1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that RISCV uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "RISCVISelLowering.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "riscv-lower"
38 
39 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
40                                          const RISCVSubtarget &STI)
41     : TargetLowering(TM), Subtarget(STI) {
42 
43   MVT XLenVT = Subtarget.getXLenVT();
44 
45   // Set up the register classes.
46   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
47 
48   if (Subtarget.hasStdExtF())
49     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
50   if (Subtarget.hasStdExtD())
51     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
52 
53   // Compute derived properties from the register classes.
54   computeRegisterProperties(STI.getRegisterInfo());
55 
56   setStackPointerRegisterToSaveRestore(RISCV::X2);
57 
58   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
59     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
60 
61   // TODO: add all necessary setOperationAction calls.
62   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
63 
64   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
65   setOperationAction(ISD::BR_CC, XLenVT, Expand);
66   setOperationAction(ISD::SELECT, XLenVT, Custom);
67   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
68 
69   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
70   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
71 
72   setOperationAction(ISD::VASTART, MVT::Other, Custom);
73   setOperationAction(ISD::VAARG, MVT::Other, Expand);
74   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
75   setOperationAction(ISD::VAEND, MVT::Other, Expand);
76 
77   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
78     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
79 
80   setOperationAction(ISD::ADDC, XLenVT, Expand);
81   setOperationAction(ISD::ADDE, XLenVT, Expand);
82   setOperationAction(ISD::SUBC, XLenVT, Expand);
83   setOperationAction(ISD::SUBE, XLenVT, Expand);
84 
85   if (!Subtarget.hasStdExtM()) {
86     setOperationAction(ISD::MUL, XLenVT, Expand);
87     setOperationAction(ISD::MULHS, XLenVT, Expand);
88     setOperationAction(ISD::MULHU, XLenVT, Expand);
89     setOperationAction(ISD::SDIV, XLenVT, Expand);
90     setOperationAction(ISD::UDIV, XLenVT, Expand);
91     setOperationAction(ISD::SREM, XLenVT, Expand);
92     setOperationAction(ISD::UREM, XLenVT, Expand);
93   }
94 
95   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
96   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
97   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
98   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
99 
100   setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
101   setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
102   setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
103 
104   setOperationAction(ISD::ROTL, XLenVT, Expand);
105   setOperationAction(ISD::ROTR, XLenVT, Expand);
106   setOperationAction(ISD::BSWAP, XLenVT, Expand);
107   setOperationAction(ISD::CTTZ, XLenVT, Expand);
108   setOperationAction(ISD::CTLZ, XLenVT, Expand);
109   setOperationAction(ISD::CTPOP, XLenVT, Expand);
110 
111   ISD::CondCode FPCCToExtend[] = {
112       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO,   ISD::SETUEQ,
113       ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE,
114       ISD::SETGT,  ISD::SETGE,  ISD::SETNE};
115 
116   if (Subtarget.hasStdExtF()) {
117     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
118     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
119     for (auto CC : FPCCToExtend)
120       setCondCodeAction(CC, MVT::f32, Expand);
121     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
122     setOperationAction(ISD::SELECT, MVT::f32, Custom);
123     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
124   }
125 
126   if (Subtarget.hasStdExtD()) {
127     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
128     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
129     for (auto CC : FPCCToExtend)
130       setCondCodeAction(CC, MVT::f64, Expand);
131     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
132     setOperationAction(ISD::SELECT, MVT::f64, Custom);
133     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
134     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
135     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
136   }
137 
138   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
139   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
140   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
141 
142   setBooleanContents(ZeroOrOneBooleanContent);
143 
144   // Function alignments (log2).
145   unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2;
146   setMinFunctionAlignment(FunctionAlignment);
147   setPrefFunctionAlignment(FunctionAlignment);
148 
149   // Effectively disable jump table generation.
150   setMinimumJumpTableEntries(INT_MAX);
151 }
152 
153 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
154                                             EVT VT) const {
155   if (!VT.isVector())
156     return getPointerTy(DL);
157   return VT.changeVectorElementTypeToInteger();
158 }
159 
160 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
161                                                 const AddrMode &AM, Type *Ty,
162                                                 unsigned AS,
163                                                 Instruction *I) const {
164   // No global is ever allowed as a base.
165   if (AM.BaseGV)
166     return false;
167 
168   // Require a 12-bit signed offset.
169   if (!isInt<12>(AM.BaseOffs))
170     return false;
171 
172   switch (AM.Scale) {
173   case 0: // "r+i" or just "i", depending on HasBaseReg.
174     break;
175   case 1:
176     if (!AM.HasBaseReg) // allow "r+i".
177       break;
178     return false; // disallow "r+r" or "r+r+i".
179   default:
180     return false;
181   }
182 
183   return true;
184 }
185 
186 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
187   return isInt<12>(Imm);
188 }
189 
190 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
191   return isInt<12>(Imm);
192 }
193 
194 // On RV32, 64-bit integers are split into their high and low parts and held
195 // in two different registers, so the trunc is free since the low register can
196 // just be used.
197 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
198   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
199     return false;
200   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
201   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
202   return (SrcBits == 64 && DestBits == 32);
203 }
204 
205 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
206   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
207       !SrcVT.isInteger() || !DstVT.isInteger())
208     return false;
209   unsigned SrcBits = SrcVT.getSizeInBits();
210   unsigned DestBits = DstVT.getSizeInBits();
211   return (SrcBits == 64 && DestBits == 32);
212 }
213 
214 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
215   // Zexts are free if they can be combined with a load.
