1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/IntrinsicsRISCV.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "riscv-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46                                          const RISCVSubtarget &STI)
47     : TargetLowering(TM), Subtarget(STI) {
48 
49   if (Subtarget.isRV32E())
50     report_fatal_error("Codegen not yet implemented for RV32E");
51 
52   RISCVABI::ABI ABI = Subtarget.getTargetABI();
53   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54 
55   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56       !Subtarget.hasStdExtF()) {
57     errs() << "Hard-float 'f' ABI can't be used for a target that "
58                 "doesn't support the F instruction set extension (ignoring "
59                           "target-abi)\n";
60     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62              !Subtarget.hasStdExtD()) {
63     errs() << "Hard-float 'd' ABI can't be used for a target that "
64               "doesn't support the D instruction set extension (ignoring "
65               "target-abi)\n";
66     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67   }
68 
69   switch (ABI) {
70   default:
71     report_fatal_error("Don't know how to lower this ABI");
72   case RISCVABI::ABI_ILP32:
73   case RISCVABI::ABI_ILP32F:
74   case RISCVABI::ABI_ILP32D:
75   case RISCVABI::ABI_LP64:
76   case RISCVABI::ABI_LP64F:
77   case RISCVABI::ABI_LP64D:
78     break;
79   }
80 
81   MVT XLenVT = Subtarget.getXLenVT();
82 
83   // Set up the register classes.
84   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85 
86   if (Subtarget.hasStdExtZfh())
87     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88   if (Subtarget.hasStdExtF())
89     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90   if (Subtarget.hasStdExtD())
91     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92 
93   static const MVT::SimpleValueType BoolVecVTs[] = {
94       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
95       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96   static const MVT::SimpleValueType IntVecVTs[] = {
97       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
98       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
99       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101       MVT::nxv4i64, MVT::nxv8i64};
102   static const MVT::SimpleValueType F16VecVTs[] = {
103       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
104       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105   static const MVT::SimpleValueType F32VecVTs[] = {
106       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107   static const MVT::SimpleValueType F64VecVTs[] = {
108       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109 
110   if (Subtarget.hasStdExtV()) {
111     auto addRegClassForRVV = [this](MVT VT) {
112       unsigned Size = VT.getSizeInBits().getKnownMinValue();
113       assert(Size <= 512 && isPowerOf2_32(Size));
114       const TargetRegisterClass *RC;
115       if (Size <= 64)
116         RC = &RISCV::VRRegClass;
117       else if (Size == 128)
118         RC = &RISCV::VRM2RegClass;
119       else if (Size == 256)
120         RC = &RISCV::VRM4RegClass;
121       else
122         RC = &RISCV::VRM8RegClass;
123 
124       addRegisterClass(VT, RC);
125     };
126 
127     for (MVT VT : BoolVecVTs)
128       addRegClassForRVV(VT);
129     for (MVT VT : IntVecVTs)
130       addRegClassForRVV(VT);
131 
132     if (Subtarget.hasStdExtZfh())
133       for (MVT VT : F16VecVTs)
134         addRegClassForRVV(VT);
135 
136     if (Subtarget.hasStdExtF())
137       for (MVT VT : F32VecVTs)
138         addRegClassForRVV(VT);
139 
140     if (Subtarget.hasStdExtD())
141       for (MVT VT : F64VecVTs)
142         addRegClassForRVV(VT);
143 
144     if (Subtarget.useRVVForFixedLengthVectors()) {
145       auto addRegClassForFixedVectors = [this](MVT VT) {
146         MVT ContainerVT = getContainerForFixedLengthVector(VT);
147         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149         addRegisterClass(VT, TRI.getRegClass(RCID));
150       };
151       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152         if (useRVVForFixedLengthVectorVT(VT))
153           addRegClassForFixedVectors(VT);
154 
155       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156         if (useRVVForFixedLengthVectorVT(VT))
157           addRegClassForFixedVectors(VT);
158     }
159   }
160 
161   // Compute derived properties from the register classes.
162   computeRegisterProperties(STI.getRegisterInfo());
163 
164   setStackPointerRegisterToSaveRestore(RISCV::X2);
165 
166   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168 
169   // TODO: add all necessary setOperationAction calls.
170   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171 
172   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173   setOperationAction(ISD::BR_CC, XLenVT, Expand);
174   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176 
177   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179 
180   setOperationAction(ISD::VASTART, MVT::Other, Custom);
181   setOperationAction(ISD::VAARG, MVT::Other, Expand);
182   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183   setOperationAction(ISD::VAEND, MVT::Other, Expand);
184 
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186   if (!Subtarget.hasStdExtZbb()) {
187     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189   }
190 
191   if (Subtarget.is64Bit()) {
192     setOperationAction(ISD::ADD, MVT::i32, Custom);
193     setOperationAction(ISD::SUB, MVT::i32, Custom);
194     setOperationAction(ISD::SHL, MVT::i32, Custom);
195     setOperationAction(ISD::SRA, MVT::i32, Custom);
196     setOperationAction(ISD::SRL, MVT::i32, Custom);
197 
198     setOperationAction(ISD::UADDO, MVT::i32, Custom);
199     setOperationAction(ISD::USUBO, MVT::i32, Custom);
200     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202   }
203 
204   if (!Subtarget.hasStdExtM()) {
205     setOperationAction(ISD::MUL, XLenVT, Expand);
206     setOperationAction(ISD::MULHS, XLenVT, Expand);
207     setOperationAction(ISD::MULHU, XLenVT, Expand);
208     setOperationAction(ISD::SDIV, XLenVT, Expand);
209     setOperationAction(ISD::UDIV, XLenVT, Expand);
210     setOperationAction(ISD::SREM, XLenVT, Expand);
211     setOperationAction(ISD::UREM, XLenVT, Expand);
212   } else {
213     if (Subtarget.is64Bit()) {
214       setOperationAction(ISD::MUL, MVT::i32, Custom);
215       setOperationAction(ISD::MUL, MVT::i128, Custom);
216 
217       setOperationAction(ISD::SDIV, MVT::i8, Custom);
218       setOperationAction(ISD::UDIV, MVT::i8, Custom);
219       setOperationAction(ISD::UREM, MVT::i8, Custom);
220       setOperationAction(ISD::SDIV, MVT::i16, Custom);
221       setOperationAction(ISD::UDIV, MVT::i16, Custom);
222       setOperationAction(ISD::UREM, MVT::i16, Custom);
223       setOperationAction(ISD::SDIV, MVT::i32, Custom);
224       setOperationAction(ISD::UDIV, MVT::i32, Custom);
225       setOperationAction(ISD::UREM, MVT::i32, Custom);
226     } else {
227       setOperationAction(ISD::MUL, MVT::i64, Custom);
228     }
229   }
230 
231   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235 
236   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239 
240   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241     if (Subtarget.is64Bit()) {
242       setOperationAction(ISD::ROTL, MVT::i32, Custom);
243       setOperationAction(ISD::ROTR, MVT::i32, Custom);
244     }
245   } else {
246     setOperationAction(ISD::ROTL, XLenVT, Expand);
247     setOperationAction(ISD::ROTR, XLenVT, Expand);
248   }
249 
250   if (Subtarget.hasStdExtZbp()) {
251     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252     // more combining.
253     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
254     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
255     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
256     // BSWAP i8 doesn't exist.
257     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
258     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
259 
260     if (Subtarget.is64Bit()) {
261       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
262       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
263     }
264   } else {
265     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
266     // pattern match it directly in isel.
267     setOperationAction(ISD::BSWAP, XLenVT,
268                        Subtarget.hasStdExtZbb() ? Legal : Expand);
269   }
270 
271   if (Subtarget.hasStdExtZbb()) {
272     setOperationAction(ISD::SMIN, XLenVT, Legal);
273     setOperationAction(ISD::SMAX, XLenVT, Legal);
274     setOperationAction(ISD::UMIN, XLenVT, Legal);
275     setOperationAction(ISD::UMAX, XLenVT, Legal);
276 
277     if (Subtarget.is64Bit()) {
278       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
279       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
280       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
281       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
282     }
283   } else {
284     setOperationAction(ISD::CTTZ, XLenVT, Expand);
285     setOperationAction(ISD::CTLZ, XLenVT, Expand);
286     setOperationAction(ISD::CTPOP, XLenVT, Expand);
287   }
288 
289   if (Subtarget.hasStdExtZbt()) {
290     setOperationAction(ISD::FSHL, XLenVT, Custom);
291     setOperationAction(ISD::FSHR, XLenVT, Custom);
292     setOperationAction(ISD::SELECT, XLenVT, Legal);
293 
294     if (Subtarget.is64Bit()) {
295       setOperationAction(ISD::FSHL, MVT::i32, Custom);
296       setOperationAction(ISD::FSHR, MVT::i32, Custom);
297     }
298   } else {
299     setOperationAction(ISD::SELECT, XLenVT, Custom);
300   }
301 
302   ISD::CondCode FPCCToExpand[] = {
303       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
304       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
305       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
306 
307   ISD::NodeType FPOpToExpand[] = {
308       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
309       ISD::FP_TO_FP16};
310 
311   if (Subtarget.hasStdExtZfh())
312     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
313 
314   if (Subtarget.hasStdExtZfh()) {
315     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
316     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
317     for (auto CC : FPCCToExpand)
318       setCondCodeAction(CC, MVT::f16, Expand);
319     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
320     setOperationAction(ISD::SELECT, MVT::f16, Custom);
321     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
322     for (auto Op : FPOpToExpand)
323       setOperationAction(Op, MVT::f16, Expand);
324   }
325 
326   if (Subtarget.hasStdExtF()) {
327     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
328     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
329     for (auto CC : FPCCToExpand)
330       setCondCodeAction(CC, MVT::f32, Expand);
331     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
332     setOperationAction(ISD::SELECT, MVT::f32, Custom);
333     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
334     for (auto Op : FPOpToExpand)
335       setOperationAction(Op, MVT::f32, Expand);
336     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
337     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
338   }
339 
340   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
341     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
342 
343   if (Subtarget.hasStdExtD()) {
344     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
345     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
346     for (auto CC : FPCCToExpand)
347       setCondCodeAction(CC, MVT::f64, Expand);
348     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
349     setOperationAction(ISD::SELECT, MVT::f64, Custom);
350     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
351     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
352     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
353     for (auto Op : FPOpToExpand)
354       setOperationAction(Op, MVT::f64, Expand);
355     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
356     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
357   }
358 
359   if (Subtarget.is64Bit()) {
360     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
361     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
362     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
363     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
364   }
365 
366   if (Subtarget.hasStdExtF()) {
367     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
368     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
369   }
370 
371   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
372   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
373   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
374   setOperationAction(ISD::JumpTable, XLenVT, Custom);
375 
376   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
377 
378   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
379   // Unfortunately this can't be determined just from the ISA naming string.
380   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
381                      Subtarget.is64Bit() ? Legal : Custom);
382 
383   setOperationAction(ISD::TRAP, MVT::Other, Legal);
384   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
385   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
386   if (Subtarget.is64Bit())
387     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
388 
389   if (Subtarget.hasStdExtA()) {
390     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
391     setMinCmpXchgSizeInBits(32);
392   } else {
393     setMaxAtomicSizeInBitsSupported(0);
394   }
395 
396   setBooleanContents(ZeroOrOneBooleanContent);
397 
398   if (Subtarget.hasStdExtV()) {
399     setBooleanVectorContents(ZeroOrOneBooleanContent);
400 
401     setOperationAction(ISD::VSCALE, XLenVT, Custom);
402 
403     // RVV intrinsics may have illegal operands.
404     // We also need to custom legalize vmv.x.s.
405     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
406     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
407     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
408     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
409     if (Subtarget.is64Bit()) {
410       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
411     } else {
412       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
413       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
414     }
415 
416     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
417 
418     static unsigned IntegerVPOps[] = {
419         ISD::VP_ADD,  ISD::VP_SUB,  ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV,
420         ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,   ISD::VP_XOR,
421         ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL};
422 
423     if (!Subtarget.is64Bit()) {
424       // We must custom-lower certain vXi64 operations on RV32 due to the vector
425       // element type being illegal.
426       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
427       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
428 
429       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
430       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
431       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
432       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
433       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
434       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
435       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
436       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
437     }
438 
439     for (MVT VT : BoolVecVTs) {
440       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
441 
442       // Mask VTs are custom-expanded into a series of standard nodes
443       setOperationAction(ISD::TRUNCATE, VT, Custom);
444       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
445       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
446       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
447 
448       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
449       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
450 
451       setOperationAction(ISD::SELECT, VT, Expand);
452       setOperationAction(ISD::SELECT_CC, VT, Expand);
453       setOperationAction(ISD::VSELECT, VT, Expand);
454 
455       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
456       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
457       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
458 
459       // RVV has native int->float & float->int conversions where the
460       // element type sizes are within one power-of-two of each other. Any
461       // wider distances between type sizes have to be lowered as sequences
462       // which progressively narrow the gap in stages.
463       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
464       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
465       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
466       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
467 
468       // Expand all extending loads to types larger than this, and truncating
469       // stores from types larger than this.
470       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
471         setTruncStoreAction(OtherVT, VT, Expand);
472         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
473         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
474         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
475       }
476     }
477 
478     for (MVT VT : IntVecVTs) {
479       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
480       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
481 
482       setOperationAction(ISD::SMIN, VT, Legal);
483       setOperationAction(ISD::SMAX, VT, Legal);
484       setOperationAction(ISD::UMIN, VT, Legal);
485       setOperationAction(ISD::UMAX, VT, Legal);
486 
487       setOperationAction(ISD::ROTL, VT, Expand);
488       setOperationAction(ISD::ROTR, VT, Expand);
489 
490       // Custom-lower extensions and truncations from/to mask types.
491       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
492       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
493       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
494 
495       // RVV has native int->float & float->int conversions where the
496       // element type sizes are within one power-of-two of each other. Any
497       // wider distances between type sizes have to be lowered as sequences
498       // which progressively narrow the gap in stages.
499       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
500       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
501       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
502       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
503 
504       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
505       // nodes which truncate by one power of two at a time.
506       setOperationAction(ISD::TRUNCATE, VT, Custom);
507 
508       // Custom-lower insert/extract operations to simplify patterns.
509       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
510       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
511 
512       // Custom-lower reduction operations to set up the corresponding custom
513       // nodes' operands.
514       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
515       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
516       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
517       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
518       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
519       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
520       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
521       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
522 
523       for (unsigned VPOpc : IntegerVPOps)
524         setOperationAction(VPOpc, VT, Custom);
525 
526       setOperationAction(ISD::MLOAD, VT, Custom);
527       setOperationAction(ISD::MSTORE, VT, Custom);
528       setOperationAction(ISD::MGATHER, VT, Custom);
529       setOperationAction(ISD::MSCATTER, VT, Custom);
530 
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::SELECT, VT, Expand);
536       setOperationAction(ISD::SELECT_CC, VT, Expand);
537 
538       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
539       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
540 
541       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
542         setTruncStoreAction(VT, OtherVT, Expand);
543         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
544         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
545         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
546       }
547     }
548 
549     // Expand various CCs to best match the RVV ISA, which natively supports UNE
550     // but no other unordered comparisons, and supports all ordered comparisons
551     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
552     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
553     // and we pattern-match those back to the "original", swapping operands once
554     // more. This way we catch both operations and both "vf" and "fv" forms with
555     // fewer patterns.
556     ISD::CondCode VFPCCToExpand[] = {
557         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
558         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
559         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
560     };
561 
562     // Sets common operation actions on RVV floating-point vector types.
563     const auto SetCommonVFPActions = [&](MVT VT) {
564       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
565       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
566       // sizes are within one power-of-two of each other. Therefore conversions
567       // between vXf16 and vXf64 must be lowered as sequences which convert via
568       // vXf32.
569       setOperationAction(ISD::FP_ROUND, VT, Custom);
570       setOperationAction(ISD::FP_EXTEND, VT, Custom);
571       // Custom-lower insert/extract operations to simplify patterns.
572       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
573       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
574       // Expand various condition codes (explained above).
575       for (auto CC : VFPCCToExpand)
576         setCondCodeAction(CC, VT, Expand);
577 
578       setOperationAction(ISD::FMINNUM, VT, Legal);
579       setOperationAction(ISD::FMAXNUM, VT, Legal);
580 
581       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
582       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
583       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
584       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
585       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
586 
587       setOperationAction(ISD::MLOAD, VT, Custom);
588       setOperationAction(ISD::MSTORE, VT, Custom);
589       setOperationAction(ISD::MGATHER, VT, Custom);
590       setOperationAction(ISD::MSCATTER, VT, Custom);
591 
592       setOperationAction(ISD::SELECT, VT, Expand);
593       setOperationAction(ISD::SELECT_CC, VT, Expand);
594 
595       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
596       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
597       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
598 
599       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
600     };
601 
602     // Sets common extload/truncstore actions on RVV floating-point vector
603     // types.
604     const auto SetCommonVFPExtLoadTruncStoreActions =
605         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
606           for (auto SmallVT : SmallerVTs) {
607             setTruncStoreAction(VT, SmallVT, Expand);
608             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
609           }
610         };
611 
612     if (Subtarget.hasStdExtZfh())
613       for (MVT VT : F16VecVTs)
614         SetCommonVFPActions(VT);
615 
616     for (MVT VT : F32VecVTs) {
617       if (Subtarget.hasStdExtF())
618         SetCommonVFPActions(VT);
619       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
620     }
621 
622     for (MVT VT : F64VecVTs) {
623       if (Subtarget.hasStdExtD())
624         SetCommonVFPActions(VT);
625       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
626       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
627     }
628 
629     if (Subtarget.useRVVForFixedLengthVectors()) {
630       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
631         if (!useRVVForFixedLengthVectorVT(VT))
632           continue;
633 
634         // By default everything must be expanded.
635         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
636           setOperationAction(Op, VT, Expand);
637         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
638           setTruncStoreAction(VT, OtherVT, Expand);
639           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
640           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
641           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
642         }
643 
644         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
645         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
646         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
647 
648         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
649         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
650 
651         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
652         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
653 
654         setOperationAction(ISD::LOAD, VT, Custom);
655         setOperationAction(ISD::STORE, VT, Custom);
656 
657         setOperationAction(ISD::SETCC, VT, Custom);
658 
659         setOperationAction(ISD::TRUNCATE, VT, Custom);
660 
661         setOperationAction(ISD::BITCAST, VT, Custom);
662 
663         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
664         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
665         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
666 
667         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
668         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
669         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
670         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
671 
672         // Operations below are different for between masks and other vectors.
673         if (VT.getVectorElementType() == MVT::i1) {
674           setOperationAction(ISD::AND, VT, Custom);
675           setOperationAction(ISD::OR, VT, Custom);
676           setOperationAction(ISD::XOR, VT, Custom);
677           continue;
678         }
679 
680         // Use SPLAT_VECTOR to prevent type legalization from destroying the
681         // splats when type legalizing i64 scalar on RV32.
682         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
683         // improvements first.
684         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
685           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
686           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
687         }
688 
689         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
690         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
691 
692         setOperationAction(ISD::MLOAD, VT, Custom);
693         setOperationAction(ISD::MSTORE, VT, Custom);
694         setOperationAction(ISD::MGATHER, VT, Custom);
695         setOperationAction(ISD::MSCATTER, VT, Custom);
696         setOperationAction(ISD::ADD, VT, Custom);
697         setOperationAction(ISD::MUL, VT, Custom);
698         setOperationAction(ISD::SUB, VT, Custom);
699         setOperationAction(ISD::AND, VT, Custom);
700         setOperationAction(ISD::OR, VT, Custom);
701         setOperationAction(ISD::XOR, VT, Custom);
702         setOperationAction(ISD::SDIV, VT, Custom);
703         setOperationAction(ISD::SREM, VT, Custom);
704         setOperationAction(ISD::UDIV, VT, Custom);
705         setOperationAction(ISD::UREM, VT, Custom);
706         setOperationAction(ISD::SHL, VT, Custom);
707         setOperationAction(ISD::SRA, VT, Custom);
708         setOperationAction(ISD::SRL, VT, Custom);
709 
710         setOperationAction(ISD::SMIN, VT, Custom);
711         setOperationAction(ISD::SMAX, VT, Custom);
712         setOperationAction(ISD::UMIN, VT, Custom);
713         setOperationAction(ISD::UMAX, VT, Custom);
714         setOperationAction(ISD::ABS,  VT, Custom);
715 
716         setOperationAction(ISD::MULHS, VT, Custom);
717         setOperationAction(ISD::MULHU, VT, Custom);
718 
719         setOperationAction(ISD::VSELECT, VT, Custom);
720         setOperationAction(ISD::SELECT, VT, Expand);
721         setOperationAction(ISD::SELECT_CC, VT, Expand);
722 
723         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
724         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
725         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
726 
727         // Custom-lower reduction operations to set up the corresponding custom
728         // nodes' operands.
729         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
730         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
731         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
732         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
733         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
734 
735         for (unsigned VPOpc : IntegerVPOps)
736           setOperationAction(VPOpc, VT, Custom);
737       }
738 
739       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
740         if (!useRVVForFixedLengthVectorVT(VT))
741           continue;
742 
743         // By default everything must be expanded.
744         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
745           setOperationAction(Op, VT, Expand);
746         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
747           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
748           setTruncStoreAction(VT, OtherVT, Expand);
749         }
750 
751         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
752         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
753         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
754 
755         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
756         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
757         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
758         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
759 
760         setOperationAction(ISD::LOAD, VT, Custom);
761         setOperationAction(ISD::STORE, VT, Custom);
762         setOperationAction(ISD::MLOAD, VT, Custom);
763         setOperationAction(ISD::MSTORE, VT, Custom);
764         setOperationAction(ISD::MGATHER, VT, Custom);
765         setOperationAction(ISD::MSCATTER, VT, Custom);
766         setOperationAction(ISD::FADD, VT, Custom);
767         setOperationAction(ISD::FSUB, VT, Custom);
768         setOperationAction(ISD::FMUL, VT, Custom);
769         setOperationAction(ISD::FDIV, VT, Custom);
770         setOperationAction(ISD::FNEG, VT, Custom);
771         setOperationAction(ISD::FABS, VT, Custom);
772         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
773         setOperationAction(ISD::FSQRT, VT, Custom);
774         setOperationAction(ISD::FMA, VT, Custom);
775         setOperationAction(ISD::FMINNUM, VT, Custom);
776         setOperationAction(ISD::FMAXNUM, VT, Custom);
777 
778         setOperationAction(ISD::FP_ROUND, VT, Custom);
779         setOperationAction(ISD::FP_EXTEND, VT, Custom);
780 
781         for (auto CC : VFPCCToExpand)
782           setCondCodeAction(CC, VT, Expand);
783 
784         setOperationAction(ISD::VSELECT, VT, Custom);
785         setOperationAction(ISD::SELECT, VT, Expand);
786         setOperationAction(ISD::SELECT_CC, VT, Expand);
787 
788         setOperationAction(ISD::BITCAST, VT, Custom);
789 
790         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
791         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
792         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
793         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
794       }
795 
796       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
797       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
798       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
799       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
800       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
801       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
802       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
803       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
804     }
805   }
806 
807   // Function alignments.
808   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
809   setMinFunctionAlignment(FunctionAlignment);
810   setPrefFunctionAlignment(FunctionAlignment);
811 
812   setMinimumJumpTableEntries(5);
813 
814   // Jumps are expensive, compared to logic
815   setJumpIsExpensive();
816 
817   // We can use any register for comparisons
818   setHasMultipleConditionRegisters();
819 
820   setTargetDAGCombine(ISD::AND);
821   setTargetDAGCombine(ISD::OR);
822   setTargetDAGCombine(ISD::XOR);
823   if (Subtarget.hasStdExtV()) {
824     setTargetDAGCombine(ISD::FCOPYSIGN);
825     setTargetDAGCombine(ISD::MGATHER);
826     setTargetDAGCombine(ISD::MSCATTER);
827     setTargetDAGCombine(ISD::SRA);
828     setTargetDAGCombine(ISD::SRL);
829     setTargetDAGCombine(ISD::SHL);
830   }
831 }
832 
833 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
834                                             LLVMContext &Context,
835                                             EVT VT) const {
836   if (!VT.isVector())
837     return getPointerTy(DL);
838   if (Subtarget.hasStdExtV() &&
839       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
840     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
841   return VT.changeVectorElementTypeToInteger();
842 }
843 
844 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
845   return Subtarget.getXLenVT();
846 }
847 
848 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
849                                              const CallInst &I,
850                                              MachineFunction &MF,
851                                              unsigned Intrinsic) const {
852   switch (Intrinsic) {
853   default:
854     return false;
855   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
856   case Intrinsic::riscv_masked_atomicrmw_add_i32:
857   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
858   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
859   case Intrinsic::riscv_masked_atomicrmw_max_i32:
860   case Intrinsic::riscv_masked_atomicrmw_min_i32:
861   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
862   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
863   case Intrinsic::riscv_masked_cmpxchg_i32:
864     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
865     Info.opc = ISD::INTRINSIC_W_CHAIN;
866     Info.memVT = MVT::getVT(PtrTy->getElementType());
867     Info.ptrVal = I.getArgOperand(0);
868     Info.offset = 0;
869     Info.align = Align(4);
870     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
871                  MachineMemOperand::MOVolatile;
872     return true;
873   }
874 }
875 
876 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
877                                                 const AddrMode &AM, Type *Ty,
878                                                 unsigned AS,
879                                                 Instruction *I) const {
880   // No global is ever allowed as a base.
881   if (AM.BaseGV)
882     return false;
883 
884   // Require a 12-bit signed offset.
885   if (!isInt<12>(AM.BaseOffs))
886     return false;
887 
888   switch (AM.Scale) {
889   case 0: // "r+i" or just "i", depending on HasBaseReg.
890     break;
891   case 1:
892     if (!AM.HasBaseReg) // allow "r+i".
893       break;
894     return false; // disallow "r+r" or "r+r+i".
895   default:
896     return false;
897   }
898 
899   return true;
900 }
901 
902 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
903   return isInt<12>(Imm);
904 }
905 
906 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
907   return isInt<12>(Imm);
908 }
909 
910 // On RV32, 64-bit integers are split into their high and low parts and held
911 // in two different registers, so the trunc is free since the low register can
912 // just be used.
913 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
914   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
915     return false;
916   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
917   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
918   return (SrcBits == 64 && DestBits == 32);
919 }
920 
921 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
922   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
923       !SrcVT.isInteger() || !DstVT.isInteger())
924     return false;
925   unsigned SrcBits = SrcVT.getSizeInBits();
926   unsigned DestBits = DstVT.getSizeInBits();
927   return (SrcBits == 64 && DestBits == 32);
928 }
929 
930 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
931   // Zexts are free if they can be combined with a load.
932   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
933     EVT MemVT = LD->getMemoryVT();
934     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
935          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
936         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
937          LD->getExtensionType() == ISD::ZEXTLOAD))
938       return true;
939   }
940 
941   return TargetLowering::isZExtFree(Val, VT2);
942 }
943 
944 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
945   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
946 }
947 
948 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
949   return Subtarget.hasStdExtZbb();
950 }
951 
952 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
953   return Subtarget.hasStdExtZbb();
954 }
955 
956 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
957                                        bool ForCodeSize) const {
958   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
959     return false;
960   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
961     return false;
962   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
963     return false;
964   if (Imm.isNegZero())
965     return false;
966   return Imm.isZero();
967 }
968 
969 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
970   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
971          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
972          (VT == MVT::f64 && Subtarget.hasStdExtD());
973 }
974 
975 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
976                                                       CallingConv::ID CC,
977                                                       EVT VT) const {
978   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
979   // end up using a GPR but that will be decided based on ABI.
980   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
981     return MVT::f32;
982 
983   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
984 }
985 
986 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
987                                                            CallingConv::ID CC,
988                                                            EVT VT) const {
989   // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
990   // end up using a GPR but that will be decided based on ABI.
991   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
992     return 1;
993 
994   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
995 }
996 
997 // Changes the condition code and swaps operands if necessary, so the SetCC
998 // operation matches one of the comparisons supported directly by branches
999 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1000 // with 1/-1.
1001 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1002                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1003   // Convert X > -1 to X >= 0.
1004   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1005     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1006     CC = ISD::SETGE;
1007     return;
1008   }
1009   // Convert X < 1 to 0 >= X.
1010   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1011     RHS = LHS;
1012     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1013     CC = ISD::SETGE;
1014     return;
1015   }
1016 
1017   switch (CC) {
1018   default:
1019     break;
1020   case ISD::SETGT:
1021   case ISD::SETLE:
1022   case ISD::SETUGT:
1023   case ISD::SETULE:
1024     CC = ISD::getSetCCSwappedOperands(CC);
1025     std::swap(LHS, RHS);
1026     break;
1027   }
1028 }
1029 
1030 // Return the RISC-V branch opcode that matches the given DAG integer
1031 // condition code. The CondCode must be one of those supported by the RISC-V
1032 // ISA (see translateSetCCForBranch).
1033 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
1034   switch (CC) {
1035   default:
1036     llvm_unreachable("Unsupported CondCode");
1037   case ISD::SETEQ:
1038     return RISCV::BEQ;
1039   case ISD::SETNE:
1040     return RISCV::BNE;
1041   case ISD::SETLT:
1042     return RISCV::BLT;
1043   case ISD::SETGE:
1044     return RISCV::BGE;
1045   case ISD::SETULT:
1046     return RISCV::BLTU;
1047   case ISD::SETUGE:
1048     return RISCV::BGEU;
1049   }
1050 }
1051 
1052 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1053   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1054   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1055   if (VT.getVectorElementType() == MVT::i1)
1056     KnownSize *= 8;
1057 
1058   switch (KnownSize) {
1059   default:
1060     llvm_unreachable("Invalid LMUL.");
1061   case 8:
1062     return RISCVII::VLMUL::LMUL_F8;
1063   case 16:
1064     return RISCVII::VLMUL::LMUL_F4;
1065   case 32:
1066     return RISCVII::VLMUL::LMUL_F2;
1067   case 64:
1068     return RISCVII::VLMUL::LMUL_1;
1069   case 128:
1070     return RISCVII::VLMUL::LMUL_2;
1071   case 256:
1072     return RISCVII::VLMUL::LMUL_4;
1073   case 512:
1074     return RISCVII::VLMUL::LMUL_8;
1075   }
1076 }
1077 
1078 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1079   switch (LMul) {
1080   default:
1081     llvm_unreachable("Invalid LMUL.");
1082   case RISCVII::VLMUL::LMUL_F8:
1083   case RISCVII::VLMUL::LMUL_F4:
1084   case RISCVII::VLMUL::LMUL_F2:
1085   case RISCVII::VLMUL::LMUL_1:
1086     return RISCV::VRRegClassID;
1087   case RISCVII::VLMUL::LMUL_2:
1088     return RISCV::VRM2RegClassID;
1089   case RISCVII::VLMUL::LMUL_4:
1090     return RISCV::VRM4RegClassID;
1091   case RISCVII::VLMUL::LMUL_8:
1092     return RISCV::VRM8RegClassID;
1093   }
1094 }
1095 
1096 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1097   RISCVII::VLMUL LMUL = getLMUL(VT);
1098   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1099       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1100       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1101       LMUL == RISCVII::VLMUL::LMUL_1) {
1102     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1103                   "Unexpected subreg numbering");
1104     return RISCV::sub_vrm1_0 + Index;
1105   }
1106   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1107     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1108                   "Unexpected subreg numbering");
1109     return RISCV::sub_vrm2_0 + Index;
1110   }
1111   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1112     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1113                   "Unexpected subreg numbering");
1114     return RISCV::sub_vrm4_0 + Index;
1115   }
1116   llvm_unreachable("Invalid vector type.");
1117 }
1118 
1119 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1120   if (VT.getVectorElementType() == MVT::i1)
1121     return RISCV::VRRegClassID;
1122   return getRegClassIDForLMUL(getLMUL(VT));
1123 }
1124 
1125 // Attempt to decompose a subvector insert/extract between VecVT and
1126 // SubVecVT via subregister indices. Returns the subregister index that
1127 // can perform the subvector insert/extract with the given element index, as
1128 // well as the index corresponding to any leftover subvectors that must be
1129 // further inserted/extracted within the register class for SubVecVT.
1130 std::pair<unsigned, unsigned>
1131 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1132     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1133     const RISCVRegisterInfo *TRI) {
1134   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1135                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1136                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1137                 "Register classes not ordered");
1138   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1139   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1140   // Try to compose a subregister index that takes us from the incoming
1141   // LMUL>1 register class down to the outgoing one. At each step we half
1142   // the LMUL:
1143   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1144   // Note that this is not guaranteed to find a subregister index, such as
1145   // when we are extracting from one VR type to another.
1146   unsigned SubRegIdx = RISCV::NoSubRegister;
1147   for (const unsigned RCID :
1148        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1149     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1150       VecVT = VecVT.getHalfNumVectorElementsVT();
1151       bool IsHi =
1152           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1153       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1154                                             getSubregIndexByMVT(VecVT, IsHi));
1155       if (IsHi)
1156         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1157     }
1158   return {SubRegIdx, InsertExtractIdx};
1159 }
1160 
1161 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1162 // stores for those types.
1163 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1164   return !Subtarget.useRVVForFixedLengthVectors() ||
1165          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1166 }
1167 
1168 static bool useRVVForFixedLengthVectorVT(MVT VT,
1169                                          const RISCVSubtarget &Subtarget) {
1170   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1171   if (!Subtarget.useRVVForFixedLengthVectors())
1172     return false;
1173 
1174   // We only support a set of vector types with a consistent maximum fixed size
1175   // across all supported vector element types to avoid legalization issues.
1176   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1177   // fixed-length vector type we support is 1024 bytes.
