1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT,      ISD::VP_FPTOSI,
494         ISD::VP_FPTOUI};
495 
496     static const unsigned FloatingPointVPOps[] = {
497         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
498         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
499         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
500         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT,
501         ISD::VP_SITOFP,      ISD::VP_UITOFP};
502 
503     if (!Subtarget.is64Bit()) {
504       // We must custom-lower certain vXi64 operations on RV32 due to the vector
505       // element type being illegal.
506       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
507       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
508 
509       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
515       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
516       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
517 
518       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
524       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
525       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
526     }
527 
528     for (MVT VT : BoolVecVTs) {
529       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
530 
531       // Mask VTs are custom-expanded into a series of standard nodes
532       setOperationAction(ISD::TRUNCATE, VT, Custom);
533       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
534       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
535       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
536 
537       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
538       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
539 
540       setOperationAction(ISD::SELECT, VT, Custom);
541       setOperationAction(ISD::SELECT_CC, VT, Expand);
542       setOperationAction(ISD::VSELECT, VT, Expand);
543       setOperationAction(ISD::VP_MERGE, VT, Expand);
544       setOperationAction(ISD::VP_SELECT, VT, Expand);
545 
546       setOperationAction(ISD::VP_AND, VT, Custom);
547       setOperationAction(ISD::VP_OR, VT, Custom);
548       setOperationAction(ISD::VP_XOR, VT, Custom);
549 
550       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
551       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
552       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
553 
554       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
555       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
556       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
557 
558       // RVV has native int->float & float->int conversions where the
559       // element type sizes are within one power-of-two of each other. Any
560       // wider distances between type sizes have to be lowered as sequences
561       // which progressively narrow the gap in stages.
562       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
563       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
564       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
565       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
566 
567       // Expand all extending loads to types larger than this, and truncating
568       // stores from types larger than this.
569       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
570         setTruncStoreAction(OtherVT, VT, Expand);
571         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
572         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
573         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
574       }
575 
576       setOperationAction(ISD::VP_FPTOSI, VT, Custom);
577       setOperationAction(ISD::VP_FPTOUI, VT, Custom);
578     }
579 
580     for (MVT VT : IntVecVTs) {
581       if (VT.getVectorElementType() == MVT::i64 &&
582           !Subtarget.hasVInstructionsI64())
583         continue;
584 
585       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
586       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
587 
588       // Vectors implement MULHS/MULHU.
589       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
590       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
591 
592       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
593       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
594         setOperationAction(ISD::MULHU, VT, Expand);
595         setOperationAction(ISD::MULHS, VT, Expand);
596       }
597 
598       setOperationAction(ISD::SMIN, VT, Legal);
599       setOperationAction(ISD::SMAX, VT, Legal);
600       setOperationAction(ISD::UMIN, VT, Legal);
601       setOperationAction(ISD::UMAX, VT, Legal);
602 
603       setOperationAction(ISD::ROTL, VT, Expand);
604       setOperationAction(ISD::ROTR, VT, Expand);
605 
606       setOperationAction(ISD::CTTZ, VT, Expand);
607       setOperationAction(ISD::CTLZ, VT, Expand);
608       setOperationAction(ISD::CTPOP, VT, Expand);
609 
610       setOperationAction(ISD::BSWAP, VT, Expand);
611 
612       // Custom-lower extensions and truncations from/to mask types.
613       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
614       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
615       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
616 
617       // RVV has native int->float & float->int conversions where the
618       // element type sizes are within one power-of-two of each other. Any
619       // wider distances between type sizes have to be lowered as sequences
620       // which progressively narrow the gap in stages.
621       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
622       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
623       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
624       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
625 
626       setOperationAction(ISD::SADDSAT, VT, Legal);
627       setOperationAction(ISD::UADDSAT, VT, Legal);
628       setOperationAction(ISD::SSUBSAT, VT, Legal);
629       setOperationAction(ISD::USUBSAT, VT, Legal);
630 
631       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
632       // nodes which truncate by one power of two at a time.
633       setOperationAction(ISD::TRUNCATE, VT, Custom);
634 
635       // Custom-lower insert/extract operations to simplify patterns.
636       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
637       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
638 
639       // Custom-lower reduction operations to set up the corresponding custom
640       // nodes' operands.
641       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
644       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
645       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
646       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
647       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
648       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
649 
650       for (unsigned VPOpc : IntegerVPOps)
651         setOperationAction(VPOpc, VT, Custom);
652 
653       setOperationAction(ISD::LOAD, VT, Custom);
654       setOperationAction(ISD::STORE, VT, Custom);
655 
656       setOperationAction(ISD::MLOAD, VT, Custom);
657       setOperationAction(ISD::MSTORE, VT, Custom);
658       setOperationAction(ISD::MGATHER, VT, Custom);
659       setOperationAction(ISD::MSCATTER, VT, Custom);
660 
661       setOperationAction(ISD::VP_LOAD, VT, Custom);
662       setOperationAction(ISD::VP_STORE, VT, Custom);
663       setOperationAction(ISD::VP_GATHER, VT, Custom);
664       setOperationAction(ISD::VP_SCATTER, VT, Custom);
665 
666       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
667       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
668       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
669 
670       setOperationAction(ISD::SELECT, VT, Custom);
671       setOperationAction(ISD::SELECT_CC, VT, Expand);
672 
673       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
674       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
675 
676       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
677         setTruncStoreAction(VT, OtherVT, Expand);
678         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
679         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
680         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
681       }
682 
683       // Splice
684       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
685 
686       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
687       // type that can represent the value exactly.
688       if (VT.getVectorElementType() != MVT::i64) {
689         MVT FloatEltVT =
690             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
691         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
692         if (isTypeLegal(FloatVT)) {
693           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
694           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
695         }
696       }
697     }
698 
699     // Expand various CCs to best match the RVV ISA, which natively supports UNE
700     // but no other unordered comparisons, and supports all ordered comparisons
701     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
702     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
703     // and we pattern-match those back to the "original", swapping operands once
704     // more. This way we catch both operations and both "vf" and "fv" forms with
705     // fewer patterns.
706     static const ISD::CondCode VFPCCToExpand[] = {
707         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
708         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
709         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
710     };
711 
712     // Sets common operation actions on RVV floating-point vector types.
713     const auto SetCommonVFPActions = [&](MVT VT) {
714       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
715       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
716       // sizes are within one power-of-two of each other. Therefore conversions
717       // between vXf16 and vXf64 must be lowered as sequences which convert via
718       // vXf32.
719       setOperationAction(ISD::FP_ROUND, VT, Custom);
720       setOperationAction(ISD::FP_EXTEND, VT, Custom);
721       // Custom-lower insert/extract operations to simplify patterns.
722       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
723       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
724       // Expand various condition codes (explained above).
725       for (auto CC : VFPCCToExpand)
726         setCondCodeAction(CC, VT, Expand);
727 
728       setOperationAction(ISD::FMINNUM, VT, Legal);
729       setOperationAction(ISD::FMAXNUM, VT, Legal);
730 
731       setOperationAction(ISD::FTRUNC, VT, Custom);
732       setOperationAction(ISD::FCEIL, VT, Custom);
733       setOperationAction(ISD::FFLOOR, VT, Custom);
734       setOperationAction(ISD::FROUND, VT, Custom);
735 
736       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
737       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
738       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
739       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
740 
741       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
742 
743       setOperationAction(ISD::LOAD, VT, Custom);
744       setOperationAction(ISD::STORE, VT, Custom);
745 
746       setOperationAction(ISD::MLOAD, VT, Custom);
747       setOperationAction(ISD::MSTORE, VT, Custom);
748       setOperationAction(ISD::MGATHER, VT, Custom);
749       setOperationAction(ISD::MSCATTER, VT, Custom);
750 
751       setOperationAction(ISD::VP_LOAD, VT, Custom);
752       setOperationAction(ISD::VP_STORE, VT, Custom);
753       setOperationAction(ISD::VP_GATHER, VT, Custom);
754       setOperationAction(ISD::VP_SCATTER, VT, Custom);
755 
756       setOperationAction(ISD::SELECT, VT, Custom);
757       setOperationAction(ISD::SELECT_CC, VT, Expand);
758 
759       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
760       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
761       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
762 
763       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
764       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
765 
766       for (unsigned VPOpc : FloatingPointVPOps)
767         setOperationAction(VPOpc, VT, Custom);
768     };
769 
770     // Sets common extload/truncstore actions on RVV floating-point vector
771     // types.
772     const auto SetCommonVFPExtLoadTruncStoreActions =
773         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
774           for (auto SmallVT : SmallerVTs) {
775             setTruncStoreAction(VT, SmallVT, Expand);
776             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
777           }
778         };
779 
780     if (Subtarget.hasVInstructionsF16())
781       for (MVT VT : F16VecVTs)
782         SetCommonVFPActions(VT);
783 
784     for (MVT VT : F32VecVTs) {
785       if (Subtarget.hasVInstructionsF32())
786         SetCommonVFPActions(VT);
787       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
788     }
789 
790     for (MVT VT : F64VecVTs) {
791       if (Subtarget.hasVInstructionsF64())
792         SetCommonVFPActions(VT);
793       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
794       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
795     }
796 
797     if (Subtarget.useRVVForFixedLengthVectors()) {
798       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
799         if (!useRVVForFixedLengthVectorVT(VT))
800           continue;
801 
802         // By default everything must be expanded.
803         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
804           setOperationAction(Op, VT, Expand);
805         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
806           setTruncStoreAction(VT, OtherVT, Expand);
807           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
808           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
809           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
810         }
811 
812         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
813         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
814         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
815 
816         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
817         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
818 
819         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
820         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
821 
822         setOperationAction(ISD::LOAD, VT, Custom);
823         setOperationAction(ISD::STORE, VT, Custom);
824 
825         setOperationAction(ISD::SETCC, VT, Custom);
826 
827         setOperationAction(ISD::SELECT, VT, Custom);
828 
829         setOperationAction(ISD::TRUNCATE, VT, Custom);
830 
831         setOperationAction(ISD::BITCAST, VT, Custom);
832 
833         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
834         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
835         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
836 
837         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
838         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
839         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
840 
841         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
842         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
843         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
844         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
845 
846         // Operations below are different for between masks and other vectors.
847         if (VT.getVectorElementType() == MVT::i1) {
848           setOperationAction(ISD::VP_AND, VT, Custom);
849           setOperationAction(ISD::VP_OR, VT, Custom);
850           setOperationAction(ISD::VP_XOR, VT, Custom);
851           setOperationAction(ISD::AND, VT, Custom);
852           setOperationAction(ISD::OR, VT, Custom);
853           setOperationAction(ISD::XOR, VT, Custom);
854 
855           setOperationAction(ISD::VP_FPTOSI, VT, Custom);
856           setOperationAction(ISD::VP_FPTOUI, VT, Custom);
857           continue;
858         }
859 
860         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
861         // it before type legalization for i64 vectors on RV32. It will then be
862         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
863         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
864         // improvements first.
865         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
866           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
867           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
868         }
869 
870         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
871         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
872 
873         setOperationAction(ISD::MLOAD, VT, Custom);
874         setOperationAction(ISD::MSTORE, VT, Custom);
875         setOperationAction(ISD::MGATHER, VT, Custom);
876         setOperationAction(ISD::MSCATTER, VT, Custom);
877 
878         setOperationAction(ISD::VP_LOAD, VT, Custom);
879         setOperationAction(ISD::VP_STORE, VT, Custom);
880         setOperationAction(ISD::VP_GATHER, VT, Custom);
881         setOperationAction(ISD::VP_SCATTER, VT, Custom);
882 
883         setOperationAction(ISD::ADD, VT, Custom);
884         setOperationAction(ISD::MUL, VT, Custom);
885         setOperationAction(ISD::SUB, VT, Custom);
886         setOperationAction(ISD::AND, VT, Custom);
887         setOperationAction(ISD::OR, VT, Custom);
888         setOperationAction(ISD::XOR, VT, Custom);
889         setOperationAction(ISD::SDIV, VT, Custom);
890         setOperationAction(ISD::SREM, VT, Custom);
891         setOperationAction(ISD::UDIV, VT, Custom);
892         setOperationAction(ISD::UREM, VT, Custom);
893         setOperationAction(ISD::SHL, VT, Custom);
894         setOperationAction(ISD::SRA, VT, Custom);
895         setOperationAction(ISD::SRL, VT, Custom);
896 
897         setOperationAction(ISD::SMIN, VT, Custom);
898         setOperationAction(ISD::SMAX, VT, Custom);
899         setOperationAction(ISD::UMIN, VT, Custom);
900         setOperationAction(ISD::UMAX, VT, Custom);
901         setOperationAction(ISD::ABS,  VT, Custom);
902 
903         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
904         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
905           setOperationAction(ISD::MULHS, VT, Custom);
906           setOperationAction(ISD::MULHU, VT, Custom);
907         }
908 
909         setOperationAction(ISD::SADDSAT, VT, Custom);
910         setOperationAction(ISD::UADDSAT, VT, Custom);
911         setOperationAction(ISD::SSUBSAT, VT, Custom);
912         setOperationAction(ISD::USUBSAT, VT, Custom);
913 
914         setOperationAction(ISD::VSELECT, VT, Custom);
915         setOperationAction(ISD::SELECT_CC, VT, Expand);
916 
917         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
918         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
919         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
920 
921         // Custom-lower reduction operations to set up the corresponding custom
922         // nodes' operands.
923         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
924         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
925         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
926         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
927         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
928 
929         for (unsigned VPOpc : IntegerVPOps)
930           setOperationAction(VPOpc, VT, Custom);
931 
932         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
933         // type that can represent the value exactly.
934         if (VT.getVectorElementType() != MVT::i64) {
935           MVT FloatEltVT =
936               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
937           EVT FloatVT =
938               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
939           if (isTypeLegal(FloatVT)) {
940             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
941             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
942           }
943         }
944       }
945 
946       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
947         if (!useRVVForFixedLengthVectorVT(VT))
948           continue;
949 
950         // By default everything must be expanded.
951         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
952           setOperationAction(Op, VT, Expand);
953         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
954           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
955           setTruncStoreAction(VT, OtherVT, Expand);
956         }
957 
958         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
959         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
960         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
961 
962         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
963         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
964         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
965         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
966         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
967 
968         setOperationAction(ISD::LOAD, VT, Custom);
969         setOperationAction(ISD::STORE, VT, Custom);
970         setOperationAction(ISD::MLOAD, VT, Custom);
971         setOperationAction(ISD::MSTORE, VT, Custom);
972         setOperationAction(ISD::MGATHER, VT, Custom);
973         setOperationAction(ISD::MSCATTER, VT, Custom);
974 
975         setOperationAction(ISD::VP_LOAD, VT, Custom);
976         setOperationAction(ISD::VP_STORE, VT, Custom);
977         setOperationAction(ISD::VP_GATHER, VT, Custom);
978         setOperationAction(ISD::VP_SCATTER, VT, Custom);
979 
980         setOperationAction(ISD::FADD, VT, Custom);
981         setOperationAction(ISD::FSUB, VT, Custom);
982         setOperationAction(ISD::FMUL, VT, Custom);
983         setOperationAction(ISD::FDIV, VT, Custom);
984         setOperationAction(ISD::FNEG, VT, Custom);
985         setOperationAction(ISD::FABS, VT, Custom);
986         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
987         setOperationAction(ISD::FSQRT, VT, Custom);
988         setOperationAction(ISD::FMA, VT, Custom);
989         setOperationAction(ISD::FMINNUM, VT, Custom);
990         setOperationAction(ISD::FMAXNUM, VT, Custom);
991 
992         setOperationAction(ISD::FP_ROUND, VT, Custom);
993         setOperationAction(ISD::FP_EXTEND, VT, Custom);
994 
995         setOperationAction(ISD::FTRUNC, VT, Custom);
996         setOperationAction(ISD::FCEIL, VT, Custom);
997         setOperationAction(ISD::FFLOOR, VT, Custom);
998         setOperationAction(ISD::FROUND, VT, Custom);
999 
1000         for (auto CC : VFPCCToExpand)
1001           setCondCodeAction(CC, VT, Expand);
1002 
1003         setOperationAction(ISD::VSELECT, VT, Custom);
1004         setOperationAction(ISD::SELECT, VT, Custom);
1005         setOperationAction(ISD::SELECT_CC, VT, Expand);
1006 
1007         setOperationAction(ISD::BITCAST, VT, Custom);
1008 
1009         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1010         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1011         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1012         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1013 
1014         for (unsigned VPOpc : FloatingPointVPOps)
1015           setOperationAction(VPOpc, VT, Custom);
1016       }
1017 
1018       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1019       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1020       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1021       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1022       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1023       if (Subtarget.hasStdExtZfh())
1024         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1025       if (Subtarget.hasStdExtF())
1026         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1027       if (Subtarget.hasStdExtD())
1028         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1029     }
1030   }
1031 
1032   // Function alignments.
1033   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1034   setMinFunctionAlignment(FunctionAlignment);
1035   setPrefFunctionAlignment(FunctionAlignment);
1036 
1037   setMinimumJumpTableEntries(5);
1038 
1039   // Jumps are expensive, compared to logic
1040   setJumpIsExpensive();
1041 
1042   setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
1043                        ISD::OR, ISD::XOR});
1044 
1045   if (Subtarget.hasStdExtZbp())
1046     setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
1047   if (Subtarget.hasStdExtZbkb())
1048     setTargetDAGCombine(ISD::BITREVERSE);
1049   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1050     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1051   if (Subtarget.hasStdExtF())
1052     setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
1053                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
1054   if (Subtarget.hasVInstructions())
1055     setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
1056                          ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
1057                          ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
1058 
1059   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1060   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1061 }
1062 
1063 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1064                                             LLVMContext &Context,
1065                                             EVT VT) const {
1066   if (!VT.isVector())
1067     return getPointerTy(DL);
1068   if (Subtarget.hasVInstructions() &&
1069       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1070     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1071   return VT.changeVectorElementTypeToInteger();
1072 }
1073 
1074 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1075   return Subtarget.getXLenVT();
1076 }
1077 
1078 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1079                                              const CallInst &I,
1080                                              MachineFunction &MF,
1081                                              unsigned Intrinsic) const {
1082   auto &DL = I.getModule()->getDataLayout();
1083   switch (Intrinsic) {
1084   default:
1085     return false;
1086   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1087   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1088   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1089   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1090   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1091   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1092   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1093   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1094   case Intrinsic::riscv_masked_cmpxchg_i32:
1095     Info.opc = ISD::INTRINSIC_W_CHAIN;
1096     Info.memVT = MVT::i32;
1097     Info.ptrVal = I.getArgOperand(0);
1098     Info.offset = 0;
1099     Info.align = Align(4);
1100     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1101                  MachineMemOperand::MOVolatile;
1102     return true;
1103   case Intrinsic::riscv_masked_strided_load:
1104     Info.opc = ISD::INTRINSIC_W_CHAIN;
1105     Info.ptrVal = I.getArgOperand(1);
1106     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1107     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1108     Info.size = MemoryLocation::UnknownSize;
1109     Info.flags |= MachineMemOperand::MOLoad;
1110     return true;
1111   case Intrinsic::riscv_masked_strided_store:
1112     Info.opc = ISD::INTRINSIC_VOID;
1113     Info.ptrVal = I.getArgOperand(1);
1114     Info.memVT =
1115         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1116     Info.align = Align(
1117         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1118         8);
1119     Info.size = MemoryLocation::UnknownSize;
1120     Info.flags |= MachineMemOperand::MOStore;
1121     return true;
1122   case Intrinsic::riscv_seg2_load:
1123   case Intrinsic::riscv_seg3_load:
1124   case Intrinsic::riscv_seg4_load:
1125   case Intrinsic::riscv_seg5_load:
1126   case Intrinsic::riscv_seg6_load:
1127   case Intrinsic::riscv_seg7_load:
1128   case Intrinsic::riscv_seg8_load:
1129     Info.opc = ISD::INTRINSIC_W_CHAIN;
1130     Info.ptrVal = I.getArgOperand(0);
1131     Info.memVT =
1132         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1133     Info.align =
1134         Align(DL.getTypeSizeInBits(
1135                   I.getType()->getStructElementType(0)->getScalarType()) /
1136               8);
1137     Info.size = MemoryLocation::UnknownSize;
1138     Info.flags |= MachineMemOperand::MOLoad;
1139     return true;
1140   }
1141 }
1142 
1143 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1144                                                 const AddrMode &AM, Type *Ty,
1145                                                 unsigned AS,
1146                                                 Instruction *I) const {
1147   // No global is ever allowed as a base.
1148   if (AM.BaseGV)
1149     return false;
1150 
1151   // Require a 12-bit signed offset.
1152   if (!isInt<12>(AM.BaseOffs))
1153     return false;
1154 
1155   switch (AM.Scale) {
1156   case 0: // "r+i" or just "i", depending on HasBaseReg.
1157     break;
1158   case 1:
1159     if (!AM.HasBaseReg) // allow "r+i".
1160       break;
1161     return false; // disallow "r+r" or "r+r+i".
1162   default:
1163     return false;
1164   }
1165 
1166   return true;
1167 }
1168 
1169 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1170   return isInt<12>(Imm);
1171 }
1172 
1173 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1174   return isInt<12>(Imm);
1175 }
1176 
1177 // On RV32, 64-bit integers are split into their high and low parts and held
1178 // in two different registers, so the trunc is free since the low register can
1179 // just be used.
1180 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1181   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1182     return false;
1183   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1184   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1185   return (SrcBits == 64 && DestBits == 32);
1186 }
1187 
1188 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1189   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1190       !SrcVT.isInteger() || !DstVT.isInteger())
1191     return false;
1192   unsigned SrcBits = SrcVT.getSizeInBits();
1193   unsigned DestBits = DstVT.getSizeInBits();
1194   return (SrcBits == 64 && DestBits == 32);
1195 }
1196 
1197 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1198   // Zexts are free if they can be combined with a load.
1199   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1200   // poorly with type legalization of compares preferring sext.
1201   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1202     EVT MemVT = LD->getMemoryVT();
1203     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1204         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1205          LD->getExtensionType() == ISD::ZEXTLOAD))
1206       return true;
1207   }
1208 
1209   return TargetLowering::isZExtFree(Val, VT2);
1210 }
1211 
1212 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1213   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1214 }
1215 
1216 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1217   return Subtarget.hasStdExtZbb();
1218 }
1219 
1220 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1221   return Subtarget.hasStdExtZbb();
1222 }
1223 
1224 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1225   EVT VT = Y.getValueType();
1226 
1227   // FIXME: Support vectors once we have tests.
1228   if (VT.isVector())
1229     return false;
1230 
1231   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1232           Subtarget.hasStdExtZbkb()) &&
1233          !isa<ConstantSDNode>(Y);
1234 }
1235 
1236 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1237   // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1238   auto *C = dyn_cast<ConstantSDNode>(Y);
1239   return C && C->getAPIntValue().ule(10);
1240 }
1241 
1242 /// Check if sinking \p I's operands to I's basic block is profitable, because
1243 /// the operands can be folded into a target instruction, e.g.
1244 /// splats of scalars can fold into vector instructions.
1245 bool RISCVTargetLowering::shouldSinkOperands(
1246     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1247   using namespace llvm::PatternMatch;
1248 
1249   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1250     return false;
1251 
1252   auto IsSinker = [&](Instruction *I, int Operand) {
1253     switch (I->getOpcode()) {
1254     case Instruction::Add:
1255     case Instruction::Sub:
1256     case Instruction::Mul:
1257     case Instruction::And:
1258     case Instruction::Or:
1259     case Instruction::Xor:
1260     case Instruction::FAdd:
1261     case Instruction::FSub:
1262     case Instruction::FMul:
1263     case Instruction::FDiv:
1264     case Instruction::ICmp:
1265     case Instruction::FCmp:
1266       return true;
1267     case Instruction::Shl:
1268     case Instruction::LShr:
1269     case Instruction::AShr:
1270     case Instruction::UDiv:
1271     case Instruction::SDiv:
1272     case Instruction::URem:
1273     case Instruction::SRem:
1274       return Operand == 1;
1275     case Instruction::Call:
1276       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1277         switch (II->getIntrinsicID()) {
1278         case Intrinsic::fma:
1279         case Intrinsic::vp_fma:
1280           return Operand == 0 || Operand == 1;
1281         // FIXME: Our patterns can only match vx/vf instructions when the splat
1282         // it on the RHS, because TableGen doesn't recognize our VP operations
1283         // as commutative.
1284         case Intrinsic::vp_add:
1285         case Intrinsic::vp_mul:
1286         case Intrinsic::vp_and:
1287         case Intrinsic::vp_or:
1288         case Intrinsic::vp_xor:
1289         case Intrinsic::vp_fadd:
1290         case Intrinsic::vp_fmul:
1291         case Intrinsic::vp_shl:
1292         case Intrinsic::vp_lshr:
1293         case Intrinsic::vp_ashr:
1294         case Intrinsic::vp_udiv:
1295         case Intrinsic::vp_sdiv:
1296         case Intrinsic::vp_urem:
1297         case Intrinsic::vp_srem:
1298           return Operand == 1;
1299         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1300         // explicit patterns for both LHS and RHS (as 'vr' versions).
1301         case Intrinsic::vp_sub:
1302         case Intrinsic::vp_fsub:
1303         case Intrinsic::vp_fdiv:
1304           return Operand == 0 || Operand == 1;
1305         default:
1306           return false;
1307         }
1308       }
1309       return false;
1310     default:
1311       return false;
1312     }
1313   };
1314 
1315   for (auto OpIdx : enumerate(I->operands())) {
1316     if (!IsSinker(I, OpIdx.index()))
1317       continue;
1318 
1319     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1320     // Make sure we are not already sinking this operand
1321     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1322       continue;
1323 
1324     // We are looking for a splat that can be sunk.
1325     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1326                              m_Undef(), m_ZeroMask())))
1327       continue;
1328 
1329     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1330     // and vector registers
1331     for (Use &U : Op->uses()) {
1332       Instruction *Insn = cast<Instruction>(U.getUser());
1333       if (!IsSinker(Insn, U.getOperandNo()))
1334         return false;
1335     }
1336 
1337     Ops.push_back(&Op->getOperandUse(0));
1338     Ops.push_back(&OpIdx.value());
1339   }
1340   return true;
1341 }
1342 
1343 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1344                                        bool ForCodeSize) const {
1345   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1346   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1347     return false;
1348   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1349     return false;
1350   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1351     return false;
1352   return Imm.isZero();
1353 }
1354 
1355 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1356   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1357          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1358          (VT == MVT::f64 && Subtarget.hasStdExtD());
1359 }
1360 
1361 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1362                                                       CallingConv::ID CC,
1363                                                       EVT VT) const {
1364   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1365   // We might still end up using a GPR but that will be decided based on ABI.
1366   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1367   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1368     return MVT::f32;
1369 
1370   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1371 }
1372 
1373 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1374                                                            CallingConv::ID CC,
1375                                                            EVT VT) const {
1376   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1377   // We might still end up using a GPR but that will be decided based on ABI.
1378   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1379   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1380     return 1;
1381 
1382   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1383 }
1384 
1385 // Changes the condition code and swaps operands if necessary, so the SetCC
1386 // operation matches one of the comparisons supported directly by branches
1387 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1388 // with 1/-1.
1389 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1390                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1391   // Convert X > -1 to X >= 0.
1392   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1393     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1394     CC = ISD::SETGE;
1395     return;
1396   }
1397   // Convert X < 1 to 0 >= X.
1398   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1399     RHS = LHS;
1400     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1401     CC = ISD::SETGE;
1402     return;
1403   }
1404 
1405   switch (CC) {
1406   default:
1407     break;
1408   case ISD::SETGT:
1409   case ISD::SETLE:
1410   case ISD::SETUGT:
1411   case ISD::SETULE:
1412     CC = ISD::getSetCCSwappedOperands(CC);
1413     std::swap(LHS, RHS);
1414     break;
1415   }
1416 }
1417 
1418 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1419   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1420   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1421   if (VT.getVectorElementType() == MVT::i1)
1422     KnownSize *= 8;
1423 
1424   switch (KnownSize) {
1425   default:
1426     llvm_unreachable("Invalid LMUL.");
1427   case 8:
1428     return RISCVII::VLMUL::LMUL_F8;
1429   case 16:
1430     return RISCVII::VLMUL::LMUL_F4;
1431   case 32:
1432     return RISCVII::VLMUL::LMUL_F2;
1433   case 64:
1434     return RISCVII::VLMUL::LMUL_1;
1435   case 128:
1436     return RISCVII::VLMUL::LMUL_2;
1437   case 256:
1438     return RISCVII::VLMUL::LMUL_4;
1439   case 512:
1440     return RISCVII::VLMUL::LMUL_8;
1441   }
1442 }
1443 
1444 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1445   switch (LMul) {
1446   default:
1447     llvm_unreachable("Invalid LMUL.");
1448   case RISCVII::VLMUL::LMUL_F8:
1449   case RISCVII::VLMUL::LMUL_F4:
1450   case RISCVII::VLMUL::LMUL_F2:
1451   case RISCVII::VLMUL::LMUL_1:
1452     return RISCV::VRRegClassID;
1453   case RISCVII::VLMUL::LMUL_2:
1454     return RISCV::VRM2RegClassID;
1455   case RISCVII::VLMUL::LMUL_4:
1456     return RISCV::VRM4RegClassID;
1457   case RISCVII::VLMUL::LMUL_8:
1458     return RISCV::VRM8RegClassID;
1459   }
1460 }
1461 
1462 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1463   RISCVII::VLMUL LMUL = getLMUL(VT);
1464   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1465       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1466       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1467       LMUL == RISCVII::VLMUL::LMUL_1) {
1468     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1469                   "Unexpected subreg numbering");
1470     return RISCV::sub_vrm1_0 + Index;
1471   }
1472   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1473     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1474                   "Unexpected subreg numbering");
1475     return RISCV::sub_vrm2_0 + Index;
1476   }
1477   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1478     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1479                   "Unexpected subreg numbering");
1480     return RISCV::sub_vrm4_0 + Index;
1481   }
1482   llvm_unreachable("Invalid vector type.");
1483 }
1484 
1485 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1486   if (VT.getVectorElementType() == MVT::i1)
1487     return RISCV::VRRegClassID;
1488   return getRegClassIDForLMUL(getLMUL(VT));
1489 }
1490 
1491 // Attempt to decompose a subvector insert/extract between VecVT and
1492 // SubVecVT via subregister indices. Returns the subregister index that
1493 // can perform the subvector insert/extract with the given element index, as
1494 // well as the index corresponding to any leftover subvectors that must be
1495 // further inserted/extracted within the register class for SubVecVT.
1496 std::pair<unsigned, unsigned>
1497 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1498     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1499     const RISCVRegisterInfo *TRI) {
1500   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1501                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1502                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1503                 "Register classes not ordered");
1504   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1505   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1506   // Try to compose a subregister index that takes us from the incoming
1507   // LMUL>1 register class down to the outgoing one. At each step we half
1508   // the LMUL:
1509   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1510   // Note that this is not guaranteed to find a subregister index, such as
1511   // when we are extracting from one VR type to another.
1512   unsigned SubRegIdx = RISCV::NoSubRegister;
1513   for (const unsigned RCID :
1514        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1515     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1516       VecVT = VecVT.getHalfNumVectorElementsVT();
1517       bool IsHi =
1518           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1519       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1520                                             getSubregIndexByMVT(VecVT, IsHi));
1521       if (IsHi)
1522         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1523     }
1524   return {SubRegIdx, InsertExtractIdx};
1525 }
1526 
1527 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1528 // stores for those types.