216   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
217     EVT MemVT = LD->getMemoryVT();
218     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
219          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
220         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
221          LD->getExtensionType() == ISD::ZEXTLOAD))
222       return true;
223   }
224 
225   return TargetLowering::isZExtFree(Val, VT2);
226 }
227 
228 // Changes the condition code and swaps operands if necessary, so the SetCC
229 // operation matches one of the comparisons supported directly in the RISC-V
230 // ISA.
231 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
232   switch (CC) {
233   default:
234     break;
235   case ISD::SETGT:
236   case ISD::SETLE:
237   case ISD::SETUGT:
238   case ISD::SETULE:
239     CC = ISD::getSetCCSwappedOperands(CC);
240     std::swap(LHS, RHS);
241     break;
242   }
243 }
244 
245 // Return the RISC-V branch opcode that matches the given DAG integer
246 // condition code. The CondCode must be one of those supported by the RISC-V
247 // ISA (see normaliseSetCC).
248 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
249   switch (CC) {
250   default:
251     llvm_unreachable("Unsupported CondCode");
252   case ISD::SETEQ:
253     return RISCV::BEQ;
254   case ISD::SETNE:
255     return RISCV::BNE;
256   case ISD::SETLT:
257     return RISCV::BLT;
258   case ISD::SETGE:
259     return RISCV::BGE;
260   case ISD::SETULT:
261     return RISCV::BLTU;
262   case ISD::SETUGE:
263     return RISCV::BGEU;
264   }
265 }
266 
267 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
268                                             SelectionDAG &DAG) const {
269   switch (Op.getOpcode()) {
270   default:
271     report_fatal_error("unimplemented operand");
272   case ISD::GlobalAddress:
273     return lowerGlobalAddress(Op, DAG);
274   case ISD::BlockAddress:
275     return lowerBlockAddress(Op, DAG);
276   case ISD::ConstantPool:
277     return lowerConstantPool(Op, DAG);
278   case ISD::SELECT:
279     return lowerSELECT(Op, DAG);
280   case ISD::VASTART:
281     return lowerVASTART(Op, DAG);
282   case ISD::FRAMEADDR:
283     return LowerFRAMEADDR(Op, DAG);
284   case ISD::RETURNADDR:
285     return LowerRETURNADDR(Op, DAG);
286   }
287 }
288 
289 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
290                                                 SelectionDAG &DAG) const {
291   SDLoc DL(Op);
292   EVT Ty = Op.getValueType();
293   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
294   const GlobalValue *GV = N->getGlobal();
295   int64_t Offset = N->getOffset();
296 
297   if (isPositionIndependent() || Subtarget.is64Bit())
298     report_fatal_error("Unable to lowerGlobalAddress");
299 
300   SDValue GAHi =
301     DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_HI);
302   SDValue GALo =
303     DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_LO);
304   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
305   SDValue MNLo =
306     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
307   return MNLo;
308 }
309 
310 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
311                                                SelectionDAG &DAG) const {
312   SDLoc DL(Op);
313   EVT Ty = Op.getValueType();
314   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
315   const BlockAddress *BA = N->getBlockAddress();
316   int64_t Offset = N->getOffset();
317 
318   if (isPositionIndependent() || Subtarget.is64Bit())
319     report_fatal_error("Unable to lowerBlockAddress");
320 
321   SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
322   SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
323   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
324   SDValue MNLo =
325     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
326   return MNLo;
327 }
328 
329 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
330                                                SelectionDAG &DAG) const {
331   SDLoc DL(Op);
332   EVT Ty = Op.getValueType();
333   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
334   const Constant *CPA = N->getConstVal();
335   int64_t Offset = N->getOffset();
336   unsigned Alignment = N->getAlignment();
337 
338   if (!isPositionIndependent()) {
339     SDValue CPAHi =
340         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI);
341     SDValue CPALo =
342         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO);
343     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0);
344     SDValue MNLo =
345         SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0);
346     return MNLo;
347   } else {
348     report_fatal_error("Unable to lowerConstantPool");
349   }
350 }
351 
352 SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op,
353                                                  SelectionDAG &DAG) const {
354   SDLoc DL(Op);
355   EVT Ty = Op.getValueType();
356   ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op);
357   const char *Sym = N->getSymbol();
358 
359   // TODO: should also handle gp-relative loads.
360 
361   if (isPositionIndependent() || Subtarget.is64Bit())
362     report_fatal_error("Unable to lowerExternalSymbol");
363 
364   SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI);
365   SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO);
366   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
367   SDValue MNLo =
368     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
369   return MNLo;
370 }
371 
372 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
373   SDValue CondV = Op.getOperand(0);
374   SDValue TrueV = Op.getOperand(1);
375   SDValue FalseV = Op.getOperand(2);
376   SDLoc DL(Op);
377   MVT XLenVT = Subtarget.getXLenVT();
378 
379   // If the result type is XLenVT and CondV is the output of a SETCC node
380   // which also operated on XLenVT inputs, then merge the SETCC node into the
381   // lowered RISCVISD::SELECT_CC to take advantage of the integer
382   // compare+branch instructions. i.e.:
383   // (select (setcc lhs, rhs, cc), truev, falsev)
384   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
385   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
386       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
387     SDValue LHS = CondV.getOperand(0);
388     SDValue RHS = CondV.getOperand(1);
389     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
390     ISD::CondCode CCVal = CC->get();
391 
392     normaliseSetCC(LHS, RHS, CCVal);
393 
394     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
395     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
396     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
397     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
398   }
399 
400   // Otherwise:
401   // (select condv, truev, falsev)
402   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
403   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
404   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
405 
406   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
407   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
408 
409   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
410 }
411 
412 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
413   MachineFunction &MF = DAG.getMachineFunction();
414   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
415 
416   SDLoc DL(Op);
417   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
418                                  getPointerTy(MF.getDataLayout()));
419 
420   // vastart just stores the address of the VarArgsFrameIndex slot into the
421   // memory location argument.
