1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
174                    MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
188 
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190   if (!Subtarget.hasStdExtZbb())
191     setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
192 
193   if (Subtarget.is64Bit()) {
194     setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
195                        MVT::i32, Custom);
196 
197     setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
198                        MVT::i32, Custom);
199   } else {
200     setLibcallName(
201         {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
202         nullptr);
203     setLibcallName(RTLIB::MULO_I64, nullptr);
204   }
205 
206   if (!Subtarget.hasStdExtM()) {
207     setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU, ISD::SDIV, ISD::UDIV,
208                         ISD::SREM, ISD::UREM},
209                        XLenVT, Expand);
210   } else {
211     if (Subtarget.is64Bit()) {
212       setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
213 
214       setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
215                          {MVT::i8, MVT::i16, MVT::i32}, Custom);
216     } else {
217       setOperationAction(ISD::MUL, MVT::i64, Custom);
218     }
219   }
220 
221   setOperationAction(
222       {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
223       Expand);
224 
225   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
226                      Custom);
227 
228   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
229       Subtarget.hasStdExtZbkb()) {
230     if (Subtarget.is64Bit())
231       setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
232   } else {
233     setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
234   }
235 
236   if (Subtarget.hasStdExtZbp()) {
237     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
238     // more combining.
239     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
240 
241     // BSWAP i8 doesn't exist.
242     setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
243 
244     setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
245 
246     if (Subtarget.is64Bit())
247       setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
248   } else {
249     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
250     // pattern match it directly in isel.
251     setOperationAction(ISD::BSWAP, XLenVT,
252                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
253                            ? Legal
254                            : Expand);
255     // Zbkb can use rev8+brev8 to implement bitreverse.
256     setOperationAction(ISD::BITREVERSE, XLenVT,
257                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
258   }
259 
260   if (Subtarget.hasStdExtZbb()) {
261     setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
262                        Legal);
263 
264     if (Subtarget.is64Bit())
265       setOperationAction(
266           {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
267           MVT::i32, Custom);
268   } else {
269     setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
270 
271     if (Subtarget.is64Bit())
272       setOperationAction(ISD::ABS, MVT::i32, Custom);
273   }
274 
275   if (Subtarget.hasStdExtZbt()) {
276     setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
277     setOperationAction(ISD::SELECT, XLenVT, Legal);
278 
279     if (Subtarget.is64Bit())
280       setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
281   } else {
282     setOperationAction(ISD::SELECT, XLenVT, Custom);
283   }
284 
285   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
286       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
287       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
288       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
289       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
290       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
291       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
292 
293   static const ISD::CondCode FPCCToExpand[] = {
294       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
295       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
296       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
297 
298   static const ISD::NodeType FPOpToExpand[] = {
299       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
300       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
301 
302   if (Subtarget.hasStdExtZfh())
303     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
304 
305   if (Subtarget.hasStdExtZfh()) {
306     for (auto NT : FPLegalNodeTypes)
307       setOperationAction(NT, MVT::f16, Legal);
308     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
309     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
310     for (auto CC : FPCCToExpand)
311       setCondCodeAction(CC, MVT::f16, Expand);
312     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
313     setOperationAction(ISD::SELECT, MVT::f16, Custom);
314     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
315 
316     setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
317                         ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
318                         ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
319                         ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
320                         ISD::FLOG2, ISD::FLOG10},
321                        MVT::f16, Promote);
322 
323     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
324     // complete support for all operations in LegalizeDAG.
325 
326     // We need to custom promote this.
327     if (Subtarget.is64Bit())
328       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
329   }
330 
331   if (Subtarget.hasStdExtF()) {
332     for (auto NT : FPLegalNodeTypes)
333       setOperationAction(NT, MVT::f32, Legal);
334     for (auto CC : FPCCToExpand)
335       setCondCodeAction(CC, MVT::f32, Expand);
336     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
337     setOperationAction(ISD::SELECT, MVT::f32, Custom);
338     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
339     for (auto Op : FPOpToExpand)
340       setOperationAction(Op, MVT::f32, Expand);
341     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
342     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
343   }
344 
345   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
346     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
347 
348   if (Subtarget.hasStdExtD()) {
349     for (auto NT : FPLegalNodeTypes)
350       setOperationAction(NT, MVT::f64, Legal);
351     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
352     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
353     for (auto CC : FPCCToExpand)
354       setCondCodeAction(CC, MVT::f64, Expand);
355     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
356     setOperationAction(ISD::SELECT, MVT::f64, Custom);
357     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
358     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
359     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
360     for (auto Op : FPOpToExpand)
361       setOperationAction(Op, MVT::f64, Expand);
362     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
363     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
364   }
365 
366   if (Subtarget.is64Bit())
367     setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
368                         ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
369                        MVT::i32, Custom);
370 
371   if (Subtarget.hasStdExtF()) {
372     setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
373                        Custom);
374 
375     setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
376                         ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
377                        XLenVT, Legal);
378 
379     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
380     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
381   }
382 
383   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
384                       ISD::JumpTable},
385                      XLenVT, Custom);
386 
387   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
388 
389   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
390   // Unfortunately this can't be determined just from the ISA naming string.
391   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
392                      Subtarget.is64Bit() ? Legal : Custom);
393 
394   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
395   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
396   if (Subtarget.is64Bit())
397     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtA()) {
400     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
401     setMinCmpXchgSizeInBits(32);
402   } else {
403     setMaxAtomicSizeInBitsSupported(0);
404   }
405 
406   setBooleanContents(ZeroOrOneBooleanContent);
407 
408   if (Subtarget.hasVInstructions()) {
409     setBooleanVectorContents(ZeroOrOneBooleanContent);
410 
411     setOperationAction(ISD::VSCALE, XLenVT, Custom);
412 
413     // RVV intrinsics may have illegal operands.
414     // We also need to custom legalize vmv.x.s.
415     setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
416                        {MVT::i8, MVT::i16}, Custom);
417     if (Subtarget.is64Bit())
418       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
419     else
420       setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
421                          MVT::i64, Custom);
422 
423     setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
424                        MVT::Other, Custom);
425 
426     static const unsigned IntegerVPOps[] = {
427         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
428         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
429         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
430         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
431         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
432         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
433         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
434         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
435         ISD::VP_FPTOUI,      ISD::VP_SETCC,       ISD::VP_SEXT,
436         ISD::VP_ZEXT,        ISD::VP_TRUNC};
437 
438     static const unsigned FloatingPointVPOps[] = {
439         ISD::VP_FADD,        ISD::VP_FSUB,
440         ISD::VP_FMUL,        ISD::VP_FDIV,
441         ISD::VP_FNEG,        ISD::VP_FMA,
442         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
443         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
444         ISD::VP_MERGE,       ISD::VP_SELECT,
445         ISD::VP_SITOFP,      ISD::VP_UITOFP,
446         ISD::VP_SETCC,       ISD::VP_FP_ROUND};
447 
448     if (!Subtarget.is64Bit()) {
449       // We must custom-lower certain vXi64 operations on RV32 due to the vector
450       // element type being illegal.
451       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
452                          MVT::i64, Custom);
453 
454       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
455                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
456                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
457                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
458                          MVT::i64, Custom);
459 
460       setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
461                           ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
462                           ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
463                           ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
464                          MVT::i64, Custom);
465     }
466 
467     for (MVT VT : BoolVecVTs) {
468       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
469 
470       // Mask VTs are custom-expanded into a series of standard nodes
471       setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
472                           ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
473                          VT, Custom);
474 
475       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
476                          Custom);
477 
478       setOperationAction(ISD::SELECT, VT, Custom);
479       setOperationAction(
480           {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
481           Expand);
482 
483       setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
484 
485       setOperationAction(
486           {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
487           Custom);
488 
489       setOperationAction(
490           {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
491           Custom);
492 
493       // RVV has native int->float & float->int conversions where the
494       // element type sizes are within one power-of-two of each other. Any
495       // wider distances between type sizes have to be lowered as sequences
496       // which progressively narrow the gap in stages.
497       setOperationAction(
498           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
499           VT, Custom);
500 
501       // Expand all extending loads to types larger than this, and truncating
502       // stores from types larger than this.
503       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
504         setTruncStoreAction(OtherVT, VT, Expand);
505         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
506                          VT, Expand);
507       }
508 
509       setOperationAction(
510           {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNC, ISD::VP_SETCC}, VT,
511           Custom);
512     }
513 
514     for (MVT VT : IntVecVTs) {
515       if (VT.getVectorElementType() == MVT::i64 &&
516           !Subtarget.hasVInstructionsI64())
517         continue;
518 
519       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
520       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
521 
522       // Vectors implement MULHS/MULHU.
523       setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
524 
525       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
526       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
527         setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
528 
529       setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
530                          Legal);
531 
532       setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
533 
534       setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
535                          Expand);
536 
537       setOperationAction(ISD::BSWAP, VT, Expand);
538 
539       // Custom-lower extensions and truncations from/to mask types.
540       setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
541                          VT, Custom);
542 
543       // RVV has native int->float & float->int conversions where the
544       // element type sizes are within one power-of-two of each other. Any
545       // wider distances between type sizes have to be lowered as sequences
546       // which progressively narrow the gap in stages.
547       setOperationAction(
548           {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
549           VT, Custom);
550 
551       setOperationAction(
552           {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
553 
554       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
555       // nodes which truncate by one power of two at a time.
556       setOperationAction(ISD::TRUNCATE, VT, Custom);
557 
558       // Custom-lower insert/extract operations to simplify patterns.
559       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
560                          Custom);
561 
562       // Custom-lower reduction operations to set up the corresponding custom
563       // nodes' operands.
564       setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND,
565                           ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR,
566                           ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
567                           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN},
568                          VT, Custom);
569 
570       for (unsigned VPOpc : IntegerVPOps)
571         setOperationAction(VPOpc, VT, Custom);
572 
573       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
574 
575       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
576                          VT, Custom);
577 
578       setOperationAction(
579           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
580           Custom);
581 
582       setOperationAction(
583           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
584           VT, Custom);
585 
586       setOperationAction(ISD::SELECT, VT, Custom);
587       setOperationAction(ISD::SELECT_CC, VT, Expand);
588 
589       setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
590 
591       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
592         setTruncStoreAction(VT, OtherVT, Expand);
593         setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
594                          VT, Expand);
595       }
596 
597       // Splice
598       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
599 
600       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
601       // type that can represent the value exactly.
602       if (VT.getVectorElementType() != MVT::i64) {
603         MVT FloatEltVT =
604             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
605         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
606         if (isTypeLegal(FloatVT)) {
607           setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
608                              Custom);
609         }
610       }
611     }
612 
613     // Expand various CCs to best match the RVV ISA, which natively supports UNE
614     // but no other unordered comparisons, and supports all ordered comparisons
615     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
616     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
617     // and we pattern-match those back to the "original", swapping operands once
618     // more. This way we catch both operations and both "vf" and "fv" forms with
619     // fewer patterns.
620     static const ISD::CondCode VFPCCToExpand[] = {
621         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
622         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
623         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
624     };
625 
626     // Sets common operation actions on RVV floating-point vector types.
627     const auto SetCommonVFPActions = [&](MVT VT) {
628       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
629       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
630       // sizes are within one power-of-two of each other. Therefore conversions
631       // between vXf16 and vXf64 must be lowered as sequences which convert via
632       // vXf32.
633       setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
634       // Custom-lower insert/extract operations to simplify patterns.
635       setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
636                          Custom);
637       // Expand various condition codes (explained above).
638       for (auto CC : VFPCCToExpand)
639         setCondCodeAction(CC, VT, Expand);
640 
641       setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
642 
643       setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
644                          VT, Custom);
645 
646       setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
647                           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
648                          VT, Custom);
649 
650       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
651 
652       setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
653 
654       setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
655                          VT, Custom);
656 
657       setOperationAction(
658           {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
659           Custom);
660 
661       setOperationAction(ISD::SELECT, VT, Custom);
662       setOperationAction(ISD::SELECT_CC, VT, Expand);
663 
664       setOperationAction(
665           {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
666           VT, Custom);
667 
668       setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
669 
670       for (unsigned VPOpc : FloatingPointVPOps)
671         setOperationAction(VPOpc, VT, Custom);
672     };
673 
674     // Sets common extload/truncstore actions on RVV floating-point vector
675     // types.
676     const auto SetCommonVFPExtLoadTruncStoreActions =
677         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
678           for (auto SmallVT : SmallerVTs) {
679             setTruncStoreAction(VT, SmallVT, Expand);
680             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
681           }
682         };
683 
684     if (Subtarget.hasVInstructionsF16())
685       for (MVT VT : F16VecVTs)
686         SetCommonVFPActions(VT);
687 
688     for (MVT VT : F32VecVTs) {
689       if (Subtarget.hasVInstructionsF32())
690         SetCommonVFPActions(VT);
691       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
692     }
693 
694     for (MVT VT : F64VecVTs) {
695       if (Subtarget.hasVInstructionsF64())
696         SetCommonVFPActions(VT);
697       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
698       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
699     }
700 
701     if (Subtarget.useRVVForFixedLengthVectors()) {
702       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
703         if (!useRVVForFixedLengthVectorVT(VT))
704           continue;
705 
706         // By default everything must be expanded.
707         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
708           setOperationAction(Op, VT, Expand);
709         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
710           setTruncStoreAction(VT, OtherVT, Expand);
711           setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
712                            OtherVT, VT, Expand);
713         }
714 
715         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
716         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
717                            Custom);
718 
719         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
720                            Custom);
721 
722         setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
723                            VT, Custom);
724 
725         setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
726 
727         setOperationAction(ISD::SETCC, VT, Custom);
728 
729         setOperationAction(ISD::SELECT, VT, Custom);
730 
731         setOperationAction(ISD::TRUNCATE, VT, Custom);
732 
733         setOperationAction(ISD::BITCAST, VT, Custom);
734 
735         setOperationAction(
736             {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
737             Custom);
738 
739         setOperationAction(
740             {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
741             Custom);
742 
743         setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
744                             ISD::FP_TO_UINT},
745                            VT, Custom);
746 
747         // Operations below are different for between masks and other vectors.
748         if (VT.getVectorElementType() == MVT::i1) {
749           setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
750                               ISD::OR, ISD::XOR},
751                              VT, Custom);
752 
753           setOperationAction(
754               {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNC},
755               VT, Custom);
756           continue;
757         }
758 
759         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
760         // it before type legalization for i64 vectors on RV32. It will then be
761         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
762         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
763         // improvements first.
764         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
765           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
766           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
767         }
768 
769         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
770         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
771 
772         setOperationAction(
773             {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
774 
775         setOperationAction(
776             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
777             Custom);
778 
779         setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
780                             ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
781                             ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
782                            VT, Custom);
783 
784         setOperationAction(
785             {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
786 
787         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
788         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
789           setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
790 
791         setOperationAction(
792             {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
793             Custom);
794 
795         setOperationAction(ISD::VSELECT, VT, Custom);
796         setOperationAction(ISD::SELECT_CC, VT, Expand);
797 
798         setOperationAction(
799             {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
800 
801         // Custom-lower reduction operations to set up the corresponding custom
802         // nodes' operands.
803         setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
804                             ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
805                             ISD::VECREDUCE_UMIN},
806                            VT, Custom);
807 
808         for (unsigned VPOpc : IntegerVPOps)
809           setOperationAction(VPOpc, VT, Custom);
810 
811         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
812         // type that can represent the value exactly.
813         if (VT.getVectorElementType() != MVT::i64) {
814           MVT FloatEltVT =
815               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
816           EVT FloatVT =
817               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
818           if (isTypeLegal(FloatVT))
819             setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
820                                Custom);
821         }
822       }
823 
824       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
825         if (!useRVVForFixedLengthVectorVT(VT))
826           continue;
827 
828         // By default everything must be expanded.
829         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
830           setOperationAction(Op, VT, Expand);
831         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
832           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
833           setTruncStoreAction(VT, OtherVT, Expand);
834         }
835 
836         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
837         setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
838                            Custom);
839 
840         setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
841                             ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
842                             ISD::EXTRACT_VECTOR_ELT},
843                            VT, Custom);
844 
845         setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
846                             ISD::MGATHER, ISD::MSCATTER},
847                            VT, Custom);
848 
849         setOperationAction(
850             {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
851             Custom);
852 
853         setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
854                             ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
855                             ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
856                            VT, Custom);
857 
858         setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
859 
860         setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
861                            VT, Custom);
862 
863         for (auto CC : VFPCCToExpand)
864           setCondCodeAction(CC, VT, Expand);
865 
866         setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
867         setOperationAction(ISD::SELECT_CC, VT, Expand);
868 
869         setOperationAction(ISD::BITCAST, VT, Custom);
870 
871         setOperationAction({ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD,
872                             ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAX},
873                            VT, Custom);
874 
875         for (unsigned VPOpc : FloatingPointVPOps)
876           setOperationAction(VPOpc, VT, Custom);
877       }
878 
879       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
880       setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
881                          Custom);
882       if (Subtarget.hasStdExtZfh())
883         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
884       if (Subtarget.hasStdExtF())
885         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
886       if (Subtarget.hasStdExtD())
887         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
888     }
889   }
890 
891   // Function alignments.
892   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
893   setMinFunctionAlignment(FunctionAlignment);
894   setPrefFunctionAlignment(FunctionAlignment);
895 
896   setMinimumJumpTableEntries(5);
897 
898   // Jumps are expensive, compared to logic
899   setJumpIsExpensive();
900 
901   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
902                        ISD::OR, ISD::XOR});
903 
904   if (Subtarget.hasStdExtZbp())
905     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
906   if (Subtarget.hasStdExtZbkb())
907     setTargetDAGCombine(ISD::BITREVERSE);
908   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
909     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
910   if (Subtarget.hasStdExtF())
911     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
912                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
913   if (Subtarget.hasVInstructions())
914     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
915                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
916                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
917 
918   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
919   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
920 }
921 
922 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
923                                             LLVMContext &Context,
924                                             EVT VT) const {
925   if (!VT.isVector())
926     return getPointerTy(DL);
927   if (Subtarget.hasVInstructions() &&
928       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
929     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
930   return VT.changeVectorElementTypeToInteger();
931 }
932 
933 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
934   return Subtarget.getXLenVT();
935 }
936 
937 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
938                                              const CallInst &I,
939                                              MachineFunction &MF,
940                                              unsigned Intrinsic) const {
941   auto &DL = I.getModule()->getDataLayout();
942   switch (Intrinsic) {
943   default:
944     return false;
945   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
946   case Intrinsic::riscv_masked_atomicrmw_add_i32:
947   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
948   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
949   case Intrinsic::riscv_masked_atomicrmw_max_i32:
950   case Intrinsic::riscv_masked_atomicrmw_min_i32:
951   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
952   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
953   case Intrinsic::riscv_masked_cmpxchg_i32:
954     Info.opc = ISD::INTRINSIC_W_CHAIN;
955     Info.memVT = MVT::i32;
956     Info.ptrVal = I.getArgOperand(0);
957     Info.offset = 0;
958     Info.align = Align(4);
959     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
960                  MachineMemOperand::MOVolatile;
961     return true;
962   case Intrinsic::riscv_masked_strided_load:
963     Info.opc = ISD::INTRINSIC_W_CHAIN;
964     Info.ptrVal = I.getArgOperand(1);
965     Info.memVT = getValueType(DL, I.getType()->getScalarType());
966     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
967     Info.size = MemoryLocation::UnknownSize;
968     Info.flags |= MachineMemOperand::MOLoad;
969     return true;
970   case Intrinsic::riscv_masked_strided_store:
971     Info.opc = ISD::INTRINSIC_VOID;
972     Info.ptrVal = I.getArgOperand(1);
973     Info.memVT =
974         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
975     Info.align = Align(
976         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
977         8);
978     Info.size = MemoryLocation::UnknownSize;
979     Info.flags |= MachineMemOperand::MOStore;
980     return true;
981   case Intrinsic::riscv_seg2_load:
982   case Intrinsic::riscv_seg3_load:
983   case Intrinsic::riscv_seg4_load:
984   case Intrinsic::riscv_seg5_load:
985   case Intrinsic::riscv_seg6_load:
986   case Intrinsic::riscv_seg7_load:
987   case Intrinsic::riscv_seg8_load:
988     Info.opc = ISD::INTRINSIC_W_CHAIN;
989     Info.ptrVal = I.getArgOperand(0);
990     Info.memVT =
991         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
992     Info.align =
993         Align(DL.getTypeSizeInBits(
994                   I.getType()->getStructElementType(0)->getScalarType()) /
995               8);
996     Info.size = MemoryLocation::UnknownSize;
997     Info.flags |= MachineMemOperand::MOLoad;
998     return true;
999   }
1000 }
1001 
1002 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1003                                                 const AddrMode &AM, Type *Ty,
1004                                                 unsigned AS,
1005                                                 Instruction *I) const {
1006   // No global is ever allowed as a base.
1007   if (AM.BaseGV)
1008     return false;
1009 
1010   // Require a 12-bit signed offset.
1011   if (!isInt<12>(AM.BaseOffs))
1012     return false;
1013 
1014   switch (AM.Scale) {
1015   case 0: // "r+i" or just "i", depending on HasBaseReg.
1016     break;
1017   case 1:
1018     if (!AM.HasBaseReg) // allow "r+i".
1019       break;
1020     return false; // disallow "r+r" or "r+r+i".
1021   default:
1022     return false;
1023   }
1024 
1025   return true;
1026 }
1027 
1028 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1029   return isInt<12>(Imm);
1030 }
1031 
1032 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1033   return isInt<12>(Imm);
1034 }
1035 
1036 // On RV32, 64-bit integers are split into their high and low parts and held
1037 // in two different registers, so the trunc is free since the low register can
1038 // just be used.
1039 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1040   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1041     return false;
1042   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1043   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1044   return (SrcBits == 64 && DestBits == 32);
1045 }
1046 
1047 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1048   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1049       !SrcVT.isInteger() || !DstVT.isInteger())
1050     return false;
1051   unsigned SrcBits = SrcVT.getSizeInBits();
1052   unsigned DestBits = DstVT.getSizeInBits();
1053   return (SrcBits == 64 && DestBits == 32);
1054 }
1055 
1056 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1057   // Zexts are free if they can be combined with a load.
1058   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1059   // poorly with type legalization of compares preferring sext.
1060   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1061     EVT MemVT = LD->getMemoryVT();
1062     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1063         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1064          LD->getExtensionType() == ISD::ZEXTLOAD))
1065       return true;
1066   }
1067 
1068   return TargetLowering::isZExtFree(Val, VT2);
1069 }
1070 
1071 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1072   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1073 }
1074 
1075 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1076   return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1077 }
1078 
1079 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1080   return Subtarget.hasStdExtZbb();
1081 }
1082 
1083 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1084   return Subtarget.hasStdExtZbb();
1085 }
1086 
1087 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1088   EVT VT = Y.getValueType();
1089 
1090   // FIXME: Support vectors once we have tests.
1091   if (VT.isVector())
1092     return false;
1093 
1094   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1095           Subtarget.hasStdExtZbkb()) &&
1096          !isa<ConstantSDNode>(Y);
1097 }
1098 
1099 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1100   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1101   auto *C = dyn_cast<ConstantSDNode>(Y);
1102   return C && C->getAPIntValue().ule(10);
1103 }
1104 
1105 /// Check if sinking \p I's operands to I's basic block is profitable, because
1106 /// the operands can be folded into a target instruction, e.g.
1107 /// splats of scalars can fold into vector instructions.
1108 bool RISCVTargetLowering::shouldSinkOperands(
1109     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1110   using namespace llvm::PatternMatch;
1111 
1112   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1113     return false;
1114 
1115   auto IsSinker = [&](Instruction *I, int Operand) {
1116     switch (I->getOpcode()) {
1117     case Instruction::Add:
1118     case Instruction::Sub:
1119     case Instruction::Mul:
1120     case Instruction::And:
1121     case Instruction::Or:
1122     case Instruction::Xor:
1123     case Instruction::FAdd:
1124     case Instruction::FSub:
1125     case Instruction::FMul:
1126     case Instruction::FDiv:
1127     case Instruction::ICmp:
1128     case Instruction::FCmp:
1129       return true;
1130     case Instruction::Shl:
1131     case Instruction::LShr:
1132     case Instruction::AShr:
1133     case Instruction::UDiv:
1134     case Instruction::SDiv:
1135     case Instruction::URem:
1136     case Instruction::SRem:
1137       return Operand == 1;
1138     case Instruction::Call:
1139       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1140         switch (II->getIntrinsicID()) {
1141         case Intrinsic::fma:
1142         case Intrinsic::vp_fma:
1143           return Operand == 0 || Operand == 1;
1144         // FIXME: Our patterns can only match vx/vf instructions when the splat
1145         // it on the RHS, because TableGen doesn't recognize our VP operations
1146         // as commutative.
1147         case Intrinsic::vp_add:
1148         case Intrinsic::vp_mul:
1149         case Intrinsic::vp_and:
1150         case Intrinsic::vp_or:
1151         case Intrinsic::vp_xor:
1152         case Intrinsic::vp_fadd:
1153         case Intrinsic::vp_fmul:
1154         case Intrinsic::vp_shl:
1155         case Intrinsic::vp_lshr:
1156         case Intrinsic::vp_ashr:
1157         case Intrinsic::vp_udiv:
1158         case Intrinsic::vp_sdiv:
1159         case Intrinsic::vp_urem:
1160         case Intrinsic::vp_srem:
1161           return Operand == 1;
1162         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1163         // explicit patterns for both LHS and RHS (as 'vr' versions).
1164         case Intrinsic::vp_sub:
1165         case Intrinsic::vp_fsub:
1166         case Intrinsic::vp_fdiv:
1167           return Operand == 0 || Operand == 1;
1168         default:
1169           return false;
1170         }
1171       }
1172       return false;
1173     default:
1174       return false;
1175     }
1176   };
1177 
1178   for (auto OpIdx : enumerate(I->operands())) {
1179     if (!IsSinker(I, OpIdx.index()))
1180       continue;
1181 
1182     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1183     // Make sure we are not already sinking this operand
1184     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1185       continue;
1186 
1187     // We are looking for a splat that can be sunk.
1188     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1189                              m_Undef(), m_ZeroMask())))
1190       continue;
1191 
1192     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1193     // and vector registers
1194     for (Use &U : Op->uses()) {
1195       Instruction *Insn = cast<Instruction>(U.getUser());
1196       if (!IsSinker(Insn, U.getOperandNo()))
1197         return false;
1198     }
1199 
1200     Ops.push_back(&Op->getOperandUse(0));
1201     Ops.push_back(&OpIdx.value());
1202   }
1203   return true;
1204 }
1205 
1206 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1207                                        bool ForCodeSize) const {
1208   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1209   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1210     return false;
1211   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1212     return false;
1213   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1214     return false;
1215   return Imm.isZero();
1216 }
1217 
1218 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1219   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1220          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1221          (VT == MVT::f64 && Subtarget.hasStdExtD());
1222 }
1223 
1224 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1225                                                       CallingConv::ID CC,
1226                                                       EVT VT) const {
1227   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1228   // We might still end up using a GPR but that will be decided based on ABI.
1229   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1230   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1231     return MVT::f32;
1232 
1233   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1234 }
1235 
1236 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1237                                                            CallingConv::ID CC,
1238                                                            EVT VT) const {
1239   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1240   // We might still end up using a GPR but that will be decided based on ABI.
1241   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1242   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1243     return 1;
1244 
1245   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1246 }
1247 
1248 // Changes the condition code and swaps operands if necessary, so the SetCC
1249 // operation matches one of the comparisons supported directly by branches
1250 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1251 // with 1/-1.
1252 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1253                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1254   // Convert X > -1 to X >= 0.
1255   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1256     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1257     CC = ISD::SETGE;
1258     return;
1259   }
1260   // Convert X < 1 to 0 >= X.
1261   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1262     RHS = LHS;
1263     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1264     CC = ISD::SETGE;
1265     return;
1266   }
1267 
1268   switch (CC) {
1269   default:
1270     break;
1271   case ISD::SETGT:
1272   case ISD::SETLE:
1273   case ISD::SETUGT:
1274   case ISD::SETULE:
1275     CC = ISD::getSetCCSwappedOperands(CC);
1276     std::swap(LHS, RHS);
1277     break;
1278   }
1279 }
1280 
1281 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1282   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1283   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1284   if (VT.getVectorElementType() == MVT::i1)
1285     KnownSize *= 8;
1286 
1287   switch (KnownSize) {
1288   default:
1289     llvm_unreachable("Invalid LMUL.");
1290   case 8:
1291     return RISCVII::VLMUL::LMUL_F8;
1292   case 16:
1293     return RISCVII::VLMUL::LMUL_F4;
1294   case 32:
1295     return RISCVII::VLMUL::LMUL_F2;
1296   case 64:
1297     return RISCVII::VLMUL::LMUL_1;
1298   case 128:
1299     return RISCVII::VLMUL::LMUL_2;
1300   case 256:
1301     return RISCVII::VLMUL::LMUL_4;
1302   case 512:
1303     return RISCVII::VLMUL::LMUL_8;
1304   }
1305 }
1306 
1307 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1308   switch (LMul) {
1309   default:
1310     llvm_unreachable("Invalid LMUL.");
1311   case RISCVII::VLMUL::LMUL_F8:
1312   case RISCVII::VLMUL::LMUL_F4:
1313   case RISCVII::VLMUL::LMUL_F2:
1314   case RISCVII::VLMUL::LMUL_1:
1315     return RISCV::VRRegClassID;
1316   case RISCVII::VLMUL::LMUL_2:
1317     return RISCV::VRM2RegClassID;
1318   case RISCVII::VLMUL::LMUL_4:
1319     return RISCV::VRM4RegClassID;
1320   case RISCVII::VLMUL::LMUL_8:
1321     return RISCV::VRM8RegClassID;
1322   }
1323 }
1324 
1325 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1326   RISCVII::VLMUL LMUL = getLMUL(VT);
1327   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1328       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1329       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1330       LMUL == RISCVII::VLMUL::LMUL_1) {
1331     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1332                   "Unexpected subreg numbering");
1333     return RISCV::sub_vrm1_0 + Index;
1334   }
1335   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1336     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1337                   "Unexpected subreg numbering");
1338     return RISCV::sub_vrm2_0 + Index;
1339   }
1340   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1341     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1342                   "Unexpected subreg numbering");
1343     return RISCV::sub_vrm4_0 + Index;
1344   }
1345   llvm_unreachable("Invalid vector type.");
1346 }
1347 
1348 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1349   if (VT.getVectorElementType() == MVT::i1)
1350     return RISCV::VRRegClassID;
1351   return getRegClassIDForLMUL(getLMUL(VT));
1352 }
1353 
1354 // Attempt to decompose a subvector insert/extract between VecVT and
1355 // SubVecVT via subregister indices. Returns the subregister index that
1356 // can perform the subvector insert/extract with the given element index, as
1357 // well as the index corresponding to any leftover subvectors that must be
1358 // further inserted/extracted within the register class for SubVecVT.
1359 std::pair<unsigned, unsigned>
1360 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1361     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1362     const RISCVRegisterInfo *TRI) {
1363   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1364                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1365                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1366                 "Register classes not ordered");
1367   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1368   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1369   // Try to compose a subregister index that takes us from the incoming
1370   // LMUL>1 register class down to the outgoing one. At each step we half
1371   // the LMUL:
1372   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1373   // Note that this is not guaranteed to find a subregister index, such as
1374   // when we are extracting from one VR type to another.
1375   unsigned SubRegIdx = RISCV::NoSubRegister;
1376   for (const unsigned RCID :
1377        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1378     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1379       VecVT = VecVT.getHalfNumVectorElementsVT();
1380       bool IsHi =
1381           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1382       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1383                                             getSubregIndexByMVT(VecVT, IsHi));
1384       if (IsHi)
1385         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1386     }
1387   return {SubRegIdx, InsertExtractIdx};
1388 }
1389 
1390 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1391 // stores for those types.
1392 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1393   return !Subtarget.useRVVForFixedLengthVectors() ||
1394          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1395 }
1396 
1397 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1398   if (ScalarTy->isPointerTy())
1399     return true;
1400 
1401   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1402       ScalarTy->isIntegerTy(32))
1403     return true;
1404 
1405   if (ScalarTy->isIntegerTy(64))
1406     return Subtarget.hasVInstructionsI64();
1407 
1408   if (ScalarTy->isHalfTy())
1409     return Subtarget.hasVInstructionsF16();
1410   if (ScalarTy->isFloatTy())
1411     return Subtarget.hasVInstructionsF32();
1412   if (ScalarTy->isDoubleTy())
1413     return Subtarget.hasVInstructionsF64();
1414 
1415   return false;
1416 }
1417 
1418 static SDValue getVLOperand(SDValue Op) {
1419   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1420           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1421          "Unexpected opcode");
1422   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1423   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1424   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1425       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1426   if (!II)
1427     return SDValue();
1428   return Op.getOperand(II->VLOperand + 1 + HasChain);
1429 }
1430 
1431 static bool useRVVForFixedLengthVectorVT(MVT VT,
1432                                          const RISCVSubtarget &Subtarget) {
1433   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1434   if (!Subtarget.useRVVForFixedLengthVectors())
1435     return false;
1436 
1437   // We only support a set of vector types with a consistent maximum fixed size
1438   // across all supported vector element types to avoid legalization issues.
1439   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1440   // fixed-length vector type we support is 1024 bytes.
1441   if (VT.getFixedSizeInBits() > 1024 * 8)
1442     return false;
1443 
1444   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1445 
1446   MVT EltVT = VT.getVectorElementType();
1447 
1448   // Don't use RVV for vectors we cannot scalarize if required.
1449   switch (EltVT.SimpleTy) {
1450   // i1 is supported but has different rules.
1451   default:
1452     return false;
1453   case MVT::i1:
1454     // Masks can only use a single register.
1455     if (VT.getVectorNumElements() > MinVLen)
1456       return false;
1457     MinVLen /= 8;
1458     break;
1459   case MVT::i8:
1460   case MVT::i16:
1461   case MVT::i32:
1462     break;
1463   case MVT::i64:
1464     if (!Subtarget.hasVInstructionsI64())
1465       return false;
1466     break;
1467   case MVT::f16:
1468     if (!Subtarget.hasVInstructionsF16())
1469       return false;
1470     break;
1471   case MVT::f32:
1472     if (!Subtarget.hasVInstructionsF32())
1473       return false;
1474     break;
1475   case MVT::f64:
1476     if (!Subtarget.hasVInstructionsF64())
1477       return false;
1478     break;
1479   }
1480 
1481   // Reject elements larger than ELEN.
1482   if (EltVT.getSizeInBits() > Subtarget.getELEN())
1483     return false;
1484 
1485   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1486   // Don't use RVV for types that don't fit.
1487   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1488     return false;
1489 
1490   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1491   // the base fixed length RVV support in place.
1492   if (!VT.isPow2VectorType())
1493     return false;
1494 
1495   return true;
1496 }
1497 
1498 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1499   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1500 }
1501 
1502 // Return the largest legal scalable vector type that matches VT's element type.
1503 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1504                                             const RISCVSubtarget &Subtarget) {
1505   // This may be called before legal types are setup.
1506   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1507           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1508          "Expected legal fixed length vector!");
1509 
1510   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1511   unsigned MaxELen = Subtarget.getELEN();
1512 
1513   MVT EltVT = VT.getVectorElementType();
1514   switch (EltVT.SimpleTy) {
1515   default:
1516     llvm_unreachable("unexpected element type for RVV container");
1517   case MVT::i1:
1518   case MVT::i8:
1519   case MVT::i16:
1520   case MVT::i32:
1521   case MVT::i64:
1522   case MVT::f16:
1523   case MVT::f32:
1524   case MVT::f64: {
1525     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1526     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1527     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1528     unsigned NumElts =
1529         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1530     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1531     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1532     return MVT::getScalableVectorVT(EltVT, NumElts);
1533   }
1534   }
1535 }
1536 
1537 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1538                                             const RISCVSubtarget &Subtarget) {
1539   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1540                                           Subtarget);
1541 }
1542 
1543 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1544   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1545 }
1546 
1547 // Grow V to consume an entire RVV register.
1548 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1549                                        const RISCVSubtarget &Subtarget) {
1550   assert(VT.isScalableVector() &&
1551          "Expected to convert into a scalable vector!");
1552   assert(V.getValueType().isFixedLengthVector() &&
1553          "Expected a fixed length vector operand!");
1554   SDLoc DL(V);
1555   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1556   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1557 }
1558 
1559 // Shrink V so it's just big enough to maintain a VT's worth of data.
1560 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1561                                          const RISCVSubtarget &Subtarget) {
1562   assert(VT.isFixedLengthVector() &&
1563          "Expected to convert into a fixed length vector!");
1564   assert(V.getValueType().isScalableVector() &&
1565          "Expected a scalable vector operand!");
1566   SDLoc DL(V);
1567   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1568   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1569 }
1570 
1571 /// Return the type of the mask type suitable for masking the provided
1572 /// vector type.  This is simply an i1 element type vector of the same
1573 /// (possibly scalable) length.
1574 static MVT getMaskTypeFor(EVT VecVT) {
1575   assert(VecVT.isVector());
1576   ElementCount EC = VecVT.getVectorElementCount();
1577   return MVT::getVectorVT(MVT::i1, EC);
1578 }
1579 
1580 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1581 /// vector length VL.  .
1582 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1583                               SelectionDAG &DAG) {
1584   MVT MaskVT = getMaskTypeFor(VecVT);
1585   return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1586 }
1587 
1588 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1589 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1590 // the vector type that it is contained in.
1591 static std::pair<SDValue, SDValue>
1592 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1593                 const RISCVSubtarget &Subtarget) {
1594   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1595   MVT XLenVT = Subtarget.getXLenVT();
1596   SDValue VL = VecVT.isFixedLengthVector()
1597                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1598                    : DAG.getRegister(RISCV::X0, XLenVT);
1599   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1600   return {Mask, VL};
1601 }
1602 
1603 // As above but assuming the given type is a scalable vector type.
1604 static std::pair<SDValue, SDValue>
1605 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1606                         const RISCVSubtarget &Subtarget) {
1607   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1608   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1609 }
1610 
1611 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1612 // of either is (currently) supported. This can get us into an infinite loop
1613 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1614 // as a ..., etc.
1615 // Until either (or both) of these can reliably lower any node, reporting that
1616 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1617 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1618 // which is not desirable.
1619 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1620     EVT VT, unsigned DefinedValues) const {
1621   return false;
1622 }
1623 
1624 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1625                                   const RISCVSubtarget &Subtarget) {
1626   // RISCV FP-to-int conversions saturate to the destination register size, but
1627   // don't produce 0 for nan. We can use a conversion instruction and fix the
1628   // nan case with a compare and a select.
1629   SDValue Src = Op.getOperand(0);
1630 
1631   EVT DstVT = Op.getValueType();
1632   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1633 
1634   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1635   unsigned Opc;
1636   if (SatVT == DstVT)
1637     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1638   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1639     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1640   else
1641     return SDValue();
1642   // FIXME: Support other SatVTs by clamping before or after the conversion.
1643 
1644   SDLoc DL(Op);
1645   SDValue FpToInt = DAG.getNode(
1646       Opc, DL, DstVT, Src,
1647       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1648 
1649   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1650   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1651 }
1652 
1653 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1654 // and back. Taking care to avoid converting values that are nan or already
1655 // correct.
1656 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1657 // have FRM dependencies modeled yet.
1658 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1659   MVT VT = Op.getSimpleValueType();
1660   assert(VT.isVector() && "Unexpected type");
1661 
1662   SDLoc DL(Op);
1663 
1664   // Freeze the source since we are increasing the number of uses.
1665   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1666 
1667   // Truncate to integer and convert back to FP.
1668   MVT IntVT = VT.changeVectorElementTypeToInteger();
1669   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1670   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1671 
1672   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1673 
1674   if (Op.getOpcode() == ISD::FCEIL) {
1675     // If the truncated value is the greater than or equal to the original
1676     // value, we've computed the ceil. Otherwise, we went the wrong way and
1677     // need to increase by 1.
1678     // FIXME: This should use a masked operation. Handle here or in isel?
1679     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1680                                  DAG.getConstantFP(1.0, DL, VT));
1681     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1682     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1683   } else if (Op.getOpcode() == ISD::FFLOOR) {
1684     // If the truncated value is the less than or equal to the original value,
1685     // we've computed the floor. Otherwise, we went the wrong way and need to
1686     // decrease by 1.
1687     // FIXME: This should use a masked operation. Handle here or in isel?
1688     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1689                                  DAG.getConstantFP(1.0, DL, VT));
1690     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1691     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1692   }
1693 
1694   // Restore the original sign so that -0.0 is preserved.
1695   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1696 
1697   // Determine the largest integer that can be represented exactly. This and
1698   // values larger than it don't have any fractional bits so don't need to
1699   // be converted.
1700   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1701   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1702   APFloat MaxVal = APFloat(FltSem);
1703   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1704                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1705   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1706 
1707   // If abs(Src) was larger than MaxVal or nan, keep it.
1708   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1709   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1710   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1711 }
1712 
1713 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1714 // This mode isn't supported in vector hardware on RISCV. But as long as we
1715 // aren't compiling with trapping math, we can emulate this with
1716 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1717 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1718 // dependencies modeled yet.
1719 // FIXME: Use masked operations to avoid final merge.
1720 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1721   MVT VT = Op.getSimpleValueType();
1722   assert(VT.isVector() && "Unexpected type");
1723 
1724   SDLoc DL(Op);
1725 
1726   // Freeze the source since we are increasing the number of uses.
1727   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1728 
1729   // We do the conversion on the absolute value and fix the sign at the end.
1730   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1731 
1732   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1733   bool Ignored;
1734   APFloat Point5Pred = APFloat(0.5f);
1735   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1736   Point5Pred.next(/*nextDown*/ true);
1737 
1738   // Add the adjustment.
1739   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1740                                DAG.getConstantFP(Point5Pred, DL, VT));
1741 
1742   // Truncate to integer and convert back to fp.
1743   MVT IntVT = VT.changeVectorElementTypeToInteger();
1744   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1745   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1746 
1747   // Restore the original sign.
1748   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1749 
1750   // Determine the largest integer that can be represented exactly. This and
1751   // values larger than it don't have any fractional bits so don't need to
1752   // be converted.
1753   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1754   APFloat MaxVal = APFloat(FltSem);
1755   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1756                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1757   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1758 
1759   // If abs(Src) was larger than MaxVal or nan, keep it.
1760   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1761   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1762   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1763 }
1764 
1765 struct VIDSequence {
1766   int64_t StepNumerator;
1767   unsigned StepDenominator;
1768   int64_t Addend;
1769 };
1770 
1771 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1772 // to the (non-zero) step S and start value X. This can be then lowered as the
1773 // RVV sequence (VID * S) + X, for example.
1774 // The step S is represented as an integer numerator divided by a positive
1775 // denominator. Note that the implementation currently only identifies
1776 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1777 // cannot detect 2/3, for example.
1778 // Note that this method will also match potentially unappealing index
1779 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1780 // determine whether this is worth generating code for.
1781 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1782   unsigned NumElts = Op.getNumOperands();
1783   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1784   if (!Op.getValueType().isInteger())
1785     return None;
1786 
1787   Optional<unsigned> SeqStepDenom;
1788   Optional<int64_t> SeqStepNum, SeqAddend;
1789   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1790   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1791   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1792     // Assume undef elements match the sequence; we just have to be careful
1793     // when interpolating across them.
1794     if (Op.getOperand(Idx).isUndef())
1795       continue;
1796     // The BUILD_VECTOR must be all constants.
1797     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1798       return None;
1799 
1800     uint64_t Val = Op.getConstantOperandVal(Idx) &
1801                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1802 
1803     if (PrevElt) {
1804       // Calculate the step since the last non-undef element, and ensure
1805       // it's consistent across the entire sequence.
