions on RVV floating-point vector types.
742     const auto SetCommonVFPActions = [&](MVT VT) {
743       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
744       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
745       // sizes are within one power-of-two of each other. Therefore conversions
746       // between vXf16 and vXf64 must be lowered as sequences which convert via
747       // vXf32.
748       setOperationAction(ISD::FP_ROUND, VT, Custom);
749       setOperationAction(ISD::FP_EXTEND, VT, Custom);
750       // Custom-lower insert/extract operations to simplify patterns.
751       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
752       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
753       // Expand various condition codes (explained above).
754       for (auto CC : VFPCCToExpand)
755         setCondCodeAction(CC, VT, Expand);
756 
757       setOperationAction(ISD::FMINNUM, VT, Legal);
758       setOperationAction(ISD::FMAXNUM, VT, Legal);
759 
760       setOperationAction(ISD::FTRUNC, VT, Custom);
761       setOperationAction(ISD::FCEIL, VT, Custom);
762       setOperationAction(ISD::FFLOOR, VT, Custom);
763       setOperationAction(ISD::FROUND, VT, Custom);
764 
765       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
766       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
767       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
768       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
769 
770       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
771 
772       setOperationAction(ISD::LOAD, VT, Custom);
773       setOperationAction(ISD::STORE, VT, Custom);
774 
775       setOperationAction(ISD::MLOAD, VT, Custom);
776       setOperationAction(ISD::MSTORE, VT, Custom);
777       setOperationAction(ISD::MGATHER, VT, Custom);
778       setOperationAction(ISD::MSCATTER, VT, Custom);
779 
780       setOperationAction(ISD::VP_LOAD, VT, Custom);
781       setOperationAction(ISD::VP_STORE, VT, Custom);
782       setOperationAction(ISD::VP_GATHER, VT, Custom);
783       setOperationAction(ISD::VP_SCATTER, VT, Custom);
784 
785       setOperationAction(ISD::SELECT, VT, Custom);
786       setOperationAction(ISD::SELECT_CC, VT, Expand);
787 
788       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
789       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
790       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
791 
792       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
793 
794       for (unsigned VPOpc : FloatingPointVPOps)
795         setOperationAction(VPOpc, VT, Custom);
796     };
797 
798     // Sets common extload/truncstore actions on RVV floating-point vector
799     // types.
800     const auto SetCommonVFPExtLoadTruncStoreActions =
801         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
802           for (auto SmallVT : SmallerVTs) {
803             setTruncStoreAction(VT, SmallVT, Expand);
804             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
805           }
806         };
807 
808     if (Subtarget.hasVInstructionsF16())
809       for (MVT VT : F16VecVTs)
810         SetCommonVFPActions(VT);
811 
812     for (MVT VT : F32VecVTs) {
813       if (Subtarget.hasVInstructionsF32())
814         SetCommonVFPActions(VT);
815       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
816     }
817 
818     for (MVT VT : F64VecVTs) {
819       if (Subtarget.hasVInstructionsF64())
820         SetCommonVFPActions(VT);
821       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
822       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
823     }
824 
825     if (Subtarget.useRVVForFixedLengthVectors()) {
826       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
827         if (!useRVVForFixedLengthVectorVT(VT))
828           continue;
829 
830         // By default everything must be expanded.
831         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
832           setOperationAction(Op, VT, Expand);
833         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
834           setTruncStoreAction(VT, OtherVT, Expand);
835           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
836           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
837           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
838         }
839 
840         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
841         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
842         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
843 
844         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
845         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
846 
847         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
848         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
849 
850         setOperationAction(ISD::LOAD, VT, Custom);
851         setOperationAction(ISD::STORE, VT, Custom);
852 
853         setOperationAction(ISD::SETCC, VT, Custom);
854 
855         setOperationAction(ISD::SELECT, VT, Custom);
856 
857         setOperationAction(ISD::TRUNCATE, VT, Custom);
858 
859         setOperationAction(ISD::BITCAST, VT, Custom);
860 
861         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
862         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
863         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
864 
865         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
866         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
867         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
868 
869         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
870         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
871         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
872         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
873 
874         // Operations below are different for between masks and other vectors.
875         if (VT.getVectorElementType() == MVT::i1) {
876           setOperationAction(ISD::VP_AND, VT, Custom);
877           setOperationAction(ISD::VP_OR, VT, Custom);
878           setOperationAction(ISD::VP_XOR, VT, Custom);
879           setOperationAction(ISD::AND, VT, Custom);
880           setOperationAction(ISD::OR, VT, Custom);
881           setOperationAction(ISD::XOR, VT, Custom);
882           continue;
883         }
884 
885         // Use SPLAT_VECTOR to prevent type legalization from destroying the
886         // splats when type legalizing i64 scalar on RV32.
887         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
888         // improvements first.
889         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
890           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
891           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
892         }
893 
894         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
895         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
896 
897         setOperationAction(ISD::MLOAD, VT, Custom);
898         setOperationAction(ISD::MSTORE, VT, Custom);
899         setOperationAction(ISD::MGATHER, VT, Custom);
900         setOperationAction(ISD::MSCATTER, VT, Custom);
901 
902         setOperationAction(ISD::VP_LOAD, VT, Custom);
903         setOperationAction(ISD::VP_STORE, VT, Custom);
904         setOperationAction(ISD::VP_GATHER, VT, Custom);
905         setOperationAction(ISD::VP_SCATTER, VT, Custom);
906 
907         setOperationAction(ISD::ADD, VT, Custom);
908         setOperationAction(ISD::MUL, VT, Custom);
909         setOperationAction(ISD::SUB, VT, Custom);
910         setOperationAction(ISD::AND, VT, Custom);
911         setOperationAction(ISD::OR, VT, Custom);
912         setOperationAction(ISD::XOR, VT, Custom);
913         setOperationAction(ISD::SDIV, VT, Custom);
914         setOperationAction(ISD::SREM, VT, Custom);
915         setOperationAction(ISD::UDIV, VT, Custom);
916         setOperationAction(ISD::UREM, VT, Custom);
917         setOperationAction(ISD::SHL, VT, Custom);
918         setOperationAction(ISD::SRA, VT, Custom);
919         setOperationAction(ISD::SRL, VT, Custom);
920 
921         setOperationAction(ISD::SMIN, VT, Custom);
922         setOperationAction(ISD::SMAX, VT, Custom);
923         setOperationAction(ISD::UMIN, VT, Custom);
924         setOperationAction(ISD::UMAX, VT, Custom);
925         setOperationAction(ISD::ABS,  VT, Custom);
926 
927         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
928         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
929           setOperationAction(ISD::MULHS, VT, Custom);
930           setOperationAction(ISD::MULHU, VT, Custom);
931         }
932 
933         setOperationAction(ISD::SADDSAT, VT, Custom);
934         setOperationAction(ISD::UADDSAT, VT, Custom);
935         setOperationAction(ISD::SSUBSAT, VT, Custom);
936         setOperationAction(ISD::USUBSAT, VT, Custom);
937 
938         setOperationAction(ISD::VSELECT, VT, Custom);
939         setOperationAction(ISD::SELECT_CC, VT, Expand);
940 
941         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
942         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
943         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
944 
945         // Custom-lower reduction operations to set up the corresponding custom
946         // nodes' operands.
947         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
948         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
949         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
950         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
951         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
952 
953         for (unsigned VPOpc : IntegerVPOps)
954           setOperationAction(VPOpc, VT, Custom);
955 
956         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
957         // type that can represent the value exactly.
958         if (VT.getVectorElementType() != MVT::i64) {
959           MVT FloatEltVT =
960               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
961           EVT FloatVT =
962               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
963           if (isTypeLegal(FloatVT)) {
964             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
965             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
966           }
967         }
968       }
969 
970       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
971         if (!useRVVForFixedLengthVectorVT(VT))
972           continue;
973 
974         // By default everything must be expanded.
975         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
976           setOperationAction(Op, VT, Expand);
977         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
978           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
979           setTruncStoreAction(VT, OtherVT, Expand);
980         }
981 
982         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
983         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
984         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
985 
986         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
987         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
988         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
989         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
990         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
991 
992         setOperationAction(ISD::LOAD, VT, Custom);
993         setOperationAction(ISD::STORE, VT, Custom);
994         setOperationAction(ISD::MLOAD, VT, Custom);
995         setOperationAction(ISD::MSTORE, VT, Custom);
996         setOperationAction(ISD::MGATHER, VT, Custom);
997         setOperationAction(ISD::MSCATTER, VT, Custom);
998 
999         setOperationAction(ISD::VP_LOAD, VT, Custom);
1000         setOperationAction(ISD::VP_STORE, VT, Custom);
1001         setOperationAction(ISD::VP_GATHER, VT, Custom);
1002         setOperationAction(ISD::VP_SCATTER, VT, Custom);
1003 
1004         setOperationAction(ISD::FADD, VT, Custom);
1005         setOperationAction(ISD::FSUB, VT, Custom);
1006         setOperationAction(ISD::FMUL, VT, Custom);
1007         setOperationAction(ISD::FDIV, VT, Custom);
1008         setOperationAction(ISD::FNEG, VT, Custom);
1009         setOperationAction(ISD::FABS, VT, Custom);
1010         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
1011         setOperationAction(ISD::FSQRT, VT, Custom);
1012         setOperationAction(ISD::FMA, VT, Custom);
1013         setOperationAction(ISD::FMINNUM, VT, Custom);
1014         setOperationAction(ISD::FMAXNUM, VT, Custom);
1015 
1016         setOperationAction(ISD::FP_ROUND, VT, Custom);
1017         setOperationAction(ISD::FP_EXTEND, VT, Custom);
1018 
1019         setOperationAction(ISD::FTRUNC, VT, Custom);
1020         setOperationAction(ISD::FCEIL, VT, Custom);
1021         setOperationAction(ISD::FFLOOR, VT, Custom);
1022         setOperationAction(ISD::FROUND, VT, Custom);
1023 
1024         for (auto CC : VFPCCToExpand)
1025           setCondCodeAction(CC, VT, Expand);
1026 
1027         setOperationAction(ISD::VSELECT, VT, Custom);
1028         setOperationAction(ISD::SELECT, VT, Custom);
1029         setOperationAction(ISD::SELECT_CC, VT, Expand);
1030 
1031         setOperationAction(ISD::BITCAST, VT, Custom);
1032 
1033         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1034         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1035         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1036         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1037 
1038         for (unsigned VPOpc : FloatingPointVPOps)
1039           setOperationAction(VPOpc, VT, Custom);
1040       }
1041 
1042       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1043       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1044       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1045       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1046       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1047       if (Subtarget.hasStdExtZfh())
1048         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1049       if (Subtarget.hasStdExtF())
1050         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1051       if (Subtarget.hasStdExtD())
1052         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1053     }
1054   }
1055 
1056   // Function alignments.
1057   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1058   setMinFunctionAlignment(FunctionAlignment);
1059   setPrefFunctionAlignment(FunctionAlignment);
1060 
1061   setMinimumJumpTableEntries(5);
1062 
1063   // Jumps are expensive, compared to logic
1064   setJumpIsExpensive();
1065 
1066   setTargetDAGCombine(ISD::ADD);
1067   setTargetDAGCombine(ISD::SUB);
1068   setTargetDAGCombine(ISD::AND);
1069   setTargetDAGCombine(ISD::OR);
1070   setTargetDAGCombine(ISD::XOR);
1071   setTargetDAGCombine(ISD::ROTL);
1072   setTargetDAGCombine(ISD::ROTR);
1073   setTargetDAGCombine(ISD::ANY_EXTEND);
1074   if (Subtarget.hasStdExtF()) {
1075     setTargetDAGCombine(ISD::ZERO_EXTEND);
1076     setTargetDAGCombine(ISD::FP_TO_SINT);
1077     setTargetDAGCombine(ISD::FP_TO_UINT);
1078     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1079     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1080   }
1081   if (Subtarget.hasVInstructions()) {
1082     setTargetDAGCombine(ISD::FCOPYSIGN);
1083     setTargetDAGCombine(ISD::MGATHER);
1084     setTargetDAGCombine(ISD::MSCATTER);
1085     setTargetDAGCombine(ISD::VP_GATHER);
1086     setTargetDAGCombine(ISD::VP_SCATTER);
1087     setTargetDAGCombine(ISD::SRA);
1088     setTargetDAGCombine(ISD::SRL);
1089     setTargetDAGCombine(ISD::SHL);
1090     setTargetDAGCombine(ISD::STORE);
1091     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1092   }
1093 
1094   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1095   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1096 }
1097 
1098 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1099                                             LLVMContext &Context,
1100                                             EVT VT) const {
1101   if (!VT.isVector())
1102     return getPointerTy(DL);
1103   if (Subtarget.hasVInstructions() &&
1104       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1105     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1106   return VT.changeVectorElementTypeToInteger();
1107 }
1108 
1109 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1110   return Subtarget.getXLenVT();
1111 }
1112 
1113 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1114                                              const CallInst &I,
1115                                              MachineFunction &MF,
1116                                              unsigned Intrinsic) const {
1117   auto &DL = I.getModule()->getDataLayout();
1118   switch (Intrinsic) {
1119   default:
1120     return false;
1121   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1122   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1123   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1124   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1125   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1126   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1127   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1128   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1129   case Intrinsic::riscv_masked_cmpxchg_i32:
1130     Info.opc = ISD::INTRINSIC_W_CHAIN;
1131     Info.memVT = MVT::i32;
1132     Info.ptrVal = I.getArgOperand(0);
1133     Info.offset = 0;
1134     Info.align = Align(4);
1135     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1136                  MachineMemOperand::MOVolatile;
1137     return true;
1138   case Intrinsic::riscv_masked_strided_load:
1139     Info.opc = ISD::INTRINSIC_W_CHAIN;
1140     Info.ptrVal = I.getArgOperand(1);
1141     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1142     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1143     Info.size = MemoryLocation::UnknownSize;
1144     Info.flags |= MachineMemOperand::MOLoad;
1145     return true;
1146   case Intrinsic::riscv_masked_strided_store:
1147     Info.opc = ISD::INTRINSIC_VOID;
1148     Info.ptrVal = I.getArgOperand(1);
1149     Info.memVT =
1150         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1151     Info.align = Align(
1152         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1153         8);
1154     Info.size = MemoryLocation::UnknownSize;
1155     Info.flags |= MachineMemOperand::MOStore;
1156     return true;
1157   }
1158 }
1159 
1160 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1161                                                 const AddrMode &AM, Type *Ty,
1162                                                 unsigned AS,
1163                                                 Instruction *I) const {
1164   // No global is ever allowed as a base.
1165   if (AM.BaseGV)
1166     return false;
1167 
1168   // Require a 12-bit signed offset.
1169   if (!isInt<12>(AM.BaseOffs))
1170     return false;
1171 
1172   switch (AM.Scale) {
1173   case 0: // "r+i" or just "i", depending on HasBaseReg.
1174     break;
1175   case 1:
1176     if (!AM.HasBaseReg) // allow "r+i".
1177       break;
1178     return false; // disallow "r+r" or "r+r+i".
1179   default:
1180     return false;
1181   }
1182 
1183   return true;
1184 }
1185 
1186 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1187   return isInt<12>(Imm);
1188 }
1189 
1190 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1191   return isInt<12>(Imm);
1192 }
1193 
1194 // On RV32, 64-bit integers are split into their high and low parts and held
1195 // in two different registers, so the trunc is free since the low register can
1196 // just be used.
1197 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1198   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1199     return false;
1200   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1201   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1202   return (SrcBits == 64 && DestBits == 32);
1203 }
1204 
1205 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1206   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1207       !SrcVT.isInteger() || !DstVT.isInteger())
1208     return false;
1209   unsigned SrcBits = SrcVT.getSizeInBits();
1210   unsigned DestBits = DstVT.getSizeInBits();
1211   return (SrcBits == 64 && DestBits == 32);
1212 }
1213 
1214 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1215   // Zexts are free if they can be combined with a load.
1216   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1217   // poorly with type legalization of compares preferring sext.
1218   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1219     EVT MemVT = LD->getMemoryVT();
1220     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1221         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1222          LD->getExtensionType() == ISD::ZEXTLOAD))
1223       return true;
1224   }
1225 
1226   return TargetLowering::isZExtFree(Val, VT2);
1227 }
1228 
1229 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1230   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1231 }
1232 
1233 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1234   return Subtarget.hasStdExtZbb();
1235 }
1236 
1237 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1238   return Subtarget.hasStdExtZbb();
1239 }
1240 
1241 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1242   EVT VT = Y.getValueType();
1243 
1244   // FIXME: Support vectors once we have tests.
1245   if (VT.isVector())
1246     return false;
1247 
1248   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1249           Subtarget.hasStdExtZbkb()) &&
1250          !isa<ConstantSDNode>(Y);
1251 }
1252 
1253 /// Check if sinking \p I's operands to I's basic block is profitable, because
1254 /// the operands can be folded into a target instruction, e.g.
1255 /// splats of scalars can fold into vector instructions.
1256 bool RISCVTargetLowering::shouldSinkOperands(
1257     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1258   using namespace llvm::PatternMatch;
1259 
1260   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1261     return false;
1262 
1263   auto IsSinker = [&](Instruction *I, int Operand) {
1264     switch (I->getOpcode()) {
1265     case Instruction::Add:
1266     case Instruction::Sub:
1267     case Instruction::Mul:
1268     case Instruction::And:
1269     case Instruction::Or:
1270     case Instruction::Xor:
1271     case Instruction::FAdd:
1272     case Instruction::FSub:
1273     case Instruction::FMul:
1274     case Instruction::FDiv:
1275     case Instruction::ICmp:
1276     case Instruction::FCmp:
1277       return true;
1278     case Instruction::Shl:
1279     case Instruction::LShr:
1280     case Instruction::AShr:
1281     case Instruction::UDiv:
1282     case Instruction::SDiv:
1283     case Instruction::URem:
1284     case Instruction::SRem:
1285       return Operand == 1;
1286     case Instruction::Call:
1287       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1288         switch (II->getIntrinsicID()) {
1289         case Intrinsic::fma:
1290           return Operand == 0 || Operand == 1;
1291         // FIXME: Our patterns can only match vx/vf instructions when the splat
1292         // it on the RHS, because TableGen doesn't recognize our VP operations
1293         // as commutative.
1294         case Intrinsic::vp_add:
1295         case Intrinsic::vp_mul:
1296         case Intrinsic::vp_and:
1297         case Intrinsic::vp_or:
1298         case Intrinsic::vp_xor:
1299         case Intrinsic::vp_fadd:
1300         case Intrinsic::vp_fmul:
1301         case Intrinsic::vp_shl:
1302         case Intrinsic::vp_lshr:
1303         case Intrinsic::vp_ashr:
1304         case Intrinsic::vp_udiv:
1305         case Intrinsic::vp_sdiv:
1306         case Intrinsic::vp_urem:
1307         case Intrinsic::vp_srem:
1308           return Operand == 1;
1309         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1310         // explicit patterns for both LHS and RHS (as 'vr' versions).
1311         case Intrinsic::vp_sub:
1312         case Intrinsic::vp_fsub:
1313         case Intrinsic::vp_fdiv:
1314           return Operand == 0 || Operand == 1;
1315         default:
1316           return false;
1317         }
1318       }
1319       return false;
1320     default:
1321       return false;
1322     }
1323   };
1324 
1325   for (auto OpIdx : enumerate(I->operands())) {
1326     if (!IsSinker(I, OpIdx.index()))
1327       continue;
1328 
1329     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1330     // Make sure we are not already sinking this operand
1331     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1332       continue;
1333 
1334     // We are looking for a splat that can be sunk.
1335     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1336                              m_Undef(), m_ZeroMask())))
1337       continue;
1338 
1339     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1340     // and vector registers
1341     for (Use &U : Op->uses()) {
1342       Instruction *Insn = cast<Instruction>(U.getUser());
1343       if (!IsSinker(Insn, U.getOperandNo()))
1344         return false;
1345     }
1346 
1347     Ops.push_back(&Op->getOperandUse(0));
1348     Ops.push_back(&OpIdx.value());
1349   }
1350   return true;
1351 }
1352 
1353 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1354                                        bool ForCodeSize) const {
1355   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1356   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1357     return false;
1358   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1359     return false;
1360   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1361     return false;
1362   return Imm.isZero();
1363 }
1364 
1365 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1366   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1367          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1368          (VT == MVT::f64 && Subtarget.hasStdExtD());
1369 }
1370 
1371 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1372                                                       CallingConv::ID CC,
1373                                                       EVT VT) const {
1374   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1375   // We might still end up using a GPR but that will be decided based on ABI.
1376   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1377   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1378     return MVT::f32;
1379 
1380   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1381 }
1382 
1383 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1384                                                            CallingConv::ID CC,
1385                                                            EVT VT) const {
1386   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1387   // We might still end up using a GPR but that will be decided based on ABI.
1388   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1389   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1390     return 1;
1391 
1392   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1393 }
1394 
1395 // Changes the condition code and swaps operands if necessary, so the SetCC
1396 // operation matches one of the comparisons supported directly by branches
1397 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1398 // with 1/-1.
1399 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1400                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1401   // Convert X > -1 to X >= 0.
1402   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1403     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1404     CC = ISD::SETGE;
1405     return;
1406   }
1407   // Convert X < 1 to 0 >= X.
1408   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1409     RHS = LHS;
1410     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1411     CC = ISD::SETGE;
1412     return;
1413   }
1414 
1415   switch (CC) {
1416   default:
1417     break;
1418   case ISD::SETGT:
1419   case ISD::SETLE:
1420   case ISD::SETUGT:
1421   case ISD::SETULE:
1422     CC = ISD::getSetCCSwappedOperands(CC);
1423     std::swap(LHS, RHS);
1424     break;
1425   }
1426 }
1427 
1428 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1429   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1430   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1431   if (VT.getVectorElementType() == MVT::i1)
1432     KnownSize *= 8;
1433 
1434   switch (KnownSize) {
1435   default:
1436     llvm_unreachable("Invalid LMUL.");
1437   case 8:
1438     return RISCVII::VLMUL::LMUL_F8;
1439   case 16:
1440     return RISCVII::VLMUL::LMUL_F4;
1441   case 32:
1442     return RISCVII::VLMUL::LMUL_F2;
1443   case 64:
1444     return RISCVII::VLMUL::LMUL_1;
1445   case 128:
1446     return RISCVII::VLMUL::LMUL_2;
1447   case 256:
1448     return RISCVII::VLMUL::LMUL_4;
1449   case 512:
1450     return RISCVII::VLMUL::LMUL_8;
1451   }
1452 }
1453 
1454 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1455   switch (LMul) {
1456   default:
1457     llvm_unreachable("Invalid LMUL.");
1458   case RISCVII::VLMUL::LMUL_F8:
1459   case RISCVII::VLMUL::LMUL_F4:
1460   case RISCVII::VLMUL::LMUL_F2:
1461   case RISCVII::VLMUL::LMUL_1:
1462     return RISCV::VRRegClassID;
1463   case RISCVII::VLMUL::LMUL_2:
1464     return RISCV::VRM2RegClassID;
1465   case RISCVII::VLMUL::LMUL_4:
1466     return RISCV::VRM4RegClassID;
1467   case RISCVII::VLMUL::LMUL_8:
1468     return RISCV::VRM8RegClassID;
1469   }
1470 }
1471 
1472 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1473   RISCVII::VLMUL LMUL = getLMUL(VT);
1474   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1475       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1476       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1477       LMUL == RISCVII::VLMUL::LMUL_1) {
1478     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1479                   "Unexpected subreg numbering");
1480     return RISCV::sub_vrm1_0 + Index;
1481   }
1482   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1483     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1484                   "Unexpected subreg numbering");
1485     return RISCV::sub_vrm2_0 + Index;
1486   }
1487   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1488     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1489                   "Unexpected subreg numbering");
1490     return RISCV::sub_vrm4_0 + Index;
1491   }
1492   llvm_unreachable("Invalid vector type.");
1493 }
1494 
1495 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1496   if (VT.getVectorElementType() == MVT::i1)
1497     return RISCV::VRRegClassID;
1498   return getRegClassIDForLMUL(getLMUL(VT));
1499 }
1500 
1501 // Attempt to decompose a subvector insert/extract between VecVT and
1502 // SubVecVT via subregister indices. Returns the subregister index that
1503 // can perform the subvector insert/extract with the given element index, as
1504 // well as the index corresponding to any leftover subvectors that must be
1505 // further inserted/extracted within the register class for SubVecVT.
1506 std::pair<unsigned, unsigned>
1507 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1508     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1509     const RISCVRegisterInfo *TRI) {
1510   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1511                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1512                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1513                 "Register classes not ordered");
1514   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1515   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1516   // Try to compose a subregister index that takes us from the incoming
1517   // LMUL>1 register class down to the outgoing one. At each step we half
1518   // the LMUL:
1519   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1520   // Note that this is not guaranteed to find a subregister index, such as
1521   // when we are extracting from one VR type to another.
1522   unsigned SubRegIdx = RISCV::NoSubRegister;
1523   for (const unsigned RCID :
1524        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1525     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1526       VecVT = VecVT.getHalfNumVectorElementsVT();
1527       bool IsHi =
1528           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1529       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1530                                             getSubregIndexByMVT(VecVT, IsHi));
1531       if (IsHi)
1532         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1533     }
1534   return {SubRegIdx, InsertExtractIdx};
1535 }
1536 
1537 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1538 // stores for those types.
1539 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1540   return !Subtarget.useRVVForFixedLengthVectors() ||
1541          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1542 }
1543 
1544 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1545   if (ScalarTy->isPointerTy())
1546     return true;
1547 
1548   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1549       ScalarTy->isIntegerTy(32))
1550     return true;
1551 
1552   if (ScalarTy->isIntegerTy(64))
1553     return Subtarget.hasVInstructionsI64();
1554 
1555   if (ScalarTy->isHalfTy())
1556     return Subtarget.hasVInstructionsF16();
1557   if (ScalarTy->isFloatTy())
1558     return Subtarget.hasVInstructionsF32();
1559   if (ScalarTy->isDoubleTy())
1560     return Subtarget.hasVInstructionsF64();
1561 
1562   return false;
1563 }
1564 
1565 static SDValue getVLOperand(SDValue Op) {
1566   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1567           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1568          "Unexpected opcode");
1569   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1570   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1571   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1572       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1573   if (!II)
1574     return SDValue();
1575   return Op.getOperand(II->VLOperand + 1 + HasChain);
1576 }
1577 
1578 static bool useRVVForFixedLengthVectorVT(MVT VT,
1579                                          const RISCVSubtarget &Subtarget) {
1580   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1581   if (!Subtarget.useRVVForFixedLengthVectors())
1582     return false;
1583 
1584   // We only support a set of vector types with a consistent maximum fixed size
1585   // across all supported vector element types to avoid legalization issues.
1586   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1587   // fixed-length vector type we support is 1024 bytes.
1588   if (VT.getFixedSizeInBits() > 1024 * 8)
1589     return false;
1590 
1591   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1592 
1593   MVT EltVT = VT.getVectorElementType();
1594 
1595   // Don't use RVV for vectors we cannot scalarize if required.
1596   switch (EltVT.SimpleTy) {
1597   // i1 is supported but has different rules.
1598   default:
1599     return false;
1600   case MVT::i1:
1601     // Masks can only use a single register.
1602     if (VT.getVectorNumElements() > MinVLen)
1603       return false;
1604     MinVLen /= 8;
1605     break;
1606   case MVT::i8:
1607   case MVT::i16:
1608   case MVT::i32:
1609     break;
1610   case MVT::i64:
1611     if (!Subtarget.hasVInstructionsI64())
1612       return false;
1613     break;
1614   case MVT::f16:
1615     if (!Subtarget.hasVInstructionsF16())
1616       return false;
1617     break;
1618   case MVT::f32:
1619     if (!Subtarget.hasVInstructionsF32())
1620       return false;
1621     break;
1622   case MVT::f64:
1623     if (!Subtarget.hasVInstructionsF64())
1624       return false;
1625     break;
1626   }
1627 
1628   // Reject elements larger than ELEN.
1629   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1630     return false;
1631 
1632   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1633   // Don't use RVV for types that don't fit.
1634   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1635     return false;
1636 
1637   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1638   // the base fixed length RVV support in place.
1639   if (!VT.isPow2VectorType())
1640     return false;
1641 
1642   return true;
1643 }
1644 
1645 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1646   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1647 }
1648 
1649 // Return the largest legal scalable vector type that matches VT's element type.
1650 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1651                                             const RISCVSubtarget &Subtarget) {
1652   // This may be called before legal types are setup.
1653   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1654           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1655          "Expected legal fixed length vector!");
1656 
1657   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1658   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1659 
1660   MVT EltVT = VT.getVectorElementType();
1661   switch (EltVT.SimpleTy) {
1662   default:
1663     llvm_unreachable("unexpected element type for RVV container");
1664   case MVT::i1:
1665   case MVT::i8:
1666   case MVT::i16:
1667   case MVT::i32:
1668   case MVT::i64:
1669   case MVT::f16:
1670   case MVT::f32:
1671   case MVT::f64: {
1672     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1673     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1674     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1675     unsigned NumElts =
1676         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1677     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1678     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1679     return MVT::getScalableVectorVT(EltVT, NumElts);
1680   }
1681   }
1682 }
1683 
1684 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1685                                             const RISCVSubtarget &Subtarget) {
1686   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1687                                           Subtarget);
1688 }
1689 
1690 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1691   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1692 }
1693 
1694 // Grow V to consume an entire RVV register.
1695 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1696                                        const RISCVSubtarget &Subtarget) {
1697   assert(VT.isScalableVector() &&
1698          "Expected to convert into a scalable vector!");
1699   assert(V.getValueType().isFixedLengthVector() &&
1700          "Expected a fixed length vector operand!");
1701   SDLoc DL(V);
1702   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1703   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1704 }
1705 
1706 // Shrink V so it's just big enough to maintain a VT's worth of data.
1707 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1708                                          const RISCVSubtarget &Subtarget) {
1709   assert(VT.isFixedLengthVector() &&
1710          "Expected to convert into a fixed length vector!");
1711   assert(V.getValueType().isScalableVector() &&
1712          "Expected a scalable vector operand!");
1713   SDLoc DL(V);
1714   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1715   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1716 }
1717 
1718 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1719 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1720 // the vector type that it is contained in.
1721 static std::pair<SDValue, SDValue>
1722 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1723                 const RISCVSubtarget &Subtarget) {
1724   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1725   MVT XLenVT = Subtarget.getXLenVT();
1726   SDValue VL = VecVT.isFixedLengthVector()
1727                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1728                    : DAG.getRegister(RISCV::X0, XLenVT);
1729   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1730   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1731   return {Mask, VL};
1732 }
1733 
1734 // As above but assuming the given type is a scalable vector type.
1735 static std::pair<SDValue, SDValue>
1736 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1737                         const RISCVSubtarget &Subtarget) {
1738   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1739   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1740 }
1741 
1742 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1743 // of either is (currently) supported. This can get us into an infinite loop
1744 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1745 // as a ..., etc.
1746 // Until either (or both) of these can reliably lower any node, reporting that
1747 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1748 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1749 // which is not desirable.
1750 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1751     EVT VT, unsigned DefinedValues) const {
1752   return false;
1753 }
1754 
1755 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1756                                   const RISCVSubtarget &Subtarget) {
1757   // RISCV FP-to-int conversions saturate to the destination register size, but
1758   // don't produce 0 for nan. We can use a conversion instruction and fix the
1759   // nan case with a compare and a select.
1760   SDValue Src = Op.getOperand(0);
1761 
1762   EVT DstVT = Op.getValueType();
1763   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1764 
1765   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1766   unsigned Opc;
1767   if (SatVT == DstVT)
1768     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1769   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1770     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1771   else
1772     return SDValue();
1773   // FIXME: Support other SatVTs by clamping before or after the conversion.
1774 
1775   SDLoc DL(Op);
1776   SDValue FpToInt = DAG.getNode(
1777       Opc, DL, DstVT, Src,
1778       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1779 
1780   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1781   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1782 }
1783 
1784 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1785 // and back. Taking care to avoid converting values that are nan or already
1786 // correct.
1787 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1788 // have FRM dependencies modeled yet.
1789 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1790   MVT VT = Op.getSimpleValueType();
1791   assert(VT.isVector() && "Unexpected type");
1792 
1793   SDLoc DL(Op);
1794 
1795   // Freeze the source since we are increasing the number of uses.
1796   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1797 
1798   // Truncate to integer and convert back to FP.
1799   MVT IntVT = VT.changeVectorElementTypeToInteger();
1800   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1801   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1802 
1803   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1804 
1805   if (Op.getOpcode() == ISD::FCEIL) {
1806     // If the truncated value is the greater than or equal to the original
1807     // value, we've computed the ceil. Otherwise, we went the wrong way and
1808     // need to increase by 1.
1809     // FIXME: This should use a masked operation. Handle here or in isel?
1810     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1811                                  DAG.getConstantFP(1.0, DL, VT));
1812     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1813     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1814   } else if (Op.getOpcode() == ISD::FFLOOR) {
1815     // If the truncated value is the less than or equal to the original value,
1816     // we've computed the floor. Otherwise, we went the wrong way and need to
1817     // decrease by 1.
1818     // FIXME: This should use a masked operation. Handle here or in isel?
1819     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1820                                  DAG.getConstantFP(1.0, DL, VT));
1821     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1822     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1823   }
1824 
1825   // Restore the original sign so that -0.0 is preserved.
1826   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1827 
1828   // Determine the largest integer that can be represented exactly. This and
1829   // values larger than it don't have any fractional bits so don't need to
1830   // be converted.
1831   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1832   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1833   APFloat MaxVal = APFloat(FltSem);
1834   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1835                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1836   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1837 
1838   // If abs(Src) was larger than MaxVal or nan, keep it.
1839   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1840   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1841   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1842 }
1843 
1844 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1845 // This mode isn't supported in vector hardware on RISCV. But as long as we
1846 // aren't compiling with trapping math, we can emulate this with
1847 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1848 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1849 // dependencies modeled yet.
1850 // FIXME: Use masked operations to avoid final merge.
1851 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1852   MVT VT = Op.getSimpleValueType();
1853   assert(VT.isVector() && "Unexpected type");
1854 
1855   SDLoc DL(Op);
1856 
1857   // Freeze the source since we are increasing the number of uses.
1858   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1859 
1860   // We do the conversion on the absolute value and fix the sign at the end.
1861   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1862 
1863   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1864   bool Ignored;
1865   APFloat Point5Pred = APFloat(0.5f);
1866   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1867   Point5Pred.next(/*nextDown*/ true);
1868 
1869   // Add the adjustment.
1870   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1871                                DAG.getConstantFP(Point5Pred, DL, VT));
1872 
1873   // Truncate to integer and convert back to fp.
1874   MVT IntVT = VT.changeVectorElementTypeToInteger();
1875   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1876   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1877 
1878   // Restore the original sign.
1879   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1880 
1881   // Determine the largest integer that can be represented exactly. This and
1882   // values larger than it don't have any fractional bits so don't need to
1883   // be converted.
1884   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1885   APFloat MaxVal = APFloat(FltSem);
1886   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1887                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1888   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1889 
1890   // If abs(Src) was larger than MaxVal or nan, keep it.
1891   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1892   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1893   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1894 }
1895 
1896 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1897                                  const RISCVSubtarget &Subtarget) {
1898   MVT VT = Op.getSimpleValueType();
1899   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1900 
1901   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1902 
1903   SDLoc DL(Op);
1904   SDValue Mask, VL;
1905   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1906 
1907   unsigned Opc =
1908       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1909   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1910   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1911 }
1912 
1913 struct VIDSequence {
1914   int64_t StepNumerator;
1915   unsigned StepDenominator;
1916   int64_t Addend;
1917 };
1918 
1919 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1920 // to the (non-zero) step S and start value X. This can be then lowered as the
1921 // RVV sequence (VID * S) + X, for example.
1922 // The step S is represented as an integer numerator divided by a positive
1923 // denominator. Note that the implementation currently only identifies
1924 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1925 // cannot detect 2/3, for example.
1926 // Note that this method will also match potentially unappealing index
1927 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1928 // determine whether this is worth generating code for.
1929 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1930   unsigned NumElts = Op.getNumOperands();
1931   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1932   if (!Op.getValueType().isInteger())
1933     return None;
1934 
1935   Optional<unsigned> SeqStepDenom;
1936   Optional<int64_t> SeqStepNum, SeqAddend;
1937   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1938   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1939   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1940     // Assume undef elements match the sequence; we just have to be careful
1941     // when interpolating across them.
1942     if (Op.getOperand(Idx).isUndef())
1943       continue;
1944     // The BUILD_VECTOR must be all constants.
1945     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1946       return None;
1947 
1948     uint64_t Val = Op.getConstantOperandVal(Idx) &
1949                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1950 
1951     if (PrevElt) {
1952       // Calculate the step since the last non-undef element, and ensure
1953       // it's consistent across the entire sequence.
1954       unsigned IdxDiff = Idx - PrevElt->second;
1955       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1956 
1957       // A zero-value value difference means that we're somewhere in the middle
1958       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1959       // step change before evaluating the sequence.
1960       if (ValDiff != 0) {
1961         int64_t Remainder = ValDiff % IdxDiff;
1962         // Normalize the step if it's greater than 1.
1963         if (Remainder != ValDiff) {
1964           // The difference must cleanly divide the element span.
1965           if (Remainder != 0)
1966             return None;
1967           ValDiff /= IdxDiff;
1968           IdxDiff = 1;
1969         }
1970 
1971         if (!SeqStepNum)
1972           SeqStepNum = ValDiff;
1973         else if (ValDiff != SeqStepNum)
1974           return None;
1975 
1976         if (!SeqStepDenom)
1977           SeqStepDenom = IdxDiff;
1978         else if (IdxDiff != *SeqStepDenom)
1979           return None;
1980       }
1981     }
1982 
1983     // Record and/or check any addend.
1984     if (SeqStepNum && SeqStepDenom) {
1985       uint64_t ExpectedVal =
1986           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1987       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1988       if (!SeqAddend)
1989         SeqAddend = Addend;
1990       else if (SeqAddend != Addend)
1991         return None;
1992     }
1993 
1994     // Record this non-undef element for later.
1995     if (!PrevElt || PrevElt->first != Val)
1996       PrevElt = std::make_pair(Val, Idx);
1997   }
1998   // We need to have logged both a step and an addend for this to count as
1999   // a legal index sequence.
2000   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
2001     return None;
2002 
2003   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
2004 }
2005 
2006 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
2007 // and lower it as a VRGATHER_VX_VL from the source vector.
2008 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
2009                                   SelectionDAG &DAG,
2010                                   const RISCVSubtarget &Subtarget) {
2011   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2012     return SDValue();
2013   SDValue Vec = SplatVal.getOperand(0);
2014   // Only perform this optimization on vectors of the same size for simplicity.
2015   if (Vec.getValueType() != VT)
2016     return SDValue();
2017   SDValue Idx = SplatVal.getOperand(1);
2018   // The index must be a legal type.
2019   if (Idx.getValueType() != Subtarget.getXLenVT())
2020     return SDValue();
2021 
2022   MVT ContainerVT = VT;
2023   if (VT.isFixedLengthVector()) {
2024     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2025     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2026   }
2027 
2028   SDValue Mask, VL;
2029   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2030 
2031   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2032                                Idx, Mask, VL);
2033 
2034   if (!VT.isFixedLengthVector())
2035     return Gather;
2036 
2037   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2038 }
2039 
2040 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2041                                  const RISCVSubtarget &Subtarget) {
2042   MVT VT = Op.getSimpleValueType();
2043   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2044 
2045   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2046 
2047   SDLoc DL(Op);
2048   SDValue Mask, VL;
2049   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2050 
2051   MVT XLenVT = Subtarget.getXLenVT();
2052   unsigned NumElts = Op.getNumOperands();
2053 
2054   if (VT.getVectorElementType() == MVT::i1) {
2055     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2056       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2057       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2058     }
2059 
2060     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2061       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2062       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2063     }
2064 
2065     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2066     // scalar integer chunks whose bit-width depends on the number of mask
2067     // bits and XLEN.
2068     // First, determine the most appropriate scalar integer type to use. This
2069     // is at most XLenVT, but may be shrunk to a smaller vector element type
2070     // according to the size of the final vector - use i8 chunks rather than
2071     // XLenVT if we're producing a v8i1. This results in more consistent
2072     // codegen across RV32 and RV64.
2073     unsigned NumViaIntegerBits =
2074         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2075     NumViaIntegerBits = std::min(NumViaIntegerBits,
2076                                  Subtarget.getMaxELENForFixedLengthVectors());
2077     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2078       // If we have to use more than one INSERT_VECTOR_ELT then this
2079       // optimization is likely to increase code size; avoid peforming it in
2080       // such a case. We can use a load from a constant pool in this case.
2081       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2082         return SDValue();
2083       // Now we can create our integer vector type. Note that it may be larger
2084       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2085       MVT IntegerViaVecVT =
2086           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2087                            divideCeil(NumElts, NumViaIntegerBits));
2088 
2089       uint64_t Bits = 0;
2090       unsigned BitPos = 0, IntegerEltIdx = 0;
2091       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2092 
2093       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2094         // Once we accumulate enough bits to fill our scalar type, insert into
2095         // our vector and clear our accumulated data.