1529 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1530   return !Subtarget.useRVVForFixedLengthVectors() ||
1531          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1532 }
1533 
1534 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1535   if (ScalarTy->isPointerTy())
1536     return true;
1537 
1538   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1539       ScalarTy->isIntegerTy(32))
1540     return true;
1541 
1542   if (ScalarTy->isIntegerTy(64))
1543     return Subtarget.hasVInstructionsI64();
1544 
1545   if (ScalarTy->isHalfTy())
1546     return Subtarget.hasVInstructionsF16();
1547   if (ScalarTy->isFloatTy())
1548     return Subtarget.hasVInstructionsF32();
1549   if (ScalarTy->isDoubleTy())
1550     return Subtarget.hasVInstructionsF64();
1551 
1552   return false;
1553 }
1554 
1555 static SDValue getVLOperand(SDValue Op) {
1556   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1557           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1558          "Unexpected opcode");
1559   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1560   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1561   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1562       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1563   if (!II)
1564     return SDValue();
1565   return Op.getOperand(II->VLOperand + 1 + HasChain);
1566 }
1567 
1568 static bool useRVVForFixedLengthVectorVT(MVT VT,
1569                                          const RISCVSubtarget &Subtarget) {
1570   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1571   if (!Subtarget.useRVVForFixedLengthVectors())
1572     return false;
1573 
1574   // We only support a set of vector types with a consistent maximum fixed size
1575   // across all supported vector element types to avoid legalization issues.
1576   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1577   // fixed-length vector type we support is 1024 bytes.
1578   if (VT.getFixedSizeInBits() > 1024 * 8)
1579     return false;
1580 
1581   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1582 
1583   MVT EltVT = VT.getVectorElementType();
1584 
1585   // Don't use RVV for vectors we cannot scalarize if required.
1586   switch (EltVT.SimpleTy) {
1587   // i1 is supported but has different rules.
1588   default:
1589     return false;
1590   case MVT::i1:
1591     // Masks can only use a single register.
1592     if (VT.getVectorNumElements() > MinVLen)
1593       return false;
1594     MinVLen /= 8;
1595     break;
1596   case MVT::i8:
1597   case MVT::i16:
1598   case MVT::i32:
1599     break;
1600   case MVT::i64:
1601     if (!Subtarget.hasVInstructionsI64())
1602       return false;
1603     break;
1604   case MVT::f16:
1605     if (!Subtarget.hasVInstructionsF16())
1606       return false;
1607     break;
1608   case MVT::f32:
1609     if (!Subtarget.hasVInstructionsF32())
1610       return false;
1611     break;
1612   case MVT::f64:
1613     if (!Subtarget.hasVInstructionsF64())
1614       return false;
1615     break;
1616   }
1617 
1618   // Reject elements larger than ELEN.
1619   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1620     return false;
1621 
1622   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1623   // Don't use RVV for types that don't fit.
1624   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1625     return false;
1626 
1627   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1628   // the base fixed length RVV support in place.
1629   if (!VT.isPow2VectorType())
1630     return false;
1631 
1632   return true;
1633 }
1634 
1635 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1636   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1637 }
1638 
1639 // Return the largest legal scalable vector type that matches VT's element type.
1640 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1641                                             const RISCVSubtarget &Subtarget) {
1642   // This may be called before legal types are setup.
1643   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1644           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1645          "Expected legal fixed length vector!");
1646 
1647   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1648   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1649 
1650   MVT EltVT = VT.getVectorElementType();
1651   switch (EltVT.SimpleTy) {
1652   default:
1653     llvm_unreachable("unexpected element type for RVV container");
1654   case MVT::i1:
1655   case MVT::i8:
1656   case MVT::i16:
1657   case MVT::i32:
1658   case MVT::i64:
1659   case MVT::f16:
1660   case MVT::f32:
1661   case MVT::f64: {
1662     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1663     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1664     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1665     unsigned NumElts =
1666         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1667     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1668     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1669     return MVT::getScalableVectorVT(EltVT, NumElts);
1670   }
1671   }
1672 }
1673 
1674 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1675                                             const RISCVSubtarget &Subtarget) {
1676   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1677                                           Subtarget);
1678 }
1679 
1680 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1681   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1682 }
1683 
1684 // Grow V to consume an entire RVV register.
1685 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1686                                        const RISCVSubtarget &Subtarget) {
1687   assert(VT.isScalableVector() &&
1688          "Expected to convert into a scalable vector!");
1689   assert(V.getValueType().isFixedLengthVector() &&
1690          "Expected a fixed length vector operand!");
1691   SDLoc DL(V);
1692   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1693   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1694 }
1695 
1696 // Shrink V so it's just big enough to maintain a VT's worth of data.
1697 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1698                                          const RISCVSubtarget &Subtarget) {
1699   assert(VT.isFixedLengthVector() &&
1700          "Expected to convert into a fixed length vector!");
1701   assert(V.getValueType().isScalableVector() &&
1702          "Expected a scalable vector operand!");
1703   SDLoc DL(V);
1704   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1705   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1706 }
1707 
1708 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1709 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1710 // the vector type that it is contained in.
1711 static std::pair<SDValue, SDValue>
1712 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1713                 const RISCVSubtarget &Subtarget) {
1714   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1715   MVT XLenVT = Subtarget.getXLenVT();
1716   SDValue VL = VecVT.isFixedLengthVector()
1717                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1718                    : DAG.getRegister(RISCV::X0, XLenVT);
1719   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1720   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1721   return {Mask, VL};
1722 }
1723 
1724 // As above but assuming the given type is a scalable vector type.
1725 static std::pair<SDValue, SDValue>
1726 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1727                         const RISCVSubtarget &Subtarget) {
1728   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1729   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1730 }
1731 
1732 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1733 // of either is (currently) supported. This can get us into an infinite loop
1734 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1735 // as a ..., etc.
1736 // Until either (or both) of these can reliably lower any node, reporting that
1737 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1738 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1739 // which is not desirable.
1740 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1741     EVT VT, unsigned DefinedValues) const {
1742   return false;
1743 }
1744 
1745 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1746                                   const RISCVSubtarget &Subtarget) {
1747   // RISCV FP-to-int conversions saturate to the destination register size, but
1748   // don't produce 0 for nan. We can use a conversion instruction and fix the
1749   // nan case with a compare and a select.
1750   SDValue Src = Op.getOperand(0);
1751 
1752   EVT DstVT = Op.getValueType();
1753   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1754 
1755   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1756   unsigned Opc;
1757   if (SatVT == DstVT)
1758     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1759   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1760     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1761   else
1762     return SDValue();
1763   // FIXME: Support other SatVTs by clamping before or after the conversion.
1764 
1765   SDLoc DL(Op);
1766   SDValue FpToInt = DAG.getNode(
1767       Opc, DL, DstVT, Src,
1768       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1769 
1770   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1771   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1772 }
1773 
1774 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1775 // and back. Taking care to avoid converting values that are nan or already
1776 // correct.
1777 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1778 // have FRM dependencies modeled yet.
1779 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1780   MVT VT = Op.getSimpleValueType();
1781   assert(VT.isVector() && "Unexpected type");
1782 
1783   SDLoc DL(Op);
1784 
1785   // Freeze the source since we are increasing the number of uses.
1786   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1787 
1788   // Truncate to integer and convert back to FP.
1789   MVT IntVT = VT.changeVectorElementTypeToInteger();
1790   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1791   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1792 
1793   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1794 
1795   if (Op.getOpcode() == ISD::FCEIL) {
1796     // If the truncated value is the greater than or equal to the original
1797     // value, we've computed the ceil. Otherwise, we went the wrong way and
1798     // need to increase by 1.
1799     // FIXME: This should use a masked operation. Handle here or in isel?
1800     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1801                                  DAG.getConstantFP(1.0, DL, VT));
1802     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1803     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1804   } else if (Op.getOpcode() == ISD::FFLOOR) {
1805     // If the truncated value is the less than or equal to the original value,
1806     // we've computed the floor. Otherwise, we went the wrong way and need to
1807     // decrease by 1.
1808     // FIXME: This should use a masked operation. Handle here or in isel?
1809     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1810                                  DAG.getConstantFP(1.0, DL, VT));
1811     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1812     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1813   }
1814 
1815   // Restore the original sign so that -0.0 is preserved.
1816   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1817 
1818   // Determine the largest integer that can be represented exactly. This and
1819   // values larger than it don't have any fractional bits so don't need to
1820   // be converted.
1821   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1822   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1823   APFloat MaxVal = APFloat(FltSem);
1824   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1825                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1826   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1827 
1828   // If abs(Src) was larger than MaxVal or nan, keep it.
1829   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1830   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1831   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1832 }
1833 
1834 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1835 // This mode isn't supported in vector hardware on RISCV. But as long as we
1836 // aren't compiling with trapping math, we can emulate this with
1837 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1838 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1839 // dependencies modeled yet.
1840 // FIXME: Use masked operations to avoid final merge.
1841 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1842   MVT VT = Op.getSimpleValueType();
1843   assert(VT.isVector() && "Unexpected type");
1844 
1845   SDLoc DL(Op);
1846 
1847   // Freeze the source since we are increasing the number of uses.
1848   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1849 
1850   // We do the conversion on the absolute value and fix the sign at the end.
1851   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1852 
1853   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1854   bool Ignored;
1855   APFloat Point5Pred = APFloat(0.5f);
1856   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1857   Point5Pred.next(/*nextDown*/ true);
1858 
1859   // Add the adjustment.
1860   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1861                                DAG.getConstantFP(Point5Pred, DL, VT));
1862 
1863   // Truncate to integer and convert back to fp.
1864   MVT IntVT = VT.changeVectorElementTypeToInteger();
1865   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1866   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1867 
1868   // Restore the original sign.
1869   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1870 
1871   // Determine the largest integer that can be represented exactly. This and
1872   // values larger than it don't have any fractional bits so don't need to
1873   // be converted.
1874   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1875   APFloat MaxVal = APFloat(FltSem);
1876   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1877                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1878   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1879 
1880   // If abs(Src) was larger than MaxVal or nan, keep it.
1881   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1882   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1883   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1884 }
1885 
1886 struct VIDSequence {
1887   int64_t StepNumerator;
1888   unsigned StepDenominator;
1889   int64_t Addend;
1890 };
1891 
1892 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1893 // to the (non-zero) step S and start value X. This can be then lowered as the
1894 // RVV sequence (VID * S) + X, for example.
1895 // The step S is represented as an integer numerator divided by a positive
1896 // denominator. Note that the implementation currently only identifies
1897 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1898 // cannot detect 2/3, for example.
1899 // Note that this method will also match potentially unappealing index
1900 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1901 // determine whether this is worth generating code for.
1902 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1903   unsigned NumElts = Op.getNumOperands();
1904   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1905   if (!Op.getValueType().isInteger())
1906     return None;
1907 
1908   Optional<unsigned> SeqStepDenom;
1909   Optional<int64_t> SeqStepNum, SeqAddend;
1910   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1911   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1912   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1913     // Assume undef elements match the sequence; we just have to be careful
1914     // when interpolating across them.
1915     if (Op.getOperand(Idx).isUndef())
1916       continue;
1917     // The BUILD_VECTOR must be all constants.
1918     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1919       return None;
1920 
1921     uint64_t Val = Op.getConstantOperandVal(Idx) &
1922                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1923 
1924     if (PrevElt) {
1925       // Calculate the step since the last non-undef element, and ensure
1926       // it's consistent across the entire sequence.
1927       unsigned IdxDiff = Idx - PrevElt->second;
1928       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1929 
1930       // A zero-value value difference means that we're somewhere in the middle
1931       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1932       // step change before evaluating the sequence.
1933       if (ValDiff != 0) {
1934         int64_t Remainder = ValDiff % IdxDiff;
1935         // Normalize the step if it's greater than 1.
1936         if (Remainder != ValDiff) {
1937           // The difference must cleanly divide the element span.
1938           if (Remainder != 0)
1939             return None;
1940           ValDiff /= IdxDiff;
1941           IdxDiff = 1;
1942         }
1943 
1944         if (!SeqStepNum)
1945           SeqStepNum = ValDiff;
1946         else if (ValDiff != SeqStepNum)
1947           return None;
1948 
1949         if (!SeqStepDenom)
1950           SeqStepDenom = IdxDiff;
1951         else if (IdxDiff != *SeqStepDenom)
1952           return None;
1953       }
1954     }
1955 
1956     // Record and/or check any addend.
1957     if (SeqStepNum && SeqStepDenom) {
1958       uint64_t ExpectedVal =
1959           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1960       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1961       if (!SeqAddend)
1962         SeqAddend = Addend;
1963       else if (SeqAddend != Addend)
1964         return None;
1965     }
1966 
1967     // Record this non-undef element for later.
1968     if (!PrevElt || PrevElt->first != Val)
1969       PrevElt = std::make_pair(Val, Idx);
1970   }
1971   // We need to have logged both a step and an addend for this to count as
1972   // a legal index sequence.
1973   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1974     return None;
1975 
1976   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1977 }
1978 
1979 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1980 // and lower it as a VRGATHER_VX_VL from the source vector.
1981 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1982                                   SelectionDAG &DAG,
1983                                   const RISCVSubtarget &Subtarget) {
1984   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1985     return SDValue();
1986   SDValue Vec = SplatVal.getOperand(0);
1987   // Only perform this optimization on vectors of the same size for simplicity.
1988   if (Vec.getValueType() != VT)
1989     return SDValue();
1990   SDValue Idx = SplatVal.getOperand(1);
1991   // The index must be a legal type.
1992   if (Idx.getValueType() != Subtarget.getXLenVT())
1993     return SDValue();
1994 
1995   MVT ContainerVT = VT;
1996   if (VT.isFixedLengthVector()) {
1997     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1998     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
1999   }
2000 
2001   SDValue Mask, VL;
2002   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2003 
2004   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2005                                Idx, Mask, VL);
2006 
2007   if (!VT.isFixedLengthVector())
2008     return Gather;
2009 
2010   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2011 }
2012 
2013 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2014                                  const RISCVSubtarget &Subtarget) {
2015   MVT VT = Op.getSimpleValueType();
2016   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2017 
2018   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2019 
2020   SDLoc DL(Op);
2021   SDValue Mask, VL;
2022   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2023 
2024   MVT XLenVT = Subtarget.getXLenVT();
2025   unsigned NumElts = Op.getNumOperands();
2026 
2027   if (VT.getVectorElementType() == MVT::i1) {
2028     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2029       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2030       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2031     }
2032 
2033     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2034       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2035       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2036     }
2037 
2038     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2039     // scalar integer chunks whose bit-width depends on the number of mask
2040     // bits and XLEN.
2041     // First, determine the most appropriate scalar integer type to use. This
2042     // is at most XLenVT, but may be shrunk to a smaller vector element type
2043     // according to the size of the final vector - use i8 chunks rather than
2044     // XLenVT if we're producing a v8i1. This results in more consistent
2045     // codegen across RV32 and RV64.
2046     unsigned NumViaIntegerBits =
2047         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2048     NumViaIntegerBits = std::min(NumViaIntegerBits,
2049                                  Subtarget.getMaxELENForFixedLengthVectors());
2050     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2051       // If we have to use more than one INSERT_VECTOR_ELT then this
2052       // optimization is likely to increase code size; avoid peforming it in
2053       // such a case. We can use a load from a constant pool in this case.
2054       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2055         return SDValue();
2056       // Now we can create our integer vector type. Note that it may be larger
2057       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2058       MVT IntegerViaVecVT =
2059           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2060                            divideCeil(NumElts, NumViaIntegerBits));
2061 
2062       uint64_t Bits = 0;
2063       unsigned BitPos = 0, IntegerEltIdx = 0;
2064       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2065 
2066       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2067         // Once we accumulate enough bits to fill our scalar type, insert into
2068         // our vector and clear our accumulated data.
2069         if (I != 0 && I % NumViaIntegerBits == 0) {
2070           if (NumViaIntegerBits <= 32)
2071             Bits = SignExtend64(Bits, 32);
2072           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2073           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2074                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2075           Bits = 0;
2076           BitPos = 0;
2077           IntegerEltIdx++;
2078         }
2079         SDValue V = Op.getOperand(I);
2080         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2081         Bits |= ((uint64_t)BitValue << BitPos);
2082       }
2083 
2084       // Insert the (remaining) scalar value into position in our integer
2085       // vector type.
2086       if (NumViaIntegerBits <= 32)
2087         Bits = SignExtend64(Bits, 32);
2088       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2089       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2090                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2091 
2092       if (NumElts < NumViaIntegerBits) {
2093         // If we're producing a smaller vector than our minimum legal integer
2094         // type, bitcast to the equivalent (known-legal) mask type, and extract
2095         // our final mask.
2096         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2097         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2098         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2099                           DAG.getConstant(0, DL, XLenVT));
2100       } else {
2101         // Else we must have produced an integer type with the same size as the
2102         // mask type; bitcast for the final result.
2103         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2104         Vec = DAG.getBitcast(VT, Vec);
2105       }
2106 
2107       return Vec;
2108     }
2109 
2110     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2111     // vector type, we have a legal equivalently-sized i8 type, so we can use
2112     // that.
2113     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2114     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2115 
2116     SDValue WideVec;
2117     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2118       // For a splat, perform a scalar truncate before creating the wider
2119       // vector.
2120       assert(Splat.getValueType() == XLenVT &&
2121              "Unexpected type for i1 splat value");
2122       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2123                           DAG.getConstant(1, DL, XLenVT));
2124       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2125     } else {
2126       SmallVector<SDValue, 8> Ops(Op->op_values());
2127       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2128       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2129       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2130     }
2131 
2132     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2133   }
2134 
2135   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2136     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2137       return Gather;
2138     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2139                                         : RISCVISD::VMV_V_X_VL;
2140     Splat =
2141         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2142     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2143   }
2144 
2145   // Try and match index sequences, which we can lower to the vid instruction
2146   // with optional modifications. An all-undef vector is matched by
2147   // getSplatValue, above.
2148   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2149     int64_t StepNumerator = SimpleVID->StepNumerator;
2150     unsigned StepDenominator = SimpleVID->StepDenominator;
2151     int64_t Addend = SimpleVID->Addend;
2152 
2153     assert(StepNumerator != 0 && "Invalid step");
2154     bool Negate = false;
2155     int64_t SplatStepVal = StepNumerator;
2156     unsigned StepOpcode = ISD::MUL;
2157     if (StepNumerator != 1) {
2158       if (isPowerOf2_64(std::abs(StepNumerator))) {
2159         Negate = StepNumerator < 0;
2160         StepOpcode = ISD::SHL;
2161         SplatStepVal = Log2_64(std::abs(StepNumerator));
2162       }
2163     }
2164 
2165     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2166     // threshold since it's the immediate value many RVV instructions accept.
2167     // There is no vmul.vi instruction so ensure multiply constant can fit in
2168     // a single addi instruction.
2169     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2170          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2171         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2172       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2173       // Convert right out of the scalable type so we can use standard ISD
2174       // nodes for the rest of the computation. If we used scalable types with
2175       // these, we'd lose the fixed-length vector info and generate worse
2176       // vsetvli code.
2177       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2178       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2179           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2180         SDValue SplatStep = DAG.getSplatBuildVector(
2181             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2182         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2183       }
2184       if (StepDenominator != 1) {
2185         SDValue SplatStep = DAG.getSplatBuildVector(
2186             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2187         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2188       }
2189       if (Addend != 0 || Negate) {
2190         SDValue SplatAddend = DAG.getSplatBuildVector(
2191             VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2192         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2193       }
2194       return VID;
2195     }
2196   }
2197 
2198   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2199   // when re-interpreted as a vector with a larger element type. For example,
2200   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2201   // could be instead splat as
2202   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2203   // TODO: This optimization could also work on non-constant splats, but it
2204   // would require bit-manipulation instructions to construct the splat value.
2205   SmallVector<SDValue> Sequence;
2206   unsigned EltBitSize = VT.getScalarSizeInBits();
2207   const auto *BV = cast<BuildVectorSDNode>(Op);
2208   if (VT.isInteger() && EltBitSize < 64 &&
2209       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2210       BV->getRepeatedSequence(Sequence) &&
2211       (Sequence.size() * EltBitSize) <= 64) {
2212     unsigned SeqLen = Sequence.size();
2213     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2214     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2215     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2216             ViaIntVT == MVT::i64) &&
2217            "Unexpected sequence type");
2218 
2219     unsigned EltIdx = 0;
2220     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2221     uint64_t SplatValue = 0;
2222     // Construct the amalgamated value which can be splatted as this larger
2223     // vector type.
2224     for (const auto &SeqV : Sequence) {
2225       if (!SeqV.isUndef())
2226         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2227                        << (EltIdx * EltBitSize));
2228       EltIdx++;
2229     }
2230 
2231     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2232     // achieve better constant materializion.
2233     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2234       SplatValue = SignExtend64(SplatValue, 32);
2235 
2236     // Since we can't introduce illegal i64 types at this stage, we can only
2237     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2238     // way we can use RVV instructions to splat.
2239     assert((ViaIntVT.bitsLE(XLenVT) ||
2240             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2241            "Unexpected bitcast sequence");
2242     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2243       SDValue ViaVL =
2244           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2245       MVT ViaContainerVT =
2246           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2247       SDValue Splat =
2248           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2249                       DAG.getUNDEF(ViaContainerVT),
2250                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2251       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2252       return DAG.getBitcast(VT, Splat);
2253     }
2254   }
2255 
2256   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2257   // which constitute a large proportion of the elements. In such cases we can
2258   // splat a vector with the dominant element and make up the shortfall with
2259   // INSERT_VECTOR_ELTs.
2260   // Note that this includes vectors of 2 elements by association. The
2261   // upper-most element is the "dominant" one, allowing us to use a splat to
2262   // "insert" the upper element, and an insert of the lower element at position
2263   // 0, which improves codegen.
2264   SDValue DominantValue;
2265   unsigned MostCommonCount = 0;
2266   DenseMap<SDValue, unsigned> ValueCounts;
2267   unsigned NumUndefElts =
2268       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2269 
2270   // Track the number of scalar loads we know we'd be inserting, estimated as
2271   // any non-zero floating-point constant. Other kinds of element are either
2272   // already in registers or are materialized on demand. The threshold at which
2273   // a vector load is more desirable than several scalar materializion and
2274   // vector-insertion instructions is not known.
2275   unsigned NumScalarLoads = 0;
2276 
2277   for (SDValue V : Op->op_values()) {
2278     if (V.isUndef())
2279       continue;
2280 
2281     ValueCounts.insert(std::make_pair(V, 0));
2282     unsigned &Count = ValueCounts[V];
2283 
2284     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2285       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2286 
2287     // Is this value dominant? In case of a tie, prefer the highest element as
2288     // it's cheaper to insert near the beginning of a vector than it is at the
2289     // end.
2290     if (++Count >= MostCommonCount) {
2291       DominantValue = V;
2292       MostCommonCount = Count;
2293     }
2294   }
2295 
2296   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2297   unsigned NumDefElts = NumElts - NumUndefElts;
2298   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2299 
2300   // Don't perform this optimization when optimizing for size, since
2301   // materializing elements and inserting them tends to cause code bloat.
2302   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2303       ((MostCommonCount > DominantValueCountThreshold) ||
2304        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2305     // Start by splatting the most common element.
2306     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2307 
2308     DenseSet<SDValue> Processed{DominantValue};
2309     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2310     for (const auto &OpIdx : enumerate(Op->ops())) {
2311       const SDValue &V = OpIdx.value();
2312       if (V.isUndef() || !Processed.insert(V).second)
2313         continue;
2314       if (ValueCounts[V] == 1) {
2315         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2316                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2317       } else {
2318         // Blend in all instances of this value using a VSELECT, using a
2319         // mask where each bit signals whether that element is the one
2320         // we're after.
2321         SmallVector<SDValue> Ops;
2322         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2323           return DAG.getConstant(V == V1, DL, XLenVT);
2324         });
2325         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2326                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2327                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2328       }
2329     }
2330 
2331     return Vec;
2332   }
2333 
2334   return SDValue();
2335 }
2336 
2337 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2338                                    SDValue Lo, SDValue Hi, SDValue VL,
2339                                    SelectionDAG &DAG) {
2340   if (!Passthru)
2341     Passthru = DAG.getUNDEF(VT);
2342   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2343     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2344     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2345     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2346     // node in order to try and match RVV vector/scalar instructions.
2347     if ((LoC >> 31) == HiC)
2348       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2349 
2350     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2351     // vmv.v.x whose EEW = 32 to lower it.
2352     auto *Const = dyn_cast<ConstantSDNode>(VL);
2353     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2354       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2355       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2356       // access the subtarget here now.
2357       auto InterVec = DAG.getNode(
2358           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2359                                   DAG.getRegister(RISCV::X0, MVT::i32));
2360       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2361     }
2362   }
2363 
2364   // Fall back to a stack store and stride x0 vector load.
2365   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2366                      Hi, VL);
2367 }
2368 
2369 // Called by type legalization to handle splat of i64 on RV32.
2370 // FIXME: We can optimize this when the type has sign or zero bits in one
2371 // of the halves.
2372 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2373                                    SDValue Scalar, SDValue VL,
2374                                    SelectionDAG &DAG) {
2375   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2376   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2377                            DAG.getConstant(0, DL, MVT::i32));
2378   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2379                            DAG.getConstant(1, DL, MVT::i32));
2380   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2381 }
2382 
2383 // This function lowers a splat of a scalar operand Splat with the vector
2384 // length VL. It ensures the final sequence is type legal, which is useful when
2385 // lowering a splat after type legalization.
2386 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2387                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2388                                 const RISCVSubtarget &Subtarget) {
2389   bool HasPassthru = Passthru && !Passthru.isUndef();
2390   if (!HasPassthru && !Passthru)
2391     Passthru = DAG.getUNDEF(VT);
2392   if (VT.isFloatingPoint()) {
2393     // If VL is 1, we could use vfmv.s.f.
2394     if (isOneConstant(VL))
2395       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2396     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2397   }
2398 
2399   MVT XLenVT = Subtarget.getXLenVT();
2400 
2401   // Simplest case is that the operand needs to be promoted to XLenVT.
2402   if (Scalar.getValueType().bitsLE(XLenVT)) {
2403     // If the operand is a constant, sign extend to increase our chances
2404     // of being able to use a .vi instruction. ANY_EXTEND would become a
2405     // a zero extend and the simm5 check in isel would fail.
2406     // FIXME: Should we ignore the upper bits in isel instead?
2407     unsigned ExtOpc =
2408         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2409     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2410     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2411     // If VL is 1 and the scalar value won't benefit from immediate, we could
2412     // use vmv.s.x.
2413     if (isOneConstant(VL) &&
2414         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2415       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2416     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2417   }
2418 
2419   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2420          "Unexpected scalar for splat lowering!");
2421 
2422   if (isOneConstant(VL) && isNullConstant(Scalar))
2423     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2424                        DAG.getConstant(0, DL, XLenVT), VL);
2425 
2426   // Otherwise use the more complicated splatting algorithm.
2427   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2428 }
2429 
2430 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2431                                 const RISCVSubtarget &Subtarget) {
2432   // We need to be able to widen elements to the next larger integer type.
2433   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2434     return false;
2435 
2436   int Size = Mask.size();
2437   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2438 
2439   int Srcs[] = {-1, -1};
2440   for (int i = 0; i != Size; ++i) {
2441     // Ignore undef elements.
2442     if (Mask[i] < 0)
2443       continue;
2444 
2445     // Is this an even or odd element.
2446     int Pol = i % 2;
2447 
2448     // Ensure we consistently use the same source for this element polarity.
2449     int Src = Mask[i] / Size;
2450     if (Srcs[Pol] < 0)
2451       Srcs[Pol] = Src;
2452     if (Srcs[Pol] != Src)
2453       return false;
2454 
2455     // Make sure the element within the source is appropriate for this element
2456     // in the destination.
2457     int Elt = Mask[i] % Size;
2458     if (Elt != i / 2)
2459       return false;
2460   }
2461 
2462   // We need to find a source for each polarity and they can't be the same.
2463   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2464     return false;
2465 
2466   // Swap the sources if the second source was in the even polarity.
2467   SwapSources = Srcs[0] > Srcs[1];
2468 
2469   return true;
2470 }
2471 
2472 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2473 /// and then extract the original number of elements from the rotated result.
2474 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2475 /// returned rotation amount is for a rotate right, where elements move from
2476 /// higher elements to lower elements. \p LoSrc indicates the first source
2477 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2478 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2479 /// 0 or 1 if a rotation is found.
2480 ///
2481 /// NOTE: We talk about rotate to the right which matches how bit shift and
2482 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2483 /// and the table below write vectors with the lowest elements on the left.
2484 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2485   int Size = Mask.size();
2486 
2487   // We need to detect various ways of spelling a rotation:
2488   //   [11, 12, 13, 14, 15,  0,  1,  2]
2489   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2490   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2491   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2492   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2493   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2494   int Rotation = 0;
2495   LoSrc = -1;
2496   HiSrc = -1;
2497   for (int i = 0; i != Size; ++i) {
2498     int M = Mask[i];
2499     if (M < 0)
2500       continue;
2501 
2502     // Determine where a rotate vector would have started.
2503     int StartIdx = i - (M % Size);
2504     // The identity rotation isn't interesting, stop.
2505     if (StartIdx == 0)
2506       return -1;
2507 
2508     // If we found the tail of a vector the rotation must be the missing
2509     // front. If we found the head of a vector, it must be how much of the
2510     // head.
2511     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2512 
2513     if (Rotation == 0)
2514       Rotation = CandidateRotation;
2515     else if (Rotation != CandidateRotation)
2516       // The rotations don't match, so we can't match this mask.
2517       return -1;
2518 
2519     // Compute which value this mask is pointing at.
2520     int MaskSrc = M < Size ? 0 : 1;
2521 
2522     // Compute which of the two target values this index should be assigned to.
2523     // This reflects whether the high elements are remaining or the low elemnts
2524     // are remaining.
2525     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2526 
2527     // Either set up this value if we've not encountered it before, or check
2528     // that it remains consistent.
2529     if (TargetSrc < 0)
2530       TargetSrc = MaskSrc;
2531     else if (TargetSrc != MaskSrc)
2532       // This may be a rotation, but it pulls from the inputs in some
2533       // unsupported interleaving.
2534       return -1;
2535   }
2536 
2537   // Check that we successfully analyzed the mask, and normalize the results.
2538   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2539   assert((LoSrc >= 0 || HiSrc >= 0) &&
2540          "Failed to find a rotated input vector!");
2541 
2542   return Rotation;
2543 }
2544 
2545 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2546                                    const RISCVSubtarget &Subtarget) {
2547   SDValue V1 = Op.getOperand(0);
2548   SDValue V2 = Op.getOperand(1);
2549   SDLoc DL(Op);
2550   MVT XLenVT = Subtarget.getXLenVT();
2551   MVT VT = Op.getSimpleValueType();
2552   unsigned NumElts = VT.getVectorNumElements();
2553   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2554 
2555   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2556 
2557   SDValue TrueMask, VL;
2558   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2559 
2560   if (SVN->isSplat()) {
2561     const int Lane = SVN->getSplatIndex();
2562     if (Lane >= 0) {
2563       MVT SVT = VT.getVectorElementType();
2564 
2565       // Turn splatted vector load into a strided load with an X0 stride.
2566       SDValue V = V1;
2567       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2568       // with undef.
2569       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2570       int Offset = Lane;
2571       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2572         int OpElements =
2573             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2574         V = V.getOperand(Offset / OpElements);
2575         Offset %= OpElements;
2576       }
2577 
2578       // We need to ensure the load isn't atomic or volatile.