1178   if (VT.getFixedSizeInBits() > 1024 * 8)
1179     return false;
1180 
1181   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1182 
1183   // Don't use RVV for vectors we cannot scalarize if required.
1184   switch (VT.getVectorElementType().SimpleTy) {
1185   // i1 is supported but has different rules.
1186   default:
1187     return false;
1188   case MVT::i1:
1189     // Masks can only use a single register.
1190     if (VT.getVectorNumElements() > MinVLen)
1191       return false;
1192     MinVLen /= 8;
1193     break;
1194   case MVT::i8:
1195   case MVT::i16:
1196   case MVT::i32:
1197   case MVT::i64:
1198     break;
1199   case MVT::f16:
1200     if (!Subtarget.hasStdExtZfh())
1201       return false;
1202     break;
1203   case MVT::f32:
1204     if (!Subtarget.hasStdExtF())
1205       return false;
1206     break;
1207   case MVT::f64:
1208     if (!Subtarget.hasStdExtD())
1209       return false;
1210     break;
1211   }
1212 
1213   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1214   // Don't use RVV for types that don't fit.
1215   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1216     return false;
1217 
1218   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1219   // the base fixed length RVV support in place.
1220   if (!VT.isPow2VectorType())
1221     return false;
1222 
1223   return true;
1224 }
1225 
1226 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1227   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1228 }
1229 
1230 // Return the largest legal scalable vector type that matches VT's element type.
1231 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1232                                             const RISCVSubtarget &Subtarget) {
1233   // This may be called before legal types are setup.
1234   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1235           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1236          "Expected legal fixed length vector!");
1237 
1238   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1239 
1240   MVT EltVT = VT.getVectorElementType();
1241   switch (EltVT.SimpleTy) {
1242   default:
1243     llvm_unreachable("unexpected element type for RVV container");
1244   case MVT::i1:
1245   case MVT::i8:
1246   case MVT::i16:
1247   case MVT::i32:
1248   case MVT::i64:
1249   case MVT::f16:
1250   case MVT::f32:
1251   case MVT::f64: {
1252     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1253     // narrower types, but we can't have a fractional LMUL with demoninator less
1254     // than 64/SEW.
1255     unsigned NumElts =
1256         divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock);
1257     return MVT::getScalableVectorVT(EltVT, NumElts);
1258   }
1259   }
1260 }
1261 
1262 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1263                                             const RISCVSubtarget &Subtarget) {
1264   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1265                                           Subtarget);
1266 }
1267 
1268 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1269   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1270 }
1271 
1272 // Grow V to consume an entire RVV register.
1273 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1274                                        const RISCVSubtarget &Subtarget) {
1275   assert(VT.isScalableVector() &&
1276          "Expected to convert into a scalable vector!");
1277   assert(V.getValueType().isFixedLengthVector() &&
1278          "Expected a fixed length vector operand!");
1279   SDLoc DL(V);
1280   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1281   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1282 }
1283 
1284 // Shrink V so it's just big enough to maintain a VT's worth of data.
1285 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1286                                          const RISCVSubtarget &Subtarget) {
1287   assert(VT.isFixedLengthVector() &&
1288          "Expected to convert into a fixed length vector!");
1289   assert(V.getValueType().isScalableVector() &&
1290          "Expected a scalable vector operand!");
1291   SDLoc DL(V);
1292   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1293   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1294 }
1295 
1296 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1297 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1298 // the vector type that it is contained in.
1299 static std::pair<SDValue, SDValue>
1300 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1301                 const RISCVSubtarget &Subtarget) {
1302   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1303   MVT XLenVT = Subtarget.getXLenVT();
1304   SDValue VL = VecVT.isFixedLengthVector()
1305                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1306                    : DAG.getRegister(RISCV::X0, XLenVT);
1307   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1308   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1309   return {Mask, VL};
1310 }
1311 
1312 // As above but assuming the given type is a scalable vector type.
1313 static std::pair<SDValue, SDValue>
1314 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1315                         const RISCVSubtarget &Subtarget) {
1316   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1317   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1318 }
1319 
1320 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1321 // of either is (currently) supported. This can get us into an infinite loop
1322 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1323 // as a ..., etc.
1324 // Until either (or both) of these can reliably lower any node, reporting that
1325 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1326 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1327 // which is not desirable.
1328 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1329     EVT VT, unsigned DefinedValues) const {
1330   return false;
1331 }
1332 
1333 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1334   // Only splats are currently supported.
1335   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1336     return true;
1337 
1338   return false;
1339 }
1340 
1341 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1342                                  const RISCVSubtarget &Subtarget) {
1343   MVT VT = Op.getSimpleValueType();
1344   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1345 
1346   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1347 
1348   SDLoc DL(Op);
1349   SDValue Mask, VL;
1350   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1351 
1352   unsigned Opc =
1353       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1354   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1355   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1356 }
1357 
1358 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1359                                  const RISCVSubtarget &Subtarget) {
1360   MVT VT = Op.getSimpleValueType();
1361   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1362 
1363   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1364 
1365   SDLoc DL(Op);
1366   SDValue Mask, VL;
1367   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1368 
1369   MVT XLenVT = Subtarget.getXLenVT();
1370   unsigned NumElts = Op.getNumOperands();
1371 
1372   if (VT.getVectorElementType() == MVT::i1) {
1373     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1374       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1375       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1376     }
1377 
1378     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1379       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1380       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1381     }
1382 
1383     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1384     // scalar integer chunks whose bit-width depends on the number of mask
1385     // bits and XLEN.
1386     // First, determine the most appropriate scalar integer type to use. This
1387     // is at most XLenVT, but may be shrunk to a smaller vector element type
1388     // according to the size of the final vector - use i8 chunks rather than
1389     // XLenVT if we're producing a v8i1. This results in more consistent
1390     // codegen across RV32 and RV64.
1391     unsigned NumViaIntegerBits =
1392         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1393     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1394       // If we have to use more than one INSERT_VECTOR_ELT then this
1395       // optimization is likely to increase code size; avoid peforming it in
1396       // such a case. We can use a load from a constant pool in this case.
1397       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1398         return SDValue();
1399       // Now we can create our integer vector type. Note that it may be larger
1400       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1401       MVT IntegerViaVecVT =
1402           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1403                            divideCeil(NumElts, NumViaIntegerBits));
1404 
1405       uint64_t Bits = 0;
1406       unsigned BitPos = 0, IntegerEltIdx = 0;
1407       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1408 
1409       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1410         // Once we accumulate enough bits to fill our scalar type, insert into
1411         // our vector and clear our accumulated data.
1412         if (I != 0 && I % NumViaIntegerBits == 0) {
1413           if (NumViaIntegerBits <= 32)
1414             Bits = SignExtend64(Bits, 32);
1415           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1416           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1417                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1418           Bits = 0;
1419           BitPos = 0;
1420           IntegerEltIdx++;
1421         }
1422         SDValue V = Op.getOperand(I);
1423         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1424         Bits |= ((uint64_t)BitValue << BitPos);
1425       }
1426 
1427       // Insert the (remaining) scalar value into position in our integer
1428       // vector type.
1429       if (NumViaIntegerBits <= 32)
1430         Bits = SignExtend64(Bits, 32);
1431       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1432       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1433                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1434 
1435       if (NumElts < NumViaIntegerBits) {
1436         // If we're producing a smaller vector than our minimum legal integer
1437         // type, bitcast to the equivalent (known-legal) mask type, and extract
1438         // our final mask.
1439         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1440         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1441         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1442                           DAG.getConstant(0, DL, XLenVT));
1443       } else {
1444         // Else we must have produced an integer type with the same size as the
1445         // mask type; bitcast for the final result.
1446         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1447         Vec = DAG.getBitcast(VT, Vec);
1448       }
1449 
1450       return Vec;
1451     }
1452 
1453     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1454     // vector type, we have a legal equivalently-sized i8 type, so we can use
1455     // that.
1456     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1457     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1458 
1459     SDValue WideVec;
1460     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1461       // For a splat, perform a scalar truncate before creating the wider
1462       // vector.
1463       assert(Splat.getValueType() == XLenVT &&
1464              "Unexpected type for i1 splat value");
1465       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1466                           DAG.getConstant(1, DL, XLenVT));
1467       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1468     } else {
1469       SmallVector<SDValue, 8> Ops(Op->op_values());
1470       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1471       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1472       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1473     }
1474 
1475     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1476   }
1477 
1478   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1479     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1480                                         : RISCVISD::VMV_V_X_VL;
1481     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1482     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1483   }
1484 
1485   // Try and match an index sequence, which we can lower directly to the vid
1486   // instruction. An all-undef vector is matched by getSplatValue, above.
1487   if (VT.isInteger()) {
1488     bool IsVID = true;
1489     for (unsigned I = 0; I < NumElts && IsVID; I++)
1490       IsVID &= Op.getOperand(I).isUndef() ||
1491                (isa<ConstantSDNode>(Op.getOperand(I)) &&
1492                 Op.getConstantOperandVal(I) == I);
1493 
1494     if (IsVID) {
1495       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1496       return convertFromScalableVector(VT, VID, DAG, Subtarget);
1497     }
1498   }
1499 
1500   // Attempt to detect "hidden" splats, which only reveal themselves as splats
1501   // when re-interpreted as a vector with a larger element type. For example,
1502   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1503   // could be instead splat as
1504   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
1505   // TODO: This optimization could also work on non-constant splats, but it
1506   // would require bit-manipulation instructions to construct the splat value.
1507   SmallVector<SDValue> Sequence;
1508   unsigned EltBitSize = VT.getScalarSizeInBits();
1509   const auto *BV = cast<BuildVectorSDNode>(Op);
1510   if (VT.isInteger() && EltBitSize < 64 &&
1511       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1512       BV->getRepeatedSequence(Sequence) &&
1513       (Sequence.size() * EltBitSize) <= 64) {
1514     unsigned SeqLen = Sequence.size();
1515     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1516     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1517     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1518             ViaIntVT == MVT::i64) &&
1519            "Unexpected sequence type");
1520 
1521     unsigned EltIdx = 0;
1522     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1523     uint64_t SplatValue = 0;
1524     // Construct the amalgamated value which can be splatted as this larger
1525     // vector type.
1526     for (const auto &SeqV : Sequence) {
1527       if (!SeqV.isUndef())
1528         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1529                        << (EltIdx * EltBitSize));
1530       EltIdx++;
1531     }
1532 
1533     // On RV64, sign-extend from 32 to 64 bits where possible in order to
1534     // achieve better constant materializion.
1535     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1536       SplatValue = SignExtend64(SplatValue, 32);
1537 
1538     // Since we can't introduce illegal i64 types at this stage, we can only
1539     // perform an i64 splat on RV32 if it is its own sign-extended value. That
1540     // way we can use RVV instructions to splat.
1541     assert((ViaIntVT.bitsLE(XLenVT) ||
1542             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1543            "Unexpected bitcast sequence");
1544     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1545       SDValue ViaVL =
1546           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1547       MVT ViaContainerVT =
1548           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1549       SDValue Splat =
1550           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1551                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1552       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1553       return DAG.getBitcast(VT, Splat);
1554     }
1555   }
1556 
1557   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1558   // which constitute a large proportion of the elements. In such cases we can
1559   // splat a vector with the dominant element and make up the shortfall with
1560   // INSERT_VECTOR_ELTs.
1561   // Note that this includes vectors of 2 elements by association. The
1562   // upper-most element is the "dominant" one, allowing us to use a splat to
1563   // "insert" the upper element, and an insert of the lower element at position
1564   // 0, which improves codegen.
1565   SDValue DominantValue;
1566   unsigned MostCommonCount = 0;
1567   DenseMap<SDValue, unsigned> ValueCounts;
1568   unsigned NumUndefElts =
1569       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1570 
1571   for (SDValue V : Op->op_values()) {
1572     if (V.isUndef())
1573       continue;
1574 
1575     ValueCounts.insert(std::make_pair(V, 0));
1576     unsigned &Count = ValueCounts[V];
1577 
1578     // Is this value dominant? In case of a tie, prefer the highest element as
1579     // it's cheaper to insert near the beginning of a vector than it is at the
1580     // end.
1581     if (++Count >= MostCommonCount) {
1582       DominantValue = V;
1583       MostCommonCount = Count;
1584     }
1585   }
1586 
1587   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1588   unsigned NumDefElts = NumElts - NumUndefElts;
1589   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1590 
1591   // Don't perform this optimization when optimizing for size, since
1592   // materializing elements and inserting them tends to cause code bloat.
1593   if (!DAG.shouldOptForSize() &&
1594       ((MostCommonCount > DominantValueCountThreshold) ||
1595        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1596     // Start by splatting the most common element.
1597     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1598 
1599     DenseSet<SDValue> Processed{DominantValue};
1600     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1601     for (const auto &OpIdx : enumerate(Op->ops())) {
1602       const SDValue &V = OpIdx.value();
1603       if (V.isUndef() || !Processed.insert(V).second)
1604         continue;
1605       if (ValueCounts[V] == 1) {
1606         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1607                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
1608       } else {
1609         // Blend in all instances of this value using a VSELECT, using a
1610         // mask where each bit signals whether that element is the one
1611         // we're after.
1612         SmallVector<SDValue> Ops;
1613         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1614           return DAG.getConstant(V == V1, DL, XLenVT);
1615         });
1616         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1617                           DAG.getBuildVector(SelMaskTy, DL, Ops),
1618                           DAG.getSplatBuildVector(VT, DL, V), Vec);
1619       }
1620     }
1621 
1622     return Vec;
1623   }
1624 
1625   return SDValue();
1626 }
1627 
1628 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1629                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1630   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1631     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1632     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1633     // If Hi constant is all the same sign bit as Lo, lower this as a custom
1634     // node in order to try and match RVV vector/scalar instructions.
1635     if ((LoC >> 31) == HiC)
1636       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1637   }
1638 
1639   // Fall back to a stack store and stride x0 vector load.
1640   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
1641 }
1642 
1643 // Called by type legalization to handle splat of i64 on RV32.
1644 // FIXME: We can optimize this when the type has sign or zero bits in one
1645 // of the halves.
1646 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1647                                    SDValue VL, SelectionDAG &DAG) {
1648   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1649   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1650                            DAG.getConstant(0, DL, MVT::i32));
1651   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1652                            DAG.getConstant(1, DL, MVT::i32));
1653   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1654 }
1655 
1656 // This function lowers a splat of a scalar operand Splat with the vector
1657 // length VL. It ensures the final sequence is type legal, which is useful when
1658 // lowering a splat after type legalization.
1659 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1660                                 SelectionDAG &DAG,
1661                                 const RISCVSubtarget &Subtarget) {
1662   if (VT.isFloatingPoint())
1663     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1664 
1665   MVT XLenVT = Subtarget.getXLenVT();
1666 
1667   // Simplest case is that the operand needs to be promoted to XLenVT.
1668   if (Scalar.getValueType().bitsLE(XLenVT)) {
1669     // If the operand is a constant, sign extend to increase our chances
1670     // of being able to use a .vi instruction. ANY_EXTEND would become a
1671     // a zero extend and the simm5 check in isel would fail.
1672     // FIXME: Should we ignore the upper bits in isel instead?
1673     unsigned ExtOpc =
1674         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1675     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1676     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1677   }
1678 
1679   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1680          "Unexpected scalar for splat lowering!");
1681 
1682   // Otherwise use the more complicated splatting algorithm.
1683   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1684 }
1685 
1686 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1687                                    const RISCVSubtarget &Subtarget) {
1688   SDValue V1 = Op.getOperand(0);
1689   SDValue V2 = Op.getOperand(1);
1690   SDLoc DL(Op);
1691   MVT XLenVT = Subtarget.getXLenVT();
1692   MVT VT = Op.getSimpleValueType();
1693   unsigned NumElts = VT.getVectorNumElements();
1694   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1695 
1696   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1697 
1698   SDValue TrueMask, VL;
1699   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1700 
1701   if (SVN->isSplat()) {
1702     const int Lane = SVN->getSplatIndex();
1703     if (Lane >= 0) {
1704       MVT SVT = VT.getVectorElementType();
1705 
1706       // Turn splatted vector load into a strided load with an X0 stride.
1707       SDValue V = V1;
1708       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1709       // with undef.
1710       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1711       int Offset = Lane;
1712       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1713         int OpElements =
1714             V.getOperand(0).getSimpleValueType().getVectorNumElements();
1715         V = V.getOperand(Offset / OpElements);
1716         Offset %= OpElements;
1717       }
1718 
1719       // We need to ensure the load isn't atomic or volatile.
1720       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1721         auto *Ld = cast<LoadSDNode>(V);
1722         Offset *= SVT.getStoreSize();
1723         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1724                                                    TypeSize::Fixed(Offset), DL);
1725 
1726         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1727         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1728           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1729           SDValue IntID =
1730               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1731           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1732                            DAG.getRegister(RISCV::X0, XLenVT), VL};
1733           SDValue NewLoad = DAG.getMemIntrinsicNode(
1734               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1735               DAG.getMachineFunction().getMachineMemOperand(
1736                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1737           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1738           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1739         }
1740 
1741         // Otherwise use a scalar load and splat. This will give the best
1742         // opportunity to fold a splat into the operation. ISel can turn it into
1743         // the x0 strided load if we aren't able to fold away the select.
1744         if (SVT.isFloatingPoint())
1745           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1746                           Ld->getPointerInfo().getWithOffset(Offset),
1747                           Ld->getOriginalAlign(),
1748                           Ld->getMemOperand()->getFlags());
1749         else
1750           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1751                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
1752                              Ld->getOriginalAlign(),
1753                              Ld->getMemOperand()->getFlags());
1754         DAG.makeEquivalentMemoryOrdering(Ld, V);
1755 
1756         unsigned Opc =
1757             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1758         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1759         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1760       }
1761 
1762       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1763       assert(Lane < (int)NumElts && "Unexpected lane!");
1764       SDValue Gather =
1765           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1766                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1767       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1768     }
1769   }
1770 
1771   // Detect shuffles which can be re-expressed as vector selects; these are
1772   // shuffles in which each element in the destination is taken from an element
1773   // at the corresponding index in either source vectors.
1774   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1775     int MaskIndex = MaskIdx.value();
1776     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1777   });
1778 
1779   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1780 
1781   SmallVector<SDValue> MaskVals;
1782   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1783   // merged with a second vrgather.
1784   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1785 
1786   // By default we preserve the original operand order, and use a mask to
1787   // select LHS as true and RHS as false. However, since RVV vector selects may
1788   // feature splats but only on the LHS, we may choose to invert our mask and
1789   // instead select between RHS and LHS.
1790   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1791   bool InvertMask = IsSelect == SwapOps;
1792 
1793   // Now construct the mask that will be used by the vselect or blended
1794   // vrgather operation. For vrgathers, construct the appropriate indices into
1795   // each vector.
1796   for (int MaskIndex : SVN->getMask()) {
1797     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1798     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1799     if (!IsSelect) {
1800       bool IsLHS = MaskIndex < (int)NumElts;
1801       // For "undef" elements of -1, shuffle in element 0 instead.
1802       GatherIndicesLHS.push_back(
1803           DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT));
1804       // TODO: If we're masking out unused elements anyway, it might produce
1805       // better code if we use the most-common element index instead of 0.
1806       GatherIndicesRHS.push_back(
1807           DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT));
1808     }
1809   }
1810 
1811   if (SwapOps) {
1812     std::swap(V1, V2);
1813     std::swap(GatherIndicesLHS, GatherIndicesRHS);
1814   }
1815 
1816   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1817   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1818   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1819 
1820   if (IsSelect)
1821     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
1822 
1823   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
1824     // On such a large vector we're unable to use i8 as the index type.
1825     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
1826     // may involve vector splitting if we're already at LMUL=8, or our
1827     // user-supplied maximum fixed-length LMUL.
1828     return SDValue();
1829   }
1830 
1831   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
1832   MVT IndexVT = VT.changeTypeToInteger();
1833   // Since we can't introduce illegal index types at this stage, use i16 and
1834   // vrgatherei16 if the corresponding index type for plain vrgather is greater
1835   // than XLenVT.
1836   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
1837     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
1838     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
1839   }
1840 
1841   MVT IndexContainerVT =
1842       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
1843 
1844   SDValue Gather;
1845   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
1846   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
1847   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
1848     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
1849   } else {
1850     SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
1851     LHSIndices =
1852         convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
1853 
1854     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1855     Gather =
1856         DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL);
1857   }
1858 
1859   // If a second vector operand is used by this shuffle, blend it in with an
1860   // additional vrgather.
1861   if (!V2.isUndef()) {
1862     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
1863     SelectMask =
1864         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
1865 
1866     SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
1867     RHSIndices =
1868         convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
1869 
1870     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
1871     V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL);
1872     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
1873                          Gather, VL);
1874   }
1875 
1876   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1877 }
1878 
1879 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1880                                      SDLoc DL, SelectionDAG &DAG,
1881                                      const RISCVSubtarget &Subtarget) {
1882   if (VT.isScalableVector())
1883     return DAG.getFPExtendOrRound(Op, DL, VT);
1884   assert(VT.isFixedLengthVector() &&
1885          "Unexpected value type for RVV FP extend/round lowering");
1886   SDValue Mask, VL;
1887   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1888   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1889                         ? RISCVISD::FP_EXTEND_VL
1890                         : RISCVISD::FP_ROUND_VL;
1891   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1892 }
1893 
1894 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1895                                             SelectionDAG &DAG) const {
1896   switch (Op.getOpcode()) {
1897   default:
1898     report_fatal_error("unimplemented operand");
1899   case ISD::GlobalAddress:
1900     return lowerGlobalAddress(Op, DAG);
1901   case ISD::BlockAddress:
1902     return lowerBlockAddress(Op, DAG);
1903   case ISD::ConstantPool:
1904     return lowerConstantPool(Op, DAG);
1905   case ISD::JumpTable:
1906     return lowerJumpTable(Op, DAG);
1907   case ISD::GlobalTLSAddress:
1908     return lowerGlobalTLSAddress(Op, DAG);
1909   case ISD::SELECT:
1910     return lowerSELECT(Op, DAG);
1911   case ISD::BRCOND:
1912     return lowerBRCOND(Op, DAG);
1913   case ISD::VASTART:
1914     return lowerVASTART(Op, DAG);
1915   case ISD::FRAMEADDR:
1916     return lowerFRAMEADDR(Op, DAG);
1917   case ISD::RETURNADDR:
1918     return lowerRETURNADDR(Op, DAG);
1919   case ISD::SHL_PARTS:
1920     return lowerShiftLeftParts(Op, DAG);
1921   case ISD::SRA_PARTS:
1922     return lowerShiftRightParts(Op, DAG, true);
1923   case ISD::SRL_PARTS:
1924     return lowerShiftRightParts(Op, DAG, false);
1925   case ISD::BITCAST: {
1926     SDLoc DL(Op);
1927     EVT VT = Op.getValueType();
1928     SDValue Op0 = Op.getOperand(0);
1929     EVT Op0VT = Op0.getValueType();
1930     MVT XLenVT = Subtarget.getXLenVT();
1931     if (VT.isFixedLengthVector()) {
1932       // We can handle fixed length vector bitcasts with a simple replacement
1933       // in isel.
1934       if (Op0VT.isFixedLengthVector())
1935         return Op;
1936       // When bitcasting from scalar to fixed-length vector, insert the scalar
1937       // into a one-element vector of the result type, and perform a vector
1938       // bitcast.
1939       if (!Op0VT.isVector()) {
1940         auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
1941         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
1942                                               DAG.getUNDEF(BVT), Op0,
1943                                               DAG.getConstant(0, DL, XLenVT)));
1944       }
1945       return SDValue();
1946     }
1947     // Custom-legalize bitcasts from fixed-length vector types to scalar types
1948     // thus: bitcast the vector to a one-element vector type whose element type
1949     // is the same as the result type, and extract the first element.
1950     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
1951       LLVMContext &Context = *DAG.getContext();
1952       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
1953       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
1954                          DAG.getConstant(0, DL, XLenVT));
1955     }
1956     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
1957       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
1958       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1959       return FPConv;
1960     }
1961     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
1962         Subtarget.hasStdExtF()) {
1963       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1964       SDValue FPConv =
1965           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1966       return FPConv;
1967     }
1968     return SDValue();
1969   }
1970   case ISD::INTRINSIC_WO_CHAIN:
1971     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1972   case ISD::INTRINSIC_W_CHAIN:
1973     return LowerINTRINSIC_W_CHAIN(Op, DAG);
1974   case ISD::BSWAP:
1975   case ISD::BITREVERSE: {
1976     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1977     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1978     MVT VT = Op.getSimpleValueType();
1979     SDLoc DL(Op);
1980     // Start with the maximum immediate value which is the bitwidth - 1.
1981     unsigned Imm = VT.getSizeInBits() - 1;
1982     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
1983     if (Op.getOpcode() == ISD::BSWAP)
1984       Imm &= ~0x7U;
1985     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
1986                        DAG.getConstant(Imm, DL, VT));
1987   }
1988   case ISD::FSHL:
1989   case ISD::FSHR: {
1990     MVT VT = Op.getSimpleValueType();
1991     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
1992     SDLoc DL(Op);
1993     if (Op.getOperand(2).getOpcode() == ISD::Constant)
1994       return Op;
1995     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
1996     // use log(XLen) bits. Mask the shift amount accordingly.
1997     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
1998     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
1999                                 DAG.getConstant(ShAmtWidth, DL, VT));
2000     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2001     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2002   }
2003   case ISD::TRUNCATE: {
2004     SDLoc DL(Op);
2005     MVT VT = Op.getSimpleValueType();
2006     // Only custom-lower vector truncates
2007     if (!VT.isVector())
2008       return Op;
2009 
2010     // Truncates to mask types are handled differently
2011     if (VT.getVectorElementType() == MVT::i1)
2012       return lowerVectorMaskTrunc(Op, DAG);
2013 
2014     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2015     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2016     // truncate by one power of two at a time.
2017     MVT DstEltVT = VT.getVectorElementType();
2018 
2019     SDValue Src = Op.getOperand(0);
2020     MVT SrcVT = Src.getSimpleValueType();
2021     MVT SrcEltVT = SrcVT.getVectorElementType();
2022 
2023     assert(DstEltVT.bitsLT(SrcEltVT) &&
2024            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2025            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2026            "Unexpected vector truncate lowering");
2027 
2028     MVT ContainerVT = SrcVT;
2029     if (SrcVT.isFixedLengthVector()) {
2030       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2031       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2032     }
2033 
2034     SDValue Result = Src;
2035     SDValue Mask, VL;
2036     std::tie(Mask, VL) =
2037         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2038     LLVMContext &Context = *DAG.getContext();
2039     const ElementCount Count = ContainerVT.getVectorElementCount();
2040     do {
2041       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2042       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2043       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2044                            Mask, VL);
2045     } while (SrcEltVT != DstEltVT);
2046 
2047     if (SrcVT.isFixedLengthVector())
2048       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2049 
2050     return Result;
2051   }
2052   case ISD::ANY_EXTEND:
2053   case ISD::ZERO_EXTEND:
2054     if (Op.getOperand(0).getValueType().isVector() &&
2055         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2056       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2057     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2058   case ISD::SIGN_EXTEND:
2059     if (Op.getOperand(0).getValueType().isVector() &&
2060         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2061       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2062     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2063   case ISD::SPLAT_VECTOR_PARTS:
2064     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2065   case ISD::INSERT_VECTOR_ELT:
2066     return lowerINSERT_VECTOR_ELT(Op, DAG);
2067   case ISD::EXTRACT_VECTOR_ELT:
2068     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2069   case ISD::VSCALE: {
2070     MVT VT = Op.getSimpleValueType();
2071     SDLoc DL(Op);
2072     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2073     // We define our scalable vector types for lmul=1 to use a 64 bit known
2074     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2075     // vscale as VLENB / 8.
2076     assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2077     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2078                                  DAG.getConstant(3, DL, VT));
2079     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2080   }
2081   case ISD::FP_EXTEND: {
2082     // RVV can only do fp_extend to types double the size as the source. We
2083     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2084     // via f32.
2085     SDLoc DL(Op);
2086     MVT VT = Op.getSimpleValueType();
2087     SDValue Src = Op.getOperand(0);
2088     MVT SrcVT = Src.getSimpleValueType();
2089 
2090     // Prepare any fixed-length vector operands.
2091     MVT ContainerVT = VT;
2092     if (SrcVT.isFixedLengthVector()) {
2093       ContainerVT = getContainerForFixedLengthVector(VT);
2094       MVT SrcContainerVT =
2095           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2096       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2097     }
2098 
2099     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2100         SrcVT.getVectorElementType() != MVT::f16) {
2101       // For scalable vectors, we only need to close the gap between
2102       // vXf16->vXf64.
2103       if (!VT.isFixedLengthVector())
2104         return Op;
2105       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2106       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2107       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2108     }
2109 
2110     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2111     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2112     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2113         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2114 
2115     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2116                                            DL, DAG, Subtarget);
2117     if (VT.isFixedLengthVector())
2118       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2119     return Extend;
2120   }
2121   case ISD::FP_ROUND: {
2122     // RVV can only do fp_round to types half the size as the source. We
2123     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2124     // conversion instruction.
2125     SDLoc DL(Op);
2126     MVT VT = Op.getSimpleValueType();
2127     SDValue Src = Op.getOperand(0);
2128     MVT SrcVT = Src.getSimpleValueType();
2129 
2130     // Prepare any fixed-length vector operands.
2131     MVT ContainerVT = VT;
2132     if (VT.isFixedLengthVector()) {
2133       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2134       ContainerVT =
2135           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2136       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2137     }
2138 
2139     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2140         SrcVT.getVectorElementType() != MVT::f64) {
2141       // For scalable vectors, we only need to close the gap between
2142       // vXf64<->vXf16.
2143       if (!VT.isFixedLengthVector())
2144         return Op;
2145       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2146       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2147       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2148     }
2149 
2150     SDValue Mask, VL;
2151     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2152 
2153     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2154     SDValue IntermediateRound =
2155         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2156     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2157                                           DL, DAG, Subtarget);
2158 
2159     if (VT.isFixedLengthVector())
2160       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2161     return Round;
2162   }
2163   case ISD::FP_TO_SINT:
2164   case ISD::FP_TO_UINT:
2165   case ISD::SINT_TO_FP:
2166   case ISD::UINT_TO_FP: {
2167     // RVV can only do fp<->int conversions to types half/double the size as
2168     // the source. We custom-lower any conversions that do two hops into
2169     // sequences.
2170     MVT VT = Op.getSimpleValueType();
2171     if (!VT.isVector())
2172       return Op;
2173     SDLoc DL(Op);
2174     SDValue Src = Op.getOperand(0);
2175     MVT EltVT = VT.getVectorElementType();
2176     MVT SrcVT = Src.getSimpleValueType();
2177     MVT SrcEltVT = SrcVT.getVectorElementType();
2178     unsigned EltSize = EltVT.getSizeInBits();
2179     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2180     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2181            "Unexpected vector element types");
2182 
2183     bool IsInt2FP = SrcEltVT.isInteger();
2184     // Widening conversions
2185     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2186       if (IsInt2FP) {
2187         // Do a regular integer sign/zero extension then convert to float.
2188         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2189                                       VT.getVectorElementCount());
2190         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2191                                  ? ISD::ZERO_EXTEND
2192                                  : ISD::SIGN_EXTEND;
2193         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2194         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2195       }
2196       // FP2Int
2197       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2198       // Do one doubling fp_extend then complete the operation by converting
2199       // to int.
2200       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2201       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2202       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2203     }
2204 
2205     // Narrowing conversions
2206     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2207       if (IsInt2FP) {
2208         // One narrowing int_to_fp, then an fp_round.
2209         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2210         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2211         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2212         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2213       }
2214       // FP2Int
2215       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2216       // representable by the integer, the result is poison.
2217       MVT IVecVT =
2218           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2219                            VT.getVectorElementCount());
2220       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2221       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2222     }
2223 
2224     // Scalable vectors can exit here. Patterns will handle equally-sized
2225     // conversions halving/doubling ones.
2226     if (!VT.isFixedLengthVector())
2227       return Op;
2228 
2229     // For fixed-length vectors we lower to a custom "VL" node.
2230     unsigned RVVOpc = 0;
2231     switch (Op.getOpcode()) {
2232     default:
2233       llvm_unreachable("Impossible opcode");
2234     case ISD::FP_TO_SINT:
2235       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2236       break;
2237     case ISD::FP_TO_UINT:
2238       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2239       break;
2240     case ISD::SINT_TO_FP:
2241       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2242       break;
2243     case ISD::UINT_TO_FP:
2244       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2245       break;
2246     }
2247 
2248     MVT ContainerVT, SrcContainerVT;
2249     // Derive the reference container type from the larger vector type.