2096         if (I != 0 && I % NumViaIntegerBits == 0) {
2097           if (NumViaIntegerBits <= 32)
2098             Bits = SignExtend64(Bits, 32);
2099           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2100           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2101                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2102           Bits = 0;
2103           BitPos = 0;
2104           IntegerEltIdx++;
2105         }
2106         SDValue V = Op.getOperand(I);
2107         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2108         Bits |= ((uint64_t)BitValue << BitPos);
2109       }
2110 
2111       // Insert the (remaining) scalar value into position in our integer
2112       // vector type.
2113       if (NumViaIntegerBits <= 32)
2114         Bits = SignExtend64(Bits, 32);
2115       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2116       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2117                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2118 
2119       if (NumElts < NumViaIntegerBits) {
2120         // If we're producing a smaller vector than our minimum legal integer
2121         // type, bitcast to the equivalent (known-legal) mask type, and extract
2122         // our final mask.
2123         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2124         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2125         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2126                           DAG.getConstant(0, DL, XLenVT));
2127       } else {
2128         // Else we must have produced an integer type with the same size as the
2129         // mask type; bitcast for the final result.
2130         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2131         Vec = DAG.getBitcast(VT, Vec);
2132       }
2133 
2134       return Vec;
2135     }
2136 
2137     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2138     // vector type, we have a legal equivalently-sized i8 type, so we can use
2139     // that.
2140     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2141     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2142 
2143     SDValue WideVec;
2144     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2145       // For a splat, perform a scalar truncate before creating the wider
2146       // vector.
2147       assert(Splat.getValueType() == XLenVT &&
2148              "Unexpected type for i1 splat value");
2149       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2150                           DAG.getConstant(1, DL, XLenVT));
2151       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2152     } else {
2153       SmallVector<SDValue, 8> Ops(Op->op_values());
2154       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2155       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2156       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2157     }
2158 
2159     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2160   }
2161 
2162   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2163     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2164       return Gather;
2165     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2166                                         : RISCVISD::VMV_V_X_VL;
2167     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
2168     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2169   }
2170 
2171   // Try and match index sequences, which we can lower to the vid instruction
2172   // with optional modifications. An all-undef vector is matched by
2173   // getSplatValue, above.
2174   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2175     int64_t StepNumerator = SimpleVID->StepNumerator;
2176     unsigned StepDenominator = SimpleVID->StepDenominator;
2177     int64_t Addend = SimpleVID->Addend;
2178 
2179     assert(StepNumerator != 0 && "Invalid step");
2180     bool Negate = false;
2181     int64_t SplatStepVal = StepNumerator;
2182     unsigned StepOpcode = ISD::MUL;
2183     if (StepNumerator != 1) {
2184       if (isPowerOf2_64(std::abs(StepNumerator))) {
2185         Negate = StepNumerator < 0;
2186         StepOpcode = ISD::SHL;
2187         SplatStepVal = Log2_64(std::abs(StepNumerator));
2188       }
2189     }
2190 
2191     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2192     // threshold since it's the immediate value many RVV instructions accept.
2193     // There is no vmul.vi instruction so ensure multiply constant can fit in
2194     // a single addi instruction.
2195     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2196          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2197         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2198       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2199       // Convert right out of the scalable type so we can use standard ISD
2200       // nodes for the rest of the computation. If we used scalable types with
2201       // these, we'd lose the fixed-length vector info and generate worse
2202       // vsetvli code.
2203       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2204       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2205           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2206         SDValue SplatStep = DAG.getSplatVector(
2207             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2208         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2209       }
2210       if (StepDenominator != 1) {
2211         SDValue SplatStep = DAG.getSplatVector(
2212             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2213         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2214       }
2215       if (Addend != 0 || Negate) {
2216         SDValue SplatAddend =
2217             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2218         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2219       }
2220       return VID;
2221     }
2222   }
2223 
2224   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2225   // when re-interpreted as a vector with a larger element type. For example,
2226   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2227   // could be instead splat as
2228   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2229   // TODO: This optimization could also work on non-constant splats, but it
2230   // would require bit-manipulation instructions to construct the splat value.
2231   SmallVector<SDValue> Sequence;
2232   unsigned EltBitSize = VT.getScalarSizeInBits();
2233   const auto *BV = cast<BuildVectorSDNode>(Op);
2234   if (VT.isInteger() && EltBitSize < 64 &&
2235       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2236       BV->getRepeatedSequence(Sequence) &&
2237       (Sequence.size() * EltBitSize) <= 64) {
2238     unsigned SeqLen = Sequence.size();
2239     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2240     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2241     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2242             ViaIntVT == MVT::i64) &&
2243            "Unexpected sequence type");
2244 
2245     unsigned EltIdx = 0;
2246     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2247     uint64_t SplatValue = 0;
2248     // Construct the amalgamated value which can be splatted as this larger
2249     // vector type.
2250     for (const auto &SeqV : Sequence) {
2251       if (!SeqV.isUndef())
2252         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2253                        << (EltIdx * EltBitSize));
2254       EltIdx++;
2255     }
2256 
2257     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2258     // achieve better constant materializion.
2259     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2260       SplatValue = SignExtend64(SplatValue, 32);
2261 
2262     // Since we can't introduce illegal i64 types at this stage, we can only
2263     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2264     // way we can use RVV instructions to splat.
2265     assert((ViaIntVT.bitsLE(XLenVT) ||
2266             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2267            "Unexpected bitcast sequence");
2268     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2269       SDValue ViaVL =
2270           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2271       MVT ViaContainerVT =
2272           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2273       SDValue Splat =
2274           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2275                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2276       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2277       return DAG.getBitcast(VT, Splat);
2278     }
2279   }
2280 
2281   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2282   // which constitute a large proportion of the elements. In such cases we can
2283   // splat a vector with the dominant element and make up the shortfall with
2284   // INSERT_VECTOR_ELTs.
2285   // Note that this includes vectors of 2 elements by association. The
2286   // upper-most element is the "dominant" one, allowing us to use a splat to
2287   // "insert" the upper element, and an insert of the lower element at position
2288   // 0, which improves codegen.
2289   SDValue DominantValue;
2290   unsigned MostCommonCount = 0;
2291   DenseMap<SDValue, unsigned> ValueCounts;
2292   unsigned NumUndefElts =
2293       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2294 
2295   // Track the number of scalar loads we know we'd be inserting, estimated as
2296   // any non-zero floating-point constant. Other kinds of element are either
2297   // already in registers or are materialized on demand. The threshold at which
2298   // a vector load is more desirable than several scalar materializion and
2299   // vector-insertion instructions is not known.
2300   unsigned NumScalarLoads = 0;
2301 
2302   for (SDValue V : Op->op_values()) {
2303     if (V.isUndef())
2304       continue;
2305 
2306     ValueCounts.insert(std::make_pair(V, 0));
2307     unsigned &Count = ValueCounts[V];
2308 
2309     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2310       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2311 
2312     // Is this value dominant? In case of a tie, prefer the highest element as
2313     // it's cheaper to insert near the beginning of a vector than it is at the
2314     // end.
2315     if (++Count >= MostCommonCount) {
2316       DominantValue = V;
2317       MostCommonCount = Count;
2318     }
2319   }
2320 
2321   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2322   unsigned NumDefElts = NumElts - NumUndefElts;
2323   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2324 
2325   // Don't perform this optimization when optimizing for size, since
2326   // materializing elements and inserting them tends to cause code bloat.
2327   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2328       ((MostCommonCount > DominantValueCountThreshold) ||
2329        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2330     // Start by splatting the most common element.
2331     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2332 
2333     DenseSet<SDValue> Processed{DominantValue};
2334     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2335     for (const auto &OpIdx : enumerate(Op->ops())) {
2336       const SDValue &V = OpIdx.value();
2337       if (V.isUndef() || !Processed.insert(V).second)
2338         continue;
2339       if (ValueCounts[V] == 1) {
2340         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2341                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2342       } else {
2343         // Blend in all instances of this value using a VSELECT, using a
2344         // mask where each bit signals whether that element is the one
2345         // we're after.
2346         SmallVector<SDValue> Ops;
2347         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2348           return DAG.getConstant(V == V1, DL, XLenVT);
2349         });
2350         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2351                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2352                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2353       }
2354     }
2355 
2356     return Vec;
2357   }
2358 
2359   return SDValue();
2360 }
2361 
2362 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2363                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2364   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2365     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2366     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2367     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2368     // node in order to try and match RVV vector/scalar instructions.
2369     if ((LoC >> 31) == HiC)
2370       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2371 
2372     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2373     // vmv.v.x whose EEW = 32 to lower it.
2374     auto *Const = dyn_cast<ConstantSDNode>(VL);
2375     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2376       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2377       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2378       // access the subtarget here now.
2379       auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo,
2380                                   DAG.getRegister(RISCV::X0, MVT::i32));
2381       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2382     }
2383   }
2384 
2385   // Fall back to a stack store and stride x0 vector load.
2386   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2387 }
2388 
2389 // Called by type legalization to handle splat of i64 on RV32.
2390 // FIXME: We can optimize this when the type has sign or zero bits in one
2391 // of the halves.
2392 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2393                                    SDValue VL, SelectionDAG &DAG) {
2394   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2395   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2396                            DAG.getConstant(0, DL, MVT::i32));
2397   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2398                            DAG.getConstant(1, DL, MVT::i32));
2399   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2400 }
2401 
2402 // This function lowers a splat of a scalar operand Splat with the vector
2403 // length VL. It ensures the final sequence is type legal, which is useful when
2404 // lowering a splat after type legalization.
2405 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2406                                 SelectionDAG &DAG,
2407                                 const RISCVSubtarget &Subtarget) {
2408   if (VT.isFloatingPoint()) {
2409     // If VL is 1, we could use vfmv.s.f.
2410     if (isOneConstant(VL))
2411       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT),
2412                          Scalar, VL);
2413     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2414   }
2415 
2416   MVT XLenVT = Subtarget.getXLenVT();
2417 
2418   // Simplest case is that the operand needs to be promoted to XLenVT.
2419   if (Scalar.getValueType().bitsLE(XLenVT)) {
2420     // If the operand is a constant, sign extend to increase our chances
2421     // of being able to use a .vi instruction. ANY_EXTEND would become a
2422     // a zero extend and the simm5 check in isel would fail.
2423     // FIXME: Should we ignore the upper bits in isel instead?
2424     unsigned ExtOpc =
2425         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2426     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2427     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2428     // If VL is 1 and the scalar value won't benefit from immediate, we could
2429     // use vmv.s.x.
2430     if (isOneConstant(VL) &&
2431         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2432       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar,
2433                          VL);
2434     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2435   }
2436 
2437   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2438          "Unexpected scalar for splat lowering!");
2439 
2440   if (isOneConstant(VL) && isNullConstant(Scalar))
2441     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT),
2442                        DAG.getConstant(0, DL, XLenVT), VL);
2443 
2444   // Otherwise use the more complicated splatting algorithm.
2445   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2446 }
2447 
2448 // Is the mask a slidedown that shifts in undefs.
2449 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) {
2450   int Size = Mask.size();
2451 
2452   // Elements shifted in should be undef.
2453   auto CheckUndefs = [&](int Shift) {
2454     for (int i = Size - Shift; i != Size; ++i)
2455       if (Mask[i] >= 0)
2456         return false;
2457     return true;
2458   };
2459 
2460   // Elements should be shifted or undef.
2461   auto MatchShift = [&](int Shift) {
2462     for (int i = 0; i != Size - Shift; ++i)
2463        if (Mask[i] >= 0 && Mask[i] != Shift + i)
2464          return false;
2465     return true;
2466   };
2467 
2468   // Try all possible shifts.
2469   for (int Shift = 1; Shift != Size; ++Shift)
2470     if (CheckUndefs(Shift) && MatchShift(Shift))
2471       return Shift;
2472 
2473   // No match.
2474   return -1;
2475 }
2476 
2477 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2478                                 const RISCVSubtarget &Subtarget) {
2479   // We need to be able to widen elements to the next larger integer type.
2480   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2481     return false;
2482 
2483   int Size = Mask.size();
2484   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2485 
2486   int Srcs[] = {-1, -1};
2487   for (int i = 0; i != Size; ++i) {
2488     // Ignore undef elements.
2489     if (Mask[i] < 0)
2490       continue;
2491 
2492     // Is this an even or odd element.
2493     int Pol = i % 2;
2494 
2495     // Ensure we consistently use the same source for this element polarity.
2496     int Src = Mask[i] / Size;
2497     if (Srcs[Pol] < 0)
2498       Srcs[Pol] = Src;
2499     if (Srcs[Pol] != Src)
2500       return false;
2501 
2502     // Make sure the element within the source is appropriate for this element
2503     // in the destination.
2504     int Elt = Mask[i] % Size;
2505     if (Elt != i / 2)
2506       return false;
2507   }
2508 
2509   // We need to find a source for each polarity and they can't be the same.
2510   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2511     return false;
2512 
2513   // Swap the sources if the second source was in the even polarity.
2514   SwapSources = Srcs[0] > Srcs[1];
2515 
2516   return true;
2517 }
2518 
2519 static int isElementRotate(SDValue &V1, SDValue &V2, ArrayRef<int> Mask) {
2520   int Size = Mask.size();
2521 
2522   // We need to detect various ways of spelling a rotation:
2523   //   [11, 12, 13, 14, 15,  0,  1,  2]
2524   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2525   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2526   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2527   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2528   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2529   int Rotation = 0;
2530   SDValue Lo, Hi;
2531   for (int i = 0; i != Size; ++i) {
2532     int M = Mask[i];
2533     if (M < 0)
2534       continue;
2535 
2536     // Determine where a rotate vector would have started.
2537     int StartIdx = i - (M % Size);
2538     // The identity rotation isn't interesting, stop.
2539     if (StartIdx == 0)
2540       return -1;
2541 
2542     // If we found the tail of a vector the rotation must be the missing
2543     // front. If we found the head of a vector, it must be how much of the
2544     // head.
2545     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2546 
2547     if (Rotation == 0)
2548       Rotation = CandidateRotation;
2549     else if (Rotation != CandidateRotation)
2550       // The rotations don't match, so we can't match this mask.
2551       return -1;
2552 
2553     // Compute which value this mask is pointing at.
2554     SDValue MaskV = M < Size ? V1 : V2;
2555 
2556     // Compute which of the two target values this index should be assigned to.
2557     // This reflects whether the high elements are remaining or the low elemnts
2558     // are remaining.
2559     SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
2560 
2561     // Either set up this value if we've not encountered it before, or check
2562     // that it remains consistent.
2563     if (!TargetV)
2564       TargetV = MaskV;
2565     else if (TargetV != MaskV)
2566       // This may be a rotation, but it pulls from the inputs in some
2567       // unsupported interleaving.
2568       return -1;
2569   }
2570 
2571   // Check that we successfully analyzed the mask, and normalize the results.
2572   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2573   assert((Lo || Hi) && "Failed to find a rotated input vector!");
2574 
2575   // Make sure we've found a value for both halves.
2576   if (!Lo || !Hi)
2577     return -1;
2578 
2579   V1 = Lo;
2580   V2 = Hi;
2581 
2582   return Rotation;
2583 }
2584 
2585 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2586                                    const RISCVSubtarget &Subtarget) {
2587   SDValue V1 = Op.getOperand(0);
2588   SDValue V2 = Op.getOperand(1);
2589   SDLoc DL(Op);
2590   MVT XLenVT = Subtarget.getXLenVT();
2591   MVT VT = Op.getSimpleValueType();
2592   unsigned NumElts = VT.getVectorNumElements();
2593   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2594 
2595   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2596 
2597   SDValue TrueMask, VL;
2598   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2599 
2600   if (SVN->isSplat()) {
2601     const int Lane = SVN->getSplatIndex();
2602     if (Lane >= 0) {
2603       MVT SVT = VT.getVectorElementType();
2604 
2605       // Turn splatted vector load into a strided load with an X0 stride.
2606       SDValue V = V1;
2607       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2608       // with undef.
2609       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2610       int Offset = Lane;
2611       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2612         int OpElements =
2613             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2614         V = V.getOperand(Offset / OpElements);
2615         Offset %= OpElements;
2616       }
2617 
2618       // We need to ensure the load isn't atomic or volatile.
2619       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2620         auto *Ld = cast<LoadSDNode>(V);
2621         Offset *= SVT.getStoreSize();
2622         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2623                                                    TypeSize::Fixed(Offset), DL);
2624 
2625         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2626         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2627           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2628           SDValue IntID =
2629               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2630           SDValue Ops[] = {Ld->getChain(),
2631                            IntID,
2632                            DAG.getUNDEF(ContainerVT),
2633                            NewAddr,
2634                            DAG.getRegister(RISCV::X0, XLenVT),
2635                            VL};
2636           SDValue NewLoad = DAG.getMemIntrinsicNode(
2637               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2638               DAG.getMachineFunction().getMachineMemOperand(
2639                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2640           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2641           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2642         }
2643 
2644         // Otherwise use a scalar load and splat. This will give the best
2645         // opportunity to fold a splat into the operation. ISel can turn it into
2646         // the x0 strided load if we aren't able to fold away the select.
2647         if (SVT.isFloatingPoint())
2648           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2649                           Ld->getPointerInfo().getWithOffset(Offset),
2650                           Ld->getOriginalAlign(),
2651                           Ld->getMemOperand()->getFlags());
2652         else
2653           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2654                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2655                              Ld->getOriginalAlign(),
2656                              Ld->getMemOperand()->getFlags());
2657         DAG.makeEquivalentMemoryOrdering(Ld, V);
2658 
2659         unsigned Opc =
2660             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2661         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2662         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2663       }
2664 
2665       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2666       assert(Lane < (int)NumElts && "Unexpected lane!");
2667       SDValue Gather =
2668           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2669                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2670       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2671     }
2672   }
2673 
2674   ArrayRef<int> Mask = SVN->getMask();
2675 
2676   // Try to match as a slidedown.
2677   int SlideAmt = matchShuffleAsSlideDown(Mask);
2678   if (SlideAmt >= 0) {
2679     // TODO: Should we reduce the VL to account for the upper undef elements?
2680     // Requires additional vsetvlis, but might be faster to execute.
2681     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2682     SDValue SlideDown =
2683         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2684                     DAG.getUNDEF(ContainerVT), V1,
2685                     DAG.getConstant(SlideAmt, DL, XLenVT),
2686                     TrueMask, VL);
2687     return convertFromScalableVector(VT, SlideDown, DAG, Subtarget);
2688   }
2689 
2690   // Match shuffles that concatenate two vectors, rotate the concatenation,
2691   // and then extract the original number of elements from the rotated result.
2692   // This is equivalent to vector.splice or X86's PALIGNR instruction. Lower
2693   // it to a SLIDEDOWN and a SLIDEUP.
2694   // FIXME: We don't really need it to be a concatenation. We just need two
2695   // regions with contiguous elements that need to be shifted down and up.
2696   int Rotation = isElementRotate(V1, V2, Mask);
2697   if (Rotation > 0) {
2698     // We found a rotation. We need to slide V1 down by Rotation. Using
2699     // (NumElts - Rotation) for VL. Then we need to slide V2 up by
2700     // (NumElts - Rotation) using NumElts for VL.
2701     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2702     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2703 
2704     unsigned InvRotate = NumElts - Rotation;
2705     SDValue SlideDown =
2706         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
2707                     DAG.getUNDEF(ContainerVT), V2,
2708                     DAG.getConstant(Rotation, DL, XLenVT),
2709                     TrueMask, DAG.getConstant(InvRotate, DL, XLenVT));
2710     SDValue SlideUp =
2711         DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, SlideDown, V1,
2712                     DAG.getConstant(InvRotate, DL, XLenVT),
2713                     TrueMask, VL);
2714     return convertFromScalableVector(VT, SlideUp, DAG, Subtarget);
2715   }
2716 
2717   // Detect an interleave shuffle and lower to
2718   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2719   bool SwapSources;
2720   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2721     // Swap sources if needed.
2722     if (SwapSources)
2723       std::swap(V1, V2);
2724 
2725     // Extract the lower half of the vectors.
2726     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2727     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2728                      DAG.getConstant(0, DL, XLenVT));
2729     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2730                      DAG.getConstant(0, DL, XLenVT));
2731 
2732     // Double the element width and halve the number of elements in an int type.
2733     unsigned EltBits = VT.getScalarSizeInBits();
2734     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2735     MVT WideIntVT =
2736         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2737     // Convert this to a scalable vector. We need to base this on the
2738     // destination size to ensure there's always a type with a smaller LMUL.
2739     MVT WideIntContainerVT =
2740         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2741 
2742     // Convert sources to scalable vectors with the same element count as the
2743     // larger type.
2744     MVT HalfContainerVT = MVT::getVectorVT(
2745         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2746     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2747     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2748 
2749     // Cast sources to integer.
2750     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2751     MVT IntHalfVT =
2752         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2753     V1 = DAG.getBitcast(IntHalfVT, V1);
2754     V2 = DAG.getBitcast(IntHalfVT, V2);
2755 
2756     // Freeze V2 since we use it twice and we need to be sure that the add and
2757     // multiply see the same value.
2758     V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2);
2759 
2760     // Recreate TrueMask using the widened type's element count.
2761     MVT MaskVT =
2762         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2763     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2764 
2765     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2766     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2767                               V2, TrueMask, VL);
2768     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2769     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2770                                      DAG.getAllOnesConstant(DL, XLenVT));
2771     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2772                                    V2, Multiplier, TrueMask, VL);
2773     // Add the new copies to our previous addition giving us 2^eltbits copies of
2774     // V2. This is equivalent to shifting V2 left by eltbits. This should
2775     // combine with the vwmulu.vv above to form vwmaccu.vv.
2776     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2777                       TrueMask, VL);
2778     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2779     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2780     // vector VT.
2781     ContainerVT =
2782         MVT::getVectorVT(VT.getVectorElementType(),
2783                          WideIntContainerVT.getVectorElementCount() * 2);
2784     Add = DAG.getBitcast(ContainerVT, Add);
2785     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2786   }
2787 
2788   // Detect shuffles which can be re-expressed as vector selects; these are
2789   // shuffles in which each element in the destination is taken from an element
2790   // at the corresponding index in either source vectors.
2791   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2792     int MaskIndex = MaskIdx.value();
2793     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2794   });
2795 
2796   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2797 
2798   SmallVector<SDValue> MaskVals;
2799   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2800   // merged with a second vrgather.
2801   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2802 
2803   // By default we preserve the original operand order, and use a mask to
2804   // select LHS as true and RHS as false. However, since RVV vector selects may
2805   // feature splats but only on the LHS, we may choose to invert our mask and
2806   // instead select between RHS and LHS.
2807   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2808   bool InvertMask = IsSelect == SwapOps;
2809 
2810   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2811   // half.
2812   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2813 
2814   // Now construct the mask that will be used by the vselect or blended
2815   // vrgather operation. For vrgathers, construct the appropriate indices into
2816   // each vector.
2817   for (int MaskIndex : Mask) {
2818     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2819     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2820     if (!IsSelect) {
2821       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2822       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2823                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2824                                      : DAG.getUNDEF(XLenVT));
2825       GatherIndicesRHS.push_back(
2826           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2827                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2828       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2829         ++LHSIndexCounts[MaskIndex];
2830       if (!IsLHSOrUndefIndex)
2831         ++RHSIndexCounts[MaskIndex - NumElts];
2832     }
2833   }
2834 
2835   if (SwapOps) {
2836     std::swap(V1, V2);
2837     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2838   }
2839 
2840   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2841   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2842   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2843 
2844   if (IsSelect)
2845     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2846 
2847   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2848     // On such a large vector we're unable to use i8 as the index type.
2849     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2850     // may involve vector splitting if we're already at LMUL=8, or our
2851     // user-supplied maximum fixed-length LMUL.
2852     return SDValue();
2853   }
2854 
2855   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2856   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2857   MVT IndexVT = VT.changeTypeToInteger();
2858   // Since we can't introduce illegal index types at this stage, use i16 and
2859   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2860   // than XLenVT.
2861   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2862     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2863     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2864   }
2865 
2866   MVT IndexContainerVT =
2867       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2868 
2869   SDValue Gather;
2870   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2871   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2872   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2873     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2874   } else {
2875     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2876     // If only one index is used, we can use a "splat" vrgather.
2877     // TODO: We can splat the most-common index and fix-up any stragglers, if
2878     // that's beneficial.
2879     if (LHSIndexCounts.size() == 1) {
2880       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2881       Gather =
2882           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2883                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2884     } else {
2885       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2886       LHSIndices =
2887           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2888 
2889       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2890                            TrueMask, VL);
2891     }
2892   }
2893 
2894   // If a second vector operand is used by this shuffle, blend it in with an
2895   // additional vrgather.
2896   if (!V2.isUndef()) {
2897     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2898     // If only one index is used, we can use a "splat" vrgather.
2899     // TODO: We can splat the most-common index and fix-up any stragglers, if
2900     // that's beneficial.
2901     if (RHSIndexCounts.size() == 1) {
2902       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2903       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2904                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2905     } else {
2906       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2907       RHSIndices =
2908           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2909       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2910                        VL);
2911     }
2912 
2913     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2914     SelectMask =
2915         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2916 
2917     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2918                          Gather, VL);
2919   }
2920 
2921   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2922 }
2923 
2924 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2925   // Support splats for any type. These should type legalize well.
2926   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2927     return true;
2928 
2929   // Only support legal VTs for other shuffles for now.
2930   if (!isTypeLegal(VT))
2931     return false;
2932 
2933   MVT SVT = VT.getSimpleVT();
2934 
2935   bool SwapSources;
2936   return (matchShuffleAsSlideDown(M) >= 0) ||
2937          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2938 }
2939 
2940 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2941                                      SDLoc DL, SelectionDAG &DAG,
2942                                      const RISCVSubtarget &Subtarget) {
2943   if (VT.isScalableVector())
2944     return DAG.getFPExtendOrRound(Op, DL, VT);
2945   assert(VT.isFixedLengthVector() &&
2946          "Unexpected value type for RVV FP extend/round lowering");
2947   SDValue Mask, VL;
2948   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2949   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2950                         ? RISCVISD::FP_EXTEND_VL
2951                         : RISCVISD::FP_ROUND_VL;
2952   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2953 }
2954 
2955 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2956 // the exponent.
2957 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2958   MVT VT = Op.getSimpleValueType();
2959   unsigned EltSize = VT.getScalarSizeInBits();
2960   SDValue Src = Op.getOperand(0);
2961   SDLoc DL(Op);
2962 
2963   // We need a FP type that can represent the value.
2964   // TODO: Use f16 for i8 when possible?
2965   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2966   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2967 
2968   // Legal types should have been checked in the RISCVTargetLowering
2969   // constructor.
2970   // TODO: Splitting may make sense in some cases.
2971   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2972          "Expected legal float type!");
2973 
2974   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2975   // The trailing zero count is equal to log2 of this single bit value.
2976   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2977     SDValue Neg =
2978         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2979     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2980   }
2981 
2982   // We have a legal FP type, convert to it.
2983   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2984   // Bitcast to integer and shift the exponent to the LSB.
2985   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2986   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2987   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2988   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2989                               DAG.getConstant(ShiftAmt, DL, IntVT));
2990   // Truncate back to original type to allow vnsrl.
2991   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2992   // The exponent contains log2 of the value in biased form.
2993   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2994 
2995   // For trailing zeros, we just need to subtract the bias.
2996   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2997     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2998                        DAG.getConstant(ExponentBias, DL, VT));
2999 
3000   // For leading zeros, we need to remove the bias and convert from log2 to
3001   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
3002   unsigned Adjust = ExponentBias + (EltSize - 1);
3003   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
3004 }
3005 
3006 // While RVV has alignment restrictions, we should always be able to load as a
3007 // legal equivalently-sized byte-typed vector instead. This method is
3008 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
3009 // the load is already correctly-aligned, it returns SDValue().
3010 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
3011                                                     SelectionDAG &DAG) const {
3012   auto *Load = cast<LoadSDNode>(Op);
3013   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
3014 
3015   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3016                                      Load->getMemoryVT(),
3017                                      *Load->getMemOperand()))
3018     return SDValue();
3019 
3020   SDLoc DL(Op);
3021   MVT VT = Op.getSimpleValueType();
3022   unsigned EltSizeBits = VT.getScalarSizeInBits();
3023   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3024          "Unexpected unaligned RVV load type");
3025   MVT NewVT =
3026       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3027   assert(NewVT.isValid() &&
3028          "Expecting equally-sized RVV vector types to be legal");
3029   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
3030                           Load->getPointerInfo(), Load->getOriginalAlign(),
3031                           Load->getMemOperand()->getFlags());
3032   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
3033 }
3034 
3035 // While RVV has alignment restrictions, we should always be able to store as a
3036 // legal equivalently-sized byte-typed vector instead. This method is
3037 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3038 // returns SDValue() if the store is already correctly aligned.
3039 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3040                                                      SelectionDAG &DAG) const {
3041   auto *Store = cast<StoreSDNode>(Op);
3042   assert(Store && Store->getValue().getValueType().isVector() &&
3043          "Expected vector store");
3044 
3045   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3046                                      Store->getMemoryVT(),
3047                                      *Store->getMemOperand()))
3048     return SDValue();
3049 
3050   SDLoc DL(Op);
3051   SDValue StoredVal = Store->getValue();
3052   MVT VT = StoredVal.getSimpleValueType();
3053   unsigned EltSizeBits = VT.getScalarSizeInBits();
3054   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3055          "Unexpected unaligned RVV store type");
3056   MVT NewVT =
3057       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3058   assert(NewVT.isValid() &&
3059          "Expecting equally-sized RVV vector types to be legal");
3060   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3061   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3062                       Store->getPointerInfo(), Store->getOriginalAlign(),
3063                       Store->getMemOperand()->getFlags());
3064 }
3065 
3066 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3067                                             SelectionDAG &DAG) const {
3068   switch (Op.getOpcode()) {
3069   default:
3070     report_fatal_error("unimplemented operand");
3071   case ISD::GlobalAddress:
3072     return lowerGlobalAddress(Op, DAG);
3073   case ISD::BlockAddress:
3074     return lowerBlockAddress(Op, DAG);
3075   case ISD::ConstantPool:
3076     return lowerConstantPool(Op, DAG);
3077   case ISD::JumpTable:
3078     return lowerJumpTable(Op, DAG);
3079   case ISD::GlobalTLSAddress:
3080     return lowerGlobalTLSAddress(Op, DAG);
3081   case ISD::SELECT:
3082     return lowerSELECT(Op, DAG);
3083   case ISD::BRCOND:
3084     return lowerBRCOND(Op, DAG);
3085   case ISD::VASTART:
3086     return lowerVASTART(Op, DAG);
3087   case ISD::FRAMEADDR:
3088     return lowerFRAMEADDR(Op, DAG);
3089   case ISD::RETURNADDR:
3090     return lowerRETURNADDR(Op, DAG);
3091   case ISD::SHL_PARTS:
3092     return lowerShiftLeftParts(Op, DAG);
3093   case ISD::SRA_PARTS:
3094     return lowerShiftRightParts(Op, DAG, true);
3095   case ISD::SRL_PARTS:
3096     return lowerShiftRightParts(Op, DAG, false);
3097   case ISD::BITCAST: {
3098     SDLoc DL(Op);
3099     EVT VT = Op.getValueType();
3100     SDValue Op0 = Op.getOperand(0);
3101     EVT Op0VT = Op0.getValueType();
3102     MVT XLenVT = Subtarget.getXLenVT();
3103     if (VT.isFixedLengthVector()) {
3104       // We can handle fixed length vector bitcasts with a simple replacement
3105       // in isel.
3106       if (Op0VT.isFixedLengthVector())
3107         return Op;
3108       // When bitcasting from scalar to fixed-length vector, insert the scalar
3109       // into a one-element vector of the result type, and perform a vector
3110       // bitcast.
3111       if (!Op0VT.isVector()) {
3112         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3113         if (!isTypeLegal(BVT))
3114           return SDValue();
3115         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3116                                               DAG.getUNDEF(BVT), Op0,
3117                                               DAG.getConstant(0, DL, XLenVT)));
3118       }
3119       return SDValue();
3120     }
3121     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3122     // thus: bitcast the vector to a one-element vector type whose element type
3123     // is the same as the result type, and extract the first element.
3124     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3125       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3126       if (!isTypeLegal(BVT))
3127         return SDValue();
3128       SDValue BVec = DAG.getBitcast(BVT, Op0);
3129       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3130                          DAG.getConstant(0, DL, XLenVT));
3131     }
3132     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3133       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3134       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3135       return FPConv;
3136     }
3137     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3138         Subtarget.hasStdExtF()) {
3139       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3140       SDValue FPConv =
3141           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3142       return FPConv;
3143     }
3144     return SDValue();
3145   }
3146   case ISD::INTRINSIC_WO_CHAIN:
3147     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3148   case ISD::INTRINSIC_W_CHAIN:
3149     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3150   case ISD::INTRINSIC_VOID:
3151     return LowerINTRINSIC_VOID(Op, DAG);
3152   case ISD::BSWAP:
3153   case ISD::BITREVERSE: {
3154     MVT VT = Op.getSimpleValueType();
3155     SDLoc DL(Op);
3156     if (Subtarget.hasStdExtZbp()) {
3157       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3158       // Start with the maximum immediate value which is the bitwidth - 1.
3159       unsigned Imm = VT.getSizeInBits() - 1;
3160       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3161       if (Op.getOpcode() == ISD::BSWAP)
3162         Imm &= ~0x7U;
3163       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3164                          DAG.getConstant(Imm, DL, VT));
3165     }
3166     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3167     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3168     // Expand bitreverse to a bswap(rev8) followed by brev8.
3169     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3170     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3171     // as brev8 by an isel pattern.
3172     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3173                        DAG.getConstant(7, DL, VT));
3174   }
3175   case ISD::FSHL:
3176   case ISD::FSHR: {
3177     MVT VT = Op.getSimpleValueType();
3178     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3179     SDLoc DL(Op);
3180     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3181     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3182     // accidentally setting the extra bit.
3183     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3184     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3185                                 DAG.getConstant(ShAmtWidth, DL, VT));
3186     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3187     // instruction use different orders. fshl will return its first operand for
3188     // shift of zero, fshr will return its second operand. fsl and fsr both
3189     // return rs1 so the ISD nodes need to have different operand orders.
3190     // Shift amount is in rs2.
3191     SDValue Op0 = Op.getOperand(0);
3192     SDValue Op1 = Op.getOperand(1);
3193     unsigned Opc = RISCVISD::FSL;
3194     if (Op.getOpcode() == ISD::FSHR) {
3195       std::swap(Op0, Op1);
3196       Opc = RISCVISD::FSR;
3197     }
3198     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3199   }
3200   case ISD::TRUNCATE: {
3201     SDLoc DL(Op);
3202     MVT VT = Op.getSimpleValueType();
3203     // Only custom-lower vector truncates
3204     if (!VT.isVector())
3205       return Op;
3206 
3207     // Truncates to mask types are handled differently
3208     if (VT.getVectorElementType() == MVT::i1)
3209       return lowerVectorMaskTrunc(Op, DAG);
3210 
3211     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3212     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3213     // truncate by one power of two at a time.
3214     MVT DstEltVT = VT.getVectorElementType();
3215 
3216     SDValue Src = Op.getOperand(0);
3217     MVT SrcVT = Src.getSimpleValueType();
3218     MVT SrcEltVT = SrcVT.getVectorElementType();
3219 
3220     assert(DstEltVT.bitsLT(SrcEltVT) &&
3221            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3222            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3223            "Unexpected vector truncate lowering");
3224 
3225     MVT ContainerVT = SrcVT;
3226     if (SrcVT.isFixedLengthVector()) {
3227       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3228       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3229     }
3230 
3231     SDValue Result = Src;
3232     SDValue Mask, VL;
3233     std::tie(Mask, VL) =
3234         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3235     LLVMContext &Context = *DAG.getContext();
3236     const ElementCount Count = ContainerVT.getVectorElementCount();
3237     do {
3238       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3239       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3240       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3241                            Mask, VL);
3242     } while (SrcEltVT != DstEltVT);
3243 
3244     if (SrcVT.isFixedLengthVector())
3245       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3246 
3247     return Result;
3248   }
3249   case ISD::ANY_EXTEND:
3250   case ISD::ZERO_EXTEND:
3251     if (Op.getOperand(0).getValueType().isVector() &&
3252         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3253       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3254     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3255   case ISD::SIGN_EXTEND:
3256     if (Op.getOperand(0).getValueType().isVector() &&
3257         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3258       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3259     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3260   case ISD::SPLAT_VECTOR_PARTS:
3261     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3262   case ISD::INSERT_VECTOR_ELT:
3263     return lowerINSERT_VECTOR_ELT(Op, DAG);
3264   case ISD::EXTRACT_VECTOR_ELT:
3265     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3266   case ISD::VSCALE: {
3267     MVT VT = Op.getSimpleValueType();
3268     SDLoc DL(Op);
3269     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3270     // We define our scalable vector types for lmul=1 to use a 64 bit known
3271     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3272     // vscale as VLENB / 8.
3273     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3274     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3275       report_fatal_error("Support for VLEN==32 is incomplete.");
3276     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3277       // We assume VLENB is a multiple of 8. We manually choose the best shift
3278       // here because SimplifyDemandedBits isn't always able to simplify it.
3279       uint64_t Val = Op.getConstantOperandVal(0);
3280       if (isPowerOf2_64(Val)) {
3281         uint64_t Log2 = Log2_64(Val);
3282         if (Log2 < 3)
3283           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3284                              DAG.getConstant(3 - Log2, DL, VT));
3285         if (Log2 > 3)
3286           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3287                              DAG.getConstant(Log2 - 3, DL, VT));
3288         return VLENB;
3289       }
3290       // If the multiplier is a multiple of 8, scale it down to avoid needing
3291       // to shift the VLENB value.
3292       if ((Val % 8) == 0)
3293         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3294                            DAG.getConstant(Val / 8, DL, VT));
3295     }
3296 
3297     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3298                                  DAG.getConstant(3, DL, VT));
3299     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3300   }
3301   case ISD::FPOWI: {
3302     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3303     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3304     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3305         Op.getOperand(1).getValueType() == MVT::i32) {
3306       SDLoc DL(Op);
3307       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3308       SDValue Powi =
3309           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3310       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3311                          DAG.getIntPtrConstant(0, DL));
3312     }
3313     return SDValue();
3314   }
3315   case ISD::FP_EXTEND: {
3316     // RVV can only do fp_extend to types double the size as the source. We
3317     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3318     // via f32.
3319     SDLoc DL(Op);
3320     MVT VT = Op.getSimpleValueType();
3321     SDValue Src = Op.getOperand(0);
3322     MVT SrcVT = Src.getSimpleValueType();
3323 
3324     // Prepare any fixed-length vector operands.
3325     MVT ContainerVT = VT;
3326     if (SrcVT.isFixedLengthVector()) {
3327       ContainerVT = getContainerForFixedLengthVector(VT);
3328       MVT SrcContainerVT =
3329           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3330       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3331     }
3332 
3333     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3334         SrcVT.getVectorElementType() != MVT::f16) {
3335       // For scalable vectors, we only need to close the gap between
3336       // vXf16->vXf64.
3337       if (!VT.isFixedLengthVector())
3338         return Op;
3339       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3340       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3341       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3342     }
3343 
3344     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3345     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3346     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3347         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3348 
3349     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3350                                            DL, DAG, Subtarget);
3351     if (VT.isFixedLengthVector())
3352       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3353     return Extend;
3354   }
3355   case ISD::FP_ROUND: {
3356     // RVV can only do fp_round to types half the size as the source. We
3357     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3358     // conversion instruction.
3359     SDLoc DL(Op);
3360     MVT VT = Op.getSimpleValueType();
3361     SDValue Src = Op.getOperand(0);
3362     MVT SrcVT = Src.getSimpleValueType();
3363 
3364     // Prepare any fixed-length vector operands.
3365     MVT ContainerVT = VT;
3366     if (VT.isFixedLengthVector()) {
3367       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3368       ContainerVT =
3369           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3370       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3371     }
3372 
3373     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3374         SrcVT.getVectorElementType() != MVT::f64) {
3375       // For scalable vectors, we only need to close the gap between
3376       // vXf64<->vXf16.
3377       if (!VT.isFixedLengthVector())
3378         return Op;
3379       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3380       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3381       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3382     }
3383 
3384     SDValue Mask, VL;
3385     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3386 
3387     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3388     SDValue IntermediateRound =
3389         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3390     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3391                                           DL, DAG, Subtarget);
3392 
3393     if (VT.isFixedLengthVector())
3394       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3395     return Round;
3396   }
3397   case ISD::FP_TO_SINT:
3398   case ISD::FP_TO_UINT:
3399   case ISD::SINT_TO_FP:
3400   case ISD::UINT_TO_FP: {
3401     // RVV can only do fp<->int conversions to types half/double the size as
3402     // the source. We custom-lower any conversions that do two hops into
3403     // sequences.