2579       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2580         auto *Ld = cast<LoadSDNode>(V);
2581         Offset *= SVT.getStoreSize();
2582         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2583                                                    TypeSize::Fixed(Offset), DL);
2584 
2585         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2586         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2587           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2588           SDValue IntID =
2589               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2590           SDValue Ops[] = {Ld->getChain(),
2591                            IntID,
2592                            DAG.getUNDEF(ContainerVT),
2593                            NewAddr,
2594                            DAG.getRegister(RISCV::X0, XLenVT),
2595                            VL};
2596           SDValue NewLoad = DAG.getMemIntrinsicNode(
2597               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2598               DAG.getMachineFunction().getMachineMemOperand(
2599                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2600           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2601           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2602         }
2603 
2604         // Otherwise use a scalar load and splat. This will give the best
2605         // opportunity to fold a splat into the operation. ISel can turn it into
2606         // the x0 strided load if we aren't able to fold away the select.
2607         if (SVT.isFloatingPoint())
2608           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2609                           Ld->getPointerInfo().getWithOffset(Offset),
2610                           Ld->getOriginalAlign(),
2611                           Ld->getMemOperand()->getFlags());
2612         else
2613           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2614                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2615                              Ld->getOriginalAlign(),
2616                              Ld->getMemOperand()->getFlags());
2617         DAG.makeEquivalentMemoryOrdering(Ld, V);
2618 
2619         unsigned Opc =
2620             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2621         SDValue Splat =
2622             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2623         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2624       }
2625 
2626       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2627       assert(Lane < (int)NumElts && "Unexpected lane!");
2628       SDValue Gather =
2629           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2630                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2631       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2632     }
2633   }
2634 
2635   ArrayRef<int> Mask = SVN->getMask();
2636 
2637   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2638   // be undef which can be handled with a single SLIDEDOWN/UP.
2639   int LoSrc, HiSrc;
2640   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2641   if (Rotation > 0) {
2642     SDValue LoV, HiV;
2643     if (LoSrc >= 0) {
2644       LoV = LoSrc == 0 ? V1 : V2;
2645       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2646     }
2647     if (HiSrc >= 0) {
2648       HiV = HiSrc == 0 ? V1 : V2;
2649       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2650     }
2651 
2652     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2653     // to slide LoV up by (NumElts - Rotation).
2654     unsigned InvRotate = NumElts - Rotation;
2655 
2656     SDValue Res = DAG.getUNDEF(ContainerVT);
2657     if (HiV) {
2658       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2659       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2660       // causes multiple vsetvlis in some test cases such as lowering
2661       // reduce.mul
2662       SDValue DownVL = VL;
2663       if (LoV)
2664         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2665       Res =
2666           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2667                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2668     }
2669     if (LoV)
2670       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2671                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2672 
2673     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2674   }
2675 
2676   // Detect an interleave shuffle and lower to
2677   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2678   bool SwapSources;
2679   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2680     // Swap sources if needed.
2681     if (SwapSources)
2682       std::swap(V1, V2);
2683 
2684     // Extract the lower half of the vectors.
2685     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2686     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2687                      DAG.getConstant(0, DL, XLenVT));
2688     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2689                      DAG.getConstant(0, DL, XLenVT));
2690 
2691     // Double the element width and halve the number of elements in an int type.
2692     unsigned EltBits = VT.getScalarSizeInBits();
2693     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2694     MVT WideIntVT =
2695         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2696     // Convert this to a scalable vector. We need to base this on the
2697     // destination size to ensure there's always a type with a smaller LMUL.
2698     MVT WideIntContainerVT =
2699         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2700 
2701     // Convert sources to scalable vectors with the same element count as the
2702     // larger type.
2703     MVT HalfContainerVT = MVT::getVectorVT(
2704         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2705     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2706     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2707 
2708     // Cast sources to integer.
2709     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2710     MVT IntHalfVT =
2711         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2712     V1 = DAG.getBitcast(IntHalfVT, V1);
2713     V2 = DAG.getBitcast(IntHalfVT, V2);
2714 
2715     // Freeze V2 since we use it twice and we need to be sure that the add and
2716     // multiply see the same value.
2717     V2 = DAG.getFreeze(V2);
2718 
2719     // Recreate TrueMask using the widened type's element count.
2720     MVT MaskVT =
2721         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2722     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2723 
2724     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2725     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2726                               V2, TrueMask, VL);
2727     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2728     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2729                                      DAG.getUNDEF(IntHalfVT),
2730                                      DAG.getAllOnesConstant(DL, XLenVT));
2731     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2732                                    V2, Multiplier, TrueMask, VL);
2733     // Add the new copies to our previous addition giving us 2^eltbits copies of
2734     // V2. This is equivalent to shifting V2 left by eltbits. This should
2735     // combine with the vwmulu.vv above to form vwmaccu.vv.
2736     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2737                       TrueMask, VL);
2738     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2739     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2740     // vector VT.
2741     ContainerVT =
2742         MVT::getVectorVT(VT.getVectorElementType(),
2743                          WideIntContainerVT.getVectorElementCount() * 2);
2744     Add = DAG.getBitcast(ContainerVT, Add);
2745     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2746   }
2747 
2748   // Detect shuffles which can be re-expressed as vector selects; these are
2749   // shuffles in which each element in the destination is taken from an element
2750   // at the corresponding index in either source vectors.
2751   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2752     int MaskIndex = MaskIdx.value();
2753     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2754   });
2755 
2756   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2757 
2758   SmallVector<SDValue> MaskVals;
2759   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2760   // merged with a second vrgather.
2761   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2762 
2763   // By default we preserve the original operand order, and use a mask to
2764   // select LHS as true and RHS as false. However, since RVV vector selects may
2765   // feature splats but only on the LHS, we may choose to invert our mask and
2766   // instead select between RHS and LHS.
2767   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2768   bool InvertMask = IsSelect == SwapOps;
2769 
2770   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2771   // half.
2772   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2773 
2774   // Now construct the mask that will be used by the vselect or blended
2775   // vrgather operation. For vrgathers, construct the appropriate indices into
2776   // each vector.
2777   for (int MaskIndex : Mask) {
2778     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2779     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2780     if (!IsSelect) {
2781       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2782       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2783                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2784                                      : DAG.getUNDEF(XLenVT));
2785       GatherIndicesRHS.push_back(
2786           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2787                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2788       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2789         ++LHSIndexCounts[MaskIndex];
2790       if (!IsLHSOrUndefIndex)
2791         ++RHSIndexCounts[MaskIndex - NumElts];
2792     }
2793   }
2794 
2795   if (SwapOps) {
2796     std::swap(V1, V2);
2797     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2798   }
2799 
2800   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2801   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2802   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2803 
2804   if (IsSelect)
2805     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2806 
2807   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2808     // On such a large vector we're unable to use i8 as the index type.
2809     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2810     // may involve vector splitting if we're already at LMUL=8, or our
2811     // user-supplied maximum fixed-length LMUL.
2812     return SDValue();
2813   }
2814 
2815   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2816   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2817   MVT IndexVT = VT.changeTypeToInteger();
2818   // Since we can't introduce illegal index types at this stage, use i16 and
2819   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2820   // than XLenVT.
2821   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2822     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2823     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2824   }
2825 
2826   MVT IndexContainerVT =
2827       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2828 
2829   SDValue Gather;
2830   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2831   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2832   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2833     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2834                               Subtarget);
2835   } else {
2836     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2837     // If only one index is used, we can use a "splat" vrgather.
2838     // TODO: We can splat the most-common index and fix-up any stragglers, if
2839     // that's beneficial.
2840     if (LHSIndexCounts.size() == 1) {
2841       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2842       Gather =
2843           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2844                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2845     } else {
2846       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2847       LHSIndices =
2848           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2849 
2850       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2851                            TrueMask, VL);
2852     }
2853   }
2854 
2855   // If a second vector operand is used by this shuffle, blend it in with an
2856   // additional vrgather.
2857   if (!V2.isUndef()) {
2858     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2859     // If only one index is used, we can use a "splat" vrgather.
2860     // TODO: We can splat the most-common index and fix-up any stragglers, if
2861     // that's beneficial.
2862     if (RHSIndexCounts.size() == 1) {
2863       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2864       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2865                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2866     } else {
2867       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2868       RHSIndices =
2869           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2870       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2871                        VL);
2872     }
2873 
2874     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2875     SelectMask =
2876         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2877 
2878     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2879                          Gather, VL);
2880   }
2881 
2882   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2883 }
2884 
2885 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2886   // Support splats for any type. These should type legalize well.
2887   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2888     return true;
2889 
2890   // Only support legal VTs for other shuffles for now.
2891   if (!isTypeLegal(VT))
2892     return false;
2893 
2894   MVT SVT = VT.getSimpleVT();
2895 
2896   bool SwapSources;
2897   int LoSrc, HiSrc;
2898   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2899          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2900 }
2901 
2902 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2903                                      SDLoc DL, SelectionDAG &DAG,
2904                                      const RISCVSubtarget &Subtarget) {
2905   if (VT.isScalableVector())
2906     return DAG.getFPExtendOrRound(Op, DL, VT);
2907   assert(VT.isFixedLengthVector() &&
2908          "Unexpected value type for RVV FP extend/round lowering");
2909   SDValue Mask, VL;
2910   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2911   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2912                         ? RISCVISD::FP_EXTEND_VL
2913                         : RISCVISD::FP_ROUND_VL;
2914   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2915 }
2916 
2917 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2918 // the exponent.
2919 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2920   MVT VT = Op.getSimpleValueType();
2921   unsigned EltSize = VT.getScalarSizeInBits();
2922   SDValue Src = Op.getOperand(0);
2923   SDLoc DL(Op);
2924 
2925   // We need a FP type that can represent the value.
2926   // TODO: Use f16 for i8 when possible?
2927   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2928   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2929 
2930   // Legal types should have been checked in the RISCVTargetLowering
2931   // constructor.
2932   // TODO: Splitting may make sense in some cases.
2933   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2934          "Expected legal float type!");
2935 
2936   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2937   // The trailing zero count is equal to log2 of this single bit value.
2938   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2939     SDValue Neg =
2940         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2941     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2942   }
2943 
2944   // We have a legal FP type, convert to it.
2945   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2946   // Bitcast to integer and shift the exponent to the LSB.
2947   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2948   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2949   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2950   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2951                               DAG.getConstant(ShiftAmt, DL, IntVT));
2952   // Truncate back to original type to allow vnsrl.
2953   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2954   // The exponent contains log2 of the value in biased form.
2955   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2956 
2957   // For trailing zeros, we just need to subtract the bias.
2958   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2959     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2960                        DAG.getConstant(ExponentBias, DL, VT));
2961 
2962   // For leading zeros, we need to remove the bias and convert from log2 to
2963   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2964   unsigned Adjust = ExponentBias + (EltSize - 1);
2965   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2966 }
2967 
2968 // While RVV has alignment restrictions, we should always be able to load as a
2969 // legal equivalently-sized byte-typed vector instead. This method is
2970 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2971 // the load is already correctly-aligned, it returns SDValue().
2972 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2973                                                     SelectionDAG &DAG) const {
2974   auto *Load = cast<LoadSDNode>(Op);
2975   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2976 
2977   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2978                                      Load->getMemoryVT(),
2979                                      *Load->getMemOperand()))
2980     return SDValue();
2981 
2982   SDLoc DL(Op);
2983   MVT VT = Op.getSimpleValueType();
2984   unsigned EltSizeBits = VT.getScalarSizeInBits();
2985   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2986          "Unexpected unaligned RVV load type");
2987   MVT NewVT =
2988       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2989   assert(NewVT.isValid() &&
2990          "Expecting equally-sized RVV vector types to be legal");
2991   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2992                           Load->getPointerInfo(), Load->getOriginalAlign(),
2993                           Load->getMemOperand()->getFlags());
2994   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2995 }
2996 
2997 // While RVV has alignment restrictions, we should always be able to store as a
2998 // legal equivalently-sized byte-typed vector instead. This method is
2999 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3000 // returns SDValue() if the store is already correctly aligned.
3001 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3002                                                      SelectionDAG &DAG) const {
3003   auto *Store = cast<StoreSDNode>(Op);
3004   assert(Store && Store->getValue().getValueType().isVector() &&
3005          "Expected vector store");
3006 
3007   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3008                                      Store->getMemoryVT(),
3009                                      *Store->getMemOperand()))
3010     return SDValue();
3011 
3012   SDLoc DL(Op);
3013   SDValue StoredVal = Store->getValue();
3014   MVT VT = StoredVal.getSimpleValueType();
3015   unsigned EltSizeBits = VT.getScalarSizeInBits();
3016   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3017          "Unexpected unaligned RVV store type");
3018   MVT NewVT =
3019       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3020   assert(NewVT.isValid() &&
3021          "Expecting equally-sized RVV vector types to be legal");
3022   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3023   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3024                       Store->getPointerInfo(), Store->getOriginalAlign(),
3025                       Store->getMemOperand()->getFlags());
3026 }
3027 
3028 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3029                                             SelectionDAG &DAG) const {
3030   switch (Op.getOpcode()) {
3031   default:
3032     report_fatal_error("unimplemented operand");
3033   case ISD::GlobalAddress:
3034     return lowerGlobalAddress(Op, DAG);
3035   case ISD::BlockAddress:
3036     return lowerBlockAddress(Op, DAG);
3037   case ISD::ConstantPool:
3038     return lowerConstantPool(Op, DAG);
3039   case ISD::JumpTable:
3040     return lowerJumpTable(Op, DAG);
3041   case ISD::GlobalTLSAddress:
3042     return lowerGlobalTLSAddress(Op, DAG);
3043   case ISD::SELECT:
3044     return lowerSELECT(Op, DAG);
3045   case ISD::BRCOND:
3046     return lowerBRCOND(Op, DAG);
3047   case ISD::VASTART:
3048     return lowerVASTART(Op, DAG);
3049   case ISD::FRAMEADDR:
3050     return lowerFRAMEADDR(Op, DAG);
3051   case ISD::RETURNADDR:
3052     return lowerRETURNADDR(Op, DAG);
3053   case ISD::SHL_PARTS:
3054     return lowerShiftLeftParts(Op, DAG);
3055   case ISD::SRA_PARTS:
3056     return lowerShiftRightParts(Op, DAG, true);
3057   case ISD::SRL_PARTS:
3058     return lowerShiftRightParts(Op, DAG, false);
3059   case ISD::BITCAST: {
3060     SDLoc DL(Op);
3061     EVT VT = Op.getValueType();
3062     SDValue Op0 = Op.getOperand(0);
3063     EVT Op0VT = Op0.getValueType();
3064     MVT XLenVT = Subtarget.getXLenVT();
3065     if (VT.isFixedLengthVector()) {
3066       // We can handle fixed length vector bitcasts with a simple replacement
3067       // in isel.
3068       if (Op0VT.isFixedLengthVector())
3069         return Op;
3070       // When bitcasting from scalar to fixed-length vector, insert the scalar
3071       // into a one-element vector of the result type, and perform a vector
3072       // bitcast.
3073       if (!Op0VT.isVector()) {
3074         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3075         if (!isTypeLegal(BVT))
3076           return SDValue();
3077         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3078                                               DAG.getUNDEF(BVT), Op0,
3079                                               DAG.getConstant(0, DL, XLenVT)));
3080       }
3081       return SDValue();
3082     }
3083     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3084     // thus: bitcast the vector to a one-element vector type whose element type
3085     // is the same as the result type, and extract the first element.
3086     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3087       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3088       if (!isTypeLegal(BVT))
3089         return SDValue();
3090       SDValue BVec = DAG.getBitcast(BVT, Op0);
3091       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3092                          DAG.getConstant(0, DL, XLenVT));
3093     }
3094     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3095       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3096       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3097       return FPConv;
3098     }
3099     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3100         Subtarget.hasStdExtF()) {
3101       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3102       SDValue FPConv =
3103           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3104       return FPConv;
3105     }
3106     return SDValue();
3107   }
3108   case ISD::INTRINSIC_WO_CHAIN:
3109     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3110   case ISD::INTRINSIC_W_CHAIN:
3111     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3112   case ISD::INTRINSIC_VOID:
3113     return LowerINTRINSIC_VOID(Op, DAG);
3114   case ISD::BSWAP:
3115   case ISD::BITREVERSE: {
3116     MVT VT = Op.getSimpleValueType();
3117     SDLoc DL(Op);
3118     if (Subtarget.hasStdExtZbp()) {
3119       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3120       // Start with the maximum immediate value which is the bitwidth - 1.
3121       unsigned Imm = VT.getSizeInBits() - 1;
3122       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3123       if (Op.getOpcode() == ISD::BSWAP)
3124         Imm &= ~0x7U;
3125       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3126                          DAG.getConstant(Imm, DL, VT));
3127     }
3128     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3129     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3130     // Expand bitreverse to a bswap(rev8) followed by brev8.
3131     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3132     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3133     // as brev8 by an isel pattern.
3134     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3135                        DAG.getConstant(7, DL, VT));
3136   }
3137   case ISD::FSHL:
3138   case ISD::FSHR: {
3139     MVT VT = Op.getSimpleValueType();
3140     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3141     SDLoc DL(Op);
3142     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3143     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3144     // accidentally setting the extra bit.
3145     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3146     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3147                                 DAG.getConstant(ShAmtWidth, DL, VT));
3148     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3149     // instruction use different orders. fshl will return its first operand for
3150     // shift of zero, fshr will return its second operand. fsl and fsr both
3151     // return rs1 so the ISD nodes need to have different operand orders.
3152     // Shift amount is in rs2.
3153     SDValue Op0 = Op.getOperand(0);
3154     SDValue Op1 = Op.getOperand(1);
3155     unsigned Opc = RISCVISD::FSL;
3156     if (Op.getOpcode() == ISD::FSHR) {
3157       std::swap(Op0, Op1);
3158       Opc = RISCVISD::FSR;
3159     }
3160     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3161   }
3162   case ISD::TRUNCATE: {
3163     SDLoc DL(Op);
3164     MVT VT = Op.getSimpleValueType();
3165     // Only custom-lower vector truncates
3166     if (!VT.isVector())
3167       return Op;
3168 
3169     // Truncates to mask types are handled differently
3170     if (VT.getVectorElementType() == MVT::i1)
3171       return lowerVectorMaskTrunc(Op, DAG);
3172 
3173     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3174     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3175     // truncate by one power of two at a time.
3176     MVT DstEltVT = VT.getVectorElementType();
3177 
3178     SDValue Src = Op.getOperand(0);
3179     MVT SrcVT = Src.getSimpleValueType();
3180     MVT SrcEltVT = SrcVT.getVectorElementType();
3181 
3182     assert(DstEltVT.bitsLT(SrcEltVT) &&
3183            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3184            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3185            "Unexpected vector truncate lowering");
3186 
3187     MVT ContainerVT = SrcVT;
3188     if (SrcVT.isFixedLengthVector()) {
3189       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3190       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3191     }
3192 
3193     SDValue Result = Src;
3194     SDValue Mask, VL;
3195     std::tie(Mask, VL) =
3196         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3197     LLVMContext &Context = *DAG.getContext();
3198     const ElementCount Count = ContainerVT.getVectorElementCount();
3199     do {
3200       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3201       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3202       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3203                            Mask, VL);
3204     } while (SrcEltVT != DstEltVT);
3205 
3206     if (SrcVT.isFixedLengthVector())
3207       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3208 
3209     return Result;
3210   }
3211   case ISD::ANY_EXTEND:
3212   case ISD::ZERO_EXTEND:
3213     if (Op.getOperand(0).getValueType().isVector() &&
3214         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3215       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3216     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3217   case ISD::SIGN_EXTEND:
3218     if (Op.getOperand(0).getValueType().isVector() &&
3219         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3220       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3221     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3222   case ISD::SPLAT_VECTOR_PARTS:
3223     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3224   case ISD::INSERT_VECTOR_ELT:
3225     return lowerINSERT_VECTOR_ELT(Op, DAG);
3226   case ISD::EXTRACT_VECTOR_ELT:
3227     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3228   case ISD::VSCALE: {
3229     MVT VT = Op.getSimpleValueType();
3230     SDLoc DL(Op);
3231     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3232     // We define our scalable vector types for lmul=1 to use a 64 bit known
3233     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3234     // vscale as VLENB / 8.
3235     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3236     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3237       report_fatal_error("Support for VLEN==32 is incomplete.");
3238     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3239       // We assume VLENB is a multiple of 8. We manually choose the best shift
3240       // here because SimplifyDemandedBits isn't always able to simplify it.
3241       uint64_t Val = Op.getConstantOperandVal(0);
3242       if (isPowerOf2_64(Val)) {
3243         uint64_t Log2 = Log2_64(Val);
3244         if (Log2 < 3)
3245           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3246                              DAG.getConstant(3 - Log2, DL, VT));
3247         if (Log2 > 3)
3248           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3249                              DAG.getConstant(Log2 - 3, DL, VT));
3250         return VLENB;
3251       }
3252       // If the multiplier is a multiple of 8, scale it down to avoid needing
3253       // to shift the VLENB value.
3254       if ((Val % 8) == 0)
3255         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3256                            DAG.getConstant(Val / 8, DL, VT));
3257     }
3258 
3259     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3260                                  DAG.getConstant(3, DL, VT));
3261     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3262   }
3263   case ISD::FPOWI: {
3264     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3265     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3266     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3267         Op.getOperand(1).getValueType() == MVT::i32) {
3268       SDLoc DL(Op);
3269       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3270       SDValue Powi =
3271           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3272       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3273                          DAG.getIntPtrConstant(0, DL));
3274     }
3275     return SDValue();
3276   }
3277   case ISD::FP_EXTEND: {
3278     // RVV can only do fp_extend to types double the size as the source. We
3279     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3280     // via f32.
3281     SDLoc DL(Op);
3282     MVT VT = Op.getSimpleValueType();
3283     SDValue Src = Op.getOperand(0);
3284     MVT SrcVT = Src.getSimpleValueType();
3285 
3286     // Prepare any fixed-length vector operands.
3287     MVT ContainerVT = VT;
3288     if (SrcVT.isFixedLengthVector()) {
3289       ContainerVT = getContainerForFixedLengthVector(VT);
3290       MVT SrcContainerVT =
3291           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3292       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3293     }
3294 
3295     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3296         SrcVT.getVectorElementType() != MVT::f16) {
3297       // For scalable vectors, we only need to close the gap between
3298       // vXf16->vXf64.
3299       if (!VT.isFixedLengthVector())
3300         return Op;
3301       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3302       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3303       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3304     }
3305 
3306     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3307     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3308     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3309         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3310 
3311     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3312                                            DL, DAG, Subtarget);
3313     if (VT.isFixedLengthVector())
3314       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3315     return Extend;
3316   }
3317   case ISD::FP_ROUND: {
3318     // RVV can only do fp_round to types half the size as the source. We
3319     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3320     // conversion instruction.
3321     SDLoc DL(Op);
3322     MVT VT = Op.getSimpleValueType();
3323     SDValue Src = Op.getOperand(0);
3324     MVT SrcVT = Src.getSimpleValueType();
3325 
3326     // Prepare any fixed-length vector operands.
3327     MVT ContainerVT = VT;
3328     if (VT.isFixedLengthVector()) {
3329       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3330       ContainerVT =
3331           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3332       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3333     }
3334 
3335     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3336         SrcVT.getVectorElementType() != MVT::f64) {
3337       // For scalable vectors, we only need to close the gap between
3338       // vXf64<->vXf16.
3339       if (!VT.isFixedLengthVector())
3340         return Op;
3341       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3342       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3343       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3344     }
3345 
3346     SDValue Mask, VL;
3347     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3348 
3349     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3350     SDValue IntermediateRound =
3351         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3352     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3353                                           DL, DAG, Subtarget);
3354 
3355     if (VT.isFixedLengthVector())
3356       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3357     return Round;
3358   }
3359   case ISD::FP_TO_SINT:
3360   case ISD::FP_TO_UINT:
3361   case ISD::SINT_TO_FP:
3362   case ISD::UINT_TO_FP: {
3363     // RVV can only do fp<->int conversions to types half/double the size as
3364     // the source. We custom-lower any conversions that do two hops into
3365     // sequences.
3366     MVT VT = Op.getSimpleValueType();
3367     if (!VT.isVector())
3368       return Op;
3369     SDLoc DL(Op);
3370     SDValue Src = Op.getOperand(0);
3371     MVT EltVT = VT.getVectorElementType();
3372     MVT SrcVT = Src.getSimpleValueType();
3373     MVT SrcEltVT = SrcVT.getVectorElementType();
3374     unsigned EltSize = EltVT.getSizeInBits();
3375     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3376     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3377            "Unexpected vector element types");
3378 
3379     bool IsInt2FP = SrcEltVT.isInteger();
3380     // Widening conversions
3381     if (EltSize > (2 * SrcEltSize)) {
3382       if (IsInt2FP) {
3383         // Do a regular integer sign/zero extension then convert to float.
3384         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3385                                       VT.getVectorElementCount());
3386         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3387                                  ? ISD::ZERO_EXTEND
3388                                  : ISD::SIGN_EXTEND;
3389         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3390         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3391       }
3392       // FP2Int
3393       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3394       // Do one doubling fp_extend then complete the operation by converting
3395       // to int.
3396       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3397       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3398       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3399     }
3400 
3401     // Narrowing conversions
3402     if (SrcEltSize > (2 * EltSize)) {
3403       if (IsInt2FP) {
3404         // One narrowing int_to_fp, then an fp_round.
3405         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3406         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3407         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3408         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3409       }
3410       // FP2Int
3411       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3412       // representable by the integer, the result is poison.
3413       MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3414                                     VT.getVectorElementCount());
3415       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3416       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3417     }
3418 
3419     // Scalable vectors can exit here. Patterns will handle equally-sized
3420     // conversions halving/doubling ones.
3421     if (!VT.isFixedLengthVector())
3422       return Op;
3423 
3424     // For fixed-length vectors we lower to a custom "VL" node.
3425     unsigned RVVOpc = 0;
3426     switch (Op.getOpcode()) {
3427     default:
3428       llvm_unreachable("Impossible opcode");
3429     case ISD::FP_TO_SINT:
3430       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3431       break;
3432     case ISD::FP_TO_UINT:
3433       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3434       break;
3435     case ISD::SINT_TO_FP:
3436       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3437       break;
3438     case ISD::UINT_TO_FP:
3439       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3440       break;
3441     }
3442 
3443     MVT ContainerVT, SrcContainerVT;
3444     // Derive the reference container type from the larger vector type.
3445     if (SrcEltSize > EltSize) {
3446       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3447       ContainerVT =
3448           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3449     } else {
3450       ContainerVT = getContainerForFixedLengthVector(VT);
3451       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3452     }
3453 
3454     SDValue Mask, VL;
3455     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3456 
3457     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3458     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3459     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3460   }
3461   case ISD::FP_TO_SINT_SAT:
3462   case ISD::FP_TO_UINT_SAT:
3463     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3464   case ISD::FTRUNC:
3465   case ISD::FCEIL:
3466   case ISD::FFLOOR:
3467     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3468   case ISD::FROUND:
3469     return lowerFROUND(Op, DAG);
3470   case ISD::VECREDUCE_ADD:
3471   case ISD::VECREDUCE_UMAX:
3472   case ISD::VECREDUCE_SMAX:
3473   case ISD::VECREDUCE_UMIN:
3474   case ISD::VECREDUCE_SMIN:
3475     return lowerVECREDUCE(Op, DAG);
3476   case ISD::VECREDUCE_AND:
3477   case ISD::VECREDUCE_OR:
3478   case ISD::VECREDUCE_XOR:
3479     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3480       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3481     return lowerVECREDUCE(Op, DAG);
3482   case ISD::VECREDUCE_FADD:
3483   case ISD::VECREDUCE_SEQ_FADD:
3484   case ISD::VECREDUCE_FMIN:
3485   case ISD::VECREDUCE_FMAX:
3486     return lowerFPVECREDUCE(Op, DAG);
3487   case ISD::VP_REDUCE_ADD:
3488   case ISD::VP_REDUCE_UMAX:
3489   case ISD::VP_REDUCE_SMAX:
3490   case ISD::VP_REDUCE_UMIN:
3491   case ISD::VP_REDUCE_SMIN:
3492   case ISD::VP_REDUCE_FADD:
3493   case ISD::VP_REDUCE_SEQ_FADD:
3494   case ISD::VP_REDUCE_FMIN:
3495   case ISD::VP_REDUCE_FMAX:
3496     return lowerVPREDUCE(Op, DAG);
3497   case ISD::VP_REDUCE_AND:
3498   case ISD::VP_REDUCE_OR:
3499   case ISD::VP_REDUCE_XOR:
3500     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3501       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3502     return lowerVPREDUCE(Op, DAG);
3503   case ISD::INSERT_SUBVECTOR:
3504     return lowerINSERT_SUBVECTOR(Op, DAG);
3505   case ISD::EXTRACT_SUBVECTOR:
3506     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3507   case ISD::STEP_VECTOR:
3508     return lowerSTEP_VECTOR(Op, DAG);
3509   case ISD::VECTOR_REVERSE:
3510     return lowerVECTOR_REVERSE(Op, DAG);
3511   case ISD::VECTOR_SPLICE:
3512     return lowerVECTOR_SPLICE(Op, DAG);
3513   case ISD::BUILD_VECTOR:
3514     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3515   case ISD::SPLAT_VECTOR:
3516     if (Op.getValueType().getVectorElementType() == MVT::i1)
3517       return lowerVectorMaskSplat(Op, DAG);
3518     return SDValue();
3519   case ISD::VECTOR_SHUFFLE:
3520     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3521   case ISD::CONCAT_VECTORS: {
3522     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3523     // better than going through the stack, as the default expansion does.
3524     SDLoc DL(Op);
3525     MVT VT = Op.getSimpleValueType();
3526     unsigned NumOpElts =
3527         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3528     SDValue Vec = DAG.getUNDEF(VT);
3529     for (const auto &OpIdx : enumerate(Op->ops())) {
3530       SDValue SubVec = OpIdx.value();
3531       // Don't insert undef subvectors.
3532       if (SubVec.isUndef())
3533         continue;
3534       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3535                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3536     }
3537     return Vec;
3538   }
3539   case ISD::LOAD:
3540     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3541       return V;
3542     if (Op.getValueType().isFixedLengthVector())
3543       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3544     return Op;
3545   case ISD::STORE:
3546     if (auto V = expandUnalignedRVVStore(Op, DAG))
3547       return V;
3548     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3549       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3550     return Op;
3551   case ISD::MLOAD:
3552   case ISD::VP_LOAD:
3553     return lowerMaskedLoad(Op, DAG);
3554   case ISD::MSTORE:
3555   case ISD::VP_STORE:
3556     return lowerMaskedStore(Op, DAG);
3557   case ISD::SETCC:
3558     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3559   case ISD::ADD:
3560     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3561   case ISD::SUB:
3562     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3563   case ISD::MUL:
3564     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3565   case ISD::MULHS:
3566     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3567   case ISD::MULHU:
3568     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3569   case ISD::AND:
3570     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3571                                               RISCVISD::AND_VL);
3572   case ISD::OR:
3573     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3574                                               RISCVISD::OR_VL);
3575   case ISD::XOR:
3576     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3577                                               RISCVISD::XOR_VL);
3578   case ISD::SDIV:
3579     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3580   case ISD::SREM:
3581     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3582   case ISD::UDIV:
3583     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3584   case ISD::UREM:
3585     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3586   case ISD::SHL:
3587   case ISD::SRA:
3588   case ISD::SRL:
3589     if (Op.getSimpleValueType().isFixedLengthVector())
3590       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3591     // This can be called for an i32 shift amount that needs to be promoted.