1806       unsigned IdxDiff = Idx - PrevElt->second;
1807       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1808 
1809       // A zero-value value difference means that we're somewhere in the middle
1810       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1811       // step change before evaluating the sequence.
1812       if (ValDiff == 0)
1813         continue;
1814 
1815       int64_t Remainder = ValDiff % IdxDiff;
1816       // Normalize the step if it's greater than 1.
1817       if (Remainder != ValDiff) {
1818         // The difference must cleanly divide the element span.
1819         if (Remainder != 0)
1820           return None;
1821         ValDiff /= IdxDiff;
1822         IdxDiff = 1;
1823       }
1824 
1825       if (!SeqStepNum)
1826         SeqStepNum = ValDiff;
1827       else if (ValDiff != SeqStepNum)
1828         return None;
1829 
1830       if (!SeqStepDenom)
1831         SeqStepDenom = IdxDiff;
1832       else if (IdxDiff != *SeqStepDenom)
1833         return None;
1834     }
1835 
1836     // Record this non-undef element for later.
1837     if (!PrevElt || PrevElt->first != Val)
1838       PrevElt = std::make_pair(Val, Idx);
1839   }
1840 
1841   // We need to have logged a step for this to count as a legal index sequence.
1842   if (!SeqStepNum || !SeqStepDenom)
1843     return None;
1844 
1845   // Loop back through the sequence and validate elements we might have skipped
1846   // while waiting for a valid step. While doing this, log any sequence addend.
1847   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1848     if (Op.getOperand(Idx).isUndef())
1849       continue;
1850     uint64_t Val = Op.getConstantOperandVal(Idx) &
1851                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1852     uint64_t ExpectedVal =
1853         (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1854     int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1855     if (!SeqAddend)
1856       SeqAddend = Addend;
1857     else if (Addend != SeqAddend)
1858       return None;
1859   }
1860 
1861   assert(SeqAddend && "Must have an addend if we have a step");
1862 
1863   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1864 }
1865 
1866 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1867 // and lower it as a VRGATHER_VX_VL from the source vector.
1868 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1869                                   SelectionDAG &DAG,
1870                                   const RISCVSubtarget &Subtarget) {
1871   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1872     return SDValue();
1873   SDValue Vec = SplatVal.getOperand(0);
1874   // Only perform this optimization on vectors of the same size for simplicity.
1875   if (Vec.getValueType() != VT)
1876     return SDValue();
1877   SDValue Idx = SplatVal.getOperand(1);
1878   // The index must be a legal type.
1879   if (Idx.getValueType() != Subtarget.getXLenVT())
1880     return SDValue();
1881 
1882   MVT ContainerVT = VT;
1883   if (VT.isFixedLengthVector()) {
1884     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1885     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1886   }
1887 
1888   SDValue Mask, VL;
1889   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1890 
1891   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
1892                                Idx, Mask, VL);
1893 
1894   if (!VT.isFixedLengthVector())
1895     return Gather;
1896 
1897   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1898 }
1899 
1900 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1901                                  const RISCVSubtarget &Subtarget) {
1902   MVT VT = Op.getSimpleValueType();
1903   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1904 
1905   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1906 
1907   SDLoc DL(Op);
1908   SDValue Mask, VL;
1909   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1910 
1911   MVT XLenVT = Subtarget.getXLenVT();
1912   unsigned NumElts = Op.getNumOperands();
1913 
1914   if (VT.getVectorElementType() == MVT::i1) {
1915     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1916       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1917       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1918     }
1919 
1920     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1921       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1922       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1923     }
1924 
1925     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1926     // scalar integer chunks whose bit-width depends on the number of mask
1927     // bits and XLEN.
1928     // First, determine the most appropriate scalar integer type to use. This
1929     // is at most XLenVT, but may be shrunk to a smaller vector element type
1930     // according to the size of the final vector - use i8 chunks rather than
1931     // XLenVT if we're producing a v8i1. This results in more consistent
1932     // codegen across RV32 and RV64.
1933     unsigned NumViaIntegerBits =
1934         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1935     NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
1936     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1937       // If we have to use more than one INSERT_VECTOR_ELT then this
1938       // optimization is likely to increase code size; avoid peforming it in
1939       // such a case. We can use a load from a constant pool in this case.
1940       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1941         return SDValue();
1942       // Now we can create our integer vector type. Note that it may be larger
1943       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1944       MVT IntegerViaVecVT =
1945           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1946                            divideCeil(NumElts, NumViaIntegerBits));
1947 
1948       uint64_t Bits = 0;
1949       unsigned BitPos = 0, IntegerEltIdx = 0;
1950       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1951 
1952       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1953         // Once we accumulate enough bits to fill our scalar type, insert into
1954         // our vector and clear our accumulated data.
1955         if (I != 0 && I % NumViaIntegerBits == 0) {
1956           if (NumViaIntegerBits <= 32)
1957             Bits = SignExtend64(Bits, 32);
1958           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1959           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1960                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1961           Bits = 0;
1962           BitPos = 0;
1963           IntegerEltIdx++;
1964         }
1965         SDValue V = Op.getOperand(I);
1966         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1967         Bits |= ((uint64_t)BitValue << BitPos);
1968       }
1969 
1970       // Insert the (remaining) scalar value into position in our integer
1971       // vector type.
1972       if (NumViaIntegerBits <= 32)
1973         Bits = SignExtend64(Bits, 32);
1974       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1975       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1976                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1977 
1978       if (NumElts < NumViaIntegerBits) {
1979         // If we're producing a smaller vector than our minimum legal integer
1980         // type, bitcast to the equivalent (known-legal) mask type, and extract
1981         // our final mask.
1982         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1983         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1984         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1985                           DAG.getConstant(0, DL, XLenVT));
1986       } else {
1987         // Else we must have produced an integer type with the same size as the
1988         // mask type; bitcast for the final result.
1989         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1990         Vec = DAG.getBitcast(VT, Vec);
1991       }
1992 
1993       return Vec;
1994     }
1995 
1996     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1997     // vector type, we have a legal equivalently-sized i8 type, so we can use
1998     // that.
1999     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2000     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2001 
2002     SDValue WideVec;
2003     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2004       // For a splat, perform a scalar truncate before creating the wider
2005       // vector.
2006       assert(Splat.getValueType() == XLenVT &&
2007              "Unexpected type for i1 splat value");
2008       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2009                           DAG.getConstant(1, DL, XLenVT));
2010       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2011     } else {
2012       SmallVector<SDValue, 8> Ops(Op->op_values());
2013       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2014       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2015       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2016     }
2017 
2018     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2019   }
2020 
2021   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2022     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2023       return Gather;
2024     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2025                                         : RISCVISD::VMV_V_X_VL;
2026     Splat =
2027         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2028     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2029   }
2030 
2031   // Try and match index sequences, which we can lower to the vid instruction
2032   // with optional modifications. An all-undef vector is matched by
2033   // getSplatValue, above.
2034   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2035     int64_t StepNumerator = SimpleVID->StepNumerator;
2036     unsigned StepDenominator = SimpleVID->StepDenominator;
2037     int64_t Addend = SimpleVID->Addend;
2038 
2039     assert(StepNumerator != 0 && "Invalid step");
2040     bool Negate = false;
2041     int64_t SplatStepVal = StepNumerator;
2042     unsigned StepOpcode = ISD::MUL;
2043     if (StepNumerator != 1) {
2044       if (isPowerOf2_64(std::abs(StepNumerator))) {
2045         Negate = StepNumerator < 0;
2046         StepOpcode = ISD::SHL;
2047         SplatStepVal = Log2_64(std::abs(StepNumerator));
2048       }
2049     }
2050 
2051     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2052     // threshold since it's the immediate value many RVV instructions accept.
2053     // There is no vmul.vi instruction so ensure multiply constant can fit in
2054     // a single addi instruction.
2055     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2056          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2057         isPowerOf2_32(StepDenominator) &&
2058         (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2059       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2060       // Convert right out of the scalable type so we can use standard ISD
2061       // nodes for the rest of the computation. If we used scalable types with
2062       // these, we'd lose the fixed-length vector info and generate worse
2063       // vsetvli code.
2064       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2065       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2066           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2067         SDValue SplatStep = DAG.getSplatBuildVector(
2068             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2069         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2070       }
2071       if (StepDenominator != 1) {
2072         SDValue SplatStep = DAG.getSplatBuildVector(
2073             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2074         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2075       }
2076       if (Addend != 0 || Negate) {
2077         SDValue SplatAddend = DAG.getSplatBuildVector(
2078             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2079         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2080       }
2081       return VID;
2082     }
2083   }
2084 
2085   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2086   // when re-interpreted as a vector with a larger element type. For example,
2087   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2088   // could be instead splat as
2089   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2090   // TODO: This optimization could also work on non-constant splats, but it
2091   // would require bit-manipulation instructions to construct the splat value.
2092   SmallVector<SDValue> Sequence;
2093   unsigned EltBitSize = VT.getScalarSizeInBits();
2094   const auto *BV = cast<BuildVectorSDNode>(Op);
2095   if (VT.isInteger() && EltBitSize < 64 &&
2096       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2097       BV->getRepeatedSequence(Sequence) &&
2098       (Sequence.size() * EltBitSize) <= 64) {
2099     unsigned SeqLen = Sequence.size();
2100     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2101     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2102     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2103             ViaIntVT == MVT::i64) &&
2104            "Unexpected sequence type");
2105 
2106     unsigned EltIdx = 0;
2107     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2108     uint64_t SplatValue = 0;
2109     // Construct the amalgamated value which can be splatted as this larger
2110     // vector type.
2111     for (const auto &SeqV : Sequence) {
2112       if (!SeqV.isUndef())
2113         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2114                        << (EltIdx * EltBitSize));
2115       EltIdx++;
2116     }
2117 
2118     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2119     // achieve better constant materializion.
2120     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2121       SplatValue = SignExtend64(SplatValue, 32);
2122 
2123     // Since we can't introduce illegal i64 types at this stage, we can only
2124     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2125     // way we can use RVV instructions to splat.
2126     assert((ViaIntVT.bitsLE(XLenVT) ||
2127             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2128            "Unexpected bitcast sequence");
2129     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2130       SDValue ViaVL =
2131           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2132       MVT ViaContainerVT =
2133           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2134       SDValue Splat =
2135           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2136                       DAG.getUNDEF(ViaContainerVT),
2137                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2138       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2139       return DAG.getBitcast(VT, Splat);
2140     }
2141   }
2142 
2143   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2144   // which constitute a large proportion of the elements. In such cases we can
2145   // splat a vector with the dominant element and make up the shortfall with
2146   // INSERT_VECTOR_ELTs.
2147   // Note that this includes vectors of 2 elements by association. The
2148   // upper-most element is the "dominant" one, allowing us to use a splat to
2149   // "insert" the upper element, and an insert of the lower element at position
2150   // 0, which improves codegen.
2151   SDValue DominantValue;
2152   unsigned MostCommonCount = 0;
2153   DenseMap<SDValue, unsigned> ValueCounts;
2154   unsigned NumUndefElts =
2155       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2156 
2157   // Track the number of scalar loads we know we'd be inserting, estimated as
2158   // any non-zero floating-point constant. Other kinds of element are either
2159   // already in registers or are materialized on demand. The threshold at which
2160   // a vector load is more desirable than several scalar materializion and
2161   // vector-insertion instructions is not known.
2162   unsigned NumScalarLoads = 0;
2163 
2164   for (SDValue V : Op->op_values()) {
2165     if (V.isUndef())
2166       continue;
2167 
2168     ValueCounts.insert(std::make_pair(V, 0));
2169     unsigned &Count = ValueCounts[V];
2170 
2171     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2172       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2173 
2174     // Is this value dominant? In case of a tie, prefer the highest element as
2175     // it's cheaper to insert near the beginning of a vector than it is at the
2176     // end.
2177     if (++Count >= MostCommonCount) {
2178       DominantValue = V;
2179       MostCommonCount = Count;
2180     }
2181   }
2182 
2183   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2184   unsigned NumDefElts = NumElts - NumUndefElts;
2185   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2186 
2187   // Don't perform this optimization when optimizing for size, since
2188   // materializing elements and inserting them tends to cause code bloat.
2189   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2190       ((MostCommonCount > DominantValueCountThreshold) ||
2191        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2192     // Start by splatting the most common element.
2193     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2194 
2195     DenseSet<SDValue> Processed{DominantValue};
2196     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2197     for (const auto &OpIdx : enumerate(Op->ops())) {
2198       const SDValue &V = OpIdx.value();
2199       if (V.isUndef() || !Processed.insert(V).second)
2200         continue;
2201       if (ValueCounts[V] == 1) {
2202         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2203                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2204       } else {
2205         // Blend in all instances of this value using a VSELECT, using a
2206         // mask where each bit signals whether that element is the one
2207         // we're after.
2208         SmallVector<SDValue> Ops;
2209         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2210           return DAG.getConstant(V == V1, DL, XLenVT);
2211         });
2212         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2213                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2214                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2215       }
2216     }
2217 
2218     return Vec;
2219   }
2220 
2221   return SDValue();
2222 }
2223 
2224 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2225                                    SDValue Lo, SDValue Hi, SDValue VL,
2226                                    SelectionDAG &DAG) {
2227   if (!Passthru)
2228     Passthru = DAG.getUNDEF(VT);
2229   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2230     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2231     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2232     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2233     // node in order to try and match RVV vector/scalar instructions.
2234     if ((LoC >> 31) == HiC)
2235       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2236 
2237     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2238     // vmv.v.x whose EEW = 32 to lower it.
2239     auto *Const = dyn_cast<ConstantSDNode>(VL);
2240     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2241       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2242       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2243       // access the subtarget here now.
2244       auto InterVec = DAG.getNode(
2245           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2246                                   DAG.getRegister(RISCV::X0, MVT::i32));
2247       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2248     }
2249   }
2250 
2251   // Fall back to a stack store and stride x0 vector load.
2252   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2253                      Hi, VL);
2254 }
2255 
2256 // Called by type legalization to handle splat of i64 on RV32.
2257 // FIXME: We can optimize this when the type has sign or zero bits in one
2258 // of the halves.
2259 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2260                                    SDValue Scalar, SDValue VL,
2261                                    SelectionDAG &DAG) {
2262   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2263   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2264                            DAG.getConstant(0, DL, MVT::i32));
2265   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2266                            DAG.getConstant(1, DL, MVT::i32));
2267   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2268 }
2269 
2270 // This function lowers a splat of a scalar operand Splat with the vector
2271 // length VL. It ensures the final sequence is type legal, which is useful when
2272 // lowering a splat after type legalization.
2273 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2274                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2275                                 const RISCVSubtarget &Subtarget) {
2276   bool HasPassthru = Passthru && !Passthru.isUndef();
2277   if (!HasPassthru && !Passthru)
2278     Passthru = DAG.getUNDEF(VT);
2279   if (VT.isFloatingPoint()) {
2280     // If VL is 1, we could use vfmv.s.f.
2281     if (isOneConstant(VL))
2282       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2283     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2284   }
2285 
2286   MVT XLenVT = Subtarget.getXLenVT();
2287 
2288   // Simplest case is that the operand needs to be promoted to XLenVT.
2289   if (Scalar.getValueType().bitsLE(XLenVT)) {
2290     // If the operand is a constant, sign extend to increase our chances
2291     // of being able to use a .vi instruction. ANY_EXTEND would become a
2292     // a zero extend and the simm5 check in isel would fail.
2293     // FIXME: Should we ignore the upper bits in isel instead?
2294     unsigned ExtOpc =
2295         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2296     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2297     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2298     // If VL is 1 and the scalar value won't benefit from immediate, we could
2299     // use vmv.s.x.
2300     if (isOneConstant(VL) &&
2301         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2302       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2303     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2304   }
2305 
2306   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2307          "Unexpected scalar for splat lowering!");
2308 
2309   if (isOneConstant(VL) && isNullConstant(Scalar))
2310     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2311                        DAG.getConstant(0, DL, XLenVT), VL);
2312 
2313   // Otherwise use the more complicated splatting algorithm.
2314   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2315 }
2316 
2317 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2318                                 const RISCVSubtarget &Subtarget) {
2319   // We need to be able to widen elements to the next larger integer type.
2320   if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2321     return false;
2322 
2323   int Size = Mask.size();
2324   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2325 
2326   int Srcs[] = {-1, -1};
2327   for (int i = 0; i != Size; ++i) {
2328     // Ignore undef elements.
2329     if (Mask[i] < 0)
2330       continue;
2331 
2332     // Is this an even or odd element.
2333     int Pol = i % 2;
2334 
2335     // Ensure we consistently use the same source for this element polarity.
2336     int Src = Mask[i] / Size;
2337     if (Srcs[Pol] < 0)
2338       Srcs[Pol] = Src;
2339     if (Srcs[Pol] != Src)
2340       return false;
2341 
2342     // Make sure the element within the source is appropriate for this element
2343     // in the destination.
2344     int Elt = Mask[i] % Size;
2345     if (Elt != i / 2)
2346       return false;
2347   }
2348 
2349   // We need to find a source for each polarity and they can't be the same.
2350   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2351     return false;
2352 
2353   // Swap the sources if the second source was in the even polarity.
2354   SwapSources = Srcs[0] > Srcs[1];
2355 
2356   return true;
2357 }
2358 
2359 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2360 /// and then extract the original number of elements from the rotated result.
2361 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2362 /// returned rotation amount is for a rotate right, where elements move from
2363 /// higher elements to lower elements. \p LoSrc indicates the first source
2364 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2365 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2366 /// 0 or 1 if a rotation is found.
2367 ///
2368 /// NOTE: We talk about rotate to the right which matches how bit shift and
2369 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2370 /// and the table below write vectors with the lowest elements on the left.
2371 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2372   int Size = Mask.size();
2373 
2374   // We need to detect various ways of spelling a rotation:
2375   //   [11, 12, 13, 14, 15,  0,  1,  2]
2376   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2377   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2378   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2379   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2380   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2381   int Rotation = 0;
2382   LoSrc = -1;
2383   HiSrc = -1;
2384   for (int i = 0; i != Size; ++i) {
2385     int M = Mask[i];
2386     if (M < 0)
2387       continue;
2388 
2389     // Determine where a rotate vector would have started.
2390     int StartIdx = i - (M % Size);
2391     // The identity rotation isn't interesting, stop.
2392     if (StartIdx == 0)
2393       return -1;
2394 
2395     // If we found the tail of a vector the rotation must be the missing
2396     // front. If we found the head of a vector, it must be how much of the
2397     // head.
2398     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2399 
2400     if (Rotation == 0)
2401       Rotation = CandidateRotation;
2402     else if (Rotation != CandidateRotation)
2403       // The rotations don't match, so we can't match this mask.
2404       return -1;
2405 
2406     // Compute which value this mask is pointing at.
2407     int MaskSrc = M < Size ? 0 : 1;
2408 
2409     // Compute which of the two target values this index should be assigned to.
2410     // This reflects whether the high elements are remaining or the low elemnts
2411     // are remaining.
2412     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2413 
2414     // Either set up this value if we've not encountered it before, or check
2415     // that it remains consistent.
2416     if (TargetSrc < 0)
2417       TargetSrc = MaskSrc;
2418     else if (TargetSrc != MaskSrc)
2419       // This may be a rotation, but it pulls from the inputs in some
2420       // unsupported interleaving.
2421       return -1;
2422   }
2423 
2424   // Check that we successfully analyzed the mask, and normalize the results.
2425   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2426   assert((LoSrc >= 0 || HiSrc >= 0) &&
2427          "Failed to find a rotated input vector!");
2428 
2429   return Rotation;
2430 }
2431 
2432 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2433                                    const RISCVSubtarget &Subtarget) {
2434   SDValue V1 = Op.getOperand(0);
2435   SDValue V2 = Op.getOperand(1);
2436   SDLoc DL(Op);
2437   MVT XLenVT = Subtarget.getXLenVT();
2438   MVT VT = Op.getSimpleValueType();
2439   unsigned NumElts = VT.getVectorNumElements();
2440   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2441 
2442   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2443 
2444   SDValue TrueMask, VL;
2445   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2446 
2447   if (SVN->isSplat()) {
2448     const int Lane = SVN->getSplatIndex();
2449     if (Lane >= 0) {
2450       MVT SVT = VT.getVectorElementType();
2451 
2452       // Turn splatted vector load into a strided load with an X0 stride.
2453       SDValue V = V1;
2454       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2455       // with undef.
2456       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2457       int Offset = Lane;
2458       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2459         int OpElements =
2460             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2461         V = V.getOperand(Offset / OpElements);
2462         Offset %= OpElements;
2463       }
2464 
2465       // We need to ensure the load isn't atomic or volatile.
2466       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2467         auto *Ld = cast<LoadSDNode>(V);
2468         Offset *= SVT.getStoreSize();
2469         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2470                                                    TypeSize::Fixed(Offset), DL);
2471 
2472         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2473         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2474           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2475           SDValue IntID =
2476               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2477           SDValue Ops[] = {Ld->getChain(),
2478                            IntID,
2479                            DAG.getUNDEF(ContainerVT),
2480                            NewAddr,
2481                            DAG.getRegister(RISCV::X0, XLenVT),
2482                            VL};
2483           SDValue NewLoad = DAG.getMemIntrinsicNode(
2484               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2485               DAG.getMachineFunction().getMachineMemOperand(
2486                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2487           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2488           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2489         }
2490 
2491         // Otherwise use a scalar load and splat. This will give the best
2492         // opportunity to fold a splat into the operation. ISel can turn it into
2493         // the x0 strided load if we aren't able to fold away the select.
2494         if (SVT.isFloatingPoint())
2495           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2496                           Ld->getPointerInfo().getWithOffset(Offset),
2497                           Ld->getOriginalAlign(),
2498                           Ld->getMemOperand()->getFlags());
2499         else
2500           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2501                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2502                              Ld->getOriginalAlign(),
2503                              Ld->getMemOperand()->getFlags());
2504         DAG.makeEquivalentMemoryOrdering(Ld, V);
2505 
2506         unsigned Opc =
2507             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2508         SDValue Splat =
2509             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2510         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2511       }
2512 
2513       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2514       assert(Lane < (int)NumElts && "Unexpected lane!");
2515       SDValue Gather =
2516           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2517                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2518       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2519     }
2520   }
2521 
2522   ArrayRef<int> Mask = SVN->getMask();
2523 
2524   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2525   // be undef which can be handled with a single SLIDEDOWN/UP.
2526   int LoSrc, HiSrc;
2527   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2528   if (Rotation > 0) {
2529     SDValue LoV, HiV;
2530     if (LoSrc >= 0) {
2531       LoV = LoSrc == 0 ? V1 : V2;
2532       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2533     }
2534     if (HiSrc >= 0) {
2535       HiV = HiSrc == 0 ? V1 : V2;
2536       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2537     }
2538 
2539     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2540     // to slide LoV up by (NumElts - Rotation).
2541     unsigned InvRotate = NumElts - Rotation;
2542 
2543     SDValue Res = DAG.getUNDEF(ContainerVT);
2544     if (HiV) {
2545       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2546       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2547       // causes multiple vsetvlis in some test cases such as lowering
2548       // reduce.mul
2549       SDValue DownVL = VL;
2550       if (LoV)
2551         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2552       Res =
2553           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2554                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2555     }
2556     if (LoV)
2557       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2558                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2559 
2560     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2561   }
2562 
2563   // Detect an interleave shuffle and lower to
2564   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2565   bool SwapSources;
2566   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2567     // Swap sources if needed.
2568     if (SwapSources)
2569       std::swap(V1, V2);
2570 
2571     // Extract the lower half of the vectors.
2572     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2573     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2574                      DAG.getConstant(0, DL, XLenVT));
2575     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2576                      DAG.getConstant(0, DL, XLenVT));
2577 
2578     // Double the element width and halve the number of elements in an int type.
2579     unsigned EltBits = VT.getScalarSizeInBits();
2580     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2581     MVT WideIntVT =
2582         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2583     // Convert this to a scalable vector. We need to base this on the
2584     // destination size to ensure there's always a type with a smaller LMUL.
2585     MVT WideIntContainerVT =
2586         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2587 
2588     // Convert sources to scalable vectors with the same element count as the
2589     // larger type.
2590     MVT HalfContainerVT = MVT::getVectorVT(
2591         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2592     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2593     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2594 
2595     // Cast sources to integer.
2596     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2597     MVT IntHalfVT =
2598         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2599     V1 = DAG.getBitcast(IntHalfVT, V1);
2600     V2 = DAG.getBitcast(IntHalfVT, V2);
2601 
2602     // Freeze V2 since we use it twice and we need to be sure that the add and
2603     // multiply see the same value.
2604     V2 = DAG.getFreeze(V2);
2605 
2606     // Recreate TrueMask using the widened type's element count.
2607     TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2608 
2609     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2610     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2611                               V2, TrueMask, VL);
2612     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2613     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2614                                      DAG.getUNDEF(IntHalfVT),
2615                                      DAG.getAllOnesConstant(DL, XLenVT));
2616     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2617                                    V2, Multiplier, TrueMask, VL);
2618     // Add the new copies to our previous addition giving us 2^eltbits copies of
2619     // V2. This is equivalent to shifting V2 left by eltbits. This should
2620     // combine with the vwmulu.vv above to form vwmaccu.vv.
2621     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2622                       TrueMask, VL);
2623     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2624     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2625     // vector VT.
2626     ContainerVT =
2627         MVT::getVectorVT(VT.getVectorElementType(),
2628                          WideIntContainerVT.getVectorElementCount() * 2);
2629     Add = DAG.getBitcast(ContainerVT, Add);
2630     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2631   }
2632 
2633   // Detect shuffles which can be re-expressed as vector selects; these are
2634   // shuffles in which each element in the destination is taken from an element
2635   // at the corresponding index in either source vectors.
2636   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2637     int MaskIndex = MaskIdx.value();
2638     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2639   });
2640 
2641   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2642 
2643   SmallVector<SDValue> MaskVals;
2644   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2645   // merged with a second vrgather.
2646   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2647 
2648   // By default we preserve the original operand order, and use a mask to
2649   // select LHS as true and RHS as false. However, since RVV vector selects may
2650   // feature splats but only on the LHS, we may choose to invert our mask and
2651   // instead select between RHS and LHS.
2652   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2653   bool InvertMask = IsSelect == SwapOps;
2654 
2655   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2656   // half.
2657   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2658 
2659   // Now construct the mask that will be used by the vselect or blended
2660   // vrgather operation. For vrgathers, construct the appropriate indices into
2661   // each vector.
2662   for (int MaskIndex : Mask) {
2663     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2664     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2665     if (!IsSelect) {
2666       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2667       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2668                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2669                                      : DAG.getUNDEF(XLenVT));
2670       GatherIndicesRHS.push_back(
2671           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2672                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2673       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2674         ++LHSIndexCounts[MaskIndex];
2675       if (!IsLHSOrUndefIndex)
2676         ++RHSIndexCounts[MaskIndex - NumElts];
2677     }
2678   }
2679 
2680   if (SwapOps) {
2681     std::swap(V1, V2);
2682     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2683   }
2684 
2685   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2686   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2687   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2688 
2689   if (IsSelect)
2690     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2691 
2692   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2693     // On such a large vector we're unable to use i8 as the index type.
2694     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2695     // may involve vector splitting if we're already at LMUL=8, or our
2696     // user-supplied maximum fixed-length LMUL.
2697     return SDValue();
2698   }
2699 
2700   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2701   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2702   MVT IndexVT = VT.changeTypeToInteger();
2703   // Since we can't introduce illegal index types at this stage, use i16 and
2704   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2705   // than XLenVT.
2706   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2707     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2708     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2709   }
2710 
2711   MVT IndexContainerVT =
2712       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2713 
2714   SDValue Gather;
2715   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2716   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2717   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2718     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2719                               Subtarget);
2720   } else {
2721     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2722     // If only one index is used, we can use a "splat" vrgather.
2723     // TODO: We can splat the most-common index and fix-up any stragglers, if
2724     // that's beneficial.
2725     if (LHSIndexCounts.size() == 1) {
2726       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2727       Gather =
2728           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2729                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2730     } else {
2731       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2732       LHSIndices =
2733           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2734 
2735       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2736                            TrueMask, VL);
2737     }
2738   }
2739 
2740   // If a second vector operand is used by this shuffle, blend it in with an
2741   // additional vrgather.
2742   if (!V2.isUndef()) {
2743     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2744     // If only one index is used, we can use a "splat" vrgather.
2745     // TODO: We can splat the most-common index and fix-up any stragglers, if
2746     // that's beneficial.
2747     if (RHSIndexCounts.size() == 1) {
2748       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2749       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2750                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2751     } else {
2752       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2753       RHSIndices =
2754           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2755       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2756                        VL);
2757     }
2758 
2759     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2760     SelectMask =
2761         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2762 
2763     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2764                          Gather, VL);
2765   }
2766 
2767   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2768 }
2769 
2770 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2771   // Support splats for any type. These should type legalize well.
2772   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2773     return true;
2774 
2775   // Only support legal VTs for other shuffles for now.
2776   if (!isTypeLegal(VT))
2777     return false;
2778 
2779   MVT SVT = VT.getSimpleVT();
2780 
2781   bool SwapSources;
2782   int LoSrc, HiSrc;
2783   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2784          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2785 }
2786 
2787 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2788                                      SDLoc DL, SelectionDAG &DAG,
2789                                      const RISCVSubtarget &Subtarget) {
2790   if (VT.isScalableVector())
2791     return DAG.getFPExtendOrRound(Op, DL, VT);
2792   assert(VT.isFixedLengthVector() &&
2793          "Unexpected value type for RVV FP extend/round lowering");
2794   SDValue Mask, VL;
2795   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2796   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2797                         ? RISCVISD::FP_EXTEND_VL
2798                         : RISCVISD::FP_ROUND_VL;
2799   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2800 }
2801 
2802 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2803 // the exponent.
2804 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2805   MVT VT = Op.getSimpleValueType();
2806   unsigned EltSize = VT.getScalarSizeInBits();
2807   SDValue Src = Op.getOperand(0);
2808   SDLoc DL(Op);
2809 
2810   // We need a FP type that can represent the value.
2811   // TODO: Use f16 for i8 when possible?
2812   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2813   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2814 
2815   // Legal types should have been checked in the RISCVTargetLowering
2816   // constructor.
2817   // TODO: Splitting may make sense in some cases.
2818   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2819          "Expected legal float type!");
2820 
2821   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2822   // The trailing zero count is equal to log2 of this single bit value.
2823   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2824     SDValue Neg =
2825         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2826     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2827   }
2828 
2829   // We have a legal FP type, convert to it.
2830   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2831   // Bitcast to integer and shift the exponent to the LSB.
2832   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2833   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2834   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2835   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2836                               DAG.getConstant(ShiftAmt, DL, IntVT));
2837   // Truncate back to original type to allow vnsrl.
2838   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2839   // The exponent contains log2 of the value in biased form.
2840   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2841 
2842   // For trailing zeros, we just need to subtract the bias.
2843   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2844     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2845                        DAG.getConstant(ExponentBias, DL, VT));
2846 
2847   // For leading zeros, we need to remove the bias and convert from log2 to
2848   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2849   unsigned Adjust = ExponentBias + (EltSize - 1);
2850   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2851 }
2852 
2853 // While RVV has alignment restrictions, we should always be able to load as a
2854 // legal equivalently-sized byte-typed vector instead. This method is
2855 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2856 // the load is already correctly-aligned, it returns SDValue().
2857 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2858                                                     SelectionDAG &DAG) const {
2859   auto *Load = cast<LoadSDNode>(Op);
2860   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2861 
2862   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2863                                      Load->getMemoryVT(),
2864                                      *Load->getMemOperand()))
2865     return SDValue();
2866 
2867   SDLoc DL(Op);
2868   MVT VT = Op.getSimpleValueType();
2869   unsigned EltSizeBits = VT.getScalarSizeInBits();
2870   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2871          "Unexpected unaligned RVV load type");
2872   MVT NewVT =
2873       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2874   assert(NewVT.isValid() &&
2875          "Expecting equally-sized RVV vector types to be legal");
2876   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2877                           Load->getPointerInfo(), Load->getOriginalAlign(),
2878                           Load->getMemOperand()->getFlags());
2879   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2880 }
2881 
2882 // While RVV has alignment restrictions, we should always be able to store as a
2883 // legal equivalently-sized byte-typed vector instead. This method is
2884 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2885 // returns SDValue() if the store is already correctly aligned.
2886 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2887                                                      SelectionDAG &DAG) const {
2888   auto *Store = cast<StoreSDNode>(Op);
2889   assert(Store && Store->getValue().getValueType().isVector() &&
2890          "Expected vector store");
2891 
2892   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2893                                      Store->getMemoryVT(),
2894                                      *Store->getMemOperand()))
2895     return SDValue();
2896 
2897   SDLoc DL(Op);
2898   SDValue StoredVal = Store->getValue();
2899   MVT VT = StoredVal.getSimpleValueType();
2900   unsigned EltSizeBits = VT.getScalarSizeInBits();
2901   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2902          "Unexpected unaligned RVV store type");
2903   MVT NewVT =
2904       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2905   assert(NewVT.isValid() &&
2906          "Expecting equally-sized RVV vector types to be legal");
2907   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2908   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2909                       Store->getPointerInfo(), Store->getOriginalAlign(),
2910                       Store->getMemOperand()->getFlags());
2911 }
2912 
2913 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2914                                             SelectionDAG &DAG) const {
2915   switch (Op.getOpcode()) {
2916   default:
2917     report_fatal_error("unimplemented operand");
2918   case ISD::GlobalAddress:
2919     return lowerGlobalAddress(Op, DAG);
2920   case ISD::BlockAddress:
2921     return lowerBlockAddress(Op, DAG);
2922   case ISD::ConstantPool:
2923     return lowerConstantPool(Op, DAG);
2924   case ISD::JumpTable:
2925     return lowerJumpTable(Op, DAG);
2926   case ISD::GlobalTLSAddress:
2927     return lowerGlobalTLSAddress(Op, DAG);
2928   case ISD::SELECT:
2929     return lowerSELECT(Op, DAG);
2930   case ISD::BRCOND:
2931     return lowerBRCOND(Op, DAG);
2932   case ISD::VASTART:
2933     return lowerVASTART(Op, DAG);
2934   case ISD::FRAMEADDR:
2935     return lowerFRAMEADDR(Op, DAG);
2936   case ISD::RETURNADDR:
2937     return lowerRETURNADDR(Op, DAG);
2938   case ISD::SHL_PARTS:
2939     return lowerShiftLeftParts(Op, DAG);
2940   case ISD::SRA_PARTS:
2941     return lowerShiftRightParts(Op, DAG, true);
2942   case ISD::SRL_PARTS:
2943     return lowerShiftRightParts(Op, DAG, false);
2944   case ISD::BITCAST: {
2945     SDLoc DL(Op);
2946     EVT VT = Op.getValueType();
2947     SDValue Op0 = Op.getOperand(0);
2948     EVT Op0VT = Op0.getValueType();
2949     MVT XLenVT = Subtarget.getXLenVT();
2950     if (VT.isFixedLengthVector()) {
2951       // We can handle fixed length vector bitcasts with a simple replacement
2952       // in isel.
2953       if (Op0VT.isFixedLengthVector())
2954         return Op;
2955       // When bitcasting from scalar to fixed-length vector, insert the scalar
2956       // into a one-element vector of the result type, and perform a vector
2957       // bitcast.
2958       if (!Op0VT.isVector()) {
2959         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2960         if (!isTypeLegal(BVT))
2961           return SDValue();
2962         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2963                                               DAG.getUNDEF(BVT), Op0,
2964                                               DAG.getConstant(0, DL, XLenVT)));
2965       }
2966       return SDValue();
2967     }
2968     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2969     // thus: bitcast the vector to a one-element vector type whose element type
2970     // is the same as the result type, and extract the first element.
2971     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2972       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2973       if (!isTypeLegal(BVT))
2974         return SDValue();
2975       SDValue BVec = DAG.getBitcast(BVT, Op0);
2976       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2977                          DAG.getConstant(0, DL, XLenVT));
2978     }
2979     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2980       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2981       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2982       return FPConv;
2983     }
2984     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2985         Subtarget.hasStdExtF()) {
2986       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2987       SDValue FPConv =
2988           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2989       return FPConv;
2990     }
2991     return SDValue();
2992   }
2993   case ISD::INTRINSIC_WO_CHAIN:
2994     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2995   case ISD::INTRINSIC_W_CHAIN:
2996     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2997   case ISD::INTRINSIC_VOID:
2998     return LowerINTRINSIC_VOID(Op, DAG);
2999   case ISD::BSWAP:
3000   case ISD::BITREVERSE: {
3001     MVT VT = Op.getSimpleValueType();
3002     SDLoc DL(Op);
3003     if (Subtarget.hasStdExtZbp()) {
3004       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3005       // Start with the maximum immediate value which is the bitwidth - 1.
3006       unsigned Imm = VT.getSizeInBits() - 1;
3007       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3008       if (Op.getOpcode() == ISD::BSWAP)
3009         Imm &= ~0x7U;
3010       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3011                          DAG.getConstant(Imm, DL, VT));
3012     }
3013     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3014     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3015     // Expand bitreverse to a bswap(rev8) followed by brev8.
3016     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3017     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3018     // as brev8 by an isel pattern.
3019     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3020                        DAG.getConstant(7, DL, VT));
3021   }
3022   case ISD::FSHL:
3023   case ISD::FSHR: {
3024     MVT VT = Op.getSimpleValueType();
3025     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3026     SDLoc DL(Op);
3027     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3028     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3029     // accidentally setting the extra bit.
3030     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3031     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3032                                 DAG.getConstant(ShAmtWidth, DL, VT));
3033     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3034     // instruction use different orders. fshl will return its first operand for
3035     // shift of zero, fshr will return its second operand. fsl and fsr both
3036     // return rs1 so the ISD nodes need to have different operand orders.
3037     // Shift amount is in rs2.
3038     SDValue Op0 = Op.getOperand(0);
3039     SDValue Op1 = Op.getOperand(1);
3040     unsigned Opc = RISCVISD::FSL;
3041     if (Op.getOpcode() == ISD::FSHR) {
3042       std::swap(Op0, Op1);
3043       Opc = RISCVISD::FSR;
3044     }
3045     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3046   }
3047   case ISD::TRUNCATE:
3048     // Only custom-lower vector truncates
3049     if (!Op.getSimpleValueType().isVector())
3050       return Op;
3051     return lowerVectorTruncLike(Op, DAG);
3052   case ISD::ANY_EXTEND:
3053   case ISD::ZERO_EXTEND:
3054     if (Op.getOperand(0).getValueType().isVector() &&
3055         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3056       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3057     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3058   case ISD::SIGN_EXTEND:
3059     if (Op.getOperand(0).getValueType().isVector() &&
3060         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3061       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3062     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3063   case ISD::SPLAT_VECTOR_PARTS:
3064     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3065   case ISD::INSERT_VECTOR_ELT:
3066     return lowerINSERT_VECTOR_ELT(Op, DAG);
3067   case ISD::EXTRACT_VECTOR_ELT:
3068     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3069   case ISD::VSCALE: {
3070     MVT VT = Op.getSimpleValueType();
3071     SDLoc DL(Op);
3072     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3073     // We define our scalable vector types for lmul=1 to use a 64 bit known
3074     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3075     // vscale as VLENB / 8.
3076     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3077     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3078       report_fatal_error("Support for VLEN==32 is incomplete.");
3079     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3080       // We assume VLENB is a multiple of 8. We manually choose the best shift
3081       // here because SimplifyDemandedBits isn't always able to simplify it.
3082       uint64_t Val = Op.getConstantOperandVal(0);
3083       if (isPowerOf2_64(Val)) {
3084         uint64_t Log2 = Log2_64(Val);
3085         if (Log2 < 3)
3086           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3087                              DAG.getConstant(3 - Log2, DL, VT));
3088         if (Log2 > 3)
3089           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3090                              DAG.getConstant(Log2 - 3, DL, VT));
3091         return VLENB;
3092       }
3093       // If the multiplier is a multiple of 8, scale it down to avoid needing
3094       // to shift the VLENB value.
3095       if ((Val % 8) == 0)
3096         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3097                            DAG.getConstant(Val / 8, DL, VT));
3098     }
3099 
3100     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3101                                  DAG.getConstant(3, DL, VT));
3102     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3103   }
3104   case ISD::FPOWI: {
3105     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3106     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3107     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3108         Op.getOperand(1).getValueType() == MVT::i32) {
3109       SDLoc DL(Op);
3110       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3111       SDValue Powi =
3112           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3113       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3114                          DAG.getIntPtrConstant(0, DL));
3115     }
3116     return SDValue();
3117   }
3118   case ISD::FP_EXTEND: {
3119     // RVV can only do fp_extend to types double the size as the source. We
3120     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3121     // via f32.
3122     SDLoc DL(Op);
3123     MVT VT = Op.getSimpleValueType();
3124     SDValue Src = Op.getOperand(0);
3125     MVT SrcVT = Src.getSimpleValueType();
3126 
3127     // Prepare any fixed-length vector operands.
3128     MVT ContainerVT = VT;
3129     if (SrcVT.isFixedLengthVector()) {
3130       ContainerVT = getContainerForFixedLengthVector(VT);
3131       MVT SrcContainerVT =
3132           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3133       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3134     }
3135 
3136     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3137         SrcVT.getVectorElementType() != MVT::f16) {
3138       // For scalable vectors, we only need to close the gap between
3139       // vXf16->vXf64.
3140       if (!VT.isFixedLengthVector())
3141         return Op;
3142       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3143       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3144       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3145     }
3146 
3147     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3148     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3149     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3150         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3151 
3152     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3153                                            DL, DAG, Subtarget);
3154     if (VT.isFixedLengthVector())
3155       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3156     return Extend;
3157   }
3158   case ISD::FP_ROUND:
3159     if (!Op.getValueType().isVector())
3160       return Op;
3161     return lowerVectorFPRoundLike(Op, DAG);
3162   case ISD::FP_TO_SINT:
3163   case ISD::FP_TO_UINT:
3164   case ISD::SINT_TO_FP:
3165   case ISD::UINT_TO_FP: {
3166     // RVV can only do fp<->int conversions to types half/double the size as
3167     // the source. We custom-lower any conversions that do two hops into
3168     // sequences.
3169     MVT VT = Op.getSimpleValueType();
3170     if (!VT.isVector())
3171       return Op;
3172     SDLoc DL(Op);
3173     SDValue Src = Op.getOperand(0);
3174     MVT EltVT = VT.getVectorElementType();
3175     MVT SrcVT = Src.getSimpleValueType();
3176     MVT SrcEltVT = SrcVT.getVectorElementType();
3177     unsigned EltSize = EltVT.getSizeInBits();
3178     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3179     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3180            "Unexpected vector element types");
3181 
3182     bool IsInt2FP = SrcEltVT.isInteger();
3183     // Widening conversions
3184     if (EltSize > (2 * SrcEltSize)) {
3185       if (IsInt2FP) {
3186         // Do a regular integer sign/zero extension then convert to float.
3187         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3188                                       VT.getVectorElementCount());
3189         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3190                                  ? ISD::ZERO_EXTEND
3191                                  : ISD::SIGN_EXTEND;
3192         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3193         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3194       }
3195       // FP2Int
3196       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3197       // Do one doubling fp_extend then complete the operation by converting
3198       // to int.
3199       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3200       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3201       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3202     }
3203 
3204     // Narrowing conversions
3205     if (SrcEltSize > (2 * EltSize)) {
3206       if (IsInt2FP) {
3207         // One narrowing int_to_fp, then an fp_round.