3404     MVT VT = Op.getSimpleValueType();
3405     if (!VT.isVector())
3406       return Op;
3407     SDLoc DL(Op);
3408     SDValue Src = Op.getOperand(0);
3409     MVT EltVT = VT.getVectorElementType();
3410     MVT SrcVT = Src.getSimpleValueType();
3411     MVT SrcEltVT = SrcVT.getVectorElementType();
3412     unsigned EltSize = EltVT.getSizeInBits();
3413     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3414     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3415            "Unexpected vector element types");
3416 
3417     bool IsInt2FP = SrcEltVT.isInteger();
3418     // Widening conversions
3419     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3420       if (IsInt2FP) {
3421         // Do a regular integer sign/zero extension then convert to float.
3422         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3423                                       VT.getVectorElementCount());
3424         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3425                                  ? ISD::ZERO_EXTEND
3426                                  : ISD::SIGN_EXTEND;
3427         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3428         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3429       }
3430       // FP2Int
3431       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3432       // Do one doubling fp_extend then complete the operation by converting
3433       // to int.
3434       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3435       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3436       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3437     }
3438 
3439     // Narrowing conversions
3440     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3441       if (IsInt2FP) {
3442         // One narrowing int_to_fp, then an fp_round.
3443         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3444         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3445         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3446         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3447       }
3448       // FP2Int
3449       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3450       // representable by the integer, the result is poison.
3451       MVT IVecVT =
3452           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3453                            VT.getVectorElementCount());
3454       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3455       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3456     }
3457 
3458     // Scalable vectors can exit here. Patterns will handle equally-sized
3459     // conversions halving/doubling ones.
3460     if (!VT.isFixedLengthVector())
3461       return Op;
3462 
3463     // For fixed-length vectors we lower to a custom "VL" node.
3464     unsigned RVVOpc = 0;
3465     switch (Op.getOpcode()) {
3466     default:
3467       llvm_unreachable("Impossible opcode");
3468     case ISD::FP_TO_SINT:
3469       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3470       break;
3471     case ISD::FP_TO_UINT:
3472       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3473       break;
3474     case ISD::SINT_TO_FP:
3475       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3476       break;
3477     case ISD::UINT_TO_FP:
3478       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3479       break;
3480     }
3481 
3482     MVT ContainerVT, SrcContainerVT;
3483     // Derive the reference container type from the larger vector type.
3484     if (SrcEltSize > EltSize) {
3485       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3486       ContainerVT =
3487           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3488     } else {
3489       ContainerVT = getContainerForFixedLengthVector(VT);
3490       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3491     }
3492 
3493     SDValue Mask, VL;
3494     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3495 
3496     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3497     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3498     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3499   }
3500   case ISD::FP_TO_SINT_SAT:
3501   case ISD::FP_TO_UINT_SAT:
3502     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3503   case ISD::FTRUNC:
3504   case ISD::FCEIL:
3505   case ISD::FFLOOR:
3506     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3507   case ISD::FROUND:
3508     return lowerFROUND(Op, DAG);
3509   case ISD::VECREDUCE_ADD:
3510   case ISD::VECREDUCE_UMAX:
3511   case ISD::VECREDUCE_SMAX:
3512   case ISD::VECREDUCE_UMIN:
3513   case ISD::VECREDUCE_SMIN:
3514     return lowerVECREDUCE(Op, DAG);
3515   case ISD::VECREDUCE_AND:
3516   case ISD::VECREDUCE_OR:
3517   case ISD::VECREDUCE_XOR:
3518     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3519       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3520     return lowerVECREDUCE(Op, DAG);
3521   case ISD::VECREDUCE_FADD:
3522   case ISD::VECREDUCE_SEQ_FADD:
3523   case ISD::VECREDUCE_FMIN:
3524   case ISD::VECREDUCE_FMAX:
3525     return lowerFPVECREDUCE(Op, DAG);
3526   case ISD::VP_REDUCE_ADD:
3527   case ISD::VP_REDUCE_UMAX:
3528   case ISD::VP_REDUCE_SMAX:
3529   case ISD::VP_REDUCE_UMIN:
3530   case ISD::VP_REDUCE_SMIN:
3531   case ISD::VP_REDUCE_FADD:
3532   case ISD::VP_REDUCE_SEQ_FADD:
3533   case ISD::VP_REDUCE_FMIN:
3534   case ISD::VP_REDUCE_FMAX:
3535     return lowerVPREDUCE(Op, DAG);
3536   case ISD::VP_REDUCE_AND:
3537   case ISD::VP_REDUCE_OR:
3538   case ISD::VP_REDUCE_XOR:
3539     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3540       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3541     return lowerVPREDUCE(Op, DAG);
3542   case ISD::INSERT_SUBVECTOR:
3543     return lowerINSERT_SUBVECTOR(Op, DAG);
3544   case ISD::EXTRACT_SUBVECTOR:
3545     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3546   case ISD::STEP_VECTOR:
3547     return lowerSTEP_VECTOR(Op, DAG);
3548   case ISD::VECTOR_REVERSE:
3549     return lowerVECTOR_REVERSE(Op, DAG);
3550   case ISD::BUILD_VECTOR:
3551     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3552   case ISD::SPLAT_VECTOR:
3553     if (Op.getValueType().getVectorElementType() == MVT::i1)
3554       return lowerVectorMaskSplat(Op, DAG);
3555     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3556   case ISD::VECTOR_SHUFFLE:
3557     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3558   case ISD::CONCAT_VECTORS: {
3559     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3560     // better than going through the stack, as the default expansion does.
3561     SDLoc DL(Op);
3562     MVT VT = Op.getSimpleValueType();
3563     unsigned NumOpElts =
3564         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3565     SDValue Vec = DAG.getUNDEF(VT);
3566     for (const auto &OpIdx : enumerate(Op->ops())) {
3567       SDValue SubVec = OpIdx.value();
3568       // Don't insert undef subvectors.
3569       if (SubVec.isUndef())
3570         continue;
3571       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3572                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3573     }
3574     return Vec;
3575   }
3576   case ISD::LOAD:
3577     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3578       return V;
3579     if (Op.getValueType().isFixedLengthVector())
3580       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3581     return Op;
3582   case ISD::STORE:
3583     if (auto V = expandUnalignedRVVStore(Op, DAG))
3584       return V;
3585     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3586       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3587     return Op;
3588   case ISD::MLOAD:
3589   case ISD::VP_LOAD:
3590     return lowerMaskedLoad(Op, DAG);
3591   case ISD::MSTORE:
3592   case ISD::VP_STORE:
3593     return lowerMaskedStore(Op, DAG);
3594   case ISD::SETCC:
3595     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3596   case ISD::ADD:
3597     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3598   case ISD::SUB:
3599     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3600   case ISD::MUL:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3602   case ISD::MULHS:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3604   case ISD::MULHU:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3606   case ISD::AND:
3607     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3608                                               RISCVISD::AND_VL);
3609   case ISD::OR:
3610     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3611                                               RISCVISD::OR_VL);
3612   case ISD::XOR:
3613     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3614                                               RISCVISD::XOR_VL);
3615   case ISD::SDIV:
3616     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3617   case ISD::SREM:
3618     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3619   case ISD::UDIV:
3620     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3621   case ISD::UREM:
3622     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3623   case ISD::SHL:
3624   case ISD::SRA:
3625   case ISD::SRL:
3626     if (Op.getSimpleValueType().isFixedLengthVector())
3627       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3628     // This can be called for an i32 shift amount that needs to be promoted.
3629     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3630            "Unexpected custom legalisation");
3631     return SDValue();
3632   case ISD::SADDSAT:
3633     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3634   case ISD::UADDSAT:
3635     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3636   case ISD::SSUBSAT:
3637     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3638   case ISD::USUBSAT:
3639     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3640   case ISD::FADD:
3641     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3642   case ISD::FSUB:
3643     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3644   case ISD::FMUL:
3645     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3646   case ISD::FDIV:
3647     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3648   case ISD::FNEG:
3649     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3650   case ISD::FABS:
3651     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3652   case ISD::FSQRT:
3653     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3654   case ISD::FMA:
3655     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3656   case ISD::SMIN:
3657     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3658   case ISD::SMAX:
3659     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3660   case ISD::UMIN:
3661     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3662   case ISD::UMAX:
3663     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3664   case ISD::FMINNUM:
3665     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3666   case ISD::FMAXNUM:
3667     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3668   case ISD::ABS:
3669     return lowerABS(Op, DAG);
3670   case ISD::CTLZ_ZERO_UNDEF:
3671   case ISD::CTTZ_ZERO_UNDEF:
3672     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3673   case ISD::VSELECT:
3674     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3675   case ISD::FCOPYSIGN:
3676     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3677   case ISD::MGATHER:
3678   case ISD::VP_GATHER:
3679     return lowerMaskedGather(Op, DAG);
3680   case ISD::MSCATTER:
3681   case ISD::VP_SCATTER:
3682     return lowerMaskedScatter(Op, DAG);
3683   case ISD::FLT_ROUNDS_:
3684     return lowerGET_ROUNDING(Op, DAG);
3685   case ISD::SET_ROUNDING:
3686     return lowerSET_ROUNDING(Op, DAG);
3687   case ISD::VP_SELECT:
3688     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3689   case ISD::VP_MERGE:
3690     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3691   case ISD::VP_ADD:
3692     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3693   case ISD::VP_SUB:
3694     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3695   case ISD::VP_MUL:
3696     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3697   case ISD::VP_SDIV:
3698     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3699   case ISD::VP_UDIV:
3700     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3701   case ISD::VP_SREM:
3702     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3703   case ISD::VP_UREM:
3704     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3705   case ISD::VP_AND:
3706     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3707   case ISD::VP_OR:
3708     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3709   case ISD::VP_XOR:
3710     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3711   case ISD::VP_ASHR:
3712     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3713   case ISD::VP_LSHR:
3714     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3715   case ISD::VP_SHL:
3716     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3717   case ISD::VP_FADD:
3718     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3719   case ISD::VP_FSUB:
3720     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3721   case ISD::VP_FMUL:
3722     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3723   case ISD::VP_FDIV:
3724     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3725   case ISD::VP_FNEG:
3726     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3727   case ISD::VP_FMA:
3728     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3729   }
3730 }
3731 
3732 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3733                              SelectionDAG &DAG, unsigned Flags) {
3734   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3735 }
3736 
3737 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3738                              SelectionDAG &DAG, unsigned Flags) {
3739   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3740                                    Flags);
3741 }
3742 
3743 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3744                              SelectionDAG &DAG, unsigned Flags) {
3745   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3746                                    N->getOffset(), Flags);
3747 }
3748 
3749 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3750                              SelectionDAG &DAG, unsigned Flags) {
3751   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3752 }
3753 
3754 template <class NodeTy>
3755 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3756                                      bool IsLocal) const {
3757   SDLoc DL(N);
3758   EVT Ty = getPointerTy(DAG.getDataLayout());
3759 
3760   if (isPositionIndependent()) {
3761     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3762     if (IsLocal)
3763       // Use PC-relative addressing to access the symbol. This generates the
3764       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3765       // %pcrel_lo(auipc)).
3766       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3767 
3768     // Use PC-relative addressing to access the GOT for this symbol, then load
3769     // the address from the GOT. This generates the pattern (PseudoLA sym),
3770     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3771     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3772   }
3773 
3774   switch (getTargetMachine().getCodeModel()) {
3775   default:
3776     report_fatal_error("Unsupported code model for lowering");
3777   case CodeModel::Small: {
3778     // Generate a sequence for accessing addresses within the first 2 GiB of
3779     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3780     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3781     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3782     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3783     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3784   }
3785   case CodeModel::Medium: {
3786     // Generate a sequence for accessing addresses within any 2GiB range within
3787     // the address space. This generates the pattern (PseudoLLA sym), which
3788     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3789     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3790     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3791   }
3792   }
3793 }
3794 
3795 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3796                                                 SelectionDAG &DAG) const {
3797   SDLoc DL(Op);
3798   EVT Ty = Op.getValueType();
3799   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3800   int64_t Offset = N->getOffset();
3801   MVT XLenVT = Subtarget.getXLenVT();
3802 
3803   const GlobalValue *GV = N->getGlobal();
3804   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3805   SDValue Addr = getAddr(N, DAG, IsLocal);
3806 
3807   // In order to maximise the opportunity for common subexpression elimination,
3808   // emit a separate ADD node for the global address offset instead of folding
3809   // it in the global address node. Later peephole optimisations may choose to
3810   // fold it back in when profitable.
3811   if (Offset != 0)
3812     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3813                        DAG.getConstant(Offset, DL, XLenVT));
3814   return Addr;
3815 }
3816 
3817 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3818                                                SelectionDAG &DAG) const {
3819   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3820 
3821   return getAddr(N, DAG);
3822 }
3823 
3824 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3825                                                SelectionDAG &DAG) const {
3826   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3827 
3828   return getAddr(N, DAG);
3829 }
3830 
3831 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3832                                             SelectionDAG &DAG) const {
3833   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3834 
3835   return getAddr(N, DAG);
3836 }
3837 
3838 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3839                                               SelectionDAG &DAG,
3840                                               bool UseGOT) const {
3841   SDLoc DL(N);
3842   EVT Ty = getPointerTy(DAG.getDataLayout());
3843   const GlobalValue *GV = N->getGlobal();
3844   MVT XLenVT = Subtarget.getXLenVT();
3845 
3846   if (UseGOT) {
3847     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3848     // load the address from the GOT and add the thread pointer. This generates
3849     // the pattern (PseudoLA_TLS_IE sym), which expands to
3850     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3851     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3852     SDValue Load =
3853         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3854 
3855     // Add the thread pointer.
3856     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3857     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3858   }
3859 
3860   // Generate a sequence for accessing the address relative to the thread
3861   // pointer, with the appropriate adjustment for the thread pointer offset.
3862   // This generates the pattern
3863   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3864   SDValue AddrHi =
3865       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3866   SDValue AddrAdd =
3867       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3868   SDValue AddrLo =
3869       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3870 
3871   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3872   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3873   SDValue MNAdd = SDValue(
3874       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3875       0);
3876   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3877 }
3878 
3879 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3880                                                SelectionDAG &DAG) const {
3881   SDLoc DL(N);
3882   EVT Ty = getPointerTy(DAG.getDataLayout());
3883   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3884   const GlobalValue *GV = N->getGlobal();
3885 
3886   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3887   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3888   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3889   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3890   SDValue Load =
3891       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3892 
3893   // Prepare argument list to generate call.
3894   ArgListTy Args;
3895   ArgListEntry Entry;
3896   Entry.Node = Load;
3897   Entry.Ty = CallTy;
3898   Args.push_back(Entry);
3899 
3900   // Setup call to __tls_get_addr.
3901   TargetLowering::CallLoweringInfo CLI(DAG);
3902   CLI.setDebugLoc(DL)
3903       .setChain(DAG.getEntryNode())
3904       .setLibCallee(CallingConv::C, CallTy,
3905                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3906                     std::move(Args));
3907 
3908   return LowerCallTo(CLI).first;
3909 }
3910 
3911 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3912                                                    SelectionDAG &DAG) const {
3913   SDLoc DL(Op);
3914   EVT Ty = Op.getValueType();
3915   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3916   int64_t Offset = N->getOffset();
3917   MVT XLenVT = Subtarget.getXLenVT();
3918 
3919   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3920 
3921   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3922       CallingConv::GHC)
3923     report_fatal_error("In GHC calling convention TLS is not supported");
3924 
3925   SDValue Addr;
3926   switch (Model) {
3927   case TLSModel::LocalExec:
3928     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3929     break;
3930   case TLSModel::InitialExec:
3931     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3932     break;
3933   case TLSModel::LocalDynamic:
3934   case TLSModel::GeneralDynamic:
3935     Addr = getDynamicTLSAddr(N, DAG);
3936     break;
3937   }
3938 
3939   // In order to maximise the opportunity for common subexpression elimination,
3940   // emit a separate ADD node for the global address offset instead of folding
3941   // it in the global address node. Later peephole optimisations may choose to
3942   // fold it back in when profitable.
3943   if (Offset != 0)
3944     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3945                        DAG.getConstant(Offset, DL, XLenVT));
3946   return Addr;
3947 }
3948 
3949 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3950   SDValue CondV = Op.getOperand(0);
3951   SDValue TrueV = Op.getOperand(1);
3952   SDValue FalseV = Op.getOperand(2);
3953   SDLoc DL(Op);
3954   MVT VT = Op.getSimpleValueType();
3955   MVT XLenVT = Subtarget.getXLenVT();
3956 
3957   // Lower vector SELECTs to VSELECTs by splatting the condition.
3958   if (VT.isVector()) {
3959     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3960     SDValue CondSplat = VT.isScalableVector()
3961                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3962                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3963     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3964   }
3965 
3966   // If the result type is XLenVT and CondV is the output of a SETCC node
3967   // which also operated on XLenVT inputs, then merge the SETCC node into the
3968   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3969   // compare+branch instructions. i.e.:
3970   // (select (setcc lhs, rhs, cc), truev, falsev)
3971   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3972   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3973       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3974     SDValue LHS = CondV.getOperand(0);
3975     SDValue RHS = CondV.getOperand(1);
3976     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3977     ISD::CondCode CCVal = CC->get();
3978 
3979     // Special case for a select of 2 constants that have a diffence of 1.
3980     // Normally this is done by DAGCombine, but if the select is introduced by
3981     // type legalization or op legalization, we miss it. Restricting to SETLT
3982     // case for now because that is what signed saturating add/sub need.
3983     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3984     // but we would probably want to swap the true/false values if the condition
3985     // is SETGE/SETLE to avoid an XORI.
3986     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3987         CCVal == ISD::SETLT) {
3988       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3989       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3990       if (TrueVal - 1 == FalseVal)
3991         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3992       if (TrueVal + 1 == FalseVal)
3993         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3994     }
3995 
3996     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3997 
3998     SDValue TargetCC = DAG.getCondCode(CCVal);
3999     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
4000     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
4001   }
4002 
4003   // Otherwise:
4004   // (select condv, truev, falsev)
4005   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
4006   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4007   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
4008 
4009   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
4010 
4011   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
4012 }
4013 
4014 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4015   SDValue CondV = Op.getOperand(1);
4016   SDLoc DL(Op);
4017   MVT XLenVT = Subtarget.getXLenVT();
4018 
4019   if (CondV.getOpcode() == ISD::SETCC &&
4020       CondV.getOperand(0).getValueType() == XLenVT) {
4021     SDValue LHS = CondV.getOperand(0);
4022     SDValue RHS = CondV.getOperand(1);
4023     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4024 
4025     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4026 
4027     SDValue TargetCC = DAG.getCondCode(CCVal);
4028     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4029                        LHS, RHS, TargetCC, Op.getOperand(2));
4030   }
4031 
4032   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4033                      CondV, DAG.getConstant(0, DL, XLenVT),
4034                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4035 }
4036 
4037 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4038   MachineFunction &MF = DAG.getMachineFunction();
4039   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4040 
4041   SDLoc DL(Op);
4042   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4043                                  getPointerTy(MF.getDataLayout()));
4044 
4045   // vastart just stores the address of the VarArgsFrameIndex slot into the
4046   // memory location argument.
4047   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4048   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4049                       MachinePointerInfo(SV));
4050 }
4051 
4052 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4053                                             SelectionDAG &DAG) const {
4054   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4055   MachineFunction &MF = DAG.getMachineFunction();
4056   MachineFrameInfo &MFI = MF.getFrameInfo();
4057   MFI.setFrameAddressIsTaken(true);
4058   Register FrameReg = RI.getFrameRegister(MF);
4059   int XLenInBytes = Subtarget.getXLen() / 8;
4060 
4061   EVT VT = Op.getValueType();
4062   SDLoc DL(Op);
4063   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4064   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4065   while (Depth--) {
4066     int Offset = -(XLenInBytes * 2);
4067     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4068                               DAG.getIntPtrConstant(Offset, DL));
4069     FrameAddr =
4070         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4071   }
4072   return FrameAddr;
4073 }
4074 
4075 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4076                                              SelectionDAG &DAG) const {
4077   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4078   MachineFunction &MF = DAG.getMachineFunction();
4079   MachineFrameInfo &MFI = MF.getFrameInfo();
4080   MFI.setReturnAddressIsTaken(true);
4081   MVT XLenVT = Subtarget.getXLenVT();
4082   int XLenInBytes = Subtarget.getXLen() / 8;
4083 
4084   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4085     return SDValue();
4086 
4087   EVT VT = Op.getValueType();
4088   SDLoc DL(Op);
4089   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4090   if (Depth) {
4091     int Off = -XLenInBytes;
4092     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4093     SDValue Offset = DAG.getConstant(Off, DL, VT);
4094     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4095                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4096                        MachinePointerInfo());
4097   }
4098 
4099   // Return the value of the return address register, marking it an implicit
4100   // live-in.
4101   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4102   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4103 }
4104 
4105 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4106                                                  SelectionDAG &DAG) const {
4107   SDLoc DL(Op);
4108   SDValue Lo = Op.getOperand(0);
4109   SDValue Hi = Op.getOperand(1);
4110   SDValue Shamt = Op.getOperand(2);
4111   EVT VT = Lo.getValueType();
4112 
4113   // if Shamt-XLEN < 0: // Shamt < XLEN
4114   //   Lo = Lo << Shamt
4115   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4116   // else:
4117   //   Lo = 0
4118   //   Hi = Lo << (Shamt-XLEN)
4119 
4120   SDValue Zero = DAG.getConstant(0, DL, VT);
4121   SDValue One = DAG.getConstant(1, DL, VT);
4122   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4123   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4124   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4125   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4126 
4127   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4128   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4129   SDValue ShiftRightLo =
4130       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4131   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4132   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4133   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4134 
4135   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4136 
4137   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4138   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4139 
4140   SDValue Parts[2] = {Lo, Hi};
4141   return DAG.getMergeValues(Parts, DL);
4142 }
4143 
4144 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4145                                                   bool IsSRA) const {
4146   SDLoc DL(Op);
4147   SDValue Lo = Op.getOperand(0);
4148   SDValue Hi = Op.getOperand(1);
4149   SDValue Shamt = Op.getOperand(2);
4150   EVT VT = Lo.getValueType();
4151 
4152   // SRA expansion:
4153   //   if Shamt-XLEN < 0: // Shamt < XLEN
4154   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4155   //     Hi = Hi >>s Shamt
4156   //   else:
4157   //     Lo = Hi >>s (Shamt-XLEN);
4158   //     Hi = Hi >>s (XLEN-1)
4159   //
4160   // SRL expansion:
4161   //   if Shamt-XLEN < 0: // Shamt < XLEN
4162   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4163   //     Hi = Hi >>u Shamt
4164   //   else:
4165   //     Lo = Hi >>u (Shamt-XLEN);
4166   //     Hi = 0;
4167 
4168   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4169 
4170   SDValue Zero = DAG.getConstant(0, DL, VT);
4171   SDValue One = DAG.getConstant(1, DL, VT);
4172   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4173   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4174   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4175   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4176 
4177   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4178   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4179   SDValue ShiftLeftHi =
4180       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4181   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4182   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4183   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4184   SDValue HiFalse =
4185       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4186 
4187   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4188 
4189   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4190   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4191 
4192   SDValue Parts[2] = {Lo, Hi};
4193   return DAG.getMergeValues(Parts, DL);
4194 }
4195 
4196 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4197 // legal equivalently-sized i8 type, so we can use that as a go-between.
4198 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4199                                                   SelectionDAG &DAG) const {
4200   SDLoc DL(Op);
4201   MVT VT = Op.getSimpleValueType();
4202   SDValue SplatVal = Op.getOperand(0);
4203   // All-zeros or all-ones splats are handled specially.
4204   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4205     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4206     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4207   }
4208   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4209     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4210     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4211   }
4212   MVT XLenVT = Subtarget.getXLenVT();
4213   assert(SplatVal.getValueType() == XLenVT &&
4214          "Unexpected type for i1 splat value");
4215   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4216   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4217                          DAG.getConstant(1, DL, XLenVT));
4218   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4219   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4220   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4221 }
4222 
4223 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4224 // illegal (currently only vXi64 RV32).
4225 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4226 // them to VMV_V_X_VL.
4227 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4228                                                      SelectionDAG &DAG) const {
4229   SDLoc DL(Op);
4230   MVT VecVT = Op.getSimpleValueType();
4231   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4232          "Unexpected SPLAT_VECTOR_PARTS lowering");
4233 
4234   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4235   SDValue Lo = Op.getOperand(0);
4236   SDValue Hi = Op.getOperand(1);
4237 
4238   if (VecVT.isFixedLengthVector()) {
4239     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4240     SDLoc DL(Op);
4241     SDValue Mask, VL;
4242     std::tie(Mask, VL) =
4243         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4244 
4245     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
4246     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4247   }
4248 
4249   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4250     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4251     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4252     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4253     // node in order to try and match RVV vector/scalar instructions.
4254     if ((LoC >> 31) == HiC)
4255       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, Lo,
4256                          DAG.getRegister(RISCV::X0, MVT::i32));
4257   }
4258 
4259   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4260   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4261       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4262       Hi.getConstantOperandVal(1) == 31)
4263     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, Lo,
4264                        DAG.getRegister(RISCV::X0, MVT::i32));
4265 
4266   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4267   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
4268                      DAG.getRegister(RISCV::X0, MVT::i32));
4269 }
4270 
4271 // Custom-lower extensions from mask vectors by using a vselect either with 1
4272 // for zero/any-extension or -1 for sign-extension:
4273 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4274 // Note that any-extension is lowered identically to zero-extension.
4275 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4276                                                 int64_t ExtTrueVal) const {
4277   SDLoc DL(Op);
4278   MVT VecVT = Op.getSimpleValueType();
4279   SDValue Src = Op.getOperand(0);
4280   // Only custom-lower extensions from mask types
4281   assert(Src.getValueType().isVector() &&
4282          Src.getValueType().getVectorElementType() == MVT::i1);
4283 
4284   MVT XLenVT = Subtarget.getXLenVT();
4285   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4286   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4287 
4288   if (VecVT.isScalableVector()) {
4289     // Be careful not to introduce illegal scalar types at this stage, and be
4290     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4291     // illegal and must be expanded. Since we know that the constants are
4292     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4293     bool IsRV32E64 =
4294         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4295 
4296     if (!IsRV32E64) {
4297       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4298       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4299     } else {
4300       SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatZero,
4301                               DAG.getRegister(RISCV::X0, XLenVT));
4302       SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, SplatTrueVal,
4303                                  DAG.getRegister(RISCV::X0, XLenVT));
4304     }
4305 
4306     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4307   }
4308 
4309   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4310   MVT I1ContainerVT =
4311       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4312 
4313   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4314 
4315   SDValue Mask, VL;
4316   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4317 
4318   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
4319   SplatTrueVal =
4320       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
4321   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4322                                SplatTrueVal, SplatZero, VL);
4323 
4324   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4325 }
4326 
4327 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4328     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4329   MVT ExtVT = Op.getSimpleValueType();
4330   // Only custom-lower extensions from fixed-length vector types.
4331   if (!ExtVT.isFixedLengthVector())
4332     return Op;
4333   MVT VT = Op.getOperand(0).getSimpleValueType();
4334   // Grab the canonical container type for the extended type. Infer the smaller
4335   // type from that to ensure the same number of vector elements, as we know
4336   // the LMUL will be sufficient to hold the smaller type.
4337   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4338   // Get the extended container type manually to ensure the same number of
4339   // vector elements between source and dest.
4340   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4341                                      ContainerExtVT.getVectorElementCount());
4342 
4343   SDValue Op1 =
4344       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4345 
4346   SDLoc DL(Op);
4347   SDValue Mask, VL;
4348   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4349 
4350   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4351 
4352   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4353 }
4354 
4355 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4356 // setcc operation:
4357 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4358 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4359                                                   SelectionDAG &DAG) const {
4360   SDLoc DL(Op);
4361   EVT MaskVT = Op.getValueType();
4362   // Only expect to custom-lower truncations to mask types
4363   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4364          "Unexpected type for vector mask lowering");
4365   SDValue Src = Op.getOperand(0);
4366   MVT VecVT = Src.getSimpleValueType();
4367 
4368   // If this is a fixed vector, we need to convert it to a scalable vector.
4369   MVT ContainerVT = VecVT;
4370   if (VecVT.isFixedLengthVector()) {
4371     ContainerVT = getContainerForFixedLengthVector(VecVT);
4372     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4373   }
4374 
4375   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4376   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4377 
4378   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
4379   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
4380 
4381   if (VecVT.isScalableVector()) {
4382     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4383     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4384   }
4385 
4386   SDValue Mask, VL;
4387   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4388 
4389   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4390   SDValue Trunc =
4391       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4392   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4393                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4394   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4395 }
4396 
4397 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4398 // first position of a vector, and that vector is slid up to the insert index.
4399 // By limiting the active vector length to index+1 and merging with the
4400 // original vector (with an undisturbed tail policy for elements >= VL), we
4401 // achieve the desired result of leaving all elements untouched except the one
4402 // at VL-1, which is replaced with the desired value.
4403 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4404                                                     SelectionDAG &DAG) const {
4405   SDLoc DL(Op);
4406   MVT VecVT = Op.getSimpleValueType();
4407   SDValue Vec = Op.getOperand(0);
4408   SDValue Val = Op.getOperand(1);
4409   SDValue Idx = Op.getOperand(2);
4410 
4411   if (VecVT.getVectorElementType() == MVT::i1) {
4412     // FIXME: For now we just promote to an i8 vector and insert into that,
4413     // but this is probably not optimal.
4414     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4415     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4416     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4417     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4418   }
4419 
4420   MVT ContainerVT = VecVT;
4421   // If the operand is a fixed-length vector, convert to a scalable one.
4422   if (VecVT.isFixedLengthVector()) {
4423     ContainerVT = getContainerForFixedLengthVector(VecVT);
4424     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4425   }
4426 
4427   MVT XLenVT = Subtarget.getXLenVT();
4428 
4429   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4430   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4431   // Even i64-element vectors on RV32 can be lowered without scalar
4432   // legalization if the most-significant 32 bits of the value are not affected
4433   // by the sign-extension of the lower 32 bits.
4434   // TODO: We could also catch sign extensions of a 32-bit value.
4435   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4436     const auto *CVal = cast<ConstantSDNode>(Val);
4437     if (isInt<32>(CVal->getSExtValue())) {
4438       IsLegalInsert = true;
4439       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4440     }
4441   }
4442 
4443   SDValue Mask, VL;
4444   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4445 
4446   SDValue ValInVec;
4447 
4448   if (IsLegalInsert) {
4449     unsigned Opc =
4450         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4451     if (isNullConstant(Idx)) {
4452       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4453       if (!VecVT.isFixedLengthVector())
4454         return Vec;
4455       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4456     }
4457     ValInVec =
4458         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4459   } else {
4460     // On RV32, i64-element vectors must be specially handled to place the
4461     // value at element 0, by using two vslide1up instructions in sequence on
4462     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4463     // this.
4464     SDValue One = DAG.getConstant(1, DL, XLenVT);
4465     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4466     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4467     MVT I32ContainerVT =
4468         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4469     SDValue I32Mask =
4470         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4471     // Limit the active VL to two.
4472     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4473     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4474     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4475     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
4476                            InsertI64VL);
4477     // First slide in the hi value, then the lo in underneath it.
4478     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4479                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4480                            I32Mask, InsertI64VL);
4481     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4482                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4483                            I32Mask, InsertI64VL);
4484     // Bitcast back to the right container type.
4485     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4486   }
4487 
4488   // Now that the value is in a vector, slide it into position.
4489   SDValue InsertVL =
4490       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4491   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4492                                 ValInVec, Idx, Mask, InsertVL);
4493   if (!VecVT.isFixedLengthVector())
4494     return Slideup;
4495   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4496 }
4497 
4498 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4499 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4500 // types this is done using VMV_X_S to allow us to glean information about the
4501 // sign bits of the result.
4502 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4503                                                      SelectionDAG &DAG) const {
4504   SDLoc DL(Op);
4505   SDValue Idx = Op.getOperand(1);
4506   SDValue Vec = Op.getOperand(0);
4507   EVT EltVT = Op.getValueType();
4508   MVT VecVT = Vec.getSimpleValueType();
4509   MVT XLenVT = Subtarget.getXLenVT();
4510 
4511   if (VecVT.getVectorElementType() == MVT::i1) {
4512     if (VecVT.isFixedLengthVector()) {
4513       unsigned NumElts = VecVT.getVectorNumElements();
4514       if (NumElts >= 8) {
4515         MVT WideEltVT;
4516         unsigned WidenVecLen;
4517         SDValue ExtractElementIdx;
4518         SDValue ExtractBitIdx;
4519         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4520         MVT LargestEltVT = MVT::getIntegerVT(
4521             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4522         if (NumElts <= LargestEltVT.getSizeInBits()) {
4523           assert(isPowerOf2_32(NumElts) &&
4524                  "the number of elements should be power of 2");
4525           WideEltVT = MVT::getIntegerVT(NumElts);
4526           WidenVecLen = 1;
4527           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4528           ExtractBitIdx = Idx;
4529         } else {
4530           WideEltVT = LargestEltVT;
4531           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4532           // extract element index = index / element width
4533           ExtractElementIdx = DAG.getNode(
4534               ISD::SRL, DL, XLenVT, Idx,
4535               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4536           // mask bit index = index % element width
4537           ExtractBitIdx = DAG.getNode(
4538               ISD::AND, DL, XLenVT, Idx,
4539               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4540         }
4541         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4542         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4543         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4544                                          Vec, ExtractElementIdx);
4545         // Extract the bit from GPR.
4546         SDValue ShiftRight =
4547             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4548         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4549                            DAG.getConstant(1, DL, XLenVT));
4550       }
4551     }
4552     // Otherwise, promote to an i8 vector and extract from that.
4553     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4554     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4555     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4556   }
4557 
4558   // If this is a fixed vector, we need to convert it to a scalable vector.
4559   MVT ContainerVT = VecVT;
4560   if (VecVT.isFixedLengthVector()) {
4561     ContainerVT = getContainerForFixedLengthVector(VecVT);
4562     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4563   }
4564 
4565   // If the index is 0, the vector is already in the right position.
4566   if (!isNullConstant(Idx)) {
4567     // Use a VL of 1 to avoid processing more elements than we need.
4568     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4569     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4570     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4571     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4572                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4573   }
4574 
4575   if (!EltVT.isInteger()) {
4576     // Floating-point extracts are handled in TableGen.
4577     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4578                        DAG.getConstant(0, DL, XLenVT));
4579   }
4580 
4581   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4582   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4583 }
4584 
4585 // Some RVV intrinsics may claim that they want an integer operand to be
4586 // promoted or expanded.
4587 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4588                                           const RISCVSubtarget &Subtarget) {
4589   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4590           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4591          "Unexpected opcode");
4592 
4593   if (!Subtarget.hasVInstructions())
4594     return SDValue();
4595 
4596   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4597   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4598   SDLoc DL(Op);
4599 
4600   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4601       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4602   if (!II || !II->hasSplatOperand())
4603     return SDValue();
4604 
4605   unsigned SplatOp = II->SplatOperand + 1 + HasChain;
4606   assert(SplatOp < Op.getNumOperands());
4607 
4608   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4609   SDValue &ScalarOp = Operands[SplatOp];
4610   MVT OpVT = ScalarOp.getSimpleValueType();
4611   MVT XLenVT = Subtarget.getXLenVT();
4612 
4613   // If this isn't a scalar, or its type is XLenVT we're done.
4614   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4615     return SDValue();
4616 
4617   // Simplest case is that the operand needs to be promoted to XLenVT.
4618   if (OpVT.bitsLT(XLenVT)) {
4619     // If the operand is a constant, sign extend to increase our chances
4620     // of being able to use a .vi instruction. ANY_EXTEND would become a
4621     // a zero extend and the simm5 check in isel would fail.
4622     // FIXME: Should we ignore the upper bits in isel instead?
4623     unsigned ExtOpc =
4624         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4625     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4626     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4627   }
4628 
4629   // Use the previous operand to get the vXi64 VT. The result might be a mask
4630   // VT for compares. Using the previous operand assumes that the previous
4631   // operand will never have a smaller element size than a scalar operand and
4632   // that a widening operation never uses SEW=64.
4633   // NOTE: If this fails the below assert, we can probably just find the
4634   // element count from any operand or result and use it to construct the VT.
4635   assert(II->SplatOperand > 0 && "Unexpected splat operand!");
4636   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4637 
4638   // The more complex case is when the scalar is larger than XLenVT.
4639   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4640          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4641 
4642   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4643   // on the instruction to sign-extend since SEW>XLEN.
4644   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4645     if (isInt<32>(CVal->getSExtValue())) {
4646       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4647       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4648     }
4649   }
4650 
4651   // We need to convert the scalar to a splat vector.
4652   // FIXME: Can we implicitly truncate the scalar if it is known to
4653   // be sign extended?
4654   SDValue VL = getVLOperand(Op);
4655   assert(VL.getValueType() == XLenVT);
4656   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4657   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4658 }
4659 
4660 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4661                                                      SelectionDAG &DAG) const {
4662   unsigned IntNo = Op.getConstantOperandVal(0);
4663   SDLoc DL(Op);
4664   MVT XLenVT = Subtarget.getXLenVT();
4665 
4666   switch (IntNo) {
4667   default:
4668     break; // Don't custom lower most intrinsics.
4669   case Intrinsic::thread_pointer: {
4670     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4671     return DAG.getRegister(RISCV::X4, PtrVT);
4672   }
4673   case Intrinsic::riscv_orc_b:
4674   case Intrinsic::riscv_brev8: {
4675     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4676     unsigned Opc =
4677         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4678     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4679                        DAG.getConstant(7, DL, XLenVT));
4680   }
4681   case Intrinsic::riscv_grev:
4682   case Intrinsic::riscv_gorc: {
4683     unsigned Opc =
4684         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4685     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4686   }
4687   case Intrinsic::riscv_zip:
4688   case Intrinsic::riscv_unzip: {
4689     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4690     // For i32 the immdiate is 15. For i64 the immediate is 31.
4691     unsigned Opc =
4692         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4693     unsigned BitWidth = Op.getValueSizeInBits();
4694     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4695     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4696                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4697   }
4698   case Intrinsic::riscv_shfl:
4699   case Intrinsic::riscv_unshfl: {
4700     unsigned Opc =
4701         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4702     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4703   }
4704   case Intrinsic::riscv_bcompress:
4705   case Intrinsic::riscv_bdecompress: {
4706     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4707                                                        : RISCVISD::BDECOMPRESS;
4708     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4709   }
4710   case Intrinsic::riscv_bfp:
4711     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4712                        Op.getOperand(2));
4713   case Intrinsic::riscv_fsl:
4714     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4715                        Op.getOperand(2), Op.getOperand(3));
4716   case Intrinsic::riscv_fsr:
4717     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4718                        Op.getOperand(2), Op.getOperand(3));
4719   case Intrinsic::riscv_vmv_x_s:
4720     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4721     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4722                        Op.getOperand(1));
4723   case Intrinsic::riscv_vmv_v_x:
4724     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4725                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4726   case Intrinsic::riscv_vfmv_v_f:
4727     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4728                        Op.getOperand(1), Op.getOperand(2));
4729   case Intrinsic::riscv_vmv_s_x: {
4730     SDValue Scalar = Op.getOperand(2);
4731 
4732     if (Scalar.getValueType().bitsLE(XLenVT)) {
4733       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4734       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4735                          Op.getOperand(1), Scalar, Op.getOperand(3));
4736     }
4737 
4738     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4739 
4740     // This is an i64 value that lives in two scalar registers. We have to
4741     // insert this in a convoluted way. First we build vXi64 splat containing
4742     // the/ two values that we assemble using some bit math. Next we'll use
4743     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4744     // to merge element 0 from our splat into the source vector.
4745     // FIXME: This is probably not the best way to do this, but it is
4746     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4747     // point.
4748     //   sw lo, (a0)
4749     //   sw hi, 4(a0)
4750     //   vlse vX, (a0)
4751     //
4752     //   vid.v      vVid
4753     //   vmseq.vx   mMask, vVid, 0
4754     //   vmerge.vvm vDest, vSrc, vVal, mMask
4755     MVT VT = Op.getSimpleValueType();
4756     SDValue Vec = Op.getOperand(1);
4757     SDValue VL = getVLOperand(Op);
4758 
4759     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4760     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4761                                       DAG.getConstant(0, DL, MVT::i32), VL);
4762 
4763     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4764     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4765     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4766     SDValue SelectCond =
4767         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4768                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4769     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4770                        Vec, VL);
4771   }
4772   case Intrinsic::riscv_vslide1up:
4773   case Intrinsic::riscv_vslide1down:
4774   case Intrinsic::riscv_vslide1up_mask:
4775   case Intrinsic::riscv_vslide1down_mask: {
4776     // We need to special case these when the scalar is larger than XLen.
4777     unsigned NumOps = Op.getNumOperands();
4778     bool IsMasked = NumOps == 7;
4779     SDValue Scalar = Op.getOperand(3);
4780     if (Scalar.getValueType().bitsLE(XLenVT))
4781       break;
4782 
4783     // Splatting a sign extended constant is fine.