3592     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3593            "Unexpected custom legalisation");
3594     return SDValue();
3595   case ISD::SADDSAT:
3596     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3597   case ISD::UADDSAT:
3598     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3599   case ISD::SSUBSAT:
3600     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3601   case ISD::USUBSAT:
3602     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3603   case ISD::FADD:
3604     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3605   case ISD::FSUB:
3606     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3607   case ISD::FMUL:
3608     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3609   case ISD::FDIV:
3610     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3611   case ISD::FNEG:
3612     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3613   case ISD::FABS:
3614     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3615   case ISD::FSQRT:
3616     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3617   case ISD::FMA:
3618     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3619   case ISD::SMIN:
3620     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3621   case ISD::SMAX:
3622     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3623   case ISD::UMIN:
3624     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3625   case ISD::UMAX:
3626     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3627   case ISD::FMINNUM:
3628     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3629   case ISD::FMAXNUM:
3630     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3631   case ISD::ABS:
3632     return lowerABS(Op, DAG);
3633   case ISD::CTLZ_ZERO_UNDEF:
3634   case ISD::CTTZ_ZERO_UNDEF:
3635     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3636   case ISD::VSELECT:
3637     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3638   case ISD::FCOPYSIGN:
3639     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3640   case ISD::MGATHER:
3641   case ISD::VP_GATHER:
3642     return lowerMaskedGather(Op, DAG);
3643   case ISD::MSCATTER:
3644   case ISD::VP_SCATTER:
3645     return lowerMaskedScatter(Op, DAG);
3646   case ISD::FLT_ROUNDS_:
3647     return lowerGET_ROUNDING(Op, DAG);
3648   case ISD::SET_ROUNDING:
3649     return lowerSET_ROUNDING(Op, DAG);
3650   case ISD::VP_SELECT:
3651     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3652   case ISD::VP_MERGE:
3653     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3654   case ISD::VP_ADD:
3655     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3656   case ISD::VP_SUB:
3657     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3658   case ISD::VP_MUL:
3659     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3660   case ISD::VP_SDIV:
3661     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3662   case ISD::VP_UDIV:
3663     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3664   case ISD::VP_SREM:
3665     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3666   case ISD::VP_UREM:
3667     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3668   case ISD::VP_AND:
3669     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3670   case ISD::VP_OR:
3671     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3672   case ISD::VP_XOR:
3673     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3674   case ISD::VP_ASHR:
3675     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3676   case ISD::VP_LSHR:
3677     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3678   case ISD::VP_SHL:
3679     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3680   case ISD::VP_FADD:
3681     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3682   case ISD::VP_FSUB:
3683     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3684   case ISD::VP_FMUL:
3685     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3686   case ISD::VP_FDIV:
3687     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3688   case ISD::VP_FNEG:
3689     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3690   case ISD::VP_FMA:
3691     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3692   case ISD::VP_FPTOSI:
3693     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3694   case ISD::VP_FPTOUI:
3695     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3696   case ISD::VP_SITOFP:
3697     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3698   case ISD::VP_UITOFP:
3699     return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3700   }
3701 }
3702 
3703 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3704                              SelectionDAG &DAG, unsigned Flags) {
3705   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3706 }
3707 
3708 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3709                              SelectionDAG &DAG, unsigned Flags) {
3710   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3711                                    Flags);
3712 }
3713 
3714 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3715                              SelectionDAG &DAG, unsigned Flags) {
3716   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3717                                    N->getOffset(), Flags);
3718 }
3719 
3720 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3721                              SelectionDAG &DAG, unsigned Flags) {
3722   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3723 }
3724 
3725 template <class NodeTy>
3726 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3727                                      bool IsLocal) const {
3728   SDLoc DL(N);
3729   EVT Ty = getPointerTy(DAG.getDataLayout());
3730 
3731   if (isPositionIndependent()) {
3732     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3733     if (IsLocal)
3734       // Use PC-relative addressing to access the symbol. This generates the
3735       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3736       // %pcrel_lo(auipc)).
3737       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3738 
3739     // Use PC-relative addressing to access the GOT for this symbol, then load
3740     // the address from the GOT. This generates the pattern (PseudoLA sym),
3741     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3742     SDValue Load =
3743         SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3744     MachineFunction &MF = DAG.getMachineFunction();
3745     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3746         MachinePointerInfo::getGOT(MF),
3747         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3748             MachineMemOperand::MOInvariant,
3749         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3750     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3751     return Load;
3752   }
3753 
3754   switch (getTargetMachine().getCodeModel()) {
3755   default:
3756     report_fatal_error("Unsupported code model for lowering");
3757   case CodeModel::Small: {
3758     // Generate a sequence for accessing addresses within the first 2 GiB of
3759     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3760     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3761     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3762     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3763     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3764   }
3765   case CodeModel::Medium: {
3766     // Generate a sequence for accessing addresses within any 2GiB range within
3767     // the address space. This generates the pattern (PseudoLLA sym), which
3768     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3769     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3770     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3771   }
3772   }
3773 }
3774 
3775 template SDValue RISCVTargetLowering::getAddr<GlobalAddressSDNode>(
3776     GlobalAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3777 template SDValue RISCVTargetLowering::getAddr<BlockAddressSDNode>(
3778     BlockAddressSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3779 template SDValue RISCVTargetLowering::getAddr<ConstantPoolSDNode>(
3780     ConstantPoolSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3781 template SDValue RISCVTargetLowering::getAddr<JumpTableSDNode>(
3782     JumpTableSDNode *N, SelectionDAG &DAG, bool IsLocal) const;
3783 
3784 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3785                                                 SelectionDAG &DAG) const {
3786   SDLoc DL(Op);
3787   EVT Ty = Op.getValueType();
3788   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3789   int64_t Offset = N->getOffset();
3790   MVT XLenVT = Subtarget.getXLenVT();
3791 
3792   const GlobalValue *GV = N->getGlobal();
3793   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3794   SDValue Addr = getAddr(N, DAG, IsLocal);
3795 
3796   // In order to maximise the opportunity for common subexpression elimination,
3797   // emit a separate ADD node for the global address offset instead of folding
3798   // it in the global address node. Later peephole optimisations may choose to
3799   // fold it back in when profitable.
3800   if (Offset != 0)
3801     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3802                        DAG.getConstant(Offset, DL, XLenVT));
3803   return Addr;
3804 }
3805 
3806 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3807                                                SelectionDAG &DAG) const {
3808   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3809 
3810   return getAddr(N, DAG);
3811 }
3812 
3813 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3814                                                SelectionDAG &DAG) const {
3815   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3816 
3817   return getAddr(N, DAG);
3818 }
3819 
3820 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3821                                             SelectionDAG &DAG) const {
3822   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3823 
3824   return getAddr(N, DAG);
3825 }
3826 
3827 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3828                                               SelectionDAG &DAG,
3829                                               bool UseGOT) const {
3830   SDLoc DL(N);
3831   EVT Ty = getPointerTy(DAG.getDataLayout());
3832   const GlobalValue *GV = N->getGlobal();
3833   MVT XLenVT = Subtarget.getXLenVT();
3834 
3835   if (UseGOT) {
3836     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3837     // load the address from the GOT and add the thread pointer. This generates
3838     // the pattern (PseudoLA_TLS_IE sym), which expands to
3839     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3840     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3841     SDValue Load =
3842         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3843     MachineFunction &MF = DAG.getMachineFunction();
3844     MachineMemOperand *MemOp = MF.getMachineMemOperand(
3845         MachinePointerInfo::getGOT(MF),
3846         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3847             MachineMemOperand::MOInvariant,
3848         LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3849     DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
3850 
3851     // Add the thread pointer.
3852     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3853     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3854   }
3855 
3856   // Generate a sequence for accessing the address relative to the thread
3857   // pointer, with the appropriate adjustment for the thread pointer offset.
3858   // This generates the pattern
3859   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3860   SDValue AddrHi =
3861       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3862   SDValue AddrAdd =
3863       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3864   SDValue AddrLo =
3865       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3866 
3867   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3868   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3869   SDValue MNAdd = SDValue(
3870       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3871       0);
3872   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3873 }
3874 
3875 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3876                                                SelectionDAG &DAG) const {
3877   SDLoc DL(N);
3878   EVT Ty = getPointerTy(DAG.getDataLayout());
3879   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3880   const GlobalValue *GV = N->getGlobal();
3881 
3882   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3883   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3884   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3885   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3886   SDValue Load =
3887       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3888 
3889   // Prepare argument list to generate call.
3890   ArgListTy Args;
3891   ArgListEntry Entry;
3892   Entry.Node = Load;
3893   Entry.Ty = CallTy;
3894   Args.push_back(Entry);
3895 
3896   // Setup call to __tls_get_addr.
3897   TargetLowering::CallLoweringInfo CLI(DAG);
3898   CLI.setDebugLoc(DL)
3899       .setChain(DAG.getEntryNode())
3900       .setLibCallee(CallingConv::C, CallTy,
3901                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3902                     std::move(Args));
3903 
3904   return LowerCallTo(CLI).first;
3905 }
3906 
3907 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3908                                                    SelectionDAG &DAG) const {
3909   SDLoc DL(Op);
3910   EVT Ty = Op.getValueType();
3911   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3912   int64_t Offset = N->getOffset();
3913   MVT XLenVT = Subtarget.getXLenVT();
3914 
3915   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3916 
3917   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3918       CallingConv::GHC)
3919     report_fatal_error("In GHC calling convention TLS is not supported");
3920 
3921   SDValue Addr;
3922   switch (Model) {
3923   case TLSModel::LocalExec:
3924     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3925     break;
3926   case TLSModel::InitialExec:
3927     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3928     break;
3929   case TLSModel::LocalDynamic:
3930   case TLSModel::GeneralDynamic:
3931     Addr = getDynamicTLSAddr(N, DAG);
3932     break;
3933   }
3934 
3935   // In order to maximise the opportunity for common subexpression elimination,
3936   // emit a separate ADD node for the global address offset instead of folding
3937   // it in the global address node. Later peephole optimisations may choose to
3938   // fold it back in when profitable.
3939   if (Offset != 0)
3940     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3941                        DAG.getConstant(Offset, DL, XLenVT));
3942   return Addr;
3943 }
3944 
3945 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3946   SDValue CondV = Op.getOperand(0);
3947   SDValue TrueV = Op.getOperand(1);
3948   SDValue FalseV = Op.getOperand(2);
3949   SDLoc DL(Op);
3950   MVT VT = Op.getSimpleValueType();
3951   MVT XLenVT = Subtarget.getXLenVT();
3952 
3953   // Lower vector SELECTs to VSELECTs by splatting the condition.
3954   if (VT.isVector()) {
3955     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3956     SDValue CondSplat = VT.isScalableVector()
3957                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3958                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3959     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3960   }
3961 
3962   // If the result type is XLenVT and CondV is the output of a SETCC node
3963   // which also operated on XLenVT inputs, then merge the SETCC node into the
3964   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3965   // compare+branch instructions. i.e.:
3966   // (select (setcc lhs, rhs, cc), truev, falsev)
3967   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3968   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3969       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3970     SDValue LHS = CondV.getOperand(0);
3971     SDValue RHS = CondV.getOperand(1);
3972     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3973     ISD::CondCode CCVal = CC->get();
3974 
3975     // Special case for a select of 2 constants that have a diffence of 1.
3976     // Normally this is done by DAGCombine, but if the select is introduced by
3977     // type legalization or op legalization, we miss it. Restricting to SETLT
3978     // case for now because that is what signed saturating add/sub need.
3979     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3980     // but we would probably want to swap the true/false values if the condition
3981     // is SETGE/SETLE to avoid an XORI.
3982     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3983         CCVal == ISD::SETLT) {
3984       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3985       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3986       if (TrueVal - 1 == FalseVal)
3987         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3988       if (TrueVal + 1 == FalseVal)
3989         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3990     }
3991 
3992     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3993 
3994     SDValue TargetCC = DAG.getCondCode(CCVal);
3995     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3996     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3997   }
3998 
3999   // Otherwise:
4000   // (select condv, truev, falsev)
4001   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
4002   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4003   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
4004 
4005   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
4006 
4007   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
4008 }
4009 
4010 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4011   SDValue CondV = Op.getOperand(1);
4012   SDLoc DL(Op);
4013   MVT XLenVT = Subtarget.getXLenVT();
4014 
4015   if (CondV.getOpcode() == ISD::SETCC &&
4016       CondV.getOperand(0).getValueType() == XLenVT) {
4017     SDValue LHS = CondV.getOperand(0);
4018     SDValue RHS = CondV.getOperand(1);
4019     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
4020 
4021     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
4022 
4023     SDValue TargetCC = DAG.getCondCode(CCVal);
4024     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4025                        LHS, RHS, TargetCC, Op.getOperand(2));
4026   }
4027 
4028   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4029                      CondV, DAG.getConstant(0, DL, XLenVT),
4030                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4031 }
4032 
4033 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4034   MachineFunction &MF = DAG.getMachineFunction();
4035   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4036 
4037   SDLoc DL(Op);
4038   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4039                                  getPointerTy(MF.getDataLayout()));
4040 
4041   // vastart just stores the address of the VarArgsFrameIndex slot into the
4042   // memory location argument.
4043   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4044   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4045                       MachinePointerInfo(SV));
4046 }
4047 
4048 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4049                                             SelectionDAG &DAG) const {
4050   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4051   MachineFunction &MF = DAG.getMachineFunction();
4052   MachineFrameInfo &MFI = MF.getFrameInfo();
4053   MFI.setFrameAddressIsTaken(true);
4054   Register FrameReg = RI.getFrameRegister(MF);
4055   int XLenInBytes = Subtarget.getXLen() / 8;
4056 
4057   EVT VT = Op.getValueType();
4058   SDLoc DL(Op);
4059   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4060   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4061   while (Depth--) {
4062     int Offset = -(XLenInBytes * 2);
4063     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4064                               DAG.getIntPtrConstant(Offset, DL));
4065     FrameAddr =
4066         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4067   }
4068   return FrameAddr;
4069 }
4070 
4071 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4072                                              SelectionDAG &DAG) const {
4073   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4074   MachineFunction &MF = DAG.getMachineFunction();
4075   MachineFrameInfo &MFI = MF.getFrameInfo();
4076   MFI.setReturnAddressIsTaken(true);
4077   MVT XLenVT = Subtarget.getXLenVT();
4078   int XLenInBytes = Subtarget.getXLen() / 8;
4079 
4080   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4081     return SDValue();
4082 
4083   EVT VT = Op.getValueType();
4084   SDLoc DL(Op);
4085   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4086   if (Depth) {
4087     int Off = -XLenInBytes;
4088     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4089     SDValue Offset = DAG.getConstant(Off, DL, VT);
4090     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4091                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4092                        MachinePointerInfo());
4093   }
4094 
4095   // Return the value of the return address register, marking it an implicit
4096   // live-in.
4097   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4098   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4099 }
4100 
4101 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4102                                                  SelectionDAG &DAG) const {
4103   SDLoc DL(Op);
4104   SDValue Lo = Op.getOperand(0);
4105   SDValue Hi = Op.getOperand(1);
4106   SDValue Shamt = Op.getOperand(2);
4107   EVT VT = Lo.getValueType();
4108 
4109   // if Shamt-XLEN < 0: // Shamt < XLEN
4110   //   Lo = Lo << Shamt
4111   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4112   // else:
4113   //   Lo = 0
4114   //   Hi = Lo << (Shamt-XLEN)
4115 
4116   SDValue Zero = DAG.getConstant(0, DL, VT);
4117   SDValue One = DAG.getConstant(1, DL, VT);
4118   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4119   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4120   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4121   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4122 
4123   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4124   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4125   SDValue ShiftRightLo =
4126       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4127   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4128   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4129   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4130 
4131   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4132 
4133   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4134   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4135 
4136   SDValue Parts[2] = {Lo, Hi};
4137   return DAG.getMergeValues(Parts, DL);
4138 }
4139 
4140 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4141                                                   bool IsSRA) const {
4142   SDLoc DL(Op);
4143   SDValue Lo = Op.getOperand(0);
4144   SDValue Hi = Op.getOperand(1);
4145   SDValue Shamt = Op.getOperand(2);
4146   EVT VT = Lo.getValueType();
4147 
4148   // SRA expansion:
4149   //   if Shamt-XLEN < 0: // Shamt < XLEN
4150   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4151   //     Hi = Hi >>s Shamt
4152   //   else:
4153   //     Lo = Hi >>s (Shamt-XLEN);
4154   //     Hi = Hi >>s (XLEN-1)
4155   //
4156   // SRL expansion:
4157   //   if Shamt-XLEN < 0: // Shamt < XLEN
4158   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4159   //     Hi = Hi >>u Shamt
4160   //   else:
4161   //     Lo = Hi >>u (Shamt-XLEN);
4162   //     Hi = 0;
4163 
4164   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4165 
4166   SDValue Zero = DAG.getConstant(0, DL, VT);
4167   SDValue One = DAG.getConstant(1, DL, VT);
4168   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4169   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4170   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4171   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4172 
4173   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4174   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4175   SDValue ShiftLeftHi =
4176       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4177   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4178   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4179   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4180   SDValue HiFalse =
4181       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4182 
4183   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4184 
4185   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4186   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4187 
4188   SDValue Parts[2] = {Lo, Hi};
4189   return DAG.getMergeValues(Parts, DL);
4190 }
4191 
4192 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4193 // legal equivalently-sized i8 type, so we can use that as a go-between.
4194 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4195                                                   SelectionDAG &DAG) const {
4196   SDLoc DL(Op);
4197   MVT VT = Op.getSimpleValueType();
4198   SDValue SplatVal = Op.getOperand(0);
4199   // All-zeros or all-ones splats are handled specially.
4200   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4201     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4202     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4203   }
4204   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4205     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4206     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4207   }
4208   MVT XLenVT = Subtarget.getXLenVT();
4209   assert(SplatVal.getValueType() == XLenVT &&
4210          "Unexpected type for i1 splat value");
4211   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4212   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4213                          DAG.getConstant(1, DL, XLenVT));
4214   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4215   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4216   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4217 }
4218 
4219 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4220 // illegal (currently only vXi64 RV32).
4221 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4222 // them to VMV_V_X_VL.
4223 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4224                                                      SelectionDAG &DAG) const {
4225   SDLoc DL(Op);
4226   MVT VecVT = Op.getSimpleValueType();
4227   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4228          "Unexpected SPLAT_VECTOR_PARTS lowering");
4229 
4230   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4231   SDValue Lo = Op.getOperand(0);
4232   SDValue Hi = Op.getOperand(1);
4233 
4234   if (VecVT.isFixedLengthVector()) {
4235     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4236     SDLoc DL(Op);
4237     SDValue Mask, VL;
4238     std::tie(Mask, VL) =
4239         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4240 
4241     SDValue Res =
4242         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4243     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4244   }
4245 
4246   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4247     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4248     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4249     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4250     // node in order to try and match RVV vector/scalar instructions.
4251     if ((LoC >> 31) == HiC)
4252       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4253                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4254   }
4255 
4256   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4257   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4258       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4259       Hi.getConstantOperandVal(1) == 31)
4260     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4261                        DAG.getRegister(RISCV::X0, MVT::i32));
4262 
4263   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4264   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4265                      DAG.getUNDEF(VecVT), Lo, Hi,
4266                      DAG.getRegister(RISCV::X0, MVT::i32));
4267 }
4268 
4269 // Custom-lower extensions from mask vectors by using a vselect either with 1
4270 // for zero/any-extension or -1 for sign-extension:
4271 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4272 // Note that any-extension is lowered identically to zero-extension.
4273 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4274                                                 int64_t ExtTrueVal) const {
4275   SDLoc DL(Op);
4276   MVT VecVT = Op.getSimpleValueType();
4277   SDValue Src = Op.getOperand(0);
4278   // Only custom-lower extensions from mask types
4279   assert(Src.getValueType().isVector() &&
4280          Src.getValueType().getVectorElementType() == MVT::i1);
4281 
4282   if (VecVT.isScalableVector()) {
4283     SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4284     SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4285     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4286   }
4287 
4288   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4289   MVT I1ContainerVT =
4290       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4291 
4292   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4293 
4294   SDValue Mask, VL;
4295   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4296 
4297   MVT XLenVT = Subtarget.getXLenVT();
4298   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4299   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4300 
4301   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4302                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4303   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4304                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4305   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4306                                SplatTrueVal, SplatZero, VL);
4307 
4308   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4309 }
4310 
4311 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4312     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4313   MVT ExtVT = Op.getSimpleValueType();
4314   // Only custom-lower extensions from fixed-length vector types.
4315   if (!ExtVT.isFixedLengthVector())
4316     return Op;
4317   MVT VT = Op.getOperand(0).getSimpleValueType();
4318   // Grab the canonical container type for the extended type. Infer the smaller
4319   // type from that to ensure the same number of vector elements, as we know
4320   // the LMUL will be sufficient to hold the smaller type.
4321   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4322   // Get the extended container type manually to ensure the same number of
4323   // vector elements between source and dest.
4324   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4325                                      ContainerExtVT.getVectorElementCount());
4326 
4327   SDValue Op1 =
4328       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4329 
4330   SDLoc DL(Op);
4331   SDValue Mask, VL;
4332   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4333 
4334   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4335 
4336   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4337 }
4338 
4339 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4340 // setcc operation:
4341 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4342 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4343                                                   SelectionDAG &DAG) const {
4344   SDLoc DL(Op);
4345   EVT MaskVT = Op.getValueType();
4346   // Only expect to custom-lower truncations to mask types
4347   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4348          "Unexpected type for vector mask lowering");
4349   SDValue Src = Op.getOperand(0);
4350   MVT VecVT = Src.getSimpleValueType();
4351 
4352   // If this is a fixed vector, we need to convert it to a scalable vector.
4353   MVT ContainerVT = VecVT;
4354   if (VecVT.isFixedLengthVector()) {
4355     ContainerVT = getContainerForFixedLengthVector(VecVT);
4356     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4357   }
4358 
4359   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4360   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4361 
4362   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4363                          DAG.getUNDEF(ContainerVT), SplatOne);
4364   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4365                           DAG.getUNDEF(ContainerVT), SplatZero);
4366 
4367   if (VecVT.isScalableVector()) {
4368     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4369     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4370   }
4371 
4372   SDValue Mask, VL;
4373   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4374 
4375   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4376   SDValue Trunc =
4377       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4378   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4379                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4380   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4381 }
4382 
4383 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4384 // first position of a vector, and that vector is slid up to the insert index.
4385 // By limiting the active vector length to index+1 and merging with the
4386 // original vector (with an undisturbed tail policy for elements >= VL), we
4387 // achieve the desired result of leaving all elements untouched except the one
4388 // at VL-1, which is replaced with the desired value.
4389 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4390                                                     SelectionDAG &DAG) const {
4391   SDLoc DL(Op);
4392   MVT VecVT = Op.getSimpleValueType();
4393   SDValue Vec = Op.getOperand(0);
4394   SDValue Val = Op.getOperand(1);
4395   SDValue Idx = Op.getOperand(2);
4396 
4397   if (VecVT.getVectorElementType() == MVT::i1) {
4398     // FIXME: For now we just promote to an i8 vector and insert into that,
4399     // but this is probably not optimal.
4400     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4401     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4402     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4403     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4404   }
4405 
4406   MVT ContainerVT = VecVT;
4407   // If the operand is a fixed-length vector, convert to a scalable one.
4408   if (VecVT.isFixedLengthVector()) {
4409     ContainerVT = getContainerForFixedLengthVector(VecVT);
4410     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4411   }
4412 
4413   MVT XLenVT = Subtarget.getXLenVT();
4414 
4415   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4416   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4417   // Even i64-element vectors on RV32 can be lowered without scalar
4418   // legalization if the most-significant 32 bits of the value are not affected
4419   // by the sign-extension of the lower 32 bits.
4420   // TODO: We could also catch sign extensions of a 32-bit value.
4421   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4422     const auto *CVal = cast<ConstantSDNode>(Val);
4423     if (isInt<32>(CVal->getSExtValue())) {
4424       IsLegalInsert = true;
4425       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4426     }
4427   }
4428 
4429   SDValue Mask, VL;
4430   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4431 
4432   SDValue ValInVec;
4433 
4434   if (IsLegalInsert) {
4435     unsigned Opc =
4436         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4437     if (isNullConstant(Idx)) {
4438       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4439       if (!VecVT.isFixedLengthVector())
4440         return Vec;
4441       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4442     }
4443     ValInVec =
4444         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4445   } else {
4446     // On RV32, i64-element vectors must be specially handled to place the
4447     // value at element 0, by using two vslide1up instructions in sequence on
4448     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4449     // this.
4450     SDValue One = DAG.getConstant(1, DL, XLenVT);
4451     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4452     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4453     MVT I32ContainerVT =
4454         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4455     SDValue I32Mask =
4456         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4457     // Limit the active VL to two.
4458     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4459     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4460     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4461     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4462                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4463     // First slide in the hi value, then the lo in underneath it.
4464     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4465                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4466                            I32Mask, InsertI64VL);
4467     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4468                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4469                            I32Mask, InsertI64VL);
4470     // Bitcast back to the right container type.
4471     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4472   }
4473 
4474   // Now that the value is in a vector, slide it into position.
4475   SDValue InsertVL =
4476       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4477   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4478                                 ValInVec, Idx, Mask, InsertVL);
4479   if (!VecVT.isFixedLengthVector())
4480     return Slideup;
4481   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4482 }
4483 
4484 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4485 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4486 // types this is done using VMV_X_S to allow us to glean information about the
4487 // sign bits of the result.
4488 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4489                                                      SelectionDAG &DAG) const {
4490   SDLoc DL(Op);
4491   SDValue Idx = Op.getOperand(1);
4492   SDValue Vec = Op.getOperand(0);
4493   EVT EltVT = Op.getValueType();
4494   MVT VecVT = Vec.getSimpleValueType();
4495   MVT XLenVT = Subtarget.getXLenVT();
4496 
4497   if (VecVT.getVectorElementType() == MVT::i1) {
4498     if (VecVT.isFixedLengthVector()) {
4499       unsigned NumElts = VecVT.getVectorNumElements();
4500       if (NumElts >= 8) {
4501         MVT WideEltVT;
4502         unsigned WidenVecLen;
4503         SDValue ExtractElementIdx;
4504         SDValue ExtractBitIdx;
4505         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4506         MVT LargestEltVT = MVT::getIntegerVT(
4507             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4508         if (NumElts <= LargestEltVT.getSizeInBits()) {
4509           assert(isPowerOf2_32(NumElts) &&
4510                  "the number of elements should be power of 2");
4511           WideEltVT = MVT::getIntegerVT(NumElts);
4512           WidenVecLen = 1;
4513           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4514           ExtractBitIdx = Idx;
4515         } else {
4516           WideEltVT = LargestEltVT;
4517           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4518           // extract element index = index / element width
4519           ExtractElementIdx = DAG.getNode(
4520               ISD::SRL, DL, XLenVT, Idx,
4521               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4522           // mask bit index = index % element width
4523           ExtractBitIdx = DAG.getNode(
4524               ISD::AND, DL, XLenVT, Idx,
4525               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4526         }
4527         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4528         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4529         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4530                                          Vec, ExtractElementIdx);
4531         // Extract the bit from GPR.
4532         SDValue ShiftRight =
4533             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4534         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4535                            DAG.getConstant(1, DL, XLenVT));
4536       }
4537     }
4538     // Otherwise, promote to an i8 vector and extract from that.
4539     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4540     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4541     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4542   }
4543 
4544   // If this is a fixed vector, we need to convert it to a scalable vector.
4545   MVT ContainerVT = VecVT;
4546   if (VecVT.isFixedLengthVector()) {
4547     ContainerVT = getContainerForFixedLengthVector(VecVT);
4548     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4549   }
4550 
4551   // If the index is 0, the vector is already in the right position.
4552   if (!isNullConstant(Idx)) {
4553     // Use a VL of 1 to avoid processing more elements than we need.
4554     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4555     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4556     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4557     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4558                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4559   }
4560 
4561   if (!EltVT.isInteger()) {
4562     // Floating-point extracts are handled in TableGen.
4563     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4564                        DAG.getConstant(0, DL, XLenVT));
4565   }
4566 
4567   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4568   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4569 }
4570 
4571 // Some RVV intrinsics may claim that they want an integer operand to be
4572 // promoted or expanded.
4573 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4574                                            const RISCVSubtarget &Subtarget) {
4575   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4576           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4577          "Unexpected opcode");
4578 
4579   if (!Subtarget.hasVInstructions())
4580     return SDValue();
4581 
4582   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4583   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4584   SDLoc DL(Op);
4585 
4586   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4587       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4588   if (!II || !II->hasScalarOperand())
4589     return SDValue();
4590 
4591   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4592   assert(SplatOp < Op.getNumOperands());
4593 
4594   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4595   SDValue &ScalarOp = Operands[SplatOp];
4596   MVT OpVT = ScalarOp.getSimpleValueType();
4597   MVT XLenVT = Subtarget.getXLenVT();
4598 
4599   // If this isn't a scalar, or its type is XLenVT we're done.
4600   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4601     return SDValue();
4602 
4603   // Simplest case is that the operand needs to be promoted to XLenVT.
4604   if (OpVT.bitsLT(XLenVT)) {
4605     // If the operand is a constant, sign extend to increase our chances
4606     // of being able to use a .vi instruction. ANY_EXTEND would become a
4607     // a zero extend and the simm5 check in isel would fail.
4608     // FIXME: Should we ignore the upper bits in isel instead?
4609     unsigned ExtOpc =
4610         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4611     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4612     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4613   }
4614 
4615   // Use the previous operand to get the vXi64 VT. The result might be a mask
4616   // VT for compares. Using the previous operand assumes that the previous
4617   // operand will never have a smaller element size than a scalar operand and
4618   // that a widening operation never uses SEW=64.
4619   // NOTE: If this fails the below assert, we can probably just find the
4620   // element count from any operand or result and use it to construct the VT.
4621   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4622   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4623 
4624   // The more complex case is when the scalar is larger than XLenVT.
4625   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4626          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4627 
4628   // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4629   // instruction to sign-extend since SEW>XLEN.
4630   if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4631     ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4632     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4633   }
4634 
4635   switch (IntNo) {
4636   case Intrinsic::riscv_vslide1up:
4637   case Intrinsic::riscv_vslide1down:
4638   case Intrinsic::riscv_vslide1up_mask:
4639   case Intrinsic::riscv_vslide1down_mask: {
4640     // We need to special case these when the scalar is larger than XLen.
4641     unsigned NumOps = Op.getNumOperands();
4642     bool IsMasked = NumOps == 7;
4643 
4644     // Convert the vector source to the equivalent nxvXi32 vector.
4645     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4646     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4647 
4648     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4649                                    DAG.getConstant(0, DL, XLenVT));
4650     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4651                                    DAG.getConstant(1, DL, XLenVT));
4652 
4653     // Double the VL since we halved SEW.
4654     SDValue AVL = getVLOperand(Op);
4655     SDValue I32VL;
4656 
4657     // Optimize for constant AVL
4658     if (isa<ConstantSDNode>(AVL)) {
4659       unsigned EltSize = VT.getScalarSizeInBits();
4660       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4661 
4662       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4663       unsigned MaxVLMAX =
4664           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4665 
4666       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4667       unsigned MinVLMAX =
4668           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4669 
4670       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4671       if (AVLInt <= MinVLMAX) {
4672         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4673       } else if (AVLInt >= 2 * MaxVLMAX) {
4674         // Just set vl to VLMAX in this situation
4675         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4676         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4677         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4678         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4679         SDValue SETVLMAX = DAG.getTargetConstant(
4680             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4681         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4682                             LMUL);
4683       } else {
4684         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4685         // is related to the hardware implementation.