422   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
423   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
424                       MachinePointerInfo(SV));
425 }
426 
427 SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op,
428                                             SelectionDAG &DAG) const {
429   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
430   MachineFunction &MF = DAG.getMachineFunction();
431   MachineFrameInfo &MFI = MF.getFrameInfo();
432   MFI.setFrameAddressIsTaken(true);
433   unsigned FrameReg = RI.getFrameRegister(MF);
434   int XLenInBytes = Subtarget.getXLen() / 8;
435 
436   EVT VT = Op.getValueType();
437   SDLoc DL(Op);
438   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
439   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
440   while (Depth--) {
441     int Offset = -(XLenInBytes * 2);
442     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
443                               DAG.getIntPtrConstant(Offset, DL));
444     FrameAddr =
445         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
446   }
447   return FrameAddr;
448 }
449 
450 SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op,
451                                              SelectionDAG &DAG) const {
452   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
453   MachineFunction &MF = DAG.getMachineFunction();
454   MachineFrameInfo &MFI = MF.getFrameInfo();
455   MFI.setReturnAddressIsTaken(true);
456   MVT XLenVT = Subtarget.getXLenVT();
457   int XLenInBytes = Subtarget.getXLen() / 8;
458 
459   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
460     return SDValue();
461 
462   EVT VT = Op.getValueType();
463   SDLoc DL(Op);
464   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
465   if (Depth) {
466     int Off = -XLenInBytes;
467     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
468     SDValue Offset = DAG.getConstant(Off, DL, VT);
469     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
470                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
471                        MachinePointerInfo());
472   }
473 
474   // Return the value of the return address register, marking it an implicit
475   // live-in.
476   unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
477   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
478 }
479 
480 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
481                                              MachineBasicBlock *BB) {
482   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
483 
484   MachineFunction &MF = *BB->getParent();
485   DebugLoc DL = MI.getDebugLoc();
486   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
487   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
488   unsigned LoReg = MI.getOperand(0).getReg();
489   unsigned HiReg = MI.getOperand(1).getReg();
490   unsigned SrcReg = MI.getOperand(2).getReg();
491   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
492   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
493 
494   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
495                           RI);
496   MachineMemOperand *MMO =
497       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
498                               MachineMemOperand::MOLoad, 8, 8);
499   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
500       .addFrameIndex(FI)
501       .addImm(0)
502       .addMemOperand(MMO);
503   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
504       .addFrameIndex(FI)
505       .addImm(4)
506       .addMemOperand(MMO);
507   MI.eraseFromParent(); // The pseudo instruction is gone now.
508   return BB;
509 }
510 
511 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
512                                                  MachineBasicBlock *BB) {
513   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
514          "Unexpected instruction");
515 
516   MachineFunction &MF = *BB->getParent();
517   DebugLoc DL = MI.getDebugLoc();
518   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
519   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
520   unsigned DstReg = MI.getOperand(0).getReg();
521   unsigned LoReg = MI.getOperand(1).getReg();
522   unsigned HiReg = MI.getOperand(2).getReg();
523   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
524   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
525 
526   MachineMemOperand *MMO =
527       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
528                               MachineMemOperand::MOStore, 8, 8);
529   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
530       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
531       .addFrameIndex(FI)
532       .addImm(0)
533       .addMemOperand(MMO);
534   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
535       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
536       .addFrameIndex(FI)
537       .addImm(4)
538       .addMemOperand(MMO);
539   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
540   MI.eraseFromParent(); // The pseudo instruction is gone now.
541   return BB;
542 }
543 
544 MachineBasicBlock *
545 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
546                                                  MachineBasicBlock *BB) const {
547   switch (MI.getOpcode()) {
548   default:
549     llvm_unreachable("Unexpected instr type to insert");
550   case RISCV::Select_GPR_Using_CC_GPR:
551   case RISCV::Select_FPR32_Using_CC_GPR:
552   case RISCV::Select_FPR64_Using_CC_GPR:
553     break;
554   case RISCV::BuildPairF64Pseudo:
555     return emitBuildPairF64Pseudo(MI, BB);
556   case RISCV::SplitF64Pseudo:
557     return emitSplitF64Pseudo(MI, BB);
558   }
559 
560   // To "insert" a SELECT instruction, we actually have to insert the triangle
561   // control-flow pattern.  The incoming instruction knows the destination vreg
562   // to set, the condition code register to branch on, the true/false values to
563   // select between, and the condcode to use to select the appropriate branch.
564   //
565   // We produce the following control flow:
566   //     HeadMBB
567   //     |  \
568   //     |  IfFalseMBB
569   //     | /
570   //    TailMBB
571   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
572   const BasicBlock *LLVM_BB = BB->getBasicBlock();
573   DebugLoc DL = MI.getDebugLoc();
574   MachineFunction::iterator I = ++BB->getIterator();
575 
576   MachineBasicBlock *HeadMBB = BB;
577   MachineFunction *F = BB->getParent();
578   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
579   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
580 
581   F->insert(I, IfFalseMBB);
582   F->insert(I, TailMBB);
583   // Move all remaining instructions to TailMBB.