3208         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3209         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3210         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3211         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3212       }
3213       // FP2Int
3214       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3215       // representable by the integer, the result is poison.
3216       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3217                                     VT.getVectorElementCount());
3218       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3219       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3220     }
3221 
3222     // Scalable vectors can exit here. Patterns will handle equally-sized
3223     // conversions halving/doubling ones.
3224     if (!VT.isFixedLengthVector())
3225       return Op;
3226 
3227     // For fixed-length vectors we lower to a custom "VL" node.
3228     unsigned RVVOpc = 0;
3229     switch (Op.getOpcode()) {
3230     default:
3231       llvm_unreachable("Impossible opcode");
3232     case ISD::FP_TO_SINT:
3233       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3234       break;
3235     case ISD::FP_TO_UINT:
3236       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3237       break;
3238     case ISD::SINT_TO_FP:
3239       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3240       break;
3241     case ISD::UINT_TO_FP:
3242       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3243       break;
3244     }
3245 
3246     MVT ContainerVT, SrcContainerVT;
3247     // Derive the reference container type from the larger vector type.
3248     if (SrcEltSize > EltSize) {
3249       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3250       ContainerVT =
3251           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3252     } else {
3253       ContainerVT = getContainerForFixedLengthVector(VT);
3254       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3255     }
3256 
3257     SDValue Mask, VL;
3258     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3259 
3260     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3261     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3262     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3263   }
3264   case ISD::FP_TO_SINT_SAT:
3265   case ISD::FP_TO_UINT_SAT:
3266     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3267   case ISD::FTRUNC:
3268   case ISD::FCEIL:
3269   case ISD::FFLOOR:
3270     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3271   case ISD::FROUND:
3272     return lowerFROUND(Op, DAG);
3273   case ISD::VECREDUCE_ADD:
3274   case ISD::VECREDUCE_UMAX:
3275   case ISD::VECREDUCE_SMAX:
3276   case ISD::VECREDUCE_UMIN:
3277   case ISD::VECREDUCE_SMIN:
3278     return lowerVECREDUCE(Op, DAG);
3279   case ISD::VECREDUCE_AND:
3280   case ISD::VECREDUCE_OR:
3281   case ISD::VECREDUCE_XOR:
3282     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3283       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3284     return lowerVECREDUCE(Op, DAG);
3285   case ISD::VECREDUCE_FADD:
3286   case ISD::VECREDUCE_SEQ_FADD:
3287   case ISD::VECREDUCE_FMIN:
3288   case ISD::VECREDUCE_FMAX:
3289     return lowerFPVECREDUCE(Op, DAG);
3290   case ISD::VP_REDUCE_ADD:
3291   case ISD::VP_REDUCE_UMAX:
3292   case ISD::VP_REDUCE_SMAX:
3293   case ISD::VP_REDUCE_UMIN:
3294   case ISD::VP_REDUCE_SMIN:
3295   case ISD::VP_REDUCE_FADD:
3296   case ISD::VP_REDUCE_SEQ_FADD:
3297   case ISD::VP_REDUCE_FMIN:
3298   case ISD::VP_REDUCE_FMAX:
3299     return lowerVPREDUCE(Op, DAG);
3300   case ISD::VP_REDUCE_AND:
3301   case ISD::VP_REDUCE_OR:
3302   case ISD::VP_REDUCE_XOR:
3303     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3304       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3305     return lowerVPREDUCE(Op, DAG);
3306   case ISD::INSERT_SUBVECTOR:
3307     return lowerINSERT_SUBVECTOR(Op, DAG);
3308   case ISD::EXTRACT_SUBVECTOR:
3309     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3310   case ISD::STEP_VECTOR:
3311     return lowerSTEP_VECTOR(Op, DAG);
3312   case ISD::VECTOR_REVERSE:
3313     return lowerVECTOR_REVERSE(Op, DAG);
3314   case ISD::VECTOR_SPLICE:
3315     return lowerVECTOR_SPLICE(Op, DAG);
3316   case ISD::BUILD_VECTOR:
3317     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3318   case ISD::SPLAT_VECTOR:
3319     if (Op.getValueType().getVectorElementType() == MVT::i1)
3320       return lowerVectorMaskSplat(Op, DAG);
3321     return SDValue();
3322   case ISD::VECTOR_SHUFFLE:
3323     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3324   case ISD::CONCAT_VECTORS: {
3325     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3326     // better than going through the stack, as the default expansion does.
3327     SDLoc DL(Op);
3328     MVT VT = Op.getSimpleValueType();
3329     unsigned NumOpElts =
3330         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3331     SDValue Vec = DAG.getUNDEF(VT);
3332     for (const auto &OpIdx : enumerate(Op->ops())) {
3333       SDValue SubVec = OpIdx.value();
3334       // Don't insert undef subvectors.
3335       if (SubVec.isUndef())
3336         continue;
3337       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3338                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3339     }
3340     return Vec;
3341   }
3342   case ISD::LOAD:
3343     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3344       return V;
3345     if (Op.getValueType().isFixedLengthVector())
3346       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3347     return Op;
3348   case ISD::STORE:
3349     if (auto V = expandUnalignedRVVStore(Op, DAG))
3350       return V;
3351     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3352       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3353     return Op;
3354   case ISD::MLOAD:
3355   case ISD::VP_LOAD:
3356     return lowerMaskedLoad(Op, DAG);
3357   case ISD::MSTORE:
3358   case ISD::VP_STORE:
3359     return lowerMaskedStore(Op, DAG);
3360   case ISD::SETCC:
3361     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3362   case ISD::ADD:
3363     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3364   case ISD::SUB:
3365     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3366   case ISD::MUL:
3367     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3368   case ISD::MULHS:
3369     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3370   case ISD::MULHU:
3371     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3372   case ISD::AND:
3373     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3374                                               RISCVISD::AND_VL);
3375   case ISD::OR:
3376     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3377                                               RISCVISD::OR_VL);
3378   case ISD::XOR:
3379     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3380                                               RISCVISD::XOR_VL);
3381   case ISD::SDIV:
3382     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3383   case ISD::SREM:
3384     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3385   case ISD::UDIV:
3386     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3387   case ISD::UREM:
3388     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3389   case ISD::SHL:
3390   case ISD::SRA:
3391   case ISD::SRL:
3392     if (Op.getSimpleValueType().isFixedLengthVector())
3393       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3394     // This can be called for an i32 shift amount that needs to be promoted.
3395     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3396            "Unexpected custom legalisation");
3397     return SDValue();
3398   case ISD::SADDSAT:
3399     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3400   case ISD::UADDSAT:
3401     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3402   case ISD::SSUBSAT:
3403     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3404   case ISD::USUBSAT:
3405     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3406   case ISD::FADD:
3407     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3408   case ISD::FSUB:
3409     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3410   case ISD::FMUL:
3411     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3412   case ISD::FDIV:
3413     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3414   case ISD::FNEG:
3415     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3416   case ISD::FABS:
3417     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3418   case ISD::FSQRT:
3419     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3420   case ISD::FMA:
3421     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3422   case ISD::SMIN:
3423     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3424   case ISD::SMAX:
3425     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3426   case ISD::UMIN:
3427     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3428   case ISD::UMAX:
3429     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3430   case ISD::FMINNUM:
3431     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3432   case ISD::FMAXNUM:
3433     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3434   case ISD::ABS:
3435     return lowerABS(Op, DAG);
3436   case ISD::CTLZ_ZERO_UNDEF:
3437   case ISD::CTTZ_ZERO_UNDEF:
3438     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3439   case ISD::VSELECT:
3440     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3441   case ISD::FCOPYSIGN:
3442     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3443   case ISD::MGATHER:
3444   case ISD::VP_GATHER:
3445     return lowerMaskedGather(Op, DAG);
3446   case ISD::MSCATTER:
3447   case ISD::VP_SCATTER:
3448     return lowerMaskedScatter(Op, DAG);
3449   case ISD::FLT_ROUNDS_:
3450     return lowerGET_ROUNDING(Op, DAG);
3451   case ISD::SET_ROUNDING:
3452     return lowerSET_ROUNDING(Op, DAG);
3453   case ISD::VP_SELECT:
3454     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3455   case ISD::VP_MERGE:
3456     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3457   case ISD::VP_ADD:
3458     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3459   case ISD::VP_SUB:
3460     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3461   case ISD::VP_MUL:
3462     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3463   case ISD::VP_SDIV:
3464     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3465   case ISD::VP_UDIV:
3466     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3467   case ISD::VP_SREM:
3468     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3469   case ISD::VP_UREM:
3470     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3471   case ISD::VP_AND:
3472     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3473   case ISD::VP_OR:
3474     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3475   case ISD::VP_XOR:
3476     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3477   case ISD::VP_ASHR:
3478     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3479   case ISD::VP_LSHR:
3480     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3481   case ISD::VP_SHL:
3482     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3483   case ISD::VP_FADD:
3484     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3485   case ISD::VP_FSUB:
3486     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3487   case ISD::VP_FMUL:
3488     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3489   case ISD::VP_FDIV:
3490     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3491   case ISD::VP_FNEG:
3492     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3493   case ISD::VP_FMA:
3494     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3495   case ISD::VP_SEXT:
3496   case ISD::VP_ZEXT:
3497     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3498       return lowerVPExtMaskOp(Op, DAG);
3499     return lowerVPOp(Op, DAG,
3500                      Op.getOpcode() == ISD::VP_SEXT ? RISCVISD::VSEXT_VL
3501                                                     : RISCVISD::VZEXT_VL);
3502   case ISD::VP_TRUNC:
3503     return lowerVectorTruncLike(Op, DAG);
3504   case ISD::VP_FP_ROUND:
3505     return lowerVectorFPRoundLike(Op, DAG);
3506   case ISD::VP_FPTOSI:
3507     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3508   case ISD::VP_FPTOUI:
3509     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3510   case ISD::VP_SITOFP:
3511     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3512   case ISD::VP_UITOFP:
3513     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3514   case ISD::VP_SETCC:
3515     if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3516       return lowerVPSetCCMaskOp(Op, DAG);
3517     return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3518   }
3519 }
3520 
3521 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3522                              SelectionDAG &DAG, unsigned Flags) {
3523   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3524 }
3525 
3526 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3527                              SelectionDAG &DAG, unsigned Flags) {
3528   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3529                                    Flags);
3530 }
3531 
3532 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3533                              SelectionDAG &DAG, unsigned Flags) {
3534   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3535                                    N->getOffset(), Flags);
3536 }
3537 
3538 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3539                              SelectionDAG &DAG, unsigned Flags) {
3540   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3541 }
3542 
3543 template <class NodeTy>
3544 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3545                                      bool IsLocal) const {
3546   SDLoc DL(N);
3547   EVT Ty = getPointerTy(DAG.getDataLayout());
3548 
3549   if (isPositionIndependent()) {
3550     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3551     if (IsLocal)
3552       // Use PC-relative addressing to access the symbol. This generates the
3553       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3554       // %pcrel_lo(auipc)).
3555       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3556 
3557     // Use PC-relative addressing to access the GOT for this symbol, then load
3558     // the address from the GOT. This generates the pattern (PseudoLA sym),
3559     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3560     SDValue Load =
3561         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3562     MachineFunction &MF = DAG.getMachineFunction();
3563     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3564         MachinePointerInfo::getGOT(MF),
3565         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3566             MachineMemOperand::MOInvariant,
3567         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3568     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3569     return Load;
3570   }
3571 
3572   switch (getTargetMachine().getCodeModel()) {
3573   default:
3574     report_fatal_error("Unsupported code model for lowering");
3575   case CodeModel::Small: {
3576     // Generate a sequence for accessing addresses within the first 2 GiB of
3577     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3578     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3579     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3580     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3581     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3582   }
3583   case CodeModel::Medium: {
3584     // Generate a sequence for accessing addresses within any 2GiB range within
3585     // the address space. This generates the pattern (PseudoLLA sym), which
3586     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3587     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3588     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3589   }
3590   }
3591 }
3592 
3593 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3594     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3595 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3596     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3597 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3598     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3599 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3600     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3601 
3602 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3603                                                 SelectionDAG &DAG) const {
3604   SDLoc DL(Op);
3605   EVT Ty = Op.getValueType();
3606   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3607   int64_t Offset = N->getOffset();
3608   MVT XLenVT = Subtarget.getXLenVT();
3609 
3610   const GlobalValue *GV = N->getGlobal();
3611   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3612   SDValue Addr = getAddr(N, DAG, IsLocal);
3613 
3614   // In order to maximise the opportunity for common subexpression elimination,
3615   // emit a separate ADD node for the global address offset instead of folding
3616   // it in the global address node. Later peephole optimisations may choose to
3617   // fold it back in when profitable.
3618   if (Offset != 0)
3619     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3620                        DAG.getConstant(Offset, DL, XLenVT));
3621   return Addr;
3622 }
3623 
3624 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3625                                                SelectionDAG &DAG) const {
3626   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3627 
3628   return getAddr(N, DAG);
3629 }
3630 
3631 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3632                                                SelectionDAG &DAG) const {
3633   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3634 
3635   return getAddr(N, DAG);
3636 }
3637 
3638 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3639                                             SelectionDAG &DAG) const {
3640   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3641 
3642   return getAddr(N, DAG);
3643 }
3644 
3645 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3646                                               SelectionDAG &DAG,
3647                                               bool UseGOT) const {
3648   SDLoc DL(N);
3649   EVT Ty = getPointerTy(DAG.getDataLayout());
3650   const GlobalValue *GV = N->getGlobal();
3651   MVT XLenVT = Subtarget.getXLenVT();
3652 
3653   if (UseGOT) {
3654     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3655     // load the address from the GOT and add the thread pointer. This generates
3656     // the pattern (PseudoLA_TLS_IE sym), which expands to
3657     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3658     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3659     SDValue Load =
3660         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3661     MachineFunction &MF = DAG.getMachineFunction();
3662     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3663         MachinePointerInfo::getGOT(MF),
3664         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3665             MachineMemOperand::MOInvariant,
3666         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3667     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3668 
3669     // Add the thread pointer.
3670     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3671     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3672   }
3673 
3674   // Generate a sequence for accessing the address relative to the thread
3675   // pointer, with the appropriate adjustment for the thread pointer offset.
3676   // This generates the pattern
3677   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3678   SDValue AddrHi =
3679       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3680   SDValue AddrAdd =
3681       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3682   SDValue AddrLo =
3683       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3684 
3685   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3686   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3687   SDValue MNAdd = SDValue(
3688       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3689       0);
3690   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3691 }
3692 
3693 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3694                                                SelectionDAG &DAG) const {
3695   SDLoc DL(N);
3696   EVT Ty = getPointerTy(DAG.getDataLayout());
3697   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3698   const GlobalValue *GV = N->getGlobal();
3699 
3700   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3701   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3702   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3703   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3704   SDValue Load =
3705       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3706 
3707   // Prepare argument list to generate call.
3708   ArgListTy Args;
3709   ArgListEntry Entry;
3710   Entry.Node = Load;
3711   Entry.Ty = CallTy;
3712   Args.push_back(Entry);
3713 
3714   // Setup call to __tls_get_addr.
3715   TargetLowering::CallLoweringInfo CLI(DAG);
3716   CLI.setDebugLoc(DL)
3717       .setChain(DAG.getEntryNode())
3718       .setLibCallee(CallingConv::C, CallTy,
3719                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3720                     std::move(Args));
3721 
3722   return LowerCallTo(CLI).first;
3723 }
3724 
3725 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3726                                                    SelectionDAG &DAG) const {
3727   SDLoc DL(Op);
3728   EVT Ty = Op.getValueType();
3729   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3730   int64_t Offset = N->getOffset();
3731   MVT XLenVT = Subtarget.getXLenVT();
3732 
3733   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3734 
3735   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3736       CallingConv::GHC)
3737     report_fatal_error("In GHC calling convention TLS is not supported");
3738 
3739   SDValue Addr;
3740   switch (Model) {
3741   case TLSModel::LocalExec:
3742     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3743     break;
3744   case TLSModel::InitialExec:
3745     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3746     break;
3747   case TLSModel::LocalDynamic:
3748   case TLSModel::GeneralDynamic:
3749     Addr = getDynamicTLSAddr(N, DAG);
3750     break;
3751   }
3752 
3753   // In order to maximise the opportunity for common subexpression elimination,
3754   // emit a separate ADD node for the global address offset instead of folding
3755   // it in the global address node. Later peephole optimisations may choose to
3756   // fold it back in when profitable.
3757   if (Offset != 0)
3758     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3759                        DAG.getConstant(Offset, DL, XLenVT));
3760   return Addr;
3761 }
3762 
3763 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3764   SDValue CondV = Op.getOperand(0);
3765   SDValue TrueV = Op.getOperand(1);
3766   SDValue FalseV = Op.getOperand(2);
3767   SDLoc DL(Op);
3768   MVT VT = Op.getSimpleValueType();
3769   MVT XLenVT = Subtarget.getXLenVT();
3770 
3771   // Lower vector SELECTs to VSELECTs by splatting the condition.
3772   if (VT.isVector()) {
3773     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3774     SDValue CondSplat = VT.isScalableVector()
3775                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3776                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3777     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3778   }
3779 
3780   // If the result type is XLenVT and CondV is the output of a SETCC node
3781   // which also operated on XLenVT inputs, then merge the SETCC node into the
3782   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3783   // compare+branch instructions. i.e.:
3784   // (select (setcc lhs, rhs, cc), truev, falsev)
3785   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3786   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3787       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3788     SDValue LHS = CondV.getOperand(0);
3789     SDValue RHS = CondV.getOperand(1);
3790     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3791     ISD::CondCode CCVal = CC->get();
3792 
3793     // Special case for a select of 2 constants that have a diffence of 1.
3794     // Normally this is done by DAGCombine, but if the select is introduced by
3795     // type legalization or op legalization, we miss it. Restricting to SETLT
3796     // case for now because that is what signed saturating add/sub need.
3797     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3798     // but we would probably want to swap the true/false values if the condition
3799     // is SETGE/SETLE to avoid an XORI.
3800     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3801         CCVal == ISD::SETLT) {
3802       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3803       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3804       if (TrueVal - 1 == FalseVal)
3805         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3806       if (TrueVal + 1 == FalseVal)
3807         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3808     }
3809 
3810     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3811 
3812     SDValue TargetCC = DAG.getCondCode(CCVal);
3813     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3814     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3815   }
3816 
3817   // Otherwise:
3818   // (select condv, truev, falsev)
3819   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3820   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3821   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3822 
3823   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3824 
3825   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3826 }
3827 
3828 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3829   SDValue CondV = Op.getOperand(1);
3830   SDLoc DL(Op);
3831   MVT XLenVT = Subtarget.getXLenVT();
3832 
3833   if (CondV.getOpcode() == ISD::SETCC &&
3834       CondV.getOperand(0).getValueType() == XLenVT) {
3835     SDValue LHS = CondV.getOperand(0);
3836     SDValue RHS = CondV.getOperand(1);
3837     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3838 
3839     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3840 
3841     SDValue TargetCC = DAG.getCondCode(CCVal);
3842     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3843                        LHS, RHS, TargetCC, Op.getOperand(2));
3844   }
3845 
3846   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3847                      CondV, DAG.getConstant(0, DL, XLenVT),
3848                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3849 }
3850 
3851 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3852   MachineFunction &MF = DAG.getMachineFunction();
3853   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3854 
3855   SDLoc DL(Op);
3856   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3857                                  getPointerTy(MF.getDataLayout()));
3858 
3859   // vastart just stores the address of the VarArgsFrameIndex slot into the
3860   // memory location argument.
3861   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3862   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3863                       MachinePointerInfo(SV));
3864 }
3865 
3866 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3867                                             SelectionDAG &DAG) const {
3868   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3869   MachineFunction &MF = DAG.getMachineFunction();
3870   MachineFrameInfo &MFI = MF.getFrameInfo();
3871   MFI.setFrameAddressIsTaken(true);
3872   Register FrameReg = RI.getFrameRegister(MF);
3873   int XLenInBytes = Subtarget.getXLen() / 8;
3874 
3875   EVT VT = Op.getValueType();
3876   SDLoc DL(Op);
3877   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3878   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3879   while (Depth--) {
3880     int Offset = -(XLenInBytes * 2);
3881     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3882                               DAG.getIntPtrConstant(Offset, DL));
3883     FrameAddr =
3884         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3885   }
3886   return FrameAddr;
3887 }
3888 
3889 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3890                                              SelectionDAG &DAG) const {
3891   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3892   MachineFunction &MF = DAG.getMachineFunction();
3893   MachineFrameInfo &MFI = MF.getFrameInfo();
3894   MFI.setReturnAddressIsTaken(true);
3895   MVT XLenVT = Subtarget.getXLenVT();
3896   int XLenInBytes = Subtarget.getXLen() / 8;
3897 
3898   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3899     return SDValue();
3900 
3901   EVT VT = Op.getValueType();
3902   SDLoc DL(Op);
3903   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3904   if (Depth) {
3905     int Off = -XLenInBytes;
3906     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3907     SDValue Offset = DAG.getConstant(Off, DL, VT);
3908     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3909                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3910                        MachinePointerInfo());
3911   }
3912 
3913   // Return the value of the return address register, marking it an implicit
3914   // live-in.
3915   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3916   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3917 }
3918 
3919 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3920                                                  SelectionDAG &DAG) const {
3921   SDLoc DL(Op);
3922   SDValue Lo = Op.getOperand(0);
3923   SDValue Hi = Op.getOperand(1);
3924   SDValue Shamt = Op.getOperand(2);
3925   EVT VT = Lo.getValueType();
3926 
3927   // if Shamt-XLEN < 0: // Shamt < XLEN
3928   //   Lo = Lo << Shamt
3929   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
3930   // else:
3931   //   Lo = 0
3932   //   Hi = Lo << (Shamt-XLEN)
3933 
3934   SDValue Zero = DAG.getConstant(0, DL, VT);
3935   SDValue One = DAG.getConstant(1, DL, VT);
3936   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3937   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3938   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3939   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3940 
3941   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3942   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3943   SDValue ShiftRightLo =
3944       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3945   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3946   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3947   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3948 
3949   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3950 
3951   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3952   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3953 
3954   SDValue Parts[2] = {Lo, Hi};
3955   return DAG.getMergeValues(Parts, DL);
3956 }
3957 
3958 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3959                                                   bool IsSRA) const {
3960   SDLoc DL(Op);
3961   SDValue Lo = Op.getOperand(0);
3962   SDValue Hi = Op.getOperand(1);
3963   SDValue Shamt = Op.getOperand(2);
3964   EVT VT = Lo.getValueType();
3965 
3966   // SRA expansion:
3967   //   if Shamt-XLEN < 0: // Shamt < XLEN
3968   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3969   //     Hi = Hi >>s Shamt
3970   //   else:
3971   //     Lo = Hi >>s (Shamt-XLEN);
3972   //     Hi = Hi >>s (XLEN-1)
3973   //
3974   // SRL expansion:
3975   //   if Shamt-XLEN < 0: // Shamt < XLEN
3976   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
3977   //     Hi = Hi >>u Shamt
3978   //   else:
3979   //     Lo = Hi >>u (Shamt-XLEN);
3980   //     Hi = 0;
3981 
3982   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3983 
3984   SDValue Zero = DAG.getConstant(0, DL, VT);
3985   SDValue One = DAG.getConstant(1, DL, VT);
3986   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3987   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3988   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3989   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
3990 
3991   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3992   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3993   SDValue ShiftLeftHi =
3994       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3995   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3996   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3997   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3998   SDValue HiFalse =
3999       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4000 
4001   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4002 
4003   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4004   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4005 
4006   SDValue Parts[2] = {Lo, Hi};
4007   return DAG.getMergeValues(Parts, DL);
4008 }
4009 
4010 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4011 // legal equivalently-sized i8 type, so we can use that as a go-between.
4012 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4013                                                   SelectionDAG &DAG) const {
4014   SDLoc DL(Op);
4015   MVT VT = Op.getSimpleValueType();
4016   SDValue SplatVal = Op.getOperand(0);
4017   // All-zeros or all-ones splats are handled specially.
4018   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4019     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4020     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4021   }
4022   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4023     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4024     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4025   }
4026   MVT XLenVT = Subtarget.getXLenVT();
4027   assert(SplatVal.getValueType() == XLenVT &&
4028          "Unexpected type for i1 splat value");
4029   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4030   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4031                          DAG.getConstant(1, DL, XLenVT));
4032   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4033   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4034   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4035 }
4036 
4037 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4038 // illegal (currently only vXi64 RV32).
4039 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4040 // them to VMV_V_X_VL.
4041 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4042                                                      SelectionDAG &DAG) const {
4043   SDLoc DL(Op);
4044   MVT VecVT = Op.getSimpleValueType();
4045   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4046          "Unexpected SPLAT_VECTOR_PARTS lowering");
4047 
4048   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4049   SDValue Lo = Op.getOperand(0);
4050   SDValue Hi = Op.getOperand(1);
4051 
4052   if (VecVT.isFixedLengthVector()) {
4053     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4054     SDLoc DL(Op);
4055     SDValue Mask, VL;
4056     std::tie(Mask, VL) =
4057         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4058 
4059     SDValue Res =
4060         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4061     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4062   }
4063 
4064   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4065     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4066     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4067     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4068     // node in order to try and match RVV vector/scalar instructions.
4069     if ((LoC >> 31) == HiC)
4070       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4071                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4072   }
4073 
4074   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4075   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4076       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4077       Hi.getConstantOperandVal(1) == 31)
4078     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4079                        DAG.getRegister(RISCV::X0, MVT::i32));
4080 
4081   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4082   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4083                      DAG.getUNDEF(VecVT), Lo, Hi,
4084                      DAG.getRegister(RISCV::X0, MVT::i32));
4085 }
4086 
4087 // Custom-lower extensions from mask vectors by using a vselect either with 1
4088 // for zero/any-extension or -1 for sign-extension:
4089 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4090 // Note that any-extension is lowered identically to zero-extension.
4091 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4092                                                 int64_t ExtTrueVal) const {
4093   SDLoc DL(Op);
4094   MVT VecVT = Op.getSimpleValueType();
4095   SDValue Src = Op.getOperand(0);
4096   // Only custom-lower extensions from mask types
4097   assert(Src.getValueType().isVector() &&
4098          Src.getValueType().getVectorElementType() == MVT::i1);
4099 
4100   if (VecVT.isScalableVector()) {
4101     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4102     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4103     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4104   }
4105 
4106   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4107   MVT I1ContainerVT =
4108       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4109 
4110   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4111 
4112   SDValue Mask, VL;
4113   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4114 
4115   MVT XLenVT = Subtarget.getXLenVT();
4116   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4117   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4118 
4119   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4120                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4121   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4122                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4123   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4124                                SplatTrueVal, SplatZero, VL);
4125 
4126   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4127 }
4128 
4129 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4130     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4131   MVT ExtVT = Op.getSimpleValueType();
4132   // Only custom-lower extensions from fixed-length vector types.
4133   if (!ExtVT.isFixedLengthVector())
4134     return Op;
4135   MVT VT = Op.getOperand(0).getSimpleValueType();
4136   // Grab the canonical container type for the extended type. Infer the smaller
4137   // type from that to ensure the same number of vector elements, as we know
4138   // the LMUL will be sufficient to hold the smaller type.
4139   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4140   // Get the extended container type manually to ensure the same number of
4141   // vector elements between source and dest.
4142   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4143                                      ContainerExtVT.getVectorElementCount());
4144 
4145   SDValue Op1 =
4146       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4147 
4148   SDLoc DL(Op);
4149   SDValue Mask, VL;
4150   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4151 
4152   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4153 
4154   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4155 }
4156 
4157 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4158 // setcc operation:
4159 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4160 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4161                                                       SelectionDAG &DAG) const {
4162   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC;
4163   SDLoc DL(Op);
4164   EVT MaskVT = Op.getValueType();
4165   // Only expect to custom-lower truncations to mask types
4166   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4167          "Unexpected type for vector mask lowering");
4168   SDValue Src = Op.getOperand(0);
4169   MVT VecVT = Src.getSimpleValueType();
4170   SDValue Mask, VL;
4171   if (IsVPTrunc) {
4172     Mask = Op.getOperand(1);
4173     VL = Op.getOperand(2);
4174   }
4175   // If this is a fixed vector, we need to convert it to a scalable vector.
4176   MVT ContainerVT = VecVT;
4177 
4178   if (VecVT.isFixedLengthVector()) {
4179     ContainerVT = getContainerForFixedLengthVector(VecVT);
4180     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4181     if (IsVPTrunc) {
4182       MVT MaskContainerVT =
4183           getContainerForFixedLengthVector(Mask.getSimpleValueType());
4184       Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4185     }
4186   }
4187 
4188   if (!IsVPTrunc) {
4189     std::tie(Mask, VL) =
4190         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4191   }
4192 
4193   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4194   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4195 
4196   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4197                          DAG.getUNDEF(ContainerVT), SplatOne, VL);
4198   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4199                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4200 
4201   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4202   SDValue Trunc =
4203       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4204   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4205                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4206   if (MaskVT.isFixedLengthVector())
4207     Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4208   return Trunc;
4209 }
4210 
4211 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4212                                                   SelectionDAG &DAG) const {
4213   bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNC;
4214   SDLoc DL(Op);
4215 
4216   MVT VT = Op.getSimpleValueType();
4217   // Only custom-lower vector truncates
4218   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4219 
4220   // Truncates to mask types are handled differently
4221   if (VT.getVectorElementType() == MVT::i1)
4222     return lowerVectorMaskTruncLike(Op, DAG);
4223 
4224   // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4225   // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4226   // truncate by one power of two at a time.
4227   MVT DstEltVT = VT.getVectorElementType();
4228 
4229   SDValue Src = Op.getOperand(0);
4230   MVT SrcVT = Src.getSimpleValueType();
4231   MVT SrcEltVT = SrcVT.getVectorElementType();
4232 
4233   assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4234          isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4235          "Unexpected vector truncate lowering");
4236 
4237   MVT ContainerVT = SrcVT;
4238   SDValue Mask, VL;
4239   if (IsVPTrunc) {
4240     Mask = Op.getOperand(1);
4241     VL = Op.getOperand(2);
4242   }
4243   if (SrcVT.isFixedLengthVector()) {
4244     ContainerVT = getContainerForFixedLengthVector(SrcVT);
4245     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4246     if (IsVPTrunc) {
4247       MVT MaskVT = getMaskTypeFor(ContainerVT);
4248       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4249     }
4250   }
4251 
4252   SDValue Result = Src;
4253   if (!IsVPTrunc) {
4254     std::tie(Mask, VL) =
4255         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4256   }
4257 
4258   LLVMContext &Context = *DAG.getContext();
4259   const ElementCount Count = ContainerVT.getVectorElementCount();
4260   do {
4261     SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4262     EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4263     Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4264                          Mask, VL);
4265   } while (SrcEltVT != DstEltVT);
4266 
4267   if (SrcVT.isFixedLengthVector())
4268     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4269 
4270   return Result;
4271 }
4272 
4273 SDValue RISCVTargetLowering::lowerVectorFPRoundLike(SDValue Op,
4274                                                     SelectionDAG &DAG) const {
4275   bool IsVPFPTrunc = Op.getOpcode() == ISD::VP_FP_ROUND;
4276   // RVV can only do truncate fp to types half the size as the source. We
4277   // custom-lower f64->f16 rounds via RVV's round-to-odd float
4278   // conversion instruction.
4279   SDLoc DL(Op);
4280   MVT VT = Op.getSimpleValueType();
4281 
4282   assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4283 
4284   SDValue Src = Op.getOperand(0);
4285   MVT SrcVT = Src.getSimpleValueType();
4286 
4287   bool IsDirectConv = VT.getVectorElementType() != MVT::f16 ||
4288                       SrcVT.getVectorElementType() != MVT::f64;
4289 
4290   // For FP_ROUND of scalable vectors, leave it to the pattern.
4291   if (!VT.isFixedLengthVector() && !IsVPFPTrunc && IsDirectConv)
4292     return Op;
4293 
4294   // Prepare any fixed-length vector operands.
4295   MVT ContainerVT = VT;
4296   SDValue Mask, VL;
4297   if (IsVPFPTrunc) {
4298     Mask = Op.getOperand(1);
4299     VL = Op.getOperand(2);
4300   }
4301   if (VT.isFixedLengthVector()) {
4302     MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4303     ContainerVT =
4304         SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4305     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4306     if (IsVPFPTrunc) {
4307       MVT MaskVT = getMaskTypeFor(ContainerVT);
4308       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4309     }
4310   }
4311 
4312   if (!IsVPFPTrunc)
4313     std::tie(Mask, VL) =
4314         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4315 
4316   if (IsDirectConv) {
4317     Src = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT, Src, Mask, VL);
4318     if (VT.isFixedLengthVector())
4319       Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4320     return Src;
4321   }
4322 
4323   MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4324   SDValue IntermediateRound =
4325       DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
4326   SDValue Round = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, ContainerVT,
4327                               IntermediateRound, Mask, VL);
4328   if (VT.isFixedLengthVector())
4329     return convertFromScalableVector(VT, Round, DAG, Subtarget);
4330   return Round;
4331 }
4332 
4333 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4334 // first position of a vector, and that vector is slid up to the insert index.
4335 // By limiting the active vector length to index+1 and merging with the
4336 // original vector (with an undisturbed tail policy for elements >= VL), we
4337 // achieve the desired result of leaving all elements untouched except the one
4338 // at VL-1, which is replaced with the desired value.
4339 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4340                                                     SelectionDAG &DAG) const {
4341   SDLoc DL(Op);
4342   MVT VecVT = Op.getSimpleValueType();
4343   SDValue Vec = Op.getOperand(0);
4344   SDValue Val = Op.getOperand(1);
4345   SDValue Idx = Op.getOperand(2);
4346 
4347   if (VecVT.getVectorElementType() == MVT::i1) {
4348     // FIXME: For now we just promote to an i8 vector and insert into that,
4349     // but this is probably not optimal.
4350     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4351     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4352     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4353     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4354   }
4355 
4356   MVT ContainerVT = VecVT;
4357   // If the operand is a fixed-length vector, convert to a scalable one.
4358   if (VecVT.isFixedLengthVector()) {
4359     ContainerVT = getContainerForFixedLengthVector(VecVT);
4360     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4361   }
4362 
4363   MVT XLenVT = Subtarget.getXLenVT();
4364 
4365   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4366   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4367   // Even i64-element vectors on RV32 can be lowered without scalar
4368   // legalization if the most-significant 32 bits of the value are not affected
4369   // by the sign-extension of the lower 32 bits.
4370   // TODO: We could also catch sign extensions of a 32-bit value.
4371   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4372     const auto *CVal = cast<ConstantSDNode>(Val);
4373     if (isInt<32>(CVal->getSExtValue())) {
4374       IsLegalInsert = true;
4375       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4376     }
4377   }
4378 
4379   SDValue Mask, VL;
4380   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4381 
4382   SDValue ValInVec;
4383 
4384   if (IsLegalInsert) {
4385     unsigned Opc =
4386         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4387     if (isNullConstant(Idx)) {
4388       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4389       if (!VecVT.isFixedLengthVector())
4390         return Vec;
4391       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4392     }
4393     ValInVec =
4394         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4395   } else {
4396     // On RV32, i64-element vectors must be specially handled to place the
4397     // value at element 0, by using two vslide1up instructions in sequence on
4398     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4399     // this.
4400     SDValue One = DAG.getConstant(1, DL, XLenVT);
4401     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4402     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4403     MVT I32ContainerVT =
4404         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4405     SDValue I32Mask =
4406         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4407     // Limit the active VL to two.
4408     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4409     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4410     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4411     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4412                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4413     // First slide in the hi value, then the lo in underneath it.
4414     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4415                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4416                            I32Mask, InsertI64VL);
4417     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4418                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4419                            I32Mask, InsertI64VL);
4420     // Bitcast back to the right container type.
4421     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4422   }
4423 
4424   // Now that the value is in a vector, slide it into position.
4425   SDValue InsertVL =
4426       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4427   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4428                                 ValInVec, Idx, Mask, InsertVL);
4429   if (!VecVT.isFixedLengthVector())
4430     return Slideup;
4431   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4432 }
4433 
4434 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4435 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4436 // types this is done using VMV_X_S to allow us to glean information about the
4437 // sign bits of the result.
4438 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4439                                                      SelectionDAG &DAG) const {
4440   SDLoc DL(Op);
4441   SDValue Idx = Op.getOperand(1);
4442   SDValue Vec = Op.getOperand(0);
4443   EVT EltVT = Op.getValueType();
4444   MVT VecVT = Vec.getSimpleValueType();
4445   MVT XLenVT = Subtarget.getXLenVT();
4446 
4447   if (VecVT.getVectorElementType() == MVT::i1) {
4448     if (VecVT.isFixedLengthVector()) {
4449       unsigned NumElts = VecVT.getVectorNumElements();
4450       if (NumElts >= 8) {
4451         MVT WideEltVT;
4452         unsigned WidenVecLen;
4453         SDValue ExtractElementIdx;
4454         SDValue ExtractBitIdx;
4455         unsigned MaxEEW = Subtarget.getELEN();
4456         MVT LargestEltVT = MVT::getIntegerVT(
4457             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4458         if (NumElts <= LargestEltVT.getSizeInBits()) {
4459           assert(isPowerOf2_32(NumElts) &&
4460                  "the number of elements should be power of 2");
4461           WideEltVT = MVT::getIntegerVT(NumElts);
4462           WidenVecLen = 1;
4463           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4464           ExtractBitIdx = Idx;
4465         } else {
4466           WideEltVT = LargestEltVT;
4467           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4468           // extract element index = index / element width
4469           ExtractElementIdx = DAG.getNode(
4470               ISD::SRL, DL, XLenVT, Idx,
4471               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4472           // mask bit index = index % element width
4473           ExtractBitIdx = DAG.getNode(
4474               ISD::AND, DL, XLenVT, Idx,
4475               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4476         }
4477         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4478         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4479         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4480                                          Vec, ExtractElementIdx);
4481         // Extract the bit from GPR.
4482         SDValue ShiftRight =
4483             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4484         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4485                            DAG.getConstant(1, DL, XLenVT));
4486       }
4487     }
4488     // Otherwise, promote to an i8 vector and extract from that.
4489     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4490     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4491     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4492   }
4493 
4494   // If this is a fixed vector, we need to convert it to a scalable vector.
4495   MVT ContainerVT = VecVT;
4496   if (VecVT.isFixedLengthVector()) {
4497     ContainerVT = getContainerForFixedLengthVector(VecVT);
4498     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4499   }
4500 
4501   // If the index is 0, the vector is already in the right position.
4502   if (!isNullConstant(Idx)) {
4503     // Use a VL of 1 to avoid processing more elements than we need.
4504     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4505     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4506     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4507                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4508   }
4509 
4510   if (!EltVT.isInteger()) {
4511     // Floating-point extracts are handled in TableGen.
4512     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4513                        DAG.getConstant(0, DL, XLenVT));
4514   }
4515 
4516   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4517   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4518 }
4519 
4520 // Some RVV intrinsics may claim that they want an integer operand to be
4521 // promoted or expanded.
4522 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4523                                            const RISCVSubtarget &Subtarget) {
4524   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4525           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4526          "Unexpected opcode");
4527 
4528   if (!Subtarget.hasVInstructions())
4529     return SDValue();
4530 
4531   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4532   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4533   SDLoc DL(Op);
4534 
4535   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4536       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4537   if (!II || !II->hasScalarOperand())
4538     return SDValue();
4539 
4540   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4541   assert(SplatOp < Op.getNumOperands());
4542 
4543   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4544   SDValue &ScalarOp = Operands[SplatOp];
4545   MVT OpVT = ScalarOp.getSimpleValueType();
4546   MVT XLenVT = Subtarget.getXLenVT();
4547 
4548   // If this isn't a scalar, or its type is XLenVT we're done.
4549   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4550     return SDValue();
4551 
4552   // Simplest case is that the operand needs to be promoted to XLenVT.
4553   if (OpVT.bitsLT(XLenVT)) {
4554     // If the operand is a constant, sign extend to increase our chances
4555     // of being able to use a .vi instruction. ANY_EXTEND would become a
4556     // a zero extend and the simm5 check in isel would fail.
4557     // FIXME: Should we ignore the upper bits in isel instead?
4558     unsigned ExtOpc =
4559         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4560     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4561     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4562   }
4563 
4564   // Use the previous operand to get the vXi64 VT. The result might be a mask
4565   // VT for compares. Using the previous operand assumes that the previous
4566   // operand will never have a smaller element size than a scalar operand and
4567   // that a widening operation never uses SEW=64.
4568   // NOTE: If this fails the below assert, we can probably just find the
4569   // element count from any operand or result and use it to construct the VT.
4570   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4571   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4572 
4573   // The more complex case is when the scalar is larger than XLenVT.
4574   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4575          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4576 
4577   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4578   // instruction to sign-extend since SEW>XLEN.
4579   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4580     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4581     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4582   }
4583 
4584   switch (IntNo) {
4585   case Intrinsic::riscv_vslide1up:
4586   case Intrinsic::riscv_vslide1down:
4587   case Intrinsic::riscv_vslide1up_mask:
4588   case Intrinsic::riscv_vslide1down_mask: {
4589     // We need to special case these when the scalar is larger than XLen.
4590     unsigned NumOps = Op.getNumOperands();
4591     bool IsMasked = NumOps == 7;
4592 
4593     // Convert the vector source to the equivalent nxvXi32 vector.
4594     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4595     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4596 
4597     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4598                                    DAG.getConstant(0, DL, XLenVT));
4599     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4600                                    DAG.getConstant(1, DL, XLenVT));
4601 
4602     // Double the VL since we halved SEW.
4603     SDValue AVL = getVLOperand(Op);
4604     SDValue I32VL;
4605 
4606     // Optimize for constant AVL
4607     if (isa<ConstantSDNode>(AVL)) {
4608       unsigned EltSize = VT.getScalarSizeInBits();
4609       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4610 
4611       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4612       unsigned MaxVLMAX =
4613           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4614 
4615       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4616       unsigned MinVLMAX =
4617           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4618 
4619       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4620       if (AVLInt <= MinVLMAX) {
4621         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4622       } else if (AVLInt >= 2 * MaxVLMAX) {
4623         // Just set vl to VLMAX in this situation
4624         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4625         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4626         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4627         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4628         SDValue SETVLMAX = DAG.getTargetConstant(
4629             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4630         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4631                             LMUL);
4632       } else {
4633         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4634         // is related to the hardware implementation.
4635         // So let the following code handle
4636       }
4637     }
4638     if (!I32VL) {
4639       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4640       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4641       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4642       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4643       SDValue SETVL =
4644           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4645       // Using vsetvli instruction to get actually used length which related to
4646       // the hardware implementation
4647       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4648                                SEW, LMUL);
4649       I32VL =
4650           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4651     }
4652 
4653     SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4654 
4655     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4656     // instructions.
4657     SDValue Passthru;
4658     if (IsMasked)
4659       Passthru = DAG.getUNDEF(I32VT);
4660     else
4661       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4662 
4663     if (IntNo == Intrinsic::riscv_vslide1up ||
4664         IntNo == Intrinsic::riscv_vslide1up_mask) {
4665       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4666                         ScalarHi, I32Mask, I32VL);
4667       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4668                         ScalarLo, I32Mask, I32VL);
4669     } else {
4670       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4671                         ScalarLo, I32Mask, I32VL);
4672       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4673                         ScalarHi, I32Mask, I32VL);
4674     }
4675 
4676     // Convert back to nxvXi64.
4677     Vec = DAG.getBitcast(VT, Vec);
4678 
4679     if (!IsMasked)
4680       return Vec;
4681     // Apply mask after the operation.
4682     SDValue Mask = Operands[NumOps - 3];
4683     SDValue MaskedOff = Operands[1];
4684     // Assume Policy operand is the last operand.