4686         // So let the following code handle
4687       }
4688     }
4689     if (!I32VL) {
4690       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4691       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4692       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4693       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4694       SDValue SETVL =
4695           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4696       // Using vsetvli instruction to get actually used length which related to
4697       // the hardware implementation
4698       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4699                                SEW, LMUL);
4700       I32VL =
4701           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4702     }
4703 
4704     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4705     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4706 
4707     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4708     // instructions.
4709     SDValue Passthru;
4710     if (IsMasked)
4711       Passthru = DAG.getUNDEF(I32VT);
4712     else
4713       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4714 
4715     if (IntNo == Intrinsic::riscv_vslide1up ||
4716         IntNo == Intrinsic::riscv_vslide1up_mask) {
4717       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4718                         ScalarHi, I32Mask, I32VL);
4719       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4720                         ScalarLo, I32Mask, I32VL);
4721     } else {
4722       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4723                         ScalarLo, I32Mask, I32VL);
4724       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4725                         ScalarHi, I32Mask, I32VL);
4726     }
4727 
4728     // Convert back to nxvXi64.
4729     Vec = DAG.getBitcast(VT, Vec);
4730 
4731     if (!IsMasked)
4732       return Vec;
4733     // Apply mask after the operation.
4734     SDValue Mask = Operands[NumOps - 3];
4735     SDValue MaskedOff = Operands[1];
4736     // Assume Policy operand is the last operand.
4737     uint64_t Policy =
4738         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4739     // We don't need to select maskedoff if it's undef.
4740     if (MaskedOff.isUndef())
4741       return Vec;
4742     // TAMU
4743     if (Policy == RISCVII::TAIL_AGNOSTIC)
4744       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4745                          AVL);
4746     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4747     // It's fine because vmerge does not care mask policy.
4748     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4749                        AVL);
4750   }
4751   }
4752 
4753   // We need to convert the scalar to a splat vector.
4754   SDValue VL = getVLOperand(Op);
4755   assert(VL.getValueType() == XLenVT);
4756   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4757   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4758 }
4759 
4760 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4761                                                      SelectionDAG &DAG) const {
4762   unsigned IntNo = Op.getConstantOperandVal(0);
4763   SDLoc DL(Op);
4764   MVT XLenVT = Subtarget.getXLenVT();
4765 
4766   switch (IntNo) {
4767   default:
4768     break; // Don't custom lower most intrinsics.
4769   case Intrinsic::thread_pointer: {
4770     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4771     return DAG.getRegister(RISCV::X4, PtrVT);
4772   }
4773   case Intrinsic::riscv_orc_b:
4774   case Intrinsic::riscv_brev8: {
4775     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4776     unsigned Opc =
4777         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4778     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4779                        DAG.getConstant(7, DL, XLenVT));
4780   }
4781   case Intrinsic::riscv_grev:
4782   case Intrinsic::riscv_gorc: {
4783     unsigned Opc =
4784         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4785     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4786   }
4787   case Intrinsic::riscv_zip:
4788   case Intrinsic::riscv_unzip: {
4789     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4790     // For i32 the immediate is 15. For i64 the immediate is 31.
4791     unsigned Opc =
4792         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4793     unsigned BitWidth = Op.getValueSizeInBits();
4794     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4795     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4796                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4797   }
4798   case Intrinsic::riscv_shfl:
4799   case Intrinsic::riscv_unshfl: {
4800     unsigned Opc =
4801         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4802     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4803   }
4804   case Intrinsic::riscv_bcompress:
4805   case Intrinsic::riscv_bdecompress: {
4806     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4807                                                        : RISCVISD::BDECOMPRESS;
4808     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4809   }
4810   case Intrinsic::riscv_bfp:
4811     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4812                        Op.getOperand(2));
4813   case Intrinsic::riscv_fsl:
4814     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4815                        Op.getOperand(2), Op.getOperand(3));
4816   case Intrinsic::riscv_fsr:
4817     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4818                        Op.getOperand(2), Op.getOperand(3));
4819   case Intrinsic::riscv_vmv_x_s:
4820     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4821     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4822                        Op.getOperand(1));
4823   case Intrinsic::riscv_vmv_v_x:
4824     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4825                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4826                             Subtarget);
4827   case Intrinsic::riscv_vfmv_v_f:
4828     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4829                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4830   case Intrinsic::riscv_vmv_s_x: {
4831     SDValue Scalar = Op.getOperand(2);
4832 
4833     if (Scalar.getValueType().bitsLE(XLenVT)) {
4834       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4835       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4836                          Op.getOperand(1), Scalar, Op.getOperand(3));
4837     }
4838 
4839     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4840 
4841     // This is an i64 value that lives in two scalar registers. We have to
4842     // insert this in a convoluted way. First we build vXi64 splat containing
4843     // the two values that we assemble using some bit math. Next we'll use
4844     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4845     // to merge element 0 from our splat into the source vector.
4846     // FIXME: This is probably not the best way to do this, but it is
4847     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4848     // point.
4849     //   sw lo, (a0)
4850     //   sw hi, 4(a0)
4851     //   vlse vX, (a0)
4852     //
4853     //   vid.v      vVid
4854     //   vmseq.vx   mMask, vVid, 0
4855     //   vmerge.vvm vDest, vSrc, vVal, mMask
4856     MVT VT = Op.getSimpleValueType();
4857     SDValue Vec = Op.getOperand(1);
4858     SDValue VL = getVLOperand(Op);
4859 
4860     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4861     if (Op.getOperand(1).isUndef())
4862       return SplattedVal;
4863     SDValue SplattedIdx =
4864         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4865                     DAG.getConstant(0, DL, MVT::i32), VL);
4866 
4867     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4868     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4869     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4870     SDValue SelectCond =
4871         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4872                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4873     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4874                        Vec, VL);
4875   }
4876   }
4877 
4878   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4879 }
4880 
4881 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4882                                                     SelectionDAG &DAG) const {
4883   unsigned IntNo = Op.getConstantOperandVal(1);
4884   switch (IntNo) {
4885   default:
4886     break;
4887   case Intrinsic::riscv_masked_strided_load: {
4888     SDLoc DL(Op);
4889     MVT XLenVT = Subtarget.getXLenVT();
4890 
4891     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4892     // the selection of the masked intrinsics doesn't do this for us.
4893     SDValue Mask = Op.getOperand(5);
4894     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4895 
4896     MVT VT = Op->getSimpleValueType(0);
4897     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4898 
4899     SDValue PassThru = Op.getOperand(2);
4900     if (!IsUnmasked) {
4901       MVT MaskVT =
4902           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4903       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4904       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4905     }
4906 
4907     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4908 
4909     SDValue IntID = DAG.getTargetConstant(
4910         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4911         XLenVT);
4912 
4913     auto *Load = cast<MemIntrinsicSDNode>(Op);
4914     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4915     if (IsUnmasked)
4916       Ops.push_back(DAG.getUNDEF(ContainerVT));
4917     else
4918       Ops.push_back(PassThru);
4919     Ops.push_back(Op.getOperand(3)); // Ptr
4920     Ops.push_back(Op.getOperand(4)); // Stride
4921     if (!IsUnmasked)
4922       Ops.push_back(Mask);
4923     Ops.push_back(VL);
4924     if (!IsUnmasked) {
4925       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4926       Ops.push_back(Policy);
4927     }
4928 
4929     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4930     SDValue Result =
4931         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4932                                 Load->getMemoryVT(), Load->getMemOperand());
4933     SDValue Chain = Result.getValue(1);
4934     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4935     return DAG.getMergeValues({Result, Chain}, DL);
4936   }
4937   case Intrinsic::riscv_seg2_load:
4938   case Intrinsic::riscv_seg3_load:
4939   case Intrinsic::riscv_seg4_load:
4940   case Intrinsic::riscv_seg5_load:
4941   case Intrinsic::riscv_seg6_load:
4942   case Intrinsic::riscv_seg7_load:
4943   case Intrinsic::riscv_seg8_load: {
4944     SDLoc DL(Op);
4945     static const Intrinsic::ID VlsegInts[7] = {
4946         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4947         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4948         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4949         Intrinsic::riscv_vlseg8};
4950     unsigned NF = Op->getNumValues() - 1;
4951     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4952     MVT XLenVT = Subtarget.getXLenVT();
4953     MVT VT = Op->getSimpleValueType(0);
4954     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4955 
4956     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4957     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4958     auto *Load = cast<MemIntrinsicSDNode>(Op);
4959     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4960     ContainerVTs.push_back(MVT::Other);
4961     SDVTList VTs = DAG.getVTList(ContainerVTs);
4962     SDValue Result =
4963         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4964                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4965                                 Load->getMemoryVT(), Load->getMemOperand());
4966     SmallVector<SDValue, 9> Results;
4967     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4968       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4969                                                   DAG, Subtarget));
4970     Results.push_back(Result.getValue(NF));
4971     return DAG.getMergeValues(Results, DL);
4972   }
4973   }
4974 
4975   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4976 }
4977 
4978 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4979                                                  SelectionDAG &DAG) const {
4980   unsigned IntNo = Op.getConstantOperandVal(1);
4981   switch (IntNo) {
4982   default:
4983     break;
4984   case Intrinsic::riscv_masked_strided_store: {
4985     SDLoc DL(Op);
4986     MVT XLenVT = Subtarget.getXLenVT();
4987 
4988     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4989     // the selection of the masked intrinsics doesn't do this for us.
4990     SDValue Mask = Op.getOperand(5);
4991     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4992 
4993     SDValue Val = Op.getOperand(2);
4994     MVT VT = Val.getSimpleValueType();
4995     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4996 
4997     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4998     if (!IsUnmasked) {
4999       MVT MaskVT =
5000           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5001       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5002     }
5003 
5004     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5005 
5006     SDValue IntID = DAG.getTargetConstant(
5007         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5008         XLenVT);
5009 
5010     auto *Store = cast<MemIntrinsicSDNode>(Op);
5011     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5012     Ops.push_back(Val);
5013     Ops.push_back(Op.getOperand(3)); // Ptr
5014     Ops.push_back(Op.getOperand(4)); // Stride
5015     if (!IsUnmasked)
5016       Ops.push_back(Mask);
5017     Ops.push_back(VL);
5018 
5019     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5020                                    Ops, Store->getMemoryVT(),
5021                                    Store->getMemOperand());
5022   }
5023   }
5024 
5025   return SDValue();
5026 }
5027 
5028 static MVT getLMUL1VT(MVT VT) {
5029   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5030          "Unexpected vector MVT");
5031   return MVT::getScalableVectorVT(
5032       VT.getVectorElementType(),
5033       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5034 }
5035 
5036 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5037   switch (ISDOpcode) {
5038   default:
5039     llvm_unreachable("Unhandled reduction");
5040   case ISD::VECREDUCE_ADD:
5041     return RISCVISD::VECREDUCE_ADD_VL;
5042   case ISD::VECREDUCE_UMAX:
5043     return RISCVISD::VECREDUCE_UMAX_VL;
5044   case ISD::VECREDUCE_SMAX:
5045     return RISCVISD::VECREDUCE_SMAX_VL;
5046   case ISD::VECREDUCE_UMIN:
5047     return RISCVISD::VECREDUCE_UMIN_VL;
5048   case ISD::VECREDUCE_SMIN:
5049     return RISCVISD::VECREDUCE_SMIN_VL;
5050   case ISD::VECREDUCE_AND:
5051     return RISCVISD::VECREDUCE_AND_VL;
5052   case ISD::VECREDUCE_OR:
5053     return RISCVISD::VECREDUCE_OR_VL;
5054   case ISD::VECREDUCE_XOR:
5055     return RISCVISD::VECREDUCE_XOR_VL;
5056   }
5057 }
5058 
5059 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5060                                                          SelectionDAG &DAG,
5061                                                          bool IsVP) const {
5062   SDLoc DL(Op);
5063   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5064   MVT VecVT = Vec.getSimpleValueType();
5065   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5066           Op.getOpcode() == ISD::VECREDUCE_OR ||
5067           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5068           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5069           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5070           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5071          "Unexpected reduction lowering");
5072 
5073   MVT XLenVT = Subtarget.getXLenVT();
5074   assert(Op.getValueType() == XLenVT &&
5075          "Expected reduction output to be legalized to XLenVT");
5076 
5077   MVT ContainerVT = VecVT;
5078   if (VecVT.isFixedLengthVector()) {
5079     ContainerVT = getContainerForFixedLengthVector(VecVT);
5080     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5081   }
5082 
5083   SDValue Mask, VL;
5084   if (IsVP) {
5085     Mask = Op.getOperand(2);
5086     VL = Op.getOperand(3);
5087   } else {
5088     std::tie(Mask, VL) =
5089         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5090   }
5091 
5092   unsigned BaseOpc;
5093   ISD::CondCode CC;
5094   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5095 
5096   switch (Op.getOpcode()) {
5097   default:
5098     llvm_unreachable("Unhandled reduction");
5099   case ISD::VECREDUCE_AND:
5100   case ISD::VP_REDUCE_AND: {
5101     // vcpop ~x == 0
5102     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5103     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5104     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5105     CC = ISD::SETEQ;
5106     BaseOpc = ISD::AND;
5107     break;
5108   }
5109   case ISD::VECREDUCE_OR:
5110   case ISD::VP_REDUCE_OR:
5111     // vcpop x != 0
5112     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5113     CC = ISD::SETNE;
5114     BaseOpc = ISD::OR;
5115     break;
5116   case ISD::VECREDUCE_XOR:
5117   case ISD::VP_REDUCE_XOR: {
5118     // ((vcpop x) & 1) != 0
5119     SDValue One = DAG.getConstant(1, DL, XLenVT);
5120     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5121     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5122     CC = ISD::SETNE;
5123     BaseOpc = ISD::XOR;
5124     break;
5125   }
5126   }
5127 
5128   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5129 
5130   if (!IsVP)
5131     return SetCC;
5132 
5133   // Now include the start value in the operation.
5134   // Note that we must return the start value when no elements are operated
5135   // upon. The vcpop instructions we've emitted in each case above will return
5136   // 0 for an inactive vector, and so we've already received the neutral value:
5137   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5138   // can simply include the start value.
5139   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5140 }
5141 
5142 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5143                                             SelectionDAG &DAG) const {
5144   SDLoc DL(Op);
5145   SDValue Vec = Op.getOperand(0);
5146   EVT VecEVT = Vec.getValueType();
5147 
5148   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5149 
5150   // Due to ordering in legalize types we may have a vector type that needs to
5151   // be split. Do that manually so we can get down to a legal type.
5152   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5153          TargetLowering::TypeSplitVector) {
5154     SDValue Lo, Hi;
5155     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5156     VecEVT = Lo.getValueType();
5157     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5158   }
5159 
5160   // TODO: The type may need to be widened rather than split. Or widened before
5161   // it can be split.
5162   if (!isTypeLegal(VecEVT))
5163     return SDValue();
5164 
5165   MVT VecVT = VecEVT.getSimpleVT();
5166   MVT VecEltVT = VecVT.getVectorElementType();
5167   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5168 
5169   MVT ContainerVT = VecVT;
5170   if (VecVT.isFixedLengthVector()) {
5171     ContainerVT = getContainerForFixedLengthVector(VecVT);
5172     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5173   }
5174 
5175   MVT M1VT = getLMUL1VT(ContainerVT);
5176   MVT XLenVT = Subtarget.getXLenVT();
5177 
5178   SDValue Mask, VL;
5179   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5180 
5181   SDValue NeutralElem =
5182       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5183   SDValue IdentitySplat =
5184       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5185                        M1VT, DL, DAG, Subtarget);
5186   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5187                                   IdentitySplat, Mask, VL);
5188   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5189                              DAG.getConstant(0, DL, XLenVT));
5190   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5191 }
5192 
5193 // Given a reduction op, this function returns the matching reduction opcode,
5194 // the vector SDValue and the scalar SDValue required to lower this to a
5195 // RISCVISD node.
5196 static std::tuple<unsigned, SDValue, SDValue>
5197 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5198   SDLoc DL(Op);
5199   auto Flags = Op->getFlags();
5200   unsigned Opcode = Op.getOpcode();
5201   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5202   switch (Opcode) {
5203   default:
5204     llvm_unreachable("Unhandled reduction");
5205   case ISD::VECREDUCE_FADD: {
5206     // Use positive zero if we can. It is cheaper to materialize.
5207     SDValue Zero =
5208         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5209     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5210   }
5211   case ISD::VECREDUCE_SEQ_FADD:
5212     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5213                            Op.getOperand(0));
5214   case ISD::VECREDUCE_FMIN:
5215     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5216                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5217   case ISD::VECREDUCE_FMAX:
5218     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5219                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5220   }
5221 }
5222 
5223 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5224                                               SelectionDAG &DAG) const {
5225   SDLoc DL(Op);
5226   MVT VecEltVT = Op.getSimpleValueType();
5227 
5228   unsigned RVVOpcode;
5229   SDValue VectorVal, ScalarVal;
5230   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5231       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5232   MVT VecVT = VectorVal.getSimpleValueType();
5233 
5234   MVT ContainerVT = VecVT;
5235   if (VecVT.isFixedLengthVector()) {
5236     ContainerVT = getContainerForFixedLengthVector(VecVT);
5237     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5238   }
5239 
5240   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5241   MVT XLenVT = Subtarget.getXLenVT();
5242 
5243   SDValue Mask, VL;
5244   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5245 
5246   SDValue ScalarSplat =
5247       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5248                        M1VT, DL, DAG, Subtarget);
5249   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5250                                   VectorVal, ScalarSplat, Mask, VL);
5251   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5252                      DAG.getConstant(0, DL, XLenVT));
5253 }
5254 
5255 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5256   switch (ISDOpcode) {
5257   default:
5258     llvm_unreachable("Unhandled reduction");
5259   case ISD::VP_REDUCE_ADD:
5260     return RISCVISD::VECREDUCE_ADD_VL;
5261   case ISD::VP_REDUCE_UMAX:
5262     return RISCVISD::VECREDUCE_UMAX_VL;
5263   case ISD::VP_REDUCE_SMAX:
5264     return RISCVISD::VECREDUCE_SMAX_VL;
5265   case ISD::VP_REDUCE_UMIN:
5266     return RISCVISD::VECREDUCE_UMIN_VL;
5267   case ISD::VP_REDUCE_SMIN:
5268     return RISCVISD::VECREDUCE_SMIN_VL;
5269   case ISD::VP_REDUCE_AND:
5270     return RISCVISD::VECREDUCE_AND_VL;
5271   case ISD::VP_REDUCE_OR:
5272     return RISCVISD::VECREDUCE_OR_VL;
5273   case ISD::VP_REDUCE_XOR:
5274     return RISCVISD::VECREDUCE_XOR_VL;
5275   case ISD::VP_REDUCE_FADD:
5276     return RISCVISD::VECREDUCE_FADD_VL;
5277   case ISD::VP_REDUCE_SEQ_FADD:
5278     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5279   case ISD::VP_REDUCE_FMAX:
5280     return RISCVISD::VECREDUCE_FMAX_VL;
5281   case ISD::VP_REDUCE_FMIN:
5282     return RISCVISD::VECREDUCE_FMIN_VL;
5283   }
5284 }
5285 
5286 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5287                                            SelectionDAG &DAG) const {
5288   SDLoc DL(Op);
5289   SDValue Vec = Op.getOperand(1);
5290   EVT VecEVT = Vec.getValueType();
5291 
5292   // TODO: The type may need to be widened rather than split. Or widened before
5293   // it can be split.
5294   if (!isTypeLegal(VecEVT))
5295     return SDValue();
5296 
5297   MVT VecVT = VecEVT.getSimpleVT();
5298   MVT VecEltVT = VecVT.getVectorElementType();
5299   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5300 
5301   MVT ContainerVT = VecVT;
5302   if (VecVT.isFixedLengthVector()) {
5303     ContainerVT = getContainerForFixedLengthVector(VecVT);
5304     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5305   }
5306 
5307   SDValue VL = Op.getOperand(3);
5308   SDValue Mask = Op.getOperand(2);
5309 
5310   MVT M1VT = getLMUL1VT(ContainerVT);
5311   MVT XLenVT = Subtarget.getXLenVT();
5312   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5313 
5314   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5315                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5316                                         DL, DAG, Subtarget);
5317   SDValue Reduction =
5318       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5319   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5320                              DAG.getConstant(0, DL, XLenVT));
5321   if (!VecVT.isInteger())
5322     return Elt0;
5323   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5324 }
5325 
5326 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5327                                                    SelectionDAG &DAG) const {
5328   SDValue Vec = Op.getOperand(0);
5329   SDValue SubVec = Op.getOperand(1);
5330   MVT VecVT = Vec.getSimpleValueType();
5331   MVT SubVecVT = SubVec.getSimpleValueType();
5332 
5333   SDLoc DL(Op);
5334   MVT XLenVT = Subtarget.getXLenVT();
5335   unsigned OrigIdx = Op.getConstantOperandVal(2);
5336   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5337 
5338   // We don't have the ability to slide mask vectors up indexed by their i1
5339   // elements; the smallest we can do is i8. Often we are able to bitcast to
5340   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5341   // into a scalable one, we might not necessarily have enough scalable
5342   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5343   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5344       (OrigIdx != 0 || !Vec.isUndef())) {
5345     if (VecVT.getVectorMinNumElements() >= 8 &&
5346         SubVecVT.getVectorMinNumElements() >= 8) {
5347       assert(OrigIdx % 8 == 0 && "Invalid index");
5348       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5349              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5350              "Unexpected mask vector lowering");
5351       OrigIdx /= 8;
5352       SubVecVT =
5353           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5354                            SubVecVT.isScalableVector());
5355       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5356                                VecVT.isScalableVector());
5357       Vec = DAG.getBitcast(VecVT, Vec);
5358       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5359     } else {
5360       // We can't slide this mask vector up indexed by its i1 elements.
5361       // This poses a problem when we wish to insert a scalable vector which
5362       // can't be re-expressed as a larger type. Just choose the slow path and
5363       // extend to a larger type, then truncate back down.
5364       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5365       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5366       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5367       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5368       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5369                         Op.getOperand(2));
5370       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5371       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5372     }
5373   }
5374 
5375   // If the subvector vector is a fixed-length type, we cannot use subregister
5376   // manipulation to simplify the codegen; we don't know which register of a
5377   // LMUL group contains the specific subvector as we only know the minimum
5378   // register size. Therefore we must slide the vector group up the full
5379   // amount.
5380   if (SubVecVT.isFixedLengthVector()) {
5381     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5382       return Op;
5383     MVT ContainerVT = VecVT;
5384     if (VecVT.isFixedLengthVector()) {
5385       ContainerVT = getContainerForFixedLengthVector(VecVT);
5386       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5387     }
5388     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5389                          DAG.getUNDEF(ContainerVT), SubVec,
5390                          DAG.getConstant(0, DL, XLenVT));
5391     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5392       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5393       return DAG.getBitcast(Op.getValueType(), SubVec);
5394     }
5395     SDValue Mask =
5396         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5397     // Set the vector length to only the number of elements we care about. Note
5398     // that for slideup this includes the offset.
5399     SDValue VL =
5400         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5401     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5402     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5403                                   SubVec, SlideupAmt, Mask, VL);
5404     if (VecVT.isFixedLengthVector())
5405       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5406     return DAG.getBitcast(Op.getValueType(), Slideup);
5407   }
5408 
5409   unsigned SubRegIdx, RemIdx;
5410   std::tie(SubRegIdx, RemIdx) =
5411       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5412           VecVT, SubVecVT, OrigIdx, TRI);
5413 
5414   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5415   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5416                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5417                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5418 
5419   // 1. If the Idx has been completely eliminated and this subvector's size is
5420   // a vector register or a multiple thereof, or the surrounding elements are
5421   // undef, then this is a subvector insert which naturally aligns to a vector
5422   // register. These can easily be handled using subregister manipulation.
5423   // 2. If the subvector is smaller than a vector register, then the insertion
5424   // must preserve the undisturbed elements of the register. We do this by
5425   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5426   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5427   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5428   // LMUL=1 type back into the larger vector (resolving to another subregister
5429   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5430   // to avoid allocating a large register group to hold our subvector.
5431   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5432     return Op;
5433 
5434   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5435   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5436   // (in our case undisturbed). This means we can set up a subvector insertion
5437   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5438   // size of the subvector.
5439   MVT InterSubVT = VecVT;
5440   SDValue AlignedExtract = Vec;
5441   unsigned AlignedIdx = OrigIdx - RemIdx;
5442   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5443     InterSubVT = getLMUL1VT(VecVT);
5444     // Extract a subvector equal to the nearest full vector register type. This
5445     // should resolve to a EXTRACT_SUBREG instruction.
5446     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5447                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5448   }
5449 
5450   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5451   // For scalable vectors this must be further multiplied by vscale.
5452   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5453 
5454   SDValue Mask, VL;
5455   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5456 
5457   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5458   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5459   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5460   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5461 
5462   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5463                        DAG.getUNDEF(InterSubVT), SubVec,
5464                        DAG.getConstant(0, DL, XLenVT));
5465 
5466   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5467                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5468 
5469   // If required, insert this subvector back into the correct vector register.
5470   // This should resolve to an INSERT_SUBREG instruction.
5471   if (VecVT.bitsGT(InterSubVT))
5472     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5473                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5474 
5475   // We might have bitcast from a mask type: cast back to the original type if
5476   // required.
5477   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5478 }
5479 
5480 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5481                                                     SelectionDAG &DAG) const {
5482   SDValue Vec = Op.getOperand(0);
5483   MVT SubVecVT = Op.getSimpleValueType();
5484   MVT VecVT = Vec.getSimpleValueType();
5485 
5486   SDLoc DL(Op);
5487   MVT XLenVT = Subtarget.getXLenVT();
5488   unsigned OrigIdx = Op.getConstantOperandVal(1);
5489   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5490 
5491   // We don't have the ability to slide mask vectors down indexed by their i1
5492   // elements; the smallest we can do is i8. Often we are able to bitcast to
5493   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5494   // from a scalable one, we might not necessarily have enough scalable
5495   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5496   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5497     if (VecVT.getVectorMinNumElements() >= 8 &&
5498         SubVecVT.getVectorMinNumElements() >= 8) {
5499       assert(OrigIdx % 8 == 0 && "Invalid index");
5500       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5501              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5502              "Unexpected mask vector lowering");
5503       OrigIdx /= 8;
5504       SubVecVT =
5505           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5506                            SubVecVT.isScalableVector());
5507       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5508                                VecVT.isScalableVector());
5509       Vec = DAG.getBitcast(VecVT, Vec);
5510     } else {
5511       // We can't slide this mask vector down, indexed by its i1 elements.
5512       // This poses a problem when we wish to extract a scalable vector which
5513       // can't be re-expressed as a larger type. Just choose the slow path and
5514       // extend to a larger type, then truncate back down.
5515       // TODO: We could probably improve this when extracting certain fixed
5516       // from fixed, where we can extract as i8 and shift the correct element
5517       // right to reach the desired subvector?
5518       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5519       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5520       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5521       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5522                         Op.getOperand(1));
5523       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5524       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5525     }
5526   }
5527 
5528   // If the subvector vector is a fixed-length type, we cannot use subregister
5529   // manipulation to simplify the codegen; we don't know which register of a
5530   // LMUL group contains the specific subvector as we only know the minimum
5531   // register size. Therefore we must slide the vector group down the full
5532   // amount.
5533   if (SubVecVT.isFixedLengthVector()) {
5534     // With an index of 0 this is a cast-like subvector, which can be performed
5535     // with subregister operations.
5536     if (OrigIdx == 0)
5537       return Op;
5538     MVT ContainerVT = VecVT;
5539     if (VecVT.isFixedLengthVector()) {
5540       ContainerVT = getContainerForFixedLengthVector(VecVT);
5541       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5542     }
5543     SDValue Mask =
5544         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5545     // Set the vector length to only the number of elements we care about. This
5546     // avoids sliding down elements we're going to discard straight away.
5547     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5548     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5549     SDValue Slidedown =
5550         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5551                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5552     // Now we can use a cast-like subvector extract to get the result.
5553     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5554                             DAG.getConstant(0, DL, XLenVT));
5555     return DAG.getBitcast(Op.getValueType(), Slidedown);
5556   }
5557 
5558   unsigned SubRegIdx, RemIdx;
5559   std::tie(SubRegIdx, RemIdx) =
5560       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5561           VecVT, SubVecVT, OrigIdx, TRI);
5562 
5563   // If the Idx has been completely eliminated then this is a subvector extract
5564   // which naturally aligns to a vector register. These can easily be handled
5565   // using subregister manipulation.
5566   if (RemIdx == 0)
5567     return Op;
5568 
5569   // Else we must shift our vector register directly to extract the subvector.
5570   // Do this using VSLIDEDOWN.
5571 
5572   // If the vector type is an LMUL-group type, extract a subvector equal to the
5573   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5574   // instruction.
5575   MVT InterSubVT = VecVT;
5576   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5577     InterSubVT = getLMUL1VT(VecVT);
5578     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5579                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5580   }
5581 
5582   // Slide this vector register down by the desired number of elements in order
5583   // to place the desired subvector starting at element 0.
5584   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5585   // For scalable vectors this must be further multiplied by vscale.
5586   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5587 
5588   SDValue Mask, VL;
5589   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5590   SDValue Slidedown =
5591       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5592                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5593 
5594   // Now the vector is in the right position, extract our final subvector. This
5595   // should resolve to a COPY.
5596   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5597                           DAG.getConstant(0, DL, XLenVT));
5598 
5599   // We might have bitcast from a mask type: cast back to the original type if
5600   // required.
5601   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5602 }
5603 
5604 // Lower step_vector to the vid instruction. Any non-identity step value must
5605 // be accounted for my manual expansion.
5606 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5607                                               SelectionDAG &DAG) const {
5608   SDLoc DL(Op);
5609   MVT VT = Op.getSimpleValueType();
5610   MVT XLenVT = Subtarget.getXLenVT();
5611   SDValue Mask, VL;
5612   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5613   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5614   uint64_t StepValImm = Op.getConstantOperandVal(0);
5615   if (StepValImm != 1) {
5616     if (isPowerOf2_64(StepValImm)) {
5617       SDValue StepVal =
5618           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5619                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5620       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5621     } else {
5622       SDValue StepVal = lowerScalarSplat(
5623           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5624           VL, VT, DL, DAG, Subtarget);
5625       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5626     }
5627   }
5628   return StepVec;
5629 }
5630 
5631 // Implement vector_reverse using vrgather.vv with indices determined by
5632 // subtracting the id of each element from (VLMAX-1). This will convert
5633 // the indices like so:
5634 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5635 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5636 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5637                                                  SelectionDAG &DAG) const {
5638   SDLoc DL(Op);
5639   MVT VecVT = Op.getSimpleValueType();
5640   unsigned EltSize = VecVT.getScalarSizeInBits();
5641   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5642 
5643   unsigned MaxVLMAX = 0;
5644   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5645   if (VectorBitsMax != 0)
5646     MaxVLMAX =
5647         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5648 
5649   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5650   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5651 
5652   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5653   // to use vrgatherei16.vv.
5654   // TODO: It's also possible to use vrgatherei16.vv for other types to
5655   // decrease register width for the index calculation.
5656   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5657     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5658     // Reverse each half, then reassemble them in reverse order.
5659     // NOTE: It's also possible that after splitting that VLMAX no longer
5660     // requires vrgatherei16.vv.
5661     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5662       SDValue Lo, Hi;
5663       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5664       EVT LoVT, HiVT;
5665       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5666       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5667       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5668       // Reassemble the low and high pieces reversed.