584   TailMBB->splice(TailMBB->begin(), HeadMBB,
585                   std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
586   // Update machine-CFG edges by transferring all successors of the current
587   // block to the new block which will contain the Phi node for the select.
588   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
589   // Set the successors for HeadMBB.
590   HeadMBB->addSuccessor(IfFalseMBB);
591   HeadMBB->addSuccessor(TailMBB);
592 
593   // Insert appropriate branch.
594   unsigned LHS = MI.getOperand(1).getReg();
595   unsigned RHS = MI.getOperand(2).getReg();
596   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
597   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
598 
599   BuildMI(HeadMBB, DL, TII.get(Opcode))
600     .addReg(LHS)
601     .addReg(RHS)
602     .addMBB(TailMBB);
603 
604   // IfFalseMBB just falls through to TailMBB.
605   IfFalseMBB->addSuccessor(TailMBB);
606 
607   // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
608   BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
609           MI.getOperand(0).getReg())
610       .addReg(MI.getOperand(4).getReg())
611       .addMBB(HeadMBB)
612       .addReg(MI.getOperand(5).getReg())
613       .addMBB(IfFalseMBB);
614 
615   MI.eraseFromParent(); // The pseudo instruction is gone now.
616   return TailMBB;
617 }
618 
619 // Calling Convention Implementation.
620 // The expectations for frontend ABI lowering vary from target to target.
621 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
622 // details, but this is a longer term goal. For now, we simply try to keep the
623 // role of the frontend as simple and well-defined as possible. The rules can
624 // be summarised as:
625 // * Never split up large scalar arguments. We handle them here.
626 // * If a hardfloat calling convention is being used, and the struct may be
627 // passed in a pair of registers (fp+fp, int+fp), and both registers are
628 // available, then pass as two separate arguments. If either the GPRs or FPRs
629 // are exhausted, then pass according to the rule below.
630 // * If a struct could never be passed in registers or directly in a stack
631 // slot (as it is larger than 2*XLEN and the floating point rules don't
632 // apply), then pass it using a pointer with the byval attribute.
633 // * If a struct is less than 2*XLEN, then coerce to either a two-element
634 // word-sized array or a 2*XLEN scalar (depending on alignment).
635 // * The frontend can determine whether a struct is returned by reference or
636 // not based on its size and fields. If it will be returned by reference, the
637 // frontend must modify the prototype so a pointer with the sret annotation is
638 // passed as the first argument. This is not necessary for large scalar
639 // returns.
640 // * Struct return values and varargs should be coerced to structs containing
641 // register-size fields in the same situations they would be for fixed
642 // arguments.
643 
644 static const MCPhysReg ArgGPRs[] = {
645   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
646   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
647 };
648 
649 // Pass a 2*XLEN argument that has been split into two XLEN values through
650 // registers or the stack as necessary.
651 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
652                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
653                                 MVT ValVT2, MVT LocVT2,
654                                 ISD::ArgFlagsTy ArgFlags2) {
655   unsigned XLenInBytes = XLen / 8;
656   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
657     // At least one half can be passed via register.
658     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
659                                      VA1.getLocVT(), CCValAssign::Full));
660   } else {
661     // Both halves must be passed on the stack, with proper alignment.
662     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
663     State.addLoc(
664         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
665                             State.AllocateStack(XLenInBytes, StackAlign),
666                             VA1.getLocVT(), CCValAssign::Full));
667     State.addLoc(CCValAssign::getMem(
668         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
669         CCValAssign::Full));
670     return false;
671   }
672 
673   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
674     // The second half can also be passed via register.
675     State.addLoc(
676         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
677   } else {
678     // The second half is passed via the stack, without additional alignment.
679     State.addLoc(CCValAssign::getMem(
680         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
681         CCValAssign::Full));
682   }
683 
684   return false;
685 }
686 
687 // Implements the RISC-V calling convention. Returns true upon failure.
688 static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
689                      CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
690                      CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
691   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
692   assert(XLen == 32 || XLen == 64);
693   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
694   if (ValVT == MVT::f32) {
695     LocVT = MVT::i32;
696     LocInfo = CCValAssign::BCvt;
697   }
698 
699   // Any return value split in to more than two values can't be returned
700   // directly.
701   if (IsRet && ValNo > 1)
702     return true;
703 
704   // If this is a variadic argument, the RISC-V calling convention requires
705   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
706   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
707   // be used regardless of whether the original argument was split during
708   // legalisation or not. The argument will not be passed by registers if the
709   // original type is larger than 2*XLEN, so the register alignment rule does
710   // not apply.
711   unsigned TwoXLenInBytes = (2 * XLen) / 8;
712   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
713       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
714     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
715     // Skip 'odd' register if necessary.
716     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
717       State.AllocateReg(ArgGPRs);
718   }
719 
720   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
721   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
722       State.getPendingArgFlags();
723 
724   assert(PendingLocs.size() == PendingArgFlags.size() &&
725          "PendingLocs and PendingArgFlags out of sync");
726 
727   // Handle passing f64 on RV32D with a soft float ABI.
728   if (XLen == 32 && ValVT == MVT::f64) {
729     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
730            "Can't lower f64 if it is split");
731     // Depending on available argument GPRS, f64 may be passed in a pair of
732     // GPRs, split between a GPR and the stack, or passed completely on the
733     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
734     // cases.