2250     if (SrcEltSize > EltSize) {
2251       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2252       ContainerVT =
2253           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2254     } else {
2255       ContainerVT = getContainerForFixedLengthVector(VT);
2256       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2257     }
2258 
2259     SDValue Mask, VL;
2260     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2261 
2262     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2263     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2264     return convertFromScalableVector(VT, Src, DAG, Subtarget);
2265   }
2266   case ISD::VECREDUCE_ADD:
2267   case ISD::VECREDUCE_UMAX:
2268   case ISD::VECREDUCE_SMAX:
2269   case ISD::VECREDUCE_UMIN:
2270   case ISD::VECREDUCE_SMIN:
2271     return lowerVECREDUCE(Op, DAG);
2272   case ISD::VECREDUCE_AND:
2273   case ISD::VECREDUCE_OR:
2274   case ISD::VECREDUCE_XOR:
2275     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2276       return lowerVectorMaskVECREDUCE(Op, DAG);
2277     return lowerVECREDUCE(Op, DAG);
2278   case ISD::VECREDUCE_FADD:
2279   case ISD::VECREDUCE_SEQ_FADD:
2280   case ISD::VECREDUCE_FMIN:
2281   case ISD::VECREDUCE_FMAX:
2282     return lowerFPVECREDUCE(Op, DAG);
2283   case ISD::INSERT_SUBVECTOR:
2284     return lowerINSERT_SUBVECTOR(Op, DAG);
2285   case ISD::EXTRACT_SUBVECTOR:
2286     return lowerEXTRACT_SUBVECTOR(Op, DAG);
2287   case ISD::STEP_VECTOR:
2288     return lowerSTEP_VECTOR(Op, DAG);
2289   case ISD::VECTOR_REVERSE:
2290     return lowerVECTOR_REVERSE(Op, DAG);
2291   case ISD::BUILD_VECTOR:
2292     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2293   case ISD::SPLAT_VECTOR:
2294     if (Op.getValueType().getVectorElementType() == MVT::i1)
2295       return lowerVectorMaskSplat(Op, DAG);
2296     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2297   case ISD::VECTOR_SHUFFLE:
2298     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2299   case ISD::CONCAT_VECTORS: {
2300     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2301     // better than going through the stack, as the default expansion does.
2302     SDLoc DL(Op);
2303     MVT VT = Op.getSimpleValueType();
2304     unsigned NumOpElts =
2305         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2306     SDValue Vec = DAG.getUNDEF(VT);
2307     for (const auto &OpIdx : enumerate(Op->ops()))
2308       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2309                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2310     return Vec;
2311   }
2312   case ISD::LOAD:
2313     return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2314   case ISD::STORE:
2315     return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2316   case ISD::MLOAD:
2317     return lowerMLOAD(Op, DAG);
2318   case ISD::MSTORE:
2319     return lowerMSTORE(Op, DAG);
2320   case ISD::SETCC:
2321     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2322   case ISD::ADD:
2323     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2324   case ISD::SUB:
2325     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2326   case ISD::MUL:
2327     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2328   case ISD::MULHS:
2329     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2330   case ISD::MULHU:
2331     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2332   case ISD::AND:
2333     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2334                                               RISCVISD::AND_VL);
2335   case ISD::OR:
2336     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2337                                               RISCVISD::OR_VL);
2338   case ISD::XOR:
2339     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2340                                               RISCVISD::XOR_VL);
2341   case ISD::SDIV:
2342     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2343   case ISD::SREM:
2344     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2345   case ISD::UDIV:
2346     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2347   case ISD::UREM:
2348     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2349   case ISD::SHL:
2350     return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
2351   case ISD::SRA:
2352     return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
2353   case ISD::SRL:
2354     return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
2355   case ISD::FADD:
2356     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2357   case ISD::FSUB:
2358     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2359   case ISD::FMUL:
2360     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2361   case ISD::FDIV:
2362     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2363   case ISD::FNEG:
2364     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2365   case ISD::FABS:
2366     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2367   case ISD::FSQRT:
2368     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2369   case ISD::FMA:
2370     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2371   case ISD::SMIN:
2372     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2373   case ISD::SMAX:
2374     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2375   case ISD::UMIN:
2376     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2377   case ISD::UMAX:
2378     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2379   case ISD::FMINNUM:
2380     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2381   case ISD::FMAXNUM:
2382     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2383   case ISD::ABS:
2384     return lowerABS(Op, DAG);
2385   case ISD::VSELECT:
2386     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2387   case ISD::FCOPYSIGN:
2388     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2389   case ISD::MGATHER:
2390     return lowerMGATHER(Op, DAG);
2391   case ISD::MSCATTER:
2392     return lowerMSCATTER(Op, DAG);
2393   case ISD::FLT_ROUNDS_:
2394     return lowerGET_ROUNDING(Op, DAG);
2395   case ISD::SET_ROUNDING:
2396     return lowerSET_ROUNDING(Op, DAG);
2397   case ISD::VP_ADD:
2398     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2399   case ISD::VP_SUB:
2400     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2401   case ISD::VP_MUL:
2402     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2403   case ISD::VP_SDIV:
2404     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2405   case ISD::VP_UDIV:
2406     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2407   case ISD::VP_SREM:
2408     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2409   case ISD::VP_UREM:
2410     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2411   case ISD::VP_AND:
2412     return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2413   case ISD::VP_OR:
2414     return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2415   case ISD::VP_XOR:
2416     return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2417   case ISD::VP_ASHR:
2418     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2419   case ISD::VP_LSHR:
2420     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2421   case ISD::VP_SHL:
2422     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2423   }
2424 }
2425 
2426 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2427                              SelectionDAG &DAG, unsigned Flags) {
2428   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2429 }
2430 
2431 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2432                              SelectionDAG &DAG, unsigned Flags) {
2433   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2434                                    Flags);
2435 }
2436 
2437 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2438                              SelectionDAG &DAG, unsigned Flags) {
2439   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2440                                    N->getOffset(), Flags);
2441 }
2442 
2443 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2444                              SelectionDAG &DAG, unsigned Flags) {
2445   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2446 }
2447 
2448 template <class NodeTy>
2449 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2450                                      bool IsLocal) const {
2451   SDLoc DL(N);
2452   EVT Ty = getPointerTy(DAG.getDataLayout());
2453 
2454   if (isPositionIndependent()) {
2455     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2456     if (IsLocal)
2457       // Use PC-relative addressing to access the symbol. This generates the
2458       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2459       // %pcrel_lo(auipc)).
2460       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2461 
2462     // Use PC-relative addressing to access the GOT for this symbol, then load
2463     // the address from the GOT. This generates the pattern (PseudoLA sym),
2464     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2465     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2466   }
2467 
2468   switch (getTargetMachine().getCodeModel()) {
2469   default:
2470     report_fatal_error("Unsupported code model for lowering");
2471   case CodeModel::Small: {
2472     // Generate a sequence for accessing addresses within the first 2 GiB of
2473     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2474     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2475     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2476     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2477     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2478   }
2479   case CodeModel::Medium: {
2480     // Generate a sequence for accessing addresses within any 2GiB range within
2481     // the address space. This generates the pattern (PseudoLLA sym), which
2482     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2483     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2484     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2485   }
2486   }
2487 }
2488 
2489 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2490                                                 SelectionDAG &DAG) const {
2491   SDLoc DL(Op);
2492   EVT Ty = Op.getValueType();
2493   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2494   int64_t Offset = N->getOffset();
2495   MVT XLenVT = Subtarget.getXLenVT();
2496 
2497   const GlobalValue *GV = N->getGlobal();
2498   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2499   SDValue Addr = getAddr(N, DAG, IsLocal);
2500 
2501   // In order to maximise the opportunity for common subexpression elimination,
2502   // emit a separate ADD node for the global address offset instead of folding
2503   // it in the global address node. Later peephole optimisations may choose to
2504   // fold it back in when profitable.
2505   if (Offset != 0)
2506     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2507                        DAG.getConstant(Offset, DL, XLenVT));
2508   return Addr;
2509 }
2510 
2511 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2512                                                SelectionDAG &DAG) const {
2513   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2514 
2515   return getAddr(N, DAG);
2516 }
2517 
2518 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2519                                                SelectionDAG &DAG) const {
2520   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2521 
2522   return getAddr(N, DAG);
2523 }
2524 
2525 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2526                                             SelectionDAG &DAG) const {
2527   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2528 
2529   return getAddr(N, DAG);
2530 }
2531 
2532 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2533                                               SelectionDAG &DAG,
2534                                               bool UseGOT) const {
2535   SDLoc DL(N);
2536   EVT Ty = getPointerTy(DAG.getDataLayout());
2537   const GlobalValue *GV = N->getGlobal();
2538   MVT XLenVT = Subtarget.getXLenVT();
2539 
2540   if (UseGOT) {
2541     // Use PC-relative addressing to access the GOT for this TLS symbol, then
2542     // load the address from the GOT and add the thread pointer. This generates
2543     // the pattern (PseudoLA_TLS_IE sym), which expands to
2544     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2545     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2546     SDValue Load =
2547         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2548 
2549     // Add the thread pointer.
2550     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2551     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2552   }
2553 
2554   // Generate a sequence for accessing the address relative to the thread
2555   // pointer, with the appropriate adjustment for the thread pointer offset.
2556   // This generates the pattern
2557   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2558   SDValue AddrHi =
2559       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2560   SDValue AddrAdd =
2561       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2562   SDValue AddrLo =
2563       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2564 
2565   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2566   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2567   SDValue MNAdd = SDValue(
2568       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2569       0);
2570   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2571 }
2572 
2573 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2574                                                SelectionDAG &DAG) const {
2575   SDLoc DL(N);
2576   EVT Ty = getPointerTy(DAG.getDataLayout());
2577   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2578   const GlobalValue *GV = N->getGlobal();
2579 
2580   // Use a PC-relative addressing mode to access the global dynamic GOT address.
2581   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2582   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2583   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2584   SDValue Load =
2585       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2586 
2587   // Prepare argument list to generate call.
2588   ArgListTy Args;
2589   ArgListEntry Entry;
2590   Entry.Node = Load;
2591   Entry.Ty = CallTy;
2592   Args.push_back(Entry);
2593 
2594   // Setup call to __tls_get_addr.
2595   TargetLowering::CallLoweringInfo CLI(DAG);
2596   CLI.setDebugLoc(DL)
2597       .setChain(DAG.getEntryNode())
2598       .setLibCallee(CallingConv::C, CallTy,
2599                     DAG.getExternalSymbol("__tls_get_addr", Ty),
2600                     std::move(Args));
2601 
2602   return LowerCallTo(CLI).first;
2603 }
2604 
2605 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2606                                                    SelectionDAG &DAG) const {
2607   SDLoc DL(Op);
2608   EVT Ty = Op.getValueType();
2609   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2610   int64_t Offset = N->getOffset();
2611   MVT XLenVT = Subtarget.getXLenVT();
2612 
2613   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2614 
2615   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2616       CallingConv::GHC)
2617     report_fatal_error("In GHC calling convention TLS is not supported");
2618 
2619   SDValue Addr;
2620   switch (Model) {
2621   case TLSModel::LocalExec:
2622     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2623     break;
2624   case TLSModel::InitialExec:
2625     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2626     break;
2627   case TLSModel::LocalDynamic:
2628   case TLSModel::GeneralDynamic:
2629     Addr = getDynamicTLSAddr(N, DAG);
2630     break;
2631   }
2632 
2633   // In order to maximise the opportunity for common subexpression elimination,
2634   // emit a separate ADD node for the global address offset instead of folding
2635   // it in the global address node. Later peephole optimisations may choose to
2636   // fold it back in when profitable.
2637   if (Offset != 0)
2638     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2639                        DAG.getConstant(Offset, DL, XLenVT));
2640   return Addr;
2641 }
2642 
2643 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2644   SDValue CondV = Op.getOperand(0);
2645   SDValue TrueV = Op.getOperand(1);
2646   SDValue FalseV = Op.getOperand(2);
2647   SDLoc DL(Op);
2648   MVT XLenVT = Subtarget.getXLenVT();
2649 
2650   // If the result type is XLenVT and CondV is the output of a SETCC node
2651   // which also operated on XLenVT inputs, then merge the SETCC node into the
2652   // lowered RISCVISD::SELECT_CC to take advantage of the integer
2653   // compare+branch instructions. i.e.:
2654   // (select (setcc lhs, rhs, cc), truev, falsev)
2655   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2656   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2657       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2658     SDValue LHS = CondV.getOperand(0);
2659     SDValue RHS = CondV.getOperand(1);
2660     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2661     ISD::CondCode CCVal = CC->get();
2662 
2663     // Special case for a select of 2 constants that have a diffence of 1.
2664     // Normally this is done by DAGCombine, but if the select is introduced by
2665     // type legalization or op legalization, we miss it. Restricting to SETLT
2666     // case for now because that is what signed saturating add/sub need.
2667     // FIXME: We don't need the condition to be SETLT or even a SETCC,
2668     // but we would probably want to swap the true/false values if the condition
2669     // is SETGE/SETLE to avoid an XORI.
2670     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2671         CCVal == ISD::SETLT) {
2672       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2673       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2674       if (TrueVal - 1 == FalseVal)
2675         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2676       if (TrueVal + 1 == FalseVal)
2677         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2678     }
2679 
2680     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2681 
2682     SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT);
2683     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2684     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2685   }
2686 
2687   // Otherwise:
2688   // (select condv, truev, falsev)
2689   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2690   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2691   SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT);
2692 
2693   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2694 
2695   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2696 }
2697 
2698 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2699   SDValue CondV = Op.getOperand(1);
2700   SDLoc DL(Op);
2701   MVT XLenVT = Subtarget.getXLenVT();
2702 
2703   if (CondV.getOpcode() == ISD::SETCC &&
2704       CondV.getOperand(0).getValueType() == XLenVT) {
2705     SDValue LHS = CondV.getOperand(0);
2706     SDValue RHS = CondV.getOperand(1);
2707     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2708 
2709     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2710 
2711     SDValue TargetCC = DAG.getCondCode(CCVal);
2712     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2713                        LHS, RHS, TargetCC, Op.getOperand(2));
2714   }
2715 
2716   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2717                      CondV, DAG.getConstant(0, DL, XLenVT),
2718                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2719 }
2720 
2721 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2722   MachineFunction &MF = DAG.getMachineFunction();
2723   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2724 
2725   SDLoc DL(Op);
2726   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2727                                  getPointerTy(MF.getDataLayout()));
2728 
2729   // vastart just stores the address of the VarArgsFrameIndex slot into the
2730   // memory location argument.
2731   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2732   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2733                       MachinePointerInfo(SV));
2734 }
2735 
2736 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2737                                             SelectionDAG &DAG) const {
2738   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2739   MachineFunction &MF = DAG.getMachineFunction();
2740   MachineFrameInfo &MFI = MF.getFrameInfo();
2741   MFI.setFrameAddressIsTaken(true);
2742   Register FrameReg = RI.getFrameRegister(MF);
2743   int XLenInBytes = Subtarget.getXLen() / 8;
2744 
2745   EVT VT = Op.getValueType();
2746   SDLoc DL(Op);
2747   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2748   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2749   while (Depth--) {
2750     int Offset = -(XLenInBytes * 2);
2751     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2752                               DAG.getIntPtrConstant(Offset, DL));
2753     FrameAddr =
2754         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2755   }
2756   return FrameAddr;
2757 }
2758 
2759 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2760                                              SelectionDAG &DAG) const {
2761   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2762   MachineFunction &MF = DAG.getMachineFunction();
2763   MachineFrameInfo &MFI = MF.getFrameInfo();
2764   MFI.setReturnAddressIsTaken(true);
2765   MVT XLenVT = Subtarget.getXLenVT();
2766   int XLenInBytes = Subtarget.getXLen() / 8;
2767 
2768   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2769     return SDValue();
2770 
2771   EVT VT = Op.getValueType();
2772   SDLoc DL(Op);
2773   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2774   if (Depth) {
2775     int Off = -XLenInBytes;
2776     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2777     SDValue Offset = DAG.getConstant(Off, DL, VT);
2778     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2779                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2780                        MachinePointerInfo());
2781   }
2782 
2783   // Return the value of the return address register, marking it an implicit
2784   // live-in.
2785   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2786   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2787 }
2788 
2789 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2790                                                  SelectionDAG &DAG) const {
2791   SDLoc DL(Op);
2792   SDValue Lo = Op.getOperand(0);
2793   SDValue Hi = Op.getOperand(1);
2794   SDValue Shamt = Op.getOperand(2);
2795   EVT VT = Lo.getValueType();
2796 
2797   // if Shamt-XLEN < 0: // Shamt < XLEN
2798   //   Lo = Lo << Shamt
2799   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2800   // else:
2801   //   Lo = 0
2802   //   Hi = Lo << (Shamt-XLEN)
2803 
2804   SDValue Zero = DAG.getConstant(0, DL, VT);
2805   SDValue One = DAG.getConstant(1, DL, VT);
2806   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2807   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2808   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2809   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2810 
2811   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2812   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2813   SDValue ShiftRightLo =
2814       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2815   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2816   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2817   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2818 
2819   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2820 
2821   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2822   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2823 
2824   SDValue Parts[2] = {Lo, Hi};
2825   return DAG.getMergeValues(Parts, DL);
2826 }
2827 
2828 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2829                                                   bool IsSRA) const {
2830   SDLoc DL(Op);
2831   SDValue Lo = Op.getOperand(0);
2832   SDValue Hi = Op.getOperand(1);
2833   SDValue Shamt = Op.getOperand(2);
2834   EVT VT = Lo.getValueType();
2835 
2836   // SRA expansion:
2837   //   if Shamt-XLEN < 0: // Shamt < XLEN
2838   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2839   //     Hi = Hi >>s Shamt
2840   //   else:
2841   //     Lo = Hi >>s (Shamt-XLEN);
2842   //     Hi = Hi >>s (XLEN-1)
2843   //
2844   // SRL expansion:
2845   //   if Shamt-XLEN < 0: // Shamt < XLEN
2846   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2847   //     Hi = Hi >>u Shamt
2848   //   else:
2849   //     Lo = Hi >>u (Shamt-XLEN);
2850   //     Hi = 0;
2851 
2852   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2853 
2854   SDValue Zero = DAG.getConstant(0, DL, VT);
2855   SDValue One = DAG.getConstant(1, DL, VT);
2856   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2857   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2858   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2859   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2860 
2861   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2862   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2863   SDValue ShiftLeftHi =
2864       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2865   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2866   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2867   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2868   SDValue HiFalse =
2869       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2870 
2871   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2872 
2873   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2874   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2875 
2876   SDValue Parts[2] = {Lo, Hi};
2877   return DAG.getMergeValues(Parts, DL);
2878 }
2879 
2880 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
2881 // legal equivalently-sized i8 type, so we can use that as a go-between.
2882 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
2883                                                   SelectionDAG &DAG) const {
2884   SDLoc DL(Op);
2885   MVT VT = Op.getSimpleValueType();
2886   SDValue SplatVal = Op.getOperand(0);
2887   // All-zeros or all-ones splats are handled specially.
2888   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
2889     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
2890     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
2891   }
2892   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
2893     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
2894     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
2895   }
2896   MVT XLenVT = Subtarget.getXLenVT();
2897   assert(SplatVal.getValueType() == XLenVT &&
2898          "Unexpected type for i1 splat value");
2899   MVT InterVT = VT.changeVectorElementType(MVT::i8);
2900   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
2901                          DAG.getConstant(1, DL, XLenVT));
2902   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
2903   SDValue Zero = DAG.getConstant(0, DL, InterVT);
2904   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
2905 }
2906 
2907 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2908 // illegal (currently only vXi64 RV32).
2909 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2910 // them to SPLAT_VECTOR_I64
2911 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2912                                                      SelectionDAG &DAG) const {
2913   SDLoc DL(Op);
2914   MVT VecVT = Op.getSimpleValueType();
2915   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2916          "Unexpected SPLAT_VECTOR_PARTS lowering");
2917 
2918   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2919   SDValue Lo = Op.getOperand(0);
2920   SDValue Hi = Op.getOperand(1);
2921 
2922   if (VecVT.isFixedLengthVector()) {
2923     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2924     SDLoc DL(Op);
2925     SDValue Mask, VL;
2926     std::tie(Mask, VL) =
2927         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2928 
2929     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
2930     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
2931   }
2932 
2933   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2934     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2935     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2936     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2937     // node in order to try and match RVV vector/scalar instructions.
2938     if ((LoC >> 31) == HiC)
2939       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2940   }
2941 
2942   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
2943   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
2944       isa<ConstantSDNode>(Hi.getOperand(1)) &&
2945       Hi.getConstantOperandVal(1) == 31)
2946     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2947 
2948   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
2949   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
2950                      DAG.getRegister(RISCV::X0, MVT::i64));
2951 }
2952 
2953 // Custom-lower extensions from mask vectors by using a vselect either with 1
2954 // for zero/any-extension or -1 for sign-extension:
2955 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2956 // Note that any-extension is lowered identically to zero-extension.
2957 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2958                                                 int64_t ExtTrueVal) const {
2959   SDLoc DL(Op);
2960   MVT VecVT = Op.getSimpleValueType();
2961   SDValue Src = Op.getOperand(0);
2962   // Only custom-lower extensions from mask types
2963   assert(Src.getValueType().isVector() &&
2964          Src.getValueType().getVectorElementType() == MVT::i1);
2965 
2966   MVT XLenVT = Subtarget.getXLenVT();
2967   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2968   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2969 
2970   if (VecVT.isScalableVector()) {
2971     // Be careful not to introduce illegal scalar types at this stage, and be
2972     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2973     // illegal and must be expanded. Since we know that the constants are
2974     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2975     bool IsRV32E64 =
2976         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2977 
2978     if (!IsRV32E64) {
2979       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2980       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2981     } else {
2982       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
2983       SplatTrueVal =
2984           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
2985     }
2986 
2987     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
2988   }
2989 
2990   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2991   MVT I1ContainerVT =
2992       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
2993 
2994   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
2995 
2996   SDValue Mask, VL;
2997   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2998 
2999   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3000   SplatTrueVal =
3001       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3002   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3003                                SplatTrueVal, SplatZero, VL);
3004 
3005   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3006 }
3007 
3008 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3009     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3010   MVT ExtVT = Op.getSimpleValueType();
3011   // Only custom-lower extensions from fixed-length vector types.
3012   if (!ExtVT.isFixedLengthVector())
3013     return Op;
3014   MVT VT = Op.getOperand(0).getSimpleValueType();
3015   // Grab the canonical container type for the extended type. Infer the smaller
3016   // type from that to ensure the same number of vector elements, as we know
3017   // the LMUL will be sufficient to hold the smaller type.
3018   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3019   // Get the extended container type manually to ensure the same number of
3020   // vector elements between source and dest.
3021   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3022                                      ContainerExtVT.getVectorElementCount());
3023 
3024   SDValue Op1 =
3025       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3026 
3027   SDLoc DL(Op);
3028   SDValue Mask, VL;
3029   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3030 
3031   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3032 
3033   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3034 }
3035 
3036 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3037 // setcc operation:
3038 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3039 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3040                                                   SelectionDAG &DAG) const {
3041   SDLoc DL(Op);
3042   EVT MaskVT = Op.getValueType();
3043   // Only expect to custom-lower truncations to mask types
3044   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3045          "Unexpected type for vector mask lowering");
3046   SDValue Src = Op.getOperand(0);
3047   MVT VecVT = Src.getSimpleValueType();
3048 
3049   // If this is a fixed vector, we need to convert it to a scalable vector.
3050   MVT ContainerVT = VecVT;
3051   if (VecVT.isFixedLengthVector()) {
3052     ContainerVT = getContainerForFixedLengthVector(VecVT);
3053     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3054   }
3055 
3056   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3057   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3058 
3059   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3060   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3061 
3062   if (VecVT.isScalableVector()) {
3063     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3064     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3065   }
3066 
3067   SDValue Mask, VL;
3068   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3069 
3070   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3071   SDValue Trunc =
3072       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3073   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3074                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3075   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3076 }
3077 
3078 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3079 // first position of a vector, and that vector is slid up to the insert index.
3080 // By limiting the active vector length to index+1 and merging with the
3081 // original vector (with an undisturbed tail policy for elements >= VL), we
3082 // achieve the desired result of leaving all elements untouched except the one
3083 // at VL-1, which is replaced with the desired value.
3084 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3085                                                     SelectionDAG &DAG) const {
3086   SDLoc DL(Op);
3087   MVT VecVT = Op.getSimpleValueType();
3088   SDValue Vec = Op.getOperand(0);
3089   SDValue Val = Op.getOperand(1);
3090   SDValue Idx = Op.getOperand(2);
3091 
3092   if (VecVT.getVectorElementType() == MVT::i1) {
3093     // FIXME: For now we just promote to an i8 vector and insert into that,
3094     // but this is probably not optimal.
3095     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3096     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3097     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3098     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3099   }
3100 
3101   MVT ContainerVT = VecVT;
3102   // If the operand is a fixed-length vector, convert to a scalable one.
3103   if (VecVT.isFixedLengthVector()) {
3104     ContainerVT = getContainerForFixedLengthVector(VecVT);
3105     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3106   }
3107 
3108   MVT XLenVT = Subtarget.getXLenVT();
3109 
3110   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3111   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3112   // Even i64-element vectors on RV32 can be lowered without scalar
3113   // legalization if the most-significant 32 bits of the value are not affected
3114   // by the sign-extension of the lower 32 bits.
3115   // TODO: We could also catch sign extensions of a 32-bit value.
3116   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3117     const auto *CVal = cast<ConstantSDNode>(Val);
3118     if (isInt<32>(CVal->getSExtValue())) {
3119       IsLegalInsert = true;
3120       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3121     }
3122   }
3123 
3124   SDValue Mask, VL;
3125   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3126 
3127   SDValue ValInVec;
3128 
3129   if (IsLegalInsert) {
3130     unsigned Opc =
3131         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3132     if (isNullConstant(Idx)) {
3133       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3134       if (!VecVT.isFixedLengthVector())
3135         return Vec;
3136       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3137     }
3138     ValInVec =
3139         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3140   } else {
3141     // On RV32, i64-element vectors must be specially handled to place the
3142     // value at element 0, by using two vslide1up instructions in sequence on
3143     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3144     // this.
3145     SDValue One = DAG.getConstant(1, DL, XLenVT);
3146     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3147     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3148     MVT I32ContainerVT =
3149         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3150     SDValue I32Mask =
3151         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3152     // Limit the active VL to two.
3153     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3154     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3155     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3156     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3157                            InsertI64VL);
3158     // First slide in the hi value, then the lo in underneath it.
3159     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3160                            ValHi, I32Mask, InsertI64VL);
3161     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3162                            ValLo, I32Mask, InsertI64VL);
3163     // Bitcast back to the right container type.
3164     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3165   }
3166 
3167   // Now that the value is in a vector, slide it into position.
3168   SDValue InsertVL =
3169       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3170   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3171                                 ValInVec, Idx, Mask, InsertVL);
3172   if (!VecVT.isFixedLengthVector())
3173     return Slideup;
3174   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3175 }
3176 
3177 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3178 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3179 // types this is done using VMV_X_S to allow us to glean information about the
3180 // sign bits of the result.
3181 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3182                                                      SelectionDAG &DAG) const {
3183   SDLoc DL(Op);
3184   SDValue Idx = Op.getOperand(1);
3185   SDValue Vec = Op.getOperand(0);
3186   EVT EltVT = Op.getValueType();
3187   MVT VecVT = Vec.getSimpleValueType();
3188   MVT XLenVT = Subtarget.getXLenVT();
3189 
3190   if (VecVT.getVectorElementType() == MVT::i1) {
3191     // FIXME: For now we just promote to an i8 vector and extract from that,
3192     // but this is probably not optimal.
3193     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3194     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3195     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3196   }
3197 
3198   // If this is a fixed vector, we need to convert it to a scalable vector.
3199   MVT ContainerVT = VecVT;
3200   if (VecVT.isFixedLengthVector()) {
3201     ContainerVT = getContainerForFixedLengthVector(VecVT);
3202     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3203   }
3204 
3205   // If the index is 0, the vector is already in the right position.
3206   if (!isNullConstant(Idx)) {
3207     // Use a VL of 1 to avoid processing more elements than we need.
3208     SDValue VL = DAG.getConstant(1, DL, XLenVT);
3209     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3210     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3211     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3212                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3213   }
3214 
3215   if (!EltVT.isInteger()) {
3216     // Floating-point extracts are handled in TableGen.
3217     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3218                        DAG.getConstant(0, DL, XLenVT));
3219   }
3220 
3221   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3222   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3223 }
3224 
3225 // Some RVV intrinsics may claim that they want an integer operand to be
3226 // promoted or expanded.
3227 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3228                                           const RISCVSubtarget &Subtarget) {
3229   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3230           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3231          "Unexpected opcode");
3232 
3233   if (!Subtarget.hasStdExtV())
3234     return SDValue();
3235 
3236   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3237   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3238   SDLoc DL(Op);
3239 
3240   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3241       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3242   if (!II || !II->SplatOperand)
3243     return SDValue();
3244 
3245   unsigned SplatOp = II->SplatOperand + HasChain;
3246   assert(SplatOp < Op.getNumOperands());
3247 
3248   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3249   SDValue &ScalarOp = Operands[SplatOp];
3250   MVT OpVT = ScalarOp.getSimpleValueType();
3251   MVT XLenVT = Subtarget.getXLenVT();
3252 
3253   // If this isn't a scalar, or its type is XLenVT we're done.
3254   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3255     return SDValue();
3256 
3257   // Simplest case is that the operand needs to be promoted to XLenVT.
3258   if (OpVT.bitsLT(XLenVT)) {
3259     // If the operand is a constant, sign extend to increase our chances
3260     // of being able to use a .vi instruction. ANY_EXTEND would become a
3261     // a zero extend and the simm5 check in isel would fail.
3262     // FIXME: Should we ignore the upper bits in isel instead?
3263     unsigned ExtOpc =
3264         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3265     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3266     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3267   }
3268 
3269   // Use the previous operand to get the vXi64 VT. The result might be a mask
3270   // VT for compares. Using the previous operand assumes that the previous
3271   // operand will never have a smaller element size than a scalar operand and
3272   // that a widening operation never uses SEW=64.
3273   // NOTE: If this fails the below assert, we can probably just find the
3274   // element count from any operand or result and use it to construct the VT.
3275   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3276   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3277 
3278   // The more complex case is when the scalar is larger than XLenVT.
3279   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3280          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3281 
3282   // If this is a sign-extended 32-bit constant, we can truncate it and rely
3283   // on the instruction to sign-extend since SEW>XLEN.
3284   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3285     if (isInt<32>(CVal->getSExtValue())) {
3286       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3287       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3288     }
3289   }
3290 
3291   // We need to convert the scalar to a splat vector.
3292   // FIXME: Can we implicitly truncate the scalar if it is known to
3293   // be sign extended?
3294   // VL should be the last operand.
3295   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3296   assert(VL.getValueType() == XLenVT);
3297   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3298   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3299 }
3300 
3301 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3302                                                      SelectionDAG &DAG) const {
3303   unsigned IntNo = Op.getConstantOperandVal(0);
3304   SDLoc DL(Op);
3305   MVT XLenVT = Subtarget.getXLenVT();
3306 
3307   switch (IntNo) {
3308   default:
3309     break; // Don't custom lower most intrinsics.
3310   case Intrinsic::thread_pointer: {
3311     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3312     return DAG.getRegister(RISCV::X4, PtrVT);
3313   }
3314   case Intrinsic::riscv_orc_b:
3315     // Lower to the GORCI encoding for orc.b.
3316     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3317                        DAG.getConstant(7, DL, XLenVT));
3318   case Intrinsic::riscv_grev:
3319   case Intrinsic::riscv_gorc: {
3320     unsigned Opc =
3321         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3322     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3323   }
3324   case Intrinsic::riscv_shfl:
3325   case Intrinsic::riscv_unshfl: {
3326     unsigned Opc =
3327         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3328     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3329   }
3330   case Intrinsic::riscv_bcompress:
3331   case Intrinsic::riscv_bdecompress: {
3332     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3333                                                        : RISCVISD::BDECOMPRESS;
3334     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3335   }
3336   case Intrinsic::riscv_vmv_x_s:
3337     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3338     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3339                        Op.getOperand(1));
3340   case Intrinsic::riscv_vmv_v_x:
3341     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3342                             Op.getSimpleValueType(), DL, DAG, Subtarget);
3343   case Intrinsic::riscv_vfmv_v_f:
3344     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3345                        Op.getOperand(1), Op.getOperand(2));
3346   case Intrinsic::riscv_vmv_s_x: {
3347     SDValue Scalar = Op.getOperand(2);
3348 
3349     if (Scalar.getValueType().bitsLE(XLenVT)) {
3350       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3351       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3352                          Op.getOperand(1), Scalar, Op.getOperand(3));
3353     }
3354 
3355     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3356 
3357     // This is an i64 value that lives in two scalar registers. We have to
3358     // insert this in a convoluted way. First we build vXi64 splat containing
3359     // the/ two values that we assemble using some bit math. Next we'll use
3360     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3361     // to merge element 0 from our splat into the source vector.
3362     // FIXME: This is probably not the best way to do this, but it is
3363     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3364     // point.
3365     //   sw lo, (a0)
3366     //   sw hi, 4(a0)
3367     //   vlse vX, (a0)
3368     //
3369     //   vid.v      vVid
3370     //   vmseq.vx   mMask, vVid, 0
3371     //   vmerge.vvm vDest, vSrc, vVal, mMask
3372     MVT VT = Op.getSimpleValueType();
3373     SDValue Vec = Op.getOperand(1);
3374     SDValue VL = Op.getOperand(3);
3375 
3376     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3377     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3378                                       DAG.getConstant(0, DL, MVT::i32), VL);
3379 
3380     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3381     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3382     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3383     SDValue SelectCond =
3384         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3385                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
3386     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3387                        Vec, VL);
3388   }
3389   case Intrinsic::riscv_vslide1up:
3390   case Intrinsic::riscv_vslide1down:
3391   case Intrinsic::riscv_vslide1up_mask:
3392   case Intrinsic::riscv_vslide1down_mask: {
3393     // We need to special case these when the scalar is larger than XLen.
3394     unsigned NumOps = Op.getNumOperands();
3395     bool IsMasked = NumOps == 6;
3396     unsigned OpOffset = IsMasked ? 1 : 0;
3397     SDValue Scalar = Op.getOperand(2 + OpOffset);
3398     if (Scalar.getValueType().bitsLE(XLenVT))
3399       break;
3400 
3401     // Splatting a sign extended constant is fine.