4685     uint64_t Policy =
4686         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4687     // We don't need to select maskedoff if it's undef.
4688     if (MaskedOff.isUndef())
4689       return Vec;
4690     // TAMU
4691     if (Policy == RISCVII::TAIL_AGNOSTIC)
4692       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4693                          AVL);
4694     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4695     // It's fine because vmerge does not care mask policy.
4696     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4697                        AVL);
4698   }
4699   }
4700 
4701   // We need to convert the scalar to a splat vector.
4702   SDValue VL = getVLOperand(Op);
4703   assert(VL.getValueType() == XLenVT);
4704   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4705   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4706 }
4707 
4708 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4709                                                      SelectionDAG &DAG) const {
4710   unsigned IntNo = Op.getConstantOperandVal(0);
4711   SDLoc DL(Op);
4712   MVT XLenVT = Subtarget.getXLenVT();
4713 
4714   switch (IntNo) {
4715   default:
4716     break; // Don't custom lower most intrinsics.
4717   case Intrinsic::thread_pointer: {
4718     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4719     return DAG.getRegister(RISCV::X4, PtrVT);
4720   }
4721   case Intrinsic::riscv_orc_b:
4722   case Intrinsic::riscv_brev8: {
4723     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4724     unsigned Opc =
4725         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4726     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4727                        DAG.getConstant(7, DL, XLenVT));
4728   }
4729   case Intrinsic::riscv_grev:
4730   case Intrinsic::riscv_gorc: {
4731     unsigned Opc =
4732         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4733     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4734   }
4735   case Intrinsic::riscv_zip:
4736   case Intrinsic::riscv_unzip: {
4737     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4738     // For i32 the immediate is 15. For i64 the immediate is 31.
4739     unsigned Opc =
4740         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4741     unsigned BitWidth = Op.getValueSizeInBits();
4742     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4743     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4744                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4745   }
4746   case Intrinsic::riscv_shfl:
4747   case Intrinsic::riscv_unshfl: {
4748     unsigned Opc =
4749         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4750     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4751   }
4752   case Intrinsic::riscv_bcompress:
4753   case Intrinsic::riscv_bdecompress: {
4754     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4755                                                        : RISCVISD::BDECOMPRESS;
4756     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4757   }
4758   case Intrinsic::riscv_bfp:
4759     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4760                        Op.getOperand(2));
4761   case Intrinsic::riscv_fsl:
4762     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4763                        Op.getOperand(2), Op.getOperand(3));
4764   case Intrinsic::riscv_fsr:
4765     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4766                        Op.getOperand(2), Op.getOperand(3));
4767   case Intrinsic::riscv_vmv_x_s:
4768     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4769     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4770                        Op.getOperand(1));
4771   case Intrinsic::riscv_vmv_v_x:
4772     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4773                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4774                             Subtarget);
4775   case Intrinsic::riscv_vfmv_v_f:
4776     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4777                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4778   case Intrinsic::riscv_vmv_s_x: {
4779     SDValue Scalar = Op.getOperand(2);
4780 
4781     if (Scalar.getValueType().bitsLE(XLenVT)) {
4782       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4783       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4784                          Op.getOperand(1), Scalar, Op.getOperand(3));
4785     }
4786 
4787     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4788 
4789     // This is an i64 value that lives in two scalar registers. We have to
4790     // insert this in a convoluted way. First we build vXi64 splat containing
4791     // the two values that we assemble using some bit math. Next we'll use
4792     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4793     // to merge element 0 from our splat into the source vector.
4794     // FIXME: This is probably not the best way to do this, but it is
4795     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4796     // point.
4797     //   sw lo, (a0)
4798     //   sw hi, 4(a0)
4799     //   vlse vX, (a0)
4800     //
4801     //   vid.v      vVid
4802     //   vmseq.vx   mMask, vVid, 0
4803     //   vmerge.vvm vDest, vSrc, vVal, mMask
4804     MVT VT = Op.getSimpleValueType();
4805     SDValue Vec = Op.getOperand(1);
4806     SDValue VL = getVLOperand(Op);
4807 
4808     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4809     if (Op.getOperand(1).isUndef())
4810       return SplattedVal;
4811     SDValue SplattedIdx =
4812         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4813                     DAG.getConstant(0, DL, MVT::i32), VL);
4814 
4815     MVT MaskVT = getMaskTypeFor(VT);
4816     SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4817     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4818     SDValue SelectCond =
4819         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4820                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4821     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4822                        Vec, VL);
4823   }
4824   }
4825 
4826   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4827 }
4828 
4829 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4830                                                     SelectionDAG &DAG) const {
4831   unsigned IntNo = Op.getConstantOperandVal(1);
4832   switch (IntNo) {
4833   default:
4834     break;
4835   case Intrinsic::riscv_masked_strided_load: {
4836     SDLoc DL(Op);
4837     MVT XLenVT = Subtarget.getXLenVT();
4838 
4839     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4840     // the selection of the masked intrinsics doesn't do this for us.
4841     SDValue Mask = Op.getOperand(5);
4842     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4843 
4844     MVT VT = Op->getSimpleValueType(0);
4845     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4846 
4847     SDValue PassThru = Op.getOperand(2);
4848     if (!IsUnmasked) {
4849       MVT MaskVT = getMaskTypeFor(ContainerVT);
4850       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4851       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4852     }
4853 
4854     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4855 
4856     SDValue IntID = DAG.getTargetConstant(
4857         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4858         XLenVT);
4859 
4860     auto *Load = cast<MemIntrinsicSDNode>(Op);
4861     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4862     if (IsUnmasked)
4863       Ops.push_back(DAG.getUNDEF(ContainerVT));
4864     else
4865       Ops.push_back(PassThru);
4866     Ops.push_back(Op.getOperand(3)); // Ptr
4867     Ops.push_back(Op.getOperand(4)); // Stride
4868     if (!IsUnmasked)
4869       Ops.push_back(Mask);
4870     Ops.push_back(VL);
4871     if (!IsUnmasked) {
4872       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4873       Ops.push_back(Policy);
4874     }
4875 
4876     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4877     SDValue Result =
4878         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4879                                 Load->getMemoryVT(), Load->getMemOperand());
4880     SDValue Chain = Result.getValue(1);
4881     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4882     return DAG.getMergeValues({Result, Chain}, DL);
4883   }
4884   case Intrinsic::riscv_seg2_load:
4885   case Intrinsic::riscv_seg3_load:
4886   case Intrinsic::riscv_seg4_load:
4887   case Intrinsic::riscv_seg5_load:
4888   case Intrinsic::riscv_seg6_load:
4889   case Intrinsic::riscv_seg7_load:
4890   case Intrinsic::riscv_seg8_load: {
4891     SDLoc DL(Op);
4892     static const Intrinsic::ID VlsegInts[7] = {
4893         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4894         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4895         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4896         Intrinsic::riscv_vlseg8};
4897     unsigned NF = Op->getNumValues() - 1;
4898     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4899     MVT XLenVT = Subtarget.getXLenVT();
4900     MVT VT = Op->getSimpleValueType(0);
4901     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4902 
4903     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4904     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4905     auto *Load = cast<MemIntrinsicSDNode>(Op);
4906     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4907     ContainerVTs.push_back(MVT::Other);
4908     SDVTList VTs = DAG.getVTList(ContainerVTs);
4909     SDValue Result =
4910         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4911                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4912                                 Load->getMemoryVT(), Load->getMemOperand());
4913     SmallVector<SDValue, 9> Results;
4914     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4915       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4916                                                   DAG, Subtarget));
4917     Results.push_back(Result.getValue(NF));
4918     return DAG.getMergeValues(Results, DL);
4919   }
4920   }
4921 
4922   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4923 }
4924 
4925 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4926                                                  SelectionDAG &DAG) const {
4927   unsigned IntNo = Op.getConstantOperandVal(1);
4928   switch (IntNo) {
4929   default:
4930     break;
4931   case Intrinsic::riscv_masked_strided_store: {
4932     SDLoc DL(Op);
4933     MVT XLenVT = Subtarget.getXLenVT();
4934 
4935     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4936     // the selection of the masked intrinsics doesn't do this for us.
4937     SDValue Mask = Op.getOperand(5);
4938     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4939 
4940     SDValue Val = Op.getOperand(2);
4941     MVT VT = Val.getSimpleValueType();
4942     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4943 
4944     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4945     if (!IsUnmasked) {
4946       MVT MaskVT = getMaskTypeFor(ContainerVT);
4947       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4948     }
4949 
4950     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4951 
4952     SDValue IntID = DAG.getTargetConstant(
4953         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4954         XLenVT);
4955 
4956     auto *Store = cast<MemIntrinsicSDNode>(Op);
4957     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4958     Ops.push_back(Val);
4959     Ops.push_back(Op.getOperand(3)); // Ptr
4960     Ops.push_back(Op.getOperand(4)); // Stride
4961     if (!IsUnmasked)
4962       Ops.push_back(Mask);
4963     Ops.push_back(VL);
4964 
4965     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4966                                    Ops, Store->getMemoryVT(),
4967                                    Store->getMemOperand());
4968   }
4969   }
4970 
4971   return SDValue();
4972 }
4973 
4974 static MVT getLMUL1VT(MVT VT) {
4975   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4976          "Unexpected vector MVT");
4977   return MVT::getScalableVectorVT(
4978       VT.getVectorElementType(),
4979       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4980 }
4981 
4982 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4983   switch (ISDOpcode) {
4984   default:
4985     llvm_unreachable("Unhandled reduction");
4986   case ISD::VECREDUCE_ADD:
4987     return RISCVISD::VECREDUCE_ADD_VL;
4988   case ISD::VECREDUCE_UMAX:
4989     return RISCVISD::VECREDUCE_UMAX_VL;
4990   case ISD::VECREDUCE_SMAX:
4991     return RISCVISD::VECREDUCE_SMAX_VL;
4992   case ISD::VECREDUCE_UMIN:
4993     return RISCVISD::VECREDUCE_UMIN_VL;
4994   case ISD::VECREDUCE_SMIN:
4995     return RISCVISD::VECREDUCE_SMIN_VL;
4996   case ISD::VECREDUCE_AND:
4997     return RISCVISD::VECREDUCE_AND_VL;
4998   case ISD::VECREDUCE_OR:
4999     return RISCVISD::VECREDUCE_OR_VL;
5000   case ISD::VECREDUCE_XOR:
5001     return RISCVISD::VECREDUCE_XOR_VL;
5002   }
5003 }
5004 
5005 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5006                                                          SelectionDAG &DAG,
5007                                                          bool IsVP) const {
5008   SDLoc DL(Op);
5009   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5010   MVT VecVT = Vec.getSimpleValueType();
5011   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5012           Op.getOpcode() == ISD::VECREDUCE_OR ||
5013           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5014           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5015           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5016           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5017          "Unexpected reduction lowering");
5018 
5019   MVT XLenVT = Subtarget.getXLenVT();
5020   assert(Op.getValueType() == XLenVT &&
5021          "Expected reduction output to be legalized to XLenVT");
5022 
5023   MVT ContainerVT = VecVT;
5024   if (VecVT.isFixedLengthVector()) {
5025     ContainerVT = getContainerForFixedLengthVector(VecVT);
5026     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5027   }
5028 
5029   SDValue Mask, VL;
5030   if (IsVP) {
5031     Mask = Op.getOperand(2);
5032     VL = Op.getOperand(3);
5033   } else {
5034     std::tie(Mask, VL) =
5035         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5036   }
5037 
5038   unsigned BaseOpc;
5039   ISD::CondCode CC;
5040   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5041 
5042   switch (Op.getOpcode()) {
5043   default:
5044     llvm_unreachable("Unhandled reduction");
5045   case ISD::VECREDUCE_AND:
5046   case ISD::VP_REDUCE_AND: {
5047     // vcpop ~x == 0
5048     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5049     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5050     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5051     CC = ISD::SETEQ;
5052     BaseOpc = ISD::AND;
5053     break;
5054   }
5055   case ISD::VECREDUCE_OR:
5056   case ISD::VP_REDUCE_OR:
5057     // vcpop x != 0
5058     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5059     CC = ISD::SETNE;
5060     BaseOpc = ISD::OR;
5061     break;
5062   case ISD::VECREDUCE_XOR:
5063   case ISD::VP_REDUCE_XOR: {
5064     // ((vcpop x) & 1) != 0
5065     SDValue One = DAG.getConstant(1, DL, XLenVT);
5066     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5067     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5068     CC = ISD::SETNE;
5069     BaseOpc = ISD::XOR;
5070     break;
5071   }
5072   }
5073 
5074   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5075 
5076   if (!IsVP)
5077     return SetCC;
5078 
5079   // Now include the start value in the operation.
5080   // Note that we must return the start value when no elements are operated
5081   // upon. The vcpop instructions we've emitted in each case above will return
5082   // 0 for an inactive vector, and so we've already received the neutral value:
5083   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5084   // can simply include the start value.
5085   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5086 }
5087 
5088 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5089                                             SelectionDAG &DAG) const {
5090   SDLoc DL(Op);
5091   SDValue Vec = Op.getOperand(0);
5092   EVT VecEVT = Vec.getValueType();
5093 
5094   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5095 
5096   // Due to ordering in legalize types we may have a vector type that needs to
5097   // be split. Do that manually so we can get down to a legal type.
5098   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5099          TargetLowering::TypeSplitVector) {
5100     SDValue Lo, Hi;
5101     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5102     VecEVT = Lo.getValueType();
5103     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5104   }
5105 
5106   // TODO: The type may need to be widened rather than split. Or widened before
5107   // it can be split.
5108   if (!isTypeLegal(VecEVT))
5109     return SDValue();
5110 
5111   MVT VecVT = VecEVT.getSimpleVT();
5112   MVT VecEltVT = VecVT.getVectorElementType();
5113   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5114 
5115   MVT ContainerVT = VecVT;
5116   if (VecVT.isFixedLengthVector()) {
5117     ContainerVT = getContainerForFixedLengthVector(VecVT);
5118     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5119   }
5120 
5121   MVT M1VT = getLMUL1VT(ContainerVT);
5122   MVT XLenVT = Subtarget.getXLenVT();
5123 
5124   SDValue Mask, VL;
5125   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5126 
5127   SDValue NeutralElem =
5128       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5129   SDValue IdentitySplat =
5130       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5131                        M1VT, DL, DAG, Subtarget);
5132   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5133                                   IdentitySplat, Mask, VL);
5134   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5135                              DAG.getConstant(0, DL, XLenVT));
5136   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5137 }
5138 
5139 // Given a reduction op, this function returns the matching reduction opcode,
5140 // the vector SDValue and the scalar SDValue required to lower this to a
5141 // RISCVISD node.
5142 static std::tuple<unsigned, SDValue, SDValue>
5143 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5144   SDLoc DL(Op);
5145   auto Flags = Op->getFlags();
5146   unsigned Opcode = Op.getOpcode();
5147   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5148   switch (Opcode) {
5149   default:
5150     llvm_unreachable("Unhandled reduction");
5151   case ISD::VECREDUCE_FADD: {
5152     // Use positive zero if we can. It is cheaper to materialize.
5153     SDValue Zero =
5154         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5155     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5156   }
5157   case ISD::VECREDUCE_SEQ_FADD:
5158     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5159                            Op.getOperand(0));
5160   case ISD::VECREDUCE_FMIN:
5161     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5162                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5163   case ISD::VECREDUCE_FMAX:
5164     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5165                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5166   }
5167 }
5168 
5169 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5170                                               SelectionDAG &DAG) const {
5171   SDLoc DL(Op);
5172   MVT VecEltVT = Op.getSimpleValueType();
5173 
5174   unsigned RVVOpcode;
5175   SDValue VectorVal, ScalarVal;
5176   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5177       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5178   MVT VecVT = VectorVal.getSimpleValueType();
5179 
5180   MVT ContainerVT = VecVT;
5181   if (VecVT.isFixedLengthVector()) {
5182     ContainerVT = getContainerForFixedLengthVector(VecVT);
5183     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5184   }
5185 
5186   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5187   MVT XLenVT = Subtarget.getXLenVT();
5188 
5189   SDValue Mask, VL;
5190   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5191 
5192   SDValue ScalarSplat =
5193       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5194                        M1VT, DL, DAG, Subtarget);
5195   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5196                                   VectorVal, ScalarSplat, Mask, VL);
5197   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5198                      DAG.getConstant(0, DL, XLenVT));
5199 }
5200 
5201 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5202   switch (ISDOpcode) {
5203   default:
5204     llvm_unreachable("Unhandled reduction");
5205   case ISD::VP_REDUCE_ADD:
5206     return RISCVISD::VECREDUCE_ADD_VL;
5207   case ISD::VP_REDUCE_UMAX:
5208     return RISCVISD::VECREDUCE_UMAX_VL;
5209   case ISD::VP_REDUCE_SMAX:
5210     return RISCVISD::VECREDUCE_SMAX_VL;
5211   case ISD::VP_REDUCE_UMIN:
5212     return RISCVISD::VECREDUCE_UMIN_VL;
5213   case ISD::VP_REDUCE_SMIN:
5214     return RISCVISD::VECREDUCE_SMIN_VL;
5215   case ISD::VP_REDUCE_AND:
5216     return RISCVISD::VECREDUCE_AND_VL;
5217   case ISD::VP_REDUCE_OR:
5218     return RISCVISD::VECREDUCE_OR_VL;
5219   case ISD::VP_REDUCE_XOR:
5220     return RISCVISD::VECREDUCE_XOR_VL;
5221   case ISD::VP_REDUCE_FADD:
5222     return RISCVISD::VECREDUCE_FADD_VL;
5223   case ISD::VP_REDUCE_SEQ_FADD:
5224     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5225   case ISD::VP_REDUCE_FMAX:
5226     return RISCVISD::VECREDUCE_FMAX_VL;
5227   case ISD::VP_REDUCE_FMIN:
5228     return RISCVISD::VECREDUCE_FMIN_VL;
5229   }
5230 }
5231 
5232 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5233                                            SelectionDAG &DAG) const {
5234   SDLoc DL(Op);
5235   SDValue Vec = Op.getOperand(1);
5236   EVT VecEVT = Vec.getValueType();
5237 
5238   // TODO: The type may need to be widened rather than split. Or widened before
5239   // it can be split.
5240   if (!isTypeLegal(VecEVT))
5241     return SDValue();
5242 
5243   MVT VecVT = VecEVT.getSimpleVT();
5244   MVT VecEltVT = VecVT.getVectorElementType();
5245   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5246 
5247   MVT ContainerVT = VecVT;
5248   if (VecVT.isFixedLengthVector()) {
5249     ContainerVT = getContainerForFixedLengthVector(VecVT);
5250     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5251   }
5252 
5253   SDValue VL = Op.getOperand(3);
5254   SDValue Mask = Op.getOperand(2);
5255 
5256   MVT M1VT = getLMUL1VT(ContainerVT);
5257   MVT XLenVT = Subtarget.getXLenVT();
5258   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5259 
5260   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5261                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5262                                         DL, DAG, Subtarget);
5263   SDValue Reduction =
5264       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5265   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5266                              DAG.getConstant(0, DL, XLenVT));
5267   if (!VecVT.isInteger())
5268     return Elt0;
5269   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5270 }
5271 
5272 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5273                                                    SelectionDAG &DAG) const {
5274   SDValue Vec = Op.getOperand(0);
5275   SDValue SubVec = Op.getOperand(1);
5276   MVT VecVT = Vec.getSimpleValueType();
5277   MVT SubVecVT = SubVec.getSimpleValueType();
5278 
5279   SDLoc DL(Op);
5280   MVT XLenVT = Subtarget.getXLenVT();
5281   unsigned OrigIdx = Op.getConstantOperandVal(2);
5282   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5283 
5284   // We don't have the ability to slide mask vectors up indexed by their i1
5285   // elements; the smallest we can do is i8. Often we are able to bitcast to
5286   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5287   // into a scalable one, we might not necessarily have enough scalable
5288   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5289   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5290       (OrigIdx != 0 || !Vec.isUndef())) {
5291     if (VecVT.getVectorMinNumElements() >= 8 &&
5292         SubVecVT.getVectorMinNumElements() >= 8) {
5293       assert(OrigIdx % 8 == 0 && "Invalid index");
5294       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5295              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5296              "Unexpected mask vector lowering");
5297       OrigIdx /= 8;
5298       SubVecVT =
5299           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5300                            SubVecVT.isScalableVector());
5301       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5302                                VecVT.isScalableVector());
5303       Vec = DAG.getBitcast(VecVT, Vec);
5304       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5305     } else {
5306       // We can't slide this mask vector up indexed by its i1 elements.
5307       // This poses a problem when we wish to insert a scalable vector which
5308       // can't be re-expressed as a larger type. Just choose the slow path and
5309       // extend to a larger type, then truncate back down.
5310       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5311       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5312       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5313       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5314       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5315                         Op.getOperand(2));
5316       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5317       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5318     }
5319   }
5320 
5321   // If the subvector vector is a fixed-length type, we cannot use subregister
5322   // manipulation to simplify the codegen; we don't know which register of a
5323   // LMUL group contains the specific subvector as we only know the minimum
5324   // register size. Therefore we must slide the vector group up the full
5325   // amount.
5326   if (SubVecVT.isFixedLengthVector()) {
5327     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5328       return Op;
5329     MVT ContainerVT = VecVT;
5330     if (VecVT.isFixedLengthVector()) {
5331       ContainerVT = getContainerForFixedLengthVector(VecVT);
5332       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5333     }
5334     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5335                          DAG.getUNDEF(ContainerVT), SubVec,
5336                          DAG.getConstant(0, DL, XLenVT));
5337     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5338       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5339       return DAG.getBitcast(Op.getValueType(), SubVec);
5340     }
5341     SDValue Mask =
5342         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5343     // Set the vector length to only the number of elements we care about. Note
5344     // that for slideup this includes the offset.
5345     SDValue VL =
5346         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5347     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5348     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5349                                   SubVec, SlideupAmt, Mask, VL);
5350     if (VecVT.isFixedLengthVector())
5351       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5352     return DAG.getBitcast(Op.getValueType(), Slideup);
5353   }
5354 
5355   unsigned SubRegIdx, RemIdx;
5356   std::tie(SubRegIdx, RemIdx) =
5357       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5358           VecVT, SubVecVT, OrigIdx, TRI);
5359 
5360   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5361   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5362                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5363                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5364 
5365   // 1. If the Idx has been completely eliminated and this subvector's size is
5366   // a vector register or a multiple thereof, or the surrounding elements are
5367   // undef, then this is a subvector insert which naturally aligns to a vector
5368   // register. These can easily be handled using subregister manipulation.
5369   // 2. If the subvector is smaller than a vector register, then the insertion
5370   // must preserve the undisturbed elements of the register. We do this by
5371   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5372   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5373   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5374   // LMUL=1 type back into the larger vector (resolving to another subregister
5375   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5376   // to avoid allocating a large register group to hold our subvector.
5377   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5378     return Op;
5379 
5380   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5381   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5382   // (in our case undisturbed). This means we can set up a subvector insertion
5383   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5384   // size of the subvector.
5385   MVT InterSubVT = VecVT;
5386   SDValue AlignedExtract = Vec;
5387   unsigned AlignedIdx = OrigIdx - RemIdx;
5388   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5389     InterSubVT = getLMUL1VT(VecVT);
5390     // Extract a subvector equal to the nearest full vector register type. This
5391     // should resolve to a EXTRACT_SUBREG instruction.
5392     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5393                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5394   }
5395 
5396   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5397   // For scalable vectors this must be further multiplied by vscale.
5398   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5399 
5400   SDValue Mask, VL;
5401   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5402 
5403   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5404   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5405   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5406   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5407 
5408   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5409                        DAG.getUNDEF(InterSubVT), SubVec,
5410                        DAG.getConstant(0, DL, XLenVT));
5411 
5412   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5413                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5414 
5415   // If required, insert this subvector back into the correct vector register.
5416   // This should resolve to an INSERT_SUBREG instruction.
5417   if (VecVT.bitsGT(InterSubVT))
5418     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5419                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5420 
5421   // We might have bitcast from a mask type: cast back to the original type if
5422   // required.
5423   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5424 }
5425 
5426 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5427                                                     SelectionDAG &DAG) const {
5428   SDValue Vec = Op.getOperand(0);
5429   MVT SubVecVT = Op.getSimpleValueType();
5430   MVT VecVT = Vec.getSimpleValueType();
5431 
5432   SDLoc DL(Op);
5433   MVT XLenVT = Subtarget.getXLenVT();
5434   unsigned OrigIdx = Op.getConstantOperandVal(1);
5435   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5436 
5437   // We don't have the ability to slide mask vectors down indexed by their i1
5438   // elements; the smallest we can do is i8. Often we are able to bitcast to
5439   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5440   // from a scalable one, we might not necessarily have enough scalable
5441   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5442   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5443     if (VecVT.getVectorMinNumElements() >= 8 &&
5444         SubVecVT.getVectorMinNumElements() >= 8) {
5445       assert(OrigIdx % 8 == 0 && "Invalid index");
5446       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5447              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5448              "Unexpected mask vector lowering");
5449       OrigIdx /= 8;
5450       SubVecVT =
5451           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5452                            SubVecVT.isScalableVector());
5453       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5454                                VecVT.isScalableVector());
5455       Vec = DAG.getBitcast(VecVT, Vec);
5456     } else {
5457       // We can't slide this mask vector down, indexed by its i1 elements.
5458       // This poses a problem when we wish to extract a scalable vector which
5459       // can't be re-expressed as a larger type. Just choose the slow path and
5460       // extend to a larger type, then truncate back down.
5461       // TODO: We could probably improve this when extracting certain fixed
5462       // from fixed, where we can extract as i8 and shift the correct element
5463       // right to reach the desired subvector?
5464       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5465       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5466       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5467       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5468                         Op.getOperand(1));
5469       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5470       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5471     }
5472   }
5473 
5474   // If the subvector vector is a fixed-length type, we cannot use subregister
5475   // manipulation to simplify the codegen; we don't know which register of a
5476   // LMUL group contains the specific subvector as we only know the minimum
5477   // register size. Therefore we must slide the vector group down the full
5478   // amount.
5479   if (SubVecVT.isFixedLengthVector()) {
5480     // With an index of 0 this is a cast-like subvector, which can be performed
5481     // with subregister operations.
5482     if (OrigIdx == 0)
5483       return Op;
5484     MVT ContainerVT = VecVT;
5485     if (VecVT.isFixedLengthVector()) {
5486       ContainerVT = getContainerForFixedLengthVector(VecVT);
5487       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5488     }
5489     SDValue Mask =
5490         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5491     // Set the vector length to only the number of elements we care about. This
5492     // avoids sliding down elements we're going to discard straight away.
5493     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5494     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5495     SDValue Slidedown =
5496         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5497                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5498     // Now we can use a cast-like subvector extract to get the result.
5499     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5500                             DAG.getConstant(0, DL, XLenVT));
5501     return DAG.getBitcast(Op.getValueType(), Slidedown);
5502   }
5503 
5504   unsigned SubRegIdx, RemIdx;
5505   std::tie(SubRegIdx, RemIdx) =
5506       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5507           VecVT, SubVecVT, OrigIdx, TRI);
5508 
5509   // If the Idx has been completely eliminated then this is a subvector extract
5510   // which naturally aligns to a vector register. These can easily be handled
5511   // using subregister manipulation.
5512   if (RemIdx == 0)
5513     return Op;
5514 
5515   // Else we must shift our vector register directly to extract the subvector.
5516   // Do this using VSLIDEDOWN.
5517 
5518   // If the vector type is an LMUL-group type, extract a subvector equal to the
5519   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5520   // instruction.
5521   MVT InterSubVT = VecVT;
5522   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5523     InterSubVT = getLMUL1VT(VecVT);
5524     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5525                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5526   }
5527 
5528   // Slide this vector register down by the desired number of elements in order
5529   // to place the desired subvector starting at element 0.
5530   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5531   // For scalable vectors this must be further multiplied by vscale.
5532   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5533 
5534   SDValue Mask, VL;
5535   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5536   SDValue Slidedown =
5537       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5538                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5539 
5540   // Now the vector is in the right position, extract our final subvector. This
5541   // should resolve to a COPY.
5542   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5543                           DAG.getConstant(0, DL, XLenVT));
5544 
5545   // We might have bitcast from a mask type: cast back to the original type if
5546   // required.
5547   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5548 }
5549 
5550 // Lower step_vector to the vid instruction. Any non-identity step value must
5551 // be accounted for my manual expansion.
5552 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5553                                               SelectionDAG &DAG) const {
5554   SDLoc DL(Op);
5555   MVT VT = Op.getSimpleValueType();
5556   MVT XLenVT = Subtarget.getXLenVT();
5557   SDValue Mask, VL;
5558   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5559   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5560   uint64_t StepValImm = Op.getConstantOperandVal(0);
5561   if (StepValImm != 1) {
5562     if (isPowerOf2_64(StepValImm)) {
5563       SDValue StepVal =
5564           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5565                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5566       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5567     } else {
5568       SDValue StepVal = lowerScalarSplat(
5569           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5570           VL, VT, DL, DAG, Subtarget);
5571       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5572     }
5573   }
5574   return StepVec;
5575 }
5576 
5577 // Implement vector_reverse using vrgather.vv with indices determined by
5578 // subtracting the id of each element from (VLMAX-1). This will convert
5579 // the indices like so:
5580 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5581 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5582 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5583                                                  SelectionDAG &DAG) const {
5584   SDLoc DL(Op);
5585   MVT VecVT = Op.getSimpleValueType();
5586   unsigned EltSize = VecVT.getScalarSizeInBits();
5587   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5588 
5589   unsigned MaxVLMAX = 0;
5590   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5591   if (VectorBitsMax != 0)
5592     MaxVLMAX =
5593         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5594 
5595   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5596   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5597 
5598   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5599   // to use vrgatherei16.vv.
5600   // TODO: It's also possible to use vrgatherei16.vv for other types to
5601   // decrease register width for the index calculation.
5602   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5603     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5604     // Reverse each half, then reassemble them in reverse order.
5605     // NOTE: It's also possible that after splitting that VLMAX no longer
5606     // requires vrgatherei16.vv.
5607     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5608       SDValue Lo, Hi;
5609       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5610       EVT LoVT, HiVT;
5611       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5612       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5613       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5614       // Reassemble the low and high pieces reversed.
5615       // FIXME: This is a CONCAT_VECTORS.
5616       SDValue Res =
5617           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5618                       DAG.getIntPtrConstant(0, DL));
5619       return DAG.getNode(
5620           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5621           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5622     }
5623 
5624     // Just promote the int type to i16 which will double the LMUL.
5625     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5626     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5627   }
5628 
5629   MVT XLenVT = Subtarget.getXLenVT();
5630   SDValue Mask, VL;
5631   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5632 
5633   // Calculate VLMAX-1 for the desired SEW.
5634   unsigned MinElts = VecVT.getVectorMinNumElements();
5635   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5636                               DAG.getConstant(MinElts, DL, XLenVT));
5637   SDValue VLMinus1 =
5638       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5639 
5640   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5641   bool IsRV32E64 =
5642       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5643   SDValue SplatVL;
5644   if (!IsRV32E64)
5645     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5646   else
5647     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5648                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5649 
5650   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5651   SDValue Indices =
5652       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5653 
5654   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5655 }
5656 
5657 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5658                                                 SelectionDAG &DAG) const {
5659   SDLoc DL(Op);
5660   SDValue V1 = Op.getOperand(0);
5661   SDValue V2 = Op.getOperand(1);
5662   MVT XLenVT = Subtarget.getXLenVT();
5663   MVT VecVT = Op.getSimpleValueType();
5664 
5665   unsigned MinElts = VecVT.getVectorMinNumElements();
5666   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5667                               DAG.getConstant(MinElts, DL, XLenVT));
5668 
5669   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5670   SDValue DownOffset, UpOffset;
5671   if (ImmValue >= 0) {
5672     // The operand is a TargetConstant, we need to rebuild it as a regular
5673     // constant.
5674     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5675     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5676   } else {
5677     // The operand is a TargetConstant, we need to rebuild it as a regular
5678     // constant rather than negating the original operand.
5679     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5680     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5681   }
5682 
5683   SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5684 
5685   SDValue SlideDown =
5686       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5687                   DownOffset, TrueMask, UpOffset);
5688   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5689                      TrueMask,
5690                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5691 }
5692 
5693 SDValue
5694 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5695                                                      SelectionDAG &DAG) const {
5696   SDLoc DL(Op);
5697   auto *Load = cast<LoadSDNode>(Op);
5698 
5699   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5700                                         Load->getMemoryVT(),
5701                                         *Load->getMemOperand()) &&
5702          "Expecting a correctly-aligned load");
5703 
5704   MVT VT = Op.getSimpleValueType();
5705   MVT XLenVT = Subtarget.getXLenVT();
5706   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5707 
5708   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5709 
5710   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5711   SDValue IntID = DAG.getTargetConstant(
5712       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5713   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5714   if (!IsMaskOp)
5715     Ops.push_back(DAG.getUNDEF(ContainerVT));
5716   Ops.push_back(Load->getBasePtr());
5717   Ops.push_back(VL);
5718   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5719   SDValue NewLoad =
5720       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5721                               Load->getMemoryVT(), Load->getMemOperand());
5722 
5723   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5724   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5725 }
5726 
5727 SDValue
5728 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5729                                                       SelectionDAG &DAG) const {
5730   SDLoc DL(Op);
5731   auto *Store = cast<StoreSDNode>(Op);
5732 
5733   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5734                                         Store->getMemoryVT(),
5735                                         *Store->getMemOperand()) &&
5736          "Expecting a correctly-aligned store");
5737 
5738   SDValue StoreVal = Store->getValue();
5739   MVT VT = StoreVal.getSimpleValueType();
5740   MVT XLenVT = Subtarget.getXLenVT();
5741 
5742   // If the size less than a byte, we need to pad with zeros to make a byte.
5743   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5744     VT = MVT::v8i1;
5745     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5746                            DAG.getConstant(0, DL, VT), StoreVal,
5747                            DAG.getIntPtrConstant(0, DL));
5748   }
5749 
5750   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5751 
5752   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5753 
5754   SDValue NewValue =
5755       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5756 
5757   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5758   SDValue IntID = DAG.getTargetConstant(
5759       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5760   return DAG.getMemIntrinsicNode(
5761       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5762       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5763       Store->getMemoryVT(), Store->getMemOperand());
5764 }
5765 
5766 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5767                                              SelectionDAG &DAG) const {
5768   SDLoc DL(Op);
5769   MVT VT = Op.getSimpleValueType();
5770 
5771   const auto *MemSD = cast<MemSDNode>(Op);
5772   EVT MemVT = MemSD->getMemoryVT();
5773   MachineMemOperand *MMO = MemSD->getMemOperand();
5774   SDValue Chain = MemSD->getChain();
5775   SDValue BasePtr = MemSD->getBasePtr();
5776 
5777   SDValue Mask, PassThru, VL;
5778   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5779     Mask = VPLoad->getMask();
5780     PassThru = DAG.getUNDEF(VT);
5781     VL = VPLoad->getVectorLength();
5782   } else {
5783     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5784     Mask = MLoad->getMask();
5785     PassThru = MLoad->getPassThru();
5786   }
5787 
5788   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5789 
5790   MVT XLenVT = Subtarget.getXLenVT();
5791 
5792   MVT ContainerVT = VT;
5793   if (VT.isFixedLengthVector()) {
5794     ContainerVT = getContainerForFixedLengthVector(VT);
5795     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5796     if (!IsUnmasked) {
5797       MVT MaskVT = getMaskTypeFor(ContainerVT);
5798       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5799     }
5800   }
5801 
5802   if (!VL)
5803     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5804 
5805   unsigned IntID =
5806       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5807   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5808   if (IsUnmasked)
5809     Ops.push_back(DAG.getUNDEF(ContainerVT));
5810   else
5811     Ops.push_back(PassThru);
5812   Ops.push_back(BasePtr);
5813   if (!IsUnmasked)
5814     Ops.push_back(Mask);
5815   Ops.push_back(VL);
5816   if (!IsUnmasked)
5817     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5818 
5819   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5820 
5821   SDValue Result =
5822       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5823   Chain = Result.getValue(1);
5824 
5825   if (VT.isFixedLengthVector())
5826     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5827 
5828   return DAG.getMergeValues({Result, Chain}, DL);
5829 }
5830 
5831 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5832                                               SelectionDAG &DAG) const {
5833   SDLoc DL(Op);
5834 
5835   const auto *MemSD = cast<MemSDNode>(Op);
5836   EVT MemVT = MemSD->getMemoryVT();
5837   MachineMemOperand *MMO = MemSD->getMemOperand();
5838   SDValue Chain = MemSD->getChain();
5839   SDValue BasePtr = MemSD->getBasePtr();
5840   SDValue Val, Mask, VL;
5841 
5842   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5843     Val = VPStore->getValue();
5844     Mask = VPStore->getMask();
5845     VL = VPStore->getVectorLength();
5846   } else {
5847     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5848     Val = MStore->getValue();
5849     Mask = MStore->getMask();
5850   }
5851 
5852   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5853 
5854   MVT VT = Val.getSimpleValueType();
5855   MVT XLenVT = Subtarget.getXLenVT();
5856 
5857   MVT ContainerVT = VT;
5858   if (VT.isFixedLengthVector()) {
5859     ContainerVT = getContainerForFixedLengthVector(VT);
5860 
5861     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5862     if (!IsUnmasked) {
5863       MVT MaskVT = getMaskTypeFor(ContainerVT);
5864       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5865     }
5866   }
5867 
5868   if (!VL)
5869     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5870 
5871   unsigned IntID =
5872       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5873   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5874   Ops.push_back(Val);
5875   Ops.push_back(BasePtr);
5876   if (!IsUnmasked)
5877     Ops.push_back(Mask);
5878   Ops.push_back(VL);
5879 
5880   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5881                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5882 }
5883 
5884 SDValue
5885 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5886                                                       SelectionDAG &DAG) const {
5887   MVT InVT = Op.getOperand(0).getSimpleValueType();
5888   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5889 
5890   MVT VT = Op.getSimpleValueType();
5891 
5892   SDValue Op1 =
5893       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5894   SDValue Op2 =
5895       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5896 
5897   SDLoc DL(Op);
5898   SDValue VL =
5899       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5900 
5901   MVT MaskVT = getMaskTypeFor(ContainerVT);
5902   SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
5903 
5904   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5905                             Op.getOperand(2), Mask, VL);
5906 
5907   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5908 }
5909 
5910 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5911     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5912   MVT VT = Op.getSimpleValueType();
5913 
5914   if (VT.getVectorElementType() == MVT::i1)
5915     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5916 
5917   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5918 }
5919 
5920 SDValue
5921 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5922                                                       SelectionDAG &DAG) const {
5923   unsigned Opc;
5924   switch (Op.getOpcode()) {
5925   default: llvm_unreachable("Unexpected opcode!");
5926   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5927   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5928   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5929   }
5930 
5931   return lowerToScalableOp(Op, DAG, Opc);
5932 }
5933 
5934 // Lower vector ABS to smax(X, sub(0, X)).
5935 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5936   SDLoc DL(Op);
5937   MVT VT = Op.getSimpleValueType();
5938   SDValue X = Op.getOperand(0);
5939 
5940   assert(VT.isFixedLengthVector() && "Unexpected type");
5941 
5942   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5943   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5944 
5945   SDValue Mask, VL;
5946   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5947 
5948   SDValue SplatZero = DAG.getNode(
5949       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
5950       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5951   SDValue NegX =
5952       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5953   SDValue Max =
5954       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5955 
5956   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5957 }
5958 
5959 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5960     SDValue Op, SelectionDAG &DAG) const {
5961   SDLoc DL(Op);
5962   MVT VT = Op.getSimpleValueType();
5963   SDValue Mag = Op.getOperand(0);
5964   SDValue Sign = Op.getOperand(1);
5965   assert(Mag.getValueType() == Sign.getValueType() &&
5966          "Can only handle COPYSIGN with matching types.");
5967 
5968   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5969   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5970   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5971 
5972   SDValue Mask, VL;
5973   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5974 
5975   SDValue CopySign =
5976       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5977 
5978   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5979 }
5980 
5981 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5982     SDValue Op, SelectionDAG &DAG) const {
5983   MVT VT = Op.getSimpleValueType();
5984   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5985 
5986   MVT I1ContainerVT =
5987       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5988 
5989   SDValue CC =
5990       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5991   SDValue Op1 =
5992       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5993   SDValue Op2 =
5994       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5995 
5996   SDLoc DL(Op);
5997   SDValue Mask, VL;
5998   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5999 
6000   SDValue Select =
6001       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6002 
6003   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6004 }
6005 
6006 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6007                                                unsigned NewOpc,
6008                                                bool HasMask) const {
6009   MVT VT = Op.getSimpleValueType();
6010   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6011 
6012   // Create list of operands by converting existing ones to scalable types.
6013   SmallVector<SDValue, 6> Ops;
6014   for (const SDValue &V : Op->op_values()) {
6015     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6016 
6017     // Pass through non-vector operands.
6018     if (!V.getValueType().isVector()) {
6019       Ops.push_back(V);
6020       continue;
6021     }
6022 
6023     // "cast" fixed length vector to a scalable vector.
6024     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6025            "Only fixed length vectors are supported!");
6026     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6027   }
6028 
6029   SDLoc DL(Op);
6030   SDValue Mask, VL;
6031   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6032   if (HasMask)
6033     Ops.push_back(Mask);
6034   Ops.push_back(VL);
6035 
6036   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6037   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6038 }
6039 
6040 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6041 // * Operands of each node are assumed to be in the same order.
6042 // * The EVL operand is promoted from i32 to i64 on RV64.
6043 // * Fixed-length vectors are converted to their scalable-vector container
6044 //   types.
6045 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6046                                        unsigned RISCVISDOpc) const {
6047   SDLoc DL(Op);
6048   MVT VT = Op.getSimpleValueType();
6049   SmallVector<SDValue, 4> Ops;
6050 
6051   for (const auto &OpIdx : enumerate(Op->ops())) {
6052     SDValue V = OpIdx.value();
6053     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6054     // Pass through operands which aren't fixed-length vectors.
6055     if (!V.getValueType().isFixedLengthVector()) {
6056       Ops.push_back(V);
6057       continue;
6058     }
6059     // "cast" fixed length vector to a scalable vector.
6060     MVT OpVT = V.getSimpleValueType();
6061     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6062     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6063            "Only fixed length vectors are supported!");
6064     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6065   }
6066 
6067   if (!VT.isFixedLengthVector())
6068     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6069 
6070   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6071 
6072   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6073 
6074   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6075 }
6076 
6077 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6078                                               SelectionDAG &DAG) const {
6079   SDLoc DL(Op);
6080   MVT VT = Op.getSimpleValueType();
6081 
6082   SDValue Src = Op.getOperand(0);
6083   // NOTE: Mask is dropped.
6084   SDValue VL = Op.getOperand(2);
6085 
6086   MVT ContainerVT = VT;
6087   if (VT.isFixedLengthVector()) {
6088     ContainerVT = getContainerForFixedLengthVector(VT);
6089     MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6090     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6091   }
6092 
6093   MVT XLenVT = Subtarget.getXLenVT();
6094   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6095   SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6096                                   DAG.getUNDEF(ContainerVT), Zero, VL);
6097 
6098   SDValue SplatValue =
6099       DAG.getConstant(Op.getOpcode() == ISD::VP_ZEXT ? 1 : -1, DL, XLenVT);
6100   SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6101                               DAG.getUNDEF(ContainerVT), SplatValue, VL);
6102 
6103   SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6104                                Splat, ZeroSplat, VL);
6105   if (!VT.isFixedLengthVector())
6106     return Result;
6107   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6108 }
6109 
6110 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6111                                                 SelectionDAG &DAG) const {
6112   SDLoc DL(Op);
6113   MVT VT = Op.getSimpleValueType();
6114 
6115   SDValue Op1 = Op.getOperand(0);
6116   SDValue Op2 = Op.getOperand(1);
6117   ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6118   // NOTE: Mask is dropped.