735     unsigned Reg = State.AllocateReg(ArgGPRs);
736     LocVT = MVT::i32;
737     if (!Reg) {
738       unsigned StackOffset = State.AllocateStack(8, 8);
739       State.addLoc(
740           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
741       return false;
742     }
743     if (!State.AllocateReg(ArgGPRs))
744       State.AllocateStack(4, 4);
745     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
746     return false;
747   }
748 
749   // Split arguments might be passed indirectly, so keep track of the pending
750   // values.
751   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
752     LocVT = XLenVT;
753     LocInfo = CCValAssign::Indirect;
754     PendingLocs.push_back(
755         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
756     PendingArgFlags.push_back(ArgFlags);
757     if (!ArgFlags.isSplitEnd()) {
758       return false;
759     }
760   }
761 
762   // If the split argument only had two elements, it should be passed directly
763   // in registers or on the stack.
764   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
765     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
766     // Apply the normal calling convention rules to the first half of the
767     // split argument.
768     CCValAssign VA = PendingLocs[0];
769     ISD::ArgFlagsTy AF = PendingArgFlags[0];
770     PendingLocs.clear();
771     PendingArgFlags.clear();
772     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
773                                ArgFlags);
774   }
775 
776   // Allocate to a register if possible, or else a stack slot.
777   unsigned Reg = State.AllocateReg(ArgGPRs);
778   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
779 
780   // If we reach this point and PendingLocs is non-empty, we must be at the
781   // end of a split argument that must be passed indirectly.
782   if (!PendingLocs.empty()) {
783     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
784     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
785 
786     for (auto &It : PendingLocs) {
787       if (Reg)
788         It.convertToReg(Reg);
789       else
790         It.convertToMem(StackOffset);
791       State.addLoc(It);
792     }
793     PendingLocs.clear();
794     PendingArgFlags.clear();
795     return false;
796   }
797 
798   assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
799 
800   if (Reg) {
801     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
802   } else {
803     State.addLoc(
804         CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
805   }
806   return false;
807 }
808 
809 void RISCVTargetLowering::analyzeInputArgs(
810     MachineFunction &MF, CCState &CCInfo,
811     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
812   unsigned NumArgs = Ins.size();
813   FunctionType *FType = MF.getFunction().getFunctionType();
814 
815   for (unsigned i = 0; i != NumArgs; ++i) {
816     MVT ArgVT = Ins[i].VT;
817     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
818 
819     Type *ArgTy = nullptr;
820     if (IsRet)
821       ArgTy = FType->getReturnType();
822     else if (Ins[i].isOrigArg())
823       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
824 
825     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
826                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
827       DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
828                    << EVT(ArgVT).getEVTString() << '\n');
829       llvm_unreachable(nullptr);
830     }
831   }
832 }
833 
834 void RISCVTargetLowering::analyzeOutputArgs(
835     MachineFunction &MF, CCState &CCInfo,
836     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
837     CallLoweringInfo *CLI) const {
838   unsigned NumArgs = Outs.size();
839 
840   for (unsigned i = 0; i != NumArgs; i++) {
841     MVT ArgVT = Outs[i].VT;
842     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
843     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
844 
845     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
846                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
847       DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
848                    << EVT(ArgVT).getEVTString() << "\n");
849       llvm_unreachable(nullptr);
850     }
851   }
852 }
853 
854 // The caller is responsible for loading the full value if the argument is
855 // passed with CCValAssign::Indirect.
856 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
857                                 const CCValAssign &VA, const SDLoc &DL) {
858   MachineFunction &MF = DAG.getMachineFunction();
859   MachineRegisterInfo &RegInfo = MF.getRegInfo();
860   EVT LocVT = VA.getLocVT();
861   EVT ValVT = VA.getValVT();
862   SDValue Val;
863 
864   unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
865   RegInfo.addLiveIn(VA.getLocReg(), VReg);
866   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
867 
868   switch (VA.getLocInfo()) {
869   default:
870     llvm_unreachable("Unexpected CCValAssign::LocInfo");
871   case CCValAssign::Full:
872   case CCValAssign::Indirect:
873     break;
874   case CCValAssign::BCvt:
875     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
876     break;
877   }
878   return Val;
879 }
880 
881 // The caller is responsible for loading the full value if the argument is
882 // passed with CCValAssign::Indirect.
883 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
884                                 const CCValAssign &VA, const SDLoc &DL) {
885   MachineFunction &MF = DAG.getMachineFunction();
886   MachineFrameInfo &MFI = MF.getFrameInfo();
887   EVT LocVT = VA.getLocVT();
888   EVT ValVT = VA.getValVT();
889   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
890   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
891                                  VA.getLocMemOffset(), /*Immutable=*/true);
892   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
893   SDValue Val;
894 
895   ISD::LoadExtType ExtType;
896   switch (VA.getLocInfo()) {
897   default:
898     llvm_unreachable("Unexpected CCValAssign::LocInfo");
899   case CCValAssign::Full:
900   case CCValAssign::Indirect:
901     ExtType = ISD::NON_EXTLOAD;
902     break;
903   }
904   Val = DAG.getExtLoad(
905       ExtType, DL, LocVT, Chain, FIN,
906       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
907   return Val;
908 }
909 
910 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
911                                        const CCValAssign &VA, const SDLoc &DL) {
912   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
913          "Unexpected VA");
914   MachineFunction &MF = DAG.getMachineFunction();
915   MachineFrameInfo &MFI = MF.getFrameInfo();
916   MachineRegisterInfo &RegInfo = MF.getRegInfo();
917 
918   if (VA.isMemLoc()) {
919     // f64 is passed on the stack.