4784     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4785       if (isInt<32>(CVal->getSExtValue()))
4786         break;
4787 
4788     MVT VT = Op.getSimpleValueType();
4789     assert(VT.getVectorElementType() == MVT::i64 &&
4790            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4791 
4792     // Convert the vector source to the equivalent nxvXi32 vector.
4793     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4794     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(2));
4795 
4796     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4797                                    DAG.getConstant(0, DL, XLenVT));
4798     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4799                                    DAG.getConstant(1, DL, XLenVT));
4800 
4801     // Double the VL since we halved SEW.
4802     SDValue VL = getVLOperand(Op);
4803     SDValue I32VL =
4804         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4805 
4806     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4807     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4808 
4809     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4810     // instructions.
4811     SDValue Passthru = DAG.getBitcast(I32VT, Op.getOperand(1));
4812     if (!IsMasked) {
4813       if (IntNo == Intrinsic::riscv_vslide1up) {
4814         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4815                           ScalarHi, I32Mask, I32VL);
4816         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4817                           ScalarLo, I32Mask, I32VL);
4818       } else {
4819         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4820                           ScalarLo, I32Mask, I32VL);
4821         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4822                           ScalarHi, I32Mask, I32VL);
4823       }
4824     } else {
4825       // TODO Those VSLIDE1 could be TAMA because we use vmerge to select
4826       // maskedoff
4827       SDValue Undef = DAG.getUNDEF(I32VT);
4828       if (IntNo == Intrinsic::riscv_vslide1up_mask) {
4829         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4830                           ScalarHi, I32Mask, I32VL);
4831         Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Undef, Vec,
4832                           ScalarLo, I32Mask, I32VL);
4833       } else {
4834         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4835                           ScalarLo, I32Mask, I32VL);
4836         Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Undef, Vec,
4837                           ScalarHi, I32Mask, I32VL);
4838       }
4839     }
4840 
4841     // Convert back to nxvXi64.
4842     Vec = DAG.getBitcast(VT, Vec);
4843 
4844     if (!IsMasked)
4845       return Vec;
4846     // Apply mask after the operation.
4847     SDValue Mask = Op.getOperand(NumOps - 3);
4848     SDValue MaskedOff = Op.getOperand(1);
4849     // Assume Policy operand is the last operand.
4850     uint64_t Policy = Op.getConstantOperandVal(NumOps - 1);
4851     // We don't need to select maskedoff if it's undef.
4852     if (MaskedOff.isUndef())
4853       return Vec;
4854     // TAMU
4855     if (Policy == RISCVII::TAIL_AGNOSTIC)
4856       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4857                          VL);
4858     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4859     // It's fine because vmerge does not care mask policy.
4860     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4861   }
4862   }
4863 
4864   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4865 }
4866 
4867 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4868                                                     SelectionDAG &DAG) const {
4869   unsigned IntNo = Op.getConstantOperandVal(1);
4870   switch (IntNo) {
4871   default:
4872     break;
4873   case Intrinsic::riscv_masked_strided_load: {
4874     SDLoc DL(Op);
4875     MVT XLenVT = Subtarget.getXLenVT();
4876 
4877     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4878     // the selection of the masked intrinsics doesn't do this for us.
4879     SDValue Mask = Op.getOperand(5);
4880     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4881 
4882     MVT VT = Op->getSimpleValueType(0);
4883     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4884 
4885     SDValue PassThru = Op.getOperand(2);
4886     if (!IsUnmasked) {
4887       MVT MaskVT =
4888           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4889       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4890       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4891     }
4892 
4893     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4894 
4895     SDValue IntID = DAG.getTargetConstant(
4896         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4897         XLenVT);
4898 
4899     auto *Load = cast<MemIntrinsicSDNode>(Op);
4900     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4901     if (IsUnmasked)
4902       Ops.push_back(DAG.getUNDEF(ContainerVT));
4903     else
4904       Ops.push_back(PassThru);
4905     Ops.push_back(Op.getOperand(3)); // Ptr
4906     Ops.push_back(Op.getOperand(4)); // Stride
4907     if (!IsUnmasked)
4908       Ops.push_back(Mask);
4909     Ops.push_back(VL);
4910     if (!IsUnmasked) {
4911       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4912       Ops.push_back(Policy);
4913     }
4914 
4915     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4916     SDValue Result =
4917         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4918                                 Load->getMemoryVT(), Load->getMemOperand());
4919     SDValue Chain = Result.getValue(1);
4920     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4921     return DAG.getMergeValues({Result, Chain}, DL);
4922   }
4923   }
4924 
4925   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4926 }
4927 
4928 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4929                                                  SelectionDAG &DAG) const {
4930   unsigned IntNo = Op.getConstantOperandVal(1);
4931   switch (IntNo) {
4932   default:
4933     break;
4934   case Intrinsic::riscv_masked_strided_store: {
4935     SDLoc DL(Op);
4936     MVT XLenVT = Subtarget.getXLenVT();
4937 
4938     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4939     // the selection of the masked intrinsics doesn't do this for us.
4940     SDValue Mask = Op.getOperand(5);
4941     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4942 
4943     SDValue Val = Op.getOperand(2);
4944     MVT VT = Val.getSimpleValueType();
4945     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4946 
4947     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4948     if (!IsUnmasked) {
4949       MVT MaskVT =
4950           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4951       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4952     }
4953 
4954     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4955 
4956     SDValue IntID = DAG.getTargetConstant(
4957         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4958         XLenVT);
4959 
4960     auto *Store = cast<MemIntrinsicSDNode>(Op);
4961     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4962     Ops.push_back(Val);
4963     Ops.push_back(Op.getOperand(3)); // Ptr
4964     Ops.push_back(Op.getOperand(4)); // Stride
4965     if (!IsUnmasked)
4966       Ops.push_back(Mask);
4967     Ops.push_back(VL);
4968 
4969     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4970                                    Ops, Store->getMemoryVT(),
4971                                    Store->getMemOperand());
4972   }
4973   }
4974 
4975   return SDValue();
4976 }
4977 
4978 static MVT getLMUL1VT(MVT VT) {
4979   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4980          "Unexpected vector MVT");
4981   return MVT::getScalableVectorVT(
4982       VT.getVectorElementType(),
4983       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4984 }
4985 
4986 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4987   switch (ISDOpcode) {
4988   default:
4989     llvm_unreachable("Unhandled reduction");
4990   case ISD::VECREDUCE_ADD:
4991     return RISCVISD::VECREDUCE_ADD_VL;
4992   case ISD::VECREDUCE_UMAX:
4993     return RISCVISD::VECREDUCE_UMAX_VL;
4994   case ISD::VECREDUCE_SMAX:
4995     return RISCVISD::VECREDUCE_SMAX_VL;
4996   case ISD::VECREDUCE_UMIN:
4997     return RISCVISD::VECREDUCE_UMIN_VL;
4998   case ISD::VECREDUCE_SMIN:
4999     return RISCVISD::VECREDUCE_SMIN_VL;
5000   case ISD::VECREDUCE_AND:
5001     return RISCVISD::VECREDUCE_AND_VL;
5002   case ISD::VECREDUCE_OR:
5003     return RISCVISD::VECREDUCE_OR_VL;
5004   case ISD::VECREDUCE_XOR:
5005     return RISCVISD::VECREDUCE_XOR_VL;
5006   }
5007 }
5008 
5009 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5010                                                          SelectionDAG &DAG,
5011                                                          bool IsVP) const {
5012   SDLoc DL(Op);
5013   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5014   MVT VecVT = Vec.getSimpleValueType();
5015   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5016           Op.getOpcode() == ISD::VECREDUCE_OR ||
5017           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5018           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5019           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5020           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5021          "Unexpected reduction lowering");
5022 
5023   MVT XLenVT = Subtarget.getXLenVT();
5024   assert(Op.getValueType() == XLenVT &&
5025          "Expected reduction output to be legalized to XLenVT");
5026 
5027   MVT ContainerVT = VecVT;
5028   if (VecVT.isFixedLengthVector()) {
5029     ContainerVT = getContainerForFixedLengthVector(VecVT);
5030     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5031   }
5032 
5033   SDValue Mask, VL;
5034   if (IsVP) {
5035     Mask = Op.getOperand(2);
5036     VL = Op.getOperand(3);
5037   } else {
5038     std::tie(Mask, VL) =
5039         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5040   }
5041 
5042   unsigned BaseOpc;
5043   ISD::CondCode CC;
5044   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5045 
5046   switch (Op.getOpcode()) {
5047   default:
5048     llvm_unreachable("Unhandled reduction");
5049   case ISD::VECREDUCE_AND:
5050   case ISD::VP_REDUCE_AND: {
5051     // vcpop ~x == 0
5052     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5053     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5054     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5055     CC = ISD::SETEQ;
5056     BaseOpc = ISD::AND;
5057     break;
5058   }
5059   case ISD::VECREDUCE_OR:
5060   case ISD::VP_REDUCE_OR:
5061     // vcpop x != 0
5062     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5063     CC = ISD::SETNE;
5064     BaseOpc = ISD::OR;
5065     break;
5066   case ISD::VECREDUCE_XOR:
5067   case ISD::VP_REDUCE_XOR: {
5068     // ((vcpop x) & 1) != 0
5069     SDValue One = DAG.getConstant(1, DL, XLenVT);
5070     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5071     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5072     CC = ISD::SETNE;
5073     BaseOpc = ISD::XOR;
5074     break;
5075   }
5076   }
5077 
5078   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5079 
5080   if (!IsVP)
5081     return SetCC;
5082 
5083   // Now include the start value in the operation.
5084   // Note that we must return the start value when no elements are operated
5085   // upon. The vcpop instructions we've emitted in each case above will return
5086   // 0 for an inactive vector, and so we've already received the neutral value:
5087   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5088   // can simply include the start value.
5089   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5090 }
5091 
5092 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5093                                             SelectionDAG &DAG) const {
5094   SDLoc DL(Op);
5095   SDValue Vec = Op.getOperand(0);
5096   EVT VecEVT = Vec.getValueType();
5097 
5098   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5099 
5100   // Due to ordering in legalize types we may have a vector type that needs to
5101   // be split. Do that manually so we can get down to a legal type.
5102   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5103          TargetLowering::TypeSplitVector) {
5104     SDValue Lo, Hi;
5105     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5106     VecEVT = Lo.getValueType();
5107     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5108   }
5109 
5110   // TODO: The type may need to be widened rather than split. Or widened before
5111   // it can be split.
5112   if (!isTypeLegal(VecEVT))
5113     return SDValue();
5114 
5115   MVT VecVT = VecEVT.getSimpleVT();
5116   MVT VecEltVT = VecVT.getVectorElementType();
5117   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5118 
5119   MVT ContainerVT = VecVT;
5120   if (VecVT.isFixedLengthVector()) {
5121     ContainerVT = getContainerForFixedLengthVector(VecVT);
5122     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5123   }
5124 
5125   MVT M1VT = getLMUL1VT(ContainerVT);
5126   MVT XLenVT = Subtarget.getXLenVT();
5127 
5128   SDValue Mask, VL;
5129   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5130 
5131   SDValue NeutralElem =
5132       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5133   SDValue IdentitySplat = lowerScalarSplat(
5134       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
5135   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5136                                   IdentitySplat, Mask, VL);
5137   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5138                              DAG.getConstant(0, DL, XLenVT));
5139   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5140 }
5141 
5142 // Given a reduction op, this function returns the matching reduction opcode,
5143 // the vector SDValue and the scalar SDValue required to lower this to a
5144 // RISCVISD node.
5145 static std::tuple<unsigned, SDValue, SDValue>
5146 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5147   SDLoc DL(Op);
5148   auto Flags = Op->getFlags();
5149   unsigned Opcode = Op.getOpcode();
5150   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5151   switch (Opcode) {
5152   default:
5153     llvm_unreachable("Unhandled reduction");
5154   case ISD::VECREDUCE_FADD: {
5155     // Use positive zero if we can. It is cheaper to materialize.
5156     SDValue Zero =
5157         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5158     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5159   }
5160   case ISD::VECREDUCE_SEQ_FADD:
5161     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5162                            Op.getOperand(0));
5163   case ISD::VECREDUCE_FMIN:
5164     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5165                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5166   case ISD::VECREDUCE_FMAX:
5167     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5168                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5169   }
5170 }
5171 
5172 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5173                                               SelectionDAG &DAG) const {
5174   SDLoc DL(Op);
5175   MVT VecEltVT = Op.getSimpleValueType();
5176 
5177   unsigned RVVOpcode;
5178   SDValue VectorVal, ScalarVal;
5179   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5180       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5181   MVT VecVT = VectorVal.getSimpleValueType();
5182 
5183   MVT ContainerVT = VecVT;
5184   if (VecVT.isFixedLengthVector()) {
5185     ContainerVT = getContainerForFixedLengthVector(VecVT);
5186     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5187   }
5188 
5189   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5190   MVT XLenVT = Subtarget.getXLenVT();
5191 
5192   SDValue Mask, VL;
5193   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5194 
5195   SDValue ScalarSplat = lowerScalarSplat(
5196       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
5197   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5198                                   VectorVal, ScalarSplat, Mask, VL);
5199   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5200                      DAG.getConstant(0, DL, XLenVT));
5201 }
5202 
5203 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5204   switch (ISDOpcode) {
5205   default:
5206     llvm_unreachable("Unhandled reduction");
5207   case ISD::VP_REDUCE_ADD:
5208     return RISCVISD::VECREDUCE_ADD_VL;
5209   case ISD::VP_REDUCE_UMAX:
5210     return RISCVISD::VECREDUCE_UMAX_VL;
5211   case ISD::VP_REDUCE_SMAX:
5212     return RISCVISD::VECREDUCE_SMAX_VL;
5213   case ISD::VP_REDUCE_UMIN:
5214     return RISCVISD::VECREDUCE_UMIN_VL;
5215   case ISD::VP_REDUCE_SMIN:
5216     return RISCVISD::VECREDUCE_SMIN_VL;
5217   case ISD::VP_REDUCE_AND:
5218     return RISCVISD::VECREDUCE_AND_VL;
5219   case ISD::VP_REDUCE_OR:
5220     return RISCVISD::VECREDUCE_OR_VL;
5221   case ISD::VP_REDUCE_XOR:
5222     return RISCVISD::VECREDUCE_XOR_VL;
5223   case ISD::VP_REDUCE_FADD:
5224     return RISCVISD::VECREDUCE_FADD_VL;
5225   case ISD::VP_REDUCE_SEQ_FADD:
5226     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5227   case ISD::VP_REDUCE_FMAX:
5228     return RISCVISD::VECREDUCE_FMAX_VL;
5229   case ISD::VP_REDUCE_FMIN:
5230     return RISCVISD::VECREDUCE_FMIN_VL;
5231   }
5232 }
5233 
5234 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5235                                            SelectionDAG &DAG) const {
5236   SDLoc DL(Op);
5237   SDValue Vec = Op.getOperand(1);
5238   EVT VecEVT = Vec.getValueType();
5239 
5240   // TODO: The type may need to be widened rather than split. Or widened before
5241   // it can be split.
5242   if (!isTypeLegal(VecEVT))
5243     return SDValue();
5244 
5245   MVT VecVT = VecEVT.getSimpleVT();
5246   MVT VecEltVT = VecVT.getVectorElementType();
5247   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5248 
5249   MVT ContainerVT = VecVT;
5250   if (VecVT.isFixedLengthVector()) {
5251     ContainerVT = getContainerForFixedLengthVector(VecVT);
5252     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5253   }
5254 
5255   SDValue VL = Op.getOperand(3);
5256   SDValue Mask = Op.getOperand(2);
5257 
5258   MVT M1VT = getLMUL1VT(ContainerVT);
5259   MVT XLenVT = Subtarget.getXLenVT();
5260   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5261 
5262   SDValue StartSplat =
5263       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
5264                        DL, DAG, Subtarget);
5265   SDValue Reduction =
5266       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5267   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5268                              DAG.getConstant(0, DL, XLenVT));
5269   if (!VecVT.isInteger())
5270     return Elt0;
5271   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5272 }
5273 
5274 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5275                                                    SelectionDAG &DAG) const {
5276   SDValue Vec = Op.getOperand(0);
5277   SDValue SubVec = Op.getOperand(1);
5278   MVT VecVT = Vec.getSimpleValueType();
5279   MVT SubVecVT = SubVec.getSimpleValueType();
5280 
5281   SDLoc DL(Op);
5282   MVT XLenVT = Subtarget.getXLenVT();
5283   unsigned OrigIdx = Op.getConstantOperandVal(2);
5284   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5285 
5286   // We don't have the ability to slide mask vectors up indexed by their i1
5287   // elements; the smallest we can do is i8. Often we are able to bitcast to
5288   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5289   // into a scalable one, we might not necessarily have enough scalable
5290   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5291   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5292       (OrigIdx != 0 || !Vec.isUndef())) {
5293     if (VecVT.getVectorMinNumElements() >= 8 &&
5294         SubVecVT.getVectorMinNumElements() >= 8) {
5295       assert(OrigIdx % 8 == 0 && "Invalid index");
5296       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5297              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5298              "Unexpected mask vector lowering");
5299       OrigIdx /= 8;
5300       SubVecVT =
5301           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5302                            SubVecVT.isScalableVector());
5303       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5304                                VecVT.isScalableVector());
5305       Vec = DAG.getBitcast(VecVT, Vec);
5306       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5307     } else {
5308       // We can't slide this mask vector up indexed by its i1 elements.
5309       // This poses a problem when we wish to insert a scalable vector which
5310       // can't be re-expressed as a larger type. Just choose the slow path and
5311       // extend to a larger type, then truncate back down.
5312       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5313       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5314       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5315       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5316       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5317                         Op.getOperand(2));
5318       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5319       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5320     }
5321   }
5322 
5323   // If the subvector vector is a fixed-length type, we cannot use subregister
5324   // manipulation to simplify the codegen; we don't know which register of a
5325   // LMUL group contains the specific subvector as we only know the minimum
5326   // register size. Therefore we must slide the vector group up the full
5327   // amount.
5328   if (SubVecVT.isFixedLengthVector()) {
5329     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5330       return Op;
5331     MVT ContainerVT = VecVT;
5332     if (VecVT.isFixedLengthVector()) {
5333       ContainerVT = getContainerForFixedLengthVector(VecVT);
5334       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5335     }
5336     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5337                          DAG.getUNDEF(ContainerVT), SubVec,
5338                          DAG.getConstant(0, DL, XLenVT));
5339     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5340       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5341       return DAG.getBitcast(Op.getValueType(), SubVec);
5342     }
5343     SDValue Mask =
5344         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5345     // Set the vector length to only the number of elements we care about. Note
5346     // that for slideup this includes the offset.
5347     SDValue VL =
5348         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5349     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5350     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5351                                   SubVec, SlideupAmt, Mask, VL);
5352     if (VecVT.isFixedLengthVector())
5353       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5354     return DAG.getBitcast(Op.getValueType(), Slideup);
5355   }
5356 
5357   unsigned SubRegIdx, RemIdx;
5358   std::tie(SubRegIdx, RemIdx) =
5359       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5360           VecVT, SubVecVT, OrigIdx, TRI);
5361 
5362   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5363   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5364                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5365                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5366 
5367   // 1. If the Idx has been completely eliminated and this subvector's size is
5368   // a vector register or a multiple thereof, or the surrounding elements are
5369   // undef, then this is a subvector insert which naturally aligns to a vector
5370   // register. These can easily be handled using subregister manipulation.
5371   // 2. If the subvector is smaller than a vector register, then the insertion
5372   // must preserve the undisturbed elements of the register. We do this by
5373   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5374   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5375   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5376   // LMUL=1 type back into the larger vector (resolving to another subregister
5377   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5378   // to avoid allocating a large register group to hold our subvector.
5379   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5380     return Op;
5381 
5382   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5383   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5384   // (in our case undisturbed). This means we can set up a subvector insertion
5385   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5386   // size of the subvector.
5387   MVT InterSubVT = VecVT;
5388   SDValue AlignedExtract = Vec;
5389   unsigned AlignedIdx = OrigIdx - RemIdx;
5390   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5391     InterSubVT = getLMUL1VT(VecVT);
5392     // Extract a subvector equal to the nearest full vector register type. This
5393     // should resolve to a EXTRACT_SUBREG instruction.
5394     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5395                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5396   }
5397 
5398   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5399   // For scalable vectors this must be further multiplied by vscale.
5400   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5401 
5402   SDValue Mask, VL;
5403   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5404 
5405   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5406   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5407   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5408   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5409 
5410   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5411                        DAG.getUNDEF(InterSubVT), SubVec,
5412                        DAG.getConstant(0, DL, XLenVT));
5413 
5414   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5415                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5416 
5417   // If required, insert this subvector back into the correct vector register.
5418   // This should resolve to an INSERT_SUBREG instruction.
5419   if (VecVT.bitsGT(InterSubVT))
5420     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5421                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5422 
5423   // We might have bitcast from a mask type: cast back to the original type if
5424   // required.
5425   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5426 }
5427 
5428 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5429                                                     SelectionDAG &DAG) const {
5430   SDValue Vec = Op.getOperand(0);
5431   MVT SubVecVT = Op.getSimpleValueType();
5432   MVT VecVT = Vec.getSimpleValueType();
5433 
5434   SDLoc DL(Op);
5435   MVT XLenVT = Subtarget.getXLenVT();
5436   unsigned OrigIdx = Op.getConstantOperandVal(1);
5437   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5438 
5439   // We don't have the ability to slide mask vectors down indexed by their i1
5440   // elements; the smallest we can do is i8. Often we are able to bitcast to
5441   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5442   // from a scalable one, we might not necessarily have enough scalable
5443   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5444   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5445     if (VecVT.getVectorMinNumElements() >= 8 &&
5446         SubVecVT.getVectorMinNumElements() >= 8) {
5447       assert(OrigIdx % 8 == 0 && "Invalid index");
5448       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5449              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5450              "Unexpected mask vector lowering");
5451       OrigIdx /= 8;
5452       SubVecVT =
5453           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5454                            SubVecVT.isScalableVector());
5455       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5456                                VecVT.isScalableVector());
5457       Vec = DAG.getBitcast(VecVT, Vec);
5458     } else {
5459       // We can't slide this mask vector down, indexed by its i1 elements.
5460       // This poses a problem when we wish to extract a scalable vector which
5461       // can't be re-expressed as a larger type. Just choose the slow path and
5462       // extend to a larger type, then truncate back down.
5463       // TODO: We could probably improve this when extracting certain fixed
5464       // from fixed, where we can extract as i8 and shift the correct element
5465       // right to reach the desired subvector?
5466       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5467       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5468       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5469       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5470                         Op.getOperand(1));
5471       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5472       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5473     }
5474   }
5475 
5476   // If the subvector vector is a fixed-length type, we cannot use subregister
5477   // manipulation to simplify the codegen; we don't know which register of a
5478   // LMUL group contains the specific subvector as we only know the minimum
5479   // register size. Therefore we must slide the vector group down the full
5480   // amount.
5481   if (SubVecVT.isFixedLengthVector()) {
5482     // With an index of 0 this is a cast-like subvector, which can be performed
5483     // with subregister operations.
5484     if (OrigIdx == 0)
5485       return Op;
5486     MVT ContainerVT = VecVT;
5487     if (VecVT.isFixedLengthVector()) {
5488       ContainerVT = getContainerForFixedLengthVector(VecVT);
5489       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5490     }
5491     SDValue Mask =
5492         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5493     // Set the vector length to only the number of elements we care about. This
5494     // avoids sliding down elements we're going to discard straight away.
5495     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5496     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5497     SDValue Slidedown =
5498         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5499                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5500     // Now we can use a cast-like subvector extract to get the result.
5501     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5502                             DAG.getConstant(0, DL, XLenVT));
5503     return DAG.getBitcast(Op.getValueType(), Slidedown);
5504   }
5505 
5506   unsigned SubRegIdx, RemIdx;
5507   std::tie(SubRegIdx, RemIdx) =
5508       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5509           VecVT, SubVecVT, OrigIdx, TRI);
5510 
5511   // If the Idx has been completely eliminated then this is a subvector extract
5512   // which naturally aligns to a vector register. These can easily be handled
5513   // using subregister manipulation.
5514   if (RemIdx == 0)
5515     return Op;
5516 
5517   // Else we must shift our vector register directly to extract the subvector.
5518   // Do this using VSLIDEDOWN.
5519 
5520   // If the vector type is an LMUL-group type, extract a subvector equal to the
5521   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5522   // instruction.
5523   MVT InterSubVT = VecVT;
5524   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5525     InterSubVT = getLMUL1VT(VecVT);
5526     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5527                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5528   }
5529 
5530   // Slide this vector register down by the desired number of elements in order
5531   // to place the desired subvector starting at element 0.
5532   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5533   // For scalable vectors this must be further multiplied by vscale.
5534   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5535 
5536   SDValue Mask, VL;
5537   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5538   SDValue Slidedown =
5539       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5540                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5541 
5542   // Now the vector is in the right position, extract our final subvector. This
5543   // should resolve to a COPY.
5544   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5545                           DAG.getConstant(0, DL, XLenVT));
5546 
5547   // We might have bitcast from a mask type: cast back to the original type if
5548   // required.
5549   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5550 }
5551 
5552 // Lower step_vector to the vid instruction. Any non-identity step value must
5553 // be accounted for my manual expansion.
5554 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5555                                               SelectionDAG &DAG) const {
5556   SDLoc DL(Op);
5557   MVT VT = Op.getSimpleValueType();
5558   MVT XLenVT = Subtarget.getXLenVT();
5559   SDValue Mask, VL;
5560   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5561   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5562   uint64_t StepValImm = Op.getConstantOperandVal(0);
5563   if (StepValImm != 1) {
5564     if (isPowerOf2_64(StepValImm)) {
5565       SDValue StepVal =
5566           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
5567                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5568       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5569     } else {
5570       SDValue StepVal = lowerScalarSplat(
5571           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
5572           DL, DAG, Subtarget);
5573       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5574     }
5575   }
5576   return StepVec;
5577 }
5578 
5579 // Implement vector_reverse using vrgather.vv with indices determined by
5580 // subtracting the id of each element from (VLMAX-1). This will convert
5581 // the indices like so:
5582 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5583 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5584 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5585                                                  SelectionDAG &DAG) const {
5586   SDLoc DL(Op);
5587   MVT VecVT = Op.getSimpleValueType();
5588   unsigned EltSize = VecVT.getScalarSizeInBits();
5589   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5590 
5591   unsigned MaxVLMAX = 0;
5592   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5593   if (VectorBitsMax != 0)
5594     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5595 
5596   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5597   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5598 
5599   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5600   // to use vrgatherei16.vv.
5601   // TODO: It's also possible to use vrgatherei16.vv for other types to
5602   // decrease register width for the index calculation.
5603   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5604     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5605     // Reverse each half, then reassemble them in reverse order.
5606     // NOTE: It's also possible that after splitting that VLMAX no longer
5607     // requires vrgatherei16.vv.
5608     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5609       SDValue Lo, Hi;
5610       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5611       EVT LoVT, HiVT;
5612       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5613       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5614       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5615       // Reassemble the low and high pieces reversed.
5616       // FIXME: This is a CONCAT_VECTORS.
5617       SDValue Res =
5618           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5619                       DAG.getIntPtrConstant(0, DL));
5620       return DAG.getNode(
5621           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5622           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5623     }
5624 
5625     // Just promote the int type to i16 which will double the LMUL.
5626     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5627     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5628   }
5629 
5630   MVT XLenVT = Subtarget.getXLenVT();
5631   SDValue Mask, VL;
5632   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5633 
5634   // Calculate VLMAX-1 for the desired SEW.
5635   unsigned MinElts = VecVT.getVectorMinNumElements();
5636   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5637                               DAG.getConstant(MinElts, DL, XLenVT));
5638   SDValue VLMinus1 =
5639       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5640 
5641   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5642   bool IsRV32E64 =
5643       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5644   SDValue SplatVL;
5645   if (!IsRV32E64)
5646     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5647   else
5648     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, VLMinus1,
5649                           DAG.getRegister(RISCV::X0, XLenVT));
5650 
5651   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5652   SDValue Indices =
5653       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5654 
5655   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5656 }
5657 
5658 SDValue
5659 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5660                                                      SelectionDAG &DAG) const {
5661   SDLoc DL(Op);
5662   auto *Load = cast<LoadSDNode>(Op);
5663 
5664   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5665                                         Load->getMemoryVT(),
5666                                         *Load->getMemOperand()) &&
5667          "Expecting a correctly-aligned load");
5668 
5669   MVT VT = Op.getSimpleValueType();
5670   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5671 
5672   SDValue VL =
5673       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5674 
5675   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5676   SDValue NewLoad = DAG.getMemIntrinsicNode(
5677       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5678       Load->getMemoryVT(), Load->getMemOperand());
5679 
5680   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5681   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5682 }
5683 
5684 SDValue
5685 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5686                                                       SelectionDAG &DAG) const {
5687   SDLoc DL(Op);
5688   auto *Store = cast<StoreSDNode>(Op);
5689 
5690   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5691                                         Store->getMemoryVT(),
5692                                         *Store->getMemOperand()) &&
5693          "Expecting a correctly-aligned store");
5694 
5695   SDValue StoreVal = Store->getValue();
5696   MVT VT = StoreVal.getSimpleValueType();
5697 
5698   // If the size less than a byte, we need to pad with zeros to make a byte.
5699   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5700     VT = MVT::v8i1;
5701     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5702                            DAG.getConstant(0, DL, VT), StoreVal,
5703                            DAG.getIntPtrConstant(0, DL));
5704   }
5705 
5706   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5707 
5708   SDValue VL =
5709       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5710 
5711   SDValue NewValue =
5712       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5713   return DAG.getMemIntrinsicNode(
5714       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5715       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5716       Store->getMemoryVT(), Store->getMemOperand());
5717 }
5718 
5719 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5720                                              SelectionDAG &DAG) const {
5721   SDLoc DL(Op);
5722   MVT VT = Op.getSimpleValueType();
5723 
5724   const auto *MemSD = cast<MemSDNode>(Op);
5725   EVT MemVT = MemSD->getMemoryVT();
5726   MachineMemOperand *MMO = MemSD->getMemOperand();
5727   SDValue Chain = MemSD->getChain();
5728   SDValue BasePtr = MemSD->getBasePtr();
5729 
5730   SDValue Mask, PassThru, VL;
5731   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5732     Mask = VPLoad->getMask();
5733     PassThru = DAG.getUNDEF(VT);
5734     VL = VPLoad->getVectorLength();
5735   } else {
5736     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5737     Mask = MLoad->getMask();
5738     PassThru = MLoad->getPassThru();
5739   }
5740 
5741   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5742 
5743   MVT XLenVT = Subtarget.getXLenVT();
5744 
5745   MVT ContainerVT = VT;
5746   if (VT.isFixedLengthVector()) {
5747     ContainerVT = getContainerForFixedLengthVector(VT);
5748     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5749     if (!IsUnmasked) {
5750       MVT MaskVT =
5751           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5752       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5753     }
5754   }
5755 
5756   if (!VL)
5757     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5758 
5759   unsigned IntID =
5760       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5761   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5762   if (IsUnmasked)
5763     Ops.push_back(DAG.getUNDEF(ContainerVT));
5764   else
5765     Ops.push_back(PassThru);
5766   Ops.push_back(BasePtr);
5767   if (!IsUnmasked)
5768     Ops.push_back(Mask);
5769   Ops.push_back(VL);
5770   if (!IsUnmasked)
5771     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5772 
5773   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5774 
5775   SDValue Result =
5776       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5777   Chain = Result.getValue(1);
5778 
5779   if (VT.isFixedLengthVector())
5780     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5781 
5782   return DAG.getMergeValues({Result, Chain}, DL);
5783 }
5784 
5785 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5786                                               SelectionDAG &DAG) const {
5787   SDLoc DL(Op);
5788 
5789   const auto *MemSD = cast<MemSDNode>(Op);
5790   EVT MemVT = MemSD->getMemoryVT();
5791   MachineMemOperand *MMO = MemSD->getMemOperand();
5792   SDValue Chain = MemSD->getChain();
5793   SDValue BasePtr = MemSD->getBasePtr();
5794   SDValue Val, Mask, VL;
5795 
5796   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5797     Val = VPStore->getValue();
5798     Mask = VPStore->getMask();
5799     VL = VPStore->getVectorLength();
5800   } else {
5801     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5802     Val = MStore->getValue();
5803     Mask = MStore->getMask();
5804   }
5805 
5806   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5807 
5808   MVT VT = Val.getSimpleValueType();
5809   MVT XLenVT = Subtarget.getXLenVT();
5810 
5811   MVT ContainerVT = VT;
5812   if (VT.isFixedLengthVector()) {
5813     ContainerVT = getContainerForFixedLengthVector(VT);
5814 
5815     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5816     if (!IsUnmasked) {
5817       MVT MaskVT =
5818           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5819       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5820     }
5821   }
5822 
5823   if (!VL)
5824     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5825 
5826   unsigned IntID =
5827       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5828   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5829   Ops.push_back(Val);
5830   Ops.push_back(BasePtr);
5831   if (!IsUnmasked)
5832     Ops.push_back(Mask);
5833   Ops.push_back(VL);
5834 
5835   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5836                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5837 }
5838 
5839 SDValue
5840 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5841                                                       SelectionDAG &DAG) const {
5842   MVT InVT = Op.getOperand(0).getSimpleValueType();
5843   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5844 
5845   MVT VT = Op.getSimpleValueType();
5846 
5847   SDValue Op1 =
5848       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5849   SDValue Op2 =
5850       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5851 
5852   SDLoc DL(Op);
5853   SDValue VL =
5854       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5855 
5856   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5857   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5858 
5859   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5860                             Op.getOperand(2), Mask, VL);
5861 
5862   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5863 }
5864 
5865 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5866     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5867   MVT VT = Op.getSimpleValueType();
5868 
5869   if (VT.getVectorElementType() == MVT::i1)
5870     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5871 
5872   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5873 }
5874 
5875 SDValue
5876 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5877                                                       SelectionDAG &DAG) const {
5878   unsigned Opc;
5879   switch (Op.getOpcode()) {
5880   default: llvm_unreachable("Unexpected opcode!");
5881   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5882   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5883   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5884   }
5885 
5886   return lowerToScalableOp(Op, DAG, Opc);
5887 }
5888 
5889 // Lower vector ABS to smax(X, sub(0, X)).
5890 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5891   SDLoc DL(Op);
5892   MVT VT = Op.getSimpleValueType();
5893   SDValue X = Op.getOperand(0);
5894 
5895   assert(VT.isFixedLengthVector() && "Unexpected type");
5896 
5897   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5898   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5899 
5900   SDValue Mask, VL;
5901   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5902 
5903   SDValue SplatZero =
5904       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5905                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5906   SDValue NegX =
5907       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5908   SDValue Max =
5909       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5910 
5911   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5912 }
5913 
5914 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5915     SDValue Op, SelectionDAG &DAG) const {
5916   SDLoc DL(Op);
5917   MVT VT = Op.getSimpleValueType();
5918   SDValue Mag = Op.getOperand(0);
5919   SDValue Sign = Op.getOperand(1);
5920   assert(Mag.getValueType() == Sign.getValueType() &&
5921          "Can only handle COPYSIGN with matching types.");
5922 
5923   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5924   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5925   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5926 
5927   SDValue Mask, VL;
5928   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5929 
5930   SDValue CopySign =
5931       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5932 
5933   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5934 }
5935 
5936 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5937     SDValue Op, SelectionDAG &DAG) const {
5938   MVT VT = Op.getSimpleValueType();
5939   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5940 
5941   MVT I1ContainerVT =
5942       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5943 
5944   SDValue CC =
5945       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5946   SDValue Op1 =
5947       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5948   SDValue Op2 =
5949       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5950 
5951   SDLoc DL(Op);
5952   SDValue Mask, VL;
5953   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5954 
5955   SDValue Select =
5956       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5957 
5958   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5959 }
5960 
5961 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5962                                                unsigned NewOpc,
5963                                                bool HasMask) const {
5964   MVT VT = Op.getSimpleValueType();
5965   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5966 
5967   // Create list of operands by converting existing ones to scalable types.
5968   SmallVector<SDValue, 6> Ops;
5969   for (const SDValue &V : Op->op_values()) {
5970     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5971 
5972     // Pass through non-vector operands.
5973     if (!V.getValueType().isVector()) {
5974       Ops.push_back(V);
5975       continue;
5976     }
5977 
5978     // "cast" fixed length vector to a scalable vector.
5979     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5980            "Only fixed length vectors are supported!");
5981     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5982   }
5983 
5984   SDLoc DL(Op);
5985   SDValue Mask, VL;
5986   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5987   if (HasMask)
5988     Ops.push_back(Mask);
5989   Ops.push_back(VL);
5990 
5991   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5992   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5993 }
5994 
5995 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5996 // * Operands of each node are assumed to be in the same order.
5997 // * The EVL operand is promoted from i32 to i64 on RV64.
5998 // * Fixed-length vectors are converted to their scalable-vector container
5999 //   types.
6000 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6001                                        unsigned RISCVISDOpc) const {
6002   SDLoc DL(Op);
6003   MVT VT = Op.getSimpleValueType();
6004   SmallVector<SDValue, 4> Ops;
6005 
6006   for (const auto &OpIdx : enumerate(Op->ops())) {
6007     SDValue V = OpIdx.value();
6008     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6009     // Pass through operands which aren't fixed-length vectors.
6010     if (!V.getValueType().isFixedLengthVector()) {
6011       Ops.push_back(V);
6012       continue;
6013     }
6014     // "cast" fixed length vector to a scalable vector.
6015     MVT OpVT = V.getSimpleValueType();
6016     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6017     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6018            "Only fixed length vectors are supported!");
6019     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6020   }
6021 
6022   if (!VT.isFixedLengthVector())
6023     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6024 
6025   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6026 
6027   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6028 
6029   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6030 }
6031 
6032 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6033                                             unsigned MaskOpc,
6034                                             unsigned VecOpc) const {
6035   MVT VT = Op.getSimpleValueType();
6036   if (VT.getVectorElementType() != MVT::i1)
6037     return lowerVPOp(Op, DAG, VecOpc);
6038 
6039   // It is safe to drop mask parameter as masked-off elements are undef.
6040   SDValue Op1 = Op->getOperand(0);
6041   SDValue Op2 = Op->getOperand(1);
6042   SDValue VL = Op->getOperand(3);
6043 
6044   MVT ContainerVT = VT;
6045   const bool IsFixed = VT.isFixedLengthVector();
6046   if (IsFixed) {
6047     ContainerVT = getContainerForFixedLengthVector(VT);
6048     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6049     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6050   }
6051 
6052   SDLoc DL(Op);
6053   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6054   if (!IsFixed)
6055     return Val;
6056   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6057 }
6058 
6059 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6060 // matched to a RVV indexed load. The RVV indexed load instructions only
6061 // support the "unsigned unscaled" addressing mode; indices are implicitly
6062 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6063 // signed or scaled indexing is extended to the XLEN value type and scaled
6064 // accordingly.
6065 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6066                                                SelectionDAG &DAG) const {
6067   SDLoc DL(Op);
6068   MVT VT = Op.getSimpleValueType();
6069 
6070   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6071   EVT MemVT = MemSD->getMemoryVT();
6072   MachineMemOperand *MMO = MemSD->getMemOperand();
6073   SDValue Chain = MemSD->getChain();
6074   SDValue BasePtr = MemSD->getBasePtr();
6075 
6076   ISD::LoadExtType LoadExtType;
6077   SDValue Index, Mask, PassThru, VL;
6078 
6079   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6080     Index = VPGN->getIndex();
6081     Mask = VPGN->getMask();
6082     PassThru = DAG.getUNDEF(VT);
6083     VL = VPGN->getVectorLength();
6084     // VP doesn't support extending loads.
6085     LoadExtType = ISD::NON_EXTLOAD;
6086   } else {
6087     // Else it must be a MGATHER.
6088     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6089     Index = MGN->getIndex();
6090     Mask = MGN->getMask();
6091     PassThru = MGN->getPassThru();
6092     LoadExtType = MGN->getExtensionType();
6093   }
6094 
6095   MVT IndexVT = Index.getSimpleValueType();
6096   MVT XLenVT = Subtarget.getXLenVT();
6097 
6098   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6099          "Unexpected VTs!");
6100   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6101   // Targets have to explicitly opt-in for extending vector loads.
6102   assert(LoadExtType == ISD::NON_EXTLOAD &&
6103          "Unexpected extending MGATHER/VP_GATHER");
6104   (void)LoadExtType;
6105 
6106   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6107   // the selection of the masked intrinsics doesn't do this for us.
6108   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6109 
6110   MVT ContainerVT = VT;
6111   if (VT.isFixedLengthVector()) {
6112     // We need to use the larger of the result and index type to determine the
6113     // scalable type to use so we don't increase LMUL for any operand/result.