6119   SDValue VL = Op.getOperand(4);
6120 
6121   MVT ContainerVT = VT;
6122   if (VT.isFixedLengthVector()) {
6123     ContainerVT = getContainerForFixedLengthVector(VT);
6124     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6125     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6126   }
6127 
6128   SDValue Result;
6129   SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6130 
6131   switch (Condition) {
6132   default:
6133     break;
6134   // X != Y  --> (X^Y)
6135   case ISD::SETNE:
6136     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6137     break;
6138   // X == Y  --> ~(X^Y)
6139   case ISD::SETEQ: {
6140     SDValue Temp =
6141         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6142     Result =
6143         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6144     break;
6145   }
6146   // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
6147   // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
6148   case ISD::SETGT:
6149   case ISD::SETULT: {
6150     SDValue Temp =
6151         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6152     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6153     break;
6154   }
6155   // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
6156   // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
6157   case ISD::SETLT:
6158   case ISD::SETUGT: {
6159     SDValue Temp =
6160         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6161     Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6162     break;
6163   }
6164   // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
6165   // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
6166   case ISD::SETGE:
6167   case ISD::SETULE: {
6168     SDValue Temp =
6169         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6170     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6171     break;
6172   }
6173   // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
6174   // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
6175   case ISD::SETLE:
6176   case ISD::SETUGE: {
6177     SDValue Temp =
6178         DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6179     Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6180     break;
6181   }
6182   }
6183 
6184   if (!VT.isFixedLengthVector())
6185     return Result;
6186   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6187 }
6188 
6189 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6190 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6191                                                 unsigned RISCVISDOpc) const {
6192   SDLoc DL(Op);
6193 
6194   SDValue Src = Op.getOperand(0);
6195   SDValue Mask = Op.getOperand(1);
6196   SDValue VL = Op.getOperand(2);
6197 
6198   MVT DstVT = Op.getSimpleValueType();
6199   MVT SrcVT = Src.getSimpleValueType();
6200   if (DstVT.isFixedLengthVector()) {
6201     DstVT = getContainerForFixedLengthVector(DstVT);
6202     SrcVT = getContainerForFixedLengthVector(SrcVT);
6203     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6204     MVT MaskVT = getMaskTypeFor(DstVT);
6205     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6206   }
6207 
6208   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6209                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6210                                 ? RISCVISD::VSEXT_VL
6211                                 : RISCVISD::VZEXT_VL;
6212 
6213   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6214   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6215 
6216   SDValue Result;
6217   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6218     if (SrcVT.isInteger()) {
6219       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6220 
6221       // Do we need to do any pre-widening before converting?
6222       if (SrcEltSize == 1) {
6223         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6224         MVT XLenVT = Subtarget.getXLenVT();
6225         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6226         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6227                                         DAG.getUNDEF(IntVT), Zero, VL);
6228         SDValue One = DAG.getConstant(
6229             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6230         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6231                                        DAG.getUNDEF(IntVT), One, VL);
6232         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6233                           ZeroSplat, VL);
6234       } else if (DstEltSize > (2 * SrcEltSize)) {
6235         // Widen before converting.
6236         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6237                                      DstVT.getVectorElementCount());
6238         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6239       }
6240 
6241       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6242     } else {
6243       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6244              "Wrong input/output vector types");
6245 
6246       // Convert f16 to f32 then convert f32 to i64.
6247       if (DstEltSize > (2 * SrcEltSize)) {
6248         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6249         MVT InterimFVT =
6250             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6251         Src =
6252             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6253       }
6254 
6255       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6256     }
6257   } else { // Narrowing + Conversion
6258     if (SrcVT.isInteger()) {
6259       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6260       // First do a narrowing convert to an FP type half the size, then round
6261       // the FP type to a small FP type if needed.
6262 
6263       MVT InterimFVT = DstVT;
6264       if (SrcEltSize > (2 * DstEltSize)) {
6265         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6266         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6267         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6268       }
6269 
6270       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6271 
6272       if (InterimFVT != DstVT) {
6273         Src = Result;
6274         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6275       }
6276     } else {
6277       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6278              "Wrong input/output vector types");
6279       // First do a narrowing conversion to an integer half the size, then
6280       // truncate if needed.
6281 
6282       if (DstEltSize == 1) {
6283         // First convert to the same size integer, then convert to mask using
6284         // setcc.
6285         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6286         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6287                                           DstVT.getVectorElementCount());
6288         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6289 
6290         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6291         // otherwise the conversion was undefined.
6292         MVT XLenVT = Subtarget.getXLenVT();
6293         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6294         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6295                                 DAG.getUNDEF(InterimIVT), SplatZero);
6296         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6297                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6298       } else {
6299         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6300                                           DstVT.getVectorElementCount());
6301 
6302         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6303 
6304         while (InterimIVT != DstVT) {
6305           SrcEltSize /= 2;
6306           Src = Result;
6307           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6308                                         DstVT.getVectorElementCount());
6309           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6310                                Src, Mask, VL);
6311         }
6312       }
6313     }
6314   }
6315 
6316   MVT VT = Op.getSimpleValueType();
6317   if (!VT.isFixedLengthVector())
6318     return Result;
6319   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6320 }
6321 
6322 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6323                                             unsigned MaskOpc,
6324                                             unsigned VecOpc) const {
6325   MVT VT = Op.getSimpleValueType();
6326   if (VT.getVectorElementType() != MVT::i1)
6327     return lowerVPOp(Op, DAG, VecOpc);
6328 
6329   // It is safe to drop mask parameter as masked-off elements are undef.
6330   SDValue Op1 = Op->getOperand(0);
6331   SDValue Op2 = Op->getOperand(1);
6332   SDValue VL = Op->getOperand(3);
6333 
6334   MVT ContainerVT = VT;
6335   const bool IsFixed = VT.isFixedLengthVector();
6336   if (IsFixed) {
6337     ContainerVT = getContainerForFixedLengthVector(VT);
6338     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6339     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6340   }
6341 
6342   SDLoc DL(Op);
6343   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6344   if (!IsFixed)
6345     return Val;
6346   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6347 }
6348 
6349 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6350 // matched to a RVV indexed load. The RVV indexed load instructions only
6351 // support the "unsigned unscaled" addressing mode; indices are implicitly
6352 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6353 // signed or scaled indexing is extended to the XLEN value type and scaled
6354 // accordingly.
6355 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6356                                                SelectionDAG &DAG) const {
6357   SDLoc DL(Op);
6358   MVT VT = Op.getSimpleValueType();
6359 
6360   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6361   EVT MemVT = MemSD->getMemoryVT();
6362   MachineMemOperand *MMO = MemSD->getMemOperand();
6363   SDValue Chain = MemSD->getChain();
6364   SDValue BasePtr = MemSD->getBasePtr();
6365 
6366   ISD::LoadExtType LoadExtType;
6367   SDValue Index, Mask, PassThru, VL;
6368 
6369   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6370     Index = VPGN->getIndex();
6371     Mask = VPGN->getMask();
6372     PassThru = DAG.getUNDEF(VT);
6373     VL = VPGN->getVectorLength();
6374     // VP doesn't support extending loads.
6375     LoadExtType = ISD::NON_EXTLOAD;
6376   } else {
6377     // Else it must be a MGATHER.
6378     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6379     Index = MGN->getIndex();
6380     Mask = MGN->getMask();
6381     PassThru = MGN->getPassThru();
6382     LoadExtType = MGN->getExtensionType();
6383   }
6384 
6385   MVT IndexVT = Index.getSimpleValueType();
6386   MVT XLenVT = Subtarget.getXLenVT();
6387 
6388   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6389          "Unexpected VTs!");
6390   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6391   // Targets have to explicitly opt-in for extending vector loads.
6392   assert(LoadExtType == ISD::NON_EXTLOAD &&
6393          "Unexpected extending MGATHER/VP_GATHER");
6394   (void)LoadExtType;
6395 
6396   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6397   // the selection of the masked intrinsics doesn't do this for us.
6398   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6399 
6400   MVT ContainerVT = VT;
6401   if (VT.isFixedLengthVector()) {
6402     // We need to use the larger of the result and index type to determine the
6403     // scalable type to use so we don't increase LMUL for any operand/result.
6404     if (VT.bitsGE(IndexVT)) {
6405       ContainerVT = getContainerForFixedLengthVector(VT);
6406       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6407                                  ContainerVT.getVectorElementCount());
6408     } else {
6409       IndexVT = getContainerForFixedLengthVector(IndexVT);
6410       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6411                                      IndexVT.getVectorElementCount());
6412     }
6413 
6414     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6415 
6416     if (!IsUnmasked) {
6417       MVT MaskVT = getMaskTypeFor(ContainerVT);
6418       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6419       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6420     }
6421   }
6422 
6423   if (!VL)
6424     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6425 
6426   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6427     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6428     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6429                                    VL);
6430     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6431                         TrueMask, VL);
6432   }
6433 
6434   unsigned IntID =
6435       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6436   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6437   if (IsUnmasked)
6438     Ops.push_back(DAG.getUNDEF(ContainerVT));
6439   else
6440     Ops.push_back(PassThru);
6441   Ops.push_back(BasePtr);
6442   Ops.push_back(Index);
6443   if (!IsUnmasked)
6444     Ops.push_back(Mask);
6445   Ops.push_back(VL);
6446   if (!IsUnmasked)
6447     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6448 
6449   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6450   SDValue Result =
6451       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6452   Chain = Result.getValue(1);
6453 
6454   if (VT.isFixedLengthVector())
6455     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6456 
6457   return DAG.getMergeValues({Result, Chain}, DL);
6458 }
6459 
6460 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6461 // matched to a RVV indexed store. The RVV indexed store instructions only
6462 // support the "unsigned unscaled" addressing mode; indices are implicitly
6463 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6464 // signed or scaled indexing is extended to the XLEN value type and scaled
6465 // accordingly.
6466 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6467                                                 SelectionDAG &DAG) const {
6468   SDLoc DL(Op);
6469   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6470   EVT MemVT = MemSD->getMemoryVT();
6471   MachineMemOperand *MMO = MemSD->getMemOperand();
6472   SDValue Chain = MemSD->getChain();
6473   SDValue BasePtr = MemSD->getBasePtr();
6474 
6475   bool IsTruncatingStore = false;
6476   SDValue Index, Mask, Val, VL;
6477 
6478   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6479     Index = VPSN->getIndex();
6480     Mask = VPSN->getMask();
6481     Val = VPSN->getValue();
6482     VL = VPSN->getVectorLength();
6483     // VP doesn't support truncating stores.
6484     IsTruncatingStore = false;
6485   } else {
6486     // Else it must be a MSCATTER.
6487     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6488     Index = MSN->getIndex();
6489     Mask = MSN->getMask();
6490     Val = MSN->getValue();
6491     IsTruncatingStore = MSN->isTruncatingStore();
6492   }
6493 
6494   MVT VT = Val.getSimpleValueType();
6495   MVT IndexVT = Index.getSimpleValueType();
6496   MVT XLenVT = Subtarget.getXLenVT();
6497 
6498   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6499          "Unexpected VTs!");
6500   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6501   // Targets have to explicitly opt-in for extending vector loads and
6502   // truncating vector stores.
6503   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6504   (void)IsTruncatingStore;
6505 
6506   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6507   // the selection of the masked intrinsics doesn't do this for us.
6508   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6509 
6510   MVT ContainerVT = VT;
6511   if (VT.isFixedLengthVector()) {
6512     // We need to use the larger of the value and index type to determine the
6513     // scalable type to use so we don't increase LMUL for any operand/result.
6514     if (VT.bitsGE(IndexVT)) {
6515       ContainerVT = getContainerForFixedLengthVector(VT);
6516       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6517                                  ContainerVT.getVectorElementCount());
6518     } else {
6519       IndexVT = getContainerForFixedLengthVector(IndexVT);
6520       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6521                                      IndexVT.getVectorElementCount());
6522     }
6523 
6524     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6525     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6526 
6527     if (!IsUnmasked) {
6528       MVT MaskVT = getMaskTypeFor(ContainerVT);
6529       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6530     }
6531   }
6532 
6533   if (!VL)
6534     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6535 
6536   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6537     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6538     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6539                                    VL);
6540     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6541                         TrueMask, VL);
6542   }
6543 
6544   unsigned IntID =
6545       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6546   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6547   Ops.push_back(Val);
6548   Ops.push_back(BasePtr);
6549   Ops.push_back(Index);
6550   if (!IsUnmasked)
6551     Ops.push_back(Mask);
6552   Ops.push_back(VL);
6553 
6554   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6555                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6556 }
6557 
6558 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6559                                                SelectionDAG &DAG) const {
6560   const MVT XLenVT = Subtarget.getXLenVT();
6561   SDLoc DL(Op);
6562   SDValue Chain = Op->getOperand(0);
6563   SDValue SysRegNo = DAG.getTargetConstant(
6564       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6565   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6566   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6567 
6568   // Encoding used for rounding mode in RISCV differs from that used in
6569   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6570   // table, which consists of a sequence of 4-bit fields, each representing
6571   // corresponding FLT_ROUNDS mode.
6572   static const int Table =
6573       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6574       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6575       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6576       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6577       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6578 
6579   SDValue Shift =
6580       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6581   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6582                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6583   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6584                                DAG.getConstant(7, DL, XLenVT));
6585 
6586   return DAG.getMergeValues({Masked, Chain}, DL);
6587 }
6588 
6589 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6590                                                SelectionDAG &DAG) const {
6591   const MVT XLenVT = Subtarget.getXLenVT();
6592   SDLoc DL(Op);
6593   SDValue Chain = Op->getOperand(0);
6594   SDValue RMValue = Op->getOperand(1);
6595   SDValue SysRegNo = DAG.getTargetConstant(
6596       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6597 
6598   // Encoding used for rounding mode in RISCV differs from that used in
6599   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6600   // a table, which consists of a sequence of 4-bit fields, each representing
6601   // corresponding RISCV mode.
6602   static const unsigned Table =
6603       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6604       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6605       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6606       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6607       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6608 
6609   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6610                               DAG.getConstant(2, DL, XLenVT));
6611   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6612                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6613   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6614                         DAG.getConstant(0x7, DL, XLenVT));
6615   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6616                      RMValue);
6617 }
6618 
6619 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6620   switch (IntNo) {
6621   default:
6622     llvm_unreachable("Unexpected Intrinsic");
6623   case Intrinsic::riscv_bcompress:
6624     return RISCVISD::BCOMPRESSW;
6625   case Intrinsic::riscv_bdecompress:
6626     return RISCVISD::BDECOMPRESSW;
6627   case Intrinsic::riscv_bfp:
6628     return RISCVISD::BFPW;
6629   case Intrinsic::riscv_fsl:
6630     return RISCVISD::FSLW;
6631   case Intrinsic::riscv_fsr:
6632     return RISCVISD::FSRW;
6633   }
6634 }
6635 
6636 // Converts the given intrinsic to a i64 operation with any extension.
6637 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6638                                          unsigned IntNo) {
6639   SDLoc DL(N);
6640   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6641   // Deal with the Instruction Operands
6642   SmallVector<SDValue, 3> NewOps;
6643   for (SDValue Op : drop_begin(N->ops()))
6644     // Promote the operand to i64 type
6645     NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6646   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6647   // ReplaceNodeResults requires we maintain the same type for the return value.
6648   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6649 }
6650 
6651 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6652 // form of the given Opcode.
6653 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6654   switch (Opcode) {
6655   default:
6656     llvm_unreachable("Unexpected opcode");
6657   case ISD::SHL:
6658     return RISCVISD::SLLW;
6659   case ISD::SRA:
6660     return RISCVISD::SRAW;
6661   case ISD::SRL:
6662     return RISCVISD::SRLW;
6663   case ISD::SDIV:
6664     return RISCVISD::DIVW;
6665   case ISD::UDIV:
6666     return RISCVISD::DIVUW;
6667   case ISD::UREM:
6668     return RISCVISD::REMUW;
6669   case ISD::ROTL:
6670     return RISCVISD::ROLW;
6671   case ISD::ROTR:
6672     return RISCVISD::RORW;
6673   }
6674 }
6675 
6676 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6677 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6678 // otherwise be promoted to i64, making it difficult to select the
6679 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6680 // type i8/i16/i32 is lost.
6681 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6682                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6683   SDLoc DL(N);
6684   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6685   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6686   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6687   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6688   // ReplaceNodeResults requires we maintain the same type for the return value.
6689   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6690 }
6691 
6692 // Converts the given 32-bit operation to a i64 operation with signed extension
6693 // semantic to reduce the signed extension instructions.
6694 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6695   SDLoc DL(N);
6696   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6697   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6698   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6699   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6700                                DAG.getValueType(MVT::i32));
6701   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6702 }
6703 
6704 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6705                                              SmallVectorImpl<SDValue> &Results,
6706                                              SelectionDAG &DAG) const {
6707   SDLoc DL(N);
6708   switch (N->getOpcode()) {
6709   default:
6710     llvm_unreachable("Don't know how to custom type legalize this operation!");
6711   case ISD::STRICT_FP_TO_SINT:
6712   case ISD::STRICT_FP_TO_UINT:
6713   case ISD::FP_TO_SINT:
6714   case ISD::FP_TO_UINT: {
6715     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6716            "Unexpected custom legalisation");
6717     bool IsStrict = N->isStrictFPOpcode();
6718     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6719                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6720     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6721     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6722         TargetLowering::TypeSoftenFloat) {
6723       if (!isTypeLegal(Op0.getValueType()))
6724         return;
6725       if (IsStrict) {
6726         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6727                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6728         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6729         SDValue Res = DAG.getNode(
6730             Opc, DL, VTs, N->getOperand(0), Op0,
6731             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6732         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6733         Results.push_back(Res.getValue(1));
6734         return;
6735       }
6736       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6737       SDValue Res =
6738           DAG.getNode(Opc, DL, MVT::i64, Op0,
6739                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6740       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6741       return;
6742     }
6743     // If the FP type needs to be softened, emit a library call using the 'si'
6744     // version. If we left it to default legalization we'd end up with 'di'. If
6745     // the FP type doesn't need to be softened just let generic type
6746     // legalization promote the result type.
6747     RTLIB::Libcall LC;
6748     if (IsSigned)
6749       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6750     else
6751       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6752     MakeLibCallOptions CallOptions;
6753     EVT OpVT = Op0.getValueType();
6754     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6755     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6756     SDValue Result;
6757     std::tie(Result, Chain) =
6758         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6759     Results.push_back(Result);
6760     if (IsStrict)
6761       Results.push_back(Chain);
6762     break;
6763   }
6764   case ISD::READCYCLECOUNTER: {
6765     assert(!Subtarget.is64Bit() &&
6766            "READCYCLECOUNTER only has custom type legalization on riscv32");
6767 
6768     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6769     SDValue RCW =
6770         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6771 
6772     Results.push_back(
6773         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6774     Results.push_back(RCW.getValue(2));
6775     break;
6776   }
6777   case ISD::MUL: {
6778     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6779     unsigned XLen = Subtarget.getXLen();
6780     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6781     if (Size > XLen) {
6782       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6783       SDValue LHS = N->getOperand(0);
6784       SDValue RHS = N->getOperand(1);
6785       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6786 
6787       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6788       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6789       // We need exactly one side to be unsigned.
6790       if (LHSIsU == RHSIsU)
6791         return;
6792 
6793       auto MakeMULPair = [&](SDValue S, SDValue U) {
6794         MVT XLenVT = Subtarget.getXLenVT();
6795         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6796         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6797         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6798         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6799         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6800       };
6801 
6802       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6803       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6804 
6805       // The other operand should be signed, but still prefer MULH when
6806       // possible.
6807       if (RHSIsU && LHSIsS && !RHSIsS)
6808         Results.push_back(MakeMULPair(LHS, RHS));
6809       else if (LHSIsU && RHSIsS && !LHSIsS)
6810         Results.push_back(MakeMULPair(RHS, LHS));
6811 
6812       return;
6813     }
6814     LLVM_FALLTHROUGH;
6815   }
6816   case ISD::ADD:
6817   case ISD::SUB:
6818     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6819            "Unexpected custom legalisation");
6820     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6821     break;
6822   case ISD::SHL:
6823   case ISD::SRA:
6824   case ISD::SRL:
6825     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6826            "Unexpected custom legalisation");
6827     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6828       // If we can use a BSET instruction, allow default promotion to apply.
6829       if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6830           isOneConstant(N->getOperand(0)))
6831         break;
6832       Results.push_back(customLegalizeToWOp(N, DAG));
6833       break;
6834     }
6835 
6836     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6837     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6838     // shift amount.
6839     if (N->getOpcode() == ISD::SHL) {
6840       SDLoc DL(N);
6841       SDValue NewOp0 =
6842           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6843       SDValue NewOp1 =
6844           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6845       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6846       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6847                                    DAG.getValueType(MVT::i32));
6848       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6849     }
6850 
6851     break;
6852   case ISD::ROTL:
6853   case ISD::ROTR:
6854     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6855            "Unexpected custom legalisation");
6856     Results.push_back(customLegalizeToWOp(N, DAG));
6857     break;
6858   case ISD::CTTZ:
6859   case ISD::CTTZ_ZERO_UNDEF:
6860   case ISD::CTLZ:
6861   case ISD::CTLZ_ZERO_UNDEF: {
6862     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6863            "Unexpected custom legalisation");
6864 
6865     SDValue NewOp0 =
6866         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6867     bool IsCTZ =
6868         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6869     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6870     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6871     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6872     return;
6873   }
6874   case ISD::SDIV:
6875   case ISD::UDIV:
6876   case ISD::UREM: {
6877     MVT VT = N->getSimpleValueType(0);
6878     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6879            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6880            "Unexpected custom legalisation");
6881     // Don't promote division/remainder by constant since we should expand those
6882     // to multiply by magic constant.
6883     // FIXME: What if the expansion is disabled for minsize.
6884     if (N->getOperand(1).getOpcode() == ISD::Constant)
6885       return;
6886 
6887     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6888     // the upper 32 bits. For other types we need to sign or zero extend
6889     // based on the opcode.
6890     unsigned ExtOpc = ISD::ANY_EXTEND;
6891     if (VT != MVT::i32)
6892       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6893                                            : ISD::ZERO_EXTEND;
6894 
6895     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6896     break;
6897   }
6898   case ISD::UADDO:
6899   case ISD::USUBO: {
6900     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6901            "Unexpected custom legalisation");
6902     bool IsAdd = N->getOpcode() == ISD::UADDO;
6903     // Create an ADDW or SUBW.
6904     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6905     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6906     SDValue Res =
6907         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6908     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6909                       DAG.getValueType(MVT::i32));
6910 
6911     SDValue Overflow;
6912     if (IsAdd && isOneConstant(RHS)) {
6913       // Special case uaddo X, 1 overflowed if the addition result is 0.
6914       // FIXME: We can do this for any constant RHS by using (X + C) < C.
6915       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6916                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6917     } else {
6918       // Sign extend the LHS and perform an unsigned compare with the ADDW
6919       // result. Since the inputs are sign extended from i32, this is equivalent
6920       // to comparing the lower 32 bits.
6921       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6922       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6923                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6924     }
6925 
6926     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6927     Results.push_back(Overflow);
6928     return;
6929   }
6930   case ISD::UADDSAT:
6931   case ISD::USUBSAT: {
6932     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6933            "Unexpected custom legalisation");
6934     if (Subtarget.hasStdExtZbb()) {
6935       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6936       // sign extend allows overflow of the lower 32 bits to be detected on
6937       // the promoted size.
6938       SDValue LHS =
6939           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6940       SDValue RHS =
6941           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6942       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6943       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6944       return;
6945     }
6946 
6947     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6948     // promotion for UADDO/USUBO.
6949     Results.push_back(expandAddSubSat(N, DAG));
6950     return;
6951   }
6952   case ISD::ABS: {
6953     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6954            "Unexpected custom legalisation");
6955           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6956 
6957     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6958 
6959     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6960 
6961     // Freeze the source so we can increase it's use count.
6962     Src = DAG.getFreeze(Src);
6963 
6964     // Copy sign bit to all bits using the sraiw pattern.
6965     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6966                                    DAG.getValueType(MVT::i32));
6967     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6968                            DAG.getConstant(31, DL, MVT::i64));
6969 
6970     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6971     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6972 
6973     // NOTE: The result is only required to be anyextended, but sext is
6974     // consistent with type legalization of sub.
6975     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6976                          DAG.getValueType(MVT::i32));
6977     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6978     return;
6979   }
6980   case ISD::BITCAST: {
6981     EVT VT = N->getValueType(0);
6982     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6983     SDValue Op0 = N->getOperand(0);
6984     EVT Op0VT = Op0.getValueType();
6985     MVT XLenVT = Subtarget.getXLenVT();
6986     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6987       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6988       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6989     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6990                Subtarget.hasStdExtF()) {
6991       SDValue FPConv =
6992           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6993       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6994     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6995                isTypeLegal(Op0VT)) {
6996       // Custom-legalize bitcasts from fixed-length vector types to illegal
6997       // scalar types in order to improve codegen. Bitcast the vector to a
6998       // one-element vector type whose element type is the same as the result
6999       // type, and extract the first element.
7000       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7001       if (isTypeLegal(BVT)) {
7002         SDValue BVec = DAG.getBitcast(BVT, Op0);
7003         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7004                                       DAG.getConstant(0, DL, XLenVT)));
7005       }
7006     }
7007     break;
7008   }
7009   case RISCVISD::GREV:
7010   case RISCVISD::GORC:
7011   case RISCVISD::SHFL: {
7012     MVT VT = N->getSimpleValueType(0);
7013     MVT XLenVT = Subtarget.getXLenVT();
7014     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7015            "Unexpected custom legalisation");
7016     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7017     assert((Subtarget.hasStdExtZbp() ||
7018             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7019              N->getConstantOperandVal(1) == 7)) &&
7020            "Unexpected extension");
7021     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7022     SDValue NewOp1 =
7023         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7024     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7025     // ReplaceNodeResults requires we maintain the same type for the return
7026     // value.
7027     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7028     break;
7029   }
7030   case ISD::BSWAP:
7031   case ISD::BITREVERSE: {
7032     MVT VT = N->getSimpleValueType(0);
7033     MVT XLenVT = Subtarget.getXLenVT();
7034     assert((VT == MVT::i8 || VT == MVT::i16 ||
7035             (VT == MVT::i32 && Subtarget.is64Bit())) &&
7036            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7037     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7038     unsigned Imm = VT.getSizeInBits() - 1;
7039     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7040     if (N->getOpcode() == ISD::BSWAP)
7041       Imm &= ~0x7U;
7042     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7043                                 DAG.getConstant(Imm, DL, XLenVT));
7044     // ReplaceNodeResults requires we maintain the same type for the return
7045     // value.
7046     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7047     break;
7048   }
7049   case ISD::FSHL:
7050   case ISD::FSHR: {
7051     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7052            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7053     SDValue NewOp0 =
7054         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7055     SDValue NewOp1 =
7056         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7057     SDValue NewShAmt =
7058         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7059     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7060     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7061     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7062                            DAG.getConstant(0x1f, DL, MVT::i64));
7063     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7064     // instruction use different orders. fshl will return its first operand for
7065     // shift of zero, fshr will return its second operand. fsl and fsr both
7066     // return rs1 so the ISD nodes need to have different operand orders.
7067     // Shift amount is in rs2.
7068     unsigned Opc = RISCVISD::FSLW;
7069     if (N->getOpcode() == ISD::FSHR) {
7070       std::swap(NewOp0, NewOp1);
7071       Opc = RISCVISD::FSRW;
7072     }
7073     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7074     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7075     break;
7076   }
7077   case ISD::EXTRACT_VECTOR_ELT: {
7078     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7079     // type is illegal (currently only vXi64 RV32).
7080     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7081     // transferred to the destination register. We issue two of these from the
7082     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7083     // first element.
7084     SDValue Vec = N->getOperand(0);
7085     SDValue Idx = N->getOperand(1);
7086 
7087     // The vector type hasn't been legalized yet so we can't issue target
7088     // specific nodes if it needs legalization.
7089     // FIXME: We would manually legalize if it's important.
7090     if (!isTypeLegal(Vec.getValueType()))
7091       return;
7092 
7093     MVT VecVT = Vec.getSimpleValueType();
7094 
7095     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7096            VecVT.getVectorElementType() == MVT::i64 &&
7097            "Unexpected EXTRACT_VECTOR_ELT legalization");
7098 
7099     // If this is a fixed vector, we need to convert it to a scalable vector.
7100     MVT ContainerVT = VecVT;
7101     if (VecVT.isFixedLengthVector()) {
7102       ContainerVT = getContainerForFixedLengthVector(VecVT);
7103       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7104     }
7105 
7106     MVT XLenVT = Subtarget.getXLenVT();
7107 
7108     // Use a VL of 1 to avoid processing more elements than we need.
7109     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7110     SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7111 
7112     // Unless the index is known to be 0, we must slide the vector down to get
7113     // the desired element into index 0.
7114     if (!isNullConstant(Idx)) {
7115       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7116                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7117     }
7118 
7119     // Extract the lower XLEN bits of the correct vector element.
7120     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7121 
7122     // To extract the upper XLEN bits of the vector element, shift the first
7123     // element right by 32 bits and re-extract the lower XLEN bits.
7124     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7125                                      DAG.getUNDEF(ContainerVT),
7126                                      DAG.getConstant(32, DL, XLenVT), VL);
7127     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7128                                  ThirtyTwoV, Mask, VL);
7129 
7130     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7131 
7132     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7133     break;
7134   }
7135   case ISD::INTRINSIC_WO_CHAIN: {
7136     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7137     switch (IntNo) {
7138     default:
7139       llvm_unreachable(
7140           "Don't know how to custom type legalize this intrinsic!");
7141     case Intrinsic::riscv_grev:
7142     case Intrinsic::riscv_gorc: {
7143       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7144              "Unexpected custom legalisation");
7145       SDValue NewOp1 =
7146           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7147       SDValue NewOp2 =
7148           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7149       unsigned Opc =
7150           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7151       // If the control is a constant, promote the node by clearing any extra
7152       // bits bits in the control. isel will form greviw/gorciw if the result is
7153       // sign extended.
7154       if (isa<ConstantSDNode>(NewOp2)) {
7155         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7156                              DAG.getConstant(0x1f, DL, MVT::i64));
7157         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7158       }
7159       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7160       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7161       break;
7162     }
7163     case Intrinsic::riscv_bcompress:
7164     case Intrinsic::riscv_bdecompress:
7165     case Intrinsic::riscv_bfp:
7166     case Intrinsic::riscv_fsl:
7167     case Intrinsic::riscv_fsr: {
7168       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7169              "Unexpected custom legalisation");
7170       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7171       break;
7172     }
7173     case Intrinsic::riscv_orc_b: {
7174       // Lower to the GORCI encoding for orc.b with the operand extended.
7175       SDValue NewOp =
7176           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7177       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7178                                 DAG.getConstant(7, DL, MVT::i64));
7179       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7180       return;
7181     }
7182     case Intrinsic::riscv_shfl:
7183     case Intrinsic::riscv_unshfl: {
7184       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7185              "Unexpected custom legalisation");
7186       SDValue NewOp1 =
7187           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7188       SDValue NewOp2 =
7189           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7190       unsigned Opc =
7191           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7192       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7193       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7194       // will be shuffled the same way as the lower 32 bit half, but the two
7195       // halves won't cross.
7196       if (isa<ConstantSDNode>(NewOp2)) {
7197         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7198                              DAG.getConstant(0xf, DL, MVT::i64));
7199         Opc =
7200             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7201       }
7202       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7203       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7204       break;
7205     }
7206     case Intrinsic::riscv_vmv_x_s: {
7207       EVT VT = N->getValueType(0);
7208       MVT XLenVT = Subtarget.getXLenVT();
7209       if (VT.bitsLT(XLenVT)) {
7210         // Simple case just extract using vmv.x.s and truncate.
7211         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7212                                       Subtarget.getXLenVT(), N->getOperand(1));
7213         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7214         return;
7215       }
7216 
7217       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7218              "Unexpected custom legalization");
7219 
7220       // We need to do the move in two steps.
7221       SDValue Vec = N->getOperand(1);
7222       MVT VecVT = Vec.getSimpleValueType();
7223 
7224       // First extract the lower XLEN bits of the element.
7225       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7226 
7227       // To extract the upper XLEN bits of the vector element, shift the first
7228       // element right by 32 bits and re-extract the lower XLEN bits.
7229       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7230       SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7231 
7232       SDValue ThirtyTwoV =
7233           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7234                       DAG.getConstant(32, DL, XLenVT), VL);
7235       SDValue LShr32 =
7236           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7237       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7238 
7239       Results.push_back(
7240           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7241       break;
7242     }
7243     }
7244     break;
7245   }
7246   case ISD::VECREDUCE_ADD:
7247   case ISD::VECREDUCE_AND:
7248   case ISD::VECREDUCE_OR:
7249   case ISD::VECREDUCE_XOR:
7250   case ISD::VECREDUCE_SMAX:
7251   case ISD::VECREDUCE_UMAX:
7252   case ISD::VECREDUCE_SMIN:
7253   case ISD::VECREDUCE_UMIN:
7254     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7255       Results.push_back(V);
7256     break;
7257   case ISD::VP_REDUCE_ADD:
7258   case ISD::VP_REDUCE_AND:
7259   case ISD::VP_REDUCE_OR:
7260   case ISD::VP_REDUCE_XOR:
7261   case ISD::VP_REDUCE_SMAX:
7262   case ISD::VP_REDUCE_UMAX:
7263   case ISD::VP_REDUCE_SMIN:
7264   case ISD::VP_REDUCE_UMIN:
7265     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7266       Results.push_back(V);
7267     break;
7268   case ISD::FLT_ROUNDS_: {
7269     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7270     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7271     Results.push_back(Res.getValue(0));
7272     Results.push_back(Res.getValue(1));
7273     break;
7274   }
7275   }
7276 }
7277 
7278 // A structure to hold one of the bit-manipulation patterns below. Together, a
7279 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7280 //   (or (and (shl x, 1), 0xAAAAAAAA),
7281 //       (and (srl x, 1), 0x55555555))
7282 struct RISCVBitmanipPat {
7283   SDValue Op;
7284   unsigned ShAmt;
7285   bool IsSHL;
7286 
7287   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7288     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7289   }
7290 };
7291 
7292 // Matches patterns of the form
7293 //   (and (shl x, C2), (C1 << C2))
7294 //   (and (srl x, C2), C1)
7295 //   (shl (and x, C1), C2)
7296 //   (srl (and x, (C1 << C2)), C2)
7297 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7298 // The expected masks for each shift amount are specified in BitmanipMasks where
7299 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7300 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7301 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7302 // XLen is 64.
7303 static Optional<RISCVBitmanipPat>
7304 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7305   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7306          "Unexpected number of masks");
7307   Optional<uint64_t> Mask;
7308   // Optionally consume a mask around the shift operation.
7309   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7310     Mask = Op.getConstantOperandVal(1);
7311     Op = Op.getOperand(0);
7312   }
7313   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7314     return None;
7315   bool IsSHL = Op.getOpcode() == ISD::SHL;
7316 
7317   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7318     return None;
7319   uint64_t ShAmt = Op.getConstantOperandVal(1);
7320 
7321   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7322   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7323     return None;
7324   // If we don't have enough masks for 64 bit, then we must be trying to
7325   // match SHFL so we're only allowed to shift 1/4 of the width.
7326   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7327     return None;
7328 
7329   SDValue Src = Op.getOperand(0);
7330 
7331   // The expected mask is shifted left when the AND is found around SHL
7332   // patterns.
7333   //   ((x >> 1) & 0x55555555)
7334   //   ((x << 1) & 0xAAAAAAAA)
7335   bool SHLExpMask = IsSHL;
7336 
7337   if (!Mask) {
7338     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7339     // the mask is all ones: consume that now.
7340     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7341       Mask = Src.getConstantOperandVal(1);
7342       Src = Src.getOperand(0);
7343       // The expected mask is now in fact shifted left for SRL, so reverse the
7344       // decision.
7345       //   ((x & 0xAAAAAAAA) >> 1)
7346       //   ((x & 0x55555555) << 1)
7347       SHLExpMask = !SHLExpMask;
7348     } else {
7349       // Use a default shifted mask of all-ones if there's no AND, truncated
7350       // down to the expected width. This simplifies the logic later on.
7351       Mask = maskTrailingOnes<uint64_t>(Width);
7352       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7353     }
7354   }
7355 
7356   unsigned MaskIdx = Log2_32(ShAmt);
7357   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7358 
7359   if (SHLExpMask)
7360     ExpMask <<= ShAmt;
7361 
7362   if (Mask != ExpMask)
7363     return None;
7364 
7365   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7366 }
7367 
7368 // Matches any of the following bit-manipulation patterns:
7369 //   (and (shl x, 1), (0x55555555 << 1))
7370 //   (and (srl x, 1), 0x55555555)
7371 //   (shl (and x, 0x55555555), 1)
7372 //   (srl (and x, (0x55555555 << 1)), 1)
7373 // where the shift amount and mask may vary thus:
7374 //   [1]  = 0x55555555 / 0xAAAAAAAA
7375 //   [2]  = 0x33333333 / 0xCCCCCCCC
7376 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7377 //   [8]  = 0x00FF00FF / 0xFF00FF00
7378 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7379 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7380 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7381   // These are the unshifted masks which we use to match bit-manipulation
7382   // patterns. They may be shifted left in certain circumstances.
7383   static const uint64_t BitmanipMasks[] = {
7384       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7385       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7386 
7387   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7388 }
7389 
7390 // Match the following pattern as a GREVI(W) operation
7391 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7392 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7393                                const RISCVSubtarget &Subtarget) {
7394   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7395   EVT VT = Op.getValueType();
7396 
7397   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7398     auto LHS = matchGREVIPat(Op.getOperand(0));
7399     auto RHS = matchGREVIPat(Op.getOperand(1));
7400     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7401       SDLoc DL(Op);
7402       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7403                          DAG.getConstant(LHS->ShAmt, DL, VT));
7404     }
7405   }
7406   return SDValue();
7407 }
7408 
7409 // Matches any the following pattern as a GORCI(W) operation
7410 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7411 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7412 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7413 // Note that with the variant of 3.,
7414 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7415 // the inner pattern will first be matched as GREVI and then the outer
7416 // pattern will be matched to GORC via the first rule above.
7417 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7418 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7419                                const RISCVSubtarget &Subtarget) {
7420   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7421   EVT VT = Op.getValueType();
7422 
7423   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7424     SDLoc DL(Op);
7425     SDValue Op0 = Op.getOperand(0);
7426     SDValue Op1 = Op.getOperand(1);
7427 
7428     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7429       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7430           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7431           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7432         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7433       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7434       if ((Reverse.getOpcode() == ISD::ROTL ||
7435            Reverse.getOpcode() == ISD::ROTR) &&
7436           Reverse.getOperand(0) == X &&
7437           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7438         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7439         if (RotAmt == (VT.getSizeInBits() / 2))
7440           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7441                              DAG.getConstant(RotAmt, DL, VT));
7442       }
7443       return SDValue();
7444     };
7445 
7446     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7447     if (SDValue V = MatchOROfReverse(Op0, Op1))
7448       return V;
7449     if (SDValue V = MatchOROfReverse(Op1, Op0))
7450       return V;
7451 
7452     // OR is commutable so canonicalize its OR operand to the left
7453     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7454       std::swap(Op0, Op1);
7455     if (Op0.getOpcode() != ISD::OR)
7456       return SDValue();
7457     SDValue OrOp0 = Op0.getOperand(0);
7458     SDValue OrOp1 = Op0.getOperand(1);
7459     auto LHS = matchGREVIPat(OrOp0);
7460     // OR is commutable so swap the operands and try again: x might have been
7461     // on the left
7462     if (!LHS) {
7463       std::swap(OrOp0, OrOp1);
7464       LHS = matchGREVIPat(OrOp0);
7465     }
7466     auto RHS = matchGREVIPat(Op1);
7467     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7468       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7469                          DAG.getConstant(LHS->ShAmt, DL, VT));
7470     }
7471   }
7472   return SDValue();
7473 }
7474 
7475 // Matches any of the following bit-manipulation patterns:
7476 //   (and (shl x, 1), (0x22222222 << 1))
7477 //   (and (srl x, 1), 0x22222222)
7478 //   (shl (and x, 0x22222222), 1)
7479 //   (srl (and x, (0x22222222 << 1)), 1)
7480 // where the shift amount and mask may vary thus:
7481 //   [1]  = 0x22222222 / 0x44444444
7482 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7483 //   [4]  = 0x00F000F0 / 0x0F000F00
7484 //   [8]  = 0x0000FF00 / 0x00FF0000
7485 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7486 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7487   // These are the unshifted masks which we use to match bit-manipulation
7488   // patterns. They may be shifted left in certain circumstances.
7489   static const uint64_t BitmanipMasks[] = {
7490       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7491       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7492 
7493   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7494 }
7495 
7496 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7497 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7498                                const RISCVSubtarget &Subtarget) {
7499   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7500   EVT VT = Op.getValueType();
7501 
7502   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7503     return SDValue();
7504 
7505   SDValue Op0 = Op.getOperand(0);
7506   SDValue Op1 = Op.getOperand(1);
7507 
7508   // Or is commutable so canonicalize the second OR to the LHS.
7509   if (Op0.getOpcode() != ISD::OR)
7510     std::swap(Op0, Op1);
7511   if (Op0.getOpcode() != ISD::OR)
7512     return SDValue();
7513 
7514   // We found an inner OR, so our operands are the operands of the inner OR
7515   // and the other operand of the outer OR.
7516   SDValue A = Op0.getOperand(0);
7517   SDValue B = Op0.getOperand(1);
7518   SDValue C = Op1;
7519 
7520   auto Match1 = matchSHFLPat(A);
7521   auto Match2 = matchSHFLPat(B);
7522 
7523   // If neither matched, we failed.
7524   if (!Match1 && !Match2)
7525     return SDValue();
7526 
7527   // We had at least one match. if one failed, try the remaining C operand.
7528   if (!Match1) {
7529     std::swap(A, C);
7530     Match1 = matchSHFLPat(A);
7531     if (!Match1)
7532       return SDValue();
7533   } else if (!Match2) {
7534     std::swap(B, C);
7535     Match2 = matchSHFLPat(B);
7536     if (!Match2)
7537       return SDValue();
7538   }
7539   assert(Match1 && Match2);
7540 
7541   // Make sure our matches pair up.
7542   if (!Match1->formsPairWith(*Match2))
7543     return SDValue();
7544 
7545   // All the remains is to make sure C is an AND with the same input, that masks
7546   // out the bits that are being shuffled.
7547   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7548       C.getOperand(0) != Match1->Op)
7549     return SDValue();
7550 
7551   uint64_t Mask = C.getConstantOperandVal(1);
7552 
7553   static const uint64_t BitmanipMasks[] = {
7554       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7555       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7556   };
7557 
7558   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7559   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7560   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7561 
7562   if (Mask != ExpMask)
7563     return SDValue();
7564 
7565   SDLoc DL(Op);
7566   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7567                      DAG.getConstant(Match1->ShAmt, DL, VT));
7568 }
7569 
7570 // Optimize (add (shl x, c0), (shl y, c1)) ->
7571 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7572 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7573                                   const RISCVSubtarget &Subtarget) {
7574   // Perform this optimization only in the zba extension.