920     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
921     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
922     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
923                        MachinePointerInfo::getFixedStack(MF, FI));
924   }
925 
926   assert(VA.isRegLoc() && "Expected register VA assignment");
927 
928   unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
929   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
930   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
931   SDValue Hi;
932   if (VA.getLocReg() == RISCV::X17) {
933     // Second half of f64 is passed on the stack.
934     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
935     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
936     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
937                      MachinePointerInfo::getFixedStack(MF, FI));
938   } else {
939     // Second half of f64 is passed in another GPR.
940     unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
941     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
942     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
943   }
944   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
945 }
946 
947 // Transform physical registers into virtual registers.
948 SDValue RISCVTargetLowering::LowerFormalArguments(
949     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
950     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
951     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
952 
953   switch (CallConv) {
954   default:
955     report_fatal_error("Unsupported calling convention");
956   case CallingConv::C:
957   case CallingConv::Fast:
958     break;
959   }
960 
961   MachineFunction &MF = DAG.getMachineFunction();
962   EVT PtrVT = getPointerTy(DAG.getDataLayout());
963   MVT XLenVT = Subtarget.getXLenVT();
964   unsigned XLenInBytes = Subtarget.getXLen() / 8;
965   // Used with vargs to acumulate store chains.
966   std::vector<SDValue> OutChains;
967 
968   // Assign locations to all of the incoming arguments.
969   SmallVector<CCValAssign, 16> ArgLocs;
970   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
971   analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
972 
973   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
974     CCValAssign &VA = ArgLocs[i];
975     assert(VA.getLocVT() == XLenVT && "Unhandled argument type");
976     SDValue ArgValue;
977     // Passing f64 on RV32D with a soft float ABI must be handled as a special
978     // case.
979     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
980       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
981     else if (VA.isRegLoc())
982       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
983     else
984       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
985 
986     if (VA.getLocInfo() == CCValAssign::Indirect) {
987       // If the original argument was split and passed by reference (e.g. i128
988       // on RV32), we need to load all parts of it here (using the same
989       // address).
990       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
991                                    MachinePointerInfo()));
992       unsigned ArgIndex = Ins[i].OrigArgIndex;
993       assert(Ins[i].PartOffset == 0);
994       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
995         CCValAssign &PartVA = ArgLocs[i + 1];
996         unsigned PartOffset = Ins[i + 1].PartOffset;
997         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
998                                       DAG.getIntPtrConstant(PartOffset, DL));
999         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1000                                      MachinePointerInfo()));
1001         ++i;
1002       }
1003       continue;
1004     }
1005     InVals.push_back(ArgValue);
1006   }
1007 
1008   if (IsVarArg) {
1009     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1010     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1011     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1012     MachineFrameInfo &MFI = MF.getFrameInfo();
1013     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1014     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1015 
1016     // Offset of the first variable argument from stack pointer, and size of
1017     // the vararg save area. For now, the varargs save area is either zero or
1018     // large enough to hold a0-a7.
1019     int VaArgOffset, VarArgsSaveSize;
1020 
1021     // If all registers are allocated, then all varargs must be passed on the
1022     // stack and we don't need to save any argregs.
1023     if (ArgRegs.size() == Idx) {
1024       VaArgOffset = CCInfo.getNextStackOffset();
1025       VarArgsSaveSize = 0;
1026     } else {
1027       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1028       VaArgOffset = -VarArgsSaveSize;
1029     }
1030 
1031     // Record the frame index of the first variable argument
1032     // which is a value necessary to VASTART.
1033     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1034     RVFI->setVarArgsFrameIndex(FI);
1035 
1036     // If saving an odd number of registers then create an extra stack slot to
1037     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1038     // offsets to even-numbered registered remain 2*XLEN-aligned.
1039     if (Idx % 2) {
1040       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
1041                                  true);
1042       VarArgsSaveSize += XLenInBytes;
1043     }
1044 
1045     // Copy the integer registers that may have been used for passing varargs
1046     // to the vararg save area.
1047     for (unsigned I = Idx; I < ArgRegs.size();
1048          ++I, VaArgOffset += XLenInBytes) {
1049       const unsigned Reg = RegInfo.createVirtualRegister(RC);
1050       RegInfo.addLiveIn(ArgRegs[I], Reg);
1051       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1052       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1053       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1054       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
1055                                    MachinePointerInfo::getFixedStack(MF, FI));
1056       cast<StoreSDNode>(Store.getNode())
1057           ->getMemOperand()
1058           ->setValue((Value *)nullptr);
1059       OutChains.push_back(Store);
1060     }
1061     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
1062   }
1063 
1064   // All stores are grouped in one node to allow the matching between
1065   // the size of Ins and InVals. This only happens for vararg functions.
1066   if (!OutChains.empty()) {
1067     OutChains.push_back(Chain);
1068     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
1069   }
1070 
1071   return Chain;
1072 }
1073 
1074 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
1075 // and output parameter nodes.
1076 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
1077                                        SmallVectorImpl<SDValue> &InVals) const {
1078   SelectionDAG &DAG = CLI.DAG;
1079   SDLoc &DL = CLI.DL;
1080   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1081   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1082   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1083   SDValue Chain = CLI.Chain;
1084   SDValue Callee = CLI.Callee;
1085   CLI.IsTailCall = false;
1086   CallingConv::ID CallConv = CLI.CallConv;
1087   bool IsVarArg = CLI.IsVarArg;
1088   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1089   MVT XLenVT = Subtarget.getXLenVT();
1090 
1091   MachineFunction &MF = DAG.getMachineFunction();
1092 
1093   // Analyze the operands of the call, assigning locations to each operand.