6114     if (VT.bitsGE(IndexVT)) {
6115       ContainerVT = getContainerForFixedLengthVector(VT);
6116       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6117                                  ContainerVT.getVectorElementCount());
6118     } else {
6119       IndexVT = getContainerForFixedLengthVector(IndexVT);
6120       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6121                                      IndexVT.getVectorElementCount());
6122     }
6123 
6124     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6125 
6126     if (!IsUnmasked) {
6127       MVT MaskVT =
6128           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6129       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6130       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6131     }
6132   }
6133 
6134   if (!VL)
6135     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6136 
6137   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6138     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6139     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6140                                    VL);
6141     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6142                         TrueMask, VL);
6143   }
6144 
6145   unsigned IntID =
6146       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6147   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6148   if (IsUnmasked)
6149     Ops.push_back(DAG.getUNDEF(ContainerVT));
6150   else
6151     Ops.push_back(PassThru);
6152   Ops.push_back(BasePtr);
6153   Ops.push_back(Index);
6154   if (!IsUnmasked)
6155     Ops.push_back(Mask);
6156   Ops.push_back(VL);
6157   if (!IsUnmasked)
6158     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6159 
6160   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6161   SDValue Result =
6162       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6163   Chain = Result.getValue(1);
6164 
6165   if (VT.isFixedLengthVector())
6166     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6167 
6168   return DAG.getMergeValues({Result, Chain}, DL);
6169 }
6170 
6171 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6172 // matched to a RVV indexed store. The RVV indexed store instructions only
6173 // support the "unsigned unscaled" addressing mode; indices are implicitly
6174 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6175 // signed or scaled indexing is extended to the XLEN value type and scaled
6176 // accordingly.
6177 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6178                                                 SelectionDAG &DAG) const {
6179   SDLoc DL(Op);
6180   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6181   EVT MemVT = MemSD->getMemoryVT();
6182   MachineMemOperand *MMO = MemSD->getMemOperand();
6183   SDValue Chain = MemSD->getChain();
6184   SDValue BasePtr = MemSD->getBasePtr();
6185 
6186   bool IsTruncatingStore = false;
6187   SDValue Index, Mask, Val, VL;
6188 
6189   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6190     Index = VPSN->getIndex();
6191     Mask = VPSN->getMask();
6192     Val = VPSN->getValue();
6193     VL = VPSN->getVectorLength();
6194     // VP doesn't support truncating stores.
6195     IsTruncatingStore = false;
6196   } else {
6197     // Else it must be a MSCATTER.
6198     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6199     Index = MSN->getIndex();
6200     Mask = MSN->getMask();
6201     Val = MSN->getValue();
6202     IsTruncatingStore = MSN->isTruncatingStore();
6203   }
6204 
6205   MVT VT = Val.getSimpleValueType();
6206   MVT IndexVT = Index.getSimpleValueType();
6207   MVT XLenVT = Subtarget.getXLenVT();
6208 
6209   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6210          "Unexpected VTs!");
6211   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6212   // Targets have to explicitly opt-in for extending vector loads and
6213   // truncating vector stores.
6214   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6215   (void)IsTruncatingStore;
6216 
6217   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6218   // the selection of the masked intrinsics doesn't do this for us.
6219   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6220 
6221   MVT ContainerVT = VT;
6222   if (VT.isFixedLengthVector()) {
6223     // We need to use the larger of the value and index type to determine the
6224     // scalable type to use so we don't increase LMUL for any operand/result.
6225     if (VT.bitsGE(IndexVT)) {
6226       ContainerVT = getContainerForFixedLengthVector(VT);
6227       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6228                                  ContainerVT.getVectorElementCount());
6229     } else {
6230       IndexVT = getContainerForFixedLengthVector(IndexVT);
6231       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6232                                      IndexVT.getVectorElementCount());
6233     }
6234 
6235     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6236     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6237 
6238     if (!IsUnmasked) {
6239       MVT MaskVT =
6240           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6241       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6242     }
6243   }
6244 
6245   if (!VL)
6246     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6247 
6248   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6249     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6250     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6251                                    VL);
6252     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6253                         TrueMask, VL);
6254   }
6255 
6256   unsigned IntID =
6257       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6258   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6259   Ops.push_back(Val);
6260   Ops.push_back(BasePtr);
6261   Ops.push_back(Index);
6262   if (!IsUnmasked)
6263     Ops.push_back(Mask);
6264   Ops.push_back(VL);
6265 
6266   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6267                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6268 }
6269 
6270 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6271                                                SelectionDAG &DAG) const {
6272   const MVT XLenVT = Subtarget.getXLenVT();
6273   SDLoc DL(Op);
6274   SDValue Chain = Op->getOperand(0);
6275   SDValue SysRegNo = DAG.getTargetConstant(
6276       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6277   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6278   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6279 
6280   // Encoding used for rounding mode in RISCV differs from that used in
6281   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6282   // table, which consists of a sequence of 4-bit fields, each representing
6283   // corresponding FLT_ROUNDS mode.
6284   static const int Table =
6285       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6286       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6287       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6288       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6289       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6290 
6291   SDValue Shift =
6292       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6293   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6294                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6295   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6296                                DAG.getConstant(7, DL, XLenVT));
6297 
6298   return DAG.getMergeValues({Masked, Chain}, DL);
6299 }
6300 
6301 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6302                                                SelectionDAG &DAG) const {
6303   const MVT XLenVT = Subtarget.getXLenVT();
6304   SDLoc DL(Op);
6305   SDValue Chain = Op->getOperand(0);
6306   SDValue RMValue = Op->getOperand(1);
6307   SDValue SysRegNo = DAG.getTargetConstant(
6308       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6309 
6310   // Encoding used for rounding mode in RISCV differs from that used in
6311   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6312   // a table, which consists of a sequence of 4-bit fields, each representing
6313   // corresponding RISCV mode.
6314   static const unsigned Table =
6315       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6316       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6317       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6318       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6319       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6320 
6321   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6322                               DAG.getConstant(2, DL, XLenVT));
6323   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6324                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6325   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6326                         DAG.getConstant(0x7, DL, XLenVT));
6327   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6328                      RMValue);
6329 }
6330 
6331 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6332   switch (IntNo) {
6333   default:
6334     llvm_unreachable("Unexpected Intrinsic");
6335   case Intrinsic::riscv_grev:
6336     return RISCVISD::GREVW;
6337   case Intrinsic::riscv_gorc:
6338     return RISCVISD::GORCW;
6339   case Intrinsic::riscv_bcompress:
6340     return RISCVISD::BCOMPRESSW;
6341   case Intrinsic::riscv_bdecompress:
6342     return RISCVISD::BDECOMPRESSW;
6343   case Intrinsic::riscv_bfp:
6344     return RISCVISD::BFPW;
6345   case Intrinsic::riscv_fsl:
6346     return RISCVISD::FSLW;
6347   case Intrinsic::riscv_fsr:
6348     return RISCVISD::FSRW;
6349   }
6350 }
6351 
6352 // Converts the given intrinsic to a i64 operation with any extension.
6353 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6354                                          unsigned IntNo) {
6355   SDLoc DL(N);
6356   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6357   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6358   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6359   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6360   // ReplaceNodeResults requires we maintain the same type for the return value.
6361   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6362 }
6363 
6364 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6365 // form of the given Opcode.
6366 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6367   switch (Opcode) {
6368   default:
6369     llvm_unreachable("Unexpected opcode");
6370   case ISD::SHL:
6371     return RISCVISD::SLLW;
6372   case ISD::SRA:
6373     return RISCVISD::SRAW;
6374   case ISD::SRL:
6375     return RISCVISD::SRLW;
6376   case ISD::SDIV:
6377     return RISCVISD::DIVW;
6378   case ISD::UDIV:
6379     return RISCVISD::DIVUW;
6380   case ISD::UREM:
6381     return RISCVISD::REMUW;
6382   case ISD::ROTL:
6383     return RISCVISD::ROLW;
6384   case ISD::ROTR:
6385     return RISCVISD::RORW;
6386   case RISCVISD::GREV:
6387     return RISCVISD::GREVW;
6388   case RISCVISD::GORC:
6389     return RISCVISD::GORCW;
6390   }
6391 }
6392 
6393 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6394 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6395 // otherwise be promoted to i64, making it difficult to select the
6396 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6397 // type i8/i16/i32 is lost.
6398 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6399                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6400   SDLoc DL(N);
6401   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6402   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6403   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6404   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6405   // ReplaceNodeResults requires we maintain the same type for the return value.
6406   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6407 }
6408 
6409 // Converts the given 32-bit operation to a i64 operation with signed extension
6410 // semantic to reduce the signed extension instructions.
6411 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6412   SDLoc DL(N);
6413   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6414   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6415   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6416   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6417                                DAG.getValueType(MVT::i32));
6418   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6419 }
6420 
6421 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6422                                              SmallVectorImpl<SDValue> &Results,
6423                                              SelectionDAG &DAG) const {
6424   SDLoc DL(N);
6425   switch (N->getOpcode()) {
6426   default:
6427     llvm_unreachable("Don't know how to custom type legalize this operation!");
6428   case ISD::STRICT_FP_TO_SINT:
6429   case ISD::STRICT_FP_TO_UINT:
6430   case ISD::FP_TO_SINT:
6431   case ISD::FP_TO_UINT: {
6432     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6433            "Unexpected custom legalisation");
6434     bool IsStrict = N->isStrictFPOpcode();
6435     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6436                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6437     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6438     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6439         TargetLowering::TypeSoftenFloat) {
6440       if (!isTypeLegal(Op0.getValueType()))
6441         return;
6442       if (IsStrict) {
6443         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6444                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6445         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6446         SDValue Res = DAG.getNode(
6447             Opc, DL, VTs, N->getOperand(0), Op0,
6448             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6449         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6450         Results.push_back(Res.getValue(1));
6451         return;
6452       }
6453       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6454       SDValue Res =
6455           DAG.getNode(Opc, DL, MVT::i64, Op0,
6456                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6457       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6458       return;
6459     }
6460     // If the FP type needs to be softened, emit a library call using the 'si'
6461     // version. If we left it to default legalization we'd end up with 'di'. If
6462     // the FP type doesn't need to be softened just let generic type
6463     // legalization promote the result type.
6464     RTLIB::Libcall LC;
6465     if (IsSigned)
6466       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6467     else
6468       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6469     MakeLibCallOptions CallOptions;
6470     EVT OpVT = Op0.getValueType();
6471     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6472     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6473     SDValue Result;
6474     std::tie(Result, Chain) =
6475         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6476     Results.push_back(Result);
6477     if (IsStrict)
6478       Results.push_back(Chain);
6479     break;
6480   }
6481   case ISD::READCYCLECOUNTER: {
6482     assert(!Subtarget.is64Bit() &&
6483            "READCYCLECOUNTER only has custom type legalization on riscv32");
6484 
6485     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6486     SDValue RCW =
6487         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6488 
6489     Results.push_back(
6490         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6491     Results.push_back(RCW.getValue(2));
6492     break;
6493   }
6494   case ISD::MUL: {
6495     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6496     unsigned XLen = Subtarget.getXLen();
6497     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6498     if (Size > XLen) {
6499       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6500       SDValue LHS = N->getOperand(0);
6501       SDValue RHS = N->getOperand(1);
6502       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6503 
6504       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6505       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6506       // We need exactly one side to be unsigned.
6507       if (LHSIsU == RHSIsU)
6508         return;
6509 
6510       auto MakeMULPair = [&](SDValue S, SDValue U) {
6511         MVT XLenVT = Subtarget.getXLenVT();
6512         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6513         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6514         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6515         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6516         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6517       };
6518 
6519       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6520       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6521 
6522       // The other operand should be signed, but still prefer MULH when
6523       // possible.
6524       if (RHSIsU && LHSIsS && !RHSIsS)
6525         Results.push_back(MakeMULPair(LHS, RHS));
6526       else if (LHSIsU && RHSIsS && !LHSIsS)
6527         Results.push_back(MakeMULPair(RHS, LHS));
6528 
6529       return;
6530     }
6531     LLVM_FALLTHROUGH;
6532   }
6533   case ISD::ADD:
6534   case ISD::SUB:
6535     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6536            "Unexpected custom legalisation");
6537     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6538     break;
6539   case ISD::SHL:
6540   case ISD::SRA:
6541   case ISD::SRL:
6542     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6543            "Unexpected custom legalisation");
6544     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6545       Results.push_back(customLegalizeToWOp(N, DAG));
6546       break;
6547     }
6548 
6549     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6550     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6551     // shift amount.
6552     if (N->getOpcode() == ISD::SHL) {
6553       SDLoc DL(N);
6554       SDValue NewOp0 =
6555           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6556       SDValue NewOp1 =
6557           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6558       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6559       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6560                                    DAG.getValueType(MVT::i32));
6561       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6562     }
6563 
6564     break;
6565   case ISD::ROTL:
6566   case ISD::ROTR:
6567     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6568            "Unexpected custom legalisation");
6569     Results.push_back(customLegalizeToWOp(N, DAG));
6570     break;
6571   case ISD::CTTZ:
6572   case ISD::CTTZ_ZERO_UNDEF:
6573   case ISD::CTLZ:
6574   case ISD::CTLZ_ZERO_UNDEF: {
6575     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6576            "Unexpected custom legalisation");
6577 
6578     SDValue NewOp0 =
6579         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6580     bool IsCTZ =
6581         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6582     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6583     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6584     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6585     return;
6586   }
6587   case ISD::SDIV:
6588   case ISD::UDIV:
6589   case ISD::UREM: {
6590     MVT VT = N->getSimpleValueType(0);
6591     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6592            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6593            "Unexpected custom legalisation");
6594     // Don't promote division/remainder by constant since we should expand those
6595     // to multiply by magic constant.
6596     // FIXME: What if the expansion is disabled for minsize.
6597     if (N->getOperand(1).getOpcode() == ISD::Constant)
6598       return;
6599 
6600     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6601     // the upper 32 bits. For other types we need to sign or zero extend
6602     // based on the opcode.
6603     unsigned ExtOpc = ISD::ANY_EXTEND;
6604     if (VT != MVT::i32)
6605       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6606                                            : ISD::ZERO_EXTEND;
6607 
6608     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6609     break;
6610   }
6611   case ISD::UADDO:
6612   case ISD::USUBO: {
6613     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6614            "Unexpected custom legalisation");
6615     bool IsAdd = N->getOpcode() == ISD::UADDO;
6616     // Create an ADDW or SUBW.
6617     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6618     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6619     SDValue Res =
6620         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6621     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6622                       DAG.getValueType(MVT::i32));
6623 
6624     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6625     // Since the inputs are sign extended from i32, this is equivalent to
6626     // comparing the lower 32 bits.
6627     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6628     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6629                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6630 
6631     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6632     Results.push_back(Overflow);
6633     return;
6634   }
6635   case ISD::UADDSAT:
6636   case ISD::USUBSAT: {
6637     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6638            "Unexpected custom legalisation");
6639     if (Subtarget.hasStdExtZbb()) {
6640       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6641       // sign extend allows overflow of the lower 32 bits to be detected on
6642       // the promoted size.
6643       SDValue LHS =
6644           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6645       SDValue RHS =
6646           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6647       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6648       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6649       return;
6650     }
6651 
6652     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6653     // promotion for UADDO/USUBO.
6654     Results.push_back(expandAddSubSat(N, DAG));
6655     return;
6656   }
6657   case ISD::BITCAST: {
6658     EVT VT = N->getValueType(0);
6659     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6660     SDValue Op0 = N->getOperand(0);
6661     EVT Op0VT = Op0.getValueType();
6662     MVT XLenVT = Subtarget.getXLenVT();
6663     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6664       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6665       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6666     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6667                Subtarget.hasStdExtF()) {
6668       SDValue FPConv =
6669           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6670       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6671     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6672                isTypeLegal(Op0VT)) {
6673       // Custom-legalize bitcasts from fixed-length vector types to illegal
6674       // scalar types in order to improve codegen. Bitcast the vector to a
6675       // one-element vector type whose element type is the same as the result
6676       // type, and extract the first element.
6677       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6678       if (isTypeLegal(BVT)) {
6679         SDValue BVec = DAG.getBitcast(BVT, Op0);
6680         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6681                                       DAG.getConstant(0, DL, XLenVT)));
6682       }
6683     }
6684     break;
6685   }
6686   case RISCVISD::GREV:
6687   case RISCVISD::GORC: {
6688     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6689            "Unexpected custom legalisation");
6690     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6691     // This is similar to customLegalizeToWOp, except that we pass the second
6692     // operand (a TargetConstant) straight through: it is already of type
6693     // XLenVT.
6694     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6695     SDValue NewOp0 =
6696         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6697     SDValue NewOp1 =
6698         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6699     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6700     // ReplaceNodeResults requires we maintain the same type for the return
6701     // value.
6702     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6703     break;
6704   }
6705   case RISCVISD::SHFL: {
6706     // There is no SHFLIW instruction, but we can just promote the operation.
6707     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6708            "Unexpected custom legalisation");
6709     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6710     SDValue NewOp0 =
6711         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6712     SDValue NewOp1 =
6713         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6714     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6715     // ReplaceNodeResults requires we maintain the same type for the return
6716     // value.
6717     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6718     break;
6719   }
6720   case ISD::BSWAP:
6721   case ISD::BITREVERSE: {
6722     MVT VT = N->getSimpleValueType(0);
6723     MVT XLenVT = Subtarget.getXLenVT();
6724     assert((VT == MVT::i8 || VT == MVT::i16 ||
6725             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6726            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6727     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6728     unsigned Imm = VT.getSizeInBits() - 1;
6729     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6730     if (N->getOpcode() == ISD::BSWAP)
6731       Imm &= ~0x7U;
6732     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6733     SDValue GREVI =
6734         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6735     // ReplaceNodeResults requires we maintain the same type for the return
6736     // value.
6737     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6738     break;
6739   }
6740   case ISD::FSHL:
6741   case ISD::FSHR: {
6742     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6743            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6744     SDValue NewOp0 =
6745         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6746     SDValue NewOp1 =
6747         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6748     SDValue NewShAmt =
6749         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6750     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6751     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6752     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6753                            DAG.getConstant(0x1f, DL, MVT::i64));
6754     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6755     // instruction use different orders. fshl will return its first operand for
6756     // shift of zero, fshr will return its second operand. fsl and fsr both
6757     // return rs1 so the ISD nodes need to have different operand orders.
6758     // Shift amount is in rs2.
6759     unsigned Opc = RISCVISD::FSLW;
6760     if (N->getOpcode() == ISD::FSHR) {
6761       std::swap(NewOp0, NewOp1);
6762       Opc = RISCVISD::FSRW;
6763     }
6764     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6765     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6766     break;
6767   }
6768   case ISD::EXTRACT_VECTOR_ELT: {
6769     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6770     // type is illegal (currently only vXi64 RV32).
6771     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6772     // transferred to the destination register. We issue two of these from the
6773     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6774     // first element.
6775     SDValue Vec = N->getOperand(0);
6776     SDValue Idx = N->getOperand(1);
6777 
6778     // The vector type hasn't been legalized yet so we can't issue target
6779     // specific nodes if it needs legalization.
6780     // FIXME: We would manually legalize if it's important.
6781     if (!isTypeLegal(Vec.getValueType()))
6782       return;
6783 
6784     MVT VecVT = Vec.getSimpleValueType();
6785 
6786     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6787            VecVT.getVectorElementType() == MVT::i64 &&
6788            "Unexpected EXTRACT_VECTOR_ELT legalization");
6789 
6790     // If this is a fixed vector, we need to convert it to a scalable vector.
6791     MVT ContainerVT = VecVT;
6792     if (VecVT.isFixedLengthVector()) {
6793       ContainerVT = getContainerForFixedLengthVector(VecVT);
6794       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6795     }
6796 
6797     MVT XLenVT = Subtarget.getXLenVT();
6798 
6799     // Use a VL of 1 to avoid processing more elements than we need.
6800     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6801     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6802     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6803 
6804     // Unless the index is known to be 0, we must slide the vector down to get
6805     // the desired element into index 0.
6806     if (!isNullConstant(Idx)) {
6807       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6808                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6809     }
6810 
6811     // Extract the lower XLEN bits of the correct vector element.
6812     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6813 
6814     // To extract the upper XLEN bits of the vector element, shift the first
6815     // element right by 32 bits and re-extract the lower XLEN bits.
6816     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6817                                      DAG.getConstant(32, DL, XLenVT), VL);
6818     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6819                                  ThirtyTwoV, Mask, VL);
6820 
6821     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6822 
6823     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6824     break;
6825   }
6826   case ISD::INTRINSIC_WO_CHAIN: {
6827     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6828     switch (IntNo) {
6829     default:
6830       llvm_unreachable(
6831           "Don't know how to custom type legalize this intrinsic!");
6832     case Intrinsic::riscv_grev:
6833     case Intrinsic::riscv_gorc:
6834     case Intrinsic::riscv_bcompress:
6835     case Intrinsic::riscv_bdecompress:
6836     case Intrinsic::riscv_bfp: {
6837       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6838              "Unexpected custom legalisation");
6839       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6840       break;
6841     }
6842     case Intrinsic::riscv_fsl:
6843     case Intrinsic::riscv_fsr: {
6844       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6845              "Unexpected custom legalisation");
6846       SDValue NewOp1 =
6847           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6848       SDValue NewOp2 =
6849           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6850       SDValue NewOp3 =
6851           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6852       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6853       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6854       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6855       break;
6856     }
6857     case Intrinsic::riscv_orc_b: {
6858       // Lower to the GORCI encoding for orc.b with the operand extended.
6859       SDValue NewOp =
6860           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6861       // If Zbp is enabled, use GORCIW which will sign extend the result.
6862       unsigned Opc =
6863           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6864       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6865                                 DAG.getConstant(7, DL, MVT::i64));
6866       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6867       return;
6868     }
6869     case Intrinsic::riscv_shfl:
6870     case Intrinsic::riscv_unshfl: {
6871       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6872              "Unexpected custom legalisation");
6873       SDValue NewOp1 =
6874           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6875       SDValue NewOp2 =
6876           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6877       unsigned Opc =
6878           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6879       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6880       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
6881       // will be shuffled the same way as the lower 32 bit half, but the two
6882       // halves won't cross.
6883       if (isa<ConstantSDNode>(NewOp2)) {
6884         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6885                              DAG.getConstant(0xf, DL, MVT::i64));
6886         Opc =
6887             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6888       }
6889       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6890       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6891       break;
6892     }
6893     case Intrinsic::riscv_vmv_x_s: {
6894       EVT VT = N->getValueType(0);
6895       MVT XLenVT = Subtarget.getXLenVT();
6896       if (VT.bitsLT(XLenVT)) {
6897         // Simple case just extract using vmv.x.s and truncate.
6898         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6899                                       Subtarget.getXLenVT(), N->getOperand(1));
6900         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6901         return;
6902       }
6903 
6904       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6905              "Unexpected custom legalization");
6906 
6907       // We need to do the move in two steps.
6908       SDValue Vec = N->getOperand(1);
6909       MVT VecVT = Vec.getSimpleValueType();
6910 
6911       // First extract the lower XLEN bits of the element.
6912       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6913 
6914       // To extract the upper XLEN bits of the vector element, shift the first
6915       // element right by 32 bits and re-extract the lower XLEN bits.
6916       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6917       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6918       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6919       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6920                                        DAG.getConstant(32, DL, XLenVT), VL);
6921       SDValue LShr32 =
6922           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6923       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6924 
6925       Results.push_back(
6926           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6927       break;
6928     }
6929     }
6930     break;
6931   }
6932   case ISD::VECREDUCE_ADD:
6933   case ISD::VECREDUCE_AND:
6934   case ISD::VECREDUCE_OR:
6935   case ISD::VECREDUCE_XOR:
6936   case ISD::VECREDUCE_SMAX:
6937   case ISD::VECREDUCE_UMAX:
6938   case ISD::VECREDUCE_SMIN:
6939   case ISD::VECREDUCE_UMIN:
6940     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6941       Results.push_back(V);
6942     break;
6943   case ISD::VP_REDUCE_ADD:
6944   case ISD::VP_REDUCE_AND:
6945   case ISD::VP_REDUCE_OR:
6946   case ISD::VP_REDUCE_XOR:
6947   case ISD::VP_REDUCE_SMAX:
6948   case ISD::VP_REDUCE_UMAX:
6949   case ISD::VP_REDUCE_SMIN:
6950   case ISD::VP_REDUCE_UMIN:
6951     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6952       Results.push_back(V);
6953     break;
6954   case ISD::FLT_ROUNDS_: {
6955     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6956     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6957     Results.push_back(Res.getValue(0));
6958     Results.push_back(Res.getValue(1));
6959     break;
6960   }
6961   }
6962 }
6963 
6964 // A structure to hold one of the bit-manipulation patterns below. Together, a
6965 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6966 //   (or (and (shl x, 1), 0xAAAAAAAA),
6967 //       (and (srl x, 1), 0x55555555))
6968 struct RISCVBitmanipPat {
6969   SDValue Op;
6970   unsigned ShAmt;
6971   bool IsSHL;
6972 
6973   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6974     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6975   }
6976 };
6977 
6978 // Matches patterns of the form
6979 //   (and (shl x, C2), (C1 << C2))
6980 //   (and (srl x, C2), C1)
6981 //   (shl (and x, C1), C2)
6982 //   (srl (and x, (C1 << C2)), C2)
6983 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6984 // The expected masks for each shift amount are specified in BitmanipMasks where
6985 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6986 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6987 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6988 // XLen is 64.
6989 static Optional<RISCVBitmanipPat>
6990 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6991   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6992          "Unexpected number of masks");
6993   Optional<uint64_t> Mask;
6994   // Optionally consume a mask around the shift operation.
6995   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6996     Mask = Op.getConstantOperandVal(1);
6997     Op = Op.getOperand(0);
6998   }
6999   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7000     return None;
7001   bool IsSHL = Op.getOpcode() == ISD::SHL;
7002 
7003   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7004     return None;
7005   uint64_t ShAmt = Op.getConstantOperandVal(1);
7006 
7007   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7008   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7009     return None;
7010   // If we don't have enough masks for 64 bit, then we must be trying to
7011   // match SHFL so we're only allowed to shift 1/4 of the width.
7012   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7013     return None;
7014 
7015   SDValue Src = Op.getOperand(0);
7016 
7017   // The expected mask is shifted left when the AND is found around SHL
7018   // patterns.
7019   //   ((x >> 1) & 0x55555555)
7020   //   ((x << 1) & 0xAAAAAAAA)
7021   bool SHLExpMask = IsSHL;
7022 
7023   if (!Mask) {
7024     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7025     // the mask is all ones: consume that now.
7026     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7027       Mask = Src.getConstantOperandVal(1);
7028       Src = Src.getOperand(0);
7029       // The expected mask is now in fact shifted left for SRL, so reverse the
7030       // decision.
7031       //   ((x & 0xAAAAAAAA) >> 1)
7032       //   ((x & 0x55555555) << 1)
7033       SHLExpMask = !SHLExpMask;
7034     } else {
7035       // Use a default shifted mask of all-ones if there's no AND, truncated
7036       // down to the expected width. This simplifies the logic later on.
7037       Mask = maskTrailingOnes<uint64_t>(Width);
7038       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7039     }
7040   }
7041 
7042   unsigned MaskIdx = Log2_32(ShAmt);
7043   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7044 
7045   if (SHLExpMask)
7046     ExpMask <<= ShAmt;
7047 
7048   if (Mask != ExpMask)
7049     return None;
7050 
7051   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7052 }
7053 
7054 // Matches any of the following bit-manipulation patterns:
7055 //   (and (shl x, 1), (0x55555555 << 1))
7056 //   (and (srl x, 1), 0x55555555)
7057 //   (shl (and x, 0x55555555), 1)
7058 //   (srl (and x, (0x55555555 << 1)), 1)
7059 // where the shift amount and mask may vary thus:
7060 //   [1]  = 0x55555555 / 0xAAAAAAAA
7061 //   [2]  = 0x33333333 / 0xCCCCCCCC
7062 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7063 //   [8]  = 0x00FF00FF / 0xFF00FF00
7064 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7065 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7066 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7067   // These are the unshifted masks which we use to match bit-manipulation
7068   // patterns. They may be shifted left in certain circumstances.
7069   static const uint64_t BitmanipMasks[] = {
7070       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7071       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7072 
7073   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7074 }
7075 
7076 // Match the following pattern as a GREVI(W) operation
7077 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7078 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7079                                const RISCVSubtarget &Subtarget) {
7080   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7081   EVT VT = Op.getValueType();
7082 
7083   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7084     auto LHS = matchGREVIPat(Op.getOperand(0));
7085     auto RHS = matchGREVIPat(Op.getOperand(1));
7086     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7087       SDLoc DL(Op);
7088       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7089                          DAG.getConstant(LHS->ShAmt, DL, VT));
7090     }
7091   }
7092   return SDValue();
7093 }
7094 
7095 // Matches any the following pattern as a GORCI(W) operation
7096 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7097 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7098 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7099 // Note that with the variant of 3.,
7100 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7101 // the inner pattern will first be matched as GREVI and then the outer
7102 // pattern will be matched to GORC via the first rule above.
7103 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7104 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7105                                const RISCVSubtarget &Subtarget) {
7106   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7107   EVT VT = Op.getValueType();
7108 
7109   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7110     SDLoc DL(Op);
7111     SDValue Op0 = Op.getOperand(0);
7112     SDValue Op1 = Op.getOperand(1);
7113 
7114     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7115       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7116           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7117           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7118         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7119       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7120       if ((Reverse.getOpcode() == ISD::ROTL ||
7121            Reverse.getOpcode() == ISD::ROTR) &&
7122           Reverse.getOperand(0) == X &&
7123           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7124         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7125         if (RotAmt == (VT.getSizeInBits() / 2))
7126           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7127                              DAG.getConstant(RotAmt, DL, VT));
7128       }
7129       return SDValue();
7130     };
7131 
7132     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7133     if (SDValue V = MatchOROfReverse(Op0, Op1))
7134       return V;
7135     if (SDValue V = MatchOROfReverse(Op1, Op0))
7136       return V;
7137 
7138     // OR is commutable so canonicalize its OR operand to the left
7139     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7140       std::swap(Op0, Op1);
7141     if (Op0.getOpcode() != ISD::OR)
7142       return SDValue();
7143     SDValue OrOp0 = Op0.getOperand(0);
7144     SDValue OrOp1 = Op0.getOperand(1);
7145     auto LHS = matchGREVIPat(OrOp0);
7146     // OR is commutable so swap the operands and try again: x might have been
7147     // on the left
7148     if (!LHS) {
7149       std::swap(OrOp0, OrOp1);
7150       LHS = matchGREVIPat(OrOp0);
7151     }
7152     auto RHS = matchGREVIPat(Op1);
7153     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7154       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7155                          DAG.getConstant(LHS->ShAmt, DL, VT));
7156     }
7157   }
7158   return SDValue();
7159 }
7160 
7161 // Matches any of the following bit-manipulation patterns:
7162 //   (and (shl x, 1), (0x22222222 << 1))
7163 //   (and (srl x, 1), 0x22222222)
7164 //   (shl (and x, 0x22222222), 1)
7165 //   (srl (and x, (0x22222222 << 1)), 1)
7166 // where the shift amount and mask may vary thus:
7167 //   [1]  = 0x22222222 / 0x44444444
7168 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7169 //   [4]  = 0x00F000F0 / 0x0F000F00
7170 //   [8]  = 0x0000FF00 / 0x00FF0000
7171 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7172 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7173   // These are the unshifted masks which we use to match bit-manipulation
7174   // patterns. They may be shifted left in certain circumstances.
7175   static const uint64_t BitmanipMasks[] = {
7176       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7177       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7178 
7179   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7180 }
7181 
7182 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7183 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7184                                const RISCVSubtarget &Subtarget) {
7185   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7186   EVT VT = Op.getValueType();
7187 
7188   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7189     return SDValue();
7190 
7191   SDValue Op0 = Op.getOperand(0);
7192   SDValue Op1 = Op.getOperand(1);
7193 
7194   // Or is commutable so canonicalize the second OR to the LHS.
7195   if (Op0.getOpcode() != ISD::OR)
7196     std::swap(Op0, Op1);
7197   if (Op0.getOpcode() != ISD::OR)
7198     return SDValue();
7199 
7200   // We found an inner OR, so our operands are the operands of the inner OR
7201   // and the other operand of the outer OR.
7202   SDValue A = Op0.getOperand(0);
7203   SDValue B = Op0.getOperand(1);
7204   SDValue C = Op1;
7205 
7206   auto Match1 = matchSHFLPat(A);
7207   auto Match2 = matchSHFLPat(B);
7208 
7209   // If neither matched, we failed.
7210   if (!Match1 && !Match2)
7211     return SDValue();
7212 
7213   // We had at least one match. if one failed, try the remaining C operand.
7214   if (!Match1) {
7215     std::swap(A, C);
7216     Match1 = matchSHFLPat(A);
7217     if (!Match1)
7218       return SDValue();
7219   } else if (!Match2) {
7220     std::swap(B, C);
7221     Match2 = matchSHFLPat(B);
7222     if (!Match2)
7223       return SDValue();
7224   }
7225   assert(Match1 && Match2);
7226 
7227   // Make sure our matches pair up.
7228   if (!Match1->formsPairWith(*Match2))
7229     return SDValue();
7230 
7231   // All the remains is to make sure C is an AND with the same input, that masks
7232   // out the bits that are being shuffled.
7233   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7234       C.getOperand(0) != Match1->Op)
7235     return SDValue();
7236 
7237   uint64_t Mask = C.getConstantOperandVal(1);
7238 
7239   static const uint64_t BitmanipMasks[] = {
7240       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7241       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7242   };
7243 
7244   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7245   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7246   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7247 
7248   if (Mask != ExpMask)
7249     return SDValue();
7250 
7251   SDLoc DL(Op);
7252   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7253                      DAG.getConstant(Match1->ShAmt, DL, VT));
7254 }
7255 
7256 // Optimize (add (shl x, c0), (shl y, c1)) ->
7257 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7258 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7259                                   const RISCVSubtarget &Subtarget) {
7260   // Perform this optimization only in the zba extension.
7261   if (!Subtarget.hasStdExtZba())
7262     return SDValue();
7263 
7264   // Skip for vector types and larger types.
7265   EVT VT = N->getValueType(0);
7266   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7267     return SDValue();
7268 
7269   // The two operand nodes must be SHL and have no other use.
7270   SDValue N0 = N->getOperand(0);
7271   SDValue N1 = N->getOperand(1);
7272   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7273       !N0->hasOneUse() || !N1->hasOneUse())
7274     return SDValue();
7275 
7276   // Check c0 and c1.
7277   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7278   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7279   if (!N0C || !N1C)
7280     return SDValue();
7281   int64_t C0 = N0C->getSExtValue();
7282   int64_t C1 = N1C->getSExtValue();
7283   if (C0 <= 0 || C1 <= 0)
7284     return SDValue();
7285 
7286   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7287   int64_t Bits = std::min(C0, C1);
7288   int64_t Diff = std::abs(C0 - C1);
7289   if (Diff != 1 && Diff != 2 && Diff != 3)
7290     return SDValue();
7291 
7292   // Build nodes.
7293   SDLoc DL(N);
7294   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7295   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7296   SDValue NA0 =
7297       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7298   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7299   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7300 }
7301 
7302 // Combine
7303 // ROTR ((GREV x, 24), 16) -> (GREVI x, 8)
7304 // ROTL ((GREV x, 24), 16) -> (GREVI x, 8)
7305 // RORW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7306 // ROLW ((GREVW x, 24), 16) -> (GREVIW x, 8)
7307 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG) {
7308   SDValue Src = N->getOperand(0);
7309   SDLoc DL(N);
7310   unsigned Opc;
7311 
7312   if ((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL) &&
7313       Src.getOpcode() == RISCVISD::GREV)
7314     Opc = RISCVISD::GREV;
7315   else if ((N->getOpcode() == RISCVISD::RORW ||
7316             N->getOpcode() == RISCVISD::ROLW) &&
7317            Src.getOpcode() == RISCVISD::GREVW)
7318     Opc = RISCVISD::GREVW;
7319   else
7320     return SDValue();
7321 
7322   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7323       !isa<ConstantSDNode>(Src.getOperand(1)))
7324     return SDValue();
7325 
7326   unsigned ShAmt1 = N->getConstantOperandVal(1);
7327   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7328   if (ShAmt1 != 16 && ShAmt2 != 24)
7329     return SDValue();
7330 
7331   Src = Src.getOperand(0);
7332   return DAG.getNode(Opc, DL, N->getValueType(0), Src,
7333                      DAG.getConstant(8, DL, N->getOperand(1).getValueType()));
7334 }
7335 
7336 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7337 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7338 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7339 // not undo itself, but they are redundant.
7340 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7341   SDValue Src = N->getOperand(0);
7342 
7343   if (Src.getOpcode() != N->getOpcode())
7344     return SDValue();
7345 
7346   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7347       !isa<ConstantSDNode>(Src.getOperand(1)))
7348     return SDValue();
7349 
7350   unsigned ShAmt1 = N->getConstantOperandVal(1);
7351   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7352   Src = Src.getOperand(0);
7353 
7354   unsigned CombinedShAmt;
7355   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
7356     CombinedShAmt = ShAmt1 | ShAmt2;
7357   else
7358     CombinedShAmt = ShAmt1 ^ ShAmt2;
7359 
7360   if (CombinedShAmt == 0)
7361     return Src;
7362 
7363   SDLoc DL(N);
7364   return DAG.getNode(
7365       N->getOpcode(), DL, N->getValueType(0), Src,
7366       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7367 }
7368 
7369 // Combine a constant select operand into its use:
7370 //
7371 // (and (select cond, -1, c), x)
7372 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7373 // (or  (select cond, 0, c), x)
7374 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7375 // (xor (select cond, 0, c), x)
7376 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7377 // (add (select cond, 0, c), x)
7378 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7379 // (sub x, (select cond, 0, c))
7380 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7381 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7382                                    SelectionDAG &DAG, bool AllOnes) {
7383   EVT VT = N->getValueType(0);
7384 
7385   // Skip vectors.
7386   if (VT.isVector())
7387     return SDValue();
7388 
7389   if ((Slct.getOpcode() != ISD::SELECT &&
7390        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7391       !Slct.hasOneUse())
7392     return SDValue();
7393 
7394   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7395     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7396   };
7397 
7398   bool SwapSelectOps;
7399   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7400   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7401   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7402   SDValue NonConstantVal;
7403   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7404     SwapSelectOps = false;
7405     NonConstantVal = FalseVal;
7406   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7407     SwapSelectOps = true;
7408     NonConstantVal = TrueVal;
7409   } else
7410     return SDValue();
7411 
7412   // Slct is now know to be the desired identity constant when CC is true.
7413   TrueVal = OtherOp;
7414   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7415   // Unless SwapSelectOps says the condition should be false.
7416   if (SwapSelectOps)
7417     std::swap(TrueVal, FalseVal);
7418 
7419   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7420     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7421                        {Slct.getOperand(0), Slct.getOperand(1),
7422                         Slct.getOperand(2), TrueVal, FalseVal});
7423 
7424   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7425                      {Slct.getOperand(0), TrueVal, FalseVal});
7426 }
7427 
7428 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7429 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7430                                               bool AllOnes) {
7431   SDValue N0 = N->getOperand(0);
7432   SDValue N1 = N->getOperand(1);
7433   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7434     return Result;
7435   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7436     return Result;
7437   return SDValue();
7438 }
7439 
7440 // Transform (add (mul x, c0), c1) ->
7441 //           (add (mul (add x, c1/c0), c0), c1%c0).
7442 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7443 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7444 // to an infinite loop in DAGCombine if transformed.
7445 // Or transform (add (mul x, c0), c1) ->
7446 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7447 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7448 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7449 // lead to an infinite loop in DAGCombine if transformed.
7450 // Or transform (add (mul x, c0), c1) ->
7451 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7452 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7453 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7454 // lead to an infinite loop in DAGCombine if transformed.
7455 // Or transform (add (mul x, c0), c1) ->
7456 //              (mul (add x, c1/c0), c0).
7457 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7458 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7459                                      const RISCVSubtarget &Subtarget) {
7460   // Skip for vector types and larger types.
7461   EVT VT = N->getValueType(0);
7462   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7463     return SDValue();
7464   // The first operand node must be a MUL and has no other use.
7465   SDValue N0 = N->getOperand(0);
7466   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7467     return SDValue();
7468   // Check if c0 and c1 match above conditions.
7469   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7470   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7471   if (!N0C || !N1C)
7472     return SDValue();
7473   int64_t C0 = N0C->getSExtValue();
7474   int64_t C1 = N1C->getSExtValue();
7475   int64_t CA, CB;
7476   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7477     return SDValue();
7478   // Search for proper CA (non-zero) and CB that both are simm12.