7575   if (!Subtarget.hasStdExtZba())
7576     return SDValue();
7577 
7578   // Skip for vector types and larger types.
7579   EVT VT = N->getValueType(0);
7580   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7581     return SDValue();
7582 
7583   // The two operand nodes must be SHL and have no other use.
7584   SDValue N0 = N->getOperand(0);
7585   SDValue N1 = N->getOperand(1);
7586   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7587       !N0->hasOneUse() || !N1->hasOneUse())
7588     return SDValue();
7589 
7590   // Check c0 and c1.
7591   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7592   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7593   if (!N0C || !N1C)
7594     return SDValue();
7595   int64_t C0 = N0C->getSExtValue();
7596   int64_t C1 = N1C->getSExtValue();
7597   if (C0 <= 0 || C1 <= 0)
7598     return SDValue();
7599 
7600   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7601   int64_t Bits = std::min(C0, C1);
7602   int64_t Diff = std::abs(C0 - C1);
7603   if (Diff != 1 && Diff != 2 && Diff != 3)
7604     return SDValue();
7605 
7606   // Build nodes.
7607   SDLoc DL(N);
7608   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7609   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7610   SDValue NA0 =
7611       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7612   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7613   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7614 }
7615 
7616 // Combine
7617 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7618 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7619 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7620 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7621 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7622 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7623 // The grev patterns represents BSWAP.
7624 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7625 // off the grev.
7626 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7627                                           const RISCVSubtarget &Subtarget) {
7628   bool IsWInstruction =
7629       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7630   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7631           IsWInstruction) &&
7632          "Unexpected opcode!");
7633   SDValue Src = N->getOperand(0);
7634   EVT VT = N->getValueType(0);
7635   SDLoc DL(N);
7636 
7637   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7638     return SDValue();
7639 
7640   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7641       !isa<ConstantSDNode>(Src.getOperand(1)))
7642     return SDValue();
7643 
7644   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7645   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7646 
7647   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7648   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7649   unsigned ShAmt1 = N->getConstantOperandVal(1);
7650   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7651   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7652     return SDValue();
7653 
7654   Src = Src.getOperand(0);
7655 
7656   // Toggle bit the MSB of the shift.
7657   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7658   if (CombinedShAmt == 0)
7659     return Src;
7660 
7661   SDValue Res = DAG.getNode(
7662       RISCVISD::GREV, DL, VT, Src,
7663       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7664   if (!IsWInstruction)
7665     return Res;
7666 
7667   // Sign extend the result to match the behavior of the rotate. This will be
7668   // selected to GREVIW in isel.
7669   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7670                      DAG.getValueType(MVT::i32));
7671 }
7672 
7673 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7674 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7675 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7676 // not undo itself, but they are redundant.
7677 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7678   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7679   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7680   SDValue Src = N->getOperand(0);
7681 
7682   if (Src.getOpcode() != N->getOpcode())
7683     return SDValue();
7684 
7685   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7686       !isa<ConstantSDNode>(Src.getOperand(1)))
7687     return SDValue();
7688 
7689   unsigned ShAmt1 = N->getConstantOperandVal(1);
7690   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7691   Src = Src.getOperand(0);
7692 
7693   unsigned CombinedShAmt;
7694   if (IsGORC)
7695     CombinedShAmt = ShAmt1 | ShAmt2;
7696   else
7697     CombinedShAmt = ShAmt1 ^ ShAmt2;
7698 
7699   if (CombinedShAmt == 0)
7700     return Src;
7701 
7702   SDLoc DL(N);
7703   return DAG.getNode(
7704       N->getOpcode(), DL, N->getValueType(0), Src,
7705       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7706 }
7707 
7708 // Combine a constant select operand into its use:
7709 //
7710 // (and (select cond, -1, c), x)
7711 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7712 // (or  (select cond, 0, c), x)
7713 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7714 // (xor (select cond, 0, c), x)
7715 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7716 // (add (select cond, 0, c), x)
7717 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7718 // (sub x, (select cond, 0, c))
7719 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7720 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7721                                    SelectionDAG &DAG, bool AllOnes) {
7722   EVT VT = N->getValueType(0);
7723 
7724   // Skip vectors.
7725   if (VT.isVector())
7726     return SDValue();
7727 
7728   if ((Slct.getOpcode() != ISD::SELECT &&
7729        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7730       !Slct.hasOneUse())
7731     return SDValue();
7732 
7733   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7734     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7735   };
7736 
7737   bool SwapSelectOps;
7738   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7739   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7740   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7741   SDValue NonConstantVal;
7742   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7743     SwapSelectOps = false;
7744     NonConstantVal = FalseVal;
7745   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7746     SwapSelectOps = true;
7747     NonConstantVal = TrueVal;
7748   } else
7749     return SDValue();
7750 
7751   // Slct is now know to be the desired identity constant when CC is true.
7752   TrueVal = OtherOp;
7753   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7754   // Unless SwapSelectOps says the condition should be false.
7755   if (SwapSelectOps)
7756     std::swap(TrueVal, FalseVal);
7757 
7758   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7759     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7760                        {Slct.getOperand(0), Slct.getOperand(1),
7761                         Slct.getOperand(2), TrueVal, FalseVal});
7762 
7763   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7764                      {Slct.getOperand(0), TrueVal, FalseVal});
7765 }
7766 
7767 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7768 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7769                                               bool AllOnes) {
7770   SDValue N0 = N->getOperand(0);
7771   SDValue N1 = N->getOperand(1);
7772   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7773     return Result;
7774   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7775     return Result;
7776   return SDValue();
7777 }
7778 
7779 // Transform (add (mul x, c0), c1) ->
7780 //           (add (mul (add x, c1/c0), c0), c1%c0).
7781 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7782 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7783 // to an infinite loop in DAGCombine if transformed.
7784 // Or transform (add (mul x, c0), c1) ->
7785 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7786 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7787 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7788 // lead to an infinite loop in DAGCombine if transformed.
7789 // Or transform (add (mul x, c0), c1) ->
7790 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7791 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7792 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7793 // lead to an infinite loop in DAGCombine if transformed.
7794 // Or transform (add (mul x, c0), c1) ->
7795 //              (mul (add x, c1/c0), c0).
7796 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7797 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7798                                      const RISCVSubtarget &Subtarget) {
7799   // Skip for vector types and larger types.
7800   EVT VT = N->getValueType(0);
7801   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7802     return SDValue();
7803   // The first operand node must be a MUL and has no other use.
7804   SDValue N0 = N->getOperand(0);
7805   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7806     return SDValue();
7807   // Check if c0 and c1 match above conditions.
7808   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7809   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7810   if (!N0C || !N1C)
7811     return SDValue();
7812   // If N0C has multiple uses it's possible one of the cases in
7813   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7814   // in an infinite loop.
7815   if (!N0C->hasOneUse())
7816     return SDValue();
7817   int64_t C0 = N0C->getSExtValue();
7818   int64_t C1 = N1C->getSExtValue();
7819   int64_t CA, CB;
7820   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7821     return SDValue();
7822   // Search for proper CA (non-zero) and CB that both are simm12.
7823   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7824       !isInt<12>(C0 * (C1 / C0))) {
7825     CA = C1 / C0;
7826     CB = C1 % C0;
7827   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7828              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7829     CA = C1 / C0 + 1;
7830     CB = C1 % C0 - C0;
7831   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7832              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7833     CA = C1 / C0 - 1;
7834     CB = C1 % C0 + C0;
7835   } else
7836     return SDValue();
7837   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7838   SDLoc DL(N);
7839   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7840                              DAG.getConstant(CA, DL, VT));
7841   SDValue New1 =
7842       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7843   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7844 }
7845 
7846 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7847                                  const RISCVSubtarget &Subtarget) {
7848   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7849     return V;
7850   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7851     return V;
7852   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7853   //      (select lhs, rhs, cc, x, (add x, y))
7854   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7855 }
7856 
7857 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7858   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7859   //      (select lhs, rhs, cc, x, (sub x, y))
7860   SDValue N0 = N->getOperand(0);
7861   SDValue N1 = N->getOperand(1);
7862   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7863 }
7864 
7865 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7866   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7867   //      (select lhs, rhs, cc, x, (and x, y))
7868   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7869 }
7870 
7871 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7872                                 const RISCVSubtarget &Subtarget) {
7873   if (Subtarget.hasStdExtZbp()) {
7874     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7875       return GREV;
7876     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7877       return GORC;
7878     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7879       return SHFL;
7880   }
7881 
7882   // fold (or (select cond, 0, y), x) ->
7883   //      (select cond, x, (or x, y))
7884   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7885 }
7886 
7887 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7888   SDValue N0 = N->getOperand(0);
7889   SDValue N1 = N->getOperand(1);
7890 
7891   // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
7892   // NOTE: Assumes ROL being legal means ROLW is legal.
7893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7894   if (N0.getOpcode() == RISCVISD::SLLW &&
7895       isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
7896       TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
7897     SDLoc DL(N);
7898     return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
7899                        DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
7900   }
7901 
7902   // fold (xor (select cond, 0, y), x) ->
7903   //      (select cond, x, (xor x, y))
7904   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7905 }
7906 
7907 static SDValue
7908 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7909                                 const RISCVSubtarget &Subtarget) {
7910   SDValue Src = N->getOperand(0);
7911   EVT VT = N->getValueType(0);
7912 
7913   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7914   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7915       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7916     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7917                        Src.getOperand(0));
7918 
7919   // Fold (i64 (sext_inreg (abs X), i32)) ->
7920   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7921   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7922   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7923   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7924   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7925   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7926   // may get combined into an earlier operation so we need to use
7927   // ComputeNumSignBits.
7928   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7929   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7930   // we can't assume that X has 33 sign bits. We must check.
7931   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7932       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7933       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7934       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7935     SDLoc DL(N);
7936     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7937     SDValue Neg =
7938         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7939     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7940                       DAG.getValueType(MVT::i32));
7941     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7942   }
7943 
7944   return SDValue();
7945 }
7946 
7947 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7948 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7949 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7950                                              bool Commute = false) {
7951   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7952           N->getOpcode() == RISCVISD::SUB_VL) &&
7953          "Unexpected opcode");
7954   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7955   SDValue Op0 = N->getOperand(0);
7956   SDValue Op1 = N->getOperand(1);
7957   if (Commute)
7958     std::swap(Op0, Op1);
7959 
7960   MVT VT = N->getSimpleValueType(0);
7961 
7962   // Determine the narrow size for a widening add/sub.
7963   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7964   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7965                                   VT.getVectorElementCount());
7966 
7967   SDValue Mask = N->getOperand(2);
7968   SDValue VL = N->getOperand(3);
7969 
7970   SDLoc DL(N);
7971 
7972   // If the RHS is a sext or zext, we can form a widening op.
7973   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7974        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7975       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7976     unsigned ExtOpc = Op1.getOpcode();
7977     Op1 = Op1.getOperand(0);
7978     // Re-introduce narrower extends if needed.
7979     if (Op1.getValueType() != NarrowVT)
7980       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7981 
7982     unsigned WOpc;
7983     if (ExtOpc == RISCVISD::VSEXT_VL)
7984       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7985     else
7986       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7987 
7988     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7989   }
7990 
7991   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7992   // sext/zext?
7993 
7994   return SDValue();
7995 }
7996 
7997 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7998 // vwsub(u).vv/vx.
7999 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8000   SDValue Op0 = N->getOperand(0);
8001   SDValue Op1 = N->getOperand(1);
8002   SDValue Mask = N->getOperand(2);
8003   SDValue VL = N->getOperand(3);
8004 
8005   MVT VT = N->getSimpleValueType(0);
8006   MVT NarrowVT = Op1.getSimpleValueType();
8007   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8008 
8009   unsigned VOpc;
8010   switch (N->getOpcode()) {
8011   default: llvm_unreachable("Unexpected opcode");
8012   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
8013   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
8014   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8015   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8016   }
8017 
8018   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8019                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
8020 
8021   SDLoc DL(N);
8022 
8023   // If the LHS is a sext or zext, we can narrow this op to the same size as
8024   // the RHS.
8025   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8026        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8027       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8028     unsigned ExtOpc = Op0.getOpcode();
8029     Op0 = Op0.getOperand(0);
8030     // Re-introduce narrower extends if needed.
8031     if (Op0.getValueType() != NarrowVT)
8032       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8033     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8034   }
8035 
8036   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8037                N->getOpcode() == RISCVISD::VWADDU_W_VL;
8038 
8039   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8040   // to commute and use a vwadd(u).vx instead.
8041   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8042       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8043     Op0 = Op0.getOperand(1);
8044 
8045     // See if have enough sign bits or zero bits in the scalar to use a
8046     // widening add/sub by splatting to smaller element size.
8047     unsigned EltBits = VT.getScalarSizeInBits();
8048     unsigned ScalarBits = Op0.getValueSizeInBits();
8049     // Make sure we're getting all element bits from the scalar register.
8050     // FIXME: Support implicit sign extension of vmv.v.x?
8051     if (ScalarBits < EltBits)
8052       return SDValue();
8053 
8054     if (IsSigned) {
8055       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8056         return SDValue();
8057     } else {
8058       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8059       if (!DAG.MaskedValueIsZero(Op0, Mask))
8060         return SDValue();
8061     }
8062 
8063     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8064                       DAG.getUNDEF(NarrowVT), Op0, VL);
8065     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8066   }
8067 
8068   return SDValue();
8069 }
8070 
8071 // Try to form VWMUL, VWMULU or VWMULSU.
8072 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8073 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8074                                        bool Commute) {
8075   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8076   SDValue Op0 = N->getOperand(0);
8077   SDValue Op1 = N->getOperand(1);
8078   if (Commute)
8079     std::swap(Op0, Op1);
8080 
8081   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8082   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8083   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8084   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8085     return SDValue();
8086 
8087   SDValue Mask = N->getOperand(2);
8088   SDValue VL = N->getOperand(3);
8089 
8090   // Make sure the mask and VL match.
8091   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8092     return SDValue();
8093 
8094   MVT VT = N->getSimpleValueType(0);
8095 
8096   // Determine the narrow size for a widening multiply.
8097   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8098   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8099                                   VT.getVectorElementCount());
8100 
8101   SDLoc DL(N);
8102 
8103   // See if the other operand is the same opcode.
8104   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8105     if (!Op1.hasOneUse())
8106       return SDValue();
8107 
8108     // Make sure the mask and VL match.
8109     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8110       return SDValue();
8111 
8112     Op1 = Op1.getOperand(0);
8113   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8114     // The operand is a splat of a scalar.
8115 
8116     // The pasthru must be undef for tail agnostic
8117     if (!Op1.getOperand(0).isUndef())
8118       return SDValue();
8119     // The VL must be the same.
8120     if (Op1.getOperand(2) != VL)
8121       return SDValue();
8122 
8123     // Get the scalar value.
8124     Op1 = Op1.getOperand(1);
8125 
8126     // See if have enough sign bits or zero bits in the scalar to use a
8127     // widening multiply by splatting to smaller element size.
8128     unsigned EltBits = VT.getScalarSizeInBits();
8129     unsigned ScalarBits = Op1.getValueSizeInBits();
8130     // Make sure we're getting all element bits from the scalar register.
8131     // FIXME: Support implicit sign extension of vmv.v.x?
8132     if (ScalarBits < EltBits)
8133       return SDValue();
8134 
8135     // If the LHS is a sign extend, try to use vwmul.
8136     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8137       // Can use vwmul.
8138     } else {
8139       // Otherwise try to use vwmulu or vwmulsu.
8140       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8141       if (DAG.MaskedValueIsZero(Op1, Mask))
8142         IsVWMULSU = IsSignExt;
8143       else
8144         return SDValue();
8145     }
8146 
8147     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8148                       DAG.getUNDEF(NarrowVT), Op1, VL);
8149   } else
8150     return SDValue();
8151 
8152   Op0 = Op0.getOperand(0);
8153 
8154   // Re-introduce narrower extends if needed.
8155   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8156   if (Op0.getValueType() != NarrowVT)
8157     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8158   // vwmulsu requires second operand to be zero extended.
8159   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8160   if (Op1.getValueType() != NarrowVT)
8161     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8162 
8163   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8164   if (!IsVWMULSU)
8165     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8166   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8167 }
8168 
8169 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8170   switch (Op.getOpcode()) {
8171   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8172   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8173   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8174   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8175   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8176   }
8177 
8178   return RISCVFPRndMode::Invalid;
8179 }
8180 
8181 // Fold
8182 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8183 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8184 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8185 //   (fp_to_int (fceil X))      -> fcvt X, rup
8186 //   (fp_to_int (fround X))     -> fcvt X, rmm
8187 static SDValue performFP_TO_INTCombine(SDNode *N,
8188                                        TargetLowering::DAGCombinerInfo &DCI,
8189                                        const RISCVSubtarget &Subtarget) {
8190   SelectionDAG &DAG = DCI.DAG;
8191   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8192   MVT XLenVT = Subtarget.getXLenVT();
8193 
8194   // Only handle XLen or i32 types. Other types narrower than XLen will
8195   // eventually be legalized to XLenVT.
8196   EVT VT = N->getValueType(0);
8197   if (VT != MVT::i32 && VT != XLenVT)
8198     return SDValue();
8199 
8200   SDValue Src = N->getOperand(0);
8201 
8202   // Ensure the FP type is also legal.
8203   if (!TLI.isTypeLegal(Src.getValueType()))
8204     return SDValue();
8205 
8206   // Don't do this for f16 with Zfhmin and not Zfh.
8207   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8208     return SDValue();
8209 
8210   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8211   if (FRM == RISCVFPRndMode::Invalid)
8212     return SDValue();
8213 
8214   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8215 
8216   unsigned Opc;
8217   if (VT == XLenVT)
8218     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8219   else
8220     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8221 
8222   SDLoc DL(N);
8223   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8224                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8225   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8226 }
8227 
8228 // Fold
8229 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8230 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8231 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8232 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8233 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8234 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8235                                        TargetLowering::DAGCombinerInfo &DCI,
8236                                        const RISCVSubtarget &Subtarget) {
8237   SelectionDAG &DAG = DCI.DAG;
8238   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8239   MVT XLenVT = Subtarget.getXLenVT();
8240 
8241   // Only handle XLen types. Other types narrower than XLen will eventually be
8242   // legalized to XLenVT.
8243   EVT DstVT = N->getValueType(0);
8244   if (DstVT != XLenVT)
8245     return SDValue();
8246 
8247   SDValue Src = N->getOperand(0);
8248 
8249   // Ensure the FP type is also legal.
8250   if (!TLI.isTypeLegal(Src.getValueType()))
8251     return SDValue();
8252 
8253   // Don't do this for f16 with Zfhmin and not Zfh.
8254   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8255     return SDValue();
8256 
8257   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8258 
8259   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8260   if (FRM == RISCVFPRndMode::Invalid)
8261     return SDValue();
8262 
8263   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8264 
8265   unsigned Opc;
8266   if (SatVT == DstVT)
8267     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8268   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8269     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8270   else
8271     return SDValue();
8272   // FIXME: Support other SatVTs by clamping before or after the conversion.
8273 
8274   Src = Src.getOperand(0);
8275 
8276   SDLoc DL(N);
8277   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8278                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8279 
8280   // RISCV FP-to-int conversions saturate to the destination register size, but
8281   // don't produce 0 for nan.
8282   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8283   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8284 }
8285 
8286 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8287 // smaller than XLenVT.
8288 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8289                                         const RISCVSubtarget &Subtarget) {
8290   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8291 
8292   SDValue Src = N->getOperand(0);
8293   if (Src.getOpcode() != ISD::BSWAP)
8294     return SDValue();
8295 
8296   EVT VT = N->getValueType(0);
8297   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8298       !isPowerOf2_32(VT.getSizeInBits()))
8299     return SDValue();
8300 
8301   SDLoc DL(N);
8302   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8303                      DAG.getConstant(7, DL, VT));
8304 }
8305 
8306 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8307                                                DAGCombinerInfo &DCI) const {
8308   SelectionDAG &DAG = DCI.DAG;
8309 
8310   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8311   // bits are demanded. N will be added to the Worklist if it was not deleted.
8312   // Caller should return SDValue(N, 0) if this returns true.
8313   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8314     SDValue Op = N->getOperand(OpNo);
8315     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8316     if (!SimplifyDemandedBits(Op, Mask, DCI))
8317       return false;
8318 
8319     if (N->getOpcode() != ISD::DELETED_NODE)
8320       DCI.AddToWorklist(N);
8321     return true;
8322   };
8323 
8324   switch (N->getOpcode()) {
8325   default:
8326     break;
8327   case RISCVISD::SplitF64: {
8328     SDValue Op0 = N->getOperand(0);
8329     // If the input to SplitF64 is just BuildPairF64 then the operation is
8330     // redundant. Instead, use BuildPairF64's operands directly.
8331     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8332       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8333 
8334     if (Op0->isUndef()) {
8335       SDValue Lo = DAG.getUNDEF(MVT::i32);
8336       SDValue Hi = DAG.getUNDEF(MVT::i32);
8337       return DCI.CombineTo(N, Lo, Hi);
8338     }
8339 
8340     SDLoc DL(N);
8341 
8342     // It's cheaper to materialise two 32-bit integers than to load a double
8343     // from the constant pool and transfer it to integer registers through the
8344     // stack.
8345     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8346       APInt V = C->getValueAPF().bitcastToAPInt();
8347       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8348       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8349       return DCI.CombineTo(N, Lo, Hi);
8350     }
8351 
8352     // This is a target-specific version of a DAGCombine performed in
8353     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8354     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8355     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8356     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8357         !Op0.getNode()->hasOneUse())
8358       break;
8359     SDValue NewSplitF64 =
8360         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8361                     Op0.getOperand(0));
8362     SDValue Lo = NewSplitF64.getValue(0);
8363     SDValue Hi = NewSplitF64.getValue(1);
8364     APInt SignBit = APInt::getSignMask(32);
8365     if (Op0.getOpcode() == ISD::FNEG) {
8366       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8367                                   DAG.getConstant(SignBit, DL, MVT::i32));
8368       return DCI.CombineTo(N, Lo, NewHi);
8369     }
8370     assert(Op0.getOpcode() == ISD::FABS);
8371     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8372                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8373     return DCI.CombineTo(N, Lo, NewHi);
8374   }
8375   case RISCVISD::SLLW:
8376   case RISCVISD::SRAW:
8377   case RISCVISD::SRLW: {
8378     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8379     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8380         SimplifyDemandedLowBitsHelper(1, 5))
8381       return SDValue(N, 0);
8382 
8383     break;
8384   }
8385   case ISD::ROTR:
8386   case ISD::ROTL:
8387   case RISCVISD::RORW:
8388   case RISCVISD::ROLW: {
8389     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8390       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8391       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8392           SimplifyDemandedLowBitsHelper(1, 5))
8393         return SDValue(N, 0);
8394     }
8395 
8396     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8397   }
8398   case RISCVISD::CLZW:
8399   case RISCVISD::CTZW: {
8400     // Only the lower 32 bits of the first operand are read
8401     if (SimplifyDemandedLowBitsHelper(0, 32))
8402       return SDValue(N, 0);
8403     break;
8404   }
8405   case RISCVISD::GREV:
8406   case RISCVISD::GORC: {
8407     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8408     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8409     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8410     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8411       return SDValue(N, 0);
8412 
8413     return combineGREVI_GORCI(N, DAG);
8414   }
8415   case RISCVISD::GREVW:
8416   case RISCVISD::GORCW: {
8417     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8418     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8419         SimplifyDemandedLowBitsHelper(1, 5))
8420       return SDValue(N, 0);
8421 
8422     break;
8423   }
8424   case RISCVISD::SHFL:
8425   case RISCVISD::UNSHFL: {
8426     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8427     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8428     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8429     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8430       return SDValue(N, 0);
8431 
8432     break;
8433   }
8434   case RISCVISD::SHFLW:
8435   case RISCVISD::UNSHFLW: {
8436     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8437     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8438         SimplifyDemandedLowBitsHelper(1, 4))
8439       return SDValue(N, 0);
8440 
8441     break;
8442   }
8443   case RISCVISD::BCOMPRESSW:
8444   case RISCVISD::BDECOMPRESSW: {
8445     // Only the lower 32 bits of LHS and RHS are read.
8446     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8447         SimplifyDemandedLowBitsHelper(1, 32))
8448       return SDValue(N, 0);
8449 
8450     break;
8451   }
8452   case RISCVISD::FSR:
8453   case RISCVISD::FSL:
8454   case RISCVISD::FSRW:
8455   case RISCVISD::FSLW: {
8456     bool IsWInstruction =
8457         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8458     unsigned BitWidth =
8459         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8460     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8461     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8462     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8463       return SDValue(N, 0);
8464 
8465     break;
8466   }
8467   case RISCVISD::FMV_X_ANYEXTH:
8468   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8469     SDLoc DL(N);
8470     SDValue Op0 = N->getOperand(0);
8471     MVT VT = N->getSimpleValueType(0);
8472     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8473     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8474     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8475     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8476          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8477         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8478          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8479       assert(Op0.getOperand(0).getValueType() == VT &&
8480              "Unexpected value type!");
8481       return Op0.getOperand(0);
8482     }
8483 
8484     // This is a target-specific version of a DAGCombine performed in
8485     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8486     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8487     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8488     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8489         !Op0.getNode()->hasOneUse())
8490       break;
8491     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8492     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8493     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8494     if (Op0.getOpcode() == ISD::FNEG)
8495       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8496                          DAG.getConstant(SignBit, DL, VT));
8497 
8498     assert(Op0.getOpcode() == ISD::FABS);
8499     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8500                        DAG.getConstant(~SignBit, DL, VT));
8501   }
8502   case ISD::ADD:
8503     return performADDCombine(N, DAG, Subtarget);
8504   case ISD::SUB:
8505     return performSUBCombine(N, DAG);
8506   case ISD::AND:
8507     return performANDCombine(N, DAG);
8508   case ISD::OR:
8509     return performORCombine(N, DAG, Subtarget);
8510   case ISD::XOR:
8511     return performXORCombine(N, DAG);
8512   case ISD::SIGN_EXTEND_INREG:
8513     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8514   case ISD::ZERO_EXTEND:
8515     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8516     // type legalization. This is safe because fp_to_uint produces poison if
8517     // it overflows.
8518     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8519       SDValue Src = N->getOperand(0);
8520       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8521           isTypeLegal(Src.getOperand(0).getValueType()))
8522         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8523                            Src.getOperand(0));
8524       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8525           isTypeLegal(Src.getOperand(1).getValueType())) {
8526         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8527         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8528                                   Src.getOperand(0), Src.getOperand(1));
8529         DCI.CombineTo(N, Res);
8530         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8531         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8532         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8533       }
8534     }
8535     return SDValue();
8536   case RISCVISD::SELECT_CC: {
8537     // Transform
8538     SDValue LHS = N->getOperand(0);
8539     SDValue RHS = N->getOperand(1);
8540     SDValue TrueV = N->getOperand(3);
8541     SDValue FalseV = N->getOperand(4);
8542 
8543     // If the True and False values are the same, we don't need a select_cc.
8544     if (TrueV == FalseV)
8545       return TrueV;
8546 
8547     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8548     if (!ISD::isIntEqualitySetCC(CCVal))
8549       break;
8550 
8551     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8552     //      (select_cc X, Y, lt, trueV, falseV)
8553     // Sometimes the setcc is introduced after select_cc has been formed.
8554     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8555         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8556       // If we're looking for eq 0 instead of ne 0, we need to invert the
8557       // condition.
8558       bool Invert = CCVal == ISD::SETEQ;
8559       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8560       if (Invert)
8561         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8562 
8563       SDLoc DL(N);
8564       RHS = LHS.getOperand(1);
8565       LHS = LHS.getOperand(0);
8566       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8567 
8568       SDValue TargetCC = DAG.getCondCode(CCVal);
8569       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8570                          {LHS, RHS, TargetCC, TrueV, FalseV});
8571     }
8572 
8573     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8574     //      (select_cc X, Y, eq/ne, trueV, falseV)
8575     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8576       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8577                          {LHS.getOperand(0), LHS.getOperand(1),
8578                           N->getOperand(2), TrueV, FalseV});
8579     // (select_cc X, 1, setne, trueV, falseV) ->
8580     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8581     // This can occur when legalizing some floating point comparisons.
8582     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8583     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8584       SDLoc DL(N);
8585       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8586       SDValue TargetCC = DAG.getCondCode(CCVal);
8587       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8588       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8589                          {LHS, RHS, TargetCC, TrueV, FalseV});
8590     }
8591 
8592     break;
8593   }
8594   case RISCVISD::BR_CC: {
8595     SDValue LHS = N->getOperand(1);
8596     SDValue RHS = N->getOperand(2);
8597     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8598     if (!ISD::isIntEqualitySetCC(CCVal))
8599       break;
8600 
8601     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8602     //      (br_cc X, Y, lt, dest)
8603     // Sometimes the setcc is introduced after br_cc has been formed.
8604     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8605         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8606       // If we're looking for eq 0 instead of ne 0, we need to invert the
8607       // condition.
8608       bool Invert = CCVal == ISD::SETEQ;
8609       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8610       if (Invert)
8611         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8612 
8613       SDLoc DL(N);
8614       RHS = LHS.getOperand(1);
8615       LHS = LHS.getOperand(0);
8616       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8617 
8618       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8619                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8620                          N->getOperand(4));
8621     }
8622 
8623     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8624     //      (br_cc X, Y, eq/ne, trueV, falseV)
8625     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8626       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8627                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8628                          N->getOperand(3), N->getOperand(4));
8629 
8630     // (br_cc X, 1, setne, br_cc) ->
8631     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8632     // This can occur when legalizing some floating point comparisons.
8633     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8634     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8635       SDLoc DL(N);
8636       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8637       SDValue TargetCC = DAG.getCondCode(CCVal);
8638       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8639       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8640                          N->getOperand(0), LHS, RHS, TargetCC,
8641                          N->getOperand(4));
8642     }
8643     break;
8644   }
8645   case ISD::BITREVERSE:
8646     return performBITREVERSECombine(N, DAG, Subtarget);
8647   case ISD::FP_TO_SINT:
8648   case ISD::FP_TO_UINT:
8649     return performFP_TO_INTCombine(N, DCI, Subtarget);
8650   case ISD::FP_TO_SINT_SAT:
8651   case ISD::FP_TO_UINT_SAT:
8652     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8653   case ISD::FCOPYSIGN: {
8654     EVT VT = N->getValueType(0);
8655     if (!VT.isVector())
8656       break;
8657     // There is a form of VFSGNJ which injects the negated sign of its second
8658     // operand. Try and bubble any FNEG up after the extend/round to produce
8659     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8660     // TRUNC=1.
8661     SDValue In2 = N->getOperand(1);
8662     // Avoid cases where the extend/round has multiple uses, as duplicating
8663     // those is typically more expensive than removing a fneg.
8664     if (!In2.hasOneUse())
8665       break;
8666     if (In2.getOpcode() != ISD::FP_EXTEND &&
8667         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8668       break;
8669     In2 = In2.getOperand(0);
8670     if (In2.getOpcode() != ISD::FNEG)
8671       break;
8672     SDLoc DL(N);
8673     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8674     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8675                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8676   }
8677   case ISD::MGATHER:
8678   case ISD::MSCATTER:
8679   case ISD::VP_GATHER:
8680   case ISD::VP_SCATTER: {
8681     if (!DCI.isBeforeLegalize())
8682       break;
8683     SDValue Index, ScaleOp;
8684     bool IsIndexScaled = false;
8685     bool IsIndexSigned = false;
8686     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8687       Index = VPGSN->getIndex();
8688       ScaleOp = VPGSN->getScale();
8689       IsIndexScaled = VPGSN->isIndexScaled();
8690       IsIndexSigned = VPGSN->isIndexSigned();
8691     } else {
8692       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8693       Index = MGSN->getIndex();
8694       ScaleOp = MGSN->getScale();
8695       IsIndexScaled = MGSN->isIndexScaled();
8696       IsIndexSigned = MGSN->isIndexSigned();
8697     }
8698     EVT IndexVT = Index.getValueType();
8699     MVT XLenVT = Subtarget.getXLenVT();
8700     // RISCV indexed loads only support the "unsigned unscaled" addressing
8701     // mode, so anything else must be manually legalized.
8702     bool NeedsIdxLegalization =
8703         IsIndexScaled ||
8704         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8705     if (!NeedsIdxLegalization)
8706       break;
8707 
8708     SDLoc DL(N);
8709 
8710     // Any index legalization should first promote to XLenVT, so we don't lose
8711     // bits when scaling. This may create an illegal index type so we let
8712     // LLVM's legalization take care of the splitting.
8713     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8714     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8715       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8716       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8717                           DL, IndexVT, Index);
8718     }
8719 
8720     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8721     if (IsIndexScaled && Scale != 1) {
8722       // Manually scale the indices by the element size.
8723       // TODO: Sanitize the scale operand here?
8724       // TODO: For VP nodes, should we use VP_SHL here?
8725       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8726       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8727       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8728     }
8729 
8730     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8731     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8732       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8733                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8734                               VPGN->getScale(), VPGN->getMask(),
8735                               VPGN->getVectorLength()},
8736                              VPGN->getMemOperand(), NewIndexTy);
8737     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8738       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8739                               {VPSN->getChain(), VPSN->getValue(),
8740                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8741                                VPSN->getMask(), VPSN->getVectorLength()},
8742                               VPSN->getMemOperand(), NewIndexTy);
8743     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8744       return DAG.getMaskedGather(
8745           N->getVTList(), MGN->getMemoryVT(), DL,
8746           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8747            MGN->getBasePtr(), Index, MGN->getScale()},
8748           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8749     const auto *MSN = cast<MaskedScatterSDNode>(N);
8750     return DAG.getMaskedScatter(
8751         N->getVTList(), MSN->getMemoryVT(), DL,
8752         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8753          Index, MSN->getScale()},
8754         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8755   }
8756   case RISCVISD::SRA_VL:
8757   case RISCVISD::SRL_VL:
8758   case RISCVISD::SHL_VL: {
8759     SDValue ShAmt = N->getOperand(1);
8760     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8761       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8762       SDLoc DL(N);
8763       SDValue VL = N->getOperand(3);
8764       EVT VT = N->getValueType(0);
8765       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8766                           ShAmt.getOperand(1), VL);
8767       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8768                          N->getOperand(2), N->getOperand(3));
8769     }
8770     break;
8771   }
8772   case ISD::SRA:
8773   case ISD::SRL:
8774   case ISD::SHL: {
8775     SDValue ShAmt = N->getOperand(1);
8776     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8777       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8778       SDLoc DL(N);
8779       EVT VT = N->getValueType(0);
8780       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8781                           ShAmt.getOperand(1),
8782                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8783       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8784     }
8785     break;
8786   }
8787   case RISCVISD::ADD_VL:
8788     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8789       return V;
8790     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8791   case RISCVISD::SUB_VL:
8792     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8793   case RISCVISD::VWADD_W_VL:
8794   case RISCVISD::VWADDU_W_VL:
8795   case RISCVISD::VWSUB_W_VL:
8796   case RISCVISD::VWSUBU_W_VL:
8797     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8798   case RISCVISD::MUL_VL:
8799     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8800       return V;
8801     // Mul is commutative.
8802     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8803   case ISD::STORE: {
8804     auto *Store = cast<StoreSDNode>(N);
8805     SDValue Val = Store->getValue();
8806     // Combine store of vmv.x.s to vse with VL of 1.
8807     // FIXME: Support FP.
8808     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8809       SDValue Src = Val.getOperand(0);
8810       EVT VecVT = Src.getValueType();
8811       EVT MemVT = Store->getMemoryVT();
8812       // The memory VT and the element type must match.
8813       if (VecVT.getVectorElementType() == MemVT) {
8814         SDLoc DL(N);
8815         MVT MaskVT = getMaskTypeFor(VecVT);
8816         return DAG.getStoreVP(
8817             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8818             DAG.getConstant(1, DL, MaskVT),
8819             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8820             Store->getMemOperand(), Store->getAddressingMode(),
8821             Store->isTruncatingStore(), /*IsCompress*/ false);
8822       }
8823     }
8824 
8825     break;
8826   }
8827   case ISD::SPLAT_VECTOR: {
8828     EVT VT = N->getValueType(0);
8829     // Only perform this combine on legal MVT types.
8830     if (!isTypeLegal(VT))
8831       break;
8832     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8833                                          DAG, Subtarget))
8834       return Gather;
8835     break;
8836   }
8837   case RISCVISD::VMV_V_X_VL: {
8838     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8839     // scalar input.
8840     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8841     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8842     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8843       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8844         return SDValue(N, 0);
8845 
8846     break;
8847   }
8848   case ISD::INTRINSIC_WO_CHAIN: {
8849     unsigned IntNo = N->getConstantOperandVal(0);
8850     switch (IntNo) {
8851       // By default we do not combine any intrinsic.
8852     default:
8853       return SDValue();
8854     case Intrinsic::riscv_vcpop:
8855     case Intrinsic::riscv_vcpop_mask:
8856     case Intrinsic::riscv_vfirst:
8857     case Intrinsic::riscv_vfirst_mask: {
8858       SDValue VL = N->getOperand(2);
8859       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8860           IntNo == Intrinsic::riscv_vfirst_mask)
8861         VL = N->getOperand(3);
8862       if (!isNullConstant(VL))
8863         return SDValue();
8864       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8865       SDLoc DL(N);
8866       EVT VT = N->getValueType(0);
8867       if (IntNo == Intrinsic::riscv_vfirst ||
8868           IntNo == Intrinsic::riscv_vfirst_mask)
8869         return DAG.getConstant(-1, DL, VT);
8870       return DAG.getConstant(0, DL, VT);
8871     }
8872     }
8873   }
8874   }
8875 
8876   return SDValue();
8877 }
8878 
8879 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8880     const SDNode *N, CombineLevel Level) const {
8881   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8882   // materialised in fewer instructions than `(OP _, c1)`:
8883   //
8884   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8885   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8886   SDValue N0 = N->getOperand(0);
8887   EVT Ty = N0.getValueType();
8888   if (Ty.isScalarInteger() &&
8889       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8890     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8891     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8892     if (C1 && C2) {
8893       const APInt &C1Int = C1->getAPIntValue();
8894       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8895 
8896       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8897       // and the combine should happen, to potentially allow further combines
8898       // later.
8899       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8900           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8901         return true;
8902 
8903       // We can materialise `c1` in an add immediate, so it's "free", and the
8904       // combine should be prevented.
8905       if (C1Int.getMinSignedBits() <= 64 &&
8906           isLegalAddImmediate(C1Int.getSExtValue()))
8907         return false;
8908 
8909       // Neither constant will fit into an immediate, so find materialisation
8910       // costs.
8911       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8912                                               Subtarget.getFeatureBits(),
8913                                               /*CompressionCost*/true);
8914       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8915           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8916           /*CompressionCost*/true);
8917 
8918       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8919       // combine should be prevented.
8920       if (C1Cost < ShiftedC1Cost)
8921         return false;
8922     }
8923   }
8924   return true;
8925 }
8926 
8927 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8928     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8929     TargetLoweringOpt &TLO) const {
8930   // Delay this optimization as late as possible.
8931   if (!TLO.LegalOps)
8932     return false;
8933 
8934   EVT VT = Op.getValueType();
8935   if (VT.isVector())
8936     return false;
8937 
8938   // Only handle AND for now.
8939   if (Op.getOpcode() != ISD::AND)
8940     return false;
8941 
8942   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8943   if (!C)
8944     return false;
8945 
8946   const APInt &Mask = C->getAPIntValue();
8947 
8948   // Clear all non-demanded bits initially.
8949   APInt ShrunkMask = Mask & DemandedBits;
8950 
8951   // Try to make a smaller immediate by setting undemanded bits.
8952 
8953   APInt ExpandedMask = Mask | ~DemandedBits;
8954 
8955   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8956     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8957   };
8958   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8959     if (NewMask == Mask)
8960       return true;
8961     SDLoc DL(Op);
8962     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8963     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8964     return TLO.CombineTo(Op, NewOp);
8965   };
8966 
8967   // If the shrunk mask fits in sign extended 12 bits, let the target
8968   // independent code apply it.
8969   if (ShrunkMask.isSignedIntN(12))
8970     return false;
8971 
8972   // Preserve (and X, 0xffff) when zext.h is supported.
8973   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8974     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8975     if (IsLegalMask(NewMask))
8976       return UseMask(NewMask);
8977   }
8978 
8979   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8980   if (VT == MVT::i64) {
8981     APInt NewMask = APInt(64, 0xffffffff);
8982     if (IsLegalMask(NewMask))
8983       return UseMask(NewMask);
8984   }
8985 
8986   // For the remaining optimizations, we need to be able to make a negative
8987   // number through a combination of mask and undemanded bits.
8988   if (!ExpandedMask.isNegative())
8989     return false;
8990 
8991   // What is the fewest number of bits we need to represent the negative number.
8992   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8993 
8994   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8995   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8996   APInt NewMask = ShrunkMask;
8997   if (MinSignedBits <= 12)
8998     NewMask.setBitsFrom(11);
8999   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9000     NewMask.setBitsFrom(31);
9001   else
9002     return false;
9003 
9004   // Check that our new mask is a subset of the demanded mask.
9005   assert(IsLegalMask(NewMask));
9006   return UseMask(NewMask);
9007 }
9008 
9009 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9010   static const uint64_t GREVMasks[] = {
9011       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9012       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9013 
9014   for (unsigned Stage = 0; Stage != 6; ++Stage) {
9015     unsigned Shift = 1 << Stage;
9016     if (ShAmt & Shift) {
9017       uint64_t Mask = GREVMasks[Stage];
9018       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9019       if (IsGORC)
9020         Res |= x;
9021       x = Res;
9022     }
9023   }
9024 
9025   return x;
9026 }
9027 
9028 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9029                                                         KnownBits &Known,
9030                                                         const APInt &DemandedElts,
9031                                                         const SelectionDAG &DAG,
9032                                                         unsigned Depth) const {
9033   unsigned BitWidth = Known.getBitWidth();
9034   unsigned Opc = Op.getOpcode();
9035   assert((Opc >= ISD::BUILTIN_OP_END ||
9036           Opc == ISD::INTRINSIC_WO_CHAIN ||
9037           Opc == ISD::INTRINSIC_W_CHAIN ||
9038           Opc == ISD::INTRINSIC_VOID) &&
9039          "Should use MaskedValueIsZero if you don't know whether Op"
9040          " is a target node!");
9041 
9042   Known.resetAll();
9043   switch (Opc) {
9044   default: break;
9045   case RISCVISD::SELECT_CC: {
9046     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9047     // If we don't know any bits, early out.
9048     if (Known.isUnknown())
9049       break;
9050     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9051 
9052     // Only known if known in both the LHS and RHS.
9053     Known = KnownBits::commonBits(Known, Known2);
9054     break;
9055   }
9056   case RISCVISD::REMUW: {
9057     KnownBits Known2;
9058     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9059     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9060     // We only care about the lower 32 bits.
9061     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9062     // Restore the original width by sign extending.
9063     Known = Known.sext(BitWidth);
9064     break;
9065   }
9066   case RISCVISD::DIVUW: {
9067     KnownBits Known2;
9068     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9069     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9070     // We only care about the lower 32 bits.
9071     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9072     // Restore the original width by sign extending.
9073     Known = Known.sext(BitWidth);
9074     break;
9075   }
9076   case RISCVISD::CTZW: {
9077     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9078     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9079     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9080     Known.Zero.setBitsFrom(LowBits);
9081     break;
9082   }
9083   case RISCVISD::CLZW: {
9084     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9085     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9086     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9087     Known.Zero.setBitsFrom(LowBits);
9088     break;
9089   }
9090   case RISCVISD::GREV:
9091   case RISCVISD::GORC: {
9092     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9093       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9094       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9095       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9096       // To compute zeros, we need to invert the value and invert it back after.