5669       // FIXME: This is a CONCAT_VECTORS.
5670       SDValue Res =
5671           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5672                       DAG.getIntPtrConstant(0, DL));
5673       return DAG.getNode(
5674           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5675           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5676     }
5677 
5678     // Just promote the int type to i16 which will double the LMUL.
5679     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5680     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5681   }
5682 
5683   MVT XLenVT = Subtarget.getXLenVT();
5684   SDValue Mask, VL;
5685   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5686 
5687   // Calculate VLMAX-1 for the desired SEW.
5688   unsigned MinElts = VecVT.getVectorMinNumElements();
5689   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5690                               DAG.getConstant(MinElts, DL, XLenVT));
5691   SDValue VLMinus1 =
5692       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5693 
5694   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5695   bool IsRV32E64 =
5696       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5697   SDValue SplatVL;
5698   if (!IsRV32E64)
5699     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5700   else
5701     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5702                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5703 
5704   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5705   SDValue Indices =
5706       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5707 
5708   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5709 }
5710 
5711 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5712                                                 SelectionDAG &DAG) const {
5713   SDLoc DL(Op);
5714   SDValue V1 = Op.getOperand(0);
5715   SDValue V2 = Op.getOperand(1);
5716   MVT XLenVT = Subtarget.getXLenVT();
5717   MVT VecVT = Op.getSimpleValueType();
5718 
5719   unsigned MinElts = VecVT.getVectorMinNumElements();
5720   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5721                               DAG.getConstant(MinElts, DL, XLenVT));
5722 
5723   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5724   SDValue DownOffset, UpOffset;
5725   if (ImmValue >= 0) {
5726     // The operand is a TargetConstant, we need to rebuild it as a regular
5727     // constant.
5728     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5729     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5730   } else {
5731     // The operand is a TargetConstant, we need to rebuild it as a regular
5732     // constant rather than negating the original operand.
5733     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5734     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5735   }
5736 
5737   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5738   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5739 
5740   SDValue SlideDown =
5741       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5742                   DownOffset, TrueMask, UpOffset);
5743   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5744                      TrueMask,
5745                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5746 }
5747 
5748 SDValue
5749 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5750                                                      SelectionDAG &DAG) const {
5751   SDLoc DL(Op);
5752   auto *Load = cast<LoadSDNode>(Op);
5753 
5754   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5755                                         Load->getMemoryVT(),
5756                                         *Load->getMemOperand()) &&
5757          "Expecting a correctly-aligned load");
5758 
5759   MVT VT = Op.getSimpleValueType();
5760   MVT XLenVT = Subtarget.getXLenVT();
5761   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5762 
5763   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5764 
5765   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5766   SDValue IntID = DAG.getTargetConstant(
5767       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5768   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5769   if (!IsMaskOp)
5770     Ops.push_back(DAG.getUNDEF(ContainerVT));
5771   Ops.push_back(Load->getBasePtr());
5772   Ops.push_back(VL);
5773   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5774   SDValue NewLoad =
5775       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5776                               Load->getMemoryVT(), Load->getMemOperand());
5777 
5778   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5779   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5780 }
5781 
5782 SDValue
5783 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5784                                                       SelectionDAG &DAG) const {
5785   SDLoc DL(Op);
5786   auto *Store = cast<StoreSDNode>(Op);
5787 
5788   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5789                                         Store->getMemoryVT(),
5790                                         *Store->getMemOperand()) &&
5791          "Expecting a correctly-aligned store");
5792 
5793   SDValue StoreVal = Store->getValue();
5794   MVT VT = StoreVal.getSimpleValueType();
5795   MVT XLenVT = Subtarget.getXLenVT();
5796 
5797   // If the size less than a byte, we need to pad with zeros to make a byte.
5798   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5799     VT = MVT::v8i1;
5800     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5801                            DAG.getConstant(0, DL, VT), StoreVal,
5802                            DAG.getIntPtrConstant(0, DL));
5803   }
5804 
5805   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5806 
5807   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5808 
5809   SDValue NewValue =
5810       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5811 
5812   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5813   SDValue IntID = DAG.getTargetConstant(
5814       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5815   return DAG.getMemIntrinsicNode(
5816       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5817       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5818       Store->getMemoryVT(), Store->getMemOperand());
5819 }
5820 
5821 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5822                                              SelectionDAG &DAG) const {
5823   SDLoc DL(Op);
5824   MVT VT = Op.getSimpleValueType();
5825 
5826   const auto *MemSD = cast<MemSDNode>(Op);
5827   EVT MemVT = MemSD->getMemoryVT();
5828   MachineMemOperand *MMO = MemSD->getMemOperand();
5829   SDValue Chain = MemSD->getChain();
5830   SDValue BasePtr = MemSD->getBasePtr();
5831 
5832   SDValue Mask, PassThru, VL;
5833   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5834     Mask = VPLoad->getMask();
5835     PassThru = DAG.getUNDEF(VT);
5836     VL = VPLoad->getVectorLength();
5837   } else {
5838     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5839     Mask = MLoad->getMask();
5840     PassThru = MLoad->getPassThru();
5841   }
5842 
5843   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5844 
5845   MVT XLenVT = Subtarget.getXLenVT();
5846 
5847   MVT ContainerVT = VT;
5848   if (VT.isFixedLengthVector()) {
5849     ContainerVT = getContainerForFixedLengthVector(VT);
5850     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5851     if (!IsUnmasked) {
5852       MVT MaskVT =
5853           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5854       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5855     }
5856   }
5857 
5858   if (!VL)
5859     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5860 
5861   unsigned IntID =
5862       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5863   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5864   if (IsUnmasked)
5865     Ops.push_back(DAG.getUNDEF(ContainerVT));
5866   else
5867     Ops.push_back(PassThru);
5868   Ops.push_back(BasePtr);
5869   if (!IsUnmasked)
5870     Ops.push_back(Mask);
5871   Ops.push_back(VL);
5872   if (!IsUnmasked)
5873     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5874 
5875   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5876 
5877   SDValue Result =
5878       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5879   Chain = Result.getValue(1);
5880 
5881   if (VT.isFixedLengthVector())
5882     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5883 
5884   return DAG.getMergeValues({Result, Chain}, DL);
5885 }
5886 
5887 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5888                                               SelectionDAG &DAG) const {
5889   SDLoc DL(Op);
5890 
5891   const auto *MemSD = cast<MemSDNode>(Op);
5892   EVT MemVT = MemSD->getMemoryVT();
5893   MachineMemOperand *MMO = MemSD->getMemOperand();
5894   SDValue Chain = MemSD->getChain();
5895   SDValue BasePtr = MemSD->getBasePtr();
5896   SDValue Val, Mask, VL;
5897 
5898   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5899     Val = VPStore->getValue();
5900     Mask = VPStore->getMask();
5901     VL = VPStore->getVectorLength();
5902   } else {
5903     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5904     Val = MStore->getValue();
5905     Mask = MStore->getMask();
5906   }
5907 
5908   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5909 
5910   MVT VT = Val.getSimpleValueType();
5911   MVT XLenVT = Subtarget.getXLenVT();
5912 
5913   MVT ContainerVT = VT;
5914   if (VT.isFixedLengthVector()) {
5915     ContainerVT = getContainerForFixedLengthVector(VT);
5916 
5917     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5918     if (!IsUnmasked) {
5919       MVT MaskVT =
5920           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5921       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5922     }
5923   }
5924 
5925   if (!VL)
5926     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5927 
5928   unsigned IntID =
5929       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5930   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5931   Ops.push_back(Val);
5932   Ops.push_back(BasePtr);
5933   if (!IsUnmasked)
5934     Ops.push_back(Mask);
5935   Ops.push_back(VL);
5936 
5937   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5938                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5939 }
5940 
5941 SDValue
5942 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5943                                                       SelectionDAG &DAG) const {
5944   MVT InVT = Op.getOperand(0).getSimpleValueType();
5945   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5946 
5947   MVT VT = Op.getSimpleValueType();
5948 
5949   SDValue Op1 =
5950       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5951   SDValue Op2 =
5952       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5953 
5954   SDLoc DL(Op);
5955   SDValue VL =
5956       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5957 
5958   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5959   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5960 
5961   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5962                             Op.getOperand(2), Mask, VL);
5963 
5964   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5965 }
5966 
5967 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5968     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5969   MVT VT = Op.getSimpleValueType();
5970 
5971   if (VT.getVectorElementType() == MVT::i1)
5972     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5973 
5974   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5975 }
5976 
5977 SDValue
5978 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5979                                                       SelectionDAG &DAG) const {
5980   unsigned Opc;
5981   switch (Op.getOpcode()) {
5982   default: llvm_unreachable("Unexpected opcode!");
5983   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5984   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5985   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5986   }
5987 
5988   return lowerToScalableOp(Op, DAG, Opc);
5989 }
5990 
5991 // Lower vector ABS to smax(X, sub(0, X)).
5992 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5993   SDLoc DL(Op);
5994   MVT VT = Op.getSimpleValueType();
5995   SDValue X = Op.getOperand(0);
5996 
5997   assert(VT.isFixedLengthVector() && "Unexpected type");
5998 
5999   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6000   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6001 
6002   SDValue Mask, VL;
6003   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6004 
6005   SDValue SplatZero = DAG.getNode(
6006       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6007       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6008   SDValue NegX =
6009       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6010   SDValue Max =
6011       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6012 
6013   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6014 }
6015 
6016 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6017     SDValue Op, SelectionDAG &DAG) const {
6018   SDLoc DL(Op);
6019   MVT VT = Op.getSimpleValueType();
6020   SDValue Mag = Op.getOperand(0);
6021   SDValue Sign = Op.getOperand(1);
6022   assert(Mag.getValueType() == Sign.getValueType() &&
6023          "Can only handle COPYSIGN with matching types.");
6024 
6025   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6026   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6027   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6028 
6029   SDValue Mask, VL;
6030   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6031 
6032   SDValue CopySign =
6033       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6034 
6035   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6036 }
6037 
6038 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6039     SDValue Op, SelectionDAG &DAG) const {
6040   MVT VT = Op.getSimpleValueType();
6041   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6042 
6043   MVT I1ContainerVT =
6044       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6045 
6046   SDValue CC =
6047       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6048   SDValue Op1 =
6049       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6050   SDValue Op2 =
6051       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6052 
6053   SDLoc DL(Op);
6054   SDValue Mask, VL;
6055   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6056 
6057   SDValue Select =
6058       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6059 
6060   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6061 }
6062 
6063 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6064                                                unsigned NewOpc,
6065                                                bool HasMask) const {
6066   MVT VT = Op.getSimpleValueType();
6067   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6068 
6069   // Create list of operands by converting existing ones to scalable types.
6070   SmallVector<SDValue, 6> Ops;
6071   for (const SDValue &V : Op->op_values()) {
6072     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6073 
6074     // Pass through non-vector operands.
6075     if (!V.getValueType().isVector()) {
6076       Ops.push_back(V);
6077       continue;
6078     }
6079 
6080     // "cast" fixed length vector to a scalable vector.
6081     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6082            "Only fixed length vectors are supported!");
6083     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6084   }
6085 
6086   SDLoc DL(Op);
6087   SDValue Mask, VL;
6088   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6089   if (HasMask)
6090     Ops.push_back(Mask);
6091   Ops.push_back(VL);
6092 
6093   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6094   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6095 }
6096 
6097 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6098 // * Operands of each node are assumed to be in the same order.
6099 // * The EVL operand is promoted from i32 to i64 on RV64.
6100 // * Fixed-length vectors are converted to their scalable-vector container
6101 //   types.
6102 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6103                                        unsigned RISCVISDOpc) const {
6104   SDLoc DL(Op);
6105   MVT VT = Op.getSimpleValueType();
6106   SmallVector<SDValue, 4> Ops;
6107 
6108   for (const auto &OpIdx : enumerate(Op->ops())) {
6109     SDValue V = OpIdx.value();
6110     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6111     // Pass through operands which aren't fixed-length vectors.
6112     if (!V.getValueType().isFixedLengthVector()) {
6113       Ops.push_back(V);
6114       continue;
6115     }
6116     // "cast" fixed length vector to a scalable vector.
6117     MVT OpVT = V.getSimpleValueType();
6118     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6119     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6120            "Only fixed length vectors are supported!");
6121     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6122   }
6123 
6124   if (!VT.isFixedLengthVector())
6125     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6126 
6127   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6128 
6129   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6130 
6131   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6132 }
6133 
6134 // Lower Floating-Point/Integer Type-Convert VP SDNodes
6135 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6136                                                 unsigned RISCVISDOpc) const {
6137   SDLoc DL(Op);
6138 
6139   SDValue Src = Op.getOperand(0);
6140   SDValue Mask = Op.getOperand(1);
6141   SDValue VL = Op.getOperand(2);
6142 
6143   MVT DstVT = Op.getSimpleValueType();
6144   MVT SrcVT = Src.getSimpleValueType();
6145   if (DstVT.isFixedLengthVector()) {
6146     DstVT = getContainerForFixedLengthVector(DstVT);
6147     SrcVT = getContainerForFixedLengthVector(SrcVT);
6148     Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6149     MVT MaskVT = MVT::getVectorVT(MVT::i1, DstVT.getVectorElementCount());
6150     Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6151   }
6152 
6153   unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6154                              RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6155                                 ? RISCVISD::VSEXT_VL
6156                                 : RISCVISD::VZEXT_VL;
6157 
6158   unsigned DstEltSize = DstVT.getScalarSizeInBits();
6159   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6160 
6161   SDValue Result;
6162   if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6163     if (SrcVT.isInteger()) {
6164       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6165 
6166       // Do we need to do any pre-widening before converting?
6167       if (SrcEltSize == 1) {
6168         MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6169         MVT XLenVT = Subtarget.getXLenVT();
6170         SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6171         SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6172                                         DAG.getUNDEF(IntVT), Zero, VL);
6173         SDValue One = DAG.getConstant(
6174             RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6175         SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6176                                        DAG.getUNDEF(IntVT), One, VL);
6177         Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6178                           ZeroSplat, VL);
6179       } else if (DstEltSize > (2 * SrcEltSize)) {
6180         // Widen before converting.
6181         MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6182                                      DstVT.getVectorElementCount());
6183         Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6184       }
6185 
6186       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6187     } else {
6188       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6189              "Wrong input/output vector types");
6190 
6191       // Convert f16 to f32 then convert f32 to i64.
6192       if (DstEltSize > (2 * SrcEltSize)) {
6193         assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6194         MVT InterimFVT =
6195             MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6196         Src =
6197             DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6198       }
6199 
6200       Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6201     }
6202   } else { // Narrowing + Conversion
6203     if (SrcVT.isInteger()) {
6204       assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6205       // First do a narrowing convert to an FP type half the size, then round
6206       // the FP type to a small FP type if needed.
6207 
6208       MVT InterimFVT = DstVT;
6209       if (SrcEltSize > (2 * DstEltSize)) {
6210         assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6211         assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6212         InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6213       }
6214 
6215       Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6216 
6217       if (InterimFVT != DstVT) {
6218         Src = Result;
6219         Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6220       }
6221     } else {
6222       assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6223              "Wrong input/output vector types");
6224       // First do a narrowing conversion to an integer half the size, then
6225       // truncate if needed.
6226 
6227       if (DstEltSize == 1) {
6228         // First convert to the same size integer, then convert to mask using
6229         // setcc.
6230         assert(SrcEltSize >= 16 && "Unexpected FP type!");
6231         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6232                                           DstVT.getVectorElementCount());
6233         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6234 
6235         // Compare the integer result to 0. The integer should be 0 or 1/-1,
6236         // otherwise the conversion was undefined.
6237         MVT XLenVT = Subtarget.getXLenVT();
6238         SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6239         SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6240                                 DAG.getUNDEF(InterimIVT), SplatZero);
6241         Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6242                              DAG.getCondCode(ISD::SETNE), Mask, VL);
6243       } else {
6244         MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6245                                           DstVT.getVectorElementCount());
6246 
6247         Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6248 
6249         while (InterimIVT != DstVT) {
6250           SrcEltSize /= 2;
6251           Src = Result;
6252           InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6253                                         DstVT.getVectorElementCount());
6254           Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6255                                Src, Mask, VL);
6256         }
6257       }
6258     }
6259   }
6260 
6261   MVT VT = Op.getSimpleValueType();
6262   if (!VT.isFixedLengthVector())
6263     return Result;
6264   return convertFromScalableVector(VT, Result, DAG, Subtarget);
6265 }
6266 
6267 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6268                                             unsigned MaskOpc,
6269                                             unsigned VecOpc) const {
6270   MVT VT = Op.getSimpleValueType();
6271   if (VT.getVectorElementType() != MVT::i1)
6272     return lowerVPOp(Op, DAG, VecOpc);
6273 
6274   // It is safe to drop mask parameter as masked-off elements are undef.
6275   SDValue Op1 = Op->getOperand(0);
6276   SDValue Op2 = Op->getOperand(1);
6277   SDValue VL = Op->getOperand(3);
6278 
6279   MVT ContainerVT = VT;
6280   const bool IsFixed = VT.isFixedLengthVector();
6281   if (IsFixed) {
6282     ContainerVT = getContainerForFixedLengthVector(VT);
6283     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6284     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6285   }
6286 
6287   SDLoc DL(Op);
6288   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6289   if (!IsFixed)
6290     return Val;
6291   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6292 }
6293 
6294 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6295 // matched to a RVV indexed load. The RVV indexed load instructions only
6296 // support the "unsigned unscaled" addressing mode; indices are implicitly
6297 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6298 // signed or scaled indexing is extended to the XLEN value type and scaled
6299 // accordingly.
6300 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6301                                                SelectionDAG &DAG) const {
6302   SDLoc DL(Op);
6303   MVT VT = Op.getSimpleValueType();
6304 
6305   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6306   EVT MemVT = MemSD->getMemoryVT();
6307   MachineMemOperand *MMO = MemSD->getMemOperand();
6308   SDValue Chain = MemSD->getChain();
6309   SDValue BasePtr = MemSD->getBasePtr();
6310 
6311   ISD::LoadExtType LoadExtType;
6312   SDValue Index, Mask, PassThru, VL;
6313 
6314   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6315     Index = VPGN->getIndex();
6316     Mask = VPGN->getMask();
6317     PassThru = DAG.getUNDEF(VT);
6318     VL = VPGN->getVectorLength();
6319     // VP doesn't support extending loads.
6320     LoadExtType = ISD::NON_EXTLOAD;
6321   } else {
6322     // Else it must be a MGATHER.
6323     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6324     Index = MGN->getIndex();
6325     Mask = MGN->getMask();
6326     PassThru = MGN->getPassThru();
6327     LoadExtType = MGN->getExtensionType();
6328   }
6329 
6330   MVT IndexVT = Index.getSimpleValueType();
6331   MVT XLenVT = Subtarget.getXLenVT();
6332 
6333   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6334          "Unexpected VTs!");
6335   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6336   // Targets have to explicitly opt-in for extending vector loads.
6337   assert(LoadExtType == ISD::NON_EXTLOAD &&
6338          "Unexpected extending MGATHER/VP_GATHER");
6339   (void)LoadExtType;
6340 
6341   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6342   // the selection of the masked intrinsics doesn't do this for us.
6343   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6344 
6345   MVT ContainerVT = VT;
6346   if (VT.isFixedLengthVector()) {
6347     // We need to use the larger of the result and index type to determine the
6348     // scalable type to use so we don't increase LMUL for any operand/result.
6349     if (VT.bitsGE(IndexVT)) {
6350       ContainerVT = getContainerForFixedLengthVector(VT);
6351       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6352                                  ContainerVT.getVectorElementCount());
6353     } else {
6354       IndexVT = getContainerForFixedLengthVector(IndexVT);
6355       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6356                                      IndexVT.getVectorElementCount());
6357     }
6358 
6359     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6360 
6361     if (!IsUnmasked) {
6362       MVT MaskVT =
6363           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6364       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6365       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6366     }
6367   }
6368 
6369   if (!VL)
6370     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6371 
6372   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6373     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6374     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6375                                    VL);
6376     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6377                         TrueMask, VL);
6378   }
6379 
6380   unsigned IntID =
6381       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6382   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6383   if (IsUnmasked)
6384     Ops.push_back(DAG.getUNDEF(ContainerVT));
6385   else
6386     Ops.push_back(PassThru);
6387   Ops.push_back(BasePtr);
6388   Ops.push_back(Index);
6389   if (!IsUnmasked)
6390     Ops.push_back(Mask);
6391   Ops.push_back(VL);
6392   if (!IsUnmasked)
6393     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6394 
6395   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6396   SDValue Result =
6397       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6398   Chain = Result.getValue(1);
6399 
6400   if (VT.isFixedLengthVector())
6401     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6402 
6403   return DAG.getMergeValues({Result, Chain}, DL);
6404 }
6405 
6406 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6407 // matched to a RVV indexed store. The RVV indexed store instructions only
6408 // support the "unsigned unscaled" addressing mode; indices are implicitly
6409 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6410 // signed or scaled indexing is extended to the XLEN value type and scaled
6411 // accordingly.
6412 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6413                                                 SelectionDAG &DAG) const {
6414   SDLoc DL(Op);
6415   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6416   EVT MemVT = MemSD->getMemoryVT();
6417   MachineMemOperand *MMO = MemSD->getMemOperand();
6418   SDValue Chain = MemSD->getChain();
6419   SDValue BasePtr = MemSD->getBasePtr();
6420 
6421   bool IsTruncatingStore = false;
6422   SDValue Index, Mask, Val, VL;
6423 
6424   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6425     Index = VPSN->getIndex();
6426     Mask = VPSN->getMask();
6427     Val = VPSN->getValue();
6428     VL = VPSN->getVectorLength();
6429     // VP doesn't support truncating stores.
6430     IsTruncatingStore = false;
6431   } else {
6432     // Else it must be a MSCATTER.
6433     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6434     Index = MSN->getIndex();
6435     Mask = MSN->getMask();
6436     Val = MSN->getValue();
6437     IsTruncatingStore = MSN->isTruncatingStore();
6438   }
6439 
6440   MVT VT = Val.getSimpleValueType();
6441   MVT IndexVT = Index.getSimpleValueType();
6442   MVT XLenVT = Subtarget.getXLenVT();
6443 
6444   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6445          "Unexpected VTs!");
6446   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6447   // Targets have to explicitly opt-in for extending vector loads and
6448   // truncating vector stores.
6449   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6450   (void)IsTruncatingStore;
6451 
6452   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6453   // the selection of the masked intrinsics doesn't do this for us.
6454   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6455 
6456   MVT ContainerVT = VT;
6457   if (VT.isFixedLengthVector()) {
6458     // We need to use the larger of the value and index type to determine the
6459     // scalable type to use so we don't increase LMUL for any operand/result.
6460     if (VT.bitsGE(IndexVT)) {
6461       ContainerVT = getContainerForFixedLengthVector(VT);
6462       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6463                                  ContainerVT.getVectorElementCount());
6464     } else {
6465       IndexVT = getContainerForFixedLengthVector(IndexVT);
6466       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6467                                      IndexVT.getVectorElementCount());
6468     }
6469 
6470     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6471     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6472 
6473     if (!IsUnmasked) {
6474       MVT MaskVT =
6475           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6476       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6477     }
6478   }
6479 
6480   if (!VL)
6481     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6482 
6483   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6484     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6485     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6486                                    VL);
6487     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6488                         TrueMask, VL);
6489   }
6490 
6491   unsigned IntID =
6492       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6493   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6494   Ops.push_back(Val);
6495   Ops.push_back(BasePtr);
6496   Ops.push_back(Index);
6497   if (!IsUnmasked)
6498     Ops.push_back(Mask);
6499   Ops.push_back(VL);
6500 
6501   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6502                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6503 }
6504 
6505 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6506                                                SelectionDAG &DAG) const {
6507   const MVT XLenVT = Subtarget.getXLenVT();
6508   SDLoc DL(Op);
6509   SDValue Chain = Op->getOperand(0);
6510   SDValue SysRegNo = DAG.getTargetConstant(
6511       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6512   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6513   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6514 
6515   // Encoding used for rounding mode in RISCV differs from that used in
6516   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6517   // table, which consists of a sequence of 4-bit fields, each representing
6518   // corresponding FLT_ROUNDS mode.
6519   static const int Table =
6520       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6521       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6522       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6523       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6524       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6525 
6526   SDValue Shift =
6527       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6528   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6529                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6530   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6531                                DAG.getConstant(7, DL, XLenVT));
6532 
6533   return DAG.getMergeValues({Masked, Chain}, DL);
6534 }
6535 
6536 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6537                                                SelectionDAG &DAG) const {
6538   const MVT XLenVT = Subtarget.getXLenVT();
6539   SDLoc DL(Op);
6540   SDValue Chain = Op->getOperand(0);
6541   SDValue RMValue = Op->getOperand(1);
6542   SDValue SysRegNo = DAG.getTargetConstant(
6543       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6544 
6545   // Encoding used for rounding mode in RISCV differs from that used in
6546   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6547   // a table, which consists of a sequence of 4-bit fields, each representing
6548   // corresponding RISCV mode.
6549   static const unsigned Table =
6550       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6551       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6552       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6553       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6554       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6555 
6556   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6557                               DAG.getConstant(2, DL, XLenVT));
6558   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6559                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6560   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6561                         DAG.getConstant(0x7, DL, XLenVT));
6562   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6563                      RMValue);
6564 }
6565 
6566 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6567   switch (IntNo) {
6568   default:
6569     llvm_unreachable("Unexpected Intrinsic");
6570   case Intrinsic::riscv_bcompress:
6571     return RISCVISD::BCOMPRESSW;
6572   case Intrinsic::riscv_bdecompress:
6573     return RISCVISD::BDECOMPRESSW;
6574   case Intrinsic::riscv_bfp:
6575     return RISCVISD::BFPW;
6576   case Intrinsic::riscv_fsl:
6577     return RISCVISD::FSLW;
6578   case Intrinsic::riscv_fsr:
6579     return RISCVISD::FSRW;
6580   }
6581 }
6582 
6583 // Converts the given intrinsic to a i64 operation with any extension.
6584 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6585                                          unsigned IntNo) {
6586   SDLoc DL(N);
6587   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6588   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6589   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6590   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6591   // ReplaceNodeResults requires we maintain the same type for the return value.
6592   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6593 }
6594 
6595 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6596 // form of the given Opcode.
6597 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6598   switch (Opcode) {
6599   default:
6600     llvm_unreachable("Unexpected opcode");
6601   case ISD::SHL:
6602     return RISCVISD::SLLW;
6603   case ISD::SRA:
6604     return RISCVISD::SRAW;
6605   case ISD::SRL:
6606     return RISCVISD::SRLW;
6607   case ISD::SDIV:
6608     return RISCVISD::DIVW;
6609   case ISD::UDIV:
6610     return RISCVISD::DIVUW;
6611   case ISD::UREM:
6612     return RISCVISD::REMUW;
6613   case ISD::ROTL:
6614     return RISCVISD::ROLW;
6615   case ISD::ROTR:
6616     return RISCVISD::RORW;
6617   }
6618 }
6619 
6620 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6621 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6622 // otherwise be promoted to i64, making it difficult to select the
6623 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6624 // type i8/i16/i32 is lost.
6625 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6626                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6627   SDLoc DL(N);
6628   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6629   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6630   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6631   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6632   // ReplaceNodeResults requires we maintain the same type for the return value.
6633   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6634 }
6635 
6636 // Converts the given 32-bit operation to a i64 operation with signed extension
6637 // semantic to reduce the signed extension instructions.
6638 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6639   SDLoc DL(N);
6640   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6641   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6642   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6643   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6644                                DAG.getValueType(MVT::i32));
6645   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6646 }
6647 
6648 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6649                                              SmallVectorImpl<SDValue> &Results,
6650                                              SelectionDAG &DAG) const {
6651   SDLoc DL(N);
6652   switch (N->getOpcode()) {
6653   default:
6654     llvm_unreachable("Don't know how to custom type legalize this operation!");
6655   case ISD::STRICT_FP_TO_SINT:
6656   case ISD::STRICT_FP_TO_UINT:
6657   case ISD::FP_TO_SINT:
6658   case ISD::FP_TO_UINT: {
6659     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6660            "Unexpected custom legalisation");
6661     bool IsStrict = N->isStrictFPOpcode();
6662     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6663                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6664     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6665     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6666         TargetLowering::TypeSoftenFloat) {
6667       if (!isTypeLegal(Op0.getValueType()))
6668         return;
6669       if (IsStrict) {
6670         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6671                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6672         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6673         SDValue Res = DAG.getNode(
6674             Opc, DL, VTs, N->getOperand(0), Op0,
6675             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6676         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6677         Results.push_back(Res.getValue(1));
6678         return;
6679       }
6680       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6681       SDValue Res =
6682           DAG.getNode(Opc, DL, MVT::i64, Op0,
6683                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6684       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6685       return;
6686     }
6687     // If the FP type needs to be softened, emit a library call using the 'si'
6688     // version. If we left it to default legalization we'd end up with 'di'. If
6689     // the FP type doesn't need to be softened just let generic type
6690     // legalization promote the result type.
6691     RTLIB::Libcall LC;
6692     if (IsSigned)
6693       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6694     else
6695       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6696     MakeLibCallOptions CallOptions;
6697     EVT OpVT = Op0.getValueType();
6698     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6699     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6700     SDValue Result;
6701     std::tie(Result, Chain) =
6702         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6703     Results.push_back(Result);
6704     if (IsStrict)
6705       Results.push_back(Chain);
6706     break;
6707   }
6708   case ISD::READCYCLECOUNTER: {
6709     assert(!Subtarget.is64Bit() &&
6710            "READCYCLECOUNTER only has custom type legalization on riscv32");
6711 
6712     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6713     SDValue RCW =
6714         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6715 
6716     Results.push_back(
6717         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6718     Results.push_back(RCW.getValue(2));
6719     break;
6720   }
6721   case ISD::MUL: {
6722     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6723     unsigned XLen = Subtarget.getXLen();
6724     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6725     if (Size > XLen) {
6726       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6727       SDValue LHS = N->getOperand(0);
6728       SDValue RHS = N->getOperand(1);
6729       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6730 
6731       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6732       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6733       // We need exactly one side to be unsigned.
6734       if (LHSIsU == RHSIsU)
6735         return;
6736 
6737       auto MakeMULPair = [&](SDValue S, SDValue U) {
6738         MVT XLenVT = Subtarget.getXLenVT();
6739         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6740         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6741         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6742         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6743         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6744       };
6745 
6746       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6747       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6748 
6749       // The other operand should be signed, but still prefer MULH when
6750       // possible.
6751       if (RHSIsU && LHSIsS && !RHSIsS)
6752         Results.push_back(MakeMULPair(LHS, RHS));
6753       else if (LHSIsU && RHSIsS && !LHSIsS)
6754         Results.push_back(MakeMULPair(RHS, LHS));
6755 
6756       return;
6757     }
6758     LLVM_FALLTHROUGH;
6759   }
6760   case ISD::ADD:
6761   case ISD::SUB:
6762     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6763            "Unexpected custom legalisation");
6764     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6765     break;
6766   case ISD::SHL:
6767   case ISD::SRA:
6768   case ISD::SRL:
6769     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6770            "Unexpected custom legalisation");
6771     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6772       Results.push_back(customLegalizeToWOp(N, DAG));
6773       break;
6774     }
6775 
6776     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6777     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6778     // shift amount.