3402     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3403       if (isInt<32>(CVal->getSExtValue()))
3404         break;
3405 
3406     MVT VT = Op.getSimpleValueType();
3407     assert(VT.getVectorElementType() == MVT::i64 &&
3408            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3409 
3410     // Convert the vector source to the equivalent nxvXi32 vector.
3411     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3412     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3413 
3414     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3415                                    DAG.getConstant(0, DL, XLenVT));
3416     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3417                                    DAG.getConstant(1, DL, XLenVT));
3418 
3419     // Double the VL since we halved SEW.
3420     SDValue VL = Op.getOperand(NumOps - 1);
3421     SDValue I32VL =
3422         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3423 
3424     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3425     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3426 
3427     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3428     // instructions.
3429     if (IntNo == Intrinsic::riscv_vslide1up ||
3430         IntNo == Intrinsic::riscv_vslide1up_mask) {
3431       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3432                         I32Mask, I32VL);
3433       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3434                         I32Mask, I32VL);
3435     } else {
3436       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3437                         I32Mask, I32VL);
3438       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3439                         I32Mask, I32VL);
3440     }
3441 
3442     // Convert back to nxvXi64.
3443     Vec = DAG.getBitcast(VT, Vec);
3444 
3445     if (!IsMasked)
3446       return Vec;
3447 
3448     // Apply mask after the operation.
3449     SDValue Mask = Op.getOperand(NumOps - 2);
3450     SDValue MaskedOff = Op.getOperand(1);
3451     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3452   }
3453   }
3454 
3455   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3456 }
3457 
3458 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3459                                                     SelectionDAG &DAG) const {
3460   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3461 }
3462 
3463 static MVT getLMUL1VT(MVT VT) {
3464   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3465          "Unexpected vector MVT");
3466   return MVT::getScalableVectorVT(
3467       VT.getVectorElementType(),
3468       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3469 }
3470 
3471 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3472   switch (ISDOpcode) {
3473   default:
3474     llvm_unreachable("Unhandled reduction");
3475   case ISD::VECREDUCE_ADD:
3476     return RISCVISD::VECREDUCE_ADD_VL;
3477   case ISD::VECREDUCE_UMAX:
3478     return RISCVISD::VECREDUCE_UMAX_VL;
3479   case ISD::VECREDUCE_SMAX:
3480     return RISCVISD::VECREDUCE_SMAX_VL;
3481   case ISD::VECREDUCE_UMIN:
3482     return RISCVISD::VECREDUCE_UMIN_VL;
3483   case ISD::VECREDUCE_SMIN:
3484     return RISCVISD::VECREDUCE_SMIN_VL;
3485   case ISD::VECREDUCE_AND:
3486     return RISCVISD::VECREDUCE_AND_VL;
3487   case ISD::VECREDUCE_OR:
3488     return RISCVISD::VECREDUCE_OR_VL;
3489   case ISD::VECREDUCE_XOR:
3490     return RISCVISD::VECREDUCE_XOR_VL;
3491   }
3492 }
3493 
3494 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3495                                                       SelectionDAG &DAG) const {
3496   SDLoc DL(Op);
3497   SDValue Vec = Op.getOperand(0);
3498   MVT VecVT = Vec.getSimpleValueType();
3499   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3500           Op.getOpcode() == ISD::VECREDUCE_OR ||
3501           Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3502          "Unexpected reduction lowering");
3503 
3504   MVT XLenVT = Subtarget.getXLenVT();
3505   assert(Op.getValueType() == XLenVT &&
3506          "Expected reduction output to be legalized to XLenVT");
3507 
3508   MVT ContainerVT = VecVT;
3509   if (VecVT.isFixedLengthVector()) {
3510     ContainerVT = getContainerForFixedLengthVector(VecVT);
3511     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3512   }
3513 
3514   SDValue Mask, VL;
3515   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3516   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3517 
3518   switch (Op.getOpcode()) {
3519   default:
3520     llvm_unreachable("Unhandled reduction");
3521   case ISD::VECREDUCE_AND:
3522     // vpopc ~x == 0
3523     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3524     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3525     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3526   case ISD::VECREDUCE_OR:
3527     // vpopc x != 0
3528     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3529     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3530   case ISD::VECREDUCE_XOR: {
3531     // ((vpopc x) & 1) != 0
3532     SDValue One = DAG.getConstant(1, DL, XLenVT);
3533     Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3534     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3535     return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3536   }
3537   }
3538 }
3539 
3540 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3541                                             SelectionDAG &DAG) const {
3542   SDLoc DL(Op);
3543   SDValue Vec = Op.getOperand(0);
3544   EVT VecEVT = Vec.getValueType();
3545 
3546   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3547 
3548   // Due to ordering in legalize types we may have a vector type that needs to
3549   // be split. Do that manually so we can get down to a legal type.
3550   while (getTypeAction(*DAG.getContext(), VecEVT) ==
3551          TargetLowering::TypeSplitVector) {
3552     SDValue Lo, Hi;
3553     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3554     VecEVT = Lo.getValueType();
3555     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3556   }
3557 
3558   // TODO: The type may need to be widened rather than split. Or widened before
3559   // it can be split.
3560   if (!isTypeLegal(VecEVT))
3561     return SDValue();
3562 
3563   MVT VecVT = VecEVT.getSimpleVT();
3564   MVT VecEltVT = VecVT.getVectorElementType();
3565   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3566 
3567   MVT ContainerVT = VecVT;
3568   if (VecVT.isFixedLengthVector()) {
3569     ContainerVT = getContainerForFixedLengthVector(VecVT);
3570     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3571   }
3572 
3573   MVT M1VT = getLMUL1VT(ContainerVT);
3574 
3575   SDValue Mask, VL;
3576   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3577 
3578   // FIXME: This is a VLMAX splat which might be too large and can prevent
3579   // vsetvli removal.
3580   SDValue NeutralElem =
3581       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3582   SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3583   SDValue Reduction =
3584       DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3585   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3586                              DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3587   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3588 }
3589 
3590 // Given a reduction op, this function returns the matching reduction opcode,
3591 // the vector SDValue and the scalar SDValue required to lower this to a
3592 // RISCVISD node.
3593 static std::tuple<unsigned, SDValue, SDValue>
3594 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3595   SDLoc DL(Op);
3596   auto Flags = Op->getFlags();
3597   unsigned Opcode = Op.getOpcode();
3598   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
3599   switch (Opcode) {
3600   default:
3601     llvm_unreachable("Unhandled reduction");
3602   case ISD::VECREDUCE_FADD:
3603     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3604                            DAG.getConstantFP(0.0, DL, EltVT));
3605   case ISD::VECREDUCE_SEQ_FADD:
3606     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3607                            Op.getOperand(0));
3608   case ISD::VECREDUCE_FMIN:
3609     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
3610                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3611   case ISD::VECREDUCE_FMAX:
3612     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
3613                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3614   }
3615 }
3616 
3617 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3618                                               SelectionDAG &DAG) const {
3619   SDLoc DL(Op);
3620   MVT VecEltVT = Op.getSimpleValueType();
3621 
3622   unsigned RVVOpcode;
3623   SDValue VectorVal, ScalarVal;
3624   std::tie(RVVOpcode, VectorVal, ScalarVal) =
3625       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3626   MVT VecVT = VectorVal.getSimpleValueType();
3627 
3628   MVT ContainerVT = VecVT;
3629   if (VecVT.isFixedLengthVector()) {
3630     ContainerVT = getContainerForFixedLengthVector(VecVT);
3631     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3632   }
3633 
3634   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3635 
3636   SDValue Mask, VL;
3637   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3638 
3639   // FIXME: This is a VLMAX splat which might be too large and can prevent
3640   // vsetvli removal.
3641   SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3642   SDValue Reduction =
3643       DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3644   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3645                      DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3646 }
3647 
3648 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3649                                                    SelectionDAG &DAG) const {
3650   SDValue Vec = Op.getOperand(0);
3651   SDValue SubVec = Op.getOperand(1);
3652   MVT VecVT = Vec.getSimpleValueType();
3653   MVT SubVecVT = SubVec.getSimpleValueType();
3654 
3655   SDLoc DL(Op);
3656   MVT XLenVT = Subtarget.getXLenVT();
3657   unsigned OrigIdx = Op.getConstantOperandVal(2);
3658   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3659 
3660   // We don't have the ability to slide mask vectors up indexed by their i1
3661   // elements; the smallest we can do is i8. Often we are able to bitcast to
3662   // equivalent i8 vectors. Note that when inserting a fixed-length vector
3663   // into a scalable one, we might not necessarily have enough scalable
3664   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3665   if (SubVecVT.getVectorElementType() == MVT::i1 &&
3666       (OrigIdx != 0 || !Vec.isUndef())) {
3667     if (VecVT.getVectorMinNumElements() >= 8 &&
3668         SubVecVT.getVectorMinNumElements() >= 8) {
3669       assert(OrigIdx % 8 == 0 && "Invalid index");
3670       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3671              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3672              "Unexpected mask vector lowering");
3673       OrigIdx /= 8;
3674       SubVecVT =
3675           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3676                            SubVecVT.isScalableVector());
3677       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3678                                VecVT.isScalableVector());
3679       Vec = DAG.getBitcast(VecVT, Vec);
3680       SubVec = DAG.getBitcast(SubVecVT, SubVec);
3681     } else {
3682       // We can't slide this mask vector up indexed by its i1 elements.
3683       // This poses a problem when we wish to insert a scalable vector which
3684       // can't be re-expressed as a larger type. Just choose the slow path and
3685       // extend to a larger type, then truncate back down.
3686       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3687       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3688       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3689       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3690       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3691                         Op.getOperand(2));
3692       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3693       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3694     }
3695   }
3696 
3697   // If the subvector vector is a fixed-length type, we cannot use subregister
3698   // manipulation to simplify the codegen; we don't know which register of a
3699   // LMUL group contains the specific subvector as we only know the minimum
3700   // register size. Therefore we must slide the vector group up the full
3701   // amount.
3702   if (SubVecVT.isFixedLengthVector()) {
3703     if (OrigIdx == 0 && Vec.isUndef())
3704       return Op;
3705     MVT ContainerVT = VecVT;
3706     if (VecVT.isFixedLengthVector()) {
3707       ContainerVT = getContainerForFixedLengthVector(VecVT);
3708       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3709     }
3710     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3711                          DAG.getUNDEF(ContainerVT), SubVec,
3712                          DAG.getConstant(0, DL, XLenVT));
3713     SDValue Mask =
3714         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3715     // Set the vector length to only the number of elements we care about. Note
3716     // that for slideup this includes the offset.
3717     SDValue VL =
3718         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3719     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3720     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3721                                   SubVec, SlideupAmt, Mask, VL);
3722     if (VecVT.isFixedLengthVector())
3723       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3724     return DAG.getBitcast(Op.getValueType(), Slideup);
3725   }
3726 
3727   unsigned SubRegIdx, RemIdx;
3728   std::tie(SubRegIdx, RemIdx) =
3729       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3730           VecVT, SubVecVT, OrigIdx, TRI);
3731 
3732   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3733   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
3734                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
3735                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
3736 
3737   // 1. If the Idx has been completely eliminated and this subvector's size is
3738   // a vector register or a multiple thereof, or the surrounding elements are
3739   // undef, then this is a subvector insert which naturally aligns to a vector
3740   // register. These can easily be handled using subregister manipulation.
3741   // 2. If the subvector is smaller than a vector register, then the insertion
3742   // must preserve the undisturbed elements of the register. We do this by
3743   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3744   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3745   // subvector within the vector register, and an INSERT_SUBVECTOR of that
3746   // LMUL=1 type back into the larger vector (resolving to another subregister
3747   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
3748   // to avoid allocating a large register group to hold our subvector.
3749   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
3750     return Op;
3751 
3752   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
3753   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
3754   // (in our case undisturbed). This means we can set up a subvector insertion
3755   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
3756   // size of the subvector.
3757   MVT InterSubVT = VecVT;
3758   SDValue AlignedExtract = Vec;
3759   unsigned AlignedIdx = OrigIdx - RemIdx;
3760   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3761     InterSubVT = getLMUL1VT(VecVT);
3762     // Extract a subvector equal to the nearest full vector register type. This
3763     // should resolve to a EXTRACT_SUBREG instruction.
3764     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3765                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
3766   }
3767 
3768   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3769   // For scalable vectors this must be further multiplied by vscale.
3770   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
3771 
3772   SDValue Mask, VL;
3773   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3774 
3775   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
3776   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
3777   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
3778   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
3779 
3780   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
3781                        DAG.getUNDEF(InterSubVT), SubVec,
3782                        DAG.getConstant(0, DL, XLenVT));
3783 
3784   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
3785                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
3786 
3787   // If required, insert this subvector back into the correct vector register.
3788   // This should resolve to an INSERT_SUBREG instruction.
3789   if (VecVT.bitsGT(InterSubVT))
3790     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
3791                           DAG.getConstant(AlignedIdx, DL, XLenVT));
3792 
3793   // We might have bitcast from a mask type: cast back to the original type if
3794   // required.
3795   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
3796 }
3797 
3798 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
3799                                                     SelectionDAG &DAG) const {
3800   SDValue Vec = Op.getOperand(0);
3801   MVT SubVecVT = Op.getSimpleValueType();
3802   MVT VecVT = Vec.getSimpleValueType();
3803 
3804   SDLoc DL(Op);
3805   MVT XLenVT = Subtarget.getXLenVT();
3806   unsigned OrigIdx = Op.getConstantOperandVal(1);
3807   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3808 
3809   // We don't have the ability to slide mask vectors down indexed by their i1
3810   // elements; the smallest we can do is i8. Often we are able to bitcast to
3811   // equivalent i8 vectors. Note that when extracting a fixed-length vector
3812   // from a scalable one, we might not necessarily have enough scalable
3813   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
3814   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
3815     if (VecVT.getVectorMinNumElements() >= 8 &&
3816         SubVecVT.getVectorMinNumElements() >= 8) {
3817       assert(OrigIdx % 8 == 0 && "Invalid index");
3818       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3819              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3820              "Unexpected mask vector lowering");
3821       OrigIdx /= 8;
3822       SubVecVT =
3823           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3824                            SubVecVT.isScalableVector());
3825       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3826                                VecVT.isScalableVector());
3827       Vec = DAG.getBitcast(VecVT, Vec);
3828     } else {
3829       // We can't slide this mask vector down, indexed by its i1 elements.
3830       // This poses a problem when we wish to extract a scalable vector which
3831       // can't be re-expressed as a larger type. Just choose the slow path and
3832       // extend to a larger type, then truncate back down.
3833       // TODO: We could probably improve this when extracting certain fixed
3834       // from fixed, where we can extract as i8 and shift the correct element
3835       // right to reach the desired subvector?
3836       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3837       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3838       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3839       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
3840                         Op.getOperand(1));
3841       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
3842       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
3843     }
3844   }
3845 
3846   // If the subvector vector is a fixed-length type, we cannot use subregister
3847   // manipulation to simplify the codegen; we don't know which register of a
3848   // LMUL group contains the specific subvector as we only know the minimum
3849   // register size. Therefore we must slide the vector group down the full
3850   // amount.
3851   if (SubVecVT.isFixedLengthVector()) {
3852     // With an index of 0 this is a cast-like subvector, which can be performed
3853     // with subregister operations.
3854     if (OrigIdx == 0)
3855       return Op;
3856     MVT ContainerVT = VecVT;
3857     if (VecVT.isFixedLengthVector()) {
3858       ContainerVT = getContainerForFixedLengthVector(VecVT);
3859       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3860     }
3861     SDValue Mask =
3862         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3863     // Set the vector length to only the number of elements we care about. This
3864     // avoids sliding down elements we're going to discard straight away.
3865     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3866     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3867     SDValue Slidedown =
3868         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3869                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3870     // Now we can use a cast-like subvector extract to get the result.
3871     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3872                             DAG.getConstant(0, DL, XLenVT));
3873     return DAG.getBitcast(Op.getValueType(), Slidedown);
3874   }
3875 
3876   unsigned SubRegIdx, RemIdx;
3877   std::tie(SubRegIdx, RemIdx) =
3878       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3879           VecVT, SubVecVT, OrigIdx, TRI);
3880 
3881   // If the Idx has been completely eliminated then this is a subvector extract
3882   // which naturally aligns to a vector register. These can easily be handled
3883   // using subregister manipulation.
3884   if (RemIdx == 0)
3885     return Op;
3886 
3887   // Else we must shift our vector register directly to extract the subvector.
3888   // Do this using VSLIDEDOWN.
3889 
3890   // If the vector type is an LMUL-group type, extract a subvector equal to the
3891   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3892   // instruction.
3893   MVT InterSubVT = VecVT;
3894   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3895     InterSubVT = getLMUL1VT(VecVT);
3896     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3897                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3898   }
3899 
3900   // Slide this vector register down by the desired number of elements in order
3901   // to place the desired subvector starting at element 0.
3902   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3903   // For scalable vectors this must be further multiplied by vscale.
3904   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3905 
3906   SDValue Mask, VL;
3907   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3908   SDValue Slidedown =
3909       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3910                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3911 
3912   // Now the vector is in the right position, extract our final subvector. This
3913   // should resolve to a COPY.
3914   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3915                           DAG.getConstant(0, DL, XLenVT));
3916 
3917   // We might have bitcast from a mask type: cast back to the original type if
3918   // required.
3919   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3920 }
3921 
3922 // Lower step_vector to the vid instruction. Any non-identity step value must
3923 // be accounted for my manual expansion.
3924 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
3925                                               SelectionDAG &DAG) const {
3926   SDLoc DL(Op);
3927   MVT VT = Op.getSimpleValueType();
3928   MVT XLenVT = Subtarget.getXLenVT();
3929   SDValue Mask, VL;
3930   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
3931   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3932   uint64_t StepValImm = Op.getConstantOperandVal(0);
3933   if (StepValImm != 1) {
3934     assert(Op.getOperand(0).getValueType() == XLenVT &&
3935            "Unexpected step value type");
3936     if (isPowerOf2_64(StepValImm)) {
3937       SDValue StepVal =
3938           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3939                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
3940       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
3941     } else {
3942       SDValue StepVal =
3943           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0));
3944       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
3945     }
3946   }
3947   return StepVec;
3948 }
3949 
3950 // Implement vector_reverse using vrgather.vv with indices determined by
3951 // subtracting the id of each element from (VLMAX-1). This will convert
3952 // the indices like so:
3953 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3954 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
3955 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3956                                                  SelectionDAG &DAG) const {
3957   SDLoc DL(Op);
3958   MVT VecVT = Op.getSimpleValueType();
3959   unsigned EltSize = VecVT.getScalarSizeInBits();
3960   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3961 
3962   unsigned MaxVLMAX = 0;
3963   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3964   if (VectorBitsMax != 0)
3965     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3966 
3967   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3968   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3969 
3970   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3971   // to use vrgatherei16.vv.
3972   // TODO: It's also possible to use vrgatherei16.vv for other types to
3973   // decrease register width for the index calculation.
3974   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3975     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3976     // Reverse each half, then reassemble them in reverse order.
3977     // NOTE: It's also possible that after splitting that VLMAX no longer
3978     // requires vrgatherei16.vv.
3979     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3980       SDValue Lo, Hi;
3981       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3982       EVT LoVT, HiVT;
3983       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
3984       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
3985       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
3986       // Reassemble the low and high pieces reversed.
3987       // FIXME: This is a CONCAT_VECTORS.
3988       SDValue Res =
3989           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
3990                       DAG.getIntPtrConstant(0, DL));
3991       return DAG.getNode(
3992           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
3993           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
3994     }
3995 
3996     // Just promote the int type to i16 which will double the LMUL.
3997     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
3998     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
3999   }
4000 
4001   MVT XLenVT = Subtarget.getXLenVT();
4002   SDValue Mask, VL;
4003   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4004 
4005   // Calculate VLMAX-1 for the desired SEW.
4006   unsigned MinElts = VecVT.getVectorMinNumElements();
4007   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4008                               DAG.getConstant(MinElts, DL, XLenVT));
4009   SDValue VLMinus1 =
4010       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4011 
4012   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4013   bool IsRV32E64 =
4014       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4015   SDValue SplatVL;
4016   if (!IsRV32E64)
4017     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4018   else
4019     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4020 
4021   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4022   SDValue Indices =
4023       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4024 
4025   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4026 }
4027 
4028 SDValue
4029 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4030                                                      SelectionDAG &DAG) const {
4031   SDLoc DL(Op);
4032   auto *Load = cast<LoadSDNode>(Op);
4033 
4034   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4035                                       Load->getMemoryVT(),
4036                                       *Load->getMemOperand())) {
4037     SDValue Result, Chain;
4038     std::tie(Result, Chain) = expandUnalignedLoad(Load, DAG);
4039     return DAG.getMergeValues({Result, Chain}, DL);
4040   }
4041 
4042   MVT VT = Op.getSimpleValueType();
4043   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4044 
4045   SDValue VL =
4046       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4047 
4048   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4049   SDValue NewLoad = DAG.getMemIntrinsicNode(
4050       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4051       Load->getMemoryVT(), Load->getMemOperand());
4052 
4053   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4054   return DAG.getMergeValues({Result, Load->getChain()}, DL);
4055 }
4056 
4057 SDValue
4058 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4059                                                       SelectionDAG &DAG) const {
4060   SDLoc DL(Op);
4061   auto *Store = cast<StoreSDNode>(Op);
4062 
4063   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4064                                       Store->getMemoryVT(),
4065                                       *Store->getMemOperand()))
4066     return expandUnalignedStore(Store, DAG);
4067 
4068   SDValue StoreVal = Store->getValue();
4069   MVT VT = StoreVal.getSimpleValueType();
4070 
4071   // If the size less than a byte, we need to pad with zeros to make a byte.
4072   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4073     VT = MVT::v8i1;
4074     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4075                            DAG.getConstant(0, DL, VT), StoreVal,
4076                            DAG.getIntPtrConstant(0, DL));
4077   }
4078 
4079   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4080 
4081   SDValue VL =
4082       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4083 
4084   SDValue NewValue =
4085       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4086   return DAG.getMemIntrinsicNode(
4087       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4088       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4089       Store->getMemoryVT(), Store->getMemOperand());
4090 }
4091 
4092 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
4093   auto *Load = cast<MaskedLoadSDNode>(Op);
4094 
4095   SDLoc DL(Op);
4096   MVT VT = Op.getSimpleValueType();
4097   MVT XLenVT = Subtarget.getXLenVT();
4098 
4099   SDValue Mask = Load->getMask();
4100   SDValue PassThru = Load->getPassThru();
4101   SDValue VL;
4102 
4103   MVT ContainerVT = VT;
4104   if (VT.isFixedLengthVector()) {
4105     ContainerVT = getContainerForFixedLengthVector(VT);
4106     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4107 
4108     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4109     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4110     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4111   } else
4112     VL = DAG.getRegister(RISCV::X0, XLenVT);
4113 
4114   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4115   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4116   SDValue Ops[] = {Load->getChain(),   IntID, PassThru,
4117                    Load->getBasePtr(), Mask,  VL};
4118   SDValue Result =
4119       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4120                               Load->getMemoryVT(), Load->getMemOperand());
4121   SDValue Chain = Result.getValue(1);
4122 
4123   if (VT.isFixedLengthVector())
4124     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4125 
4126   return DAG.getMergeValues({Result, Chain}, DL);
4127 }
4128 
4129 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
4130   auto *Store = cast<MaskedStoreSDNode>(Op);
4131 
4132   SDLoc DL(Op);
4133   SDValue Val = Store->getValue();
4134   SDValue Mask = Store->getMask();
4135   MVT VT = Val.getSimpleValueType();
4136   MVT XLenVT = Subtarget.getXLenVT();
4137   SDValue VL;
4138 
4139   MVT ContainerVT = VT;
4140   if (VT.isFixedLengthVector()) {
4141     ContainerVT = getContainerForFixedLengthVector(VT);
4142     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4143 
4144     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4145     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4146     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4147   } else
4148     VL = DAG.getRegister(RISCV::X0, XLenVT);
4149 
4150   SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4151   return DAG.getMemIntrinsicNode(
4152       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4153       {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4154       Store->getMemoryVT(), Store->getMemOperand());
4155 }
4156 
4157 SDValue
4158 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4159                                                       SelectionDAG &DAG) const {
4160   MVT InVT = Op.getOperand(0).getSimpleValueType();
4161   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4162 
4163   MVT VT = Op.getSimpleValueType();
4164 
4165   SDValue Op1 =
4166       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4167   SDValue Op2 =
4168       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4169 
4170   SDLoc DL(Op);
4171   SDValue VL =
4172       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4173 
4174   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4175   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4176 
4177   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4178                             Op.getOperand(2), Mask, VL);
4179 
4180   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4181 }
4182 
4183 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4184     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4185   MVT VT = Op.getSimpleValueType();
4186 
4187   if (VT.getVectorElementType() == MVT::i1)
4188     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4189 
4190   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4191 }
4192 
4193 // Lower vector ABS to smax(X, sub(0, X)).
4194 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4195   SDLoc DL(Op);
4196   MVT VT = Op.getSimpleValueType();
4197   SDValue X = Op.getOperand(0);
4198 
4199   assert(VT.isFixedLengthVector() && "Unexpected type");
4200 
4201   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4202   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4203 
4204   SDValue Mask, VL;
4205   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4206 
4207   SDValue SplatZero =
4208       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4209                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4210   SDValue NegX =
4211       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4212   SDValue Max =
4213       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4214 
4215   return convertFromScalableVector(VT, Max, DAG, Subtarget);
4216 }
4217 
4218 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4219     SDValue Op, SelectionDAG &DAG) const {
4220   SDLoc DL(Op);
4221   MVT VT = Op.getSimpleValueType();
4222   SDValue Mag = Op.getOperand(0);
4223   SDValue Sign = Op.getOperand(1);
4224   assert(Mag.getValueType() == Sign.getValueType() &&
4225          "Can only handle COPYSIGN with matching types.");
4226 
4227   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4228   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4229   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4230 
4231   SDValue Mask, VL;
4232   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4233 
4234   SDValue CopySign =
4235       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4236 
4237   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4238 }
4239 
4240 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4241     SDValue Op, SelectionDAG &DAG) const {
4242   MVT VT = Op.getSimpleValueType();
4243   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4244 
4245   MVT I1ContainerVT =
4246       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4247 
4248   SDValue CC =
4249       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4250   SDValue Op1 =
4251       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4252   SDValue Op2 =
4253       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4254 
4255   SDLoc DL(Op);
4256   SDValue Mask, VL;
4257   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4258 
4259   SDValue Select =
4260       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4261 
4262   return convertFromScalableVector(VT, Select, DAG, Subtarget);
4263 }
4264 
4265 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4266                                                unsigned NewOpc,
4267                                                bool HasMask) const {
4268   MVT VT = Op.getSimpleValueType();
4269   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4270 
4271   // Create list of operands by converting existing ones to scalable types.
4272   SmallVector<SDValue, 6> Ops;
4273   for (const SDValue &V : Op->op_values()) {
4274     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4275 
4276     // Pass through non-vector operands.
4277     if (!V.getValueType().isVector()) {
4278       Ops.push_back(V);
4279       continue;
4280     }
4281 
4282     // "cast" fixed length vector to a scalable vector.
4283     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4284            "Only fixed length vectors are supported!");
4285     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4286   }
4287 
4288   SDLoc DL(Op);
4289   SDValue Mask, VL;
4290   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4291   if (HasMask)
4292     Ops.push_back(Mask);
4293   Ops.push_back(VL);
4294 
4295   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4296   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4297 }
4298 
4299 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4300 // * Operands of each node are assumed to be in the same order.
4301 // * The EVL operand is promoted from i32 to i64 on RV64.
4302 // * Fixed-length vectors are converted to their scalable-vector container
4303 //   types.
4304 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
4305                                        unsigned RISCVISDOpc) const {
4306   SDLoc DL(Op);
4307   MVT VT = Op.getSimpleValueType();
4308   SmallVector<SDValue, 4> Ops;
4309 
4310   for (const auto &OpIdx : enumerate(Op->ops())) {
4311     SDValue V = OpIdx.value();
4312     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4313     // Pass through operands which aren't fixed-length vectors.
4314     if (!V.getValueType().isFixedLengthVector()) {
4315       Ops.push_back(V);
4316       continue;
4317     }
4318     // "cast" fixed length vector to a scalable vector.
4319     MVT OpVT = V.getSimpleValueType();
4320     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
4321     assert(useRVVForFixedLengthVectorVT(OpVT) &&
4322            "Only fixed length vectors are supported!");
4323     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4324   }
4325 
4326   if (!VT.isFixedLengthVector())
4327     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
4328 
4329   MVT ContainerVT = getContainerForFixedLengthVector(VT);
4330 
4331   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
4332 
4333   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
4334 }
4335 
4336 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4337 // a RVV indexed load. The RVV indexed load instructions only support the
4338 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4339 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4340 // indexing is extended to the XLEN value type and scaled accordingly.
4341 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4342   auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4343   SDLoc DL(Op);
4344 
4345   SDValue Index = MGN->getIndex();
4346   SDValue Mask = MGN->getMask();
4347   SDValue PassThru = MGN->getPassThru();
4348 
4349   MVT VT = Op.getSimpleValueType();
4350   MVT IndexVT = Index.getSimpleValueType();
4351   MVT XLenVT = Subtarget.getXLenVT();
4352 
4353   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4354          "Unexpected VTs!");
4355   assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4356          "Unexpected pointer type");
4357   // Targets have to explicitly opt-in for extending vector loads.
4358   assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4359          "Unexpected extending MGATHER");
4360 
4361   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4362   // the selection of the masked intrinsics doesn't do this for us.
4363   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4364 
4365   SDValue VL;
4366   MVT ContainerVT = VT;
4367   if (VT.isFixedLengthVector()) {
4368     // We need to use the larger of the result and index type to determine the
4369     // scalable type to use so we don't increase LMUL for any operand/result.
4370     if (VT.bitsGE(IndexVT)) {
4371       ContainerVT = getContainerForFixedLengthVector(VT);
4372       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4373                                  ContainerVT.getVectorElementCount());
4374     } else {
4375       IndexVT = getContainerForFixedLengthVector(IndexVT);
4376       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4377                                      IndexVT.getVectorElementCount());
4378     }
4379 
4380     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4381 
4382     if (!IsUnmasked) {
4383       MVT MaskVT =
4384           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4385       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4386       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4387     }
4388 
4389     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4390   } else
4391     VL = DAG.getRegister(RISCV::X0, XLenVT);
4392 
4393   unsigned IntID =
4394       IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask;
4395   SmallVector<SDValue, 8> Ops{MGN->getChain(),
4396                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4397   if (!IsUnmasked)
4398     Ops.push_back(PassThru);
4399   Ops.push_back(MGN->getBasePtr());
4400   Ops.push_back(Index);
4401   if (!IsUnmasked)
4402     Ops.push_back(Mask);
4403   Ops.push_back(VL);
4404 
4405   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4406   SDValue Result =
4407       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4408                               MGN->getMemoryVT(), MGN->getMemOperand());
4409   SDValue Chain = Result.getValue(1);
4410 
4411   if (VT.isFixedLengthVector())
4412     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4413 
4414   return DAG.getMergeValues({Result, Chain}, DL);
4415 }
4416 
4417 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4418 // a RVV indexed store. The RVV indexed store instructions only support the
4419 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4420 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4421 // indexing is extended to the XLEN value type and scaled accordingly.
4422 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4423                                            SelectionDAG &DAG) const {
4424   auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4425   SDLoc DL(Op);
4426   SDValue Index = MSN->getIndex();
4427   SDValue Mask = MSN->getMask();
4428   SDValue Val = MSN->getValue();
4429 
4430   MVT VT = Val.getSimpleValueType();
4431   MVT IndexVT = Index.getSimpleValueType();
4432   MVT XLenVT = Subtarget.getXLenVT();
4433 
4434   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4435          "Unexpected VTs!");
4436   assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4437          "Unexpected pointer type");
4438   // Targets have to explicitly opt-in for extending vector loads and
4439   // truncating vector stores.
4440   assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4441 
4442   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4443   // the selection of the masked intrinsics doesn't do this for us.
4444   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4445 
4446   SDValue VL;
4447   if (VT.isFixedLengthVector()) {
4448     // We need to use the larger of the value and index type to determine the
4449     // scalable type to use so we don't increase LMUL for any operand/result.
4450     MVT ContainerVT;
4451     if (VT.bitsGE(IndexVT)) {
4452       ContainerVT = getContainerForFixedLengthVector(VT);
4453       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4454                                  ContainerVT.getVectorElementCount());
4455     } else {
4456       IndexVT = getContainerForFixedLengthVector(IndexVT);
4457       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4458                                      IndexVT.getVectorElementCount());
4459     }
4460 
4461     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4462     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4463 
4464     if (!IsUnmasked) {
4465       MVT MaskVT =
4466           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4467       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4468     }
4469 
4470     VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4471   } else
4472     VL = DAG.getRegister(RISCV::X0, XLenVT);
4473 
4474   unsigned IntID =
4475       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4476   SmallVector<SDValue, 8> Ops{MSN->getChain(),
4477                               DAG.getTargetConstant(IntID, DL, XLenVT)};
4478   Ops.push_back(Val);
4479   Ops.push_back(MSN->getBasePtr());
4480   Ops.push_back(Index);
4481   if (!IsUnmasked)
4482     Ops.push_back(Mask);
4483   Ops.push_back(VL);
4484 
4485   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4486                                  MSN->getMemoryVT(), MSN->getMemOperand());
4487 }
4488 
4489 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4490                                                SelectionDAG &DAG) const {
4491   const MVT XLenVT = Subtarget.getXLenVT();
4492   SDLoc DL(Op);
4493   SDValue Chain = Op->getOperand(0);
4494   SDValue SysRegNo = DAG.getConstant(
4495       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4496   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4497   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4498 
4499   // Encoding used for rounding mode in RISCV differs from that used in
4500   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4501   // table, which consists of a sequence of 4-bit fields, each representing
4502   // corresponding FLT_ROUNDS mode.