1094   SmallVector<CCValAssign, 16> ArgLocs;
1095   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1096   analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
1097 
1098   // Get a count of how many bytes are to be pushed on the stack.
1099   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1100 
1101   // Create local copies for byval args
1102   SmallVector<SDValue, 8> ByValArgs;
1103   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1104     ISD::ArgFlagsTy Flags = Outs[i].Flags;
1105     if (!Flags.isByVal())
1106       continue;
1107 
1108     SDValue Arg = OutVals[i];
1109     unsigned Size = Flags.getByValSize();
1110     unsigned Align = Flags.getByValAlign();
1111 
1112     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
1113     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1114     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
1115 
1116     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
1117                           /*IsVolatile=*/false,
1118                           /*AlwaysInline=*/false,
1119                           /*isTailCall=*/false, MachinePointerInfo(),
1120                           MachinePointerInfo());
1121     ByValArgs.push_back(FIPtr);
1122   }
1123 
1124   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
1125 
1126   // Copy argument values to their designated locations.
1127   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1128   SmallVector<SDValue, 8> MemOpChains;
1129   SDValue StackPtr;
1130   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
1131     CCValAssign &VA = ArgLocs[i];
1132     SDValue ArgValue = OutVals[i];
1133     ISD::ArgFlagsTy Flags = Outs[i].Flags;
1134 
1135     // Handle passing f64 on RV32D with a soft float ABI as a special case.
1136     bool IsF64OnRV32DSoftABI =
1137         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
1138     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
1139       SDValue SplitF64 = DAG.getNode(
1140           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
1141       SDValue Lo = SplitF64.getValue(0);
1142       SDValue Hi = SplitF64.getValue(1);
1143 
1144       unsigned RegLo = VA.getLocReg();
1145       RegsToPass.push_back(std::make_pair(RegLo, Lo));
1146 
1147       if (RegLo == RISCV::X17) {
1148         // Second half of f64 is passed on the stack.
1149         // Work out the address of the stack slot.
1150         if (!StackPtr.getNode())
1151           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
1152         // Emit the store.
1153         MemOpChains.push_back(
1154             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
1155       } else {
1156         // Second half of f64 is passed in another GPR.
1157         unsigned RegHigh = RegLo + 1;
1158         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
1159       }
1160       continue;
1161     }
1162 
1163     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
1164     // as any other MemLoc.
1165 
1166     // Promote the value if needed.
1167     // For now, only handle fully promoted and indirect arguments.
1168     switch (VA.getLocInfo()) {
1169     case CCValAssign::Full:
1170       break;
1171     case CCValAssign::BCvt:
1172       ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), ArgValue);
1173       break;
1174     case CCValAssign::Indirect: {
1175       // Store the argument in a stack slot and pass its address.
1176       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
1177       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1178       MemOpChains.push_back(
1179           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1180                        MachinePointerInfo::getFixedStack(MF, FI)));
1181       // If the original argument was split (e.g. i128), we need
1182       // to store all parts of it here (and pass just one address).
1183       unsigned ArgIndex = Outs[i].OrigArgIndex;
1184       assert(Outs[i].PartOffset == 0);
1185       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
1186         SDValue PartValue = OutVals[i + 1];
1187         unsigned PartOffset = Outs[i + 1].PartOffset;
1188         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1189                                       DAG.getIntPtrConstant(PartOffset, DL));
1190         MemOpChains.push_back(
1191             DAG.getStore(Chain, DL, PartValue, Address,
1192                          MachinePointerInfo::getFixedStack(MF, FI)));
1193         ++i;
1194       }
1195       ArgValue = SpillSlot;
1196       break;
1197     }
1198     default:
1199       llvm_unreachable("Unknown loc info!");
1200     }
1201 
1202     // Use local copy if it is a byval arg.
1203     if (Flags.isByVal())
1204       ArgValue = ByValArgs[j++];
1205 
1206     if (VA.isRegLoc()) {
1207       // Queue up the argument copies and emit them at the end.
1208       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1209     } else {
1210       assert(VA.isMemLoc() && "Argument not register or memory");
1211 
1212       // Work out the address of the stack slot.
1213       if (!StackPtr.getNode())
1214         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
1215       SDValue Address =
1216           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1217                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
1218 
1219       // Emit the store.
1220       MemOpChains.push_back(
1221           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1222     }
1223   }
1224 
1225   // Join the stores, which are independent of one another.
1226   if (!MemOpChains.empty())
1227     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1228 
1229   SDValue Glue;
1230 
1231   // Build a sequence of copy-to-reg nodes, chained and glued together.
1232   for (auto &Reg : RegsToPass) {
1233     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
1234     Glue = Chain.getValue(1);
1235   }
1236 
1237   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
1238   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
1239   // split it and then direct call can be matched by PseudoCALL.
1240   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
1241     Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0);
1242   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1243     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0);
1244   }
1245 
1246   // The first call operand is the chain and the second is the target address.
1247   SmallVector<SDValue, 8> Ops;
1248   Ops.push_back(Chain);
1249   Ops.push_back(Callee);
1250 
1251   // Add argument registers to the end of the list so that they are
1252   // known live into the call.
1253   for (auto &Reg : RegsToPass)
1254     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1255 
1256   // Add a register mask operand representing the call-preserved registers.
1257   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1258   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1259   assert(Mask && "Missing call preserved mask for calling convention");
1260   Ops.push_back(DAG.getRegisterMask(Mask));
1261 
1262   // Glue the call to the argument copies, if any.