9097       Known.Zero =
9098           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9099       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9100     }
9101     break;
9102   }
9103   case RISCVISD::READ_VLENB: {
9104     // If we know the minimum VLen from Zvl extensions, we can use that to
9105     // determine the trailing zeros of VLENB.
9106     // FIXME: Limit to 128 bit vectors until we have more testing.
9107     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9108     if (MinVLenB > 0)
9109       Known.Zero.setLowBits(Log2_32(MinVLenB));
9110     // We assume VLENB is no more than 65536 / 8 bytes.
9111     Known.Zero.setBitsFrom(14);
9112     break;
9113   }
9114   case ISD::INTRINSIC_W_CHAIN:
9115   case ISD::INTRINSIC_WO_CHAIN: {
9116     unsigned IntNo =
9117         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9118     switch (IntNo) {
9119     default:
9120       // We can't do anything for most intrinsics.
9121       break;
9122     case Intrinsic::riscv_vsetvli:
9123     case Intrinsic::riscv_vsetvlimax:
9124     case Intrinsic::riscv_vsetvli_opt:
9125     case Intrinsic::riscv_vsetvlimax_opt:
9126       // Assume that VL output is positive and would fit in an int32_t.
9127       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9128       if (BitWidth >= 32)
9129         Known.Zero.setBitsFrom(31);
9130       break;
9131     }
9132     break;
9133   }
9134   }
9135 }
9136 
9137 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9138     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9139     unsigned Depth) const {
9140   switch (Op.getOpcode()) {
9141   default:
9142     break;
9143   case RISCVISD::SELECT_CC: {
9144     unsigned Tmp =
9145         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9146     if (Tmp == 1) return 1;  // Early out.
9147     unsigned Tmp2 =
9148         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9149     return std::min(Tmp, Tmp2);
9150   }
9151   case RISCVISD::SLLW:
9152   case RISCVISD::SRAW:
9153   case RISCVISD::SRLW:
9154   case RISCVISD::DIVW:
9155   case RISCVISD::DIVUW:
9156   case RISCVISD::REMUW:
9157   case RISCVISD::ROLW:
9158   case RISCVISD::RORW:
9159   case RISCVISD::GREVW:
9160   case RISCVISD::GORCW:
9161   case RISCVISD::FSLW:
9162   case RISCVISD::FSRW:
9163   case RISCVISD::SHFLW:
9164   case RISCVISD::UNSHFLW:
9165   case RISCVISD::BCOMPRESSW:
9166   case RISCVISD::BDECOMPRESSW:
9167   case RISCVISD::BFPW:
9168   case RISCVISD::FCVT_W_RV64:
9169   case RISCVISD::FCVT_WU_RV64:
9170   case RISCVISD::STRICT_FCVT_W_RV64:
9171   case RISCVISD::STRICT_FCVT_WU_RV64:
9172     // TODO: As the result is sign-extended, this is conservatively correct. A
9173     // more precise answer could be calculated for SRAW depending on known
9174     // bits in the shift amount.
9175     return 33;
9176   case RISCVISD::SHFL:
9177   case RISCVISD::UNSHFL: {
9178     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9179     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9180     // will stay within the upper 32 bits. If there were more than 32 sign bits
9181     // before there will be at least 33 sign bits after.
9182     if (Op.getValueType() == MVT::i64 &&
9183         isa<ConstantSDNode>(Op.getOperand(1)) &&
9184         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9185       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9186       if (Tmp > 32)
9187         return 33;
9188     }
9189     break;
9190   }
9191   case RISCVISD::VMV_X_S: {
9192     // The number of sign bits of the scalar result is computed by obtaining the
9193     // element type of the input vector operand, subtracting its width from the
9194     // XLEN, and then adding one (sign bit within the element type). If the
9195     // element type is wider than XLen, the least-significant XLEN bits are
9196     // taken.
9197     unsigned XLen = Subtarget.getXLen();
9198     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9199     if (EltBits <= XLen)
9200       return XLen - EltBits + 1;
9201     break;
9202   }
9203   }
9204 
9205   return 1;
9206 }
9207 
9208 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9209                                                   MachineBasicBlock *BB) {
9210   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9211 
9212   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9213   // Should the count have wrapped while it was being read, we need to try
9214   // again.
9215   // ...
9216   // read:
9217   // rdcycleh x3 # load high word of cycle
9218   // rdcycle  x2 # load low word of cycle
9219   // rdcycleh x4 # load high word of cycle
9220   // bne x3, x4, read # check if high word reads match, otherwise try again
9221   // ...
9222 
9223   MachineFunction &MF = *BB->getParent();
9224   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9225   MachineFunction::iterator It = ++BB->getIterator();
9226 
9227   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9228   MF.insert(It, LoopMBB);
9229 
9230   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9231   MF.insert(It, DoneMBB);
9232 
9233   // Transfer the remainder of BB and its successor edges to DoneMBB.
9234   DoneMBB->splice(DoneMBB->begin(), BB,
9235                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9236   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9237 
9238   BB->addSuccessor(LoopMBB);
9239 
9240   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9241   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9242   Register LoReg = MI.getOperand(0).getReg();
9243   Register HiReg = MI.getOperand(1).getReg();
9244   DebugLoc DL = MI.getDebugLoc();
9245 
9246   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9247   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9248       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9249       .addReg(RISCV::X0);
9250   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9251       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9252       .addReg(RISCV::X0);
9253   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9254       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9255       .addReg(RISCV::X0);
9256 
9257   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9258       .addReg(HiReg)
9259       .addReg(ReadAgainReg)
9260       .addMBB(LoopMBB);
9261 
9262   LoopMBB->addSuccessor(LoopMBB);
9263   LoopMBB->addSuccessor(DoneMBB);
9264 
9265   MI.eraseFromParent();
9266 
9267   return DoneMBB;
9268 }
9269 
9270 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9271                                              MachineBasicBlock *BB) {
9272   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9273 
9274   MachineFunction &MF = *BB->getParent();
9275   DebugLoc DL = MI.getDebugLoc();
9276   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9277   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9278   Register LoReg = MI.getOperand(0).getReg();
9279   Register HiReg = MI.getOperand(1).getReg();
9280   Register SrcReg = MI.getOperand(2).getReg();
9281   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9282   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9283 
9284   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9285                           RI);
9286   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9287   MachineMemOperand *MMOLo =
9288       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9289   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9290       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9291   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9292       .addFrameIndex(FI)
9293       .addImm(0)
9294       .addMemOperand(MMOLo);
9295   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9296       .addFrameIndex(FI)
9297       .addImm(4)
9298       .addMemOperand(MMOHi);
9299   MI.eraseFromParent(); // The pseudo instruction is gone now.
9300   return BB;
9301 }
9302 
9303 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9304                                                  MachineBasicBlock *BB) {
9305   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9306          "Unexpected instruction");
9307 
9308   MachineFunction &MF = *BB->getParent();
9309   DebugLoc DL = MI.getDebugLoc();
9310   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9311   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9312   Register DstReg = MI.getOperand(0).getReg();
9313   Register LoReg = MI.getOperand(1).getReg();
9314   Register HiReg = MI.getOperand(2).getReg();
9315   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9316   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9317 
9318   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9319   MachineMemOperand *MMOLo =
9320       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9321   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9322       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9323   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9324       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9325       .addFrameIndex(FI)
9326       .addImm(0)
9327       .addMemOperand(MMOLo);
9328   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9329       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9330       .addFrameIndex(FI)
9331       .addImm(4)
9332       .addMemOperand(MMOHi);
9333   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9334   MI.eraseFromParent(); // The pseudo instruction is gone now.
9335   return BB;
9336 }
9337 
9338 static bool isSelectPseudo(MachineInstr &MI) {
9339   switch (MI.getOpcode()) {
9340   default:
9341     return false;
9342   case RISCV::Select_GPR_Using_CC_GPR:
9343   case RISCV::Select_FPR16_Using_CC_GPR:
9344   case RISCV::Select_FPR32_Using_CC_GPR:
9345   case RISCV::Select_FPR64_Using_CC_GPR:
9346     return true;
9347   }
9348 }
9349 
9350 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9351                                         unsigned RelOpcode, unsigned EqOpcode,
9352                                         const RISCVSubtarget &Subtarget) {
9353   DebugLoc DL = MI.getDebugLoc();
9354   Register DstReg = MI.getOperand(0).getReg();
9355   Register Src1Reg = MI.getOperand(1).getReg();
9356   Register Src2Reg = MI.getOperand(2).getReg();
9357   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9358   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9359   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9360 
9361   // Save the current FFLAGS.
9362   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9363 
9364   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9365                  .addReg(Src1Reg)
9366                  .addReg(Src2Reg);
9367   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9368     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9369 
9370   // Restore the FFLAGS.
9371   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9372       .addReg(SavedFFlags, RegState::Kill);
9373 
9374   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9375   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9376                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9377                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9378   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9379     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9380 
9381   // Erase the pseudoinstruction.
9382   MI.eraseFromParent();
9383   return BB;
9384 }
9385 
9386 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9387                                            MachineBasicBlock *BB,
9388                                            const RISCVSubtarget &Subtarget) {
9389   // To "insert" Select_* instructions, we actually have to insert the triangle
9390   // control-flow pattern.  The incoming instructions know the destination vreg
9391   // to set, the condition code register to branch on, the true/false values to
9392   // select between, and the condcode to use to select the appropriate branch.
9393   //
9394   // We produce the following control flow:
9395   //     HeadMBB
9396   //     |  \
9397   //     |  IfFalseMBB
9398   //     | /
9399   //    TailMBB
9400   //
9401   // When we find a sequence of selects we attempt to optimize their emission
9402   // by sharing the control flow. Currently we only handle cases where we have
9403   // multiple selects with the exact same condition (same LHS, RHS and CC).
9404   // The selects may be interleaved with other instructions if the other
9405   // instructions meet some requirements we deem safe:
9406   // - They are debug instructions. Otherwise,
9407   // - They do not have side-effects, do not access memory and their inputs do
9408   //   not depend on the results of the select pseudo-instructions.
9409   // The TrueV/FalseV operands of the selects cannot depend on the result of
9410   // previous selects in the sequence.
9411   // These conditions could be further relaxed. See the X86 target for a
9412   // related approach and more information.
9413   Register LHS = MI.getOperand(1).getReg();
9414   Register RHS = MI.getOperand(2).getReg();
9415   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9416 
9417   SmallVector<MachineInstr *, 4> SelectDebugValues;
9418   SmallSet<Register, 4> SelectDests;
9419   SelectDests.insert(MI.getOperand(0).getReg());
9420 
9421   MachineInstr *LastSelectPseudo = &MI;
9422 
9423   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9424        SequenceMBBI != E; ++SequenceMBBI) {
9425     if (SequenceMBBI->isDebugInstr())
9426       continue;
9427     else if (isSelectPseudo(*SequenceMBBI)) {
9428       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9429           SequenceMBBI->getOperand(2).getReg() != RHS ||
9430           SequenceMBBI->getOperand(3).getImm() != CC ||
9431           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9432           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9433         break;
9434       LastSelectPseudo = &*SequenceMBBI;
9435       SequenceMBBI->collectDebugValues(SelectDebugValues);
9436       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9437     } else {
9438       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9439           SequenceMBBI->mayLoadOrStore())
9440         break;
9441       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9442             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9443           }))
9444         break;
9445     }
9446   }
9447 
9448   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9449   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9450   DebugLoc DL = MI.getDebugLoc();
9451   MachineFunction::iterator I = ++BB->getIterator();
9452 
9453   MachineBasicBlock *HeadMBB = BB;
9454   MachineFunction *F = BB->getParent();
9455   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9456   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9457 
9458   F->insert(I, IfFalseMBB);
9459   F->insert(I, TailMBB);
9460 
9461   // Transfer debug instructions associated with the selects to TailMBB.
9462   for (MachineInstr *DebugInstr : SelectDebugValues) {
9463     TailMBB->push_back(DebugInstr->removeFromParent());
9464   }
9465 
9466   // Move all instructions after the sequence to TailMBB.
9467   TailMBB->splice(TailMBB->end(), HeadMBB,
9468                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9469   // Update machine-CFG edges by transferring all successors of the current
9470   // block to the new block which will contain the Phi nodes for the selects.
9471   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9472   // Set the successors for HeadMBB.
9473   HeadMBB->addSuccessor(IfFalseMBB);
9474   HeadMBB->addSuccessor(TailMBB);
9475 
9476   // Insert appropriate branch.
9477   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9478     .addReg(LHS)
9479     .addReg(RHS)
9480     .addMBB(TailMBB);
9481 
9482   // IfFalseMBB just falls through to TailMBB.
9483   IfFalseMBB->addSuccessor(TailMBB);
9484 
9485   // Create PHIs for all of the select pseudo-instructions.
9486   auto SelectMBBI = MI.getIterator();
9487   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9488   auto InsertionPoint = TailMBB->begin();
9489   while (SelectMBBI != SelectEnd) {
9490     auto Next = std::next(SelectMBBI);
9491     if (isSelectPseudo(*SelectMBBI)) {
9492       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9493       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9494               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9495           .addReg(SelectMBBI->getOperand(4).getReg())
9496           .addMBB(HeadMBB)
9497           .addReg(SelectMBBI->getOperand(5).getReg())
9498           .addMBB(IfFalseMBB);
9499       SelectMBBI->eraseFromParent();
9500     }
9501     SelectMBBI = Next;
9502   }
9503 
9504   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9505   return TailMBB;
9506 }
9507 
9508 MachineBasicBlock *
9509 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9510                                                  MachineBasicBlock *BB) const {
9511   switch (MI.getOpcode()) {
9512   default:
9513     llvm_unreachable("Unexpected instr type to insert");
9514   case RISCV::ReadCycleWide:
9515     assert(!Subtarget.is64Bit() &&
9516            "ReadCycleWrite is only to be used on riscv32");
9517     return emitReadCycleWidePseudo(MI, BB);
9518   case RISCV::Select_GPR_Using_CC_GPR:
9519   case RISCV::Select_FPR16_Using_CC_GPR:
9520   case RISCV::Select_FPR32_Using_CC_GPR:
9521   case RISCV::Select_FPR64_Using_CC_GPR:
9522     return emitSelectPseudo(MI, BB, Subtarget);
9523   case RISCV::BuildPairF64Pseudo:
9524     return emitBuildPairF64Pseudo(MI, BB);
9525   case RISCV::SplitF64Pseudo:
9526     return emitSplitF64Pseudo(MI, BB);
9527   case RISCV::PseudoQuietFLE_H:
9528     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9529   case RISCV::PseudoQuietFLT_H:
9530     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9531   case RISCV::PseudoQuietFLE_S:
9532     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9533   case RISCV::PseudoQuietFLT_S:
9534     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9535   case RISCV::PseudoQuietFLE_D:
9536     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9537   case RISCV::PseudoQuietFLT_D:
9538     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9539   }
9540 }
9541 
9542 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9543                                                         SDNode *Node) const {
9544   // Add FRM dependency to any instructions with dynamic rounding mode.
9545   unsigned Opc = MI.getOpcode();
9546   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9547   if (Idx < 0)
9548     return;
9549   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9550     return;
9551   // If the instruction already reads FRM, don't add another read.
9552   if (MI.readsRegister(RISCV::FRM))
9553     return;
9554   MI.addOperand(
9555       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9556 }
9557 
9558 // Calling Convention Implementation.
9559 // The expectations for frontend ABI lowering vary from target to target.
9560 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9561 // details, but this is a longer term goal. For now, we simply try to keep the
9562 // role of the frontend as simple and well-defined as possible. The rules can
9563 // be summarised as:
9564 // * Never split up large scalar arguments. We handle them here.
9565 // * If a hardfloat calling convention is being used, and the struct may be
9566 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9567 // available, then pass as two separate arguments. If either the GPRs or FPRs
9568 // are exhausted, then pass according to the rule below.
9569 // * If a struct could never be passed in registers or directly in a stack
9570 // slot (as it is larger than 2*XLEN and the floating point rules don't
9571 // apply), then pass it using a pointer with the byval attribute.
9572 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9573 // word-sized array or a 2*XLEN scalar (depending on alignment).
9574 // * The frontend can determine whether a struct is returned by reference or
9575 // not based on its size and fields. If it will be returned by reference, the
9576 // frontend must modify the prototype so a pointer with the sret annotation is
9577 // passed as the first argument. This is not necessary for large scalar
9578 // returns.
9579 // * Struct return values and varargs should be coerced to structs containing
9580 // register-size fields in the same situations they would be for fixed
9581 // arguments.
9582 
9583 static const MCPhysReg ArgGPRs[] = {
9584   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9585   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9586 };
9587 static const MCPhysReg ArgFPR16s[] = {
9588   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9589   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9590 };
9591 static const MCPhysReg ArgFPR32s[] = {
9592   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9593   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9594 };
9595 static const MCPhysReg ArgFPR64s[] = {
9596   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9597   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9598 };
9599 // This is an interim calling convention and it may be changed in the future.
9600 static const MCPhysReg ArgVRs[] = {
9601     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9602     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9603     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9604 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9605                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9606                                      RISCV::V20M2, RISCV::V22M2};
9607 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9608                                      RISCV::V20M4};
9609 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9610 
9611 // Pass a 2*XLEN argument that has been split into two XLEN values through
9612 // registers or the stack as necessary.
9613 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9614                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9615                                 MVT ValVT2, MVT LocVT2,
9616                                 ISD::ArgFlagsTy ArgFlags2) {
9617   unsigned XLenInBytes = XLen / 8;
9618   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9619     // At least one half can be passed via register.
9620     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9621                                      VA1.getLocVT(), CCValAssign::Full));
9622   } else {
9623     // Both halves must be passed on the stack, with proper alignment.
9624     Align StackAlign =
9625         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9626     State.addLoc(
9627         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9628                             State.AllocateStack(XLenInBytes, StackAlign),
9629                             VA1.getLocVT(), CCValAssign::Full));
9630     State.addLoc(CCValAssign::getMem(
9631         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9632         LocVT2, CCValAssign::Full));
9633     return false;
9634   }
9635 
9636   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9637     // The second half can also be passed via register.
9638     State.addLoc(
9639         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9640   } else {
9641     // The second half is passed via the stack, without additional alignment.
9642     State.addLoc(CCValAssign::getMem(
9643         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9644         LocVT2, CCValAssign::Full));
9645   }
9646 
9647   return false;
9648 }
9649 
9650 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9651                                Optional<unsigned> FirstMaskArgument,
9652                                CCState &State, const RISCVTargetLowering &TLI) {
9653   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9654   if (RC == &RISCV::VRRegClass) {
9655     // Assign the first mask argument to V0.
9656     // This is an interim calling convention and it may be changed in the
9657     // future.
9658     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9659       return State.AllocateReg(RISCV::V0);
9660     return State.AllocateReg(ArgVRs);
9661   }
9662   if (RC == &RISCV::VRM2RegClass)
9663     return State.AllocateReg(ArgVRM2s);
9664   if (RC == &RISCV::VRM4RegClass)
9665     return State.AllocateReg(ArgVRM4s);
9666   if (RC == &RISCV::VRM8RegClass)
9667     return State.AllocateReg(ArgVRM8s);
9668   llvm_unreachable("Unhandled register class for ValueType");
9669 }
9670 
9671 // Implements the RISC-V calling convention. Returns true upon failure.
9672 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9673                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9674                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9675                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9676                      Optional<unsigned> FirstMaskArgument) {
9677   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9678   assert(XLen == 32 || XLen == 64);
9679   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9680 
9681   // Any return value split in to more than two values can't be returned
9682   // directly. Vectors are returned via the available vector registers.
9683   if (!LocVT.isVector() && IsRet && ValNo > 1)
9684     return true;
9685 
9686   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9687   // variadic argument, or if no F16/F32 argument registers are available.
9688   bool UseGPRForF16_F32 = true;
9689   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9690   // variadic argument, or if no F64 argument registers are available.
9691   bool UseGPRForF64 = true;
9692 
9693   switch (ABI) {
9694   default:
9695     llvm_unreachable("Unexpected ABI");
9696   case RISCVABI::ABI_ILP32:
9697   case RISCVABI::ABI_LP64:
9698     break;
9699   case RISCVABI::ABI_ILP32F:
9700   case RISCVABI::ABI_LP64F:
9701     UseGPRForF16_F32 = !IsFixed;
9702     break;
9703   case RISCVABI::ABI_ILP32D:
9704   case RISCVABI::ABI_LP64D:
9705     UseGPRForF16_F32 = !IsFixed;
9706     UseGPRForF64 = !IsFixed;
9707     break;
9708   }
9709 
9710   // FPR16, FPR32, and FPR64 alias each other.
9711   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9712     UseGPRForF16_F32 = true;
9713     UseGPRForF64 = true;
9714   }
9715 
9716   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9717   // similar local variables rather than directly checking against the target
9718   // ABI.
9719 
9720   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9721     LocVT = XLenVT;
9722     LocInfo = CCValAssign::BCvt;
9723   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9724     LocVT = MVT::i64;
9725     LocInfo = CCValAssign::BCvt;
9726   }
9727 
9728   // If this is a variadic argument, the RISC-V calling convention requires
9729   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9730   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9731   // be used regardless of whether the original argument was split during
9732   // legalisation or not. The argument will not be passed by registers if the
9733   // original type is larger than 2*XLEN, so the register alignment rule does
9734   // not apply.
9735   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9736   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9737       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9738     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9739     // Skip 'odd' register if necessary.
9740     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9741       State.AllocateReg(ArgGPRs);
9742   }
9743 
9744   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9745   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9746       State.getPendingArgFlags();
9747 
9748   assert(PendingLocs.size() == PendingArgFlags.size() &&
9749          "PendingLocs and PendingArgFlags out of sync");
9750 
9751   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9752   // registers are exhausted.
9753   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9754     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9755            "Can't lower f64 if it is split");
9756     // Depending on available argument GPRS, f64 may be passed in a pair of
9757     // GPRs, split between a GPR and the stack, or passed completely on the
9758     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9759     // cases.
9760     Register Reg = State.AllocateReg(ArgGPRs);
9761     LocVT = MVT::i32;
9762     if (!Reg) {
9763       unsigned StackOffset = State.AllocateStack(8, Align(8));
9764       State.addLoc(
9765           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9766       return false;
9767     }
9768     if (!State.AllocateReg(ArgGPRs))
9769       State.AllocateStack(4, Align(4));
9770     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9771     return false;
9772   }
9773 
9774   // Fixed-length vectors are located in the corresponding scalable-vector
9775   // container types.
9776   if (ValVT.isFixedLengthVector())
9777     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9778 
9779   // Split arguments might be passed indirectly, so keep track of the pending
9780   // values. Split vectors are passed via a mix of registers and indirectly, so
9781   // treat them as we would any other argument.
9782   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9783     LocVT = XLenVT;
9784     LocInfo = CCValAssign::Indirect;
9785     PendingLocs.push_back(
9786         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9787     PendingArgFlags.push_back(ArgFlags);
9788     if (!ArgFlags.isSplitEnd()) {
9789       return false;
9790     }
9791   }
9792 
9793   // If the split argument only had two elements, it should be passed directly
9794   // in registers or on the stack.
9795   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9796       PendingLocs.size() <= 2) {
9797     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9798     // Apply the normal calling convention rules to the first half of the
9799     // split argument.
9800     CCValAssign VA = PendingLocs[0];
9801     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9802     PendingLocs.clear();
9803     PendingArgFlags.clear();
9804     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9805                                ArgFlags);
9806   }
9807 
9808   // Allocate to a register if possible, or else a stack slot.
9809   Register Reg;
9810   unsigned StoreSizeBytes = XLen / 8;
9811   Align StackAlign = Align(XLen / 8);
9812 
9813   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9814     Reg = State.AllocateReg(ArgFPR16s);
9815   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9816     Reg = State.AllocateReg(ArgFPR32s);
9817   else if (ValVT == MVT::f64 && !UseGPRForF64)
9818     Reg = State.AllocateReg(ArgFPR64s);
9819   else if (ValVT.isVector()) {
9820     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9821     if (!Reg) {
9822       // For return values, the vector must be passed fully via registers or
9823       // via the stack.
9824       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9825       // but we're using all of them.
9826       if (IsRet)
9827         return true;
9828       // Try using a GPR to pass the address
9829       if ((Reg = State.AllocateReg(ArgGPRs))) {
9830         LocVT = XLenVT;
9831         LocInfo = CCValAssign::Indirect;
9832       } else if (ValVT.isScalableVector()) {
9833         LocVT = XLenVT;
9834         LocInfo = CCValAssign::Indirect;
9835       } else {
9836         // Pass fixed-length vectors on the stack.
9837         LocVT = ValVT;
9838         StoreSizeBytes = ValVT.getStoreSize();
9839         // Align vectors to their element sizes, being careful for vXi1
9840         // vectors.
9841         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9842       }
9843     }
9844   } else {
9845     Reg = State.AllocateReg(ArgGPRs);
9846   }
9847 
9848   unsigned StackOffset =
9849       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9850 
9851   // If we reach this point and PendingLocs is non-empty, we must be at the
9852   // end of a split argument that must be passed indirectly.
9853   if (!PendingLocs.empty()) {
9854     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9855     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9856 
9857     for (auto &It : PendingLocs) {
9858       if (Reg)
9859         It.convertToReg(Reg);
9860       else
9861         It.convertToMem(StackOffset);
9862       State.addLoc(It);
9863     }
9864     PendingLocs.clear();
9865     PendingArgFlags.clear();
9866     return false;
9867   }
9868 
9869   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9870           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9871          "Expected an XLenVT or vector types at this stage");
9872 
9873   if (Reg) {
9874     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9875     return false;
9876   }
9877 
9878   // When a floating-point value is passed on the stack, no bit-conversion is
9879   // needed.
9880   if (ValVT.isFloatingPoint()) {
9881     LocVT = ValVT;
9882     LocInfo = CCValAssign::Full;
9883   }
9884   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9885   return false;
9886 }
9887 
9888 template <typename ArgTy>
9889 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9890   for (const auto &ArgIdx : enumerate(Args)) {
9891     MVT ArgVT = ArgIdx.value().VT;
9892     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9893       return ArgIdx.index();
9894   }
9895   return None;
9896 }
9897 
9898 void RISCVTargetLowering::analyzeInputArgs(
9899     MachineFunction &MF, CCState &CCInfo,
9900     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9901     RISCVCCAssignFn Fn) const {
9902   unsigned NumArgs = Ins.size();
9903   FunctionType *FType = MF.getFunction().getFunctionType();
9904 
9905   Optional<unsigned> FirstMaskArgument;
9906   if (Subtarget.hasVInstructions())
9907     FirstMaskArgument = preAssignMask(Ins);
9908 
9909   for (unsigned i = 0; i != NumArgs; ++i) {
9910     MVT ArgVT = Ins[i].VT;
9911     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9912 
9913     Type *ArgTy = nullptr;
9914     if (IsRet)
9915       ArgTy = FType->getReturnType();
9916     else if (Ins[i].isOrigArg())
9917       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9918 
9919     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9920     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9921            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9922            FirstMaskArgument)) {
9923       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9924                         << EVT(ArgVT).getEVTString() << '\n');
9925       llvm_unreachable(nullptr);
9926     }
9927   }
9928 }
9929 
9930 void RISCVTargetLowering::analyzeOutputArgs(
9931     MachineFunction &MF, CCState &CCInfo,
9932     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9933     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9934   unsigned NumArgs = Outs.size();
9935 
9936   Optional<unsigned> FirstMaskArgument;
9937   if (Subtarget.hasVInstructions())
9938     FirstMaskArgument = preAssignMask(Outs);
9939 
9940   for (unsigned i = 0; i != NumArgs; i++) {
9941     MVT ArgVT = Outs[i].VT;
9942     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9943     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9944 
9945     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9946     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9947            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9948            FirstMaskArgument)) {
9949       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9950                         << EVT(ArgVT).getEVTString() << "\n");
9951       llvm_unreachable(nullptr);
9952     }
9953   }
9954 }
9955 
9956 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9957 // values.
9958 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9959                                    const CCValAssign &VA, const SDLoc &DL,
9960                                    const RISCVSubtarget &Subtarget) {
9961   switch (VA.getLocInfo()) {
9962   default:
9963     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9964   case CCValAssign::Full:
9965     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9966       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9967     break;
9968   case CCValAssign::BCvt:
9969     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9970       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9971     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9972       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9973     else
9974       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9975     break;
9976   }
9977   return Val;
9978 }
9979 
9980 // The caller is responsible for loading the full value if the argument is
9981 // passed with CCValAssign::Indirect.
9982 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9983                                 const CCValAssign &VA, const SDLoc &DL,
9984                                 const RISCVTargetLowering &TLI) {
9985   MachineFunction &MF = DAG.getMachineFunction();
9986   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9987   EVT LocVT = VA.getLocVT();
9988   SDValue Val;
9989   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9990   Register VReg = RegInfo.createVirtualRegister(RC);
9991   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9992   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9993 
9994   if (VA.getLocInfo() == CCValAssign::Indirect)
9995     return Val;
9996 
9997   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9998 }
9999 
10000 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10001                                    const CCValAssign &VA, const SDLoc &DL,
10002                                    const RISCVSubtarget &Subtarget) {
10003   EVT LocVT = VA.getLocVT();
10004 
10005   switch (VA.getLocInfo()) {
10006   default:
10007     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10008   case CCValAssign::Full:
10009     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10010       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10011     break;
10012   case CCValAssign::BCvt:
10013     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10014       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10015     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10016       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10017     else
10018       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10019     break;
10020   }
10021   return Val;
10022 }
10023 
10024 // The caller is responsible for loading the full value if the argument is
10025 // passed with CCValAssign::Indirect.
10026 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10027                                 const CCValAssign &VA, const SDLoc &DL) {
10028   MachineFunction &MF = DAG.getMachineFunction();
10029   MachineFrameInfo &MFI = MF.getFrameInfo();
10030   EVT LocVT = VA.getLocVT();
10031   EVT ValVT = VA.getValVT();
10032   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10033   if (ValVT.isScalableVector()) {
10034     // When the value is a scalable vector, we save the pointer which points to
10035     // the scalable vector value in the stack. The ValVT will be the pointer
10036     // type, instead of the scalable vector type.
10037     ValVT = LocVT;
10038   }
10039   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10040                                  /*IsImmutable=*/true);
10041   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10042   SDValue Val;
10043 
10044   ISD::LoadExtType ExtType;
10045   switch (VA.getLocInfo()) {
10046   default:
10047     llvm_unreachable("Unexpected CCValAssign::LocInfo");
10048   case CCValAssign::Full:
10049   case CCValAssign::Indirect:
10050   case CCValAssign::BCvt:
10051     ExtType = ISD::NON_EXTLOAD;
10052     break;
10053   }
10054   Val = DAG.getExtLoad(
10055       ExtType, DL, LocVT, Chain, FIN,
10056       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10057   return Val;
10058 }
10059 
10060 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10061                                        const CCValAssign &VA, const SDLoc &DL) {
10062   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10063          "Unexpected VA");
10064   MachineFunction &MF = DAG.getMachineFunction();
10065   MachineFrameInfo &MFI = MF.getFrameInfo();
10066   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10067 
10068   if (VA.isMemLoc()) {
10069     // f64 is passed on the stack.
10070     int FI =
10071         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10072     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10073     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10074                        MachinePointerInfo::getFixedStack(MF, FI));
10075   }
10076 
10077   assert(VA.isRegLoc() && "Expected register VA assignment");
10078 
10079   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10080   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10081   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10082   SDValue Hi;
10083   if (VA.getLocReg() == RISCV::X17) {
10084     // Second half of f64 is passed on the stack.
10085     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10086     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10087     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10088                      MachinePointerInfo::getFixedStack(MF, FI));
10089   } else {
10090     // Second half of f64 is passed in another GPR.
10091     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10092     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10093     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10094   }
10095   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10096 }
10097 
10098 // FastCC has less than 1% performance improvement for some particular
10099 // benchmark. But theoretically, it may has benenfit for some cases.
10100 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10101                             unsigned ValNo, MVT ValVT, MVT LocVT,
10102                             CCValAssign::LocInfo LocInfo,
10103                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10104                             bool IsFixed, bool IsRet, Type *OrigTy,
10105                             const RISCVTargetLowering &TLI,
10106                             Optional<unsigned> FirstMaskArgument) {
10107 
10108   // X5 and X6 might be used for save-restore libcall.
10109   static const MCPhysReg GPRList[] = {
10110       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10111       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10112       RISCV::X29, RISCV::X30, RISCV::X31};
10113 
10114   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10115     if (unsigned Reg = State.AllocateReg(GPRList)) {
10116       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10117       return false;
10118     }
10119   }
10120 
10121   if (LocVT == MVT::f16) {
10122     static const MCPhysReg FPR16List[] = {
10123         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10124         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10125         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10126         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10127     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10128       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10129       return false;
10130     }
10131   }
10132 
10133   if (LocVT == MVT::f32) {
10134     static const MCPhysReg FPR32List[] = {
10135         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10136         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10137         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10138         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10139     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10140       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10141       return false;
10142     }
10143   }
10144 
10145   if (LocVT == MVT::f64) {
10146     static const MCPhysReg FPR64List[] = {
10147         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10148         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10149         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10150         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10151     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10152       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10153       return false;
10154     }
10155   }
10156 
10157   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10158     unsigned Offset4 = State.AllocateStack(4, Align(4));
10159     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10160     return false;
10161   }
10162 
10163   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10164     unsigned Offset5 = State.AllocateStack(8, Align(8));
10165     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10166     return false;
10167   }
10168 
10169   if (LocVT.isVector()) {
10170     if (unsigned Reg =
10171             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10172       // Fixed-length vectors are located in the corresponding scalable-vector
10173       // container types.
10174       if (ValVT.isFixedLengthVector())
10175         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10176       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10177     } else {
10178       // Try and pass the address via a "fast" GPR.
10179       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10180         LocInfo = CCValAssign::Indirect;
10181         LocVT = TLI.getSubtarget().getXLenVT();
10182         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10183       } else if (ValVT.isFixedLengthVector()) {
10184         auto StackAlign =
10185             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10186         unsigned StackOffset =
10187             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10188         State.addLoc(
10189             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10190       } else {
10191         // Can't pass scalable vectors on the stack.
10192         return true;
10193       }
10194     }
10195 
10196     return false;
10197   }
10198 
10199   return true; // CC didn't match.
10200 }
10201 
10202 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10203                          CCValAssign::LocInfo LocInfo,
10204                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10205 
10206   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10207     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10208     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10209     static const MCPhysReg GPRList[] = {
10210         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10211         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10212     if (unsigned Reg = State.AllocateReg(GPRList)) {
10213       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10214       return false;
10215     }
10216   }
10217 
10218   if (LocVT == MVT::f32) {
10219     // Pass in STG registers: F1, ..., F6
10220     //                        fs0 ... fs5
10221     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10222                                           RISCV::F18_F, RISCV::F19_F,
10223                                           RISCV::F20_F, RISCV::F21_F};
10224     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10225       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10226       return false;
10227     }
10228   }
10229 
10230   if (LocVT == MVT::f64) {
10231     // Pass in STG registers: D1, ..., D6
10232     //                        fs6 ... fs11
10233     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10234                                           RISCV::F24_D, RISCV::F25_D,
10235                                           RISCV::F26_D, RISCV::F27_D};
10236     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10237       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10238       return false;
10239     }
10240   }
10241 
10242   report_fatal_error("No registers left in GHC calling convention");
10243   return true;
10244 }
10245 
10246 // Transform physical registers into virtual registers.
10247 SDValue RISCVTargetLowering::LowerFormalArguments(
10248     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10249     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10250     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10251 
10252   MachineFunction &MF = DAG.getMachineFunction();
10253 
10254   switch (CallConv) {
10255   default:
10256     report_fatal_error("Unsupported calling convention");
10257   case CallingConv::C:
10258   case CallingConv::Fast:
10259     break;
10260   case CallingConv::GHC:
10261     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10262         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10263       report_fatal_error(
10264         "GHC calling convention requires the F and D instruction set extensions");
10265   }
10266 
10267   const Function &Func = MF.getFunction();
10268   if (Func.hasFnAttribute("interrupt")) {
10269     if (!Func.arg_empty())
10270       report_fatal_error(
10271         "Functions with the interrupt attribute cannot have arguments!");
10272 
10273     StringRef Kind =
10274       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10275 
10276     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10277       report_fatal_error(
10278         "Function interrupt attribute argument not supported!");
10279   }
10280 
10281   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10282   MVT XLenVT = Subtarget.getXLenVT();
10283   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10284   // Used with vargs to acumulate store chains.
10285   std::vector<SDValue> OutChains;
10286 
10287   // Assign locations to all of the incoming arguments.
10288   SmallVector<CCValAssign, 16> ArgLocs;
10289   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10290 
10291   if (CallConv == CallingConv::GHC)
10292     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10293   else
10294     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10295                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10296                                                    : CC_RISCV);
10297 
10298   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10299     CCValAssign &VA = ArgLocs[i];
10300     SDValue ArgValue;
10301     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10302     // case.
10303     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10304       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10305     else if (VA.isRegLoc())
10306       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10307     else
10308       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10309 
10310     if (VA.getLocInfo() == CCValAssign::Indirect) {
10311       // If the original argument was split and passed by reference (e.g. i128
10312       // on RV32), we need to load all parts of it here (using the same
10313       // address). Vectors may be partly split to registers and partly to the
10314       // stack, in which case the base address is partly offset and subsequent
10315       // stores are relative to that.
10316       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10317                                    MachinePointerInfo()));
10318       unsigned ArgIndex = Ins[i].OrigArgIndex;
10319       unsigned ArgPartOffset = Ins[i].PartOffset;
10320       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10321       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10322         CCValAssign &PartVA = ArgLocs[i + 1];
10323         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10324         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10325         if (PartVA.getValVT().isScalableVector())
10326           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10327         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10328         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10329                                      MachinePointerInfo()));
10330         ++i;
10331       }
10332       continue;
10333     }
10334     InVals.push_back(ArgValue);
10335   }
10336 
10337   if (IsVarArg) {
10338     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10339     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10340     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10341     MachineFrameInfo &MFI = MF.getFrameInfo();
10342     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10343     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10344 
10345     // Offset of the first variable argument from stack pointer, and size of
10346     // the vararg save area. For now, the varargs save area is either zero or
10347     // large enough to hold a0-a7.
10348     int VaArgOffset, VarArgsSaveSize;
10349 
10350     // If all registers are allocated, then all varargs must be passed on the
10351     // stack and we don't need to save any argregs.
10352     if (ArgRegs.size() == Idx) {
10353       VaArgOffset = CCInfo.getNextStackOffset();
10354       VarArgsSaveSize = 0;
10355     } else {
10356       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10357       VaArgOffset = -VarArgsSaveSize;
10358     }
10359 
10360     // Record the frame index of the first variable argument
10361     // which is a value necessary to VASTART.
10362     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10363     RVFI->setVarArgsFrameIndex(FI);
10364 
10365     // If saving an odd number of registers then create an extra stack slot to
10366     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10367     // offsets to even-numbered registered remain 2*XLEN-aligned.
10368     if (Idx % 2) {
10369       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10370       VarArgsSaveSize += XLenInBytes;
10371     }
10372 
10373     // Copy the integer registers that may have been used for passing varargs
10374     // to the vararg save area.
10375     for (unsigned I = Idx; I < ArgRegs.size();
10376          ++I, VaArgOffset += XLenInBytes) {
10377       const Register Reg = RegInfo.createVirtualRegister(RC);
10378       RegInfo.addLiveIn(ArgRegs[I], Reg);
10379       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10380       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10381       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10382       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10383                                    MachinePointerInfo::getFixedStack(MF, FI));
10384       cast<StoreSDNode>(Store.getNode())
10385           ->getMemOperand()
10386           ->setValue((Value *)nullptr);
10387       OutChains.push_back(Store);
10388     }
10389     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10390   }
10391 
10392   // All stores are grouped in one node to allow the matching between
10393   // the size of Ins and InVals. This only happens for vararg functions.
10394   if (!OutChains.empty()) {
10395     OutChains.push_back(Chain);
10396     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10397   }
10398 
10399   return Chain;
10400 }
10401 
10402 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10403 /// for tail call optimization.
10404 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10405 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10406     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10407     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10408 
10409   auto &Callee = CLI.Callee;
10410   auto CalleeCC = CLI.CallConv;
10411   auto &Outs = CLI.Outs;
10412   auto &Caller = MF.getFunction();
10413   auto CallerCC = Caller.getCallingConv();
10414 
10415   // Exception-handling functions need a special set of instructions to
10416   // indicate a return to the hardware. Tail-calling another function would
10417   // probably break this.
10418   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10419   // should be expanded as new function attributes are introduced.
10420   if (Caller.hasFnAttribute("interrupt"))
10421     return false;
10422 
10423   // Do not tail call opt if the stack is used to pass parameters.
10424   if (CCInfo.getNextStackOffset() != 0)
10425     return false;
10426 
10427   // Do not tail call opt if any parameters need to be passed indirectly.
10428   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10429   // passed indirectly. So the address of the value will be passed in a
10430   // register, or if not available, then the address is put on the stack. In
10431   // order to pass indirectly, space on the stack often needs to be allocated
10432   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10433   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10434   // are passed CCValAssign::Indirect.
10435   for (auto &VA : ArgLocs)
10436     if (VA.getLocInfo() == CCValAssign::Indirect)
10437       return false;
10438 
10439   // Do not tail call opt if either caller or callee uses struct return
10440   // semantics.
10441   auto IsCallerStructRet = Caller.hasStructRetAttr();
10442   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10443   if (IsCallerStructRet || IsCalleeStructRet)
10444     return false;
10445 
10446   // Externally-defined functions with weak linkage should not be
10447   // tail-called. The behaviour of branch instructions in this situation (as
10448   // used for tail calls) is implementation-defined, so we cannot rely on the
10449   // linker replacing the tail call with a return.
10450   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10451     const GlobalValue *GV = G->getGlobal();
10452     if (GV->hasExternalWeakLinkage())
10453       return false;
10454   }
10455 
10456   // The callee has to preserve all registers the caller needs to preserve.
10457   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10458   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10459   if (CalleeCC != CallerCC) {
10460     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10461     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10462       return false;
10463   }
10464 
10465   // Byval parameters hand the function a pointer directly into the stack area
10466   // we want to reuse during a tail call. Working around this *is* possible
10467   // but less efficient and uglier in LowerCall.
10468   for (auto &Arg : Outs)
10469     if (Arg.Flags.isByVal())
10470       return false;
10471 
10472   return true;
10473 }
10474 
10475 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10476   return DAG.getDataLayout().getPrefTypeAlign(
10477       VT.getTypeForEVT(*DAG.getContext()));
10478 }
10479 
10480 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10481 // and output parameter nodes.
10482 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10483                                        SmallVectorImpl<SDValue> &InVals) const {
10484   SelectionDAG &DAG = CLI.DAG;
10485   SDLoc &DL = CLI.DL;
10486   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10487   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10488   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10489   SDValue Chain = CLI.Chain;
10490   SDValue Callee = CLI.Callee;
10491   bool &IsTailCall = CLI.IsTailCall;
10492   CallingConv::ID CallConv = CLI.CallConv;
10493   bool IsVarArg = CLI.IsVarArg;
10494   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10495   MVT XLenVT = Subtarget.getXLenVT();
10496 
10497   MachineFunction &MF = DAG.getMachineFunction();
10498 
10499   // Analyze the operands of the call, assigning locations to each operand.