4503   static const int Table =
4504       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4505       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4506       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4507       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4508       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4509 
4510   SDValue Shift =
4511       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4512   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4513                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4514   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4515                                DAG.getConstant(7, DL, XLenVT));
4516 
4517   return DAG.getMergeValues({Masked, Chain}, DL);
4518 }
4519 
4520 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4521                                                SelectionDAG &DAG) const {
4522   const MVT XLenVT = Subtarget.getXLenVT();
4523   SDLoc DL(Op);
4524   SDValue Chain = Op->getOperand(0);
4525   SDValue RMValue = Op->getOperand(1);
4526   SDValue SysRegNo = DAG.getConstant(
4527       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4528 
4529   // Encoding used for rounding mode in RISCV differs from that used in
4530   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4531   // a table, which consists of a sequence of 4-bit fields, each representing
4532   // corresponding RISCV mode.
4533   static const unsigned Table =
4534       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4535       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4536       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4537       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4538       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4539 
4540   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4541                               DAG.getConstant(2, DL, XLenVT));
4542   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4543                                 DAG.getConstant(Table, DL, XLenVT), Shift);
4544   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4545                         DAG.getConstant(0x7, DL, XLenVT));
4546   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4547                      RMValue);
4548 }
4549 
4550 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4551 // form of the given Opcode.
4552 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4553   switch (Opcode) {
4554   default:
4555     llvm_unreachable("Unexpected opcode");
4556   case ISD::SHL:
4557     return RISCVISD::SLLW;
4558   case ISD::SRA:
4559     return RISCVISD::SRAW;
4560   case ISD::SRL:
4561     return RISCVISD::SRLW;
4562   case ISD::SDIV:
4563     return RISCVISD::DIVW;
4564   case ISD::UDIV:
4565     return RISCVISD::DIVUW;
4566   case ISD::UREM:
4567     return RISCVISD::REMUW;
4568   case ISD::ROTL:
4569     return RISCVISD::ROLW;
4570   case ISD::ROTR:
4571     return RISCVISD::RORW;
4572   case RISCVISD::GREV:
4573     return RISCVISD::GREVW;
4574   case RISCVISD::GORC:
4575     return RISCVISD::GORCW;
4576   }
4577 }
4578 
4579 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
4580 // Because i32 isn't a legal type for RV64, these operations would otherwise
4581 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
4582 // later one because the fact the operation was originally of type i32 is
4583 // lost.
4584 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4585                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
4586   SDLoc DL(N);
4587   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4588   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4589   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4590   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4591   // ReplaceNodeResults requires we maintain the same type for the return value.
4592   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4593 }
4594 
4595 // Converts the given 32-bit operation to a i64 operation with signed extension
4596 // semantic to reduce the signed extension instructions.
4597 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4598   SDLoc DL(N);
4599   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4600   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4601   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4602   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4603                                DAG.getValueType(MVT::i32));
4604   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4605 }
4606 
4607 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4608                                              SmallVectorImpl<SDValue> &Results,
4609                                              SelectionDAG &DAG) const {
4610   SDLoc DL(N);
4611   switch (N->getOpcode()) {
4612   default:
4613     llvm_unreachable("Don't know how to custom type legalize this operation!");
4614   case ISD::STRICT_FP_TO_SINT:
4615   case ISD::STRICT_FP_TO_UINT:
4616   case ISD::FP_TO_SINT:
4617   case ISD::FP_TO_UINT: {
4618     bool IsStrict = N->isStrictFPOpcode();
4619     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4620            "Unexpected custom legalisation");
4621     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4622     // If the FP type needs to be softened, emit a library call using the 'si'
4623     // version. If we left it to default legalization we'd end up with 'di'. If
4624     // the FP type doesn't need to be softened just let generic type
4625     // legalization promote the result type.
4626     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4627         TargetLowering::TypeSoftenFloat)
4628       return;
4629     RTLIB::Libcall LC;
4630     if (N->getOpcode() == ISD::FP_TO_SINT ||
4631         N->getOpcode() == ISD::STRICT_FP_TO_SINT)
4632       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4633     else
4634       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4635     MakeLibCallOptions CallOptions;
4636     EVT OpVT = Op0.getValueType();
4637     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4638     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4639     SDValue Result;
4640     std::tie(Result, Chain) =
4641         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4642     Results.push_back(Result);
4643     if (IsStrict)
4644       Results.push_back(Chain);
4645     break;
4646   }
4647   case ISD::READCYCLECOUNTER: {
4648     assert(!Subtarget.is64Bit() &&
4649            "READCYCLECOUNTER only has custom type legalization on riscv32");
4650 
4651     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4652     SDValue RCW =
4653         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4654 
4655     Results.push_back(
4656         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4657     Results.push_back(RCW.getValue(2));
4658     break;
4659   }
4660   case ISD::MUL: {
4661     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4662     unsigned XLen = Subtarget.getXLen();
4663     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4664     if (Size > XLen) {
4665       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4666       SDValue LHS = N->getOperand(0);
4667       SDValue RHS = N->getOperand(1);
4668       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4669 
4670       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4671       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4672       // We need exactly one side to be unsigned.
4673       if (LHSIsU == RHSIsU)
4674         return;
4675 
4676       auto MakeMULPair = [&](SDValue S, SDValue U) {
4677         MVT XLenVT = Subtarget.getXLenVT();
4678         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4679         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4680         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4681         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4682         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4683       };
4684 
4685       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4686       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4687 
4688       // The other operand should be signed, but still prefer MULH when
4689       // possible.
4690       if (RHSIsU && LHSIsS && !RHSIsS)
4691         Results.push_back(MakeMULPair(LHS, RHS));
4692       else if (LHSIsU && RHSIsS && !LHSIsS)
4693         Results.push_back(MakeMULPair(RHS, LHS));
4694 
4695       return;
4696     }
4697     LLVM_FALLTHROUGH;
4698   }
4699   case ISD::ADD:
4700   case ISD::SUB:
4701     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4702            "Unexpected custom legalisation");
4703     if (N->getOperand(1).getOpcode() == ISD::Constant)
4704       return;
4705     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4706     break;
4707   case ISD::SHL:
4708   case ISD::SRA:
4709   case ISD::SRL:
4710     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4711            "Unexpected custom legalisation");
4712     if (N->getOperand(1).getOpcode() == ISD::Constant)
4713       return;
4714     Results.push_back(customLegalizeToWOp(N, DAG));
4715     break;
4716   case ISD::ROTL:
4717   case ISD::ROTR:
4718     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4719            "Unexpected custom legalisation");
4720     Results.push_back(customLegalizeToWOp(N, DAG));
4721     break;
4722   case ISD::CTTZ:
4723   case ISD::CTTZ_ZERO_UNDEF:
4724   case ISD::CTLZ:
4725   case ISD::CTLZ_ZERO_UNDEF: {
4726     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4727            "Unexpected custom legalisation");
4728 
4729     SDValue NewOp0 =
4730         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4731     bool IsCTZ =
4732         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
4733     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
4734     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
4735     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4736     return;
4737   }
4738   case ISD::SDIV:
4739   case ISD::UDIV:
4740   case ISD::UREM: {
4741     MVT VT = N->getSimpleValueType(0);
4742     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
4743            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
4744            "Unexpected custom legalisation");
4745     if (N->getOperand(0).getOpcode() == ISD::Constant ||
4746         N->getOperand(1).getOpcode() == ISD::Constant)
4747       return;
4748 
4749     // If the input is i32, use ANY_EXTEND since the W instructions don't read
4750     // the upper 32 bits. For other types we need to sign or zero extend
4751     // based on the opcode.
4752     unsigned ExtOpc = ISD::ANY_EXTEND;
4753     if (VT != MVT::i32)
4754       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
4755                                            : ISD::ZERO_EXTEND;
4756 
4757     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
4758     break;
4759   }
4760   case ISD::UADDO:
4761   case ISD::USUBO: {
4762     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4763            "Unexpected custom legalisation");
4764     bool IsAdd = N->getOpcode() == ISD::UADDO;
4765     // Create an ADDW or SUBW.
4766     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4767     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4768     SDValue Res =
4769         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
4770     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
4771                       DAG.getValueType(MVT::i32));
4772 
4773     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
4774     // Since the inputs are sign extended from i32, this is equivalent to
4775     // comparing the lower 32 bits.
4776     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4777     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
4778                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
4779 
4780     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4781     Results.push_back(Overflow);
4782     return;
4783   }
4784   case ISD::UADDSAT:
4785   case ISD::USUBSAT: {
4786     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4787            "Unexpected custom legalisation");
4788     if (Subtarget.hasStdExtZbb()) {
4789       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
4790       // sign extend allows overflow of the lower 32 bits to be detected on
4791       // the promoted size.
4792       SDValue LHS =
4793           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4794       SDValue RHS =
4795           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
4796       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
4797       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4798       return;
4799     }
4800 
4801     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
4802     // promotion for UADDO/USUBO.
4803     Results.push_back(expandAddSubSat(N, DAG));
4804     return;
4805   }
4806   case ISD::BITCAST: {
4807     EVT VT = N->getValueType(0);
4808     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
4809     SDValue Op0 = N->getOperand(0);
4810     EVT Op0VT = Op0.getValueType();
4811     MVT XLenVT = Subtarget.getXLenVT();
4812     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
4813       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
4814       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
4815     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
4816                Subtarget.hasStdExtF()) {
4817       SDValue FPConv =
4818           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
4819       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
4820     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
4821                isTypeLegal(Op0VT)) {
4822       // Custom-legalize bitcasts from fixed-length vector types to illegal
4823       // scalar types in order to improve codegen. Bitcast the vector to a
4824       // one-element vector type whose element type is the same as the result
4825       // type, and extract the first element.
4826       LLVMContext &Context = *DAG.getContext();
4827       SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
4828       Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
4829                                     DAG.getConstant(0, DL, XLenVT)));
4830     }
4831     break;
4832   }
4833   case RISCVISD::GREV:
4834   case RISCVISD::GORC: {
4835     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4836            "Unexpected custom legalisation");
4837     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4838     // This is similar to customLegalizeToWOp, except that we pass the second
4839     // operand (a TargetConstant) straight through: it is already of type
4840     // XLenVT.
4841     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4842     SDValue NewOp0 =
4843         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4844     SDValue NewOp1 =
4845         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4846     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4847     // ReplaceNodeResults requires we maintain the same type for the return
4848     // value.
4849     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4850     break;
4851   }
4852   case RISCVISD::SHFL: {
4853     // There is no SHFLIW instruction, but we can just promote the operation.
4854     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4855            "Unexpected custom legalisation");
4856     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4857     SDValue NewOp0 =
4858         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4859     SDValue NewOp1 =
4860         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4861     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
4862     // ReplaceNodeResults requires we maintain the same type for the return
4863     // value.
4864     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4865     break;
4866   }
4867   case ISD::BSWAP:
4868   case ISD::BITREVERSE: {
4869     MVT VT = N->getSimpleValueType(0);
4870     MVT XLenVT = Subtarget.getXLenVT();
4871     assert((VT == MVT::i8 || VT == MVT::i16 ||
4872             (VT == MVT::i32 && Subtarget.is64Bit())) &&
4873            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
4874     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
4875     unsigned Imm = VT.getSizeInBits() - 1;
4876     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
4877     if (N->getOpcode() == ISD::BSWAP)
4878       Imm &= ~0x7U;
4879     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
4880     SDValue GREVI =
4881         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
4882     // ReplaceNodeResults requires we maintain the same type for the return
4883     // value.
4884     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
4885     break;
4886   }
4887   case ISD::FSHL:
4888   case ISD::FSHR: {
4889     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4890            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
4891     SDValue NewOp0 =
4892         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4893     SDValue NewOp1 =
4894         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4895     SDValue NewOp2 =
4896         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4897     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
4898     // Mask the shift amount to 5 bits.
4899     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4900                          DAG.getConstant(0x1f, DL, MVT::i64));
4901     unsigned Opc =
4902         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
4903     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
4904     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
4905     break;
4906   }
4907   case ISD::EXTRACT_VECTOR_ELT: {
4908     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
4909     // type is illegal (currently only vXi64 RV32).
4910     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
4911     // transferred to the destination register. We issue two of these from the
4912     // upper- and lower- halves of the SEW-bit vector element, slid down to the
4913     // first element.
4914     SDValue Vec = N->getOperand(0);
4915     SDValue Idx = N->getOperand(1);
4916 
4917     // The vector type hasn't been legalized yet so we can't issue target
4918     // specific nodes if it needs legalization.
4919     // FIXME: We would manually legalize if it's important.
4920     if (!isTypeLegal(Vec.getValueType()))
4921       return;
4922 
4923     MVT VecVT = Vec.getSimpleValueType();
4924 
4925     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
4926            VecVT.getVectorElementType() == MVT::i64 &&
4927            "Unexpected EXTRACT_VECTOR_ELT legalization");
4928 
4929     // If this is a fixed vector, we need to convert it to a scalable vector.
4930     MVT ContainerVT = VecVT;
4931     if (VecVT.isFixedLengthVector()) {
4932       ContainerVT = getContainerForFixedLengthVector(VecVT);
4933       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4934     }
4935 
4936     MVT XLenVT = Subtarget.getXLenVT();
4937 
4938     // Use a VL of 1 to avoid processing more elements than we need.
4939     MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4940     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4941     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4942 
4943     // Unless the index is known to be 0, we must slide the vector down to get
4944     // the desired element into index 0.
4945     if (!isNullConstant(Idx)) {
4946       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4947                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4948     }
4949 
4950     // Extract the lower XLEN bits of the correct vector element.
4951     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4952 
4953     // To extract the upper XLEN bits of the vector element, shift the first
4954     // element right by 32 bits and re-extract the lower XLEN bits.
4955     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4956                                      DAG.getConstant(32, DL, XLenVT), VL);
4957     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
4958                                  ThirtyTwoV, Mask, VL);
4959 
4960     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4961 
4962     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4963     break;
4964   }
4965   case ISD::INTRINSIC_WO_CHAIN: {
4966     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4967     switch (IntNo) {
4968     default:
4969       llvm_unreachable(
4970           "Don't know how to custom type legalize this intrinsic!");
4971     case Intrinsic::riscv_orc_b: {
4972       // Lower to the GORCI encoding for orc.b with the operand extended.
4973       SDValue NewOp =
4974           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4975       // If Zbp is enabled, use GORCIW which will sign extend the result.
4976       unsigned Opc =
4977           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
4978       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
4979                                 DAG.getConstant(7, DL, MVT::i64));
4980       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4981       return;
4982     }
4983     case Intrinsic::riscv_grev:
4984     case Intrinsic::riscv_gorc: {
4985       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4986              "Unexpected custom legalisation");
4987       SDValue NewOp1 =
4988           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4989       SDValue NewOp2 =
4990           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4991       unsigned Opc =
4992           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
4993       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4994       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4995       break;
4996     }
4997     case Intrinsic::riscv_shfl:
4998     case Intrinsic::riscv_unshfl: {
4999       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5000              "Unexpected custom legalisation");
5001       SDValue NewOp1 =
5002           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5003       SDValue NewOp2 =
5004           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5005       unsigned Opc =
5006           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5007       if (isa<ConstantSDNode>(N->getOperand(2))) {
5008         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5009                              DAG.getConstant(0xf, DL, MVT::i64));
5010         Opc =
5011             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5012       }
5013       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5014       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5015       break;
5016     }
5017     case Intrinsic::riscv_bcompress:
5018     case Intrinsic::riscv_bdecompress: {
5019       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5020              "Unexpected custom legalisation");
5021       SDValue NewOp1 =
5022           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5023       SDValue NewOp2 =
5024           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5025       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5026                          ? RISCVISD::BCOMPRESSW
5027                          : RISCVISD::BDECOMPRESSW;
5028       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5029       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5030       break;
5031     }
5032     case Intrinsic::riscv_vmv_x_s: {
5033       EVT VT = N->getValueType(0);
5034       MVT XLenVT = Subtarget.getXLenVT();
5035       if (VT.bitsLT(XLenVT)) {
5036         // Simple case just extract using vmv.x.s and truncate.
5037         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5038                                       Subtarget.getXLenVT(), N->getOperand(1));
5039         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5040         return;
5041       }
5042 
5043       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5044              "Unexpected custom legalization");
5045 
5046       // We need to do the move in two steps.
5047       SDValue Vec = N->getOperand(1);
5048       MVT VecVT = Vec.getSimpleValueType();
5049 
5050       // First extract the lower XLEN bits of the element.
5051       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5052 
5053       // To extract the upper XLEN bits of the vector element, shift the first
5054       // element right by 32 bits and re-extract the lower XLEN bits.
5055       SDValue VL = DAG.getConstant(1, DL, XLenVT);
5056       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5057       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5058       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5059                                        DAG.getConstant(32, DL, XLenVT), VL);
5060       SDValue LShr32 =
5061           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5062       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5063 
5064       Results.push_back(
5065           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5066       break;
5067     }
5068     }
5069     break;
5070   }
5071   case ISD::VECREDUCE_ADD:
5072   case ISD::VECREDUCE_AND:
5073   case ISD::VECREDUCE_OR:
5074   case ISD::VECREDUCE_XOR:
5075   case ISD::VECREDUCE_SMAX:
5076   case ISD::VECREDUCE_UMAX:
5077   case ISD::VECREDUCE_SMIN:
5078   case ISD::VECREDUCE_UMIN:
5079     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5080       Results.push_back(V);
5081     break;
5082   case ISD::FLT_ROUNDS_: {
5083     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5084     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5085     Results.push_back(Res.getValue(0));
5086     Results.push_back(Res.getValue(1));
5087     break;
5088   }
5089   }
5090 }
5091 
5092 // A structure to hold one of the bit-manipulation patterns below. Together, a
5093 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5094 //   (or (and (shl x, 1), 0xAAAAAAAA),
5095 //       (and (srl x, 1), 0x55555555))
5096 struct RISCVBitmanipPat {
5097   SDValue Op;
5098   unsigned ShAmt;
5099   bool IsSHL;
5100 
5101   bool formsPairWith(const RISCVBitmanipPat &Other) const {
5102     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5103   }
5104 };
5105 
5106 // Matches patterns of the form
5107 //   (and (shl x, C2), (C1 << C2))
5108 //   (and (srl x, C2), C1)
5109 //   (shl (and x, C1), C2)
5110 //   (srl (and x, (C1 << C2)), C2)
5111 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5112 // The expected masks for each shift amount are specified in BitmanipMasks where
5113 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5114 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5115 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5116 // XLen is 64.
5117 static Optional<RISCVBitmanipPat>
5118 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5119   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5120          "Unexpected number of masks");
5121   Optional<uint64_t> Mask;
5122   // Optionally consume a mask around the shift operation.
5123   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5124     Mask = Op.getConstantOperandVal(1);
5125     Op = Op.getOperand(0);
5126   }
5127   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5128     return None;
5129   bool IsSHL = Op.getOpcode() == ISD::SHL;
5130 
5131   if (!isa<ConstantSDNode>(Op.getOperand(1)))
5132     return None;
5133   uint64_t ShAmt = Op.getConstantOperandVal(1);
5134 
5135   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5136   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
5137     return None;
5138   // If we don't have enough masks for 64 bit, then we must be trying to
5139   // match SHFL so we're only allowed to shift 1/4 of the width.
5140   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
5141     return None;
5142 
5143   SDValue Src = Op.getOperand(0);
5144 
5145   // The expected mask is shifted left when the AND is found around SHL
5146   // patterns.
5147   //   ((x >> 1) & 0x55555555)
5148   //   ((x << 1) & 0xAAAAAAAA)
5149   bool SHLExpMask = IsSHL;
5150 
5151   if (!Mask) {
5152     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5153     // the mask is all ones: consume that now.
5154     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
5155       Mask = Src.getConstantOperandVal(1);
5156       Src = Src.getOperand(0);
5157       // The expected mask is now in fact shifted left for SRL, so reverse the
5158       // decision.
5159       //   ((x & 0xAAAAAAAA) >> 1)
5160       //   ((x & 0x55555555) << 1)
5161       SHLExpMask = !SHLExpMask;
5162     } else {
5163       // Use a default shifted mask of all-ones if there's no AND, truncated
5164       // down to the expected width. This simplifies the logic later on.
5165       Mask = maskTrailingOnes<uint64_t>(Width);
5166       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
5167     }
5168   }
5169 
5170   unsigned MaskIdx = Log2_32(ShAmt);
5171   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5172 
5173   if (SHLExpMask)
5174     ExpMask <<= ShAmt;
5175 
5176   if (Mask != ExpMask)
5177     return None;
5178 
5179   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
5180 }
5181 
5182 // Matches any of the following bit-manipulation patterns:
5183 //   (and (shl x, 1), (0x55555555 << 1))
5184 //   (and (srl x, 1), 0x55555555)
5185 //   (shl (and x, 0x55555555), 1)
5186 //   (srl (and x, (0x55555555 << 1)), 1)
5187 // where the shift amount and mask may vary thus:
5188 //   [1]  = 0x55555555 / 0xAAAAAAAA
5189 //   [2]  = 0x33333333 / 0xCCCCCCCC
5190 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
5191 //   [8]  = 0x00FF00FF / 0xFF00FF00
5192 //   [16] = 0x0000FFFF / 0xFFFFFFFF
5193 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
5194 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5195   // These are the unshifted masks which we use to match bit-manipulation
5196   // patterns. They may be shifted left in certain circumstances.
5197   static const uint64_t BitmanipMasks[] = {
5198       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5199       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5200 
5201   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5202 }
5203 
5204 // Match the following pattern as a GREVI(W) operation
5205 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
5206 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5207                                const RISCVSubtarget &Subtarget) {
5208   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5209   EVT VT = Op.getValueType();
5210 
5211   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5212     auto LHS = matchGREVIPat(Op.getOperand(0));
5213     auto RHS = matchGREVIPat(Op.getOperand(1));
5214     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5215       SDLoc DL(Op);
5216       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5217                          DAG.getConstant(LHS->ShAmt, DL, VT));
5218     }
5219   }
5220   return SDValue();
5221 }
5222 
5223 // Matches any the following pattern as a GORCI(W) operation
5224 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
5225 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
5226 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5227 // Note that with the variant of 3.,
5228 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5229 // the inner pattern will first be matched as GREVI and then the outer
5230 // pattern will be matched to GORC via the first rule above.
5231 // 4.  (or (rotl/rotr x, bitwidth/2), x)
5232 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5233                                const RISCVSubtarget &Subtarget) {
5234   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5235   EVT VT = Op.getValueType();
5236 
5237   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5238     SDLoc DL(Op);
5239     SDValue Op0 = Op.getOperand(0);
5240     SDValue Op1 = Op.getOperand(1);
5241 
5242     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5243       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5244           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5245           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5246         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5247       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5248       if ((Reverse.getOpcode() == ISD::ROTL ||
5249            Reverse.getOpcode() == ISD::ROTR) &&
5250           Reverse.getOperand(0) == X &&
5251           isa<ConstantSDNode>(Reverse.getOperand(1))) {
5252         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5253         if (RotAmt == (VT.getSizeInBits() / 2))
5254           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5255                              DAG.getConstant(RotAmt, DL, VT));
5256       }
5257       return SDValue();
5258     };
5259 
5260     // Check for either commutable permutation of (or (GREVI x, shamt), x)
5261     if (SDValue V = MatchOROfReverse(Op0, Op1))
5262       return V;
5263     if (SDValue V = MatchOROfReverse(Op1, Op0))
5264       return V;
5265 
5266     // OR is commutable so canonicalize its OR operand to the left
5267     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5268       std::swap(Op0, Op1);
5269     if (Op0.getOpcode() != ISD::OR)
5270       return SDValue();
5271     SDValue OrOp0 = Op0.getOperand(0);
5272     SDValue OrOp1 = Op0.getOperand(1);
5273     auto LHS = matchGREVIPat(OrOp0);
5274     // OR is commutable so swap the operands and try again: x might have been
5275     // on the left
5276     if (!LHS) {
5277       std::swap(OrOp0, OrOp1);
5278       LHS = matchGREVIPat(OrOp0);
5279     }
5280     auto RHS = matchGREVIPat(Op1);
5281     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5282       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5283                          DAG.getConstant(LHS->ShAmt, DL, VT));
5284     }
5285   }
5286   return SDValue();
5287 }
5288 
5289 // Matches any of the following bit-manipulation patterns:
5290 //   (and (shl x, 1), (0x22222222 << 1))
5291 //   (and (srl x, 1), 0x22222222)
5292 //   (shl (and x, 0x22222222), 1)
5293 //   (srl (and x, (0x22222222 << 1)), 1)
5294 // where the shift amount and mask may vary thus:
5295 //   [1]  = 0x22222222 / 0x44444444
5296 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
5297 //   [4]  = 0x00F000F0 / 0x0F000F00
5298 //   [8]  = 0x0000FF00 / 0x00FF0000
5299 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
5300 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5301   // These are the unshifted masks which we use to match bit-manipulation
5302   // patterns. They may be shifted left in certain circumstances.
5303   static const uint64_t BitmanipMasks[] = {
5304       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5305       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5306 
5307   return matchRISCVBitmanipPat(Op, BitmanipMasks);
5308 }
5309 
5310 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
5311 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5312                                const RISCVSubtarget &Subtarget) {
5313   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5314   EVT VT = Op.getValueType();
5315 
5316   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5317     return SDValue();
5318 
5319   SDValue Op0 = Op.getOperand(0);
5320   SDValue Op1 = Op.getOperand(1);
5321 
5322   // Or is commutable so canonicalize the second OR to the LHS.
5323   if (Op0.getOpcode() != ISD::OR)
5324     std::swap(Op0, Op1);
5325   if (Op0.getOpcode() != ISD::OR)
5326     return SDValue();
5327 
5328   // We found an inner OR, so our operands are the operands of the inner OR
5329   // and the other operand of the outer OR.
5330   SDValue A = Op0.getOperand(0);
5331   SDValue B = Op0.getOperand(1);
5332   SDValue C = Op1;
5333 
5334   auto Match1 = matchSHFLPat(A);
5335   auto Match2 = matchSHFLPat(B);
5336 
5337   // If neither matched, we failed.
5338   if (!Match1 && !Match2)
5339     return SDValue();
5340 
5341   // We had at least one match. if one failed, try the remaining C operand.
5342   if (!Match1) {
5343     std::swap(A, C);
5344     Match1 = matchSHFLPat(A);
5345     if (!Match1)
5346       return SDValue();
5347   } else if (!Match2) {
5348     std::swap(B, C);
5349     Match2 = matchSHFLPat(B);
5350     if (!Match2)
5351       return SDValue();
5352   }
5353   assert(Match1 && Match2);
5354 
5355   // Make sure our matches pair up.
5356   if (!Match1->formsPairWith(*Match2))
5357     return SDValue();
5358 
5359   // All the remains is to make sure C is an AND with the same input, that masks
5360   // out the bits that are being shuffled.
5361   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5362       C.getOperand(0) != Match1->Op)
5363     return SDValue();
5364 
5365   uint64_t Mask = C.getConstantOperandVal(1);
5366 
5367   static const uint64_t BitmanipMasks[] = {
5368       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5369       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5370   };
5371 
5372   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5373   unsigned MaskIdx = Log2_32(Match1->ShAmt);
5374   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5375 
5376   if (Mask != ExpMask)
5377     return SDValue();
5378 
5379   SDLoc DL(Op);
5380   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5381                      DAG.getConstant(Match1->ShAmt, DL, VT));
5382 }
5383 
5384 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5385 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5386 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5387 // not undo itself, but they are redundant.
5388 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5389   SDValue Src = N->getOperand(0);
5390 
5391   if (Src.getOpcode() != N->getOpcode())
5392     return SDValue();
5393 
5394   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5395       !isa<ConstantSDNode>(Src.getOperand(1)))
5396     return SDValue();
5397 
5398   unsigned ShAmt1 = N->getConstantOperandVal(1);
5399   unsigned ShAmt2 = Src.getConstantOperandVal(1);
5400   Src = Src.getOperand(0);
5401 
5402   unsigned CombinedShAmt;
5403   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5404     CombinedShAmt = ShAmt1 | ShAmt2;
5405   else
5406     CombinedShAmt = ShAmt1 ^ ShAmt2;
5407 
5408   if (CombinedShAmt == 0)
5409     return Src;
5410 
5411   SDLoc DL(N);
5412   return DAG.getNode(
5413       N->getOpcode(), DL, N->getValueType(0), Src,
5414       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5415 }
5416 
5417 // Combine a constant select operand into its use:
5418 //
5419 // (and (select_cc lhs, rhs, cc, -1, c), x)
5420 //   -> (select_cc lhs, rhs, cc, x, (and, x, c))  [AllOnes=1]
5421 // (or  (select_cc lhs, rhs, cc, 0, c), x)
5422 //   -> (select_cc lhs, rhs, cc, x, (or, x, c))  [AllOnes=0]
5423 // (xor (select_cc lhs, rhs, cc, 0, c), x)
5424 //   -> (select_cc lhs, rhs, cc, x, (xor, x, c))  [AllOnes=0]
5425 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5426                                      SelectionDAG &DAG, bool AllOnes) {
5427   EVT VT = N->getValueType(0);
5428 
5429   if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse())
5430     return SDValue();
5431 
5432   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5433     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5434   };
5435 
5436   bool SwapSelectOps;
5437   SDValue TrueVal = Slct.getOperand(3);
5438   SDValue FalseVal = Slct.getOperand(4);
5439   SDValue NonConstantVal;
5440   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5441     SwapSelectOps = false;
5442     NonConstantVal = FalseVal;
5443   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5444     SwapSelectOps = true;
5445     NonConstantVal = TrueVal;
5446   } else
5447     return SDValue();
5448 
5449   // Slct is now know to be the desired identity constant when CC is true.
5450   TrueVal = OtherOp;
5451   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5452   // Unless SwapSelectOps says CC should be false.
5453   if (SwapSelectOps)
5454     std::swap(TrueVal, FalseVal);
5455 
5456   return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5457                      {Slct.getOperand(0), Slct.getOperand(1),
5458                       Slct.getOperand(2), TrueVal, FalseVal});
5459 }
5460 
5461 // Attempt combineSelectAndUse on each operand of a commutative operator N.
5462 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5463                                                 bool AllOnes) {
5464   SDValue N0 = N->getOperand(0);
5465   SDValue N1 = N->getOperand(1);
5466   if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes))
5467     return Result;
5468   if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes))
5469     return Result;
5470   return SDValue();
5471 }
5472 
5473 static SDValue performANDCombine(SDNode *N,
5474                                  TargetLowering::DAGCombinerInfo &DCI,
5475                                  const RISCVSubtarget &Subtarget) {
5476   SelectionDAG &DAG = DCI.DAG;
5477 
5478   // fold (and (select_cc lhs, rhs, cc, -1, y), x) ->
5479   //      (select lhs, rhs, cc, x, (and x, y))
5480   return combineSelectCCAndUseCommutative(N, DAG, true);
5481 }
5482 
5483 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
5484                                 const RISCVSubtarget &Subtarget) {
5485   SelectionDAG &DAG = DCI.DAG;
5486   if (Subtarget.hasStdExtZbp()) {
5487     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5488       return GREV;
5489     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5490       return GORC;
5491     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5492       return SHFL;
5493   }
5494 
5495   // fold (or (select_cc lhs, rhs, cc, 0, y), x) ->
5496   //      (select lhs, rhs, cc, x, (or x, y))
5497   return combineSelectCCAndUseCommutative(N, DAG, false);
5498 }
5499 
5500 static SDValue performXORCombine(SDNode *N,
5501                                  TargetLowering::DAGCombinerInfo &DCI,
5502                                  const RISCVSubtarget &Subtarget) {
5503   SelectionDAG &DAG = DCI.DAG;
5504 
5505   // fold (xor (select_cc lhs, rhs, cc, 0, y), x) ->
5506   //      (select lhs, rhs, cc, x, (xor x, y))
5507   return combineSelectCCAndUseCommutative(N, DAG, false);
5508 }
5509 
5510 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5511                                                DAGCombinerInfo &DCI) const {
5512   SelectionDAG &DAG = DCI.DAG;
5513 
5514   switch (N->getOpcode()) {
5515   default:
5516     break;
5517   case RISCVISD::SplitF64: {
5518     SDValue Op0 = N->getOperand(0);
5519     // If the input to SplitF64 is just BuildPairF64 then the operation is
5520     // redundant. Instead, use BuildPairF64's operands directly.
5521     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5522       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5523 
5524     SDLoc DL(N);
5525 
5526     // It's cheaper to materialise two 32-bit integers than to load a double
5527     // from the constant pool and transfer it to integer registers through the
5528     // stack.