7479   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7480       !isInt<12>(C0 * (C1 / C0))) {
7481     CA = C1 / C0;
7482     CB = C1 % C0;
7483   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7484              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7485     CA = C1 / C0 + 1;
7486     CB = C1 % C0 - C0;
7487   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7488              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7489     CA = C1 / C0 - 1;
7490     CB = C1 % C0 + C0;
7491   } else
7492     return SDValue();
7493   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7494   SDLoc DL(N);
7495   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7496                              DAG.getConstant(CA, DL, VT));
7497   SDValue New1 =
7498       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7499   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7500 }
7501 
7502 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7503                                  const RISCVSubtarget &Subtarget) {
7504   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7505     return V;
7506   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7507     return V;
7508   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7509   //      (select lhs, rhs, cc, x, (add x, y))
7510   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7511 }
7512 
7513 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7514   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7515   //      (select lhs, rhs, cc, x, (sub x, y))
7516   SDValue N0 = N->getOperand(0);
7517   SDValue N1 = N->getOperand(1);
7518   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7519 }
7520 
7521 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7522   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7523   //      (select lhs, rhs, cc, x, (and x, y))
7524   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7525 }
7526 
7527 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7528                                 const RISCVSubtarget &Subtarget) {
7529   if (Subtarget.hasStdExtZbp()) {
7530     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7531       return GREV;
7532     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7533       return GORC;
7534     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7535       return SHFL;
7536   }
7537 
7538   // fold (or (select cond, 0, y), x) ->
7539   //      (select cond, x, (or x, y))
7540   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7541 }
7542 
7543 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7544   // fold (xor (select cond, 0, y), x) ->
7545   //      (select cond, x, (xor x, y))
7546   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7547 }
7548 
7549 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
7550 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
7551 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
7552 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
7553 // ADDW/SUBW/MULW.
7554 static SDValue performANY_EXTENDCombine(SDNode *N,
7555                                         TargetLowering::DAGCombinerInfo &DCI,
7556                                         const RISCVSubtarget &Subtarget) {
7557   if (!Subtarget.is64Bit())
7558     return SDValue();
7559 
7560   SelectionDAG &DAG = DCI.DAG;
7561 
7562   SDValue Src = N->getOperand(0);
7563   EVT VT = N->getValueType(0);
7564   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
7565     return SDValue();
7566 
7567   // The opcode must be one that can implicitly sign_extend.
7568   // FIXME: Additional opcodes.
7569   switch (Src.getOpcode()) {
7570   default:
7571     return SDValue();
7572   case ISD::MUL:
7573     if (!Subtarget.hasStdExtM())
7574       return SDValue();
7575     LLVM_FALLTHROUGH;
7576   case ISD::ADD:
7577   case ISD::SUB:
7578     break;
7579   }
7580 
7581   // Only handle cases where the result is used by a CopyToReg. That likely
7582   // means the value is a liveout of the basic block. This helps prevent
7583   // infinite combine loops like PR51206.
7584   if (none_of(N->uses(),
7585               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
7586     return SDValue();
7587 
7588   SmallVector<SDNode *, 4> SetCCs;
7589   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
7590                             UE = Src.getNode()->use_end();
7591        UI != UE; ++UI) {
7592     SDNode *User = *UI;
7593     if (User == N)
7594       continue;
7595     if (UI.getUse().getResNo() != Src.getResNo())
7596       continue;
7597     // All i32 setccs are legalized by sign extending operands.
7598     if (User->getOpcode() == ISD::SETCC) {
7599       SetCCs.push_back(User);
7600       continue;
7601     }
7602     // We don't know if we can extend this user.
7603     break;
7604   }
7605 
7606   // If we don't have any SetCCs, this isn't worthwhile.
7607   if (SetCCs.empty())
7608     return SDValue();
7609 
7610   SDLoc DL(N);
7611   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
7612   DCI.CombineTo(N, SExt);
7613 
7614   // Promote all the setccs.
7615   for (SDNode *SetCC : SetCCs) {
7616     SmallVector<SDValue, 4> Ops;
7617 
7618     for (unsigned j = 0; j != 2; ++j) {
7619       SDValue SOp = SetCC->getOperand(j);
7620       if (SOp == Src)
7621         Ops.push_back(SExt);
7622       else
7623         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
7624     }
7625 
7626     Ops.push_back(SetCC->getOperand(2));
7627     DCI.CombineTo(SetCC,
7628                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
7629   }
7630   return SDValue(N, 0);
7631 }
7632 
7633 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7634 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7635 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7636                                              bool Commute = false) {
7637   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7638           N->getOpcode() == RISCVISD::SUB_VL) &&
7639          "Unexpected opcode");
7640   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7641   SDValue Op0 = N->getOperand(0);
7642   SDValue Op1 = N->getOperand(1);
7643   if (Commute)
7644     std::swap(Op0, Op1);
7645 
7646   MVT VT = N->getSimpleValueType(0);
7647 
7648   // Determine the narrow size for a widening add/sub.
7649   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7650   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7651                                   VT.getVectorElementCount());
7652 
7653   SDValue Mask = N->getOperand(2);
7654   SDValue VL = N->getOperand(3);
7655 
7656   SDLoc DL(N);
7657 
7658   // If the RHS is a sext or zext, we can form a widening op.
7659   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7660        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7661       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7662     unsigned ExtOpc = Op1.getOpcode();
7663     Op1 = Op1.getOperand(0);
7664     // Re-introduce narrower extends if needed.
7665     if (Op1.getValueType() != NarrowVT)
7666       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7667 
7668     unsigned WOpc;
7669     if (ExtOpc == RISCVISD::VSEXT_VL)
7670       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7671     else
7672       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7673 
7674     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7675   }
7676 
7677   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7678   // sext/zext?
7679 
7680   return SDValue();
7681 }
7682 
7683 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7684 // vwsub(u).vv/vx.
7685 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7686   SDValue Op0 = N->getOperand(0);
7687   SDValue Op1 = N->getOperand(1);
7688   SDValue Mask = N->getOperand(2);
7689   SDValue VL = N->getOperand(3);
7690 
7691   MVT VT = N->getSimpleValueType(0);
7692   MVT NarrowVT = Op1.getSimpleValueType();
7693   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7694 
7695   unsigned VOpc;
7696   switch (N->getOpcode()) {
7697   default: llvm_unreachable("Unexpected opcode");
7698   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7699   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7700   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7701   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7702   }
7703 
7704   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7705                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7706 
7707   SDLoc DL(N);
7708 
7709   // If the LHS is a sext or zext, we can narrow this op to the same size as
7710   // the RHS.
7711   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7712        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7713       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7714     unsigned ExtOpc = Op0.getOpcode();
7715     Op0 = Op0.getOperand(0);
7716     // Re-introduce narrower extends if needed.
7717     if (Op0.getValueType() != NarrowVT)
7718       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7719     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7720   }
7721 
7722   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7723                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7724 
7725   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7726   // to commute and use a vwadd(u).vx instead.
7727   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7728       Op0.getOperand(1) == VL) {
7729     Op0 = Op0.getOperand(0);
7730 
7731     // See if have enough sign bits or zero bits in the scalar to use a
7732     // widening add/sub by splatting to smaller element size.
7733     unsigned EltBits = VT.getScalarSizeInBits();
7734     unsigned ScalarBits = Op0.getValueSizeInBits();
7735     // Make sure we're getting all element bits from the scalar register.
7736     // FIXME: Support implicit sign extension of vmv.v.x?
7737     if (ScalarBits < EltBits)
7738       return SDValue();
7739 
7740     if (IsSigned) {
7741       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7742         return SDValue();
7743     } else {
7744       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7745       if (!DAG.MaskedValueIsZero(Op0, Mask))
7746         return SDValue();
7747     }
7748 
7749     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op0, VL);
7750     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7751   }
7752 
7753   return SDValue();
7754 }
7755 
7756 // Try to form VWMUL, VWMULU or VWMULSU.
7757 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7758 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7759                                        bool Commute) {
7760   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7761   SDValue Op0 = N->getOperand(0);
7762   SDValue Op1 = N->getOperand(1);
7763   if (Commute)
7764     std::swap(Op0, Op1);
7765 
7766   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7767   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7768   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7769   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7770     return SDValue();
7771 
7772   SDValue Mask = N->getOperand(2);
7773   SDValue VL = N->getOperand(3);
7774 
7775   // Make sure the mask and VL match.
7776   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7777     return SDValue();
7778 
7779   MVT VT = N->getSimpleValueType(0);
7780 
7781   // Determine the narrow size for a widening multiply.
7782   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7783   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7784                                   VT.getVectorElementCount());
7785 
7786   SDLoc DL(N);
7787 
7788   // See if the other operand is the same opcode.
7789   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7790     if (!Op1.hasOneUse())
7791       return SDValue();
7792 
7793     // Make sure the mask and VL match.
7794     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7795       return SDValue();
7796 
7797     Op1 = Op1.getOperand(0);
7798   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7799     // The operand is a splat of a scalar.
7800 
7801     // The VL must be the same.
7802     if (Op1.getOperand(1) != VL)
7803       return SDValue();
7804 
7805     // Get the scalar value.
7806     Op1 = Op1.getOperand(0);
7807 
7808     // See if have enough sign bits or zero bits in the scalar to use a
7809     // widening multiply by splatting to smaller element size.
7810     unsigned EltBits = VT.getScalarSizeInBits();
7811     unsigned ScalarBits = Op1.getValueSizeInBits();
7812     // Make sure we're getting all element bits from the scalar register.
7813     // FIXME: Support implicit sign extension of vmv.v.x?
7814     if (ScalarBits < EltBits)
7815       return SDValue();
7816 
7817     // If the LHS is a sign extend, try to use vwmul.
7818     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7819       // Can use vwmul.
7820     } else {
7821       // Otherwise try to use vwmulu or vwmulsu.
7822       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7823       if (DAG.MaskedValueIsZero(Op1, Mask))
7824         IsVWMULSU = IsSignExt;
7825       else
7826         return SDValue();
7827     }
7828 
7829     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
7830   } else
7831     return SDValue();
7832 
7833   Op0 = Op0.getOperand(0);
7834 
7835   // Re-introduce narrower extends if needed.
7836   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7837   if (Op0.getValueType() != NarrowVT)
7838     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7839   // vwmulsu requires second operand to be zero extended.
7840   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7841   if (Op1.getValueType() != NarrowVT)
7842     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7843 
7844   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7845   if (!IsVWMULSU)
7846     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7847   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7848 }
7849 
7850 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7851   switch (Op.getOpcode()) {
7852   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7853   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7854   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7855   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7856   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7857   }
7858 
7859   return RISCVFPRndMode::Invalid;
7860 }
7861 
7862 // Fold
7863 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7864 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7865 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7866 //   (fp_to_int (fceil X))      -> fcvt X, rup
7867 //   (fp_to_int (fround X))     -> fcvt X, rmm
7868 static SDValue performFP_TO_INTCombine(SDNode *N,
7869                                        TargetLowering::DAGCombinerInfo &DCI,
7870                                        const RISCVSubtarget &Subtarget) {
7871   SelectionDAG &DAG = DCI.DAG;
7872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7873   MVT XLenVT = Subtarget.getXLenVT();
7874 
7875   // Only handle XLen or i32 types. Other types narrower than XLen will
7876   // eventually be legalized to XLenVT.
7877   EVT VT = N->getValueType(0);
7878   if (VT != MVT::i32 && VT != XLenVT)
7879     return SDValue();
7880 
7881   SDValue Src = N->getOperand(0);
7882 
7883   // Ensure the FP type is also legal.
7884   if (!TLI.isTypeLegal(Src.getValueType()))
7885     return SDValue();
7886 
7887   // Don't do this for f16 with Zfhmin and not Zfh.
7888   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7889     return SDValue();
7890 
7891   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7892   if (FRM == RISCVFPRndMode::Invalid)
7893     return SDValue();
7894 
7895   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7896 
7897   unsigned Opc;
7898   if (VT == XLenVT)
7899     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7900   else
7901     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7902 
7903   SDLoc DL(N);
7904   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
7905                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7906   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
7907 }
7908 
7909 // Fold
7910 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
7911 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
7912 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
7913 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
7914 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
7915 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
7916                                        TargetLowering::DAGCombinerInfo &DCI,
7917                                        const RISCVSubtarget &Subtarget) {
7918   SelectionDAG &DAG = DCI.DAG;
7919   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7920   MVT XLenVT = Subtarget.getXLenVT();
7921 
7922   // Only handle XLen types. Other types narrower than XLen will eventually be
7923   // legalized to XLenVT.
7924   EVT DstVT = N->getValueType(0);
7925   if (DstVT != XLenVT)
7926     return SDValue();
7927 
7928   SDValue Src = N->getOperand(0);
7929 
7930   // Ensure the FP type is also legal.
7931   if (!TLI.isTypeLegal(Src.getValueType()))
7932     return SDValue();
7933 
7934   // Don't do this for f16 with Zfhmin and not Zfh.
7935   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
7936     return SDValue();
7937 
7938   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7939 
7940   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
7941   if (FRM == RISCVFPRndMode::Invalid)
7942     return SDValue();
7943 
7944   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
7945 
7946   unsigned Opc;
7947   if (SatVT == DstVT)
7948     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
7949   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
7950     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
7951   else
7952     return SDValue();
7953   // FIXME: Support other SatVTs by clamping before or after the conversion.
7954 
7955   Src = Src.getOperand(0);
7956 
7957   SDLoc DL(N);
7958   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
7959                                 DAG.getTargetConstant(FRM, DL, XLenVT));
7960 
7961   // RISCV FP-to-int conversions saturate to the destination register size, but
7962   // don't produce 0 for nan.
7963   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
7964   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
7965 }
7966 
7967 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7968                                                DAGCombinerInfo &DCI) const {
7969   SelectionDAG &DAG = DCI.DAG;
7970 
7971   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7972   // bits are demanded. N will be added to the Worklist if it was not deleted.
7973   // Caller should return SDValue(N, 0) if this returns true.
7974   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7975     SDValue Op = N->getOperand(OpNo);
7976     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7977     if (!SimplifyDemandedBits(Op, Mask, DCI))
7978       return false;
7979 
7980     if (N->getOpcode() != ISD::DELETED_NODE)
7981       DCI.AddToWorklist(N);
7982     return true;
7983   };
7984 
7985   switch (N->getOpcode()) {
7986   default:
7987     break;
7988   case RISCVISD::SplitF64: {
7989     SDValue Op0 = N->getOperand(0);
7990     // If the input to SplitF64 is just BuildPairF64 then the operation is
7991     // redundant. Instead, use BuildPairF64's operands directly.
7992     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7993       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7994 
7995     if (Op0->isUndef()) {
7996       SDValue Lo = DAG.getUNDEF(MVT::i32);
7997       SDValue Hi = DAG.getUNDEF(MVT::i32);
7998       return DCI.CombineTo(N, Lo, Hi);
7999     }
8000 
8001     SDLoc DL(N);
8002 
8003     // It's cheaper to materialise two 32-bit integers than to load a double
8004     // from the constant pool and transfer it to integer registers through the
8005     // stack.
8006     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8007       APInt V = C->getValueAPF().bitcastToAPInt();
8008       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8009       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8010       return DCI.CombineTo(N, Lo, Hi);
8011     }
8012 
8013     // This is a target-specific version of a DAGCombine performed in
8014     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8015     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8016     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8017     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8018         !Op0.getNode()->hasOneUse())
8019       break;
8020     SDValue NewSplitF64 =
8021         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8022                     Op0.getOperand(0));
8023     SDValue Lo = NewSplitF64.getValue(0);
8024     SDValue Hi = NewSplitF64.getValue(1);
8025     APInt SignBit = APInt::getSignMask(32);
8026     if (Op0.getOpcode() == ISD::FNEG) {
8027       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8028                                   DAG.getConstant(SignBit, DL, MVT::i32));
8029       return DCI.CombineTo(N, Lo, NewHi);
8030     }
8031     assert(Op0.getOpcode() == ISD::FABS);
8032     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8033                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8034     return DCI.CombineTo(N, Lo, NewHi);
8035   }
8036   case RISCVISD::SLLW:
8037   case RISCVISD::SRAW:
8038   case RISCVISD::SRLW:
8039   case RISCVISD::ROLW:
8040   case RISCVISD::RORW: {
8041     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8042     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8043         SimplifyDemandedLowBitsHelper(1, 5))
8044       return SDValue(N, 0);
8045 
8046     return combineROTR_ROTL_RORW_ROLW(N, DAG);
8047   }
8048   case ISD::ROTR:
8049   case ISD::ROTL:
8050     return combineROTR_ROTL_RORW_ROLW(N, DAG);
8051   case RISCVISD::CLZW:
8052   case RISCVISD::CTZW: {
8053     // Only the lower 32 bits of the first operand are read
8054     if (SimplifyDemandedLowBitsHelper(0, 32))
8055       return SDValue(N, 0);
8056     break;
8057   }
8058   case RISCVISD::GREV:
8059   case RISCVISD::GORC: {
8060     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8061     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8062     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8063     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8064       return SDValue(N, 0);
8065 
8066     return combineGREVI_GORCI(N, DAG);
8067   }
8068   case RISCVISD::GREVW:
8069   case RISCVISD::GORCW: {
8070     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8071     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8072         SimplifyDemandedLowBitsHelper(1, 5))
8073       return SDValue(N, 0);
8074 
8075     return combineGREVI_GORCI(N, DAG);
8076   }
8077   case RISCVISD::SHFL:
8078   case RISCVISD::UNSHFL: {
8079     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8080     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8081     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8082     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8083       return SDValue(N, 0);
8084 
8085     break;
8086   }
8087   case RISCVISD::SHFLW:
8088   case RISCVISD::UNSHFLW: {
8089     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8090     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8091         SimplifyDemandedLowBitsHelper(1, 4))
8092       return SDValue(N, 0);
8093 
8094     break;
8095   }
8096   case RISCVISD::BCOMPRESSW:
8097   case RISCVISD::BDECOMPRESSW: {
8098     // Only the lower 32 bits of LHS and RHS are read.
8099     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8100         SimplifyDemandedLowBitsHelper(1, 32))
8101       return SDValue(N, 0);
8102 
8103     break;
8104   }
8105   case RISCVISD::FMV_X_ANYEXTH:
8106   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8107     SDLoc DL(N);
8108     SDValue Op0 = N->getOperand(0);
8109     MVT VT = N->getSimpleValueType(0);
8110     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8111     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8112     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8113     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8114          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8115         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8116          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8117       assert(Op0.getOperand(0).getValueType() == VT &&
8118              "Unexpected value type!");
8119       return Op0.getOperand(0);
8120     }
8121 
8122     // This is a target-specific version of a DAGCombine performed in
8123     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8124     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8125     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8126     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8127         !Op0.getNode()->hasOneUse())
8128       break;
8129     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8130     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8131     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8132     if (Op0.getOpcode() == ISD::FNEG)
8133       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8134                          DAG.getConstant(SignBit, DL, VT));
8135 
8136     assert(Op0.getOpcode() == ISD::FABS);
8137     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8138                        DAG.getConstant(~SignBit, DL, VT));
8139   }
8140   case ISD::ADD:
8141     return performADDCombine(N, DAG, Subtarget);
8142   case ISD::SUB:
8143     return performSUBCombine(N, DAG);
8144   case ISD::AND:
8145     return performANDCombine(N, DAG);
8146   case ISD::OR:
8147     return performORCombine(N, DAG, Subtarget);
8148   case ISD::XOR:
8149     return performXORCombine(N, DAG);
8150   case ISD::ANY_EXTEND:
8151     return performANY_EXTENDCombine(N, DCI, Subtarget);
8152   case ISD::ZERO_EXTEND:
8153     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8154     // type legalization. This is safe because fp_to_uint produces poison if
8155     // it overflows.
8156     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8157       SDValue Src = N->getOperand(0);
8158       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8159           isTypeLegal(Src.getOperand(0).getValueType()))
8160         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8161                            Src.getOperand(0));
8162       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8163           isTypeLegal(Src.getOperand(1).getValueType())) {
8164         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8165         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8166                                   Src.getOperand(0), Src.getOperand(1));
8167         DCI.CombineTo(N, Res);
8168         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8169         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8170         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8171       }
8172     }
8173     return SDValue();
8174   case RISCVISD::SELECT_CC: {
8175     // Transform
8176     SDValue LHS = N->getOperand(0);
8177     SDValue RHS = N->getOperand(1);
8178     SDValue TrueV = N->getOperand(3);
8179     SDValue FalseV = N->getOperand(4);
8180 
8181     // If the True and False values are the same, we don't need a select_cc.
8182     if (TrueV == FalseV)
8183       return TrueV;
8184 
8185     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8186     if (!ISD::isIntEqualitySetCC(CCVal))
8187       break;
8188 
8189     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8190     //      (select_cc X, Y, lt, trueV, falseV)
8191     // Sometimes the setcc is introduced after select_cc has been formed.
8192     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8193         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8194       // If we're looking for eq 0 instead of ne 0, we need to invert the
8195       // condition.
8196       bool Invert = CCVal == ISD::SETEQ;
8197       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8198       if (Invert)
8199         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8200 
8201       SDLoc DL(N);
8202       RHS = LHS.getOperand(1);
8203       LHS = LHS.getOperand(0);
8204       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8205 
8206       SDValue TargetCC = DAG.getCondCode(CCVal);
8207       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8208                          {LHS, RHS, TargetCC, TrueV, FalseV});
8209     }
8210 
8211     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8212     //      (select_cc X, Y, eq/ne, trueV, falseV)
8213     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8214       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8215                          {LHS.getOperand(0), LHS.getOperand(1),
8216                           N->getOperand(2), TrueV, FalseV});
8217     // (select_cc X, 1, setne, trueV, falseV) ->
8218     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8219     // This can occur when legalizing some floating point comparisons.
8220     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8221     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8222       SDLoc DL(N);
8223       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8224       SDValue TargetCC = DAG.getCondCode(CCVal);
8225       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8226       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8227                          {LHS, RHS, TargetCC, TrueV, FalseV});
8228     }
8229 
8230     break;
8231   }
8232   case RISCVISD::BR_CC: {
8233     SDValue LHS = N->getOperand(1);
8234     SDValue RHS = N->getOperand(2);
8235     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8236     if (!ISD::isIntEqualitySetCC(CCVal))
8237       break;
8238 
8239     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8240     //      (br_cc X, Y, lt, dest)
8241     // Sometimes the setcc is introduced after br_cc has been formed.
8242     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8243         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8244       // If we're looking for eq 0 instead of ne 0, we need to invert the
8245       // condition.
8246       bool Invert = CCVal == ISD::SETEQ;
8247       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8248       if (Invert)
8249         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8250 
8251       SDLoc DL(N);
8252       RHS = LHS.getOperand(1);
8253       LHS = LHS.getOperand(0);
8254       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8255 
8256       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8257                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8258                          N->getOperand(4));
8259     }
8260 
8261     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8262     //      (br_cc X, Y, eq/ne, trueV, falseV)
8263     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8264       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8265                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8266                          N->getOperand(3), N->getOperand(4));
8267 
8268     // (br_cc X, 1, setne, br_cc) ->
8269     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8270     // This can occur when legalizing some floating point comparisons.
8271     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8272     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8273       SDLoc DL(N);
8274       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8275       SDValue TargetCC = DAG.getCondCode(CCVal);
8276       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8277       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8278                          N->getOperand(0), LHS, RHS, TargetCC,
8279                          N->getOperand(4));
8280     }
8281     break;
8282   }
8283   case ISD::FP_TO_SINT:
8284   case ISD::FP_TO_UINT:
8285     return performFP_TO_INTCombine(N, DCI, Subtarget);
8286   case ISD::FP_TO_SINT_SAT:
8287   case ISD::FP_TO_UINT_SAT:
8288     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8289   case ISD::FCOPYSIGN: {
8290     EVT VT = N->getValueType(0);
8291     if (!VT.isVector())
8292       break;
8293     // There is a form of VFSGNJ which injects the negated sign of its second
8294     // operand. Try and bubble any FNEG up after the extend/round to produce
8295     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8296     // TRUNC=1.
8297     SDValue In2 = N->getOperand(1);
8298     // Avoid cases where the extend/round has multiple uses, as duplicating
8299     // those is typically more expensive than removing a fneg.
8300     if (!In2.hasOneUse())
8301       break;
8302     if (In2.getOpcode() != ISD::FP_EXTEND &&
8303         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8304       break;
8305     In2 = In2.getOperand(0);
8306     if (In2.getOpcode() != ISD::FNEG)
8307       break;
8308     SDLoc DL(N);
8309     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8310     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8311                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8312   }
8313   case ISD::MGATHER:
8314   case ISD::MSCATTER:
8315   case ISD::VP_GATHER:
8316   case ISD::VP_SCATTER: {
8317     if (!DCI.isBeforeLegalize())
8318       break;
8319     SDValue Index, ScaleOp;
8320     bool IsIndexScaled = false;
8321     bool IsIndexSigned = false;
8322     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8323       Index = VPGSN->getIndex();
8324       ScaleOp = VPGSN->getScale();
8325       IsIndexScaled = VPGSN->isIndexScaled();
8326       IsIndexSigned = VPGSN->isIndexSigned();
8327     } else {
8328       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8329       Index = MGSN->getIndex();
8330       ScaleOp = MGSN->getScale();
8331       IsIndexScaled = MGSN->isIndexScaled();
8332       IsIndexSigned = MGSN->isIndexSigned();
8333     }
8334     EVT IndexVT = Index.getValueType();
8335     MVT XLenVT = Subtarget.getXLenVT();
8336     // RISCV indexed loads only support the "unsigned unscaled" addressing
8337     // mode, so anything else must be manually legalized.
8338     bool NeedsIdxLegalization =
8339         IsIndexScaled ||
8340         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8341     if (!NeedsIdxLegalization)
8342       break;
8343 
8344     SDLoc DL(N);
8345 
8346     // Any index legalization should first promote to XLenVT, so we don't lose
8347     // bits when scaling. This may create an illegal index type so we let
8348     // LLVM's legalization take care of the splitting.
8349     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8350     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8351       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8352       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8353                           DL, IndexVT, Index);
8354     }
8355 
8356     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8357     if (IsIndexScaled && Scale != 1) {
8358       // Manually scale the indices by the element size.
8359       // TODO: Sanitize the scale operand here?
8360       // TODO: For VP nodes, should we use VP_SHL here?
8361       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8362       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8363       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8364     }
8365 
8366     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8367     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8368       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8369                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8370                               VPGN->getScale(), VPGN->getMask(),
8371                               VPGN->getVectorLength()},
8372                              VPGN->getMemOperand(), NewIndexTy);
8373     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8374       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8375                               {VPSN->getChain(), VPSN->getValue(),
8376                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8377                                VPSN->getMask(), VPSN->getVectorLength()},
8378                               VPSN->getMemOperand(), NewIndexTy);
8379     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8380       return DAG.getMaskedGather(
8381           N->getVTList(), MGN->getMemoryVT(), DL,
8382           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8383            MGN->getBasePtr(), Index, MGN->getScale()},
8384           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8385     const auto *MSN = cast<MaskedScatterSDNode>(N);
8386     return DAG.getMaskedScatter(
8387         N->getVTList(), MSN->getMemoryVT(), DL,
8388         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8389          Index, MSN->getScale()},
8390         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8391   }
8392   case RISCVISD::SRA_VL:
8393   case RISCVISD::SRL_VL:
8394   case RISCVISD::SHL_VL: {
8395     SDValue ShAmt = N->getOperand(1);
8396     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8397       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8398       SDLoc DL(N);
8399       SDValue VL = N->getOperand(3);
8400       EVT VT = N->getValueType(0);
8401       ShAmt =
8402           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
8403       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8404                          N->getOperand(2), N->getOperand(3));
8405     }
8406     break;
8407   }
8408   case ISD::SRA:
8409   case ISD::SRL:
8410   case ISD::SHL: {
8411     SDValue ShAmt = N->getOperand(1);
8412     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8413       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8414       SDLoc DL(N);
8415       EVT VT = N->getValueType(0);
8416       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0),
8417                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8418       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8419     }
8420     break;
8421   }
8422   case RISCVISD::ADD_VL:
8423     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8424       return V;
8425     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8426   case RISCVISD::SUB_VL:
8427     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8428   case RISCVISD::VWADD_W_VL:
8429   case RISCVISD::VWADDU_W_VL:
8430   case RISCVISD::VWSUB_W_VL:
8431   case RISCVISD::VWSUBU_W_VL:
8432     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8433   case RISCVISD::MUL_VL:
8434     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8435       return V;
8436     // Mul is commutative.
8437     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8438   case ISD::STORE: {
8439     auto *Store = cast<StoreSDNode>(N);
8440     SDValue Val = Store->getValue();
8441     // Combine store of vmv.x.s to vse with VL of 1.
8442     // FIXME: Support FP.
8443     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8444       SDValue Src = Val.getOperand(0);
8445       EVT VecVT = Src.getValueType();
8446       EVT MemVT = Store->getMemoryVT();
8447       // The memory VT and the element type must match.
8448       if (VecVT.getVectorElementType() == MemVT) {
8449         SDLoc DL(N);
8450         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8451         return DAG.getStoreVP(
8452             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8453             DAG.getConstant(1, DL, MaskVT),
8454             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8455             Store->getMemOperand(), Store->getAddressingMode(),
8456             Store->isTruncatingStore(), /*IsCompress*/ false);
8457       }
8458     }
8459 
8460     break;
8461   }
8462   case ISD::SPLAT_VECTOR: {
8463     EVT VT = N->getValueType(0);
8464     // Only perform this combine on legal MVT types.
8465     if (!isTypeLegal(VT))
8466       break;
8467     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8468                                          DAG, Subtarget))
8469       return Gather;
8470     break;
8471   }
8472   case RISCVISD::VMV_V_X_VL: {
8473     // VMV.V.X only demands the vector element bitwidth from the scalar input.
8474     unsigned ScalarSize = N->getOperand(0).getValueSizeInBits();
8475     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8476     if (ScalarSize > EltWidth)
8477       if (SimplifyDemandedLowBitsHelper(0, EltWidth))
8478         return SDValue(N, 0);
8479 
8480     break;
8481   }
8482   }
8483 
8484   return SDValue();
8485 }
8486 
8487 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8488     const SDNode *N, CombineLevel Level) const {
8489   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8490   // materialised in fewer instructions than `(OP _, c1)`:
8491   //
8492   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8493   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8494   SDValue N0 = N->getOperand(0);
8495   EVT Ty = N0.getValueType();
8496   if (Ty.isScalarInteger() &&
8497       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8498     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8499     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8500     if (C1 && C2) {
8501       const APInt &C1Int = C1->getAPIntValue();
8502       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8503 
8504       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8505       // and the combine should happen, to potentially allow further combines
8506       // later.
8507       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8508           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8509         return true;
8510 
8511       // We can materialise `c1` in an add immediate, so it's "free", and the
8512       // combine should be prevented.
8513       if (C1Int.getMinSignedBits() <= 64 &&
8514           isLegalAddImmediate(C1Int.getSExtValue()))
8515         return false;
8516 
8517       // Neither constant will fit into an immediate, so find materialisation
8518       // costs.
8519       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8520                                               Subtarget.getFeatureBits(),
8521                                               /*CompressionCost*/true);
8522       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8523           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8524           /*CompressionCost*/true);
8525 
8526       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8527       // combine should be prevented.
8528       if (C1Cost < ShiftedC1Cost)
8529         return false;
8530     }
8531   }
8532   return true;
8533 }
8534 
8535 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8536     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8537     TargetLoweringOpt &TLO) const {
8538   // Delay this optimization as late as possible.
8539   if (!TLO.LegalOps)
8540     return false;
8541 
8542   EVT VT = Op.getValueType();
8543   if (VT.isVector())
8544     return false;
8545 
8546   // Only handle AND for now.
8547   if (Op.getOpcode() != ISD::AND)
8548     return false;
8549 
8550   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8551   if (!C)
8552     return false;
8553 
8554   const APInt &Mask = C->getAPIntValue();
8555 
8556   // Clear all non-demanded bits initially.
8557   APInt ShrunkMask = Mask & DemandedBits;
8558 
8559   // Try to make a smaller immediate by setting undemanded bits.
8560 
8561   APInt ExpandedMask = Mask | ~DemandedBits;
8562 
8563   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8564     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8565   };
8566   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8567     if (NewMask == Mask)
8568       return true;
8569     SDLoc DL(Op);
8570     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8571     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8572     return TLO.CombineTo(Op, NewOp);
8573   };
8574 
8575   // If the shrunk mask fits in sign extended 12 bits, let the target
8576   // independent code apply it.
8577   if (ShrunkMask.isSignedIntN(12))
8578     return false;
8579 
8580   // Preserve (and X, 0xffff) when zext.h is supported.
8581   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8582     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8583     if (IsLegalMask(NewMask))
8584       return UseMask(NewMask);
8585   }
8586 
8587   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8588   if (VT == MVT::i64) {
8589     APInt NewMask = APInt(64, 0xffffffff);
8590     if (IsLegalMask(NewMask))
8591       return UseMask(NewMask);
8592   }
8593 
8594   // For the remaining optimizations, we need to be able to make a negative
8595   // number through a combination of mask and undemanded bits.
8596   if (!ExpandedMask.isNegative())
8597     return false;
8598 
8599   // What is the fewest number of bits we need to represent the negative number.
8600   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8601 
8602   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8603   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8604   APInt NewMask = ShrunkMask;
8605   if (MinSignedBits <= 12)
8606     NewMask.setBitsFrom(11);
8607   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8608     NewMask.setBitsFrom(31);
8609   else
8610     return false;
8611 
8612   // Check that our new mask is a subset of the demanded mask.
8613   assert(IsLegalMask(NewMask));
8614   return UseMask(NewMask);
8615 }
8616 
8617 static void computeGREV(APInt &Src, unsigned ShAmt) {
8618   ShAmt &= Src.getBitWidth() - 1;
8619   uint64_t x = Src.getZExtValue();
8620   if (ShAmt & 1)
8621     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8622   if (ShAmt & 2)
8623     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8624   if (ShAmt & 4)
8625     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8626   if (ShAmt & 8)
8627     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8628   if (ShAmt & 16)
8629     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8630   if (ShAmt & 32)
8631     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8632   Src = x;
8633 }
8634 
8635 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8636                                                         KnownBits &Known,
8637                                                         const APInt &DemandedElts,
8638                                                         const SelectionDAG &DAG,
8639                                                         unsigned Depth) const {
8640   unsigned BitWidth = Known.getBitWidth();
8641   unsigned Opc = Op.getOpcode();
8642   assert((Opc >= ISD::BUILTIN_OP_END ||
8643           Opc == ISD::INTRINSIC_WO_CHAIN ||
8644           Opc == ISD::INTRINSIC_W_CHAIN ||
8645           Opc == ISD::INTRINSIC_VOID) &&
8646          "Should use MaskedValueIsZero if you don't know whether Op"
8647          " is a target node!");
8648 
8649   Known.resetAll();
8650   switch (Opc) {
8651   default: break;
8652   case RISCVISD::SELECT_CC: {
8653     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8654     // If we don't know any bits, early out.
8655     if (Known.isUnknown())
8656       break;
8657     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8658 
8659     // Only known if known in both the LHS and RHS.
8660     Known = KnownBits::commonBits(Known, Known2);
8661     break;
8662   }
8663   case RISCVISD::REMUW: {
8664     KnownBits Known2;
8665     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8666     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8667     // We only care about the lower 32 bits.
8668     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8669     // Restore the original width by sign extending.
8670     Known = Known.sext(BitWidth);
8671     break;
8672   }
8673   case RISCVISD::DIVUW: {
8674     KnownBits Known2;
8675     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8676     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8677     // We only care about the lower 32 bits.
8678     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8679     // Restore the original width by sign extending.
8680     Known = Known.sext(BitWidth);
8681     break;
8682   }
8683   case RISCVISD::CTZW: {
8684     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8685     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8686     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8687     Known.Zero.setBitsFrom(LowBits);
8688     break;
8689   }
8690   case RISCVISD::CLZW: {
8691     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8692     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8693     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8694     Known.Zero.setBitsFrom(LowBits);
8695     break;
8696   }
8697   case RISCVISD::GREV:
8698   case RISCVISD::GREVW: {
8699     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8700       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8701       if (Opc == RISCVISD::GREVW)
8702         Known = Known.trunc(32);
8703       unsigned ShAmt = C->getZExtValue();
8704       computeGREV(Known.Zero, ShAmt);
8705       computeGREV(Known.One, ShAmt);
8706       if (Opc == RISCVISD::GREVW)
8707         Known = Known.sext(BitWidth);
8708     }
8709     break;
8710   }
8711   case RISCVISD::READ_VLENB: {
8712     // If we know the minimum VLen from Zvl extensions, we can use that to
8713     // determine the trailing zeros of VLENB.
8714     // FIXME: Limit to 128 bit vectors until we have more testing.
8715     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8716     if (MinVLenB > 0)
8717       Known.Zero.setLowBits(Log2_32(MinVLenB));
8718     // We assume VLENB is no more than 65536 / 8 bytes.
8719     Known.Zero.setBitsFrom(14);
8720     break;
8721   }
8722   case ISD::INTRINSIC_W_CHAIN:
8723   case ISD::INTRINSIC_WO_CHAIN: {
8724     unsigned IntNo =
8725         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8726     switch (IntNo) {
8727     default:
8728       // We can't do anything for most intrinsics.
8729       break;
8730     case Intrinsic::riscv_vsetvli:
8731     case Intrinsic::riscv_vsetvlimax:
8732     case Intrinsic::riscv_vsetvli_opt:
8733     case Intrinsic::riscv_vsetvlimax_opt:
8734       // Assume that VL output is positive and would fit in an int32_t.
8735       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8736       if (BitWidth >= 32)
8737         Known.Zero.setBitsFrom(31);
8738       break;
8739     }
8740     break;
8741   }
8742   }
8743 }
8744 
8745 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8746     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8747     unsigned Depth) const {
8748   switch (Op.getOpcode()) {
8749   default:
8750     break;
8751   case RISCVISD::SELECT_CC: {
8752     unsigned Tmp =
8753         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8754     if (Tmp == 1) return 1;  // Early out.
8755     unsigned Tmp2 =
8756         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8757     return std::min(Tmp, Tmp2);
8758   }
8759   case RISCVISD::SLLW:
8760   case RISCVISD::SRAW:
8761   case RISCVISD::SRLW:
8762   case RISCVISD::DIVW:
8763   case RISCVISD::DIVUW:
8764   case RISCVISD::REMUW:
8765   case RISCVISD::ROLW:
8766   case RISCVISD::RORW:
8767   case RISCVISD::GREVW:
8768   case RISCVISD::GORCW:
8769   case RISCVISD::FSLW:
8770   case RISCVISD::FSRW:
8771   case RISCVISD::SHFLW:
8772   case RISCVISD::UNSHFLW:
8773   case RISCVISD::BCOMPRESSW:
8774   case RISCVISD::BDECOMPRESSW:
8775   case RISCVISD::BFPW:
8776   case RISCVISD::FCVT_W_RV64:
8777   case RISCVISD::FCVT_WU_RV64:
8778   case RISCVISD::STRICT_FCVT_W_RV64:
8779   case RISCVISD::STRICT_FCVT_WU_RV64:
8780     // TODO: As the result is sign-extended, this is conservatively correct. A
8781     // more precise answer could be calculated for SRAW depending on known
8782     // bits in the shift amount.
8783     return 33;
8784   case RISCVISD::SHFL:
8785   case RISCVISD::UNSHFL: {
8786     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8787     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8788     // will stay within the upper 32 bits. If there were more than 32 sign bits
8789     // before there will be at least 33 sign bits after.
8790     if (Op.getValueType() == MVT::i64 &&
8791         isa<ConstantSDNode>(Op.getOperand(1)) &&
8792         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8793       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8794       if (Tmp > 32)
8795         return 33;
8796     }
8797     break;
8798   }
8799   case RISCVISD::VMV_X_S: {
8800     // The number of sign bits of the scalar result is computed by obtaining the
8801     // element type of the input vector operand, subtracting its width from the
8802     // XLEN, and then adding one (sign bit within the element type). If the
8803     // element type is wider than XLen, the least-significant XLEN bits are
8804     // taken.
8805     unsigned XLen = Subtarget.getXLen();
8806     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8807     if (EltBits <= XLen)
8808       return XLen - EltBits + 1;
8809     break;
8810   }
8811   }
8812 
8813   return 1;
8814 }
8815 
8816 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8817                                                   MachineBasicBlock *BB) {
8818   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8819 
8820   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
8821   // Should the count have wrapped while it was being read, we need to try
8822   // again.
8823   // ...
8824   // read:
8825   // rdcycleh x3 # load high word of cycle
8826   // rdcycle  x2 # load low word of cycle
8827   // rdcycleh x4 # load high word of cycle
8828   // bne x3, x4, read # check if high word reads match, otherwise try again
8829   // ...
8830 
8831   MachineFunction &MF = *BB->getParent();
8832   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8833   MachineFunction::iterator It = ++BB->getIterator();
8834 
8835   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8836   MF.insert(It, LoopMBB);
8837 
8838   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
8839   MF.insert(It, DoneMBB);
8840 
8841   // Transfer the remainder of BB and its successor edges to DoneMBB.