10500   SmallVector<CCValAssign, 16> ArgLocs;
10501   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10502 
10503   if (CallConv == CallingConv::GHC)
10504     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10505   else
10506     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10507                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10508                                                     : CC_RISCV);
10509 
10510   // Check if it's really possible to do a tail call.
10511   if (IsTailCall)
10512     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10513 
10514   if (IsTailCall)
10515     ++NumTailCalls;
10516   else if (CLI.CB && CLI.CB->isMustTailCall())
10517     report_fatal_error("failed to perform tail call elimination on a call "
10518                        "site marked musttail");
10519 
10520   // Get a count of how many bytes are to be pushed on the stack.
10521   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10522 
10523   // Create local copies for byval args
10524   SmallVector<SDValue, 8> ByValArgs;
10525   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10526     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10527     if (!Flags.isByVal())
10528       continue;
10529 
10530     SDValue Arg = OutVals[i];
10531     unsigned Size = Flags.getByValSize();
10532     Align Alignment = Flags.getNonZeroByValAlign();
10533 
10534     int FI =
10535         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10536     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10537     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10538 
10539     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10540                           /*IsVolatile=*/false,
10541                           /*AlwaysInline=*/false, IsTailCall,
10542                           MachinePointerInfo(), MachinePointerInfo());
10543     ByValArgs.push_back(FIPtr);
10544   }
10545 
10546   if (!IsTailCall)
10547     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10548 
10549   // Copy argument values to their designated locations.
10550   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10551   SmallVector<SDValue, 8> MemOpChains;
10552   SDValue StackPtr;
10553   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10554     CCValAssign &VA = ArgLocs[i];
10555     SDValue ArgValue = OutVals[i];
10556     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10557 
10558     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10559     bool IsF64OnRV32DSoftABI =
10560         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10561     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10562       SDValue SplitF64 = DAG.getNode(
10563           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10564       SDValue Lo = SplitF64.getValue(0);
10565       SDValue Hi = SplitF64.getValue(1);
10566 
10567       Register RegLo = VA.getLocReg();
10568       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10569 
10570       if (RegLo == RISCV::X17) {
10571         // Second half of f64 is passed on the stack.
10572         // Work out the address of the stack slot.
10573         if (!StackPtr.getNode())
10574           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10575         // Emit the store.
10576         MemOpChains.push_back(
10577             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10578       } else {
10579         // Second half of f64 is passed in another GPR.
10580         assert(RegLo < RISCV::X31 && "Invalid register pair");
10581         Register RegHigh = RegLo + 1;
10582         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10583       }
10584       continue;
10585     }
10586 
10587     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10588     // as any other MemLoc.
10589 
10590     // Promote the value if needed.
10591     // For now, only handle fully promoted and indirect arguments.
10592     if (VA.getLocInfo() == CCValAssign::Indirect) {
10593       // Store the argument in a stack slot and pass its address.
10594       Align StackAlign =
10595           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10596                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10597       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10598       // If the original argument was split (e.g. i128), we need
10599       // to store the required parts of it here (and pass just one address).
10600       // Vectors may be partly split to registers and partly to the stack, in
10601       // which case the base address is partly offset and subsequent stores are
10602       // relative to that.
10603       unsigned ArgIndex = Outs[i].OrigArgIndex;
10604       unsigned ArgPartOffset = Outs[i].PartOffset;
10605       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10606       // Calculate the total size to store. We don't have access to what we're
10607       // actually storing other than performing the loop and collecting the
10608       // info.
10609       SmallVector<std::pair<SDValue, SDValue>> Parts;
10610       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10611         SDValue PartValue = OutVals[i + 1];
10612         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10613         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10614         EVT PartVT = PartValue.getValueType();
10615         if (PartVT.isScalableVector())
10616           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10617         StoredSize += PartVT.getStoreSize();
10618         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10619         Parts.push_back(std::make_pair(PartValue, Offset));
10620         ++i;
10621       }
10622       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10623       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10624       MemOpChains.push_back(
10625           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10626                        MachinePointerInfo::getFixedStack(MF, FI)));
10627       for (const auto &Part : Parts) {
10628         SDValue PartValue = Part.first;
10629         SDValue PartOffset = Part.second;
10630         SDValue Address =
10631             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10632         MemOpChains.push_back(
10633             DAG.getStore(Chain, DL, PartValue, Address,
10634                          MachinePointerInfo::getFixedStack(MF, FI)));
10635       }
10636       ArgValue = SpillSlot;
10637     } else {
10638       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10639     }
10640 
10641     // Use local copy if it is a byval arg.
10642     if (Flags.isByVal())
10643       ArgValue = ByValArgs[j++];
10644 
10645     if (VA.isRegLoc()) {
10646       // Queue up the argument copies and emit them at the end.
10647       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10648     } else {
10649       assert(VA.isMemLoc() && "Argument not register or memory");
10650       assert(!IsTailCall && "Tail call not allowed if stack is used "
10651                             "for passing parameters");
10652 
10653       // Work out the address of the stack slot.
10654       if (!StackPtr.getNode())
10655         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10656       SDValue Address =
10657           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10658                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10659 
10660       // Emit the store.
10661       MemOpChains.push_back(
10662           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10663     }
10664   }
10665 
10666   // Join the stores, which are independent of one another.
10667   if (!MemOpChains.empty())
10668     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10669 
10670   SDValue Glue;
10671 
10672   // Build a sequence of copy-to-reg nodes, chained and glued together.
10673   for (auto &Reg : RegsToPass) {
10674     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10675     Glue = Chain.getValue(1);
10676   }
10677 
10678   // Validate that none of the argument registers have been marked as
10679   // reserved, if so report an error. Do the same for the return address if this
10680   // is not a tailcall.
10681   validateCCReservedRegs(RegsToPass, MF);
10682   if (!IsTailCall &&
10683       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10684     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10685         MF.getFunction(),
10686         "Return address register required, but has been reserved."});
10687 
10688   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10689   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10690   // split it and then direct call can be matched by PseudoCALL.
10691   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10692     const GlobalValue *GV = S->getGlobal();
10693 
10694     unsigned OpFlags = RISCVII::MO_CALL;
10695     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10696       OpFlags = RISCVII::MO_PLT;
10697 
10698     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10699   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10700     unsigned OpFlags = RISCVII::MO_CALL;
10701 
10702     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10703                                                  nullptr))
10704       OpFlags = RISCVII::MO_PLT;
10705 
10706     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10707   }
10708 
10709   // The first call operand is the chain and the second is the target address.
10710   SmallVector<SDValue, 8> Ops;
10711   Ops.push_back(Chain);
10712   Ops.push_back(Callee);
10713 
10714   // Add argument registers to the end of the list so that they are
10715   // known live into the call.
10716   for (auto &Reg : RegsToPass)
10717     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10718 
10719   if (!IsTailCall) {
10720     // Add a register mask operand representing the call-preserved registers.
10721     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10722     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10723     assert(Mask && "Missing call preserved mask for calling convention");
10724     Ops.push_back(DAG.getRegisterMask(Mask));
10725   }
10726 
10727   // Glue the call to the argument copies, if any.
10728   if (Glue.getNode())
10729     Ops.push_back(Glue);
10730 
10731   // Emit the call.
10732   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10733 
10734   if (IsTailCall) {
10735     MF.getFrameInfo().setHasTailCall();
10736     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10737   }
10738 
10739   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10740   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10741   Glue = Chain.getValue(1);
10742 
10743   // Mark the end of the call, which is glued to the call itself.
10744   Chain = DAG.getCALLSEQ_END(Chain,
10745                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10746                              DAG.getConstant(0, DL, PtrVT, true),
10747                              Glue, DL);
10748   Glue = Chain.getValue(1);
10749 
10750   // Assign locations to each value returned by this call.
10751   SmallVector<CCValAssign, 16> RVLocs;
10752   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10753   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10754 
10755   // Copy all of the result registers out of their specified physreg.
10756   for (auto &VA : RVLocs) {
10757     // Copy the value out
10758     SDValue RetValue =
10759         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10760     // Glue the RetValue to the end of the call sequence
10761     Chain = RetValue.getValue(1);
10762     Glue = RetValue.getValue(2);
10763 
10764     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10765       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10766       SDValue RetValue2 =
10767           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10768       Chain = RetValue2.getValue(1);
10769       Glue = RetValue2.getValue(2);
10770       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10771                              RetValue2);
10772     }
10773 
10774     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10775 
10776     InVals.push_back(RetValue);
10777   }
10778 
10779   return Chain;
10780 }
10781 
10782 bool RISCVTargetLowering::CanLowerReturn(
10783     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10784     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10785   SmallVector<CCValAssign, 16> RVLocs;
10786   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10787 
10788   Optional<unsigned> FirstMaskArgument;
10789   if (Subtarget.hasVInstructions())
10790     FirstMaskArgument = preAssignMask(Outs);
10791 
10792   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10793     MVT VT = Outs[i].VT;
10794     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10795     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10796     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10797                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10798                  *this, FirstMaskArgument))
10799       return false;
10800   }
10801   return true;
10802 }
10803 
10804 SDValue
10805 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10806                                  bool IsVarArg,
10807                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10808                                  const SmallVectorImpl<SDValue> &OutVals,
10809                                  const SDLoc &DL, SelectionDAG &DAG) const {
10810   const MachineFunction &MF = DAG.getMachineFunction();
10811   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10812 
10813   // Stores the assignment of the return value to a location.
10814   SmallVector<CCValAssign, 16> RVLocs;
10815 
10816   // Info about the registers and stack slot.
10817   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10818                  *DAG.getContext());
10819 
10820   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10821                     nullptr, CC_RISCV);
10822 
10823   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10824     report_fatal_error("GHC functions return void only");
10825 
10826   SDValue Glue;
10827   SmallVector<SDValue, 4> RetOps(1, Chain);
10828 
10829   // Copy the result values into the output registers.
10830   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10831     SDValue Val = OutVals[i];
10832     CCValAssign &VA = RVLocs[i];
10833     assert(VA.isRegLoc() && "Can only return in registers!");
10834 
10835     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10836       // Handle returning f64 on RV32D with a soft float ABI.
10837       assert(VA.isRegLoc() && "Expected return via registers");
10838       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10839                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10840       SDValue Lo = SplitF64.getValue(0);
10841       SDValue Hi = SplitF64.getValue(1);
10842       Register RegLo = VA.getLocReg();
10843       assert(RegLo < RISCV::X31 && "Invalid register pair");
10844       Register RegHi = RegLo + 1;
10845 
10846       if (STI.isRegisterReservedByUser(RegLo) ||
10847           STI.isRegisterReservedByUser(RegHi))
10848         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10849             MF.getFunction(),
10850             "Return value register required, but has been reserved."});
10851 
10852       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10853       Glue = Chain.getValue(1);
10854       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10855       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10856       Glue = Chain.getValue(1);
10857       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10858     } else {
10859       // Handle a 'normal' return.
10860       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10861       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10862 
10863       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10864         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10865             MF.getFunction(),
10866             "Return value register required, but has been reserved."});
10867 
10868       // Guarantee that all emitted copies are stuck together.
10869       Glue = Chain.getValue(1);
10870       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10871     }
10872   }
10873 
10874   RetOps[0] = Chain; // Update chain.
10875 
10876   // Add the glue node if we have it.
10877   if (Glue.getNode()) {
10878     RetOps.push_back(Glue);
10879   }
10880 
10881   unsigned RetOpc = RISCVISD::RET_FLAG;
10882   // Interrupt service routines use different return instructions.
10883   const Function &Func = DAG.getMachineFunction().getFunction();
10884   if (Func.hasFnAttribute("interrupt")) {
10885     if (!Func.getReturnType()->isVoidTy())
10886       report_fatal_error(
10887           "Functions with the interrupt attribute must have void return type!");
10888 
10889     MachineFunction &MF = DAG.getMachineFunction();
10890     StringRef Kind =
10891       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10892 
10893     if (Kind == "user")
10894       RetOpc = RISCVISD::URET_FLAG;
10895     else if (Kind == "supervisor")
10896       RetOpc = RISCVISD::SRET_FLAG;
10897     else
10898       RetOpc = RISCVISD::MRET_FLAG;
10899   }
10900 
10901   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10902 }
10903 
10904 void RISCVTargetLowering::validateCCReservedRegs(
10905     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10906     MachineFunction &MF) const {
10907   const Function &F = MF.getFunction();
10908   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10909 
10910   if (llvm::any_of(Regs, [&STI](auto Reg) {
10911         return STI.isRegisterReservedByUser(Reg.first);
10912       }))
10913     F.getContext().diagnose(DiagnosticInfoUnsupported{
10914         F, "Argument register required, but has been reserved."});
10915 }
10916 
10917 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10918   return CI->isTailCall();
10919 }
10920 
10921 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10922 #define NODE_NAME_CASE(NODE)                                                   \
10923   case RISCVISD::NODE:                                                         \
10924     return "RISCVISD::" #NODE;
10925   // clang-format off
10926   switch ((RISCVISD::NodeType)Opcode) {
10927   case RISCVISD::FIRST_NUMBER:
10928     break;
10929   NODE_NAME_CASE(RET_FLAG)
10930   NODE_NAME_CASE(URET_FLAG)
10931   NODE_NAME_CASE(SRET_FLAG)
10932   NODE_NAME_CASE(MRET_FLAG)
10933   NODE_NAME_CASE(CALL)
10934   NODE_NAME_CASE(SELECT_CC)
10935   NODE_NAME_CASE(BR_CC)
10936   NODE_NAME_CASE(BuildPairF64)
10937   NODE_NAME_CASE(SplitF64)
10938   NODE_NAME_CASE(TAIL)
10939   NODE_NAME_CASE(MULHSU)
10940   NODE_NAME_CASE(SLLW)
10941   NODE_NAME_CASE(SRAW)
10942   NODE_NAME_CASE(SRLW)
10943   NODE_NAME_CASE(DIVW)
10944   NODE_NAME_CASE(DIVUW)
10945   NODE_NAME_CASE(REMUW)
10946   NODE_NAME_CASE(ROLW)
10947   NODE_NAME_CASE(RORW)
10948   NODE_NAME_CASE(CLZW)
10949   NODE_NAME_CASE(CTZW)
10950   NODE_NAME_CASE(FSLW)
10951   NODE_NAME_CASE(FSRW)
10952   NODE_NAME_CASE(FSL)
10953   NODE_NAME_CASE(FSR)
10954   NODE_NAME_CASE(FMV_H_X)
10955   NODE_NAME_CASE(FMV_X_ANYEXTH)
10956   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10957   NODE_NAME_CASE(FMV_W_X_RV64)
10958   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10959   NODE_NAME_CASE(FCVT_X)
10960   NODE_NAME_CASE(FCVT_XU)
10961   NODE_NAME_CASE(FCVT_W_RV64)
10962   NODE_NAME_CASE(FCVT_WU_RV64)
10963   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10964   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10965   NODE_NAME_CASE(READ_CYCLE_WIDE)
10966   NODE_NAME_CASE(GREV)
10967   NODE_NAME_CASE(GREVW)
10968   NODE_NAME_CASE(GORC)
10969   NODE_NAME_CASE(GORCW)
10970   NODE_NAME_CASE(SHFL)
10971   NODE_NAME_CASE(SHFLW)
10972   NODE_NAME_CASE(UNSHFL)
10973   NODE_NAME_CASE(UNSHFLW)
10974   NODE_NAME_CASE(BFP)
10975   NODE_NAME_CASE(BFPW)
10976   NODE_NAME_CASE(BCOMPRESS)
10977   NODE_NAME_CASE(BCOMPRESSW)
10978   NODE_NAME_CASE(BDECOMPRESS)
10979   NODE_NAME_CASE(BDECOMPRESSW)
10980   NODE_NAME_CASE(VMV_V_X_VL)
10981   NODE_NAME_CASE(VFMV_V_F_VL)
10982   NODE_NAME_CASE(VMV_X_S)
10983   NODE_NAME_CASE(VMV_S_X_VL)
10984   NODE_NAME_CASE(VFMV_S_F_VL)
10985   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10986   NODE_NAME_CASE(READ_VLENB)
10987   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10988   NODE_NAME_CASE(VSLIDEUP_VL)
10989   NODE_NAME_CASE(VSLIDE1UP_VL)
10990   NODE_NAME_CASE(VSLIDEDOWN_VL)
10991   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10992   NODE_NAME_CASE(VID_VL)
10993   NODE_NAME_CASE(VFNCVT_ROD_VL)
10994   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10995   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10996   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10997   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10998   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10999   NODE_NAME_CASE(VECREDUCE_AND_VL)
11000   NODE_NAME_CASE(VECREDUCE_OR_VL)
11001   NODE_NAME_CASE(VECREDUCE_XOR_VL)
11002   NODE_NAME_CASE(VECREDUCE_FADD_VL)
11003   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11004   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11005   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11006   NODE_NAME_CASE(ADD_VL)
11007   NODE_NAME_CASE(AND_VL)
11008   NODE_NAME_CASE(MUL_VL)
11009   NODE_NAME_CASE(OR_VL)
11010   NODE_NAME_CASE(SDIV_VL)
11011   NODE_NAME_CASE(SHL_VL)
11012   NODE_NAME_CASE(SREM_VL)
11013   NODE_NAME_CASE(SRA_VL)
11014   NODE_NAME_CASE(SRL_VL)
11015   NODE_NAME_CASE(SUB_VL)
11016   NODE_NAME_CASE(UDIV_VL)
11017   NODE_NAME_CASE(UREM_VL)
11018   NODE_NAME_CASE(XOR_VL)
11019   NODE_NAME_CASE(SADDSAT_VL)
11020   NODE_NAME_CASE(UADDSAT_VL)
11021   NODE_NAME_CASE(SSUBSAT_VL)
11022   NODE_NAME_CASE(USUBSAT_VL)
11023   NODE_NAME_CASE(FADD_VL)
11024   NODE_NAME_CASE(FSUB_VL)
11025   NODE_NAME_CASE(FMUL_VL)
11026   NODE_NAME_CASE(FDIV_VL)
11027   NODE_NAME_CASE(FNEG_VL)
11028   NODE_NAME_CASE(FABS_VL)
11029   NODE_NAME_CASE(FSQRT_VL)
11030   NODE_NAME_CASE(FMA_VL)
11031   NODE_NAME_CASE(FCOPYSIGN_VL)
11032   NODE_NAME_CASE(SMIN_VL)
11033   NODE_NAME_CASE(SMAX_VL)
11034   NODE_NAME_CASE(UMIN_VL)
11035   NODE_NAME_CASE(UMAX_VL)
11036   NODE_NAME_CASE(FMINNUM_VL)
11037   NODE_NAME_CASE(FMAXNUM_VL)
11038   NODE_NAME_CASE(MULHS_VL)
11039   NODE_NAME_CASE(MULHU_VL)
11040   NODE_NAME_CASE(FP_TO_SINT_VL)
11041   NODE_NAME_CASE(FP_TO_UINT_VL)
11042   NODE_NAME_CASE(SINT_TO_FP_VL)
11043   NODE_NAME_CASE(UINT_TO_FP_VL)
11044   NODE_NAME_CASE(FP_EXTEND_VL)
11045   NODE_NAME_CASE(FP_ROUND_VL)
11046   NODE_NAME_CASE(VWMUL_VL)
11047   NODE_NAME_CASE(VWMULU_VL)
11048   NODE_NAME_CASE(VWMULSU_VL)
11049   NODE_NAME_CASE(VWADD_VL)
11050   NODE_NAME_CASE(VWADDU_VL)
11051   NODE_NAME_CASE(VWSUB_VL)
11052   NODE_NAME_CASE(VWSUBU_VL)
11053   NODE_NAME_CASE(VWADD_W_VL)
11054   NODE_NAME_CASE(VWADDU_W_VL)
11055   NODE_NAME_CASE(VWSUB_W_VL)
11056   NODE_NAME_CASE(VWSUBU_W_VL)
11057   NODE_NAME_CASE(SETCC_VL)
11058   NODE_NAME_CASE(VSELECT_VL)
11059   NODE_NAME_CASE(VP_MERGE_VL)
11060   NODE_NAME_CASE(VMAND_VL)
11061   NODE_NAME_CASE(VMOR_VL)
11062   NODE_NAME_CASE(VMXOR_VL)
11063   NODE_NAME_CASE(VMCLR_VL)
11064   NODE_NAME_CASE(VMSET_VL)
11065   NODE_NAME_CASE(VRGATHER_VX_VL)
11066   NODE_NAME_CASE(VRGATHER_VV_VL)
11067   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11068   NODE_NAME_CASE(VSEXT_VL)
11069   NODE_NAME_CASE(VZEXT_VL)
11070   NODE_NAME_CASE(VCPOP_VL)
11071   NODE_NAME_CASE(READ_CSR)
11072   NODE_NAME_CASE(WRITE_CSR)
11073   NODE_NAME_CASE(SWAP_CSR)
11074   }
11075   // clang-format on
11076   return nullptr;
11077 #undef NODE_NAME_CASE
11078 }
11079 
11080 /// getConstraintType - Given a constraint letter, return the type of
11081 /// constraint it is for this target.
11082 RISCVTargetLowering::ConstraintType
11083 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11084   if (Constraint.size() == 1) {
11085     switch (Constraint[0]) {
11086     default:
11087       break;
11088     case 'f':
11089       return C_RegisterClass;
11090     case 'I':
11091     case 'J':
11092     case 'K':
11093       return C_Immediate;
11094     case 'A':
11095       return C_Memory;
11096     case 'S': // A symbolic address
11097       return C_Other;
11098     }
11099   } else {
11100     if (Constraint == "vr" || Constraint == "vm")
11101       return C_RegisterClass;
11102   }
11103   return TargetLowering::getConstraintType(Constraint);
11104 }
11105 
11106 std::pair<unsigned, const TargetRegisterClass *>
11107 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11108                                                   StringRef Constraint,
11109                                                   MVT VT) const {
11110   // First, see if this is a constraint that directly corresponds to a
11111   // RISCV register class.
11112   if (Constraint.size() == 1) {
11113     switch (Constraint[0]) {
11114     case 'r':
11115       // TODO: Support fixed vectors up to XLen for P extension?
11116       if (VT.isVector())
11117         break;
11118       return std::make_pair(0U, &RISCV::GPRRegClass);
11119     case 'f':
11120       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11121         return std::make_pair(0U, &RISCV::FPR16RegClass);
11122       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11123         return std::make_pair(0U, &RISCV::FPR32RegClass);
11124       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11125         return std::make_pair(0U, &RISCV::FPR64RegClass);
11126       break;
11127     default:
11128       break;
11129     }
11130   } else if (Constraint == "vr") {
11131     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11132                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11133       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11134         return std::make_pair(0U, RC);
11135     }
11136   } else if (Constraint == "vm") {
11137     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11138       return std::make_pair(0U, &RISCV::VMV0RegClass);
11139   }
11140 
11141   // Clang will correctly decode the usage of register name aliases into their
11142   // official names. However, other frontends like `rustc` do not. This allows
11143   // users of these frontends to use the ABI names for registers in LLVM-style
11144   // register constraints.
11145   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11146                                .Case("{zero}", RISCV::X0)
11147                                .Case("{ra}", RISCV::X1)
11148                                .Case("{sp}", RISCV::X2)
11149                                .Case("{gp}", RISCV::X3)
11150                                .Case("{tp}", RISCV::X4)
11151                                .Case("{t0}", RISCV::X5)
11152                                .Case("{t1}", RISCV::X6)
11153                                .Case("{t2}", RISCV::X7)
11154                                .Cases("{s0}", "{fp}", RISCV::X8)
11155                                .Case("{s1}", RISCV::X9)
11156                                .Case("{a0}", RISCV::X10)
11157                                .Case("{a1}", RISCV::X11)
11158                                .Case("{a2}", RISCV::X12)
11159                                .Case("{a3}", RISCV::X13)
11160                                .Case("{a4}", RISCV::X14)
11161                                .Case("{a5}", RISCV::X15)
11162                                .Case("{a6}", RISCV::X16)
11163                                .Case("{a7}", RISCV::X17)
11164                                .Case("{s2}", RISCV::X18)
11165                                .Case("{s3}", RISCV::X19)
11166                                .Case("{s4}", RISCV::X20)
11167                                .Case("{s5}", RISCV::X21)
11168                                .Case("{s6}", RISCV::X22)
11169                                .Case("{s7}", RISCV::X23)
11170                                .Case("{s8}", RISCV::X24)
11171                                .Case("{s9}", RISCV::X25)
11172                                .Case("{s10}", RISCV::X26)
11173                                .Case("{s11}", RISCV::X27)
11174                                .Case("{t3}", RISCV::X28)
11175                                .Case("{t4}", RISCV::X29)
11176                                .Case("{t5}", RISCV::X30)
11177                                .Case("{t6}", RISCV::X31)
11178                                .Default(RISCV::NoRegister);
11179   if (XRegFromAlias != RISCV::NoRegister)
11180     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11181 
11182   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11183   // TableGen record rather than the AsmName to choose registers for InlineAsm
11184   // constraints, plus we want to match those names to the widest floating point
11185   // register type available, manually select floating point registers here.
11186   //
11187   // The second case is the ABI name of the register, so that frontends can also
11188   // use the ABI names in register constraint lists.
11189   if (Subtarget.hasStdExtF()) {
11190     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11191                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11192                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11193                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11194                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11195                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11196                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11197                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11198                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11199                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11200                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11201                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11202                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11203                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11204                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11205                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11206                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11207                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11208                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11209                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11210                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11211                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11212                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11213                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11214                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11215                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11216                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11217                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11218                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11219                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11220                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11221                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11222                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11223                         .Default(RISCV::NoRegister);
11224     if (FReg != RISCV::NoRegister) {
11225       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11226       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11227         unsigned RegNo = FReg - RISCV::F0_F;
11228         unsigned DReg = RISCV::F0_D + RegNo;
11229         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11230       }
11231       if (VT == MVT::f32 || VT == MVT::Other)
11232         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11233       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11234         unsigned RegNo = FReg - RISCV::F0_F;
11235         unsigned HReg = RISCV::F0_H + RegNo;
11236         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11237       }
11238     }
11239   }
11240 
11241   if (Subtarget.hasVInstructions()) {
11242     Register VReg = StringSwitch<Register>(Constraint.lower())
11243                         .Case("{v0}", RISCV::V0)
11244                         .Case("{v1}", RISCV::V1)
11245                         .Case("{v2}", RISCV::V2)
11246                         .Case("{v3}", RISCV::V3)
11247                         .Case("{v4}", RISCV::V4)
11248                         .Case("{v5}", RISCV::V5)
11249                         .Case("{v6}", RISCV::V6)
11250                         .Case("{v7}", RISCV::V7)
11251                         .Case("{v8}", RISCV::V8)
11252                         .Case("{v9}", RISCV::V9)
11253                         .Case("{v10}", RISCV::V10)
11254                         .Case("{v11}", RISCV::V11)
11255                         .Case("{v12}", RISCV::V12)
11256                         .Case("{v13}", RISCV::V13)
11257                         .Case("{v14}", RISCV::V14)
11258                         .Case("{v15}", RISCV::V15)
11259                         .Case("{v16}", RISCV::V16)
11260                         .Case("{v17}", RISCV::V17)
11261                         .Case("{v18}", RISCV::V18)
11262                         .Case("{v19}", RISCV::V19)
11263                         .Case("{v20}", RISCV::V20)
11264                         .Case("{v21}", RISCV::V21)
11265                         .Case("{v22}", RISCV::V22)
11266                         .Case("{v23}", RISCV::V23)
11267                         .Case("{v24}", RISCV::V24)
11268                         .Case("{v25}", RISCV::V25)
11269                         .Case("{v26}", RISCV::V26)
11270                         .Case("{v27}", RISCV::V27)
11271                         .Case("{v28}", RISCV::V28)
11272                         .Case("{v29}", RISCV::V29)
11273                         .Case("{v30}", RISCV::V30)
11274                         .Case("{v31}", RISCV::V31)
11275                         .Default(RISCV::NoRegister);
11276     if (VReg != RISCV::NoRegister) {
11277       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11278         return std::make_pair(VReg, &RISCV::VMRegClass);
11279       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11280         return std::make_pair(VReg, &RISCV::VRRegClass);
11281       for (const auto *RC :
11282            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11283         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11284           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11285           return std::make_pair(VReg, RC);
11286         }
11287       }
11288     }
11289   }
11290 
11291   std::pair<Register, const TargetRegisterClass *> Res =
11292       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11293 
11294   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11295   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11296   // Subtarget into account.
11297   if (Res.second == &RISCV::GPRF16RegClass ||
11298       Res.second == &RISCV::GPRF32RegClass ||
11299       Res.second == &RISCV::GPRF64RegClass)
11300     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11301 
11302   return Res;
11303 }
11304 
11305 unsigned
11306 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11307   // Currently only support length 1 constraints.
11308   if (ConstraintCode.size() == 1) {
11309     switch (ConstraintCode[0]) {
11310     case 'A':
11311       return InlineAsm::Constraint_A;
11312     default:
11313       break;
11314     }
11315   }
11316 
11317   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11318 }
11319 
11320 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11321     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11322     SelectionDAG &DAG) const {
11323   // Currently only support length 1 constraints.
11324   if (Constraint.length() == 1) {
11325     switch (Constraint[0]) {
11326     case 'I':
11327       // Validate & create a 12-bit signed immediate operand.
11328       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11329         uint64_t CVal = C->getSExtValue();
11330         if (isInt<12>(CVal))
11331           Ops.push_back(
11332               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11333       }
11334       return;
11335     case 'J':
11336       // Validate & create an integer zero operand.
11337       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11338         if (C->getZExtValue() == 0)
11339           Ops.push_back(
11340               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11341       return;
11342     case 'K':
11343       // Validate & create a 5-bit unsigned immediate operand.
11344       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11345         uint64_t CVal = C->getZExtValue();
11346         if (isUInt<5>(CVal))
11347           Ops.push_back(
11348               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11349       }
11350       return;
11351     case 'S':
11352       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11353         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11354                                                  GA->getValueType(0)));
11355       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11356         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11357                                                 BA->getValueType(0)));
11358       }
11359       return;
11360     default:
11361       break;
11362     }
11363   }
11364   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11365 }
11366 
11367 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11368                                                    Instruction *Inst,
11369                                                    AtomicOrdering Ord) const {
11370   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11371     return Builder.CreateFence(Ord);
11372   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11373     return Builder.CreateFence(AtomicOrdering::Release);
11374   return nullptr;
11375 }
11376 
11377 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11378                                                     Instruction *Inst,
11379                                                     AtomicOrdering Ord) const {
11380   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11381     return Builder.CreateFence(AtomicOrdering::Acquire);
11382   return nullptr;
11383 }
11384 
11385 TargetLowering::AtomicExpansionKind
11386 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11387   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11388   // point operations can't be used in an lr/sc sequence without breaking the
11389   // forward-progress guarantee.
11390   if (AI->isFloatingPointOperation())
11391     return AtomicExpansionKind::CmpXChg;
11392 
11393   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11394   if (Size == 8 || Size == 16)
11395     return AtomicExpansionKind::MaskedIntrinsic;
11396   return AtomicExpansionKind::None;
11397 }
11398 
11399 static Intrinsic::ID
11400 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11401   if (XLen == 32) {
11402     switch (BinOp) {
11403     default:
11404       llvm_unreachable("Unexpected AtomicRMW BinOp");
11405     case AtomicRMWInst::Xchg:
11406       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11407     case AtomicRMWInst::Add:
11408       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11409     case AtomicRMWInst::Sub:
11410       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11411     case AtomicRMWInst::Nand:
11412       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11413     case AtomicRMWInst::Max:
11414       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11415     case AtomicRMWInst::Min:
11416       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11417     case AtomicRMWInst::UMax:
11418       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11419     case AtomicRMWInst::UMin:
11420       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11421     }
11422   }
11423 
11424   if (XLen == 64) {
11425     switch (BinOp) {
11426     default:
11427       llvm_unreachable("Unexpected AtomicRMW BinOp");
11428     case AtomicRMWInst::Xchg:
11429       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11430     case AtomicRMWInst::Add:
11431       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11432     case AtomicRMWInst::Sub:
11433       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11434     case AtomicRMWInst::Nand:
11435       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11436     case AtomicRMWInst::Max:
11437       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11438     case AtomicRMWInst::Min:
11439       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11440     case AtomicRMWInst::UMax:
11441       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11442     case AtomicRMWInst::UMin:
11443       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11444     }
11445   }
11446 
11447   llvm_unreachable("Unexpected XLen\n");
11448 }
11449 
11450 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11451     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11452     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11453   unsigned XLen = Subtarget.getXLen();
11454   Value *Ordering =
11455       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11456   Type *Tys[] = {AlignedAddr->getType()};
11457   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11458       AI->getModule(),
11459       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11460 
11461   if (XLen == 64) {
11462     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11463     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11464     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11465   }
11466 
11467   Value *Result;
11468 
11469   // Must pass the shift amount needed to sign extend the loaded value prior
11470   // to performing a signed comparison for min/max. ShiftAmt is the number of
11471   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11472   // is the number of bits to left+right shift the value in order to
11473   // sign-extend.
11474   if (AI->getOperation() == AtomicRMWInst::Min ||
11475       AI->getOperation() == AtomicRMWInst::Max) {
11476     const DataLayout &DL = AI->getModule()->getDataLayout();
11477     unsigned ValWidth =
11478         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11479     Value *SextShamt =
11480         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11481     Result = Builder.CreateCall(LrwOpScwLoop,
11482                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11483   } else {
11484     Result =
11485         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11486   }
11487 
11488   if (XLen == 64)
11489     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11490   return Result;
11491 }
11492 
11493 TargetLowering::AtomicExpansionKind
11494 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11495     AtomicCmpXchgInst *CI) const {
11496   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11497   if (Size == 8 || Size == 16)
11498     return AtomicExpansionKind::MaskedIntrinsic;
11499   return AtomicExpansionKind::None;
11500 }
11501 
11502 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11503     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11504     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11505   unsigned XLen = Subtarget.getXLen();
11506   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11507   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11508   if (XLen == 64) {
11509     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11510     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11511     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11512     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11513   }
11514   Type *Tys[] = {AlignedAddr->getType()};
11515   Function *MaskedCmpXchg =
11516       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11517   Value *Result = Builder.CreateCall(
11518       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11519   if (XLen == 64)
11520     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11521   return Result;
11522 }
11523 
11524 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11525   return false;
11526 }
11527 
11528 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11529                                                EVT VT) const {
11530   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11531     return false;
11532 
11533   switch (FPVT.getSimpleVT().SimpleTy) {
11534   case MVT::f16:
11535     return Subtarget.hasStdExtZfh();
11536   case MVT::f32:
11537     return Subtarget.hasStdExtF();
11538   case MVT::f64:
11539     return Subtarget.hasStdExtD();
11540   default:
11541     return false;
11542   }
11543 }
11544 
11545 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11546   // If we are using the small code model, we can reduce size of jump table
11547   // entry to 4 bytes.
11548   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11549       getTargetMachine().getCodeModel() == CodeModel::Small) {
11550     return MachineJumpTableInfo::EK_Custom32;
11551   }
11552   return TargetLowering::getJumpTableEncoding();
11553 }
11554 
11555 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11556     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11557     unsigned uid, MCContext &Ctx) const {
11558   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11559          getTargetMachine().getCodeModel() == CodeModel::Small);
11560   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11561 }
11562 
11563 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11564                                                      EVT VT) const {
11565   VT = VT.getScalarType();
11566 
11567   if (!VT.isSimple())
11568     return false;
11569 
11570   switch (VT.getSimpleVT().SimpleTy) {
11571   case MVT::f16:
11572     return Subtarget.hasStdExtZfh();
11573   case MVT::f32:
11574     return Subtarget.hasStdExtF();
11575   case MVT::f64:
11576     return Subtarget.hasStdExtD();
11577   default:
11578     break;
11579   }
11580 
11581   return false;
11582 }
11583 
11584 Register RISCVTargetLowering::getExceptionPointerRegister(
11585     const Constant *PersonalityFn) const {
11586   return RISCV::X10;
11587 }
11588 
11589 Register RISCVTargetLowering::getExceptionSelectorRegister(
11590     const Constant *PersonalityFn) const {
11591   return RISCV::X11;
11592 }
11593 
11594 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11595   // Return false to suppress the unnecessary extensions if the LibCall
11596   // arguments or return value is f32 type for LP64 ABI.
11597   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11598   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11599     return false;
11600 
11601   return true;
11602 }
11603 
11604 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11605   if (Subtarget.is64Bit() && Type == MVT::i32)
11606     return true;
11607 
11608   return IsSigned;
11609 }
11610 
11611 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11612                                                  SDValue C) const {
11613   // Check integral scalar types.
11614   if (VT.isScalarInteger()) {
11615     // Omit the optimization if the sub target has the M extension and the data
11616     // size exceeds XLen.
11617     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11618       return false;
11619     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11620       // Break the MUL to a SLLI and an ADD/SUB.
11621       const APInt &Imm = ConstNode->getAPIntValue();
11622       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11623           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11624         return true;
11625       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11626       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11627           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11628            (Imm - 8).isPowerOf2()))
11629         return true;
11630       // Omit the following optimization if the sub target has the M extension
11631       // and the data size >= XLen.
11632       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11633         return false;
11634       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11635       // a pair of LUI/ADDI.
11636       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11637         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11638         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11639             (1 - ImmS).isPowerOf2())
11640         return true;
11641       }
11642     }
11643   }
11644 
11645   return false;
11646 }
11647 
11648 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11649                                                       SDValue ConstNode) const {
11650   // Let the DAGCombiner decide for vectors.
11651   EVT VT = AddNode.getValueType();
11652   if (VT.isVector())
11653     return true;
11654 
11655   // Let the DAGCombiner decide for larger types.
11656   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11657     return true;
11658 
11659   // It is worse if c1 is simm12 while c1*c2 is not.
11660   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11661   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11662   const APInt &C1 = C1Node->getAPIntValue();
11663   const APInt &C2 = C2Node->getAPIntValue();
11664   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11665     return false;
11666 
11667   // Default to true and let the DAGCombiner decide.
11668   return true;
11669 }
11670 
11671 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11672     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11673     bool *Fast) const {
11674   if (!VT.isVector())
11675     return false;
11676 
11677   EVT ElemVT = VT.getVectorElementType();
11678   if (Alignment >= ElemVT.getStoreSize()) {
11679     if (Fast)
11680       *Fast = true;
11681     return true;
11682   }
11683 
11684   return false;
11685 }
11686 
11687 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11688     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11689     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11690   bool IsABIRegCopy = CC.hasValue();
11691   EVT ValueVT = Val.getValueType();
11692   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11693     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11694     // and cast to f32.
11695     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11696     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11697     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11698                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11699     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11700     Parts[0] = Val;
11701     return true;
11702   }
11703 
11704   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11705     LLVMContext &Context = *DAG.getContext();
11706     EVT ValueEltVT = ValueVT.getVectorElementType();
11707     EVT PartEltVT = PartVT.getVectorElementType();
11708     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11709     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11710     if (PartVTBitSize % ValueVTBitSize == 0) {
11711       assert(PartVTBitSize >= ValueVTBitSize);
11712       // If the element types are different, bitcast to the same element type of
11713       // PartVT first.
11714       // Give an example here, we want copy a <vscale x 1 x i8> value to
11715       // <vscale x 4 x i16>.
11716       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11717       // subvector, then we can bitcast to <vscale x 4 x i16>.
11718       if (ValueEltVT != PartEltVT) {
11719         if (PartVTBitSize > ValueVTBitSize) {
11720           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11721           assert(Count != 0 && "The number of element should not be zero.");
11722           EVT SameEltTypeVT =
11723               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11724           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11725                             DAG.getUNDEF(SameEltTypeVT), Val,
11726                             DAG.getVectorIdxConstant(0, DL));
11727         }
11728         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11729       } else {
11730         Val =
11731             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11732                         Val, DAG.getVectorIdxConstant(0, DL));
11733       }
11734       Parts[0] = Val;
11735       return true;
11736     }
11737   }
11738   return false;
11739 }
11740 
11741 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11742     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11743     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11744   bool IsABIRegCopy = CC.hasValue();
11745   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11746     SDValue Val = Parts[0];
11747 
11748     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11749     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11750     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11751     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11752     return Val;
11753   }
11754 
11755   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11756     LLVMContext &Context = *DAG.getContext();
11757     SDValue Val = Parts[0];
11758     EVT ValueEltVT = ValueVT.getVectorElementType();
11759     EVT PartEltVT = PartVT.getVectorElementType();
11760     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11761     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11762     if (PartVTBitSize % ValueVTBitSize == 0) {
11763       assert(PartVTBitSize >= ValueVTBitSize);
11764       EVT SameEltTypeVT = ValueVT;
11765       // If the element types are different, convert it to the same element type
11766       // of PartVT.
11767       // Give an example here, we want copy a <vscale x 1 x i8> value from
11768       // <vscale x 4 x i16>.
11769       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11770       // then we can extract <vscale x 1 x i8>.
11771       if (ValueEltVT != PartEltVT) {
11772         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11773         assert(Count != 0 && "The number of element should not be zero.");
11774         SameEltTypeVT =
11775             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11776         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11777       }
11778       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11779                         DAG.getVectorIdxConstant(0, DL));
11780       return Val;
11781     }
11782   }
11783   return SDValue();
11784 }
11785 
11786 SDValue
11787 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11788                                    SelectionDAG &DAG,
11789                                    SmallVectorImpl<SDNode *> &Created) const {
11790   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11791   if (isIntDivCheap(N->getValueType(0), Attr))
11792     return SDValue(N, 0); // Lower SDIV as SDIV
11793 
11794   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11795          "Unexpected divisor!");
11796 
11797   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11798   if (!Subtarget.hasStdExtZbt())
11799     return SDValue();
11800 
11801   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11802   // Besides, more critical path instructions will be generated when dividing
11803   // by 2. So we keep using the original DAGs for these cases.
11804   unsigned Lg2 = Divisor.countTrailingZeros();
11805   if (Lg2 == 1 || Lg2 >= 12)
11806     return SDValue();
11807 
11808   // fold (sdiv X, pow2)
11809   EVT VT = N->getValueType(0);
11810   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11811     return SDValue();
11812 
11813   SDLoc DL(N);
11814   SDValue N0 = N->getOperand(0);
11815   SDValue Zero = DAG.getConstant(0, DL, VT);
11816   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11817 
11818   // Add (N0 < 0) ? Pow2 - 1 : 0;
11819   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11820   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11821   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11822 
11823   Created.push_back(Cmp.getNode());
11824   Created.push_back(Add.getNode());
11825   Created.push_back(Sel.getNode());
11826 
11827   // Divide by pow2.
11828   SDValue SRA =
11829       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11830 
11831   // If we're dividing by a positive value, we're done.  Otherwise, we must
11832   // negate the result.
11833   if (Divisor.isNonNegative())
11834     return SRA;
11835 
11836   Created.push_back(SRA.getNode());
11837   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11838 }
11839 
11840 #define GET_REGISTER_MATCHER
11841 #include "RISCVGenAsmMatcher.inc"
11842 
11843 Register
11844 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11845                                        const MachineFunction &MF) const {
11846   Register Reg = MatchRegisterAltName(RegName);
11847   if (Reg == RISCV::NoRegister)
11848     Reg = MatchRegisterName(RegName);
11849   if (Reg == RISCV::NoRegister)
11850     report_fatal_error(
11851         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11852   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11853   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11854     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11855                              StringRef(RegName) + "\"."));
11856   return Reg;
11857 }
11858 
11859 namespace llvm {
11860 namespace RISCVVIntrinsicsTable {
11861 
11862 #define GET_RISCVVIntrinsicsTable_IMPL
11863 #include "RISCVGenSearchableTables.inc"
11864 
11865 } // namespace RISCVVIntrinsicsTable
11866 
11867 } // namespace llvm
11868