1263   if (Glue.getNode())
1264     Ops.push_back(Glue);
1265 
1266   // Emit the call.
1267   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1268   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
1269   Glue = Chain.getValue(1);
1270 
1271   // Mark the end of the call, which is glued to the call itself.
1272   Chain = DAG.getCALLSEQ_END(Chain,
1273                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1274                              DAG.getConstant(0, DL, PtrVT, true),
1275                              Glue, DL);
1276   Glue = Chain.getValue(1);
1277 
1278   // Assign locations to each value returned by this call.
1279   SmallVector<CCValAssign, 16> RVLocs;
1280   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
1281   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
1282 
1283   // Copy all of the result registers out of their specified physreg.
1284   for (auto &VA : RVLocs) {
1285     // Copy the value out
1286     SDValue RetValue =
1287         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
1288     // Glue the RetValue to the end of the call sequence
1289     Chain = RetValue.getValue(1);
1290     Glue = RetValue.getValue(2);
1291     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
1292       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
1293       SDValue RetValue2 =
1294           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
1295       Chain = RetValue2.getValue(1);
1296       Glue = RetValue2.getValue(2);
1297       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
1298                              RetValue2);
1299     }
1300 
1301     switch (VA.getLocInfo()) {
1302     default:
1303       llvm_unreachable("Unknown loc info!");
1304     case CCValAssign::Full:
1305       break;
1306     case CCValAssign::BCvt:
1307       RetValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), RetValue);
1308       break;
1309     }
1310 
1311     InVals.push_back(RetValue);
1312   }
1313 
1314   return Chain;
1315 }
1316 
1317 bool RISCVTargetLowering::CanLowerReturn(
1318     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
1319     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1320   SmallVector<CCValAssign, 16> RVLocs;
1321   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
1322   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1323     MVT VT = Outs[i].VT;
1324     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1325     if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
1326                  CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
1327       return false;
1328   }
1329   return true;
1330 }
1331 
1332 static SDValue packIntoRegLoc(SelectionDAG &DAG, SDValue Val,
1333                               const CCValAssign &VA, const SDLoc &DL) {
1334   EVT LocVT = VA.getLocVT();
1335 
1336   switch (VA.getLocInfo()) {
1337   default:
1338     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1339   case CCValAssign::Full:
1340     break;
1341   case CCValAssign::BCvt:
1342     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1343     break;
1344   }
1345   return Val;
1346 }
1347 
1348 SDValue
1349 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1350                                  bool IsVarArg,
1351                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1352                                  const SmallVectorImpl<SDValue> &OutVals,
1353                                  const SDLoc &DL, SelectionDAG &DAG) const {
1354   // Stores the assignment of the return value to a location.
1355   SmallVector<CCValAssign, 16> RVLocs;
1356 
1357   // Info about the registers and stack slot.
1358   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
1359                  *DAG.getContext());
1360 
1361   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
1362                     nullptr);
1363 
1364   SDValue Glue;
1365   SmallVector<SDValue, 4> RetOps(1, Chain);
1366 
1367   // Copy the result values into the output registers.
1368   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
1369     SDValue Val = OutVals[i];
1370     CCValAssign &VA = RVLocs[i];
1371     assert(VA.isRegLoc() && "Can only return in registers!");
1372 
1373     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
1374       // Handle returning f64 on RV32D with a soft float ABI.
1375       assert(VA.isRegLoc() && "Expected return via registers");
1376       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
1377                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
1378       SDValue Lo = SplitF64.getValue(0);
1379       SDValue Hi = SplitF64.getValue(1);
1380       unsigned RegLo = VA.getLocReg();
1381       unsigned RegHi = RegLo + 1;
1382       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
1383       Glue = Chain.getValue(1);
1384       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
1385       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
1386       Glue = Chain.getValue(1);
1387       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
1388     } else {
1389       // Handle a 'normal' return.
1390       Val = packIntoRegLoc(DAG, Val, VA, DL);
1391       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
1392 
1393       // Guarantee that all emitted copies are stuck together.
1394       Glue = Chain.getValue(1);
1395       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1396     }
1397   }
1398 
1399   RetOps[0] = Chain; // Update chain.
1400 
1401   // Add the glue node if we have it.
1402   if (Glue.getNode()) {
1403     RetOps.push_back(Glue);
1404   }
1405 
1406   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
1407 }
1408 
1409 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
1410   switch ((RISCVISD::NodeType)Opcode) {
1411   case RISCVISD::FIRST_NUMBER:
1412     break;
1413   case RISCVISD::RET_FLAG:
1414     return "RISCVISD::RET_FLAG";
1415   case RISCVISD::CALL:
1416     return "RISCVISD::CALL";
1417   case RISCVISD::SELECT_CC:
1418     return "RISCVISD::SELECT_CC";
1419   case RISCVISD::BuildPairF64:
1420     return "RISCVISD::BuildPairF64";
1421   case RISCVISD::SplitF64:
1422     return "RISCVISD::SplitF64";
1423   }
1424   return nullptr;
1425 }
1426 
1427 std::pair<unsigned, const TargetRegisterClass *>
1428 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1429                                                   StringRef Constraint,
1430                                                   MVT VT) const {
1431   // First, see if this is a constraint that directly corresponds to a
1432   // RISCV register class.
1433   if (Constraint.size() == 1) {
1434     switch (Constraint[0]) {
1435     case 'r':
1436       return std::make_pair(0U, &RISCV::GPRRegClass);
1437     default:
1438       break;
1439     }
1440   }
1441 
1442   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1443 }
1444