8842   DoneMBB->splice(DoneMBB->begin(), BB,
8843                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8844   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
8845 
8846   BB->addSuccessor(LoopMBB);
8847 
8848   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8849   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8850   Register LoReg = MI.getOperand(0).getReg();
8851   Register HiReg = MI.getOperand(1).getReg();
8852   DebugLoc DL = MI.getDebugLoc();
8853 
8854   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
8855   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
8856       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8857       .addReg(RISCV::X0);
8858   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
8859       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
8860       .addReg(RISCV::X0);
8861   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
8862       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
8863       .addReg(RISCV::X0);
8864 
8865   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
8866       .addReg(HiReg)
8867       .addReg(ReadAgainReg)
8868       .addMBB(LoopMBB);
8869 
8870   LoopMBB->addSuccessor(LoopMBB);
8871   LoopMBB->addSuccessor(DoneMBB);
8872 
8873   MI.eraseFromParent();
8874 
8875   return DoneMBB;
8876 }
8877 
8878 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
8879                                              MachineBasicBlock *BB) {
8880   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
8881 
8882   MachineFunction &MF = *BB->getParent();
8883   DebugLoc DL = MI.getDebugLoc();
8884   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8885   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8886   Register LoReg = MI.getOperand(0).getReg();
8887   Register HiReg = MI.getOperand(1).getReg();
8888   Register SrcReg = MI.getOperand(2).getReg();
8889   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
8890   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8891 
8892   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
8893                           RI);
8894   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8895   MachineMemOperand *MMOLo =
8896       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
8897   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8898       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
8899   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
8900       .addFrameIndex(FI)
8901       .addImm(0)
8902       .addMemOperand(MMOLo);
8903   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
8904       .addFrameIndex(FI)
8905       .addImm(4)
8906       .addMemOperand(MMOHi);
8907   MI.eraseFromParent(); // The pseudo instruction is gone now.
8908   return BB;
8909 }
8910 
8911 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
8912                                                  MachineBasicBlock *BB) {
8913   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
8914          "Unexpected instruction");
8915 
8916   MachineFunction &MF = *BB->getParent();
8917   DebugLoc DL = MI.getDebugLoc();
8918   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
8919   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
8920   Register DstReg = MI.getOperand(0).getReg();
8921   Register LoReg = MI.getOperand(1).getReg();
8922   Register HiReg = MI.getOperand(2).getReg();
8923   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
8924   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
8925 
8926   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
8927   MachineMemOperand *MMOLo =
8928       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
8929   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
8930       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
8931   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8932       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
8933       .addFrameIndex(FI)
8934       .addImm(0)
8935       .addMemOperand(MMOLo);
8936   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
8937       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
8938       .addFrameIndex(FI)
8939       .addImm(4)
8940       .addMemOperand(MMOHi);
8941   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
8942   MI.eraseFromParent(); // The pseudo instruction is gone now.
8943   return BB;
8944 }
8945 
8946 static bool isSelectPseudo(MachineInstr &MI) {
8947   switch (MI.getOpcode()) {
8948   default:
8949     return false;
8950   case RISCV::Select_GPR_Using_CC_GPR:
8951   case RISCV::Select_FPR16_Using_CC_GPR:
8952   case RISCV::Select_FPR32_Using_CC_GPR:
8953   case RISCV::Select_FPR64_Using_CC_GPR:
8954     return true;
8955   }
8956 }
8957 
8958 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
8959                                         unsigned RelOpcode, unsigned EqOpcode,
8960                                         const RISCVSubtarget &Subtarget) {
8961   DebugLoc DL = MI.getDebugLoc();
8962   Register DstReg = MI.getOperand(0).getReg();
8963   Register Src1Reg = MI.getOperand(1).getReg();
8964   Register Src2Reg = MI.getOperand(2).getReg();
8965   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
8966   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
8967   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
8968 
8969   // Save the current FFLAGS.
8970   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
8971 
8972   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
8973                  .addReg(Src1Reg)
8974                  .addReg(Src2Reg);
8975   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8976     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
8977 
8978   // Restore the FFLAGS.
8979   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
8980       .addReg(SavedFFlags, RegState::Kill);
8981 
8982   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
8983   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
8984                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
8985                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
8986   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
8987     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
8988 
8989   // Erase the pseudoinstruction.
8990   MI.eraseFromParent();
8991   return BB;
8992 }
8993 
8994 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
8995                                            MachineBasicBlock *BB,
8996                                            const RISCVSubtarget &Subtarget) {
8997   // To "insert" Select_* instructions, we actually have to insert the triangle
8998   // control-flow pattern.  The incoming instructions know the destination vreg
8999   // to set, the condition code register to branch on, the true/false values to
9000   // select between, and the condcode to use to select the appropriate branch.
9001   //
9002   // We produce the following control flow:
9003   //     HeadMBB
9004   //     |  \
9005   //     |  IfFalseMBB
9006   //     | /
9007   //    TailMBB
9008   //
9009   // When we find a sequence of selects we attempt to optimize their emission
9010   // by sharing the control flow. Currently we only handle cases where we have
9011   // multiple selects with the exact same condition (same LHS, RHS and CC).
9012   // The selects may be interleaved with other instructions if the other
9013   // instructions meet some requirements we deem safe:
9014   // - They are debug instructions. Otherwise,
9015   // - They do not have side-effects, do not access memory and their inputs do
9016   //   not depend on the results of the select pseudo-instructions.
9017   // The TrueV/FalseV operands of the selects cannot depend on the result of
9018   // previous selects in the sequence.
9019   // These conditions could be further relaxed. See the X86 target for a
9020   // related approach and more information.
9021   Register LHS = MI.getOperand(1).getReg();
9022   Register RHS = MI.getOperand(2).getReg();
9023   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9024 
9025   SmallVector<MachineInstr *, 4> SelectDebugValues;
9026   SmallSet<Register, 4> SelectDests;
9027   SelectDests.insert(MI.getOperand(0).getReg());
9028 
9029   MachineInstr *LastSelectPseudo = &MI;
9030 
9031   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9032        SequenceMBBI != E; ++SequenceMBBI) {
9033     if (SequenceMBBI->isDebugInstr())
9034       continue;
9035     else if (isSelectPseudo(*SequenceMBBI)) {
9036       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9037           SequenceMBBI->getOperand(2).getReg() != RHS ||
9038           SequenceMBBI->getOperand(3).getImm() != CC ||
9039           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9040           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9041         break;
9042       LastSelectPseudo = &*SequenceMBBI;
9043       SequenceMBBI->collectDebugValues(SelectDebugValues);
9044       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9045     } else {
9046       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9047           SequenceMBBI->mayLoadOrStore())
9048         break;
9049       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9050             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9051           }))
9052         break;
9053     }
9054   }
9055 
9056   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9057   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9058   DebugLoc DL = MI.getDebugLoc();
9059   MachineFunction::iterator I = ++BB->getIterator();
9060 
9061   MachineBasicBlock *HeadMBB = BB;
9062   MachineFunction *F = BB->getParent();
9063   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9064   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9065 
9066   F->insert(I, IfFalseMBB);
9067   F->insert(I, TailMBB);
9068 
9069   // Transfer debug instructions associated with the selects to TailMBB.
9070   for (MachineInstr *DebugInstr : SelectDebugValues) {
9071     TailMBB->push_back(DebugInstr->removeFromParent());
9072   }
9073 
9074   // Move all instructions after the sequence to TailMBB.
9075   TailMBB->splice(TailMBB->end(), HeadMBB,
9076                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9077   // Update machine-CFG edges by transferring all successors of the current
9078   // block to the new block which will contain the Phi nodes for the selects.
9079   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9080   // Set the successors for HeadMBB.
9081   HeadMBB->addSuccessor(IfFalseMBB);
9082   HeadMBB->addSuccessor(TailMBB);
9083 
9084   // Insert appropriate branch.
9085   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9086     .addReg(LHS)
9087     .addReg(RHS)
9088     .addMBB(TailMBB);
9089 
9090   // IfFalseMBB just falls through to TailMBB.
9091   IfFalseMBB->addSuccessor(TailMBB);
9092 
9093   // Create PHIs for all of the select pseudo-instructions.
9094   auto SelectMBBI = MI.getIterator();
9095   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9096   auto InsertionPoint = TailMBB->begin();
9097   while (SelectMBBI != SelectEnd) {
9098     auto Next = std::next(SelectMBBI);
9099     if (isSelectPseudo(*SelectMBBI)) {
9100       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9101       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9102               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9103           .addReg(SelectMBBI->getOperand(4).getReg())
9104           .addMBB(HeadMBB)
9105           .addReg(SelectMBBI->getOperand(5).getReg())
9106           .addMBB(IfFalseMBB);
9107       SelectMBBI->eraseFromParent();
9108     }
9109     SelectMBBI = Next;
9110   }
9111 
9112   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9113   return TailMBB;
9114 }
9115 
9116 MachineBasicBlock *
9117 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9118                                                  MachineBasicBlock *BB) const {
9119   switch (MI.getOpcode()) {
9120   default:
9121     llvm_unreachable("Unexpected instr type to insert");
9122   case RISCV::ReadCycleWide:
9123     assert(!Subtarget.is64Bit() &&
9124            "ReadCycleWrite is only to be used on riscv32");
9125     return emitReadCycleWidePseudo(MI, BB);
9126   case RISCV::Select_GPR_Using_CC_GPR:
9127   case RISCV::Select_FPR16_Using_CC_GPR:
9128   case RISCV::Select_FPR32_Using_CC_GPR:
9129   case RISCV::Select_FPR64_Using_CC_GPR:
9130     return emitSelectPseudo(MI, BB, Subtarget);
9131   case RISCV::BuildPairF64Pseudo:
9132     return emitBuildPairF64Pseudo(MI, BB);
9133   case RISCV::SplitF64Pseudo:
9134     return emitSplitF64Pseudo(MI, BB);
9135   case RISCV::PseudoQuietFLE_H:
9136     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9137   case RISCV::PseudoQuietFLT_H:
9138     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9139   case RISCV::PseudoQuietFLE_S:
9140     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9141   case RISCV::PseudoQuietFLT_S:
9142     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9143   case RISCV::PseudoQuietFLE_D:
9144     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9145   case RISCV::PseudoQuietFLT_D:
9146     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9147   }
9148 }
9149 
9150 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9151                                                         SDNode *Node) const {
9152   // Add FRM dependency to any instructions with dynamic rounding mode.
9153   unsigned Opc = MI.getOpcode();
9154   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9155   if (Idx < 0)
9156     return;
9157   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9158     return;
9159   // If the instruction already reads FRM, don't add another read.
9160   if (MI.readsRegister(RISCV::FRM))
9161     return;
9162   MI.addOperand(
9163       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9164 }
9165 
9166 // Calling Convention Implementation.
9167 // The expectations for frontend ABI lowering vary from target to target.
9168 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9169 // details, but this is a longer term goal. For now, we simply try to keep the
9170 // role of the frontend as simple and well-defined as possible. The rules can
9171 // be summarised as:
9172 // * Never split up large scalar arguments. We handle them here.
9173 // * If a hardfloat calling convention is being used, and the struct may be
9174 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9175 // available, then pass as two separate arguments. If either the GPRs or FPRs
9176 // are exhausted, then pass according to the rule below.
9177 // * If a struct could never be passed in registers or directly in a stack
9178 // slot (as it is larger than 2*XLEN and the floating point rules don't
9179 // apply), then pass it using a pointer with the byval attribute.
9180 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9181 // word-sized array or a 2*XLEN scalar (depending on alignment).
9182 // * The frontend can determine whether a struct is returned by reference or
9183 // not based on its size and fields. If it will be returned by reference, the
9184 // frontend must modify the prototype so a pointer with the sret annotation is
9185 // passed as the first argument. This is not necessary for large scalar
9186 // returns.
9187 // * Struct return values and varargs should be coerced to structs containing
9188 // register-size fields in the same situations they would be for fixed
9189 // arguments.
9190 
9191 static const MCPhysReg ArgGPRs[] = {
9192   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9193   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9194 };
9195 static const MCPhysReg ArgFPR16s[] = {
9196   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9197   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9198 };
9199 static const MCPhysReg ArgFPR32s[] = {
9200   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9201   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9202 };
9203 static const MCPhysReg ArgFPR64s[] = {
9204   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9205   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9206 };
9207 // This is an interim calling convention and it may be changed in the future.
9208 static const MCPhysReg ArgVRs[] = {
9209     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9210     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9211     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9212 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9213                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9214                                      RISCV::V20M2, RISCV::V22M2};
9215 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9216                                      RISCV::V20M4};
9217 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9218 
9219 // Pass a 2*XLEN argument that has been split into two XLEN values through
9220 // registers or the stack as necessary.
9221 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9222                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9223                                 MVT ValVT2, MVT LocVT2,
9224                                 ISD::ArgFlagsTy ArgFlags2) {
9225   unsigned XLenInBytes = XLen / 8;
9226   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9227     // At least one half can be passed via register.
9228     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9229                                      VA1.getLocVT(), CCValAssign::Full));
9230   } else {
9231     // Both halves must be passed on the stack, with proper alignment.
9232     Align StackAlign =
9233         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9234     State.addLoc(
9235         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9236                             State.AllocateStack(XLenInBytes, StackAlign),
9237                             VA1.getLocVT(), CCValAssign::Full));
9238     State.addLoc(CCValAssign::getMem(
9239         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9240         LocVT2, CCValAssign::Full));
9241     return false;
9242   }
9243 
9244   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9245     // The second half can also be passed via register.
9246     State.addLoc(
9247         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9248   } else {
9249     // The second half is passed via the stack, without additional alignment.
9250     State.addLoc(CCValAssign::getMem(
9251         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9252         LocVT2, CCValAssign::Full));
9253   }
9254 
9255   return false;
9256 }
9257 
9258 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9259                                Optional<unsigned> FirstMaskArgument,
9260                                CCState &State, const RISCVTargetLowering &TLI) {
9261   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9262   if (RC == &RISCV::VRRegClass) {
9263     // Assign the first mask argument to V0.
9264     // This is an interim calling convention and it may be changed in the
9265     // future.
9266     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9267       return State.AllocateReg(RISCV::V0);
9268     return State.AllocateReg(ArgVRs);
9269   }
9270   if (RC == &RISCV::VRM2RegClass)
9271     return State.AllocateReg(ArgVRM2s);
9272   if (RC == &RISCV::VRM4RegClass)
9273     return State.AllocateReg(ArgVRM4s);
9274   if (RC == &RISCV::VRM8RegClass)
9275     return State.AllocateReg(ArgVRM8s);
9276   llvm_unreachable("Unhandled register class for ValueType");
9277 }
9278 
9279 // Implements the RISC-V calling convention. Returns true upon failure.
9280 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9281                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9282                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9283                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9284                      Optional<unsigned> FirstMaskArgument) {
9285   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9286   assert(XLen == 32 || XLen == 64);
9287   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9288 
9289   // Any return value split in to more than two values can't be returned
9290   // directly. Vectors are returned via the available vector registers.
9291   if (!LocVT.isVector() && IsRet && ValNo > 1)
9292     return true;
9293 
9294   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9295   // variadic argument, or if no F16/F32 argument registers are available.
9296   bool UseGPRForF16_F32 = true;
9297   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9298   // variadic argument, or if no F64 argument registers are available.
9299   bool UseGPRForF64 = true;
9300 
9301   switch (ABI) {
9302   default:
9303     llvm_unreachable("Unexpected ABI");
9304   case RISCVABI::ABI_ILP32:
9305   case RISCVABI::ABI_LP64:
9306     break;
9307   case RISCVABI::ABI_ILP32F:
9308   case RISCVABI::ABI_LP64F:
9309     UseGPRForF16_F32 = !IsFixed;
9310     break;
9311   case RISCVABI::ABI_ILP32D:
9312   case RISCVABI::ABI_LP64D:
9313     UseGPRForF16_F32 = !IsFixed;
9314     UseGPRForF64 = !IsFixed;
9315     break;
9316   }
9317 
9318   // FPR16, FPR32, and FPR64 alias each other.
9319   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9320     UseGPRForF16_F32 = true;
9321     UseGPRForF64 = true;
9322   }
9323 
9324   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9325   // similar local variables rather than directly checking against the target
9326   // ABI.
9327 
9328   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9329     LocVT = XLenVT;
9330     LocInfo = CCValAssign::BCvt;
9331   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9332     LocVT = MVT::i64;
9333     LocInfo = CCValAssign::BCvt;
9334   }
9335 
9336   // If this is a variadic argument, the RISC-V calling convention requires
9337   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9338   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9339   // be used regardless of whether the original argument was split during
9340   // legalisation or not. The argument will not be passed by registers if the
9341   // original type is larger than 2*XLEN, so the register alignment rule does
9342   // not apply.
9343   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9344   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9345       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9346     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9347     // Skip 'odd' register if necessary.
9348     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9349       State.AllocateReg(ArgGPRs);
9350   }
9351 
9352   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9353   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9354       State.getPendingArgFlags();
9355 
9356   assert(PendingLocs.size() == PendingArgFlags.size() &&
9357          "PendingLocs and PendingArgFlags out of sync");
9358 
9359   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9360   // registers are exhausted.
9361   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9362     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9363            "Can't lower f64 if it is split");
9364     // Depending on available argument GPRS, f64 may be passed in a pair of
9365     // GPRs, split between a GPR and the stack, or passed completely on the
9366     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9367     // cases.
9368     Register Reg = State.AllocateReg(ArgGPRs);
9369     LocVT = MVT::i32;
9370     if (!Reg) {
9371       unsigned StackOffset = State.AllocateStack(8, Align(8));
9372       State.addLoc(
9373           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9374       return false;
9375     }
9376     if (!State.AllocateReg(ArgGPRs))
9377       State.AllocateStack(4, Align(4));
9378     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9379     return false;
9380   }
9381 
9382   // Fixed-length vectors are located in the corresponding scalable-vector
9383   // container types.
9384   if (ValVT.isFixedLengthVector())
9385     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9386 
9387   // Split arguments might be passed indirectly, so keep track of the pending
9388   // values. Split vectors are passed via a mix of registers and indirectly, so
9389   // treat them as we would any other argument.
9390   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9391     LocVT = XLenVT;
9392     LocInfo = CCValAssign::Indirect;
9393     PendingLocs.push_back(
9394         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9395     PendingArgFlags.push_back(ArgFlags);
9396     if (!ArgFlags.isSplitEnd()) {
9397       return false;
9398     }
9399   }
9400 
9401   // If the split argument only had two elements, it should be passed directly
9402   // in registers or on the stack.
9403   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9404       PendingLocs.size() <= 2) {
9405     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9406     // Apply the normal calling convention rules to the first half of the
9407     // split argument.
9408     CCValAssign VA = PendingLocs[0];
9409     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9410     PendingLocs.clear();
9411     PendingArgFlags.clear();
9412     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9413                                ArgFlags);
9414   }
9415 
9416   // Allocate to a register if possible, or else a stack slot.
9417   Register Reg;
9418   unsigned StoreSizeBytes = XLen / 8;
9419   Align StackAlign = Align(XLen / 8);
9420 
9421   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9422     Reg = State.AllocateReg(ArgFPR16s);
9423   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9424     Reg = State.AllocateReg(ArgFPR32s);
9425   else if (ValVT == MVT::f64 && !UseGPRForF64)
9426     Reg = State.AllocateReg(ArgFPR64s);
9427   else if (ValVT.isVector()) {
9428     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9429     if (!Reg) {
9430       // For return values, the vector must be passed fully via registers or
9431       // via the stack.
9432       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9433       // but we're using all of them.
9434       if (IsRet)
9435         return true;
9436       // Try using a GPR to pass the address
9437       if ((Reg = State.AllocateReg(ArgGPRs))) {
9438         LocVT = XLenVT;
9439         LocInfo = CCValAssign::Indirect;
9440       } else if (ValVT.isScalableVector()) {
9441         LocVT = XLenVT;
9442         LocInfo = CCValAssign::Indirect;
9443       } else {
9444         // Pass fixed-length vectors on the stack.
9445         LocVT = ValVT;
9446         StoreSizeBytes = ValVT.getStoreSize();
9447         // Align vectors to their element sizes, being careful for vXi1
9448         // vectors.
9449         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9450       }
9451     }
9452   } else {
9453     Reg = State.AllocateReg(ArgGPRs);
9454   }
9455 
9456   unsigned StackOffset =
9457       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9458 
9459   // If we reach this point and PendingLocs is non-empty, we must be at the
9460   // end of a split argument that must be passed indirectly.
9461   if (!PendingLocs.empty()) {
9462     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9463     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9464 
9465     for (auto &It : PendingLocs) {
9466       if (Reg)
9467         It.convertToReg(Reg);
9468       else
9469         It.convertToMem(StackOffset);
9470       State.addLoc(It);
9471     }
9472     PendingLocs.clear();
9473     PendingArgFlags.clear();
9474     return false;
9475   }
9476 
9477   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9478           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9479          "Expected an XLenVT or vector types at this stage");
9480 
9481   if (Reg) {
9482     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9483     return false;
9484   }
9485 
9486   // When a floating-point value is passed on the stack, no bit-conversion is
9487   // needed.
9488   if (ValVT.isFloatingPoint()) {
9489     LocVT = ValVT;
9490     LocInfo = CCValAssign::Full;
9491   }
9492   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9493   return false;
9494 }
9495 
9496 template <typename ArgTy>
9497 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9498   for (const auto &ArgIdx : enumerate(Args)) {
9499     MVT ArgVT = ArgIdx.value().VT;
9500     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9501       return ArgIdx.index();
9502   }
9503   return None;
9504 }
9505 
9506 void RISCVTargetLowering::analyzeInputArgs(
9507     MachineFunction &MF, CCState &CCInfo,
9508     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9509     RISCVCCAssignFn Fn) const {
9510   unsigned NumArgs = Ins.size();
9511   FunctionType *FType = MF.getFunction().getFunctionType();
9512 
9513   Optional<unsigned> FirstMaskArgument;
9514   if (Subtarget.hasVInstructions())
9515     FirstMaskArgument = preAssignMask(Ins);
9516 
9517   for (unsigned i = 0; i != NumArgs; ++i) {
9518     MVT ArgVT = Ins[i].VT;
9519     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9520 
9521     Type *ArgTy = nullptr;
9522     if (IsRet)
9523       ArgTy = FType->getReturnType();
9524     else if (Ins[i].isOrigArg())
9525       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9526 
9527     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9528     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9529            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9530            FirstMaskArgument)) {
9531       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9532                         << EVT(ArgVT).getEVTString() << '\n');
9533       llvm_unreachable(nullptr);
9534     }
9535   }
9536 }
9537 
9538 void RISCVTargetLowering::analyzeOutputArgs(
9539     MachineFunction &MF, CCState &CCInfo,
9540     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9541     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9542   unsigned NumArgs = Outs.size();
9543 
9544   Optional<unsigned> FirstMaskArgument;
9545   if (Subtarget.hasVInstructions())
9546     FirstMaskArgument = preAssignMask(Outs);
9547 
9548   for (unsigned i = 0; i != NumArgs; i++) {
9549     MVT ArgVT = Outs[i].VT;
9550     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9551     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9552 
9553     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9554     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9555            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9556            FirstMaskArgument)) {
9557       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9558                         << EVT(ArgVT).getEVTString() << "\n");
9559       llvm_unreachable(nullptr);
9560     }
9561   }
9562 }
9563 
9564 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9565 // values.
9566 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9567                                    const CCValAssign &VA, const SDLoc &DL,
9568                                    const RISCVSubtarget &Subtarget) {
9569   switch (VA.getLocInfo()) {
9570   default:
9571     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9572   case CCValAssign::Full:
9573     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9574       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9575     break;
9576   case CCValAssign::BCvt:
9577     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9578       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9579     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9580       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9581     else
9582       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9583     break;
9584   }
9585   return Val;
9586 }
9587 
9588 // The caller is responsible for loading the full value if the argument is
9589 // passed with CCValAssign::Indirect.
9590 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9591                                 const CCValAssign &VA, const SDLoc &DL,
9592                                 const RISCVTargetLowering &TLI) {
9593   MachineFunction &MF = DAG.getMachineFunction();
9594   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9595   EVT LocVT = VA.getLocVT();
9596   SDValue Val;
9597   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9598   Register VReg = RegInfo.createVirtualRegister(RC);
9599   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9600   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9601 
9602   if (VA.getLocInfo() == CCValAssign::Indirect)
9603     return Val;
9604 
9605   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9606 }
9607 
9608 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9609                                    const CCValAssign &VA, const SDLoc &DL,
9610                                    const RISCVSubtarget &Subtarget) {
9611   EVT LocVT = VA.getLocVT();
9612 
9613   switch (VA.getLocInfo()) {
9614   default:
9615     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9616   case CCValAssign::Full:
9617     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9618       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9619     break;
9620   case CCValAssign::BCvt:
9621     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9622       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9623     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9624       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9625     else
9626       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9627     break;
9628   }
9629   return Val;
9630 }
9631 
9632 // The caller is responsible for loading the full value if the argument is
9633 // passed with CCValAssign::Indirect.
9634 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9635                                 const CCValAssign &VA, const SDLoc &DL) {
9636   MachineFunction &MF = DAG.getMachineFunction();
9637   MachineFrameInfo &MFI = MF.getFrameInfo();
9638   EVT LocVT = VA.getLocVT();
9639   EVT ValVT = VA.getValVT();
9640   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9641   if (ValVT.isScalableVector()) {
9642     // When the value is a scalable vector, we save the pointer which points to
9643     // the scalable vector value in the stack. The ValVT will be the pointer
9644     // type, instead of the scalable vector type.
9645     ValVT = LocVT;
9646   }
9647   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9648                                  /*IsImmutable=*/true);
9649   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9650   SDValue Val;
9651 
9652   ISD::LoadExtType ExtType;
9653   switch (VA.getLocInfo()) {
9654   default:
9655     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9656   case CCValAssign::Full:
9657   case CCValAssign::Indirect:
9658   case CCValAssign::BCvt:
9659     ExtType = ISD::NON_EXTLOAD;
9660     break;
9661   }
9662   Val = DAG.getExtLoad(
9663       ExtType, DL, LocVT, Chain, FIN,
9664       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9665   return Val;
9666 }
9667 
9668 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9669                                        const CCValAssign &VA, const SDLoc &DL) {
9670   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9671          "Unexpected VA");
9672   MachineFunction &MF = DAG.getMachineFunction();
9673   MachineFrameInfo &MFI = MF.getFrameInfo();
9674   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9675 
9676   if (VA.isMemLoc()) {
9677     // f64 is passed on the stack.
9678     int FI =
9679         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9680     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9681     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9682                        MachinePointerInfo::getFixedStack(MF, FI));
9683   }
9684 
9685   assert(VA.isRegLoc() && "Expected register VA assignment");
9686 
9687   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9688   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9689   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9690   SDValue Hi;
9691   if (VA.getLocReg() == RISCV::X17) {
9692     // Second half of f64 is passed on the stack.
9693     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9694     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9695     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9696                      MachinePointerInfo::getFixedStack(MF, FI));
9697   } else {
9698     // Second half of f64 is passed in another GPR.
9699     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9700     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9701     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9702   }
9703   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9704 }
9705 
9706 // FastCC has less than 1% performance improvement for some particular
9707 // benchmark. But theoretically, it may has benenfit for some cases.
9708 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9709                             unsigned ValNo, MVT ValVT, MVT LocVT,
9710                             CCValAssign::LocInfo LocInfo,
9711                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9712                             bool IsFixed, bool IsRet, Type *OrigTy,
9713                             const RISCVTargetLowering &TLI,
9714                             Optional<unsigned> FirstMaskArgument) {
9715 
9716   // X5 and X6 might be used for save-restore libcall.
9717   static const MCPhysReg GPRList[] = {
9718       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9719       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9720       RISCV::X29, RISCV::X30, RISCV::X31};
9721 
9722   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9723     if (unsigned Reg = State.AllocateReg(GPRList)) {
9724       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9725       return false;
9726     }
9727   }
9728 
9729   if (LocVT == MVT::f16) {
9730     static const MCPhysReg FPR16List[] = {
9731         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9732         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9733         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9734         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9735     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9736       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9737       return false;
9738     }
9739   }
9740 
9741   if (LocVT == MVT::f32) {
9742     static const MCPhysReg FPR32List[] = {
9743         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9744         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9745         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9746         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9747     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9748       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9749       return false;
9750     }
9751   }
9752 
9753   if (LocVT == MVT::f64) {
9754     static const MCPhysReg FPR64List[] = {
9755         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9756         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9757         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9758         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9759     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9760       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9761       return false;
9762     }
9763   }
9764 
9765   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9766     unsigned Offset4 = State.AllocateStack(4, Align(4));
9767     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9768     return false;
9769   }
9770 
9771   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9772     unsigned Offset5 = State.AllocateStack(8, Align(8));
9773     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9774     return false;
9775   }
9776 
9777   if (LocVT.isVector()) {
9778     if (unsigned Reg =
9779             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9780       // Fixed-length vectors are located in the corresponding scalable-vector
9781       // container types.
9782       if (ValVT.isFixedLengthVector())
9783         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9784       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9785     } else {
9786       // Try and pass the address via a "fast" GPR.
9787       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9788         LocInfo = CCValAssign::Indirect;
9789         LocVT = TLI.getSubtarget().getXLenVT();
9790         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9791       } else if (ValVT.isFixedLengthVector()) {
9792         auto StackAlign =
9793             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9794         unsigned StackOffset =
9795             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9796         State.addLoc(
9797             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9798       } else {
9799         // Can't pass scalable vectors on the stack.
9800         return true;
9801       }
9802     }
9803 
9804     return false;
9805   }
9806 
9807   return true; // CC didn't match.
9808 }
9809 
9810 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9811                          CCValAssign::LocInfo LocInfo,
9812                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9813 
9814   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9815     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9816     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9817     static const MCPhysReg GPRList[] = {
9818         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9819         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9820     if (unsigned Reg = State.AllocateReg(GPRList)) {
9821       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9822       return false;
9823     }
9824   }
9825 
9826   if (LocVT == MVT::f32) {
9827     // Pass in STG registers: F1, ..., F6
9828     //                        fs0 ... fs5
9829     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
9830                                           RISCV::F18_F, RISCV::F19_F,
9831                                           RISCV::F20_F, RISCV::F21_F};
9832     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9833       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9834       return false;
9835     }
9836   }
9837 
9838   if (LocVT == MVT::f64) {
9839     // Pass in STG registers: D1, ..., D6
9840     //                        fs6 ... fs11
9841     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
9842                                           RISCV::F24_D, RISCV::F25_D,
9843                                           RISCV::F26_D, RISCV::F27_D};
9844     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9845       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9846       return false;
9847     }
9848   }
9849 
9850   report_fatal_error("No registers left in GHC calling convention");
9851   return true;
9852 }
9853 
9854 // Transform physical registers into virtual registers.
9855 SDValue RISCVTargetLowering::LowerFormalArguments(
9856     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
9857     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
9858     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
9859 
9860   MachineFunction &MF = DAG.getMachineFunction();
9861 
9862   switch (CallConv) {
9863   default:
9864     report_fatal_error("Unsupported calling convention");
9865   case CallingConv::C:
9866   case CallingConv::Fast:
9867     break;
9868   case CallingConv::GHC:
9869     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
9870         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
9871       report_fatal_error(
9872         "GHC calling convention requires the F and D instruction set extensions");
9873   }
9874 
9875   const Function &Func = MF.getFunction();
9876   if (Func.hasFnAttribute("interrupt")) {
9877     if (!Func.arg_empty())
9878       report_fatal_error(
9879         "Functions with the interrupt attribute cannot have arguments!");
9880 
9881     StringRef Kind =
9882       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9883 
9884     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
9885       report_fatal_error(
9886         "Function interrupt attribute argument not supported!");
9887   }
9888 
9889   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9890   MVT XLenVT = Subtarget.getXLenVT();
9891   unsigned XLenInBytes = Subtarget.getXLen() / 8;
9892   // Used with vargs to acumulate store chains.
9893   std::vector<SDValue> OutChains;
9894 
9895   // Assign locations to all of the incoming arguments.
9896   SmallVector<CCValAssign, 16> ArgLocs;
9897   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9898 
9899   if (CallConv == CallingConv::GHC)
9900     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
9901   else
9902     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
9903                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9904                                                    : CC_RISCV);
9905 
9906   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
9907     CCValAssign &VA = ArgLocs[i];
9908     SDValue ArgValue;
9909     // Passing f64 on RV32D with a soft float ABI must be handled as a special
9910     // case.
9911     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
9912       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
9913     else if (VA.isRegLoc())
9914       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
9915     else
9916       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
9917 
9918     if (VA.getLocInfo() == CCValAssign::Indirect) {
9919       // If the original argument was split and passed by reference (e.g. i128
9920       // on RV32), we need to load all parts of it here (using the same
9921       // address). Vectors may be partly split to registers and partly to the
9922       // stack, in which case the base address is partly offset and subsequent
9923       // stores are relative to that.
9924       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
9925                                    MachinePointerInfo()));
9926       unsigned ArgIndex = Ins[i].OrigArgIndex;
9927       unsigned ArgPartOffset = Ins[i].PartOffset;
9928       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9929       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
9930         CCValAssign &PartVA = ArgLocs[i + 1];
9931         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
9932         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9933         if (PartVA.getValVT().isScalableVector())
9934           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9935         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
9936         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
9937                                      MachinePointerInfo()));
9938         ++i;
9939       }
9940       continue;
9941     }
9942     InVals.push_back(ArgValue);
9943   }
9944 
9945   if (IsVarArg) {
9946     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
9947     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
9948     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
9949     MachineFrameInfo &MFI = MF.getFrameInfo();
9950     MachineRegisterInfo &RegInfo = MF.getRegInfo();
9951     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
9952 
9953     // Offset of the first variable argument from stack pointer, and size of
9954     // the vararg save area. For now, the varargs save area is either zero or
9955     // large enough to hold a0-a7.
9956     int VaArgOffset, VarArgsSaveSize;
9957 
9958     // If all registers are allocated, then all varargs must be passed on the
9959     // stack and we don't need to save any argregs.
9960     if (ArgRegs.size() == Idx) {
9961       VaArgOffset = CCInfo.getNextStackOffset();
9962       VarArgsSaveSize = 0;
9963     } else {
9964       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
9965       VaArgOffset = -VarArgsSaveSize;
9966     }
9967 
9968     // Record the frame index of the first variable argument
9969     // which is a value necessary to VASTART.
9970     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9971     RVFI->setVarArgsFrameIndex(FI);
9972 
9973     // If saving an odd number of registers then create an extra stack slot to
9974     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
9975     // offsets to even-numbered registered remain 2*XLEN-aligned.
9976     if (Idx % 2) {
9977       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
9978       VarArgsSaveSize += XLenInBytes;
9979     }
9980 
9981     // Copy the integer registers that may have been used for passing varargs
9982     // to the vararg save area.
9983     for (unsigned I = Idx; I < ArgRegs.size();
9984          ++I, VaArgOffset += XLenInBytes) {
9985       const Register Reg = RegInfo.createVirtualRegister(RC);
9986       RegInfo.addLiveIn(ArgRegs[I], Reg);
9987       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
9988       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
9989       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9990       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
9991                                    MachinePointerInfo::getFixedStack(MF, FI));
9992       cast<StoreSDNode>(Store.getNode())
9993           ->getMemOperand()
9994           ->setValue((Value *)nullptr);
9995       OutChains.push_back(Store);
9996     }
9997     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
9998   }
9999 
10000   // All stores are grouped in one node to allow the matching between
10001   // the size of Ins and InVals. This only happens for vararg functions.
10002   if (!OutChains.empty()) {
10003     OutChains.push_back(Chain);
10004     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10005   }
10006 
10007   return Chain;
10008 }
10009 
10010 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10011 /// for tail call optimization.
10012 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10013 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10014     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10015     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10016 
10017   auto &Callee = CLI.Callee;
10018   auto CalleeCC = CLI.CallConv;
10019   auto &Outs = CLI.Outs;
10020   auto &Caller = MF.getFunction();
10021   auto CallerCC = Caller.getCallingConv();
10022 
10023   // Exception-handling functions need a special set of instructions to
10024   // indicate a return to the hardware. Tail-calling another function would
10025   // probably break this.
10026   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10027   // should be expanded as new function attributes are introduced.
10028   if (Caller.hasFnAttribute("interrupt"))
10029     return false;
10030 
10031   // Do not tail call opt if the stack is used to pass parameters.
10032   if (CCInfo.getNextStackOffset() != 0)
10033     return false;
10034 
10035   // Do not tail call opt if any parameters need to be passed indirectly.
10036   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10037   // passed indirectly. So the address of the value will be passed in a
10038   // register, or if not available, then the address is put on the stack. In
10039   // order to pass indirectly, space on the stack often needs to be allocated
10040   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10041   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10042   // are passed CCValAssign::Indirect.
10043   for (auto &VA : ArgLocs)
10044     if (VA.getLocInfo() == CCValAssign::Indirect)
10045       return false;
10046 
10047   // Do not tail call opt if either caller or callee uses struct return
10048   // semantics.
10049   auto IsCallerStructRet = Caller.hasStructRetAttr();
10050   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10051   if (IsCallerStructRet || IsCalleeStructRet)
10052     return false;
10053 
10054   // Externally-defined functions with weak linkage should not be
10055   // tail-called. The behaviour of branch instructions in this situation (as
10056   // used for tail calls) is implementation-defined, so we cannot rely on the
10057   // linker replacing the tail call with a return.
10058   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10059     const GlobalValue *GV = G->getGlobal();
10060     if (GV->hasExternalWeakLinkage())
10061       return false;
10062   }
10063 
10064   // The callee has to preserve all registers the caller needs to preserve.
10065   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10066   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10067   if (CalleeCC != CallerCC) {
10068     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10069     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10070       return false;
10071   }
10072 
10073   // Byval parameters hand the function a pointer directly into the stack area
10074   // we want to reuse during a tail call. Working around this *is* possible
10075   // but less efficient and uglier in LowerCall.
10076   for (auto &Arg : Outs)
10077     if (Arg.Flags.isByVal())
10078       return false;
10079 
10080   return true;
10081 }
10082 
10083 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10084   return DAG.getDataLayout().getPrefTypeAlign(
10085       VT.getTypeForEVT(*DAG.getContext()));
10086 }
10087 
10088 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10089 // and output parameter nodes.
10090 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10091                                        SmallVectorImpl<SDValue> &InVals) const {
10092   SelectionDAG &DAG = CLI.DAG;
10093   SDLoc &DL = CLI.DL;
10094   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10095   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10096   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10097   SDValue Chain = CLI.Chain;
10098   SDValue Callee = CLI.Callee;
10099   bool &IsTailCall = CLI.IsTailCall;
10100   CallingConv::ID CallConv = CLI.CallConv;
10101   bool IsVarArg = CLI.IsVarArg;
10102   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10103   MVT XLenVT = Subtarget.getXLenVT();
10104 
10105   MachineFunction &MF = DAG.getMachineFunction();
10106 
10107   // Analyze the operands of the call, assigning locations to each operand.
10108   SmallVector<CCValAssign, 16> ArgLocs;
10109   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10110 
10111   if (CallConv == CallingConv::GHC)
10112     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10113   else
10114     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10115                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10116                                                     : CC_RISCV);
10117 
10118   // Check if it's really possible to do a tail call.
10119   if (IsTailCall)
10120     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10121 
10122   if (IsTailCall)
10123     ++NumTailCalls;
10124   else if (CLI.CB && CLI.CB->isMustTailCall())
10125     report_fatal_error("failed to perform tail call elimination on a call "
10126                        "site marked musttail");
10127 
10128   // Get a count of how many bytes are to be pushed on the stack.
10129   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10130 
10131   // Create local copies for byval args
10132   SmallVector<SDValue, 8> ByValArgs;
10133   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10134     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10135     if (!Flags.isByVal())
10136       continue;
10137 
10138     SDValue Arg = OutVals[i];
10139     unsigned Size = Flags.getByValSize();
10140     Align Alignment = Flags.getNonZeroByValAlign();
10141 
10142     int FI =
10143         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10144     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10145     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10146 
10147     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10148                           /*IsVolatile=*/false,
10149                           /*AlwaysInline=*/false, IsTailCall,
10150                           MachinePointerInfo(), MachinePointerInfo());
10151     ByValArgs.push_back(FIPtr);
10152   }
10153 
10154   if (!IsTailCall)
10155     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10156 
10157   // Copy argument values to their designated locations.
10158   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10159   SmallVector<SDValue, 8> MemOpChains;
10160   SDValue StackPtr;
10161   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10162     CCValAssign &VA = ArgLocs[i];
10163     SDValue ArgValue = OutVals[i];
10164     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10165 
10166     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10167     bool IsF64OnRV32DSoftABI =
10168         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10169     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10170       SDValue SplitF64 = DAG.getNode(
10171           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10172       SDValue Lo = SplitF64.getValue(0);
10173       SDValue Hi = SplitF64.getValue(1);
10174 
10175       Register RegLo = VA.getLocReg();
10176       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10177 
10178       if (RegLo == RISCV::X17) {
10179         // Second half of f64 is passed on the stack.
10180         // Work out the address of the stack slot.
10181         if (!StackPtr.getNode())
10182           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10183         // Emit the store.
10184         MemOpChains.push_back(
10185             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10186       } else {
10187         // Second half of f64 is passed in another GPR.
10188         assert(RegLo < RISCV::X31 && "Invalid register pair");
10189         Register RegHigh = RegLo + 1;
10190         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10191       }
10192       continue;
10193     }
10194 
10195     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10196     // as any other MemLoc.
10197 
10198     // Promote the value if needed.
10199     // For now, only handle fully promoted and indirect arguments.
10200     if (VA.getLocInfo() == CCValAssign::Indirect) {
10201       // Store the argument in a stack slot and pass its address.