6779     if (N->getOpcode() == ISD::SHL) {
6780       SDLoc DL(N);
6781       SDValue NewOp0 =
6782           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6783       SDValue NewOp1 =
6784           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6785       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6786       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6787                                    DAG.getValueType(MVT::i32));
6788       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6789     }
6790 
6791     break;
6792   case ISD::ROTL:
6793   case ISD::ROTR:
6794     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6795            "Unexpected custom legalisation");
6796     Results.push_back(customLegalizeToWOp(N, DAG));
6797     break;
6798   case ISD::CTTZ:
6799   case ISD::CTTZ_ZERO_UNDEF:
6800   case ISD::CTLZ:
6801   case ISD::CTLZ_ZERO_UNDEF: {
6802     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6803            "Unexpected custom legalisation");
6804 
6805     SDValue NewOp0 =
6806         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6807     bool IsCTZ =
6808         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6809     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6810     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6811     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6812     return;
6813   }
6814   case ISD::SDIV:
6815   case ISD::UDIV:
6816   case ISD::UREM: {
6817     MVT VT = N->getSimpleValueType(0);
6818     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6819            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6820            "Unexpected custom legalisation");
6821     // Don't promote division/remainder by constant since we should expand those
6822     // to multiply by magic constant.
6823     // FIXME: What if the expansion is disabled for minsize.
6824     if (N->getOperand(1).getOpcode() == ISD::Constant)
6825       return;
6826 
6827     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6828     // the upper 32 bits. For other types we need to sign or zero extend
6829     // based on the opcode.
6830     unsigned ExtOpc = ISD::ANY_EXTEND;
6831     if (VT != MVT::i32)
6832       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6833                                            : ISD::ZERO_EXTEND;
6834 
6835     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6836     break;
6837   }
6838   case ISD::UADDO:
6839   case ISD::USUBO: {
6840     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6841            "Unexpected custom legalisation");
6842     bool IsAdd = N->getOpcode() == ISD::UADDO;
6843     // Create an ADDW or SUBW.
6844     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6845     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6846     SDValue Res =
6847         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6848     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6849                       DAG.getValueType(MVT::i32));
6850 
6851     SDValue Overflow;
6852     if (IsAdd && isOneConstant(RHS)) {
6853       // Special case uaddo X, 1 overflowed if the addition result is 0.
6854       // FIXME: We can do this for any constant RHS by using (X + C) < C.
6855       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
6856                               DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
6857     } else {
6858       // Sign extend the LHS and perform an unsigned compare with the ADDW
6859       // result. Since the inputs are sign extended from i32, this is equivalent
6860       // to comparing the lower 32 bits.
6861       LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6862       Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6863                               IsAdd ? ISD::SETULT : ISD::SETUGT);
6864     }
6865 
6866     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6867     Results.push_back(Overflow);
6868     return;
6869   }
6870   case ISD::UADDSAT:
6871   case ISD::USUBSAT: {
6872     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6873            "Unexpected custom legalisation");
6874     if (Subtarget.hasStdExtZbb()) {
6875       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6876       // sign extend allows overflow of the lower 32 bits to be detected on
6877       // the promoted size.
6878       SDValue LHS =
6879           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6880       SDValue RHS =
6881           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6882       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6883       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6884       return;
6885     }
6886 
6887     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6888     // promotion for UADDO/USUBO.
6889     Results.push_back(expandAddSubSat(N, DAG));
6890     return;
6891   }
6892   case ISD::ABS: {
6893     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6894            "Unexpected custom legalisation");
6895           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6896 
6897     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6898 
6899     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6900 
6901     // Freeze the source so we can increase it's use count.
6902     Src = DAG.getFreeze(Src);
6903 
6904     // Copy sign bit to all bits using the sraiw pattern.
6905     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6906                                    DAG.getValueType(MVT::i32));
6907     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6908                            DAG.getConstant(31, DL, MVT::i64));
6909 
6910     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6911     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6912 
6913     // NOTE: The result is only required to be anyextended, but sext is
6914     // consistent with type legalization of sub.
6915     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6916                          DAG.getValueType(MVT::i32));
6917     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6918     return;
6919   }
6920   case ISD::BITCAST: {
6921     EVT VT = N->getValueType(0);
6922     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6923     SDValue Op0 = N->getOperand(0);
6924     EVT Op0VT = Op0.getValueType();
6925     MVT XLenVT = Subtarget.getXLenVT();
6926     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6927       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6928       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6929     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6930                Subtarget.hasStdExtF()) {
6931       SDValue FPConv =
6932           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6933       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6934     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6935                isTypeLegal(Op0VT)) {
6936       // Custom-legalize bitcasts from fixed-length vector types to illegal
6937       // scalar types in order to improve codegen. Bitcast the vector to a
6938       // one-element vector type whose element type is the same as the result
6939       // type, and extract the first element.
6940       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6941       if (isTypeLegal(BVT)) {
6942         SDValue BVec = DAG.getBitcast(BVT, Op0);
6943         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6944                                       DAG.getConstant(0, DL, XLenVT)));
6945       }
6946     }
6947     break;
6948   }
6949   case RISCVISD::GREV:
6950   case RISCVISD::GORC:
6951   case RISCVISD::SHFL: {
6952     MVT VT = N->getSimpleValueType(0);
6953     MVT XLenVT = Subtarget.getXLenVT();
6954     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6955            "Unexpected custom legalisation");
6956     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6957     assert((Subtarget.hasStdExtZbp() ||
6958             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6959              N->getConstantOperandVal(1) == 7)) &&
6960            "Unexpected extension");
6961     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6962     SDValue NewOp1 =
6963         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6964     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6965     // ReplaceNodeResults requires we maintain the same type for the return
6966     // value.
6967     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
6968     break;
6969   }
6970   case ISD::BSWAP:
6971   case ISD::BITREVERSE: {
6972     MVT VT = N->getSimpleValueType(0);
6973     MVT XLenVT = Subtarget.getXLenVT();
6974     assert((VT == MVT::i8 || VT == MVT::i16 ||
6975             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6976            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6977     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6978     unsigned Imm = VT.getSizeInBits() - 1;
6979     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6980     if (N->getOpcode() == ISD::BSWAP)
6981       Imm &= ~0x7U;
6982     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
6983                                 DAG.getConstant(Imm, DL, XLenVT));
6984     // ReplaceNodeResults requires we maintain the same type for the return
6985     // value.
6986     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6987     break;
6988   }
6989   case ISD::FSHL:
6990   case ISD::FSHR: {
6991     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6992            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6993     SDValue NewOp0 =
6994         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6995     SDValue NewOp1 =
6996         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6997     SDValue NewShAmt =
6998         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6999     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7000     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7001     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7002                            DAG.getConstant(0x1f, DL, MVT::i64));
7003     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7004     // instruction use different orders. fshl will return its first operand for
7005     // shift of zero, fshr will return its second operand. fsl and fsr both
7006     // return rs1 so the ISD nodes need to have different operand orders.
7007     // Shift amount is in rs2.
7008     unsigned Opc = RISCVISD::FSLW;
7009     if (N->getOpcode() == ISD::FSHR) {
7010       std::swap(NewOp0, NewOp1);
7011       Opc = RISCVISD::FSRW;
7012     }
7013     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7014     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7015     break;
7016   }
7017   case ISD::EXTRACT_VECTOR_ELT: {
7018     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7019     // type is illegal (currently only vXi64 RV32).
7020     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7021     // transferred to the destination register. We issue two of these from the
7022     // upper- and lower- halves of the SEW-bit vector element, slid down to the
7023     // first element.
7024     SDValue Vec = N->getOperand(0);
7025     SDValue Idx = N->getOperand(1);
7026 
7027     // The vector type hasn't been legalized yet so we can't issue target
7028     // specific nodes if it needs legalization.
7029     // FIXME: We would manually legalize if it's important.
7030     if (!isTypeLegal(Vec.getValueType()))
7031       return;
7032 
7033     MVT VecVT = Vec.getSimpleValueType();
7034 
7035     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7036            VecVT.getVectorElementType() == MVT::i64 &&
7037            "Unexpected EXTRACT_VECTOR_ELT legalization");
7038 
7039     // If this is a fixed vector, we need to convert it to a scalable vector.
7040     MVT ContainerVT = VecVT;
7041     if (VecVT.isFixedLengthVector()) {
7042       ContainerVT = getContainerForFixedLengthVector(VecVT);
7043       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7044     }
7045 
7046     MVT XLenVT = Subtarget.getXLenVT();
7047 
7048     // Use a VL of 1 to avoid processing more elements than we need.
7049     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
7050     SDValue VL = DAG.getConstant(1, DL, XLenVT);
7051     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7052 
7053     // Unless the index is known to be 0, we must slide the vector down to get
7054     // the desired element into index 0.
7055     if (!isNullConstant(Idx)) {
7056       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7057                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7058     }
7059 
7060     // Extract the lower XLEN bits of the correct vector element.
7061     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7062 
7063     // To extract the upper XLEN bits of the vector element, shift the first
7064     // element right by 32 bits and re-extract the lower XLEN bits.
7065     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7066                                      DAG.getUNDEF(ContainerVT),
7067                                      DAG.getConstant(32, DL, XLenVT), VL);
7068     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7069                                  ThirtyTwoV, Mask, VL);
7070 
7071     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7072 
7073     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7074     break;
7075   }
7076   case ISD::INTRINSIC_WO_CHAIN: {
7077     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7078     switch (IntNo) {
7079     default:
7080       llvm_unreachable(
7081           "Don't know how to custom type legalize this intrinsic!");
7082     case Intrinsic::riscv_grev:
7083     case Intrinsic::riscv_gorc: {
7084       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7085              "Unexpected custom legalisation");
7086       SDValue NewOp1 =
7087           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7088       SDValue NewOp2 =
7089           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7090       unsigned Opc =
7091           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7092       // If the control is a constant, promote the node by clearing any extra
7093       // bits bits in the control. isel will form greviw/gorciw if the result is
7094       // sign extended.
7095       if (isa<ConstantSDNode>(NewOp2)) {
7096         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7097                              DAG.getConstant(0x1f, DL, MVT::i64));
7098         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7099       }
7100       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7101       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7102       break;
7103     }
7104     case Intrinsic::riscv_bcompress:
7105     case Intrinsic::riscv_bdecompress:
7106     case Intrinsic::riscv_bfp: {
7107       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7108              "Unexpected custom legalisation");
7109       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7110       break;
7111     }
7112     case Intrinsic::riscv_fsl:
7113     case Intrinsic::riscv_fsr: {
7114       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7115              "Unexpected custom legalisation");
7116       SDValue NewOp1 =
7117           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7118       SDValue NewOp2 =
7119           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7120       SDValue NewOp3 =
7121           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
7122       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
7123       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
7124       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7125       break;
7126     }
7127     case Intrinsic::riscv_orc_b: {
7128       // Lower to the GORCI encoding for orc.b with the operand extended.
7129       SDValue NewOp =
7130           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7131       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7132                                 DAG.getConstant(7, DL, MVT::i64));
7133       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7134       return;
7135     }
7136     case Intrinsic::riscv_shfl:
7137     case Intrinsic::riscv_unshfl: {
7138       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7139              "Unexpected custom legalisation");
7140       SDValue NewOp1 =
7141           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7142       SDValue NewOp2 =
7143           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7144       unsigned Opc =
7145           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7146       // There is no (UN)SHFLIW. If the control word is a constant, we can use
7147       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7148       // will be shuffled the same way as the lower 32 bit half, but the two
7149       // halves won't cross.
7150       if (isa<ConstantSDNode>(NewOp2)) {
7151         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7152                              DAG.getConstant(0xf, DL, MVT::i64));
7153         Opc =
7154             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7155       }
7156       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7157       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7158       break;
7159     }
7160     case Intrinsic::riscv_vmv_x_s: {
7161       EVT VT = N->getValueType(0);
7162       MVT XLenVT = Subtarget.getXLenVT();
7163       if (VT.bitsLT(XLenVT)) {
7164         // Simple case just extract using vmv.x.s and truncate.
7165         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7166                                       Subtarget.getXLenVT(), N->getOperand(1));
7167         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7168         return;
7169       }
7170 
7171       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7172              "Unexpected custom legalization");
7173 
7174       // We need to do the move in two steps.
7175       SDValue Vec = N->getOperand(1);
7176       MVT VecVT = Vec.getSimpleValueType();
7177 
7178       // First extract the lower XLEN bits of the element.
7179       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7180 
7181       // To extract the upper XLEN bits of the vector element, shift the first
7182       // element right by 32 bits and re-extract the lower XLEN bits.
7183       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7184       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7185       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7186       SDValue ThirtyTwoV =
7187           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7188                       DAG.getConstant(32, DL, XLenVT), VL);
7189       SDValue LShr32 =
7190           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7191       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7192 
7193       Results.push_back(
7194           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7195       break;
7196     }
7197     }
7198     break;
7199   }
7200   case ISD::VECREDUCE_ADD:
7201   case ISD::VECREDUCE_AND:
7202   case ISD::VECREDUCE_OR:
7203   case ISD::VECREDUCE_XOR:
7204   case ISD::VECREDUCE_SMAX:
7205   case ISD::VECREDUCE_UMAX:
7206   case ISD::VECREDUCE_SMIN:
7207   case ISD::VECREDUCE_UMIN:
7208     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7209       Results.push_back(V);
7210     break;
7211   case ISD::VP_REDUCE_ADD:
7212   case ISD::VP_REDUCE_AND:
7213   case ISD::VP_REDUCE_OR:
7214   case ISD::VP_REDUCE_XOR:
7215   case ISD::VP_REDUCE_SMAX:
7216   case ISD::VP_REDUCE_UMAX:
7217   case ISD::VP_REDUCE_SMIN:
7218   case ISD::VP_REDUCE_UMIN:
7219     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7220       Results.push_back(V);
7221     break;
7222   case ISD::FLT_ROUNDS_: {
7223     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7224     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7225     Results.push_back(Res.getValue(0));
7226     Results.push_back(Res.getValue(1));
7227     break;
7228   }
7229   }
7230 }
7231 
7232 // A structure to hold one of the bit-manipulation patterns below. Together, a
7233 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7234 //   (or (and (shl x, 1), 0xAAAAAAAA),
7235 //       (and (srl x, 1), 0x55555555))
7236 struct RISCVBitmanipPat {
7237   SDValue Op;
7238   unsigned ShAmt;
7239   bool IsSHL;
7240 
7241   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7242     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7243   }
7244 };
7245 
7246 // Matches patterns of the form
7247 //   (and (shl x, C2), (C1 << C2))
7248 //   (and (srl x, C2), C1)
7249 //   (shl (and x, C1), C2)
7250 //   (srl (and x, (C1 << C2)), C2)
7251 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7252 // The expected masks for each shift amount are specified in BitmanipMasks where
7253 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7254 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7255 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7256 // XLen is 64.
7257 static Optional<RISCVBitmanipPat>
7258 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7259   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7260          "Unexpected number of masks");
7261   Optional<uint64_t> Mask;
7262   // Optionally consume a mask around the shift operation.
7263   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7264     Mask = Op.getConstantOperandVal(1);
7265     Op = Op.getOperand(0);
7266   }
7267   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7268     return None;
7269   bool IsSHL = Op.getOpcode() == ISD::SHL;
7270 
7271   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7272     return None;
7273   uint64_t ShAmt = Op.getConstantOperandVal(1);
7274 
7275   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7276   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7277     return None;
7278   // If we don't have enough masks for 64 bit, then we must be trying to
7279   // match SHFL so we're only allowed to shift 1/4 of the width.
7280   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7281     return None;
7282 
7283   SDValue Src = Op.getOperand(0);
7284 
7285   // The expected mask is shifted left when the AND is found around SHL
7286   // patterns.
7287   //   ((x >> 1) & 0x55555555)
7288   //   ((x << 1) & 0xAAAAAAAA)
7289   bool SHLExpMask = IsSHL;
7290 
7291   if (!Mask) {
7292     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7293     // the mask is all ones: consume that now.
7294     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7295       Mask = Src.getConstantOperandVal(1);
7296       Src = Src.getOperand(0);
7297       // The expected mask is now in fact shifted left for SRL, so reverse the
7298       // decision.
7299       //   ((x & 0xAAAAAAAA) >> 1)
7300       //   ((x & 0x55555555) << 1)
7301       SHLExpMask = !SHLExpMask;
7302     } else {
7303       // Use a default shifted mask of all-ones if there's no AND, truncated
7304       // down to the expected width. This simplifies the logic later on.
7305       Mask = maskTrailingOnes<uint64_t>(Width);
7306       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7307     }
7308   }
7309 
7310   unsigned MaskIdx = Log2_32(ShAmt);
7311   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7312 
7313   if (SHLExpMask)
7314     ExpMask <<= ShAmt;
7315 
7316   if (Mask != ExpMask)
7317     return None;
7318 
7319   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7320 }
7321 
7322 // Matches any of the following bit-manipulation patterns:
7323 //   (and (shl x, 1), (0x55555555 << 1))
7324 //   (and (srl x, 1), 0x55555555)
7325 //   (shl (and x, 0x55555555), 1)
7326 //   (srl (and x, (0x55555555 << 1)), 1)
7327 // where the shift amount and mask may vary thus:
7328 //   [1]  = 0x55555555 / 0xAAAAAAAA
7329 //   [2]  = 0x33333333 / 0xCCCCCCCC
7330 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7331 //   [8]  = 0x00FF00FF / 0xFF00FF00
7332 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7333 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7334 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7335   // These are the unshifted masks which we use to match bit-manipulation
7336   // patterns. They may be shifted left in certain circumstances.
7337   static const uint64_t BitmanipMasks[] = {
7338       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7339       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7340 
7341   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7342 }
7343 
7344 // Match the following pattern as a GREVI(W) operation
7345 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7346 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7347                                const RISCVSubtarget &Subtarget) {
7348   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7349   EVT VT = Op.getValueType();
7350 
7351   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7352     auto LHS = matchGREVIPat(Op.getOperand(0));
7353     auto RHS = matchGREVIPat(Op.getOperand(1));
7354     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7355       SDLoc DL(Op);
7356       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7357                          DAG.getConstant(LHS->ShAmt, DL, VT));
7358     }
7359   }
7360   return SDValue();
7361 }
7362 
7363 // Matches any the following pattern as a GORCI(W) operation
7364 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7365 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7366 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7367 // Note that with the variant of 3.,
7368 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7369 // the inner pattern will first be matched as GREVI and then the outer
7370 // pattern will be matched to GORC via the first rule above.
7371 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7372 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7373                                const RISCVSubtarget &Subtarget) {
7374   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7375   EVT VT = Op.getValueType();
7376 
7377   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7378     SDLoc DL(Op);
7379     SDValue Op0 = Op.getOperand(0);
7380     SDValue Op1 = Op.getOperand(1);
7381 
7382     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7383       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7384           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7385           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7386         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7387       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7388       if ((Reverse.getOpcode() == ISD::ROTL ||
7389            Reverse.getOpcode() == ISD::ROTR) &&
7390           Reverse.getOperand(0) == X &&
7391           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7392         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7393         if (RotAmt == (VT.getSizeInBits() / 2))
7394           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7395                              DAG.getConstant(RotAmt, DL, VT));
7396       }
7397       return SDValue();
7398     };
7399 
7400     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7401     if (SDValue V = MatchOROfReverse(Op0, Op1))
7402       return V;
7403     if (SDValue V = MatchOROfReverse(Op1, Op0))
7404       return V;
7405 
7406     // OR is commutable so canonicalize its OR operand to the left
7407     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7408       std::swap(Op0, Op1);
7409     if (Op0.getOpcode() != ISD::OR)
7410       return SDValue();
7411     SDValue OrOp0 = Op0.getOperand(0);
7412     SDValue OrOp1 = Op0.getOperand(1);
7413     auto LHS = matchGREVIPat(OrOp0);
7414     // OR is commutable so swap the operands and try again: x might have been
7415     // on the left
7416     if (!LHS) {
7417       std::swap(OrOp0, OrOp1);
7418       LHS = matchGREVIPat(OrOp0);
7419     }
7420     auto RHS = matchGREVIPat(Op1);
7421     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7422       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7423                          DAG.getConstant(LHS->ShAmt, DL, VT));
7424     }
7425   }
7426   return SDValue();
7427 }
7428 
7429 // Matches any of the following bit-manipulation patterns:
7430 //   (and (shl x, 1), (0x22222222 << 1))
7431 //   (and (srl x, 1), 0x22222222)
7432 //   (shl (and x, 0x22222222), 1)
7433 //   (srl (and x, (0x22222222 << 1)), 1)
7434 // where the shift amount and mask may vary thus:
7435 //   [1]  = 0x22222222 / 0x44444444
7436 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7437 //   [4]  = 0x00F000F0 / 0x0F000F00
7438 //   [8]  = 0x0000FF00 / 0x00FF0000
7439 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7440 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7441   // These are the unshifted masks which we use to match bit-manipulation
7442   // patterns. They may be shifted left in certain circumstances.
7443   static const uint64_t BitmanipMasks[] = {
7444       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7445       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7446 
7447   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7448 }
7449 
7450 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7451 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7452                                const RISCVSubtarget &Subtarget) {
7453   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7454   EVT VT = Op.getValueType();
7455 
7456   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7457     return SDValue();
7458 
7459   SDValue Op0 = Op.getOperand(0);
7460   SDValue Op1 = Op.getOperand(1);
7461 
7462   // Or is commutable so canonicalize the second OR to the LHS.
7463   if (Op0.getOpcode() != ISD::OR)
7464     std::swap(Op0, Op1);
7465   if (Op0.getOpcode() != ISD::OR)
7466     return SDValue();
7467 
7468   // We found an inner OR, so our operands are the operands of the inner OR
7469   // and the other operand of the outer OR.
7470   SDValue A = Op0.getOperand(0);
7471   SDValue B = Op0.getOperand(1);
7472   SDValue C = Op1;
7473 
7474   auto Match1 = matchSHFLPat(A);
7475   auto Match2 = matchSHFLPat(B);
7476 
7477   // If neither matched, we failed.
7478   if (!Match1 && !Match2)
7479     return SDValue();
7480 
7481   // We had at least one match. if one failed, try the remaining C operand.
7482   if (!Match1) {
7483     std::swap(A, C);
7484     Match1 = matchSHFLPat(A);
7485     if (!Match1)
7486       return SDValue();
7487   } else if (!Match2) {
7488     std::swap(B, C);
7489     Match2 = matchSHFLPat(B);
7490     if (!Match2)
7491       return SDValue();
7492   }
7493   assert(Match1 && Match2);
7494 
7495   // Make sure our matches pair up.
7496   if (!Match1->formsPairWith(*Match2))
7497     return SDValue();
7498 
7499   // All the remains is to make sure C is an AND with the same input, that masks
7500   // out the bits that are being shuffled.
7501   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7502       C.getOperand(0) != Match1->Op)
7503     return SDValue();
7504 
7505   uint64_t Mask = C.getConstantOperandVal(1);
7506 
7507   static const uint64_t BitmanipMasks[] = {
7508       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7509       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7510   };
7511 
7512   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7513   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7514   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7515 
7516   if (Mask != ExpMask)
7517     return SDValue();
7518 
7519   SDLoc DL(Op);
7520   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7521                      DAG.getConstant(Match1->ShAmt, DL, VT));
7522 }
7523 
7524 // Optimize (add (shl x, c0), (shl y, c1)) ->
7525 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7526 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7527                                   const RISCVSubtarget &Subtarget) {
7528   // Perform this optimization only in the zba extension.
7529   if (!Subtarget.hasStdExtZba())
7530     return SDValue();
7531 
7532   // Skip for vector types and larger types.
7533   EVT VT = N->getValueType(0);
7534   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7535     return SDValue();
7536 
7537   // The two operand nodes must be SHL and have no other use.
7538   SDValue N0 = N->getOperand(0);
7539   SDValue N1 = N->getOperand(1);
7540   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7541       !N0->hasOneUse() || !N1->hasOneUse())
7542     return SDValue();
7543 
7544   // Check c0 and c1.
7545   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7546   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7547   if (!N0C || !N1C)
7548     return SDValue();
7549   int64_t C0 = N0C->getSExtValue();
7550   int64_t C1 = N1C->getSExtValue();
7551   if (C0 <= 0 || C1 <= 0)
7552     return SDValue();
7553 
7554   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7555   int64_t Bits = std::min(C0, C1);
7556   int64_t Diff = std::abs(C0 - C1);
7557   if (Diff != 1 && Diff != 2 && Diff != 3)
7558     return SDValue();
7559 
7560   // Build nodes.
7561   SDLoc DL(N);
7562   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7563   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7564   SDValue NA0 =
7565       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7566   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7567   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7568 }
7569 
7570 // Combine
7571 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7572 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7573 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7574 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7575 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7576 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7577 // The grev patterns represents BSWAP.
7578 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7579 // off the grev.
7580 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7581                                           const RISCVSubtarget &Subtarget) {
7582   bool IsWInstruction =
7583       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7584   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7585           IsWInstruction) &&
7586          "Unexpected opcode!");
7587   SDValue Src = N->getOperand(0);
7588   EVT VT = N->getValueType(0);
7589   SDLoc DL(N);
7590 
7591   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7592     return SDValue();
7593 
7594   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7595       !isa<ConstantSDNode>(Src.getOperand(1)))
7596     return SDValue();
7597 
7598   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7599   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7600 
7601   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7602   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7603   unsigned ShAmt1 = N->getConstantOperandVal(1);
7604   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7605   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7606     return SDValue();
7607 
7608   Src = Src.getOperand(0);
7609 
7610   // Toggle bit the MSB of the shift.
7611   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7612   if (CombinedShAmt == 0)
7613     return Src;
7614 
7615   SDValue Res = DAG.getNode(
7616       RISCVISD::GREV, DL, VT, Src,
7617       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7618   if (!IsWInstruction)
7619     return Res;
7620 
7621   // Sign extend the result to match the behavior of the rotate. This will be
7622   // selected to GREVIW in isel.
7623   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7624                      DAG.getValueType(MVT::i32));
7625 }
7626 
7627 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7628 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7629 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7630 // not undo itself, but they are redundant.
7631 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7632   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7633   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7634   SDValue Src = N->getOperand(0);
7635 
7636   if (Src.getOpcode() != N->getOpcode())
7637     return SDValue();
7638 
7639   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7640       !isa<ConstantSDNode>(Src.getOperand(1)))
7641     return SDValue();
7642 
7643   unsigned ShAmt1 = N->getConstantOperandVal(1);
7644   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7645   Src = Src.getOperand(0);
7646 
7647   unsigned CombinedShAmt;
7648   if (IsGORC)
7649     CombinedShAmt = ShAmt1 | ShAmt2;
7650   else
7651     CombinedShAmt = ShAmt1 ^ ShAmt2;
7652 
7653   if (CombinedShAmt == 0)
7654     return Src;
7655 
7656   SDLoc DL(N);
7657   return DAG.getNode(
7658       N->getOpcode(), DL, N->getValueType(0), Src,
7659       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7660 }
7661 
7662 // Combine a constant select operand into its use:
7663 //
7664 // (and (select cond, -1, c), x)
7665 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7666 // (or  (select cond, 0, c), x)
7667 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7668 // (xor (select cond, 0, c), x)
7669 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7670 // (add (select cond, 0, c), x)
7671 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7672 // (sub x, (select cond, 0, c))
7673 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7674 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7675                                    SelectionDAG &DAG, bool AllOnes) {
7676   EVT VT = N->getValueType(0);
7677 
7678   // Skip vectors.
7679   if (VT.isVector())
7680     return SDValue();
7681 
7682   if ((Slct.getOpcode() != ISD::SELECT &&
7683        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7684       !Slct.hasOneUse())
7685     return SDValue();
7686 
7687   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7688     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7689   };
7690 
7691   bool SwapSelectOps;
7692   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7693   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7694   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7695   SDValue NonConstantVal;
7696   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7697     SwapSelectOps = false;
7698     NonConstantVal = FalseVal;
7699   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7700     SwapSelectOps = true;
7701     NonConstantVal = TrueVal;
7702   } else
7703     return SDValue();
7704 
7705   // Slct is now know to be the desired identity constant when CC is true.
7706   TrueVal = OtherOp;
7707   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7708   // Unless SwapSelectOps says the condition should be false.
7709   if (SwapSelectOps)
7710     std::swap(TrueVal, FalseVal);
7711 
7712   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7713     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7714                        {Slct.getOperand(0), Slct.getOperand(1),
7715                         Slct.getOperand(2), TrueVal, FalseVal});
7716 
7717   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7718                      {Slct.getOperand(0), TrueVal, FalseVal});
7719 }
7720 
7721 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7722 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7723                                               bool AllOnes) {
7724   SDValue N0 = N->getOperand(0);
7725   SDValue N1 = N->getOperand(1);
7726   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7727     return Result;
7728   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7729     return Result;
7730   return SDValue();
7731 }
7732 
7733 // Transform (add (mul x, c0), c1) ->
7734 //           (add (mul (add x, c1/c0), c0), c1%c0).
7735 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7736 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7737 // to an infinite loop in DAGCombine if transformed.
7738 // Or transform (add (mul x, c0), c1) ->
7739 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7740 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7741 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7742 // lead to an infinite loop in DAGCombine if transformed.
7743 // Or transform (add (mul x, c0), c1) ->
7744 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7745 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7746 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7747 // lead to an infinite loop in DAGCombine if transformed.
7748 // Or transform (add (mul x, c0), c1) ->
7749 //              (mul (add x, c1/c0), c0).
7750 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7751 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7752                                      const RISCVSubtarget &Subtarget) {
7753   // Skip for vector types and larger types.
7754   EVT VT = N->getValueType(0);
7755   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7756     return SDValue();
7757   // The first operand node must be a MUL and has no other use.
7758   SDValue N0 = N->getOperand(0);
7759   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7760     return SDValue();
7761   // Check if c0 and c1 match above conditions.
7762   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7763   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7764   if (!N0C || !N1C)
7765     return SDValue();
7766   // If N0C has multiple uses it's possible one of the cases in
7767   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7768   // in an infinite loop.
7769   if (!N0C->hasOneUse())
7770     return SDValue();
7771   int64_t C0 = N0C->getSExtValue();
7772   int64_t C1 = N1C->getSExtValue();
7773   int64_t CA, CB;
7774   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7775     return SDValue();
7776   // Search for proper CA (non-zero) and CB that both are simm12.
7777   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7778       !isInt<12>(C0 * (C1 / C0))) {
7779     CA = C1 / C0;
7780     CB = C1 % C0;
7781   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7782              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7783     CA = C1 / C0 + 1;
7784     CB = C1 % C0 - C0;
7785   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7786              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7787     CA = C1 / C0 - 1;
7788     CB = C1 % C0 + C0;
7789   } else
7790     return SDValue();
7791   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7792   SDLoc DL(N);
7793   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7794                              DAG.getConstant(CA, DL, VT));
7795   SDValue New1 =
7796       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7797   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7798 }
7799 
7800 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7801                                  const RISCVSubtarget &Subtarget) {
7802   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7803     return V;
7804   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7805     return V;
7806   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7807   //      (select lhs, rhs, cc, x, (add x, y))
7808   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7809 }
7810 
7811 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7812   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7813   //      (select lhs, rhs, cc, x, (sub x, y))
7814   SDValue N0 = N->getOperand(0);
7815   SDValue N1 = N->getOperand(1);
7816   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7817 }
7818 
7819 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7820   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7821   //      (select lhs, rhs, cc, x, (and x, y))
7822   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7823 }
7824 
7825 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7826                                 const RISCVSubtarget &Subtarget) {
7827   if (Subtarget.hasStdExtZbp()) {
7828     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7829       return GREV;
7830     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7831       return GORC;
7832     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7833       return SHFL;
7834   }
7835 
7836   // fold (or (select cond, 0, y), x) ->
7837   //      (select cond, x, (or x, y))
7838   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7839 }
7840 
7841 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7842   // fold (xor (select cond, 0, y), x) ->
7843   //      (select cond, x, (xor x, y))
7844   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7845 }
7846 
7847 static SDValue
7848 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7849                                 const RISCVSubtarget &Subtarget) {
7850   SDValue Src = N->getOperand(0);
7851   EVT VT = N->getValueType(0);
7852 
7853   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7854   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7855       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7856     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7857                        Src.getOperand(0));
7858 
7859   // Fold (i64 (sext_inreg (abs X), i32)) ->
7860   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7861   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7862   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7863   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7864   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7865   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7866   // may get combined into an earlier operation so we need to use
7867   // ComputeNumSignBits.