5529     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
5530       APInt V = C->getValueAPF().bitcastToAPInt();
5531       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
5532       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
5533       return DCI.CombineTo(N, Lo, Hi);
5534     }
5535 
5536     // This is a target-specific version of a DAGCombine performed in
5537     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5538     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5539     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5540     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5541         !Op0.getNode()->hasOneUse())
5542       break;
5543     SDValue NewSplitF64 =
5544         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
5545                     Op0.getOperand(0));
5546     SDValue Lo = NewSplitF64.getValue(0);
5547     SDValue Hi = NewSplitF64.getValue(1);
5548     APInt SignBit = APInt::getSignMask(32);
5549     if (Op0.getOpcode() == ISD::FNEG) {
5550       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
5551                                   DAG.getConstant(SignBit, DL, MVT::i32));
5552       return DCI.CombineTo(N, Lo, NewHi);
5553     }
5554     assert(Op0.getOpcode() == ISD::FABS);
5555     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
5556                                 DAG.getConstant(~SignBit, DL, MVT::i32));
5557     return DCI.CombineTo(N, Lo, NewHi);
5558   }
5559   case RISCVISD::SLLW:
5560   case RISCVISD::SRAW:
5561   case RISCVISD::SRLW:
5562   case RISCVISD::ROLW:
5563   case RISCVISD::RORW: {
5564     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5565     SDValue LHS = N->getOperand(0);
5566     SDValue RHS = N->getOperand(1);
5567     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5568     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5569     if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
5570         SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
5571       if (N->getOpcode() != ISD::DELETED_NODE)
5572         DCI.AddToWorklist(N);
5573       return SDValue(N, 0);
5574     }
5575     break;
5576   }
5577   case RISCVISD::CLZW:
5578   case RISCVISD::CTZW: {
5579     // Only the lower 32 bits of the first operand are read
5580     SDValue Op0 = N->getOperand(0);
5581     APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5582     if (SimplifyDemandedBits(Op0, Mask, DCI)) {
5583       if (N->getOpcode() != ISD::DELETED_NODE)
5584         DCI.AddToWorklist(N);
5585       return SDValue(N, 0);
5586     }
5587     break;
5588   }
5589   case RISCVISD::FSL:
5590   case RISCVISD::FSR: {
5591     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
5592     SDValue ShAmt = N->getOperand(2);
5593     unsigned BitWidth = ShAmt.getValueSizeInBits();
5594     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5595     APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
5596     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5597       if (N->getOpcode() != ISD::DELETED_NODE)
5598         DCI.AddToWorklist(N);
5599       return SDValue(N, 0);
5600     }
5601     break;
5602   }
5603   case RISCVISD::FSLW:
5604   case RISCVISD::FSRW: {
5605     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
5606     // read.
5607     SDValue Op0 = N->getOperand(0);
5608     SDValue Op1 = N->getOperand(1);
5609     SDValue ShAmt = N->getOperand(2);
5610     APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5611     APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
5612     if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
5613         SimplifyDemandedBits(Op1, OpMask, DCI) ||
5614         SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5615       if (N->getOpcode() != ISD::DELETED_NODE)
5616         DCI.AddToWorklist(N);
5617       return SDValue(N, 0);
5618     }
5619     break;
5620   }
5621   case RISCVISD::GREV:
5622   case RISCVISD::GORC: {
5623     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5624     SDValue ShAmt = N->getOperand(1);
5625     unsigned BitWidth = ShAmt.getValueSizeInBits();
5626     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5627     APInt ShAmtMask(BitWidth, BitWidth - 1);
5628     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5629       if (N->getOpcode() != ISD::DELETED_NODE)
5630         DCI.AddToWorklist(N);
5631       return SDValue(N, 0);
5632     }
5633 
5634     return combineGREVI_GORCI(N, DCI.DAG);
5635   }
5636   case RISCVISD::GREVW:
5637   case RISCVISD::GORCW: {
5638     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5639     SDValue LHS = N->getOperand(0);
5640     SDValue RHS = N->getOperand(1);
5641     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5642     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5643     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5644         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5645       if (N->getOpcode() != ISD::DELETED_NODE)
5646         DCI.AddToWorklist(N);
5647       return SDValue(N, 0);
5648     }
5649 
5650     return combineGREVI_GORCI(N, DCI.DAG);
5651   }
5652   case RISCVISD::SHFL:
5653   case RISCVISD::UNSHFL: {
5654     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5655     SDValue ShAmt = N->getOperand(1);
5656     unsigned BitWidth = ShAmt.getValueSizeInBits();
5657     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5658     APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1);
5659     if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5660       if (N->getOpcode() != ISD::DELETED_NODE)
5661         DCI.AddToWorklist(N);
5662       return SDValue(N, 0);
5663     }
5664 
5665     break;
5666   }
5667   case RISCVISD::SHFLW:
5668   case RISCVISD::UNSHFLW: {
5669     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5670     SDValue LHS = N->getOperand(0);
5671     SDValue RHS = N->getOperand(1);
5672     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5673     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
5674     if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5675         SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5676       if (N->getOpcode() != ISD::DELETED_NODE)
5677         DCI.AddToWorklist(N);
5678       return SDValue(N, 0);
5679     }
5680 
5681     break;
5682   }
5683   case RISCVISD::BCOMPRESSW:
5684   case RISCVISD::BDECOMPRESSW: {
5685     // Only the lower 32 bits of LHS and RHS are read.
5686     SDValue LHS = N->getOperand(0);
5687     SDValue RHS = N->getOperand(1);
5688     APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5689     if (SimplifyDemandedBits(LHS, Mask, DCI) ||
5690         SimplifyDemandedBits(RHS, Mask, DCI)) {
5691       if (N->getOpcode() != ISD::DELETED_NODE)
5692         DCI.AddToWorklist(N);
5693       return SDValue(N, 0);
5694     }
5695 
5696     break;
5697   }
5698   case RISCVISD::FMV_X_ANYEXTW_RV64: {
5699     SDLoc DL(N);
5700     SDValue Op0 = N->getOperand(0);
5701     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
5702     // conversion is unnecessary and can be replaced with an ANY_EXTEND
5703     // of the FMV_W_X_RV64 operand.
5704     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
5705       assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
5706              "Unexpected value type!");
5707       return Op0.getOperand(0);
5708     }
5709 
5710     // This is a target-specific version of a DAGCombine performed in
5711     // DAGCombiner::visitBITCAST. It performs the equivalent of:
5712     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5713     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5714     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5715         !Op0.getNode()->hasOneUse())
5716       break;
5717     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
5718                                  Op0.getOperand(0));
5719     APInt SignBit = APInt::getSignMask(32).sext(64);
5720     if (Op0.getOpcode() == ISD::FNEG)
5721       return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
5722                          DAG.getConstant(SignBit, DL, MVT::i64));
5723 
5724     assert(Op0.getOpcode() == ISD::FABS);
5725     return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
5726                        DAG.getConstant(~SignBit, DL, MVT::i64));
5727   }
5728   case ISD::AND:
5729     return performANDCombine(N, DCI, Subtarget);
5730   case ISD::OR:
5731     return performORCombine(N, DCI, Subtarget);
5732   case ISD::XOR:
5733     return performXORCombine(N, DCI, Subtarget);
5734   case RISCVISD::SELECT_CC: {
5735     // Transform
5736     SDValue LHS = N->getOperand(0);
5737     SDValue RHS = N->getOperand(1);
5738     auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
5739     if (!ISD::isIntEqualitySetCC(CCVal))
5740       break;
5741 
5742     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
5743     //      (select_cc X, Y, lt, trueV, falseV)
5744     // Sometimes the setcc is introduced after select_cc has been formed.
5745     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5746         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5747       // If we're looking for eq 0 instead of ne 0, we need to invert the
5748       // condition.
5749       bool Invert = CCVal == ISD::SETEQ;
5750       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5751       if (Invert)
5752         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5753 
5754       SDLoc DL(N);
5755       RHS = LHS.getOperand(1);
5756       LHS = LHS.getOperand(0);
5757       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5758 
5759       SDValue TargetCC =
5760           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5761       return DAG.getNode(
5762           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5763           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5764     }
5765 
5766     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
5767     //      (select_cc X, Y, eq/ne, trueV, falseV)
5768     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5769       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
5770                          {LHS.getOperand(0), LHS.getOperand(1),
5771                           N->getOperand(2), N->getOperand(3),
5772                           N->getOperand(4)});
5773     // (select_cc X, 1, setne, trueV, falseV) ->
5774     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
5775     // This can occur when legalizing some floating point comparisons.
5776     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5777     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5778       SDLoc DL(N);
5779       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5780       SDValue TargetCC =
5781           DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5782       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5783       return DAG.getNode(
5784           RISCVISD::SELECT_CC, DL, N->getValueType(0),
5785           {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5786     }
5787 
5788     break;
5789   }
5790   case RISCVISD::BR_CC: {
5791     SDValue LHS = N->getOperand(1);
5792     SDValue RHS = N->getOperand(2);
5793     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
5794     if (!ISD::isIntEqualitySetCC(CCVal))
5795       break;
5796 
5797     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
5798     //      (br_cc X, Y, lt, dest)
5799     // Sometimes the setcc is introduced after br_cc has been formed.
5800     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5801         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5802       // If we're looking for eq 0 instead of ne 0, we need to invert the
5803       // condition.
5804       bool Invert = CCVal == ISD::SETEQ;
5805       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5806       if (Invert)
5807         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5808 
5809       SDLoc DL(N);
5810       RHS = LHS.getOperand(1);
5811       LHS = LHS.getOperand(0);
5812       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5813 
5814       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5815                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
5816                          N->getOperand(4));
5817     }
5818 
5819     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
5820     //      (br_cc X, Y, eq/ne, trueV, falseV)
5821     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5822       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
5823                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
5824                          N->getOperand(3), N->getOperand(4));
5825 
5826     // (br_cc X, 1, setne, br_cc) ->
5827     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
5828     // This can occur when legalizing some floating point comparisons.
5829     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5830     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5831       SDLoc DL(N);
5832       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5833       SDValue TargetCC = DAG.getCondCode(CCVal);
5834       RHS = DAG.getConstant(0, DL, LHS.getValueType());
5835       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5836                          N->getOperand(0), LHS, RHS, TargetCC,
5837                          N->getOperand(4));
5838     }
5839     break;
5840   }
5841   case ISD::FCOPYSIGN: {
5842     EVT VT = N->getValueType(0);
5843     if (!VT.isVector())
5844       break;
5845     // There is a form of VFSGNJ which injects the negated sign of its second
5846     // operand. Try and bubble any FNEG up after the extend/round to produce
5847     // this optimized pattern. Avoid modifying cases where FP_ROUND and
5848     // TRUNC=1.
5849     SDValue In2 = N->getOperand(1);
5850     // Avoid cases where the extend/round has multiple uses, as duplicating
5851     // those is typically more expensive than removing a fneg.
5852     if (!In2.hasOneUse())
5853       break;
5854     if (In2.getOpcode() != ISD::FP_EXTEND &&
5855         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
5856       break;
5857     In2 = In2.getOperand(0);
5858     if (In2.getOpcode() != ISD::FNEG)
5859       break;
5860     SDLoc DL(N);
5861     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
5862     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
5863                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
5864   }
5865   case ISD::MGATHER:
5866   case ISD::MSCATTER: {
5867     if (!DCI.isBeforeLegalize())
5868       break;
5869     MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
5870     SDValue Index = MGSN->getIndex();
5871     EVT IndexVT = Index.getValueType();
5872     MVT XLenVT = Subtarget.getXLenVT();
5873     // RISCV indexed loads only support the "unsigned unscaled" addressing
5874     // mode, so anything else must be manually legalized.
5875     bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
5876                                 (MGSN->isIndexSigned() &&
5877                                  IndexVT.getVectorElementType().bitsLT(XLenVT));
5878     if (!NeedsIdxLegalization)
5879       break;
5880 
5881     SDLoc DL(N);
5882 
5883     // Any index legalization should first promote to XLenVT, so we don't lose
5884     // bits when scaling. This may create an illegal index type so we let
5885     // LLVM's legalization take care of the splitting.
5886     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
5887       IndexVT = IndexVT.changeVectorElementType(XLenVT);
5888       Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
5889                                                 : ISD::ZERO_EXTEND,
5890                           DL, IndexVT, Index);
5891     }
5892 
5893     unsigned Scale = N->getConstantOperandVal(5);
5894     if (MGSN->isIndexScaled() && Scale != 1) {
5895       // Manually scale the indices by the element size.
5896       // TODO: Sanitize the scale operand here?
5897       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
5898       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
5899       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
5900     }
5901 
5902     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
5903     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
5904       return DAG.getMaskedGather(
5905           N->getVTList(), MGSN->getMemoryVT(), DL,
5906           {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
5907            MGSN->getBasePtr(), Index, MGN->getScale()},
5908           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
5909     }
5910     const auto *MSN = cast<MaskedScatterSDNode>(N);
5911     return DAG.getMaskedScatter(
5912         N->getVTList(), MGSN->getMemoryVT(), DL,
5913         {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
5914          Index, MGSN->getScale()},
5915         MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
5916   }
5917   case RISCVISD::SRA_VL:
5918   case RISCVISD::SRL_VL:
5919   case RISCVISD::SHL_VL: {
5920     SDValue ShAmt = N->getOperand(1);
5921     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
5922       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
5923       SDLoc DL(N);
5924       SDValue VL = N->getOperand(3);
5925       EVT VT = N->getValueType(0);
5926       ShAmt =
5927           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
5928       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
5929                          N->getOperand(2), N->getOperand(3));
5930     }
5931     break;
5932   }
5933   case ISD::SRA:
5934   case ISD::SRL:
5935   case ISD::SHL: {
5936     SDValue ShAmt = N->getOperand(1);
5937     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
5938       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
5939       SDLoc DL(N);
5940       EVT VT = N->getValueType(0);
5941       ShAmt =
5942           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
5943       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
5944     }
5945     break;
5946   }
5947   }
5948 
5949   return SDValue();
5950 }
5951 
5952 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
5953     const SDNode *N, CombineLevel Level) const {
5954   // The following folds are only desirable if `(OP _, c1 << c2)` can be
5955   // materialised in fewer instructions than `(OP _, c1)`:
5956   //
5957   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
5958   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
5959   SDValue N0 = N->getOperand(0);
5960   EVT Ty = N0.getValueType();
5961   if (Ty.isScalarInteger() &&
5962       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
5963     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
5964     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
5965     if (C1 && C2) {
5966       const APInt &C1Int = C1->getAPIntValue();
5967       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
5968 
5969       // We can materialise `c1 << c2` into an add immediate, so it's "free",
5970       // and the combine should happen, to potentially allow further combines
5971       // later.
5972       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
5973           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
5974         return true;
5975 
5976       // We can materialise `c1` in an add immediate, so it's "free", and the
5977       // combine should be prevented.
5978       if (C1Int.getMinSignedBits() <= 64 &&
5979           isLegalAddImmediate(C1Int.getSExtValue()))
5980         return false;
5981 
5982       // Neither constant will fit into an immediate, so find materialisation
5983       // costs.
5984       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
5985                                               Subtarget.is64Bit());
5986       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
5987           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
5988 
5989       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
5990       // combine should be prevented.
5991       if (C1Cost < ShiftedC1Cost)
5992         return false;
5993     }
5994   }
5995   return true;
5996 }
5997 
5998 bool RISCVTargetLowering::targetShrinkDemandedConstant(
5999     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
6000     TargetLoweringOpt &TLO) const {
6001   // Delay this optimization as late as possible.
6002   if (!TLO.LegalOps)
6003     return false;
6004 
6005   EVT VT = Op.getValueType();
6006   if (VT.isVector())
6007     return false;
6008 
6009   // Only handle AND for now.
6010   if (Op.getOpcode() != ISD::AND)
6011     return false;
6012 
6013   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6014   if (!C)
6015     return false;
6016 
6017   const APInt &Mask = C->getAPIntValue();
6018 
6019   // Clear all non-demanded bits initially.
6020   APInt ShrunkMask = Mask & DemandedBits;
6021 
6022   // Try to make a smaller immediate by setting undemanded bits.
6023 
6024   APInt ExpandedMask = Mask | ~DemandedBits;
6025 
6026   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
6027     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
6028   };
6029   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
6030     if (NewMask == Mask)
6031       return true;
6032     SDLoc DL(Op);
6033     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
6034     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
6035     return TLO.CombineTo(Op, NewOp);
6036   };
6037 
6038   // If the shrunk mask fits in sign extended 12 bits, let the target
6039   // independent code apply it.
6040   if (ShrunkMask.isSignedIntN(12))
6041     return false;
6042 
6043   // Preserve (and X, 0xffff) when zext.h is supported.
6044   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
6045     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
6046     if (IsLegalMask(NewMask))
6047       return UseMask(NewMask);
6048   }
6049 
6050   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6051   if (VT == MVT::i64) {
6052     APInt NewMask = APInt(64, 0xffffffff);
6053     if (IsLegalMask(NewMask))
6054       return UseMask(NewMask);
6055   }
6056 
6057   // For the remaining optimizations, we need to be able to make a negative
6058   // number through a combination of mask and undemanded bits.
6059   if (!ExpandedMask.isNegative())
6060     return false;
6061 
6062   // What is the fewest number of bits we need to represent the negative number.
6063   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
6064 
6065   // Try to make a 12 bit negative immediate. If that fails try to make a 32
6066   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6067   APInt NewMask = ShrunkMask;
6068   if (MinSignedBits <= 12)
6069     NewMask.setBitsFrom(11);
6070   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
6071     NewMask.setBitsFrom(31);
6072   else
6073     return false;
6074 
6075   // Sanity check that our new mask is a subset of the demanded mask.
6076   assert(IsLegalMask(NewMask));
6077   return UseMask(NewMask);
6078 }
6079 
6080 static void computeGREV(APInt &Src, unsigned ShAmt) {
6081   ShAmt &= Src.getBitWidth() - 1;
6082   uint64_t x = Src.getZExtValue();
6083   if (ShAmt & 1)
6084     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
6085   if (ShAmt & 2)
6086     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
6087   if (ShAmt & 4)
6088     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
6089   if (ShAmt & 8)
6090     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
6091   if (ShAmt & 16)
6092     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
6093   if (ShAmt & 32)
6094     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
6095   Src = x;
6096 }
6097 
6098 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6099                                                         KnownBits &Known,
6100                                                         const APInt &DemandedElts,
6101                                                         const SelectionDAG &DAG,
6102                                                         unsigned Depth) const {
6103   unsigned BitWidth = Known.getBitWidth();
6104   unsigned Opc = Op.getOpcode();
6105   assert((Opc >= ISD::BUILTIN_OP_END ||
6106           Opc == ISD::INTRINSIC_WO_CHAIN ||
6107           Opc == ISD::INTRINSIC_W_CHAIN ||
6108           Opc == ISD::INTRINSIC_VOID) &&
6109          "Should use MaskedValueIsZero if you don't know whether Op"
6110          " is a target node!");
6111 
6112   Known.resetAll();
6113   switch (Opc) {
6114   default: break;
6115   case RISCVISD::SELECT_CC: {
6116     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
6117     // If we don't know any bits, early out.
6118     if (Known.isUnknown())
6119       break;
6120     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
6121 
6122     // Only known if known in both the LHS and RHS.
6123     Known = KnownBits::commonBits(Known, Known2);
6124     break;
6125   }
6126   case RISCVISD::REMUW: {
6127     KnownBits Known2;
6128     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6129     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6130     // We only care about the lower 32 bits.
6131     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
6132     // Restore the original width by sign extending.
6133     Known = Known.sext(BitWidth);
6134     break;
6135   }
6136   case RISCVISD::DIVUW: {
6137     KnownBits Known2;
6138     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6139     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6140     // We only care about the lower 32 bits.
6141     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
6142     // Restore the original width by sign extending.
6143     Known = Known.sext(BitWidth);
6144     break;
6145   }
6146   case RISCVISD::CTZW: {
6147     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6148     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
6149     unsigned LowBits = Log2_32(PossibleTZ) + 1;
6150     Known.Zero.setBitsFrom(LowBits);
6151     break;
6152   }
6153   case RISCVISD::CLZW: {
6154     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6155     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
6156     unsigned LowBits = Log2_32(PossibleLZ) + 1;
6157     Known.Zero.setBitsFrom(LowBits);
6158     break;
6159   }
6160   case RISCVISD::GREV:
6161   case RISCVISD::GREVW: {
6162     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6163       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6164       if (Opc == RISCVISD::GREVW)
6165         Known = Known.trunc(32);
6166       unsigned ShAmt = C->getZExtValue();
6167       computeGREV(Known.Zero, ShAmt);
6168       computeGREV(Known.One, ShAmt);
6169       if (Opc == RISCVISD::GREVW)
6170         Known = Known.sext(BitWidth);
6171     }
6172     break;
6173   }
6174   case RISCVISD::READ_VLENB:
6175     // We assume VLENB is at least 16 bytes.
6176     Known.Zero.setLowBits(4);
6177     break;
6178   case ISD::INTRINSIC_W_CHAIN: {
6179     unsigned IntNo = Op.getConstantOperandVal(1);
6180     switch (IntNo) {
6181     default:
6182       // We can't do anything for most intrinsics.
6183       break;
6184     case Intrinsic::riscv_vsetvli:
6185     case Intrinsic::riscv_vsetvlimax:
6186       // Assume that VL output is positive and would fit in an int32_t.
6187       // TODO: VLEN might be capped at 16 bits in a future V spec update.
6188       if (BitWidth >= 32)
6189         Known.Zero.setBitsFrom(31);
6190       break;
6191     }
6192     break;
6193   }
6194   }
6195 }
6196 
6197 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6198     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6199     unsigned Depth) const {
6200   switch (Op.getOpcode()) {
6201   default:
6202     break;
6203   case RISCVISD::SLLW:
6204   case RISCVISD::SRAW:
6205   case RISCVISD::SRLW:
6206   case RISCVISD::DIVW:
6207   case RISCVISD::DIVUW:
6208   case RISCVISD::REMUW:
6209   case RISCVISD::ROLW:
6210   case RISCVISD::RORW:
6211   case RISCVISD::GREVW:
6212   case RISCVISD::GORCW:
6213   case RISCVISD::FSLW:
6214   case RISCVISD::FSRW:
6215   case RISCVISD::SHFLW:
6216   case RISCVISD::UNSHFLW:
6217   case RISCVISD::BCOMPRESSW:
6218   case RISCVISD::BDECOMPRESSW:
6219     // TODO: As the result is sign-extended, this is conservatively correct. A
6220     // more precise answer could be calculated for SRAW depending on known
6221     // bits in the shift amount.
6222     return 33;
6223   case RISCVISD::SHFL:
6224   case RISCVISD::UNSHFL: {
6225     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6226     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6227     // will stay within the upper 32 bits. If there were more than 32 sign bits
6228     // before there will be at least 33 sign bits after.
6229     if (Op.getValueType() == MVT::i64 &&
6230         isa<ConstantSDNode>(Op.getOperand(1)) &&
6231         (Op.getConstantOperandVal(1) & 0x10) == 0) {
6232       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
6233       if (Tmp > 32)
6234         return 33;
6235     }
6236     break;
6237   }
6238   case RISCVISD::VMV_X_S:
6239     // The number of sign bits of the scalar result is computed by obtaining the
6240     // element type of the input vector operand, subtracting its width from the
6241     // XLEN, and then adding one (sign bit within the element type). If the
6242     // element type is wider than XLen, the least-significant XLEN bits are
6243     // taken.
6244     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
6245       return 1;
6246     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6247   }
6248 
6249   return 1;
6250 }
6251 
6252 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6253                                                   MachineBasicBlock *BB) {
6254   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6255 
6256   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6257   // Should the count have wrapped while it was being read, we need to try
6258   // again.
6259   // ...
6260   // read:
6261   // rdcycleh x3 # load high word of cycle
6262   // rdcycle  x2 # load low word of cycle
6263   // rdcycleh x4 # load high word of cycle
6264   // bne x3, x4, read # check if high word reads match, otherwise try again
6265   // ...
6266 
6267   MachineFunction &MF = *BB->getParent();
6268   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6269   MachineFunction::iterator It = ++BB->getIterator();
6270 
6271   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6272   MF.insert(It, LoopMBB);
6273 
6274   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6275   MF.insert(It, DoneMBB);
6276 
6277   // Transfer the remainder of BB and its successor edges to DoneMBB.
6278   DoneMBB->splice(DoneMBB->begin(), BB,
6279                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
6280   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6281 
6282   BB->addSuccessor(LoopMBB);
6283 
6284   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6285   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6286   Register LoReg = MI.getOperand(0).getReg();
6287   Register HiReg = MI.getOperand(1).getReg();
6288   DebugLoc DL = MI.getDebugLoc();
6289 
6290   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6291   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6292       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6293       .addReg(RISCV::X0);
6294   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6295       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6296       .addReg(RISCV::X0);
6297   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6298       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6299       .addReg(RISCV::X0);
6300 
6301   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6302       .addReg(HiReg)
6303       .addReg(ReadAgainReg)
6304       .addMBB(LoopMBB);
6305 
6306   LoopMBB->addSuccessor(LoopMBB);
6307   LoopMBB->addSuccessor(DoneMBB);
6308 
6309   MI.eraseFromParent();
6310 
6311   return DoneMBB;
6312 }
6313 
6314 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6315                                              MachineBasicBlock *BB) {
6316   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6317 
6318   MachineFunction &MF = *BB->getParent();
6319   DebugLoc DL = MI.getDebugLoc();
6320   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6321   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6322   Register LoReg = MI.getOperand(0).getReg();
6323   Register HiReg = MI.getOperand(1).getReg();
6324   Register SrcReg = MI.getOperand(2).getReg();
6325   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6326   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6327 
6328   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6329                           RI);
6330   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6331   MachineMemOperand *MMOLo =
6332       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6333   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6334       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6335   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6336       .addFrameIndex(FI)
6337       .addImm(0)
6338       .addMemOperand(MMOLo);
6339   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6340       .addFrameIndex(FI)
6341       .addImm(4)
6342       .addMemOperand(MMOHi);
6343   MI.eraseFromParent(); // The pseudo instruction is gone now.
6344   return BB;
6345 }
6346 
6347 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6348                                                  MachineBasicBlock *BB) {
6349   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6350          "Unexpected instruction");
6351 
6352   MachineFunction &MF = *BB->getParent();
6353   DebugLoc DL = MI.getDebugLoc();
6354   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6355   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6356   Register DstReg = MI.getOperand(0).getReg();
6357   Register LoReg = MI.getOperand(1).getReg();
6358   Register HiReg = MI.getOperand(2).getReg();
6359   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6360   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6361 
6362   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6363   MachineMemOperand *MMOLo =
6364       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6365   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6366       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6367   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6368       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6369       .addFrameIndex(FI)
6370       .addImm(0)
6371       .addMemOperand(MMOLo);
6372   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6373       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6374       .addFrameIndex(FI)
6375       .addImm(4)
6376       .addMemOperand(MMOHi);
6377   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6378   MI.eraseFromParent(); // The pseudo instruction is gone now.
6379   return BB;
6380 }
6381 
6382 static bool isSelectPseudo(MachineInstr &MI) {
6383   switch (MI.getOpcode()) {
6384   default:
6385     return false;
6386   case RISCV::Select_GPR_Using_CC_GPR:
6387   case RISCV::Select_FPR16_Using_CC_GPR:
6388   case RISCV::Select_FPR32_Using_CC_GPR:
6389   case RISCV::Select_FPR64_Using_CC_GPR:
6390     return true;
6391   }
6392 }
6393 
6394 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6395                                            MachineBasicBlock *BB) {
6396   // To "insert" Select_* instructions, we actually have to insert the triangle
6397   // control-flow pattern.  The incoming instructions know the destination vreg
6398   // to set, the condition code register to branch on, the true/false values to
6399   // select between, and the condcode to use to select the appropriate branch.
6400   //
6401   // We produce the following control flow:
6402   //     HeadMBB
6403   //     |  \
6404   //     |  IfFalseMBB
6405   //     | /
6406   //    TailMBB
6407   //
6408   // When we find a sequence of selects we attempt to optimize their emission
6409   // by sharing the control flow. Currently we only handle cases where we have
6410   // multiple selects with the exact same condition (same LHS, RHS and CC).
6411   // The selects may be interleaved with other instructions if the other
6412   // instructions meet some requirements we deem safe:
6413   // - They are debug instructions. Otherwise,
6414   // - They do not have side-effects, do not access memory and their inputs do
6415   //   not depend on the results of the select pseudo-instructions.
6416   // The TrueV/FalseV operands of the selects cannot depend on the result of
6417   // previous selects in the sequence.
6418   // These conditions could be further relaxed. See the X86 target for a
6419   // related approach and more information.
6420   Register LHS = MI.getOperand(1).getReg();
6421   Register RHS = MI.getOperand(2).getReg();
6422   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
6423 
6424   SmallVector<MachineInstr *, 4> SelectDebugValues;
6425   SmallSet<Register, 4> SelectDests;
6426   SelectDests.insert(MI.getOperand(0).getReg());
6427 
6428   MachineInstr *LastSelectPseudo = &MI;
6429 
6430   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6431        SequenceMBBI != E; ++SequenceMBBI) {
6432     if (SequenceMBBI->isDebugInstr())
6433       continue;
6434     else if (isSelectPseudo(*SequenceMBBI)) {
6435       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6436           SequenceMBBI->getOperand(2).getReg() != RHS ||
6437           SequenceMBBI->getOperand(3).getImm() != CC ||
6438           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6439           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6440         break;
6441       LastSelectPseudo = &*SequenceMBBI;
6442       SequenceMBBI->collectDebugValues(SelectDebugValues);
6443       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6444     } else {
6445       if (SequenceMBBI->hasUnmodeledSideEffects() ||
6446           SequenceMBBI->mayLoadOrStore())
6447         break;
6448       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6449             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6450           }))
6451         break;
6452     }
6453   }
6454 
6455   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
6456   const BasicBlock *LLVM_BB = BB->getBasicBlock();
6457   DebugLoc DL = MI.getDebugLoc();
6458   MachineFunction::iterator I = ++BB->getIterator();
6459 
6460   MachineBasicBlock *HeadMBB = BB;
6461   MachineFunction *F = BB->getParent();
6462   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6463   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6464 
6465   F->insert(I, IfFalseMBB);
6466   F->insert(I, TailMBB);
6467 
6468   // Transfer debug instructions associated with the selects to TailMBB.
6469   for (MachineInstr *DebugInstr : SelectDebugValues) {
6470     TailMBB->push_back(DebugInstr->removeFromParent());
6471   }
6472 
6473   // Move all instructions after the sequence to TailMBB.
6474   TailMBB->splice(TailMBB->end(), HeadMBB,
6475                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6476   // Update machine-CFG edges by transferring all successors of the current
6477   // block to the new block which will contain the Phi nodes for the selects.
6478   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6479   // Set the successors for HeadMBB.
6480   HeadMBB->addSuccessor(IfFalseMBB);
6481   HeadMBB->addSuccessor(TailMBB);
6482 
6483   // Insert appropriate branch.
6484   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
6485 
6486   BuildMI(HeadMBB, DL, TII.get(Opcode))
6487     .addReg(LHS)
6488     .addReg(RHS)
6489     .addMBB(TailMBB);
6490 
6491   // IfFalseMBB just falls through to TailMBB.
6492   IfFalseMBB->addSuccessor(TailMBB);
6493 
6494   // Create PHIs for all of the select pseudo-instructions.
6495   auto SelectMBBI = MI.getIterator();
6496   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6497   auto InsertionPoint = TailMBB->begin();
6498   while (SelectMBBI != SelectEnd) {
6499     auto Next = std::next(SelectMBBI);
6500     if (isSelectPseudo(*SelectMBBI)) {
6501       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6502       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6503               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6504           .addReg(SelectMBBI->getOperand(4).getReg())
6505           .addMBB(HeadMBB)
6506           .addReg(SelectMBBI->getOperand(5).getReg())
6507           .addMBB(IfFalseMBB);
6508       SelectMBBI->eraseFromParent();
6509     }
6510     SelectMBBI = Next;
6511   }
6512 
6513   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6514   return TailMBB;
6515 }
6516 
6517 MachineBasicBlock *
6518 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
6519                                                  MachineBasicBlock *BB) const {
6520   switch (MI.getOpcode()) {
6521   default:
6522     llvm_unreachable("Unexpected instr type to insert");
6523   case RISCV::ReadCycleWide:
6524     assert(!Subtarget.is64Bit() &&
6525            "ReadCycleWrite is only to be used on riscv32");
6526     return emitReadCycleWidePseudo(MI, BB);
6527   case RISCV::Select_GPR_Using_CC_GPR:
6528   case RISCV::Select_FPR16_Using_CC_GPR:
6529   case RISCV::Select_FPR32_Using_CC_GPR:
6530   case RISCV::Select_FPR64_Using_CC_GPR:
6531     return emitSelectPseudo(MI, BB);
6532   case RISCV::BuildPairF64Pseudo:
6533     return emitBuildPairF64Pseudo(MI, BB);
6534   case RISCV::SplitF64Pseudo:
6535     return emitSplitF64Pseudo(MI, BB);
6536   }
6537 }
6538 
6539 // Calling Convention Implementation.
6540 // The expectations for frontend ABI lowering vary from target to target.
6541 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
6542 // details, but this is a longer term goal. For now, we simply try to keep the
6543 // role of the frontend as simple and well-defined as possible. The rules can
6544 // be summarised as:
6545 // * Never split up large scalar arguments. We handle them here.
6546 // * If a hardfloat calling convention is being used, and the struct may be
6547 // passed in a pair of registers (fp+fp, int+fp), and both registers are
6548 // available, then pass as two separate arguments. If either the GPRs or FPRs
6549 // are exhausted, then pass according to the rule below.
6550 // * If a struct could never be passed in registers or directly in a stack
6551 // slot (as it is larger than 2*XLEN and the floating point rules don't
6552 // apply), then pass it using a pointer with the byval attribute.
6553 // * If a struct is less than 2*XLEN, then coerce to either a two-element
6554 // word-sized array or a 2*XLEN scalar (depending on alignment).
6555 // * The frontend can determine whether a struct is returned by reference or
6556 // not based on its size and fields. If it will be returned by reference, the
6557 // frontend must modify the prototype so a pointer with the sret annotation is
6558 // passed as the first argument. This is not necessary for large scalar
6559 // returns.
6560 // * Struct return values and varargs should be coerced to structs containing
6561 // register-size fields in the same situations they would be for fixed
6562 // arguments.