10202       Align StackAlign =
10203           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10204                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10205       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10206       // If the original argument was split (e.g. i128), we need
10207       // to store the required parts of it here (and pass just one address).
10208       // Vectors may be partly split to registers and partly to the stack, in
10209       // which case the base address is partly offset and subsequent stores are
10210       // relative to that.
10211       unsigned ArgIndex = Outs[i].OrigArgIndex;
10212       unsigned ArgPartOffset = Outs[i].PartOffset;
10213       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10214       // Calculate the total size to store. We don't have access to what we're
10215       // actually storing other than performing the loop and collecting the
10216       // info.
10217       SmallVector<std::pair<SDValue, SDValue>> Parts;
10218       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10219         SDValue PartValue = OutVals[i + 1];
10220         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10221         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10222         EVT PartVT = PartValue.getValueType();
10223         if (PartVT.isScalableVector())
10224           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10225         StoredSize += PartVT.getStoreSize();
10226         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10227         Parts.push_back(std::make_pair(PartValue, Offset));
10228         ++i;
10229       }
10230       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10231       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10232       MemOpChains.push_back(
10233           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10234                        MachinePointerInfo::getFixedStack(MF, FI)));
10235       for (const auto &Part : Parts) {
10236         SDValue PartValue = Part.first;
10237         SDValue PartOffset = Part.second;
10238         SDValue Address =
10239             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10240         MemOpChains.push_back(
10241             DAG.getStore(Chain, DL, PartValue, Address,
10242                          MachinePointerInfo::getFixedStack(MF, FI)));
10243       }
10244       ArgValue = SpillSlot;
10245     } else {
10246       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10247     }
10248 
10249     // Use local copy if it is a byval arg.
10250     if (Flags.isByVal())
10251       ArgValue = ByValArgs[j++];
10252 
10253     if (VA.isRegLoc()) {
10254       // Queue up the argument copies and emit them at the end.
10255       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10256     } else {
10257       assert(VA.isMemLoc() && "Argument not register or memory");
10258       assert(!IsTailCall && "Tail call not allowed if stack is used "
10259                             "for passing parameters");
10260 
10261       // Work out the address of the stack slot.
10262       if (!StackPtr.getNode())
10263         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10264       SDValue Address =
10265           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10266                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10267 
10268       // Emit the store.
10269       MemOpChains.push_back(
10270           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10271     }
10272   }
10273 
10274   // Join the stores, which are independent of one another.
10275   if (!MemOpChains.empty())
10276     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10277 
10278   SDValue Glue;
10279 
10280   // Build a sequence of copy-to-reg nodes, chained and glued together.
10281   for (auto &Reg : RegsToPass) {
10282     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10283     Glue = Chain.getValue(1);
10284   }
10285 
10286   // Validate that none of the argument registers have been marked as
10287   // reserved, if so report an error. Do the same for the return address if this
10288   // is not a tailcall.
10289   validateCCReservedRegs(RegsToPass, MF);
10290   if (!IsTailCall &&
10291       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10292     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10293         MF.getFunction(),
10294         "Return address register required, but has been reserved."});
10295 
10296   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10297   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10298   // split it and then direct call can be matched by PseudoCALL.
10299   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10300     const GlobalValue *GV = S->getGlobal();
10301 
10302     unsigned OpFlags = RISCVII::MO_CALL;
10303     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10304       OpFlags = RISCVII::MO_PLT;
10305 
10306     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10307   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10308     unsigned OpFlags = RISCVII::MO_CALL;
10309 
10310     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10311                                                  nullptr))
10312       OpFlags = RISCVII::MO_PLT;
10313 
10314     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10315   }
10316 
10317   // The first call operand is the chain and the second is the target address.
10318   SmallVector<SDValue, 8> Ops;
10319   Ops.push_back(Chain);
10320   Ops.push_back(Callee);
10321 
10322   // Add argument registers to the end of the list so that they are
10323   // known live into the call.
10324   for (auto &Reg : RegsToPass)
10325     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10326 
10327   if (!IsTailCall) {
10328     // Add a register mask operand representing the call-preserved registers.
10329     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10330     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10331     assert(Mask && "Missing call preserved mask for calling convention");
10332     Ops.push_back(DAG.getRegisterMask(Mask));
10333   }
10334 
10335   // Glue the call to the argument copies, if any.
10336   if (Glue.getNode())
10337     Ops.push_back(Glue);
10338 
10339   // Emit the call.
10340   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10341 
10342   if (IsTailCall) {
10343     MF.getFrameInfo().setHasTailCall();
10344     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10345   }
10346 
10347   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10348   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10349   Glue = Chain.getValue(1);
10350 
10351   // Mark the end of the call, which is glued to the call itself.
10352   Chain = DAG.getCALLSEQ_END(Chain,
10353                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10354                              DAG.getConstant(0, DL, PtrVT, true),
10355                              Glue, DL);
10356   Glue = Chain.getValue(1);
10357 
10358   // Assign locations to each value returned by this call.
10359   SmallVector<CCValAssign, 16> RVLocs;
10360   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10361   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10362 
10363   // Copy all of the result registers out of their specified physreg.
10364   for (auto &VA : RVLocs) {
10365     // Copy the value out
10366     SDValue RetValue =
10367         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10368     // Glue the RetValue to the end of the call sequence
10369     Chain = RetValue.getValue(1);
10370     Glue = RetValue.getValue(2);
10371 
10372     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10373       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10374       SDValue RetValue2 =
10375           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10376       Chain = RetValue2.getValue(1);
10377       Glue = RetValue2.getValue(2);
10378       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10379                              RetValue2);
10380     }
10381 
10382     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10383 
10384     InVals.push_back(RetValue);
10385   }
10386 
10387   return Chain;
10388 }
10389 
10390 bool RISCVTargetLowering::CanLowerReturn(
10391     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10392     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10393   SmallVector<CCValAssign, 16> RVLocs;
10394   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10395 
10396   Optional<unsigned> FirstMaskArgument;
10397   if (Subtarget.hasVInstructions())
10398     FirstMaskArgument = preAssignMask(Outs);
10399 
10400   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10401     MVT VT = Outs[i].VT;
10402     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10403     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10404     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10405                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10406                  *this, FirstMaskArgument))
10407       return false;
10408   }
10409   return true;
10410 }
10411 
10412 SDValue
10413 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10414                                  bool IsVarArg,
10415                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10416                                  const SmallVectorImpl<SDValue> &OutVals,
10417                                  const SDLoc &DL, SelectionDAG &DAG) const {
10418   const MachineFunction &MF = DAG.getMachineFunction();
10419   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10420 
10421   // Stores the assignment of the return value to a location.
10422   SmallVector<CCValAssign, 16> RVLocs;
10423 
10424   // Info about the registers and stack slot.
10425   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10426                  *DAG.getContext());
10427 
10428   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10429                     nullptr, CC_RISCV);
10430 
10431   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10432     report_fatal_error("GHC functions return void only");
10433 
10434   SDValue Glue;
10435   SmallVector<SDValue, 4> RetOps(1, Chain);
10436 
10437   // Copy the result values into the output registers.
10438   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10439     SDValue Val = OutVals[i];
10440     CCValAssign &VA = RVLocs[i];
10441     assert(VA.isRegLoc() && "Can only return in registers!");
10442 
10443     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10444       // Handle returning f64 on RV32D with a soft float ABI.
10445       assert(VA.isRegLoc() && "Expected return via registers");
10446       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10447                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10448       SDValue Lo = SplitF64.getValue(0);
10449       SDValue Hi = SplitF64.getValue(1);
10450       Register RegLo = VA.getLocReg();
10451       assert(RegLo < RISCV::X31 && "Invalid register pair");
10452       Register RegHi = RegLo + 1;
10453 
10454       if (STI.isRegisterReservedByUser(RegLo) ||
10455           STI.isRegisterReservedByUser(RegHi))
10456         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10457             MF.getFunction(),
10458             "Return value register required, but has been reserved."});
10459 
10460       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10461       Glue = Chain.getValue(1);
10462       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10463       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10464       Glue = Chain.getValue(1);
10465       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10466     } else {
10467       // Handle a 'normal' return.
10468       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10469       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10470 
10471       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10472         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10473             MF.getFunction(),
10474             "Return value register required, but has been reserved."});
10475 
10476       // Guarantee that all emitted copies are stuck together.
10477       Glue = Chain.getValue(1);
10478       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10479     }
10480   }
10481 
10482   RetOps[0] = Chain; // Update chain.
10483 
10484   // Add the glue node if we have it.
10485   if (Glue.getNode()) {
10486     RetOps.push_back(Glue);
10487   }
10488 
10489   unsigned RetOpc = RISCVISD::RET_FLAG;
10490   // Interrupt service routines use different return instructions.
10491   const Function &Func = DAG.getMachineFunction().getFunction();
10492   if (Func.hasFnAttribute("interrupt")) {
10493     if (!Func.getReturnType()->isVoidTy())
10494       report_fatal_error(
10495           "Functions with the interrupt attribute must have void return type!");
10496 
10497     MachineFunction &MF = DAG.getMachineFunction();
10498     StringRef Kind =
10499       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10500 
10501     if (Kind == "user")
10502       RetOpc = RISCVISD::URET_FLAG;
10503     else if (Kind == "supervisor")
10504       RetOpc = RISCVISD::SRET_FLAG;
10505     else
10506       RetOpc = RISCVISD::MRET_FLAG;
10507   }
10508 
10509   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10510 }
10511 
10512 void RISCVTargetLowering::validateCCReservedRegs(
10513     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10514     MachineFunction &MF) const {
10515   const Function &F = MF.getFunction();
10516   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10517 
10518   if (llvm::any_of(Regs, [&STI](auto Reg) {
10519         return STI.isRegisterReservedByUser(Reg.first);
10520       }))
10521     F.getContext().diagnose(DiagnosticInfoUnsupported{
10522         F, "Argument register required, but has been reserved."});
10523 }
10524 
10525 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10526   return CI->isTailCall();
10527 }
10528 
10529 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10530 #define NODE_NAME_CASE(NODE)                                                   \
10531   case RISCVISD::NODE:                                                         \
10532     return "RISCVISD::" #NODE;
10533   // clang-format off
10534   switch ((RISCVISD::NodeType)Opcode) {
10535   case RISCVISD::FIRST_NUMBER:
10536     break;
10537   NODE_NAME_CASE(RET_FLAG)
10538   NODE_NAME_CASE(URET_FLAG)
10539   NODE_NAME_CASE(SRET_FLAG)
10540   NODE_NAME_CASE(MRET_FLAG)
10541   NODE_NAME_CASE(CALL)
10542   NODE_NAME_CASE(SELECT_CC)
10543   NODE_NAME_CASE(BR_CC)
10544   NODE_NAME_CASE(BuildPairF64)
10545   NODE_NAME_CASE(SplitF64)
10546   NODE_NAME_CASE(TAIL)
10547   NODE_NAME_CASE(MULHSU)
10548   NODE_NAME_CASE(SLLW)
10549   NODE_NAME_CASE(SRAW)
10550   NODE_NAME_CASE(SRLW)
10551   NODE_NAME_CASE(DIVW)
10552   NODE_NAME_CASE(DIVUW)
10553   NODE_NAME_CASE(REMUW)
10554   NODE_NAME_CASE(ROLW)
10555   NODE_NAME_CASE(RORW)
10556   NODE_NAME_CASE(CLZW)
10557   NODE_NAME_CASE(CTZW)
10558   NODE_NAME_CASE(FSLW)
10559   NODE_NAME_CASE(FSRW)
10560   NODE_NAME_CASE(FSL)
10561   NODE_NAME_CASE(FSR)
10562   NODE_NAME_CASE(FMV_H_X)
10563   NODE_NAME_CASE(FMV_X_ANYEXTH)
10564   NODE_NAME_CASE(FMV_W_X_RV64)
10565   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10566   NODE_NAME_CASE(FCVT_X)
10567   NODE_NAME_CASE(FCVT_XU)
10568   NODE_NAME_CASE(FCVT_W_RV64)
10569   NODE_NAME_CASE(FCVT_WU_RV64)
10570   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10571   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10572   NODE_NAME_CASE(READ_CYCLE_WIDE)
10573   NODE_NAME_CASE(GREV)
10574   NODE_NAME_CASE(GREVW)
10575   NODE_NAME_CASE(GORC)
10576   NODE_NAME_CASE(GORCW)
10577   NODE_NAME_CASE(SHFL)
10578   NODE_NAME_CASE(SHFLW)
10579   NODE_NAME_CASE(UNSHFL)
10580   NODE_NAME_CASE(UNSHFLW)
10581   NODE_NAME_CASE(BFP)
10582   NODE_NAME_CASE(BFPW)
10583   NODE_NAME_CASE(BCOMPRESS)
10584   NODE_NAME_CASE(BCOMPRESSW)
10585   NODE_NAME_CASE(BDECOMPRESS)
10586   NODE_NAME_CASE(BDECOMPRESSW)
10587   NODE_NAME_CASE(VMV_V_X_VL)
10588   NODE_NAME_CASE(VFMV_V_F_VL)
10589   NODE_NAME_CASE(VMV_X_S)
10590   NODE_NAME_CASE(VMV_S_X_VL)
10591   NODE_NAME_CASE(VFMV_S_F_VL)
10592   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10593   NODE_NAME_CASE(READ_VLENB)
10594   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10595   NODE_NAME_CASE(VSLIDEUP_VL)
10596   NODE_NAME_CASE(VSLIDE1UP_VL)
10597   NODE_NAME_CASE(VSLIDEDOWN_VL)
10598   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10599   NODE_NAME_CASE(VID_VL)
10600   NODE_NAME_CASE(VFNCVT_ROD_VL)
10601   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10602   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10603   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10604   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10605   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10606   NODE_NAME_CASE(VECREDUCE_AND_VL)
10607   NODE_NAME_CASE(VECREDUCE_OR_VL)
10608   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10609   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10610   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10611   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10612   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10613   NODE_NAME_CASE(ADD_VL)
10614   NODE_NAME_CASE(AND_VL)
10615   NODE_NAME_CASE(MUL_VL)
10616   NODE_NAME_CASE(OR_VL)
10617   NODE_NAME_CASE(SDIV_VL)
10618   NODE_NAME_CASE(SHL_VL)
10619   NODE_NAME_CASE(SREM_VL)
10620   NODE_NAME_CASE(SRA_VL)
10621   NODE_NAME_CASE(SRL_VL)
10622   NODE_NAME_CASE(SUB_VL)
10623   NODE_NAME_CASE(UDIV_VL)
10624   NODE_NAME_CASE(UREM_VL)
10625   NODE_NAME_CASE(XOR_VL)
10626   NODE_NAME_CASE(SADDSAT_VL)
10627   NODE_NAME_CASE(UADDSAT_VL)
10628   NODE_NAME_CASE(SSUBSAT_VL)
10629   NODE_NAME_CASE(USUBSAT_VL)
10630   NODE_NAME_CASE(FADD_VL)
10631   NODE_NAME_CASE(FSUB_VL)
10632   NODE_NAME_CASE(FMUL_VL)
10633   NODE_NAME_CASE(FDIV_VL)
10634   NODE_NAME_CASE(FNEG_VL)
10635   NODE_NAME_CASE(FABS_VL)
10636   NODE_NAME_CASE(FSQRT_VL)
10637   NODE_NAME_CASE(FMA_VL)
10638   NODE_NAME_CASE(FCOPYSIGN_VL)
10639   NODE_NAME_CASE(SMIN_VL)
10640   NODE_NAME_CASE(SMAX_VL)
10641   NODE_NAME_CASE(UMIN_VL)
10642   NODE_NAME_CASE(UMAX_VL)
10643   NODE_NAME_CASE(FMINNUM_VL)
10644   NODE_NAME_CASE(FMAXNUM_VL)
10645   NODE_NAME_CASE(MULHS_VL)
10646   NODE_NAME_CASE(MULHU_VL)
10647   NODE_NAME_CASE(FP_TO_SINT_VL)
10648   NODE_NAME_CASE(FP_TO_UINT_VL)
10649   NODE_NAME_CASE(SINT_TO_FP_VL)
10650   NODE_NAME_CASE(UINT_TO_FP_VL)
10651   NODE_NAME_CASE(FP_EXTEND_VL)
10652   NODE_NAME_CASE(FP_ROUND_VL)
10653   NODE_NAME_CASE(VWMUL_VL)
10654   NODE_NAME_CASE(VWMULU_VL)
10655   NODE_NAME_CASE(VWMULSU_VL)
10656   NODE_NAME_CASE(VWADD_VL)
10657   NODE_NAME_CASE(VWADDU_VL)
10658   NODE_NAME_CASE(VWSUB_VL)
10659   NODE_NAME_CASE(VWSUBU_VL)
10660   NODE_NAME_CASE(VWADD_W_VL)
10661   NODE_NAME_CASE(VWADDU_W_VL)
10662   NODE_NAME_CASE(VWSUB_W_VL)
10663   NODE_NAME_CASE(VWSUBU_W_VL)
10664   NODE_NAME_CASE(SETCC_VL)
10665   NODE_NAME_CASE(VSELECT_VL)
10666   NODE_NAME_CASE(VP_MERGE_VL)
10667   NODE_NAME_CASE(VMAND_VL)
10668   NODE_NAME_CASE(VMOR_VL)
10669   NODE_NAME_CASE(VMXOR_VL)
10670   NODE_NAME_CASE(VMCLR_VL)
10671   NODE_NAME_CASE(VMSET_VL)
10672   NODE_NAME_CASE(VRGATHER_VX_VL)
10673   NODE_NAME_CASE(VRGATHER_VV_VL)
10674   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10675   NODE_NAME_CASE(VSEXT_VL)
10676   NODE_NAME_CASE(VZEXT_VL)
10677   NODE_NAME_CASE(VCPOP_VL)
10678   NODE_NAME_CASE(VLE_VL)
10679   NODE_NAME_CASE(VSE_VL)
10680   NODE_NAME_CASE(READ_CSR)
10681   NODE_NAME_CASE(WRITE_CSR)
10682   NODE_NAME_CASE(SWAP_CSR)
10683   }
10684   // clang-format on
10685   return nullptr;
10686 #undef NODE_NAME_CASE
10687 }
10688 
10689 /// getConstraintType - Given a constraint letter, return the type of
10690 /// constraint it is for this target.
10691 RISCVTargetLowering::ConstraintType
10692 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10693   if (Constraint.size() == 1) {
10694     switch (Constraint[0]) {
10695     default:
10696       break;
10697     case 'f':
10698       return C_RegisterClass;
10699     case 'I':
10700     case 'J':
10701     case 'K':
10702       return C_Immediate;
10703     case 'A':
10704       return C_Memory;
10705     case 'S': // A symbolic address
10706       return C_Other;
10707     }
10708   } else {
10709     if (Constraint == "vr" || Constraint == "vm")
10710       return C_RegisterClass;
10711   }
10712   return TargetLowering::getConstraintType(Constraint);
10713 }
10714 
10715 std::pair<unsigned, const TargetRegisterClass *>
10716 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10717                                                   StringRef Constraint,
10718                                                   MVT VT) const {
10719   // First, see if this is a constraint that directly corresponds to a
10720   // RISCV register class.
10721   if (Constraint.size() == 1) {
10722     switch (Constraint[0]) {
10723     case 'r':
10724       // TODO: Support fixed vectors up to XLen for P extension?
10725       if (VT.isVector())
10726         break;
10727       return std::make_pair(0U, &RISCV::GPRRegClass);
10728     case 'f':
10729       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10730         return std::make_pair(0U, &RISCV::FPR16RegClass);
10731       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10732         return std::make_pair(0U, &RISCV::FPR32RegClass);
10733       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10734         return std::make_pair(0U, &RISCV::FPR64RegClass);
10735       break;
10736     default:
10737       break;
10738     }
10739   } else if (Constraint == "vr") {
10740     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10741                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10742       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10743         return std::make_pair(0U, RC);
10744     }
10745   } else if (Constraint == "vm") {
10746     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10747       return std::make_pair(0U, &RISCV::VMV0RegClass);
10748   }
10749 
10750   // Clang will correctly decode the usage of register name aliases into their
10751   // official names. However, other frontends like `rustc` do not. This allows
10752   // users of these frontends to use the ABI names for registers in LLVM-style
10753   // register constraints.
10754   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10755                                .Case("{zero}", RISCV::X0)
10756                                .Case("{ra}", RISCV::X1)
10757                                .Case("{sp}", RISCV::X2)
10758                                .Case("{gp}", RISCV::X3)
10759                                .Case("{tp}", RISCV::X4)
10760                                .Case("{t0}", RISCV::X5)
10761                                .Case("{t1}", RISCV::X6)
10762                                .Case("{t2}", RISCV::X7)
10763                                .Cases("{s0}", "{fp}", RISCV::X8)
10764                                .Case("{s1}", RISCV::X9)
10765                                .Case("{a0}", RISCV::X10)
10766                                .Case("{a1}", RISCV::X11)
10767                                .Case("{a2}", RISCV::X12)
10768                                .Case("{a3}", RISCV::X13)
10769                                .Case("{a4}", RISCV::X14)
10770                                .Case("{a5}", RISCV::X15)
10771                                .Case("{a6}", RISCV::X16)
10772                                .Case("{a7}", RISCV::X17)
10773                                .Case("{s2}", RISCV::X18)
10774                                .Case("{s3}", RISCV::X19)
10775                                .Case("{s4}", RISCV::X20)
10776                                .Case("{s5}", RISCV::X21)
10777                                .Case("{s6}", RISCV::X22)
10778                                .Case("{s7}", RISCV::X23)
10779                                .Case("{s8}", RISCV::X24)
10780                                .Case("{s9}", RISCV::X25)
10781                                .Case("{s10}", RISCV::X26)
10782                                .Case("{s11}", RISCV::X27)
10783                                .Case("{t3}", RISCV::X28)
10784                                .Case("{t4}", RISCV::X29)
10785                                .Case("{t5}", RISCV::X30)
10786                                .Case("{t6}", RISCV::X31)
10787                                .Default(RISCV::NoRegister);
10788   if (XRegFromAlias != RISCV::NoRegister)
10789     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10790 
10791   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10792   // TableGen record rather than the AsmName to choose registers for InlineAsm
10793   // constraints, plus we want to match those names to the widest floating point
10794   // register type available, manually select floating point registers here.
10795   //
10796   // The second case is the ABI name of the register, so that frontends can also
10797   // use the ABI names in register constraint lists.
10798   if (Subtarget.hasStdExtF()) {
10799     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10800                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10801                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10802                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10803                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10804                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10805                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10806                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10807                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10808                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10809                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10810                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10811                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10812                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10813                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10814                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10815                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10816                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10817                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10818                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10819                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10820                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10821                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
10822                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
10823                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
10824                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
10825                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
10826                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
10827                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
10828                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
10829                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
10830                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
10831                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
10832                         .Default(RISCV::NoRegister);
10833     if (FReg != RISCV::NoRegister) {
10834       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
10835       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
10836         unsigned RegNo = FReg - RISCV::F0_F;
10837         unsigned DReg = RISCV::F0_D + RegNo;
10838         return std::make_pair(DReg, &RISCV::FPR64RegClass);
10839       }
10840       if (VT == MVT::f32 || VT == MVT::Other)
10841         return std::make_pair(FReg, &RISCV::FPR32RegClass);
10842       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
10843         unsigned RegNo = FReg - RISCV::F0_F;
10844         unsigned HReg = RISCV::F0_H + RegNo;
10845         return std::make_pair(HReg, &RISCV::FPR16RegClass);
10846       }
10847     }
10848   }
10849 
10850   if (Subtarget.hasVInstructions()) {
10851     Register VReg = StringSwitch<Register>(Constraint.lower())
10852                         .Case("{v0}", RISCV::V0)
10853                         .Case("{v1}", RISCV::V1)
10854                         .Case("{v2}", RISCV::V2)
10855                         .Case("{v3}", RISCV::V3)
10856                         .Case("{v4}", RISCV::V4)
10857                         .Case("{v5}", RISCV::V5)
10858                         .Case("{v6}", RISCV::V6)
10859                         .Case("{v7}", RISCV::V7)
10860                         .Case("{v8}", RISCV::V8)
10861                         .Case("{v9}", RISCV::V9)
10862                         .Case("{v10}", RISCV::V10)
10863                         .Case("{v11}", RISCV::V11)
10864                         .Case("{v12}", RISCV::V12)
10865                         .Case("{v13}", RISCV::V13)
10866                         .Case("{v14}", RISCV::V14)
10867                         .Case("{v15}", RISCV::V15)
10868                         .Case("{v16}", RISCV::V16)
10869                         .Case("{v17}", RISCV::V17)
10870                         .Case("{v18}", RISCV::V18)
10871                         .Case("{v19}", RISCV::V19)
10872                         .Case("{v20}", RISCV::V20)
10873                         .Case("{v21}", RISCV::V21)
10874                         .Case("{v22}", RISCV::V22)
10875                         .Case("{v23}", RISCV::V23)
10876                         .Case("{v24}", RISCV::V24)
10877                         .Case("{v25}", RISCV::V25)
10878                         .Case("{v26}", RISCV::V26)
10879                         .Case("{v27}", RISCV::V27)
10880                         .Case("{v28}", RISCV::V28)
10881                         .Case("{v29}", RISCV::V29)
10882                         .Case("{v30}", RISCV::V30)
10883                         .Case("{v31}", RISCV::V31)
10884                         .Default(RISCV::NoRegister);
10885     if (VReg != RISCV::NoRegister) {
10886       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
10887         return std::make_pair(VReg, &RISCV::VMRegClass);
10888       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
10889         return std::make_pair(VReg, &RISCV::VRRegClass);
10890       for (const auto *RC :
10891            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10892         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
10893           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
10894           return std::make_pair(VReg, RC);
10895         }
10896       }
10897     }
10898   }
10899 
10900   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10901 }
10902 
10903 unsigned
10904 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
10905   // Currently only support length 1 constraints.
10906   if (ConstraintCode.size() == 1) {
10907     switch (ConstraintCode[0]) {
10908     case 'A':
10909       return InlineAsm::Constraint_A;
10910     default:
10911       break;
10912     }
10913   }
10914 
10915   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
10916 }
10917 
10918 void RISCVTargetLowering::LowerAsmOperandForConstraint(
10919     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
10920     SelectionDAG &DAG) const {
10921   // Currently only support length 1 constraints.
10922   if (Constraint.length() == 1) {
10923     switch (Constraint[0]) {
10924     case 'I':
10925       // Validate & create a 12-bit signed immediate operand.
10926       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10927         uint64_t CVal = C->getSExtValue();
10928         if (isInt<12>(CVal))
10929           Ops.push_back(
10930               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10931       }
10932       return;
10933     case 'J':
10934       // Validate & create an integer zero operand.
10935       if (auto *C = dyn_cast<ConstantSDNode>(Op))
10936         if (C->getZExtValue() == 0)
10937           Ops.push_back(
10938               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
10939       return;
10940     case 'K':
10941       // Validate & create a 5-bit unsigned immediate operand.
10942       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
10943         uint64_t CVal = C->getZExtValue();
10944         if (isUInt<5>(CVal))
10945           Ops.push_back(
10946               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
10947       }
10948       return;
10949     case 'S':
10950       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10951         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
10952                                                  GA->getValueType(0)));
10953       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
10954         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
10955                                                 BA->getValueType(0)));
10956       }
10957       return;
10958     default:
10959       break;
10960     }
10961   }
10962   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10963 }
10964 
10965 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
10966                                                    Instruction *Inst,
10967                                                    AtomicOrdering Ord) const {
10968   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
10969     return Builder.CreateFence(Ord);
10970   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
10971     return Builder.CreateFence(AtomicOrdering::Release);
10972   return nullptr;
10973 }
10974 
10975 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
10976                                                     Instruction *Inst,
10977                                                     AtomicOrdering Ord) const {
10978   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
10979     return Builder.CreateFence(AtomicOrdering::Acquire);
10980   return nullptr;
10981 }
10982 
10983 TargetLowering::AtomicExpansionKind
10984 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10985   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
10986   // point operations can't be used in an lr/sc sequence without breaking the
10987   // forward-progress guarantee.
10988   if (AI->isFloatingPointOperation())
10989     return AtomicExpansionKind::CmpXChg;
10990 
10991   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10992   if (Size == 8 || Size == 16)
10993     return AtomicExpansionKind::MaskedIntrinsic;
10994   return AtomicExpansionKind::None;
10995 }
10996 
10997 static Intrinsic::ID
10998 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
10999   if (XLen == 32) {
11000     switch (BinOp) {
11001     default:
11002       llvm_unreachable("Unexpected AtomicRMW BinOp");
11003     case AtomicRMWInst::Xchg:
11004       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11005     case AtomicRMWInst::Add:
11006       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11007     case AtomicRMWInst::Sub:
11008       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11009     case AtomicRMWInst::Nand:
11010       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11011     case AtomicRMWInst::Max:
11012       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11013     case AtomicRMWInst::Min:
11014       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11015     case AtomicRMWInst::UMax:
11016       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11017     case AtomicRMWInst::UMin:
11018       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11019     }
11020   }
11021 
11022   if (XLen == 64) {
11023     switch (BinOp) {
11024     default:
11025       llvm_unreachable("Unexpected AtomicRMW BinOp");
11026     case AtomicRMWInst::Xchg:
11027       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11028     case AtomicRMWInst::Add:
11029       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11030     case AtomicRMWInst::Sub:
11031       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11032     case AtomicRMWInst::Nand:
11033       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11034     case AtomicRMWInst::Max:
11035       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11036     case AtomicRMWInst::Min:
11037       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11038     case AtomicRMWInst::UMax:
11039       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11040     case AtomicRMWInst::UMin:
11041       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11042     }
11043   }
11044 
11045   llvm_unreachable("Unexpected XLen\n");
11046 }
11047 
11048 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11049     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11050     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11051   unsigned XLen = Subtarget.getXLen();
11052   Value *Ordering =
11053       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11054   Type *Tys[] = {AlignedAddr->getType()};
11055   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11056       AI->getModule(),
11057       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11058 
11059   if (XLen == 64) {
11060     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11061     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11062     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11063   }
11064 
11065   Value *Result;
11066 
11067   // Must pass the shift amount needed to sign extend the loaded value prior
11068   // to performing a signed comparison for min/max. ShiftAmt is the number of
11069   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11070   // is the number of bits to left+right shift the value in order to
11071   // sign-extend.
11072   if (AI->getOperation() == AtomicRMWInst::Min ||
11073       AI->getOperation() == AtomicRMWInst::Max) {
11074     const DataLayout &DL = AI->getModule()->getDataLayout();
11075     unsigned ValWidth =
11076         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11077     Value *SextShamt =
11078         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11079     Result = Builder.CreateCall(LrwOpScwLoop,
11080                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11081   } else {
11082     Result =
11083         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11084   }
11085 
11086   if (XLen == 64)
11087     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11088   return Result;
11089 }
11090 
11091 TargetLowering::AtomicExpansionKind
11092 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11093     AtomicCmpXchgInst *CI) const {
11094   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11095   if (Size == 8 || Size == 16)
11096     return AtomicExpansionKind::MaskedIntrinsic;
11097   return AtomicExpansionKind::None;
11098 }
11099 
11100 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11101     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11102     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11103   unsigned XLen = Subtarget.getXLen();
11104   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11105   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11106   if (XLen == 64) {
11107     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11108     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11109     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11110     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11111   }
11112   Type *Tys[] = {AlignedAddr->getType()};
11113   Function *MaskedCmpXchg =
11114       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11115   Value *Result = Builder.CreateCall(
11116       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11117   if (XLen == 64)
11118     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11119   return Result;
11120 }
11121 
11122 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11123   return false;
11124 }
11125 
11126 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11127                                                EVT VT) const {
11128   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11129     return false;
11130 
11131   switch (FPVT.getSimpleVT().SimpleTy) {
11132   case MVT::f16:
11133     return Subtarget.hasStdExtZfh();
11134   case MVT::f32:
11135     return Subtarget.hasStdExtF();
11136   case MVT::f64:
11137     return Subtarget.hasStdExtD();
11138   default:
11139     return false;
11140   }
11141 }
11142 
11143 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11144   // If we are using the small code model, we can reduce size of jump table
11145   // entry to 4 bytes.
11146   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11147       getTargetMachine().getCodeModel() == CodeModel::Small) {
11148     return MachineJumpTableInfo::EK_Custom32;
11149   }
11150   return TargetLowering::getJumpTableEncoding();
11151 }
11152 
11153 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11154     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11155     unsigned uid, MCContext &Ctx) const {
11156   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11157          getTargetMachine().getCodeModel() == CodeModel::Small);
11158   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11159 }
11160 
11161 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11162                                                      EVT VT) const {
11163   VT = VT.getScalarType();
11164 
11165   if (!VT.isSimple())
11166     return false;
11167 
11168   switch (VT.getSimpleVT().SimpleTy) {
11169   case MVT::f16:
11170     return Subtarget.hasStdExtZfh();
11171   case MVT::f32:
11172     return Subtarget.hasStdExtF();
11173   case MVT::f64:
11174     return Subtarget.hasStdExtD();
11175   default:
11176     break;
11177   }
11178 
11179   return false;
11180 }
11181 
11182 Register RISCVTargetLowering::getExceptionPointerRegister(
11183     const Constant *PersonalityFn) const {
11184   return RISCV::X10;
11185 }
11186 
11187 Register RISCVTargetLowering::getExceptionSelectorRegister(
11188     const Constant *PersonalityFn) const {
11189   return RISCV::X11;
11190 }
11191 
11192 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11193   // Return false to suppress the unnecessary extensions if the LibCall
11194   // arguments or return value is f32 type for LP64 ABI.
11195   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11196   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11197     return false;
11198 
11199   return true;
11200 }
11201 
11202 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11203   if (Subtarget.is64Bit() && Type == MVT::i32)
11204     return true;
11205 
11206   return IsSigned;
11207 }
11208 
11209 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11210                                                  SDValue C) const {
11211   // Check integral scalar types.
11212   if (VT.isScalarInteger()) {
11213     // Omit the optimization if the sub target has the M extension and the data
11214     // size exceeds XLen.
11215     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11216       return false;
11217     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11218       // Break the MUL to a SLLI and an ADD/SUB.
11219       const APInt &Imm = ConstNode->getAPIntValue();
11220       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11221           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11222         return true;
11223       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11224       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11225           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11226            (Imm - 8).isPowerOf2()))
11227         return true;
11228       // Omit the following optimization if the sub target has the M extension
11229       // and the data size >= XLen.
11230       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11231         return false;
11232       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11233       // a pair of LUI/ADDI.
11234       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11235         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11236         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11237             (1 - ImmS).isPowerOf2())
11238         return true;
11239       }
11240     }
11241   }
11242 
11243   return false;
11244 }
11245 
11246 bool RISCVTargetLowering::isMulAddWithConstProfitable(
11247     const SDValue &AddNode, const SDValue &ConstNode) const {
11248   // Let the DAGCombiner decide for vectors.
11249   EVT VT = AddNode.getValueType();
11250   if (VT.isVector())
11251     return true;
11252 
11253   // Let the DAGCombiner decide for larger types.
11254   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11255     return true;
11256 
11257   // It is worse if c1 is simm12 while c1*c2 is not.
11258   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11259   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11260   const APInt &C1 = C1Node->getAPIntValue();
11261   const APInt &C2 = C2Node->getAPIntValue();
11262   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11263     return false;
11264 
11265   // Default to true and let the DAGCombiner decide.
11266   return true;
11267 }
11268 
11269 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11270     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11271     bool *Fast) const {
11272   if (!VT.isVector())
11273     return false;
11274 
11275   EVT ElemVT = VT.getVectorElementType();
11276   if (Alignment >= ElemVT.getStoreSize()) {
11277     if (Fast)
11278       *Fast = true;
11279     return true;
11280   }
11281 
11282   return false;
11283 }
11284 
11285 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11286     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11287     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11288   bool IsABIRegCopy = CC.hasValue();
11289   EVT ValueVT = Val.getValueType();
11290   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11291     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11292     // and cast to f32.
11293     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11294     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11295     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11296                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11297     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11298     Parts[0] = Val;
11299     return true;
11300   }
11301 
11302   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11303     LLVMContext &Context = *DAG.getContext();
11304     EVT ValueEltVT = ValueVT.getVectorElementType();
11305     EVT PartEltVT = PartVT.getVectorElementType();
11306     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11307     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11308     if (PartVTBitSize % ValueVTBitSize == 0) {
11309       assert(PartVTBitSize >= ValueVTBitSize);
11310       // If the element types are different, bitcast to the same element type of
11311       // PartVT first.
11312       // Give an example here, we want copy a <vscale x 1 x i8> value to
11313       // <vscale x 4 x i16>.
11314       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11315       // subvector, then we can bitcast to <vscale x 4 x i16>.
11316       if (ValueEltVT != PartEltVT) {
11317         if (PartVTBitSize > ValueVTBitSize) {
11318           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11319           assert(Count != 0 && "The number of element should not be zero.");
11320           EVT SameEltTypeVT =
11321               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11322           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11323                             DAG.getUNDEF(SameEltTypeVT), Val,
11324                             DAG.getVectorIdxConstant(0, DL));
11325         }
11326         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11327       } else {
11328         Val =
11329             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11330                         Val, DAG.getVectorIdxConstant(0, DL));
11331       }
11332       Parts[0] = Val;
11333       return true;
11334     }
11335   }
11336   return false;
11337 }
11338 
11339 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11340     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11341     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11342   bool IsABIRegCopy = CC.hasValue();
11343   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11344     SDValue Val = Parts[0];
11345 
11346     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11347     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11348     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11349     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11350     return Val;
11351   }
11352 
11353   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11354     LLVMContext &Context = *DAG.getContext();
11355     SDValue Val = Parts[0];
11356     EVT ValueEltVT = ValueVT.getVectorElementType();
11357     EVT PartEltVT = PartVT.getVectorElementType();
11358     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11359     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11360     if (PartVTBitSize % ValueVTBitSize == 0) {
11361       assert(PartVTBitSize >= ValueVTBitSize);
11362       EVT SameEltTypeVT = ValueVT;
11363       // If the element types are different, convert it to the same element type
11364       // of PartVT.
11365       // Give an example here, we want copy a <vscale x 1 x i8> value from
11366       // <vscale x 4 x i16>.
11367       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11368       // then we can extract <vscale x 1 x i8>.
11369       if (ValueEltVT != PartEltVT) {
11370         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11371         assert(Count != 0 && "The number of element should not be zero.");
11372         SameEltTypeVT =
11373             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11374         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11375       }
11376       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11377                         DAG.getVectorIdxConstant(0, DL));
11378       return Val;
11379     }
11380   }
11381   return SDValue();
11382 }
11383 
11384 SDValue
11385 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11386                                    SelectionDAG &DAG,
11387                                    SmallVectorImpl<SDNode *> &Created) const {
11388   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11389   if (isIntDivCheap(N->getValueType(0), Attr))
11390     return SDValue(N, 0); // Lower SDIV as SDIV
11391 
11392   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11393          "Unexpected divisor!");
11394 
11395   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11396   if (!Subtarget.hasStdExtZbt())
11397     return SDValue();
11398 
11399   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11400   // Besides, more critical path instructions will be generated when dividing
11401   // by 2. So we keep using the original DAGs for these cases.
11402   unsigned Lg2 = Divisor.countTrailingZeros();
11403   if (Lg2 == 1 || Lg2 >= 12)
11404     return SDValue();
11405 
11406   // fold (sdiv X, pow2)
11407   EVT VT = N->getValueType(0);
11408   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11409     return SDValue();
11410 
11411   SDLoc DL(N);
11412   SDValue N0 = N->getOperand(0);
11413   SDValue Zero = DAG.getConstant(0, DL, VT);
11414   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11415 
11416   // Add (N0 < 0) ? Pow2 - 1 : 0;
11417   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11418   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11419   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11420 
11421   Created.push_back(Cmp.getNode());
11422   Created.push_back(Add.getNode());
11423   Created.push_back(Sel.getNode());
11424 
11425   // Divide by pow2.
11426   SDValue SRA =
11427       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11428 
11429   // If we're dividing by a positive value, we're done.  Otherwise, we must
11430   // negate the result.
11431   if (Divisor.isNonNegative())
11432     return SRA;
11433 
11434   Created.push_back(SRA.getNode());
11435   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11436 }
11437 
11438 #define GET_REGISTER_MATCHER
11439 #include "RISCVGenAsmMatcher.inc"
11440 
11441 Register
11442 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11443                                        const MachineFunction &MF) const {
11444   Register Reg = MatchRegisterAltName(RegName);
11445   if (Reg == RISCV::NoRegister)
11446     Reg = MatchRegisterName(RegName);
11447   if (Reg == RISCV::NoRegister)
11448     report_fatal_error(
11449         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11450   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11451   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11452     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11453                              StringRef(RegName) + "\"."));
11454   return Reg;
11455 }
11456 
11457 namespace llvm {
11458 namespace RISCVVIntrinsicsTable {
11459 
11460 #define GET_RISCVVIntrinsicsTable_IMPL
11461 #include "RISCVGenSearchableTables.inc"
11462 
11463 } // namespace RISCVVIntrinsicsTable
11464 
11465 } // namespace llvm
11466