6563 
6564 static const MCPhysReg ArgGPRs[] = {
6565   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
6566   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
6567 };
6568 static const MCPhysReg ArgFPR16s[] = {
6569   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
6570   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
6571 };
6572 static const MCPhysReg ArgFPR32s[] = {
6573   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
6574   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
6575 };
6576 static const MCPhysReg ArgFPR64s[] = {
6577   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
6578   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
6579 };
6580 // This is an interim calling convention and it may be changed in the future.
6581 static const MCPhysReg ArgVRs[] = {
6582     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
6583     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
6584     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
6585 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
6586                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
6587                                      RISCV::V20M2, RISCV::V22M2};
6588 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
6589                                      RISCV::V20M4};
6590 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
6591 
6592 // Pass a 2*XLEN argument that has been split into two XLEN values through
6593 // registers or the stack as necessary.
6594 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
6595                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
6596                                 MVT ValVT2, MVT LocVT2,
6597                                 ISD::ArgFlagsTy ArgFlags2) {
6598   unsigned XLenInBytes = XLen / 8;
6599   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6600     // At least one half can be passed via register.
6601     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
6602                                      VA1.getLocVT(), CCValAssign::Full));
6603   } else {
6604     // Both halves must be passed on the stack, with proper alignment.
6605     Align StackAlign =
6606         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
6607     State.addLoc(
6608         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
6609                             State.AllocateStack(XLenInBytes, StackAlign),
6610                             VA1.getLocVT(), CCValAssign::Full));
6611     State.addLoc(CCValAssign::getMem(
6612         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6613         LocVT2, CCValAssign::Full));
6614     return false;
6615   }
6616 
6617   if (Register Reg = State.AllocateReg(ArgGPRs)) {
6618     // The second half can also be passed via register.
6619     State.addLoc(
6620         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
6621   } else {
6622     // The second half is passed via the stack, without additional alignment.
6623     State.addLoc(CCValAssign::getMem(
6624         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6625         LocVT2, CCValAssign::Full));
6626   }
6627 
6628   return false;
6629 }
6630 
6631 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
6632                                Optional<unsigned> FirstMaskArgument,
6633                                CCState &State, const RISCVTargetLowering &TLI) {
6634   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
6635   if (RC == &RISCV::VRRegClass) {
6636     // Assign the first mask argument to V0.
6637     // This is an interim calling convention and it may be changed in the
6638     // future.
6639     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
6640       return State.AllocateReg(RISCV::V0);
6641     return State.AllocateReg(ArgVRs);
6642   }
6643   if (RC == &RISCV::VRM2RegClass)
6644     return State.AllocateReg(ArgVRM2s);
6645   if (RC == &RISCV::VRM4RegClass)
6646     return State.AllocateReg(ArgVRM4s);
6647   if (RC == &RISCV::VRM8RegClass)
6648     return State.AllocateReg(ArgVRM8s);
6649   llvm_unreachable("Unhandled register class for ValueType");
6650 }
6651 
6652 // Implements the RISC-V calling convention. Returns true upon failure.
6653 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
6654                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
6655                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
6656                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
6657                      Optional<unsigned> FirstMaskArgument) {
6658   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
6659   assert(XLen == 32 || XLen == 64);
6660   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
6661 
6662   // Any return value split in to more than two values can't be returned
6663   // directly. Vectors are returned via the available vector registers.
6664   if (!LocVT.isVector() && IsRet && ValNo > 1)
6665     return true;
6666 
6667   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
6668   // variadic argument, or if no F16/F32 argument registers are available.
6669   bool UseGPRForF16_F32 = true;
6670   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
6671   // variadic argument, or if no F64 argument registers are available.
6672   bool UseGPRForF64 = true;
6673 
6674   switch (ABI) {
6675   default:
6676     llvm_unreachable("Unexpected ABI");
6677   case RISCVABI::ABI_ILP32:
6678   case RISCVABI::ABI_LP64:
6679     break;
6680   case RISCVABI::ABI_ILP32F:
6681   case RISCVABI::ABI_LP64F:
6682     UseGPRForF16_F32 = !IsFixed;
6683     break;
6684   case RISCVABI::ABI_ILP32D:
6685   case RISCVABI::ABI_LP64D:
6686     UseGPRForF16_F32 = !IsFixed;
6687     UseGPRForF64 = !IsFixed;
6688     break;
6689   }
6690 
6691   // FPR16, FPR32, and FPR64 alias each other.
6692   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
6693     UseGPRForF16_F32 = true;
6694     UseGPRForF64 = true;
6695   }
6696 
6697   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
6698   // similar local variables rather than directly checking against the target
6699   // ABI.
6700 
6701   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
6702     LocVT = XLenVT;
6703     LocInfo = CCValAssign::BCvt;
6704   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
6705     LocVT = MVT::i64;
6706     LocInfo = CCValAssign::BCvt;
6707   }
6708 
6709   // If this is a variadic argument, the RISC-V calling convention requires
6710   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
6711   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
6712   // be used regardless of whether the original argument was split during
6713   // legalisation or not. The argument will not be passed by registers if the
6714   // original type is larger than 2*XLEN, so the register alignment rule does
6715   // not apply.
6716   unsigned TwoXLenInBytes = (2 * XLen) / 8;
6717   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
6718       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
6719     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
6720     // Skip 'odd' register if necessary.
6721     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
6722       State.AllocateReg(ArgGPRs);
6723   }
6724 
6725   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
6726   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
6727       State.getPendingArgFlags();
6728 
6729   assert(PendingLocs.size() == PendingArgFlags.size() &&
6730          "PendingLocs and PendingArgFlags out of sync");
6731 
6732   // Handle passing f64 on RV32D with a soft float ABI or when floating point
6733   // registers are exhausted.
6734   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
6735     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
6736            "Can't lower f64 if it is split");
6737     // Depending on available argument GPRS, f64 may be passed in a pair of
6738     // GPRs, split between a GPR and the stack, or passed completely on the
6739     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
6740     // cases.
6741     Register Reg = State.AllocateReg(ArgGPRs);
6742     LocVT = MVT::i32;
6743     if (!Reg) {
6744       unsigned StackOffset = State.AllocateStack(8, Align(8));
6745       State.addLoc(
6746           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6747       return false;
6748     }
6749     if (!State.AllocateReg(ArgGPRs))
6750       State.AllocateStack(4, Align(4));
6751     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6752     return false;
6753   }
6754 
6755   // Fixed-length vectors are located in the corresponding scalable-vector
6756   // container types.
6757   if (ValVT.isFixedLengthVector())
6758     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
6759 
6760   // Split arguments might be passed indirectly, so keep track of the pending
6761   // values. Split vectors are passed via a mix of registers and indirectly, so
6762   // treat them as we would any other argument.
6763   if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
6764     LocVT = XLenVT;
6765     LocInfo = CCValAssign::Indirect;
6766     PendingLocs.push_back(
6767         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
6768     PendingArgFlags.push_back(ArgFlags);
6769     if (!ArgFlags.isSplitEnd()) {
6770       return false;
6771     }
6772   }
6773 
6774   // If the split argument only had two elements, it should be passed directly
6775   // in registers or on the stack.
6776   if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
6777     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
6778     // Apply the normal calling convention rules to the first half of the
6779     // split argument.
6780     CCValAssign VA = PendingLocs[0];
6781     ISD::ArgFlagsTy AF = PendingArgFlags[0];
6782     PendingLocs.clear();
6783     PendingArgFlags.clear();
6784     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
6785                                ArgFlags);
6786   }
6787 
6788   // Allocate to a register if possible, or else a stack slot.
6789   Register Reg;
6790   unsigned StoreSizeBytes = XLen / 8;
6791   Align StackAlign = Align(XLen / 8);
6792 
6793   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
6794     Reg = State.AllocateReg(ArgFPR16s);
6795   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
6796     Reg = State.AllocateReg(ArgFPR32s);
6797   else if (ValVT == MVT::f64 && !UseGPRForF64)
6798     Reg = State.AllocateReg(ArgFPR64s);
6799   else if (ValVT.isVector()) {
6800     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
6801     if (!Reg) {
6802       // For return values, the vector must be passed fully via registers or
6803       // via the stack.
6804       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
6805       // but we're using all of them.
6806       if (IsRet)
6807         return true;
6808       // Try using a GPR to pass the address
6809       if ((Reg = State.AllocateReg(ArgGPRs))) {
6810         LocVT = XLenVT;
6811         LocInfo = CCValAssign::Indirect;
6812       } else if (ValVT.isScalableVector()) {
6813         report_fatal_error("Unable to pass scalable vector types on the stack");
6814       } else {
6815         // Pass fixed-length vectors on the stack.
6816         LocVT = ValVT;
6817         StoreSizeBytes = ValVT.getStoreSize();
6818         // Align vectors to their element sizes, being careful for vXi1
6819         // vectors.
6820         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
6821       }
6822     }
6823   } else {
6824     Reg = State.AllocateReg(ArgGPRs);
6825   }
6826 
6827   unsigned StackOffset =
6828       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
6829 
6830   // If we reach this point and PendingLocs is non-empty, we must be at the
6831   // end of a split argument that must be passed indirectly.
6832   if (!PendingLocs.empty()) {
6833     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
6834     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
6835 
6836     for (auto &It : PendingLocs) {
6837       if (Reg)
6838         It.convertToReg(Reg);
6839       else
6840         It.convertToMem(StackOffset);
6841       State.addLoc(It);
6842     }
6843     PendingLocs.clear();
6844     PendingArgFlags.clear();
6845     return false;
6846   }
6847 
6848   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
6849           (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
6850          "Expected an XLenVT or vector types at this stage");
6851 
6852   if (Reg) {
6853     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6854     return false;
6855   }
6856 
6857   // When a floating-point value is passed on the stack, no bit-conversion is
6858   // needed.
6859   if (ValVT.isFloatingPoint()) {
6860     LocVT = ValVT;
6861     LocInfo = CCValAssign::Full;
6862   }
6863   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6864   return false;
6865 }
6866 
6867 template <typename ArgTy>
6868 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
6869   for (const auto &ArgIdx : enumerate(Args)) {
6870     MVT ArgVT = ArgIdx.value().VT;
6871     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
6872       return ArgIdx.index();
6873   }
6874   return None;
6875 }
6876 
6877 void RISCVTargetLowering::analyzeInputArgs(
6878     MachineFunction &MF, CCState &CCInfo,
6879     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
6880     RISCVCCAssignFn Fn) const {
6881   unsigned NumArgs = Ins.size();
6882   FunctionType *FType = MF.getFunction().getFunctionType();
6883 
6884   Optional<unsigned> FirstMaskArgument;
6885   if (Subtarget.hasStdExtV())
6886     FirstMaskArgument = preAssignMask(Ins);
6887 
6888   for (unsigned i = 0; i != NumArgs; ++i) {
6889     MVT ArgVT = Ins[i].VT;
6890     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
6891 
6892     Type *ArgTy = nullptr;
6893     if (IsRet)
6894       ArgTy = FType->getReturnType();
6895     else if (Ins[i].isOrigArg())
6896       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
6897 
6898     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6899     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6900            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
6901            FirstMaskArgument)) {
6902       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
6903                         << EVT(ArgVT).getEVTString() << '\n');
6904       llvm_unreachable(nullptr);
6905     }
6906   }
6907 }
6908 
6909 void RISCVTargetLowering::analyzeOutputArgs(
6910     MachineFunction &MF, CCState &CCInfo,
6911     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
6912     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
6913   unsigned NumArgs = Outs.size();
6914 
6915   Optional<unsigned> FirstMaskArgument;
6916   if (Subtarget.hasStdExtV())
6917     FirstMaskArgument = preAssignMask(Outs);
6918 
6919   for (unsigned i = 0; i != NumArgs; i++) {
6920     MVT ArgVT = Outs[i].VT;
6921     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6922     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
6923 
6924     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6925     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6926            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
6927            FirstMaskArgument)) {
6928       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
6929                         << EVT(ArgVT).getEVTString() << "\n");
6930       llvm_unreachable(nullptr);
6931     }
6932   }
6933 }
6934 
6935 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
6936 // values.
6937 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
6938                                    const CCValAssign &VA, const SDLoc &DL,
6939                                    const RISCVSubtarget &Subtarget) {
6940   switch (VA.getLocInfo()) {
6941   default:
6942     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6943   case CCValAssign::Full:
6944     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
6945       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
6946     break;
6947   case CCValAssign::BCvt:
6948     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6949       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
6950     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6951       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
6952     else
6953       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
6954     break;
6955   }
6956   return Val;
6957 }
6958 
6959 // The caller is responsible for loading the full value if the argument is
6960 // passed with CCValAssign::Indirect.
6961 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
6962                                 const CCValAssign &VA, const SDLoc &DL,
6963                                 const RISCVTargetLowering &TLI) {
6964   MachineFunction &MF = DAG.getMachineFunction();
6965   MachineRegisterInfo &RegInfo = MF.getRegInfo();
6966   EVT LocVT = VA.getLocVT();
6967   SDValue Val;
6968   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
6969   Register VReg = RegInfo.createVirtualRegister(RC);
6970   RegInfo.addLiveIn(VA.getLocReg(), VReg);
6971   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
6972 
6973   if (VA.getLocInfo() == CCValAssign::Indirect)
6974     return Val;
6975 
6976   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
6977 }
6978 
6979 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
6980                                    const CCValAssign &VA, const SDLoc &DL,
6981                                    const RISCVSubtarget &Subtarget) {
6982   EVT LocVT = VA.getLocVT();
6983 
6984   switch (VA.getLocInfo()) {
6985   default:
6986     llvm_unreachable("Unexpected CCValAssign::LocInfo");
6987   case CCValAssign::Full:
6988     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
6989       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
6990     break;
6991   case CCValAssign::BCvt:
6992     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6993       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
6994     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6995       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
6996     else
6997       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
6998     break;
6999   }
7000   return Val;
7001 }
7002 
7003 // The caller is responsible for loading the full value if the argument is
7004 // passed with CCValAssign::Indirect.
7005 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
7006                                 const CCValAssign &VA, const SDLoc &DL) {
7007   MachineFunction &MF = DAG.getMachineFunction();
7008   MachineFrameInfo &MFI = MF.getFrameInfo();
7009   EVT LocVT = VA.getLocVT();
7010   EVT ValVT = VA.getValVT();
7011   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
7012   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
7013                                  /*Immutable=*/true);
7014   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7015   SDValue Val;
7016 
7017   ISD::LoadExtType ExtType;
7018   switch (VA.getLocInfo()) {
7019   default:
7020     llvm_unreachable("Unexpected CCValAssign::LocInfo");
7021   case CCValAssign::Full:
7022   case CCValAssign::Indirect:
7023   case CCValAssign::BCvt:
7024     ExtType = ISD::NON_EXTLOAD;
7025     break;
7026   }
7027   Val = DAG.getExtLoad(
7028       ExtType, DL, LocVT, Chain, FIN,
7029       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
7030   return Val;
7031 }
7032 
7033 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
7034                                        const CCValAssign &VA, const SDLoc &DL) {
7035   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
7036          "Unexpected VA");
7037   MachineFunction &MF = DAG.getMachineFunction();
7038   MachineFrameInfo &MFI = MF.getFrameInfo();
7039   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7040 
7041   if (VA.isMemLoc()) {
7042     // f64 is passed on the stack.
7043     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
7044     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7045     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
7046                        MachinePointerInfo::getFixedStack(MF, FI));
7047   }
7048 
7049   assert(VA.isRegLoc() && "Expected register VA assignment");
7050 
7051   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7052   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
7053   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
7054   SDValue Hi;
7055   if (VA.getLocReg() == RISCV::X17) {
7056     // Second half of f64 is passed on the stack.
7057     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
7058     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7059     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
7060                      MachinePointerInfo::getFixedStack(MF, FI));
7061   } else {
7062     // Second half of f64 is passed in another GPR.
7063     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7064     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
7065     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
7066   }
7067   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
7068 }
7069 
7070 // FastCC has less than 1% performance improvement for some particular
7071 // benchmark. But theoretically, it may has benenfit for some cases.
7072 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
7073                             unsigned ValNo, MVT ValVT, MVT LocVT,
7074                             CCValAssign::LocInfo LocInfo,
7075                             ISD::ArgFlagsTy ArgFlags, CCState &State,
7076                             bool IsFixed, bool IsRet, Type *OrigTy,
7077                             const RISCVTargetLowering &TLI,
7078                             Optional<unsigned> FirstMaskArgument) {
7079 
7080   // X5 and X6 might be used for save-restore libcall.
7081   static const MCPhysReg GPRList[] = {
7082       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
7083       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
7084       RISCV::X29, RISCV::X30, RISCV::X31};
7085 
7086   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7087     if (unsigned Reg = State.AllocateReg(GPRList)) {
7088       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7089       return false;
7090     }
7091   }
7092 
7093   if (LocVT == MVT::f16) {
7094     static const MCPhysReg FPR16List[] = {
7095         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
7096         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
7097         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
7098         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
7099     if (unsigned Reg = State.AllocateReg(FPR16List)) {
7100       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7101       return false;
7102     }
7103   }
7104 
7105   if (LocVT == MVT::f32) {
7106     static const MCPhysReg FPR32List[] = {
7107         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
7108         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
7109         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
7110         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
7111     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7112       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7113       return false;
7114     }
7115   }
7116 
7117   if (LocVT == MVT::f64) {
7118     static const MCPhysReg FPR64List[] = {
7119         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
7120         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
7121         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
7122         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
7123     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7124       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7125       return false;
7126     }
7127   }
7128 
7129   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
7130     unsigned Offset4 = State.AllocateStack(4, Align(4));
7131     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
7132     return false;
7133   }
7134 
7135   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
7136     unsigned Offset5 = State.AllocateStack(8, Align(8));
7137     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
7138     return false;
7139   }
7140 
7141   if (LocVT.isVector()) {
7142     if (unsigned Reg =
7143             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
7144       // Fixed-length vectors are located in the corresponding scalable-vector
7145       // container types.
7146       if (ValVT.isFixedLengthVector())
7147         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7148       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7149     } else {
7150       // Try and pass the address via a "fast" GPR.
7151       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
7152         LocInfo = CCValAssign::Indirect;
7153         LocVT = TLI.getSubtarget().getXLenVT();
7154         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
7155       } else if (ValVT.isFixedLengthVector()) {
7156         auto StackAlign =
7157             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7158         unsigned StackOffset =
7159             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
7160         State.addLoc(
7161             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7162       } else {
7163         // Can't pass scalable vectors on the stack.
7164         return true;
7165       }
7166     }
7167 
7168     return false;
7169   }
7170 
7171   return true; // CC didn't match.
7172 }
7173 
7174 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
7175                          CCValAssign::LocInfo LocInfo,
7176                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
7177 
7178   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7179     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7180     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
7181     static const MCPhysReg GPRList[] = {
7182         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
7183         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
7184     if (unsigned Reg = State.AllocateReg(GPRList)) {
7185       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7186       return false;
7187     }
7188   }
7189 
7190   if (LocVT == MVT::f32) {
7191     // Pass in STG registers: F1, ..., F6
7192     //                        fs0 ... fs5
7193     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
7194                                           RISCV::F18_F, RISCV::F19_F,
7195                                           RISCV::F20_F, RISCV::F21_F};
7196     if (unsigned Reg = State.AllocateReg(FPR32List)) {
7197       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7198       return false;
7199     }
7200   }
7201 
7202   if (LocVT == MVT::f64) {
7203     // Pass in STG registers: D1, ..., D6
7204     //                        fs6 ... fs11
7205     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7206                                           RISCV::F24_D, RISCV::F25_D,
7207                                           RISCV::F26_D, RISCV::F27_D};
7208     if (unsigned Reg = State.AllocateReg(FPR64List)) {
7209       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7210       return false;
7211     }
7212   }
7213 
7214   report_fatal_error("No registers left in GHC calling convention");
7215   return true;
7216 }
7217 
7218 // Transform physical registers into virtual registers.
7219 SDValue RISCVTargetLowering::LowerFormalArguments(
7220     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7221     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7222     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7223 
7224   MachineFunction &MF = DAG.getMachineFunction();
7225 
7226   switch (CallConv) {
7227   default:
7228     report_fatal_error("Unsupported calling convention");
7229   case CallingConv::C:
7230   case CallingConv::Fast:
7231     break;
7232   case CallingConv::GHC:
7233     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7234         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7235       report_fatal_error(
7236         "GHC calling convention requires the F and D instruction set extensions");
7237   }
7238 
7239   const Function &Func = MF.getFunction();
7240   if (Func.hasFnAttribute("interrupt")) {
7241     if (!Func.arg_empty())
7242       report_fatal_error(
7243         "Functions with the interrupt attribute cannot have arguments!");
7244 
7245     StringRef Kind =
7246       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7247 
7248     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7249       report_fatal_error(
7250         "Function interrupt attribute argument not supported!");
7251   }
7252 
7253   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7254   MVT XLenVT = Subtarget.getXLenVT();
7255   unsigned XLenInBytes = Subtarget.getXLen() / 8;
7256   // Used with vargs to acumulate store chains.
7257   std::vector<SDValue> OutChains;
7258 
7259   // Assign locations to all of the incoming arguments.
7260   SmallVector<CCValAssign, 16> ArgLocs;
7261   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7262 
7263   if (CallConv == CallingConv::GHC)
7264     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7265   else
7266     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
7267                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7268                                                    : CC_RISCV);
7269 
7270   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7271     CCValAssign &VA = ArgLocs[i];
7272     SDValue ArgValue;
7273     // Passing f64 on RV32D with a soft float ABI must be handled as a special
7274     // case.
7275     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7276       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7277     else if (VA.isRegLoc())
7278       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7279     else
7280       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7281 
7282     if (VA.getLocInfo() == CCValAssign::Indirect) {
7283       // If the original argument was split and passed by reference (e.g. i128
7284       // on RV32), we need to load all parts of it here (using the same
7285       // address). Vectors may be partly split to registers and partly to the
7286       // stack, in which case the base address is partly offset and subsequent
7287       // stores are relative to that.
7288       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7289                                    MachinePointerInfo()));
7290       unsigned ArgIndex = Ins[i].OrigArgIndex;
7291       unsigned ArgPartOffset = Ins[i].PartOffset;
7292       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7293       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7294         CCValAssign &PartVA = ArgLocs[i + 1];
7295         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7296         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7297         if (PartVA.getValVT().isScalableVector())
7298           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7299         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
7300         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7301                                      MachinePointerInfo()));
7302         ++i;
7303       }
7304       continue;
7305     }
7306     InVals.push_back(ArgValue);
7307   }
7308 
7309   if (IsVarArg) {
7310     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7311     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7312     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7313     MachineFrameInfo &MFI = MF.getFrameInfo();
7314     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7315     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7316 
7317     // Offset of the first variable argument from stack pointer, and size of
7318     // the vararg save area. For now, the varargs save area is either zero or
7319     // large enough to hold a0-a7.
7320     int VaArgOffset, VarArgsSaveSize;
7321 
7322     // If all registers are allocated, then all varargs must be passed on the
7323     // stack and we don't need to save any argregs.
7324     if (ArgRegs.size() == Idx) {
7325       VaArgOffset = CCInfo.getNextStackOffset();
7326       VarArgsSaveSize = 0;
7327     } else {
7328       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7329       VaArgOffset = -VarArgsSaveSize;
7330     }
7331 
7332     // Record the frame index of the first variable argument
7333     // which is a value necessary to VASTART.
7334     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7335     RVFI->setVarArgsFrameIndex(FI);
7336 
7337     // If saving an odd number of registers then create an extra stack slot to
7338     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7339     // offsets to even-numbered registered remain 2*XLEN-aligned.
7340     if (Idx % 2) {
7341       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7342       VarArgsSaveSize += XLenInBytes;
7343     }
7344 
7345     // Copy the integer registers that may have been used for passing varargs
7346     // to the vararg save area.
7347     for (unsigned I = Idx; I < ArgRegs.size();
7348          ++I, VaArgOffset += XLenInBytes) {
7349       const Register Reg = RegInfo.createVirtualRegister(RC);
7350       RegInfo.addLiveIn(ArgRegs[I], Reg);
7351       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7352       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7353       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7354       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7355                                    MachinePointerInfo::getFixedStack(MF, FI));
7356       cast<StoreSDNode>(Store.getNode())
7357           ->getMemOperand()
7358           ->setValue((Value *)nullptr);
7359       OutChains.push_back(Store);
7360     }
7361     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7362   }
7363 
7364   // All stores are grouped in one node to allow the matching between
7365   // the size of Ins and InVals. This only happens for vararg functions.
7366   if (!OutChains.empty()) {
7367     OutChains.push_back(Chain);
7368     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7369   }
7370 
7371   return Chain;
7372 }
7373 
7374 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7375 /// for tail call optimization.
7376 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
7377 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7378     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7379     const SmallVector<CCValAssign, 16> &ArgLocs) const {
7380 
7381   auto &Callee = CLI.Callee;
7382   auto CalleeCC = CLI.CallConv;
7383   auto &Outs = CLI.Outs;
7384   auto &Caller = MF.getFunction();
7385   auto CallerCC = Caller.getCallingConv();
7386 
7387   // Exception-handling functions need a special set of instructions to
7388   // indicate a return to the hardware. Tail-calling another function would
7389   // probably break this.
7390   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7391   // should be expanded as new function attributes are introduced.
7392   if (Caller.hasFnAttribute("interrupt"))
7393     return false;
7394 
7395   // Do not tail call opt if the stack is used to pass parameters.
7396   if (CCInfo.getNextStackOffset() != 0)
7397     return false;
7398 
7399   // Do not tail call opt if any parameters need to be passed indirectly.
7400   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7401   // passed indirectly. So the address of the value will be passed in a
7402   // register, or if not available, then the address is put on the stack. In
7403   // order to pass indirectly, space on the stack often needs to be allocated
7404   // in order to store the value. In this case the CCInfo.getNextStackOffset()
7405   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7406   // are passed CCValAssign::Indirect.
7407   for (auto &VA : ArgLocs)
7408     if (VA.getLocInfo() == CCValAssign::Indirect)
7409       return false;
7410 
7411   // Do not tail call opt if either caller or callee uses struct return
7412   // semantics.
7413   auto IsCallerStructRet = Caller.hasStructRetAttr();
7414   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7415   if (IsCallerStructRet || IsCalleeStructRet)
7416     return false;
7417 
7418   // Externally-defined functions with weak linkage should not be
7419   // tail-called. The behaviour of branch instructions in this situation (as
7420   // used for tail calls) is implementation-defined, so we cannot rely on the
7421   // linker replacing the tail call with a return.
7422   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7423     const GlobalValue *GV = G->getGlobal();
7424     if (GV->hasExternalWeakLinkage())
7425       return false;
7426   }
7427 
7428   // The callee has to preserve all registers the caller needs to preserve.
7429   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7430   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7431   if (CalleeCC != CallerCC) {
7432     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7433     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7434       return false;
7435   }
7436 
7437   // Byval parameters hand the function a pointer directly into the stack area
7438   // we want to reuse during a tail call. Working around this *is* possible
7439   // but less efficient and uglier in LowerCall.
7440   for (auto &Arg : Outs)
7441     if (Arg.Flags.isByVal())
7442       return false;
7443 
7444   return true;
7445 }
7446 
7447 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7448   return DAG.getDataLayout().getPrefTypeAlign(
7449       VT.getTypeForEVT(*DAG.getContext()));
7450 }
7451 
7452 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7453 // and output parameter nodes.
7454 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7455                                        SmallVectorImpl<SDValue> &InVals) const {
7456   SelectionDAG &DAG = CLI.DAG;
7457   SDLoc &DL = CLI.DL;
7458   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7459   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7460   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7461   SDValue Chain = CLI.Chain;
7462   SDValue Callee = CLI.Callee;
7463   bool &IsTailCall = CLI.IsTailCall;
7464   CallingConv::ID CallConv = CLI.CallConv;
7465   bool IsVarArg = CLI.IsVarArg;
7466   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7467   MVT XLenVT = Subtarget.getXLenVT();
7468 
7469   MachineFunction &MF = DAG.getMachineFunction();
7470 
7471   // Analyze the operands of the call, assigning locations to each operand.
7472   SmallVector<CCValAssign, 16> ArgLocs;
7473   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7474 
7475   if (CallConv == CallingConv::GHC)
7476     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7477   else
7478     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
7479                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7480                                                     : CC_RISCV);
7481 
7482   // Check if it's really possible to do a tail call.
7483   if (IsTailCall)
7484     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7485 
7486   if (IsTailCall)
7487     ++NumTailCalls;
7488   else if (CLI.CB && CLI.CB->isMustTailCall())
7489     report_fatal_error("failed to perform tail call elimination on a call "
7490                        "site marked musttail");
7491 
7492   // Get a count of how many bytes are to be pushed on the stack.
7493   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7494 
7495   // Create local copies for byval args
7496   SmallVector<SDValue, 8> ByValArgs;
7497   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7498     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7499     if (!Flags.isByVal())
7500       continue;
7501 
7502     SDValue Arg = OutVals[i];
7503     unsigned Size = Flags.getByValSize();
7504     Align Alignment = Flags.getNonZeroByValAlign();
7505 
7506     int FI =
7507         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
7508     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7509     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
7510 
7511     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
7512                           /*IsVolatile=*/false,
7513                           /*AlwaysInline=*/false, IsTailCall,
7514                           MachinePointerInfo(), MachinePointerInfo());
7515     ByValArgs.push_back(FIPtr);
7516   }
7517 
7518   if (!IsTailCall)
7519     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
7520 
7521   // Copy argument values to their designated locations.
7522   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
7523   SmallVector<SDValue, 8> MemOpChains;
7524   SDValue StackPtr;
7525   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
7526     CCValAssign &VA = ArgLocs[i];
7527     SDValue ArgValue = OutVals[i];
7528     ISD::ArgFlagsTy Flags = Outs[i].Flags;
7529 
7530     // Handle passing f64 on RV32D with a soft float ABI as a special case.
7531     bool IsF64OnRV32DSoftABI =
7532         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
7533     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
7534       SDValue SplitF64 = DAG.getNode(
7535           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
7536       SDValue Lo = SplitF64.getValue(0);
7537       SDValue Hi = SplitF64.getValue(1);
7538 
7539       Register RegLo = VA.getLocReg();
7540       RegsToPass.push_back(std::make_pair(RegLo, Lo));
7541 
7542       if (RegLo == RISCV::X17) {
7543         // Second half of f64 is passed on the stack.
7544         // Work out the address of the stack slot.
7545         if (!StackPtr.getNode())
7546           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7547         // Emit the store.
7548         MemOpChains.push_back(
7549             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
7550       } else {
7551         // Second half of f64 is passed in another GPR.
7552         assert(RegLo < RISCV::X31 && "Invalid register pair");
7553         Register RegHigh = RegLo + 1;
7554         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
7555       }
7556       continue;
7557     }
7558 
7559     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
7560     // as any other MemLoc.
7561 
7562     // Promote the value if needed.
7563     // For now, only handle fully promoted and indirect arguments.
7564     if (VA.getLocInfo() == CCValAssign::Indirect) {
7565       // Store the argument in a stack slot and pass its address.
7566       Align StackAlign =
7567           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
7568                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
7569       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
7570       // If the original argument was split (e.g. i128), we need
7571       // to store the required parts of it here (and pass just one address).
7572       // Vectors may be partly split to registers and partly to the stack, in
7573       // which case the base address is partly offset and subsequent stores are
7574       // relative to that.
7575       unsigned ArgIndex = Outs[i].OrigArgIndex;
7576       unsigned ArgPartOffset = Outs[i].PartOffset;
7577       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7578       // Calculate the total size to store. We don't have access to what we're
7579       // actually storing other than performing the loop and collecting the
7580       // info.
7581       SmallVector<std::pair<SDValue, SDValue>> Parts;
7582       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
7583         SDValue PartValue = OutVals[i + 1];
7584         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
7585         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7586         EVT PartVT = PartValue.getValueType();
7587         if (PartVT.isScalableVector())
7588           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7589         StoredSize += PartVT.getStoreSize();
7590         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
7591         Parts.push_back(std::make_pair(PartValue, Offset));
7592         ++i;
7593       }
7594       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
7595       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
7596       MemOpChains.push_back(
7597           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
7598                        MachinePointerInfo::getFixedStack(MF, FI)));
7599       for (const auto &Part : Parts) {
7600         SDValue PartValue = Part.first;
7601         SDValue PartOffset = Part.second;
7602         SDValue Address =
7603             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
7604         MemOpChains.push_back(
7605             DAG.getStore(Chain, DL, PartValue, Address,
7606                          MachinePointerInfo::getFixedStack(MF, FI)));
7607       }
7608       ArgValue = SpillSlot;
7609     } else {
7610       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
7611     }
7612 
7613     // Use local copy if it is a byval arg.
7614     if (Flags.isByVal())
7615       ArgValue = ByValArgs[j++];
7616 
7617     if (VA.isRegLoc()) {
7618       // Queue up the argument copies and emit them at the end.
7619       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
7620     } else {
7621       assert(VA.isMemLoc() && "Argument not register or memory");
7622       assert(!IsTailCall && "Tail call not allowed if stack is used "
7623                             "for passing parameters");
7624 
7625       // Work out the address of the stack slot.
7626       if (!StackPtr.getNode())
7627         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7628       SDValue Address =
7629           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
7630                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
7631 
7632       // Emit the store.
7633       MemOpChains.push_back(
7634           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
7635     }
7636   }
7637 
7638   // Join the stores, which are independent of one another.
7639   if (!MemOpChains.empty())
7640     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
7641 
7642   SDValue Glue;
7643 
7644   // Build a sequence of copy-to-reg nodes, chained and glued together.
7645   for (auto &Reg : RegsToPass) {
7646     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
7647     Glue = Chain.getValue(1);
7648   }
7649 
7650   // Validate that none of the argument registers have been marked as
7651   // reserved, if so report an error. Do the same for the return address if this
7652   // is not a tailcall.
7653   validateCCReservedRegs(RegsToPass, MF);
7654   if (!IsTailCall &&
7655       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
7656     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7657         MF.getFunction(),
7658         "Return address register required, but has been reserved."});
7659 
7660   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
7661   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
7662   // split it and then direct call can be matched by PseudoCALL.
7663   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
7664     const GlobalValue *GV = S->getGlobal();
7665 
7666     unsigned OpFlags = RISCVII::MO_CALL;
7667     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
7668       OpFlags = RISCVII::MO_PLT;
7669 
7670     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
7671   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
7672     unsigned OpFlags = RISCVII::MO_CALL;
7673 
7674     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
7675                                                  nullptr))
7676       OpFlags = RISCVII::MO_PLT;
7677 
7678     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
7679   }
7680 
7681   // The first call operand is the chain and the second is the target address.
7682   SmallVector<SDValue, 8> Ops;
7683   Ops.push_back(Chain);
7684   Ops.push_back(Callee);
7685 
7686   // Add argument registers to the end of the list so that they are
7687   // known live into the call.
7688   for (auto &Reg : RegsToPass)
7689     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
7690 
7691   if (!IsTailCall) {
7692     // Add a register mask operand representing the call-preserved registers.
7693     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
7694     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
7695     assert(Mask && "Missing call preserved mask for calling convention");
7696     Ops.push_back(DAG.getRegisterMask(Mask));
7697   }
7698 
7699   // Glue the call to the argument copies, if any.
7700   if (Glue.getNode())
7701     Ops.push_back(Glue);
7702 
7703   // Emit the call.
7704   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7705 
7706   if (IsTailCall) {
7707     MF.getFrameInfo().setHasTailCall();
7708     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
7709   }
7710 
7711   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
7712   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
7713   Glue = Chain.getValue(1);
7714 
7715   // Mark the end of the call, which is glued to the call itself.
7716   Chain = DAG.getCALLSEQ_END(Chain,
7717                              DAG.getConstant(NumBytes, DL, PtrVT, true),
7718                              DAG.getConstant(0, DL, PtrVT, true),
7719                              Glue, DL);
7720   Glue = Chain.getValue(1);
7721 
7722   // Assign locations to each value returned by this call.
7723   SmallVector<CCValAssign, 16> RVLocs;
7724   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
7725   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
7726 
7727   // Copy all of the result registers out of their specified physreg.
7728   for (auto &VA : RVLocs) {
7729     // Copy the value out
7730     SDValue RetValue =
7731         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
7732     // Glue the RetValue to the end of the call sequence
7733     Chain = RetValue.getValue(1);
7734     Glue = RetValue.getValue(2);
7735 
7736     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7737       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
7738       SDValue RetValue2 =
7739           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
7740       Chain = RetValue2.getValue(1);
7741       Glue = RetValue2.getValue(2);
7742       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
7743                              RetValue2);
7744     }
7745 
7746     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
7747 
7748     InVals.push_back(RetValue);
7749   }
7750 
7751   return Chain;
7752 }
7753 
7754 bool RISCVTargetLowering::CanLowerReturn(
7755     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
7756     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
7757   SmallVector<CCValAssign, 16> RVLocs;
7758   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
7759 
7760   Optional<unsigned> FirstMaskArgument;
7761   if (Subtarget.hasStdExtV())
7762     FirstMaskArgument = preAssignMask(Outs);
7763 
7764   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7765     MVT VT = Outs[i].VT;
7766     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7767     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7768     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
7769                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
7770                  *this, FirstMaskArgument))
7771       return false;
7772   }
7773   return true;
7774 }
7775 
7776 SDValue
7777 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7778                                  bool IsVarArg,
7779                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
7780                                  const SmallVectorImpl<SDValue> &OutVals,
7781                                  const SDLoc &DL, SelectionDAG &DAG) const {
7782   const MachineFunction &MF = DAG.getMachineFunction();
7783   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7784 
7785   // Stores the assignment of the return value to a location.
7786   SmallVector<CCValAssign, 16> RVLocs;
7787 
7788   // Info about the registers and stack slot.
7789   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
7790                  *DAG.getContext());
7791 
7792   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
7793                     nullptr, CC_RISCV);
7794 
7795   if (CallConv == CallingConv::GHC && !RVLocs.empty())
7796     report_fatal_error("GHC functions return void only");
7797 
7798   SDValue Glue;
7799   SmallVector<SDValue, 4> RetOps(1, Chain);
7800 
7801   // Copy the result values into the output registers.
7802   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
7803     SDValue Val = OutVals[i];
7804     CCValAssign &VA = RVLocs[i];
7805     assert(VA.isRegLoc() && "Can only return in registers!");
7806 
7807     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7808       // Handle returning f64 on RV32D with a soft float ABI.
7809       assert(VA.isRegLoc() && "Expected return via registers");
7810       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
7811                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
7812       SDValue Lo = SplitF64.getValue(0);
7813       SDValue Hi = SplitF64.getValue(1);
7814       Register RegLo = VA.getLocReg();
7815       assert(RegLo < RISCV::X31 && "Invalid register pair");
7816       Register RegHi = RegLo + 1;
7817 
7818       if (STI.isRegisterReservedByUser(RegLo) ||
7819           STI.isRegisterReservedByUser(RegHi))
7820         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7821             MF.getFunction(),
7822             "Return value register required, but has been reserved."});
7823 
7824       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
7825       Glue = Chain.getValue(1);
7826       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
7827       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
7828       Glue = Chain.getValue(1);
7829       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
7830     } else {
7831       // Handle a 'normal' return.
7832       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
7833       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
7834 
7835       if (STI.isRegisterReservedByUser(VA.getLocReg()))
7836         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7837             MF.getFunction(),
7838             "Return value register required, but has been reserved."});
7839 
7840       // Guarantee that all emitted copies are stuck together.
7841       Glue = Chain.getValue(1);
7842       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7843     }
7844   }
7845 
7846   RetOps[0] = Chain; // Update chain.
7847 
7848   // Add the glue node if we have it.
7849   if (Glue.getNode()) {
7850     RetOps.push_back(Glue);
7851   }
7852 
7853   // Interrupt service routines use different return instructions.
7854   const Function &Func = DAG.getMachineFunction().getFunction();
7855   if (Func.hasFnAttribute("interrupt")) {
7856     if (!Func.getReturnType()->isVoidTy())
7857       report_fatal_error(
7858           "Functions with the interrupt attribute must have void return type!");
7859 
7860     MachineFunction &MF = DAG.getMachineFunction();
7861     StringRef Kind =
7862       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7863 
7864     unsigned RetOpc;
7865     if (Kind == "user")
7866       RetOpc = RISCVISD::URET_FLAG;
7867     else if (Kind == "supervisor")
7868       RetOpc = RISCVISD::SRET_FLAG;
7869     else
7870       RetOpc = RISCVISD::MRET_FLAG;
7871 
7872     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
7873   }
7874 
7875   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
7876 }
7877 
7878 void RISCVTargetLowering::validateCCReservedRegs(
7879     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
7880     MachineFunction &MF) const {
7881   const Function &F = MF.getFunction();
7882   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7883 
7884   if (llvm::any_of(Regs, [&STI](auto Reg) {
7885         return STI.isRegisterReservedByUser(Reg.first);
7886       }))
7887     F.getContext().diagnose(DiagnosticInfoUnsupported{
7888         F, "Argument register required, but has been reserved."});
7889 }
7890 
7891 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
7892   return CI->isTailCall();
7893 }
7894 
7895 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
7896 #define NODE_NAME_CASE(NODE)                                                   \
7897   case RISCVISD::NODE:                                                         \
7898     return "RISCVISD::" #NODE;
7899   // clang-format off
7900   switch ((RISCVISD::NodeType)Opcode) {
7901   case RISCVISD::FIRST_NUMBER:
7902     break;
7903   NODE_NAME_CASE(RET_FLAG)
7904   NODE_NAME_CASE(URET_FLAG)
7905   NODE_NAME_CASE(SRET_FLAG)
7906   NODE_NAME_CASE(MRET_FLAG)
7907   NODE_NAME_CASE(CALL)
7908   NODE_NAME_CASE(SELECT_CC)
7909   NODE_NAME_CASE(BR_CC)
7910   NODE_NAME_CASE(BuildPairF64)
7911   NODE_NAME_CASE(SplitF64)
7912   NODE_NAME_CASE(TAIL)
7913   NODE_NAME_CASE(MULHSU)
7914   NODE_NAME_CASE(SLLW)
7915   NODE_NAME_CASE(SRAW)
7916   NODE_NAME_CASE(SRLW)
7917   NODE_NAME_CASE(DIVW)
7918   NODE_NAME_CASE(DIVUW)
7919   NODE_NAME_CASE(REMUW)
7920   NODE_NAME_CASE(ROLW)
7921   NODE_NAME_CASE(RORW)
7922   NODE_NAME_CASE(CLZW)
7923   NODE_NAME_CASE(CTZW)
7924   NODE_NAME_CASE(FSLW)
7925   NODE_NAME_CASE(FSRW)
7926   NODE_NAME_CASE(FSL)
7927   NODE_NAME_CASE(FSR)
7928   NODE_NAME_CASE(FMV_H_X)
7929   NODE_NAME_CASE(FMV_X_ANYEXTH)
7930   NODE_NAME_CASE(FMV_W_X_RV64)
7931   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
7932   NODE_NAME_CASE(READ_CYCLE_WIDE)
7933   NODE_NAME_CASE(GREV)
7934   NODE_NAME_CASE(GREVW)
7935   NODE_NAME_CASE(GORC)
7936   NODE_NAME_CASE(GORCW)
7937   NODE_NAME_CASE(SHFL)
7938   NODE_NAME_CASE(SHFLW)
7939   NODE_NAME_CASE(UNSHFL)
7940   NODE_NAME_CASE(UNSHFLW)
7941   NODE_NAME_CASE(BCOMPRESS)
7942   NODE_NAME_CASE(BCOMPRESSW)
7943   NODE_NAME_CASE(BDECOMPRESS)
7944   NODE_NAME_CASE(BDECOMPRESSW)
7945   NODE_NAME_CASE(VMV_V_X_VL)
7946   NODE_NAME_CASE(VFMV_V_F_VL)
7947   NODE_NAME_CASE(VMV_X_S)
7948   NODE_NAME_CASE(VMV_S_X_VL)
7949   NODE_NAME_CASE(VFMV_S_F_VL)
7950   NODE_NAME_CASE(SPLAT_VECTOR_I64)
7951   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
7952   NODE_NAME_CASE(READ_VLENB)
7953   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
7954   NODE_NAME_CASE(VSLIDEUP_VL)
7955   NODE_NAME_CASE(VSLIDE1UP_VL)
7956   NODE_NAME_CASE(VSLIDEDOWN_VL)
7957   NODE_NAME_CASE(VSLIDE1DOWN_VL)
7958   NODE_NAME_CASE(VID_VL)
7959   NODE_NAME_CASE(VFNCVT_ROD_VL)
7960   NODE_NAME_CASE(VECREDUCE_ADD_VL)
7961   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
7962   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
7963   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
7964   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
7965   NODE_NAME_CASE(VECREDUCE_AND_VL)
7966   NODE_NAME_CASE(VECREDUCE_OR_VL)
7967   NODE_NAME_CASE(VECREDUCE_XOR_VL)
7968   NODE_NAME_CASE(VECREDUCE_FADD_VL)
7969   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
7970   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
7971   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
7972   NODE_NAME_CASE(ADD_VL)
7973   NODE_NAME_CASE(AND_VL)
7974   NODE_NAME_CASE(MUL_VL)
7975   NODE_NAME_CASE(OR_VL)
7976   NODE_NAME_CASE(SDIV_VL)
7977   NODE_NAME_CASE(SHL_VL)
7978   NODE_NAME_CASE(SREM_VL)
7979   NODE_NAME_CASE(SRA_VL)
7980   NODE_NAME_CASE(SRL_VL)
7981   NODE_NAME_CASE(SUB_VL)
7982   NODE_NAME_CASE(UDIV_VL)
7983   NODE_NAME_CASE(UREM_VL)
7984   NODE_NAME_CASE(XOR_VL)
7985   NODE_NAME_CASE(FADD_VL)
7986   NODE_NAME_CASE(FSUB_VL)
7987   NODE_NAME_CASE(FMUL_VL)
7988   NODE_NAME_CASE(FDIV_VL)
7989   NODE_NAME_CASE(FNEG_VL)
7990   NODE_NAME_CASE(FABS_VL)
7991   NODE_NAME_CASE(FSQRT_VL)
7992   NODE_NAME_CASE(FMA_VL)
7993   NODE_NAME_CASE(FCOPYSIGN_VL)
7994   NODE_NAME_CASE(SMIN_VL)
7995   NODE_NAME_CASE(SMAX_VL)
7996   NODE_NAME_CASE(UMIN_VL)
7997   NODE_NAME_CASE(UMAX_VL)
7998   NODE_NAME_CASE(FMINNUM_VL)
7999   NODE_NAME_CASE(FMAXNUM_VL)
8000   NODE_NAME_CASE(MULHS_VL)
8001   NODE_NAME_CASE(MULHU_VL)
8002   NODE_NAME_CASE(FP_TO_SINT_VL)
8003   NODE_NAME_CASE(FP_TO_UINT_VL)
8004   NODE_NAME_CASE(SINT_TO_FP_VL)
8005   NODE_NAME_CASE(UINT_TO_FP_VL)
8006   NODE_NAME_CASE(FP_EXTEND_VL)
8007   NODE_NAME_CASE(FP_ROUND_VL)
8008   NODE_NAME_CASE(SETCC_VL)
8009   NODE_NAME_CASE(VSELECT_VL)
8010   NODE_NAME_CASE(VMAND_VL)
8011   NODE_NAME_CASE(VMOR_VL)
8012   NODE_NAME_CASE(VMXOR_VL)
8013   NODE_NAME_CASE(VMCLR_VL)
8014   NODE_NAME_CASE(VMSET_VL)
8015   NODE_NAME_CASE(VRGATHER_VX_VL)
8016   NODE_NAME_CASE(VRGATHER_VV_VL)
8017   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
8018   NODE_NAME_CASE(VSEXT_VL)
8019   NODE_NAME_CASE(VZEXT_VL)
8020   NODE_NAME_CASE(VPOPC_VL)
8021   NODE_NAME_CASE(VLE_VL)
8022   NODE_NAME_CASE(VSE_VL)
8023   NODE_NAME_CASE(READ_CSR)
8024   NODE_NAME_CASE(WRITE_CSR)
8025   NODE_NAME_CASE(SWAP_CSR)
8026   }
8027   // clang-format on
8028   return nullptr;
8029 #undef NODE_NAME_CASE
8030 }
8031 
8032 /// getConstraintType - Given a constraint letter, return the type of
8033 /// constraint it is for this target.
8034 RISCVTargetLowering::ConstraintType
8035 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
8036   if (Constraint.size() == 1) {
8037     switch (Constraint[0]) {
8038     default:
8039       break;
8040     case 'f':
8041     case 'v':
8042       return C_RegisterClass;
8043     case 'I':
8044     case 'J':
8045     case 'K':
8046       return C_Immediate;
8047     case 'A':
8048       return C_Memory;
8049     }
8050   }
8051   return TargetLowering::getConstraintType(Constraint);
8052 }
8053 
8054 std::pair<unsigned, const TargetRegisterClass *>
8055 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
8056                                                   StringRef Constraint,
8057                                                   MVT VT) const {
8058   // First, see if this is a constraint that directly corresponds to a
8059   // RISCV register class.
8060   if (Constraint.size() == 1) {
8061     switch (Constraint[0]) {
8062     case 'r':
8063       return std::make_pair(0U, &RISCV::GPRRegClass);
8064     case 'f':
8065       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
8066         return std::make_pair(0U, &RISCV::FPR16RegClass);
8067       if (Subtarget.hasStdExtF() && VT == MVT::f32)
8068         return std::make_pair(0U, &RISCV::FPR32RegClass);
8069       if (Subtarget.hasStdExtD() && VT == MVT::f64)
8070         return std::make_pair(0U, &RISCV::FPR64RegClass);
8071       break;
8072     case 'v':
8073       for (const auto *RC :
8074            {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
8075             &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8076         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
8077           return std::make_pair(0U, RC);
8078       }
8079       break;
8080     default:
8081       break;
8082     }
8083   }
8084 
8085   // Clang will correctly decode the usage of register name aliases into their
8086   // official names. However, other frontends like `rustc` do not. This allows
8087   // users of these frontends to use the ABI names for registers in LLVM-style
8088   // register constraints.
8089   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
8090                                .Case("{zero}", RISCV::X0)
8091                                .Case("{ra}", RISCV::X1)
8092                                .Case("{sp}", RISCV::X2)
8093                                .Case("{gp}", RISCV::X3)
8094                                .Case("{tp}", RISCV::X4)
8095                                .Case("{t0}", RISCV::X5)
8096                                .Case("{t1}", RISCV::X6)
8097                                .Case("{t2}", RISCV::X7)
8098                                .Cases("{s0}", "{fp}", RISCV::X8)
8099                                .Case("{s1}", RISCV::X9)
8100                                .Case("{a0}", RISCV::X10)
8101                                .Case("{a1}", RISCV::X11)
8102                                .Case("{a2}", RISCV::X12)
8103                                .Case("{a3}", RISCV::X13)
8104                                .Case("{a4}", RISCV::X14)
8105                                .Case("{a5}", RISCV::X15)
8106                                .Case("{a6}", RISCV::X16)
8107                                .Case("{a7}", RISCV::X17)
8108                                .Case("{s2}", RISCV::X18)
8109                                .Case("{s3}", RISCV::X19)
8110                                .Case("{s4}", RISCV::X20)
8111                                .Case("{s5}", RISCV::X21)
8112                                .Case("{s6}", RISCV::X22)
8113                                .Case("{s7}", RISCV::X23)
8114                                .Case("{s8}", RISCV::X24)
8115                                .Case("{s9}", RISCV::X25)
8116                                .Case("{s10}", RISCV::X26)
8117                                .Case("{s11}", RISCV::X27)
8118                                .Case("{t3}", RISCV::X28)
8119                                .Case("{t4}", RISCV::X29)
8120                                .Case("{t5}", RISCV::X30)
8121                                .Case("{t6}", RISCV::X31)
8122                                .Default(RISCV::NoRegister);
8123   if (XRegFromAlias != RISCV::NoRegister)
8124     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
8125 
8126   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8127   // TableGen record rather than the AsmName to choose registers for InlineAsm
8128   // constraints, plus we want to match those names to the widest floating point
8129   // register type available, manually select floating point registers here.
8130   //
8131   // The second case is the ABI name of the register, so that frontends can also
8132   // use the ABI names in register constraint lists.
8133   if (Subtarget.hasStdExtF()) {
8134     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
8135                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
8136                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
8137                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
8138                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
8139                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
8140                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
8141                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
8142                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
8143                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
8144                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
8145                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
8146                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
8147                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
8148                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
8149                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
8150                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
8151                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
8152                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
8153                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
8154                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
8155                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
8156                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
8157                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
8158                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
8159                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
8160                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
8161                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
8162                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
8163                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
8164                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
8165                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
8166                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
8167                         .Default(RISCV::NoRegister);
8168     if (FReg != RISCV::NoRegister) {
8169       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
8170       if (Subtarget.hasStdExtD()) {
8171         unsigned RegNo = FReg - RISCV::F0_F;
8172         unsigned DReg = RISCV::F0_D + RegNo;
8173         return std::make_pair(DReg, &RISCV::FPR64RegClass);
8174       }
8175       return std::make_pair(FReg, &RISCV::FPR32RegClass);
8176     }
8177   }
8178 
8179   if (Subtarget.hasStdExtV()) {
8180     Register VReg = StringSwitch<Register>(Constraint.lower())
8181                         .Case("{v0}", RISCV::V0)
8182                         .Case("{v1}", RISCV::V1)
8183                         .Case("{v2}", RISCV::V2)
8184                         .Case("{v3}", RISCV::V3)
8185                         .Case("{v4}", RISCV::V4)
8186                         .Case("{v5}", RISCV::V5)
8187                         .Case("{v6}", RISCV::V6)
8188                         .Case("{v7}", RISCV::V7)
8189                         .Case("{v8}", RISCV::V8)
8190                         .Case("{v9}", RISCV::V9)
8191                         .Case("{v10}", RISCV::V10)
8192                         .Case("{v11}", RISCV::V11)
8193                         .Case("{v12}", RISCV::V12)
8194                         .Case("{v13}", RISCV::V13)
8195                         .Case("{v14}", RISCV::V14)
8196                         .Case("{v15}", RISCV::V15)
8197                         .Case("{v16}", RISCV::V16)
8198                         .Case("{v17}", RISCV::V17)
8199                         .Case("{v18}", RISCV::V18)
8200                         .Case("{v19}", RISCV::V19)
8201                         .Case("{v20}", RISCV::V20)
8202                         .Case("{v21}", RISCV::V21)
8203                         .Case("{v22}", RISCV::V22)
8204                         .Case("{v23}", RISCV::V23)
8205                         .Case("{v24}", RISCV::V24)
8206                         .Case("{v25}", RISCV::V25)
8207                         .Case("{v26}", RISCV::V26)
8208                         .Case("{v27}", RISCV::V27)
8209                         .Case("{v28}", RISCV::V28)
8210                         .Case("{v29}", RISCV::V29)
8211                         .Case("{v30}", RISCV::V30)
8212                         .Case("{v31}", RISCV::V31)
8213                         .Default(RISCV::NoRegister);
8214     if (VReg != RISCV::NoRegister) {
8215       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8216         return std::make_pair(VReg, &RISCV::VMRegClass);
8217       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8218         return std::make_pair(VReg, &RISCV::VRRegClass);
8219       for (const auto *RC :
8220            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8221         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8222           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8223           return std::make_pair(VReg, RC);
8224         }
8225       }
8226     }
8227   }
8228 
8229   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8230 }
8231 
8232 unsigned
8233 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8234   // Currently only support length 1 constraints.
8235   if (ConstraintCode.size() == 1) {
8236     switch (ConstraintCode[0]) {
8237     case 'A':
8238       return InlineAsm::Constraint_A;
8239     default:
8240       break;
8241     }
8242   }
8243 
8244   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8245 }
8246 
8247 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8248     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8249     SelectionDAG &DAG) const {
8250   // Currently only support length 1 constraints.
8251   if (Constraint.length() == 1) {
8252     switch (Constraint[0]) {
8253     case 'I':
8254       // Validate & create a 12-bit signed immediate operand.
8255       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8256         uint64_t CVal = C->getSExtValue();
8257         if (isInt<12>(CVal))
8258           Ops.push_back(
8259               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8260       }
8261       return;
8262     case 'J':
8263       // Validate & create an integer zero operand.
8264       if (auto *C = dyn_cast<ConstantSDNode>(Op))
8265         if (C->getZExtValue() == 0)
8266           Ops.push_back(
8267               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8268       return;
8269     case 'K':
8270       // Validate & create a 5-bit unsigned immediate operand.
8271       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8272         uint64_t CVal = C->getZExtValue();
8273         if (isUInt<5>(CVal))
8274           Ops.push_back(
8275               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8276       }
8277       return;
8278     default:
8279       break;
8280     }
8281   }
8282   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8283 }
8284 
8285 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
8286                                                    Instruction *Inst,
8287                                                    AtomicOrdering Ord) const {
8288   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8289     return Builder.CreateFence(Ord);
8290   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8291     return Builder.CreateFence(AtomicOrdering::Release);
8292   return nullptr;
8293 }
8294 
8295 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
8296                                                     Instruction *Inst,
8297                                                     AtomicOrdering Ord) const {
8298   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8299     return Builder.CreateFence(AtomicOrdering::Acquire);
8300   return nullptr;
8301 }
8302 
8303 TargetLowering::AtomicExpansionKind
8304 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8305   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8306   // point operations can't be used in an lr/sc sequence without breaking the
8307   // forward-progress guarantee.
8308   if (AI->isFloatingPointOperation())
8309     return AtomicExpansionKind::CmpXChg;
8310 
8311   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8312   if (Size == 8 || Size == 16)
8313     return AtomicExpansionKind::MaskedIntrinsic;
8314   return AtomicExpansionKind::None;
8315 }
8316 
8317 static Intrinsic::ID
8318 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8319   if (XLen == 32) {
8320     switch (BinOp) {
8321     default:
8322       llvm_unreachable("Unexpected AtomicRMW BinOp");
8323     case AtomicRMWInst::Xchg:
8324       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8325     case AtomicRMWInst::Add:
8326       return Intrinsic::riscv_masked_atomicrmw_add_i32;
8327     case AtomicRMWInst::Sub:
8328       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8329     case AtomicRMWInst::Nand:
8330       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8331     case AtomicRMWInst::Max:
8332       return Intrinsic::riscv_masked_atomicrmw_max_i32;
8333     case AtomicRMWInst::Min:
8334       return Intrinsic::riscv_masked_atomicrmw_min_i32;
8335     case AtomicRMWInst::UMax:
8336       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8337     case AtomicRMWInst::UMin:
8338       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8339     }
8340   }
8341 
8342   if (XLen == 64) {
8343     switch (BinOp) {
8344     default:
8345       llvm_unreachable("Unexpected AtomicRMW BinOp");
8346     case AtomicRMWInst::Xchg:
8347       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8348     case AtomicRMWInst::Add:
8349       return Intrinsic::riscv_masked_atomicrmw_add_i64;
8350     case AtomicRMWInst::Sub:
8351       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8352     case AtomicRMWInst::Nand:
8353       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8354     case AtomicRMWInst::Max:
8355       return Intrinsic::riscv_masked_atomicrmw_max_i64;
8356     case AtomicRMWInst::Min:
8357       return Intrinsic::riscv_masked_atomicrmw_min_i64;
8358     case AtomicRMWInst::UMax:
8359       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8360     case AtomicRMWInst::UMin:
8361       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8362     }
8363   }
8364 
8365   llvm_unreachable("Unexpected XLen\n");
8366 }
8367 
8368 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8369     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8370     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8371   unsigned XLen = Subtarget.getXLen();
8372   Value *Ordering =
8373       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8374   Type *Tys[] = {AlignedAddr->getType()};
8375   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8376       AI->getModule(),
8377       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8378 
8379   if (XLen == 64) {
8380     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8381     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8382     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8383   }
8384 
8385   Value *Result;
8386 
8387   // Must pass the shift amount needed to sign extend the loaded value prior
8388   // to performing a signed comparison for min/max. ShiftAmt is the number of
8389   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8390   // is the number of bits to left+right shift the value in order to
8391   // sign-extend.
8392   if (AI->getOperation() == AtomicRMWInst::Min ||
8393       AI->getOperation() == AtomicRMWInst::Max) {
8394     const DataLayout &DL = AI->getModule()->getDataLayout();
8395     unsigned ValWidth =
8396         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8397     Value *SextShamt =
8398         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8399     Result = Builder.CreateCall(LrwOpScwLoop,
8400                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8401   } else {
8402     Result =
8403         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8404   }
8405 
8406   if (XLen == 64)
8407     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8408   return Result;
8409 }
8410 
8411 TargetLowering::AtomicExpansionKind
8412 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8413     AtomicCmpXchgInst *CI) const {
8414   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8415   if (Size == 8 || Size == 16)
8416     return AtomicExpansionKind::MaskedIntrinsic;
8417   return AtomicExpansionKind::None;
8418 }
8419 
8420 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8421     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8422     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8423   unsigned XLen = Subtarget.getXLen();
8424   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8425   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8426   if (XLen == 64) {
8427     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8428     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8429     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8430     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8431   }
8432   Type *Tys[] = {AlignedAddr->getType()};
8433   Function *MaskedCmpXchg =
8434       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8435   Value *Result = Builder.CreateCall(
8436       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8437   if (XLen == 64)
8438     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8439   return Result;
8440 }
8441 
8442 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8443   return false;
8444 }
8445 
8446 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8447                                                      EVT VT) const {
8448   VT = VT.getScalarType();
8449 
8450   if (!VT.isSimple())
8451     return false;
8452 
8453   switch (VT.getSimpleVT().SimpleTy) {
8454   case MVT::f16:
8455     return Subtarget.hasStdExtZfh();
8456   case MVT::f32:
8457     return Subtarget.hasStdExtF();
8458   case MVT::f64:
8459     return Subtarget.hasStdExtD();
8460   default:
8461     break;
8462   }
8463 
8464   return false;
8465 }
8466 
8467 Register RISCVTargetLowering::getExceptionPointerRegister(
8468     const Constant *PersonalityFn) const {
8469   return RISCV::X10;
8470 }
8471 
8472 Register RISCVTargetLowering::getExceptionSelectorRegister(
8473     const Constant *PersonalityFn) const {
8474   return RISCV::X11;
8475 }
8476 
8477 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8478   // Return false to suppress the unnecessary extensions if the LibCall
8479   // arguments or return value is f32 type for LP64 ABI.
8480   RISCVABI::ABI ABI = Subtarget.getTargetABI();
8481   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8482     return false;
8483 
8484   return true;
8485 }
8486 
8487 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
8488   if (Subtarget.is64Bit() && Type == MVT::i32)
8489     return true;
8490 
8491   return IsSigned;
8492 }
8493 
8494 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
8495                                                  SDValue C) const {
8496   // Check integral scalar types.
8497   if (VT.isScalarInteger()) {
8498     // Omit the optimization if the sub target has the M extension and the data
8499     // size exceeds XLen.
8500     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
8501       return false;
8502     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
8503       // Break the MUL to a SLLI and an ADD/SUB.
8504       const APInt &Imm = ConstNode->getAPIntValue();
8505       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8506           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8507         return true;
8508       // Omit the following optimization if the sub target has the M extension
8509       // and the data size >= XLen.
8510       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
8511         return false;
8512       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
8513       // a pair of LUI/ADDI.
8514       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
8515         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
8516         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
8517             (1 - ImmS).isPowerOf2())
8518         return true;
8519       }
8520     }
8521   }
8522 
8523   return false;
8524 }
8525 
8526 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
8527     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
8528     bool *Fast) const {
8529   if (!VT.isVector())
8530     return false;
8531 
8532   EVT ElemVT = VT.getVectorElementType();
8533   if (Alignment >= ElemVT.getStoreSize()) {
8534     if (Fast)
8535       *Fast = true;
8536     return true;
8537   }
8538 
8539   return false;
8540 }
8541 
8542 bool RISCVTargetLowering::splitValueIntoRegisterParts(
8543     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
8544     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
8545   bool IsABIRegCopy = CC.hasValue();
8546   EVT ValueVT = Val.getValueType();
8547   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8548     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
8549     // and cast to f32.
8550     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
8551     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
8552     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
8553                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
8554     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
8555     Parts[0] = Val;
8556     return true;
8557   }
8558 
8559   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8560     LLVMContext &Context = *DAG.getContext();
8561     EVT ValueEltVT = ValueVT.getVectorElementType();
8562     EVT PartEltVT = PartVT.getVectorElementType();
8563     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8564     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8565     if (PartVTBitSize % ValueVTBitSize == 0) {
8566       // If the element types are different, bitcast to the same element type of
8567       // PartVT first.
8568       if (ValueEltVT != PartEltVT) {
8569         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8570         assert(Count != 0 && "The number of element should not be zero.");
8571         EVT SameEltTypeVT =
8572             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8573         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
8574       }
8575       Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
8576                         Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8577       Parts[0] = Val;
8578       return true;
8579     }
8580   }
8581   return false;
8582 }
8583 
8584 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
8585     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
8586     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
8587   bool IsABIRegCopy = CC.hasValue();
8588   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8589     SDValue Val = Parts[0];
8590 
8591     // Cast the f32 to i32, truncate to i16, and cast back to f16.
8592     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
8593     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
8594     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
8595     return Val;
8596   }
8597 
8598   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8599     LLVMContext &Context = *DAG.getContext();
8600     SDValue Val = Parts[0];
8601     EVT ValueEltVT = ValueVT.getVectorElementType();
8602     EVT PartEltVT = PartVT.getVectorElementType();
8603     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8604     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8605     if (PartVTBitSize % ValueVTBitSize == 0) {
8606       EVT SameEltTypeVT = ValueVT;
8607       // If the element types are different, convert it to the same element type
8608       // of PartVT.
8609       if (ValueEltVT != PartEltVT) {
8610         unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8611         assert(Count != 0 && "The number of element should not be zero.");
8612         SameEltTypeVT =
8613             EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8614       }
8615       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
8616                         DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8617       if (ValueEltVT != PartEltVT)
8618         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
8619       return Val;
8620     }
8621   }
8622   return SDValue();
8623 }
8624 
8625 #define GET_REGISTER_MATCHER
8626 #include "RISCVGenAsmMatcher.inc"
8627 
8628 Register
8629 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
8630                                        const MachineFunction &MF) const {
8631   Register Reg = MatchRegisterAltName(RegName);
8632   if (Reg == RISCV::NoRegister)
8633     Reg = MatchRegisterName(RegName);
8634   if (Reg == RISCV::NoRegister)
8635     report_fatal_error(
8636         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
8637   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
8638   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
8639     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
8640                              StringRef(RegName) + "\"."));
8641   return Reg;
8642 }
8643 
8644 namespace llvm {
8645 namespace RISCVVIntrinsicsTable {
8646 
8647 #define GET_RISCVVIntrinsicsTable_IMPL
8648 #include "RISCVGenSearchableTables.inc"
8649 
8650 } // namespace RISCVVIntrinsicsTable
8651 
8652 } // namespace llvm
8653