7868   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7869   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7870   // we can't assume that X has 33 sign bits. We must check.
7871   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7872       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7873       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7874       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7875     SDLoc DL(N);
7876     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7877     SDValue Neg =
7878         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7879     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7880                       DAG.getValueType(MVT::i32));
7881     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7882   }
7883 
7884   return SDValue();
7885 }
7886 
7887 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7888 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7889 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7890                                              bool Commute = false) {
7891   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7892           N->getOpcode() == RISCVISD::SUB_VL) &&
7893          "Unexpected opcode");
7894   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7895   SDValue Op0 = N->getOperand(0);
7896   SDValue Op1 = N->getOperand(1);
7897   if (Commute)
7898     std::swap(Op0, Op1);
7899 
7900   MVT VT = N->getSimpleValueType(0);
7901 
7902   // Determine the narrow size for a widening add/sub.
7903   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7904   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7905                                   VT.getVectorElementCount());
7906 
7907   SDValue Mask = N->getOperand(2);
7908   SDValue VL = N->getOperand(3);
7909 
7910   SDLoc DL(N);
7911 
7912   // If the RHS is a sext or zext, we can form a widening op.
7913   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7914        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7915       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7916     unsigned ExtOpc = Op1.getOpcode();
7917     Op1 = Op1.getOperand(0);
7918     // Re-introduce narrower extends if needed.
7919     if (Op1.getValueType() != NarrowVT)
7920       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7921 
7922     unsigned WOpc;
7923     if (ExtOpc == RISCVISD::VSEXT_VL)
7924       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7925     else
7926       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7927 
7928     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7929   }
7930 
7931   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7932   // sext/zext?
7933 
7934   return SDValue();
7935 }
7936 
7937 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7938 // vwsub(u).vv/vx.
7939 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7940   SDValue Op0 = N->getOperand(0);
7941   SDValue Op1 = N->getOperand(1);
7942   SDValue Mask = N->getOperand(2);
7943   SDValue VL = N->getOperand(3);
7944 
7945   MVT VT = N->getSimpleValueType(0);
7946   MVT NarrowVT = Op1.getSimpleValueType();
7947   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7948 
7949   unsigned VOpc;
7950   switch (N->getOpcode()) {
7951   default: llvm_unreachable("Unexpected opcode");
7952   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7953   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7954   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7955   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7956   }
7957 
7958   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7959                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7960 
7961   SDLoc DL(N);
7962 
7963   // If the LHS is a sext or zext, we can narrow this op to the same size as
7964   // the RHS.
7965   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7966        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7967       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7968     unsigned ExtOpc = Op0.getOpcode();
7969     Op0 = Op0.getOperand(0);
7970     // Re-introduce narrower extends if needed.
7971     if (Op0.getValueType() != NarrowVT)
7972       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7973     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7974   }
7975 
7976   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7977                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7978 
7979   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7980   // to commute and use a vwadd(u).vx instead.
7981   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7982       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7983     Op0 = Op0.getOperand(1);
7984 
7985     // See if have enough sign bits or zero bits in the scalar to use a
7986     // widening add/sub by splatting to smaller element size.
7987     unsigned EltBits = VT.getScalarSizeInBits();
7988     unsigned ScalarBits = Op0.getValueSizeInBits();
7989     // Make sure we're getting all element bits from the scalar register.
7990     // FIXME: Support implicit sign extension of vmv.v.x?
7991     if (ScalarBits < EltBits)
7992       return SDValue();
7993 
7994     if (IsSigned) {
7995       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7996         return SDValue();
7997     } else {
7998       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7999       if (!DAG.MaskedValueIsZero(Op0, Mask))
8000         return SDValue();
8001     }
8002 
8003     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8004                       DAG.getUNDEF(NarrowVT), Op0, VL);
8005     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8006   }
8007 
8008   return SDValue();
8009 }
8010 
8011 // Try to form VWMUL, VWMULU or VWMULSU.
8012 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
8013 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8014                                        bool Commute) {
8015   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8016   SDValue Op0 = N->getOperand(0);
8017   SDValue Op1 = N->getOperand(1);
8018   if (Commute)
8019     std::swap(Op0, Op1);
8020 
8021   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8022   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8023   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8024   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8025     return SDValue();
8026 
8027   SDValue Mask = N->getOperand(2);
8028   SDValue VL = N->getOperand(3);
8029 
8030   // Make sure the mask and VL match.
8031   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8032     return SDValue();
8033 
8034   MVT VT = N->getSimpleValueType(0);
8035 
8036   // Determine the narrow size for a widening multiply.
8037   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8038   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8039                                   VT.getVectorElementCount());
8040 
8041   SDLoc DL(N);
8042 
8043   // See if the other operand is the same opcode.
8044   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8045     if (!Op1.hasOneUse())
8046       return SDValue();
8047 
8048     // Make sure the mask and VL match.
8049     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8050       return SDValue();
8051 
8052     Op1 = Op1.getOperand(0);
8053   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8054     // The operand is a splat of a scalar.
8055 
8056     // The pasthru must be undef for tail agnostic
8057     if (!Op1.getOperand(0).isUndef())
8058       return SDValue();
8059     // The VL must be the same.
8060     if (Op1.getOperand(2) != VL)
8061       return SDValue();
8062 
8063     // Get the scalar value.
8064     Op1 = Op1.getOperand(1);
8065 
8066     // See if have enough sign bits or zero bits in the scalar to use a
8067     // widening multiply by splatting to smaller element size.
8068     unsigned EltBits = VT.getScalarSizeInBits();
8069     unsigned ScalarBits = Op1.getValueSizeInBits();
8070     // Make sure we're getting all element bits from the scalar register.
8071     // FIXME: Support implicit sign extension of vmv.v.x?
8072     if (ScalarBits < EltBits)
8073       return SDValue();
8074 
8075     // If the LHS is a sign extend, try to use vwmul.
8076     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8077       // Can use vwmul.
8078     } else {
8079       // Otherwise try to use vwmulu or vwmulsu.
8080       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8081       if (DAG.MaskedValueIsZero(Op1, Mask))
8082         IsVWMULSU = IsSignExt;
8083       else
8084         return SDValue();
8085     }
8086 
8087     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8088                       DAG.getUNDEF(NarrowVT), Op1, VL);
8089   } else
8090     return SDValue();
8091 
8092   Op0 = Op0.getOperand(0);
8093 
8094   // Re-introduce narrower extends if needed.
8095   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8096   if (Op0.getValueType() != NarrowVT)
8097     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8098   // vwmulsu requires second operand to be zero extended.
8099   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8100   if (Op1.getValueType() != NarrowVT)
8101     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8102 
8103   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8104   if (!IsVWMULSU)
8105     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8106   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8107 }
8108 
8109 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8110   switch (Op.getOpcode()) {
8111   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8112   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
8113   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
8114   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
8115   case ISD::FROUND:     return RISCVFPRndMode::RMM;
8116   }
8117 
8118   return RISCVFPRndMode::Invalid;
8119 }
8120 
8121 // Fold
8122 //   (fp_to_int (froundeven X)) -> fcvt X, rne
8123 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
8124 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
8125 //   (fp_to_int (fceil X))      -> fcvt X, rup
8126 //   (fp_to_int (fround X))     -> fcvt X, rmm
8127 static SDValue performFP_TO_INTCombine(SDNode *N,
8128                                        TargetLowering::DAGCombinerInfo &DCI,
8129                                        const RISCVSubtarget &Subtarget) {
8130   SelectionDAG &DAG = DCI.DAG;
8131   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8132   MVT XLenVT = Subtarget.getXLenVT();
8133 
8134   // Only handle XLen or i32 types. Other types narrower than XLen will
8135   // eventually be legalized to XLenVT.
8136   EVT VT = N->getValueType(0);
8137   if (VT != MVT::i32 && VT != XLenVT)
8138     return SDValue();
8139 
8140   SDValue Src = N->getOperand(0);
8141 
8142   // Ensure the FP type is also legal.
8143   if (!TLI.isTypeLegal(Src.getValueType()))
8144     return SDValue();
8145 
8146   // Don't do this for f16 with Zfhmin and not Zfh.
8147   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8148     return SDValue();
8149 
8150   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8151   if (FRM == RISCVFPRndMode::Invalid)
8152     return SDValue();
8153 
8154   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8155 
8156   unsigned Opc;
8157   if (VT == XLenVT)
8158     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8159   else
8160     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8161 
8162   SDLoc DL(N);
8163   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8164                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8165   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8166 }
8167 
8168 // Fold
8169 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8170 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8171 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8172 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8173 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8174 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8175                                        TargetLowering::DAGCombinerInfo &DCI,
8176                                        const RISCVSubtarget &Subtarget) {
8177   SelectionDAG &DAG = DCI.DAG;
8178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8179   MVT XLenVT = Subtarget.getXLenVT();
8180 
8181   // Only handle XLen types. Other types narrower than XLen will eventually be
8182   // legalized to XLenVT.
8183   EVT DstVT = N->getValueType(0);
8184   if (DstVT != XLenVT)
8185     return SDValue();
8186 
8187   SDValue Src = N->getOperand(0);
8188 
8189   // Ensure the FP type is also legal.
8190   if (!TLI.isTypeLegal(Src.getValueType()))
8191     return SDValue();
8192 
8193   // Don't do this for f16 with Zfhmin and not Zfh.
8194   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8195     return SDValue();
8196 
8197   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8198 
8199   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8200   if (FRM == RISCVFPRndMode::Invalid)
8201     return SDValue();
8202 
8203   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8204 
8205   unsigned Opc;
8206   if (SatVT == DstVT)
8207     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8208   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8209     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8210   else
8211     return SDValue();
8212   // FIXME: Support other SatVTs by clamping before or after the conversion.
8213 
8214   Src = Src.getOperand(0);
8215 
8216   SDLoc DL(N);
8217   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8218                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8219 
8220   // RISCV FP-to-int conversions saturate to the destination register size, but
8221   // don't produce 0 for nan.
8222   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8223   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8224 }
8225 
8226 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8227 // smaller than XLenVT.
8228 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8229                                         const RISCVSubtarget &Subtarget) {
8230   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8231 
8232   SDValue Src = N->getOperand(0);
8233   if (Src.getOpcode() != ISD::BSWAP)
8234     return SDValue();
8235 
8236   EVT VT = N->getValueType(0);
8237   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8238       !isPowerOf2_32(VT.getSizeInBits()))
8239     return SDValue();
8240 
8241   SDLoc DL(N);
8242   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8243                      DAG.getConstant(7, DL, VT));
8244 }
8245 
8246 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8247                                                DAGCombinerInfo &DCI) const {
8248   SelectionDAG &DAG = DCI.DAG;
8249 
8250   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8251   // bits are demanded. N will be added to the Worklist if it was not deleted.
8252   // Caller should return SDValue(N, 0) if this returns true.
8253   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8254     SDValue Op = N->getOperand(OpNo);
8255     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8256     if (!SimplifyDemandedBits(Op, Mask, DCI))
8257       return false;
8258 
8259     if (N->getOpcode() != ISD::DELETED_NODE)
8260       DCI.AddToWorklist(N);
8261     return true;
8262   };
8263 
8264   switch (N->getOpcode()) {
8265   default:
8266     break;
8267   case RISCVISD::SplitF64: {
8268     SDValue Op0 = N->getOperand(0);
8269     // If the input to SplitF64 is just BuildPairF64 then the operation is
8270     // redundant. Instead, use BuildPairF64's operands directly.
8271     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8272       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8273 
8274     if (Op0->isUndef()) {
8275       SDValue Lo = DAG.getUNDEF(MVT::i32);
8276       SDValue Hi = DAG.getUNDEF(MVT::i32);
8277       return DCI.CombineTo(N, Lo, Hi);
8278     }
8279 
8280     SDLoc DL(N);
8281 
8282     // It's cheaper to materialise two 32-bit integers than to load a double
8283     // from the constant pool and transfer it to integer registers through the
8284     // stack.
8285     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8286       APInt V = C->getValueAPF().bitcastToAPInt();
8287       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8288       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8289       return DCI.CombineTo(N, Lo, Hi);
8290     }
8291 
8292     // This is a target-specific version of a DAGCombine performed in
8293     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8294     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8295     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8296     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8297         !Op0.getNode()->hasOneUse())
8298       break;
8299     SDValue NewSplitF64 =
8300         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8301                     Op0.getOperand(0));
8302     SDValue Lo = NewSplitF64.getValue(0);
8303     SDValue Hi = NewSplitF64.getValue(1);
8304     APInt SignBit = APInt::getSignMask(32);
8305     if (Op0.getOpcode() == ISD::FNEG) {
8306       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8307                                   DAG.getConstant(SignBit, DL, MVT::i32));
8308       return DCI.CombineTo(N, Lo, NewHi);
8309     }
8310     assert(Op0.getOpcode() == ISD::FABS);
8311     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8312                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8313     return DCI.CombineTo(N, Lo, NewHi);
8314   }
8315   case RISCVISD::SLLW:
8316   case RISCVISD::SRAW:
8317   case RISCVISD::SRLW: {
8318     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8319     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8320         SimplifyDemandedLowBitsHelper(1, 5))
8321       return SDValue(N, 0);
8322 
8323     break;
8324   }
8325   case ISD::ROTR:
8326   case ISD::ROTL:
8327   case RISCVISD::RORW:
8328   case RISCVISD::ROLW: {
8329     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8330       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8331       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8332           SimplifyDemandedLowBitsHelper(1, 5))
8333         return SDValue(N, 0);
8334     }
8335 
8336     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8337   }
8338   case RISCVISD::CLZW:
8339   case RISCVISD::CTZW: {
8340     // Only the lower 32 bits of the first operand are read
8341     if (SimplifyDemandedLowBitsHelper(0, 32))
8342       return SDValue(N, 0);
8343     break;
8344   }
8345   case RISCVISD::GREV:
8346   case RISCVISD::GORC: {
8347     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8348     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8349     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8350     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8351       return SDValue(N, 0);
8352 
8353     return combineGREVI_GORCI(N, DAG);
8354   }
8355   case RISCVISD::GREVW:
8356   case RISCVISD::GORCW: {
8357     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8358     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8359         SimplifyDemandedLowBitsHelper(1, 5))
8360       return SDValue(N, 0);
8361 
8362     break;
8363   }
8364   case RISCVISD::SHFL:
8365   case RISCVISD::UNSHFL: {
8366     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8367     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8368     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8369     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8370       return SDValue(N, 0);
8371 
8372     break;
8373   }
8374   case RISCVISD::SHFLW:
8375   case RISCVISD::UNSHFLW: {
8376     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8377     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8378         SimplifyDemandedLowBitsHelper(1, 4))
8379       return SDValue(N, 0);
8380 
8381     break;
8382   }
8383   case RISCVISD::BCOMPRESSW:
8384   case RISCVISD::BDECOMPRESSW: {
8385     // Only the lower 32 bits of LHS and RHS are read.
8386     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8387         SimplifyDemandedLowBitsHelper(1, 32))
8388       return SDValue(N, 0);
8389 
8390     break;
8391   }
8392   case RISCVISD::FSR:
8393   case RISCVISD::FSL:
8394   case RISCVISD::FSRW:
8395   case RISCVISD::FSLW: {
8396     bool IsWInstruction =
8397         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8398     unsigned BitWidth =
8399         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8400     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8401     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8402     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8403       return SDValue(N, 0);
8404 
8405     break;
8406   }
8407   case RISCVISD::FMV_X_ANYEXTH:
8408   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8409     SDLoc DL(N);
8410     SDValue Op0 = N->getOperand(0);
8411     MVT VT = N->getSimpleValueType(0);
8412     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8413     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8414     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8415     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8416          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8417         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8418          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8419       assert(Op0.getOperand(0).getValueType() == VT &&
8420              "Unexpected value type!");
8421       return Op0.getOperand(0);
8422     }
8423 
8424     // This is a target-specific version of a DAGCombine performed in
8425     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8426     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8427     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8428     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8429         !Op0.getNode()->hasOneUse())
8430       break;
8431     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8432     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8433     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8434     if (Op0.getOpcode() == ISD::FNEG)
8435       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8436                          DAG.getConstant(SignBit, DL, VT));
8437 
8438     assert(Op0.getOpcode() == ISD::FABS);
8439     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8440                        DAG.getConstant(~SignBit, DL, VT));
8441   }
8442   case ISD::ADD:
8443     return performADDCombine(N, DAG, Subtarget);
8444   case ISD::SUB:
8445     return performSUBCombine(N, DAG);
8446   case ISD::AND:
8447     return performANDCombine(N, DAG);
8448   case ISD::OR:
8449     return performORCombine(N, DAG, Subtarget);
8450   case ISD::XOR:
8451     return performXORCombine(N, DAG);
8452   case ISD::SIGN_EXTEND_INREG:
8453     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8454   case ISD::ZERO_EXTEND:
8455     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8456     // type legalization. This is safe because fp_to_uint produces poison if
8457     // it overflows.
8458     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8459       SDValue Src = N->getOperand(0);
8460       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8461           isTypeLegal(Src.getOperand(0).getValueType()))
8462         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8463                            Src.getOperand(0));
8464       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8465           isTypeLegal(Src.getOperand(1).getValueType())) {
8466         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8467         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8468                                   Src.getOperand(0), Src.getOperand(1));
8469         DCI.CombineTo(N, Res);
8470         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8471         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8472         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8473       }
8474     }
8475     return SDValue();
8476   case RISCVISD::SELECT_CC: {
8477     // Transform
8478     SDValue LHS = N->getOperand(0);
8479     SDValue RHS = N->getOperand(1);
8480     SDValue TrueV = N->getOperand(3);
8481     SDValue FalseV = N->getOperand(4);
8482 
8483     // If the True and False values are the same, we don't need a select_cc.
8484     if (TrueV == FalseV)
8485       return TrueV;
8486 
8487     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8488     if (!ISD::isIntEqualitySetCC(CCVal))
8489       break;
8490 
8491     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8492     //      (select_cc X, Y, lt, trueV, falseV)
8493     // Sometimes the setcc is introduced after select_cc has been formed.
8494     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8495         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8496       // If we're looking for eq 0 instead of ne 0, we need to invert the
8497       // condition.
8498       bool Invert = CCVal == ISD::SETEQ;
8499       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8500       if (Invert)
8501         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8502 
8503       SDLoc DL(N);
8504       RHS = LHS.getOperand(1);
8505       LHS = LHS.getOperand(0);
8506       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8507 
8508       SDValue TargetCC = DAG.getCondCode(CCVal);
8509       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8510                          {LHS, RHS, TargetCC, TrueV, FalseV});
8511     }
8512 
8513     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8514     //      (select_cc X, Y, eq/ne, trueV, falseV)
8515     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8516       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8517                          {LHS.getOperand(0), LHS.getOperand(1),
8518                           N->getOperand(2), TrueV, FalseV});
8519     // (select_cc X, 1, setne, trueV, falseV) ->
8520     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8521     // This can occur when legalizing some floating point comparisons.
8522     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8523     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8524       SDLoc DL(N);
8525       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8526       SDValue TargetCC = DAG.getCondCode(CCVal);
8527       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8528       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8529                          {LHS, RHS, TargetCC, TrueV, FalseV});
8530     }
8531 
8532     break;
8533   }
8534   case RISCVISD::BR_CC: {
8535     SDValue LHS = N->getOperand(1);
8536     SDValue RHS = N->getOperand(2);
8537     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8538     if (!ISD::isIntEqualitySetCC(CCVal))
8539       break;
8540 
8541     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8542     //      (br_cc X, Y, lt, dest)
8543     // Sometimes the setcc is introduced after br_cc has been formed.
8544     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8545         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8546       // If we're looking for eq 0 instead of ne 0, we need to invert the
8547       // condition.
8548       bool Invert = CCVal == ISD::SETEQ;
8549       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8550       if (Invert)
8551         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8552 
8553       SDLoc DL(N);
8554       RHS = LHS.getOperand(1);
8555       LHS = LHS.getOperand(0);
8556       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8557 
8558       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8559                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8560                          N->getOperand(4));
8561     }
8562 
8563     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8564     //      (br_cc X, Y, eq/ne, trueV, falseV)
8565     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8566       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8567                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8568                          N->getOperand(3), N->getOperand(4));
8569 
8570     // (br_cc X, 1, setne, br_cc) ->
8571     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8572     // This can occur when legalizing some floating point comparisons.
8573     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8574     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8575       SDLoc DL(N);
8576       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8577       SDValue TargetCC = DAG.getCondCode(CCVal);
8578       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8579       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8580                          N->getOperand(0), LHS, RHS, TargetCC,
8581                          N->getOperand(4));
8582     }
8583     break;
8584   }
8585   case ISD::BITREVERSE:
8586     return performBITREVERSECombine(N, DAG, Subtarget);
8587   case ISD::FP_TO_SINT:
8588   case ISD::FP_TO_UINT:
8589     return performFP_TO_INTCombine(N, DCI, Subtarget);
8590   case ISD::FP_TO_SINT_SAT:
8591   case ISD::FP_TO_UINT_SAT:
8592     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8593   case ISD::FCOPYSIGN: {
8594     EVT VT = N->getValueType(0);
8595     if (!VT.isVector())
8596       break;
8597     // There is a form of VFSGNJ which injects the negated sign of its second
8598     // operand. Try and bubble any FNEG up after the extend/round to produce
8599     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8600     // TRUNC=1.
8601     SDValue In2 = N->getOperand(1);
8602     // Avoid cases where the extend/round has multiple uses, as duplicating
8603     // those is typically more expensive than removing a fneg.
8604     if (!In2.hasOneUse())
8605       break;
8606     if (In2.getOpcode() != ISD::FP_EXTEND &&
8607         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8608       break;
8609     In2 = In2.getOperand(0);
8610     if (In2.getOpcode() != ISD::FNEG)
8611       break;
8612     SDLoc DL(N);
8613     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8614     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8615                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8616   }
8617   case ISD::MGATHER:
8618   case ISD::MSCATTER:
8619   case ISD::VP_GATHER:
8620   case ISD::VP_SCATTER: {
8621     if (!DCI.isBeforeLegalize())
8622       break;
8623     SDValue Index, ScaleOp;
8624     bool IsIndexScaled = false;
8625     bool IsIndexSigned = false;
8626     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8627       Index = VPGSN->getIndex();
8628       ScaleOp = VPGSN->getScale();
8629       IsIndexScaled = VPGSN->isIndexScaled();
8630       IsIndexSigned = VPGSN->isIndexSigned();
8631     } else {
8632       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8633       Index = MGSN->getIndex();
8634       ScaleOp = MGSN->getScale();
8635       IsIndexScaled = MGSN->isIndexScaled();
8636       IsIndexSigned = MGSN->isIndexSigned();
8637     }
8638     EVT IndexVT = Index.getValueType();
8639     MVT XLenVT = Subtarget.getXLenVT();
8640     // RISCV indexed loads only support the "unsigned unscaled" addressing
8641     // mode, so anything else must be manually legalized.
8642     bool NeedsIdxLegalization =
8643         IsIndexScaled ||
8644         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8645     if (!NeedsIdxLegalization)
8646       break;
8647 
8648     SDLoc DL(N);
8649 
8650     // Any index legalization should first promote to XLenVT, so we don't lose
8651     // bits when scaling. This may create an illegal index type so we let
8652     // LLVM's legalization take care of the splitting.
8653     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8654     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8655       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8656       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8657                           DL, IndexVT, Index);
8658     }
8659 
8660     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8661     if (IsIndexScaled && Scale != 1) {
8662       // Manually scale the indices by the element size.
8663       // TODO: Sanitize the scale operand here?
8664       // TODO: For VP nodes, should we use VP_SHL here?
8665       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8666       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8667       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8668     }
8669 
8670     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8671     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8672       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8673                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8674                               VPGN->getScale(), VPGN->getMask(),
8675                               VPGN->getVectorLength()},
8676                              VPGN->getMemOperand(), NewIndexTy);
8677     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8678       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8679                               {VPSN->getChain(), VPSN->getValue(),
8680                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8681                                VPSN->getMask(), VPSN->getVectorLength()},
8682                               VPSN->getMemOperand(), NewIndexTy);
8683     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8684       return DAG.getMaskedGather(
8685           N->getVTList(), MGN->getMemoryVT(), DL,
8686           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8687            MGN->getBasePtr(), Index, MGN->getScale()},
8688           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8689     const auto *MSN = cast<MaskedScatterSDNode>(N);
8690     return DAG.getMaskedScatter(
8691         N->getVTList(), MSN->getMemoryVT(), DL,
8692         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8693          Index, MSN->getScale()},
8694         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8695   }
8696   case RISCVISD::SRA_VL:
8697   case RISCVISD::SRL_VL:
8698   case RISCVISD::SHL_VL: {
8699     SDValue ShAmt = N->getOperand(1);
8700     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8701       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8702       SDLoc DL(N);
8703       SDValue VL = N->getOperand(3);
8704       EVT VT = N->getValueType(0);
8705       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8706                           ShAmt.getOperand(1), VL);
8707       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8708                          N->getOperand(2), N->getOperand(3));
8709     }
8710     break;
8711   }
8712   case ISD::SRA:
8713   case ISD::SRL:
8714   case ISD::SHL: {
8715     SDValue ShAmt = N->getOperand(1);
8716     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8717       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8718       SDLoc DL(N);
8719       EVT VT = N->getValueType(0);
8720       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8721                           ShAmt.getOperand(1),
8722                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8723       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8724     }
8725     break;
8726   }
8727   case RISCVISD::ADD_VL:
8728     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8729       return V;
8730     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8731   case RISCVISD::SUB_VL:
8732     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8733   case RISCVISD::VWADD_W_VL:
8734   case RISCVISD::VWADDU_W_VL:
8735   case RISCVISD::VWSUB_W_VL:
8736   case RISCVISD::VWSUBU_W_VL:
8737     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8738   case RISCVISD::MUL_VL:
8739     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8740       return V;
8741     // Mul is commutative.
8742     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8743   case ISD::STORE: {
8744     auto *Store = cast<StoreSDNode>(N);
8745     SDValue Val = Store->getValue();
8746     // Combine store of vmv.x.s to vse with VL of 1.
8747     // FIXME: Support FP.
8748     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8749       SDValue Src = Val.getOperand(0);
8750       EVT VecVT = Src.getValueType();
8751       EVT MemVT = Store->getMemoryVT();
8752       // The memory VT and the element type must match.
8753       if (VecVT.getVectorElementType() == MemVT) {
8754         SDLoc DL(N);
8755         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8756         return DAG.getStoreVP(
8757             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8758             DAG.getConstant(1, DL, MaskVT),
8759             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8760             Store->getMemOperand(), Store->getAddressingMode(),
8761             Store->isTruncatingStore(), /*IsCompress*/ false);
8762       }
8763     }
8764 
8765     break;
8766   }
8767   case ISD::SPLAT_VECTOR: {
8768     EVT VT = N->getValueType(0);
8769     // Only perform this combine on legal MVT types.
8770     if (!isTypeLegal(VT))
8771       break;
8772     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8773                                          DAG, Subtarget))
8774       return Gather;
8775     break;
8776   }
8777   case RISCVISD::VMV_V_X_VL: {
8778     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8779     // scalar input.
8780     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8781     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8782     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8783       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8784         return SDValue(N, 0);
8785 
8786     break;
8787   }
8788   case ISD::INTRINSIC_WO_CHAIN: {
8789     unsigned IntNo = N->getConstantOperandVal(0);
8790     switch (IntNo) {
8791       // By default we do not combine any intrinsic.
8792     default:
8793       return SDValue();
8794     case Intrinsic::riscv_vcpop:
8795     case Intrinsic::riscv_vcpop_mask:
8796     case Intrinsic::riscv_vfirst:
8797     case Intrinsic::riscv_vfirst_mask: {
8798       SDValue VL = N->getOperand(2);
8799       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8800           IntNo == Intrinsic::riscv_vfirst_mask)
8801         VL = N->getOperand(3);
8802       if (!isNullConstant(VL))
8803         return SDValue();
8804       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8805       SDLoc DL(N);
8806       EVT VT = N->getValueType(0);
8807       if (IntNo == Intrinsic::riscv_vfirst ||
8808           IntNo == Intrinsic::riscv_vfirst_mask)
8809         return DAG.getConstant(-1, DL, VT);
8810       return DAG.getConstant(0, DL, VT);
8811     }
8812     }
8813   }
8814   }
8815 
8816   return SDValue();
8817 }
8818 
8819 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8820     const SDNode *N, CombineLevel Level) const {
8821   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8822   // materialised in fewer instructions than `(OP _, c1)`:
8823   //
8824   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8825   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8826   SDValue N0 = N->getOperand(0);
8827   EVT Ty = N0.getValueType();
8828   if (Ty.isScalarInteger() &&
8829       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8830     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8831     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8832     if (C1 && C2) {
8833       const APInt &C1Int = C1->getAPIntValue();
8834       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8835 
8836       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8837       // and the combine should happen, to potentially allow further combines
8838       // later.
8839       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8840           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8841         return true;
8842 
8843       // We can materialise `c1` in an add immediate, so it's "free", and the
8844       // combine should be prevented.
8845       if (C1Int.getMinSignedBits() <= 64 &&
8846           isLegalAddImmediate(C1Int.getSExtValue()))
8847         return false;
8848 
8849       // Neither constant will fit into an immediate, so find materialisation
8850       // costs.
8851       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8852                                               Subtarget.getFeatureBits(),
8853                                               /*CompressionCost*/true);
8854       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8855           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8856           /*CompressionCost*/true);
8857 
8858       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8859       // combine should be prevented.
8860       if (C1Cost < ShiftedC1Cost)
8861         return false;
8862     }
8863   }
8864   return true;
8865 }
8866 
8867 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8868     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8869     TargetLoweringOpt &TLO) const {
8870   // Delay this optimization as late as possible.
8871   if (!TLO.LegalOps)
8872     return false;
8873 
8874   EVT VT = Op.getValueType();
8875   if (VT.isVector())
8876     return false;
8877 
8878   // Only handle AND for now.
8879   if (Op.getOpcode() != ISD::AND)
8880     return false;
8881 
8882   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8883   if (!C)
8884     return false;
8885 
8886   const APInt &Mask = C->getAPIntValue();
8887 
8888   // Clear all non-demanded bits initially.
8889   APInt ShrunkMask = Mask & DemandedBits;
8890 
8891   // Try to make a smaller immediate by setting undemanded bits.
8892 
8893   APInt ExpandedMask = Mask | ~DemandedBits;
8894 
8895   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8896     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8897   };
8898   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8899     if (NewMask == Mask)
8900       return true;
8901     SDLoc DL(Op);
8902     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8903     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8904     return TLO.CombineTo(Op, NewOp);
8905   };
8906 
8907   // If the shrunk mask fits in sign extended 12 bits, let the target
8908   // independent code apply it.
8909   if (ShrunkMask.isSignedIntN(12))
8910     return false;
8911 
8912   // Preserve (and X, 0xffff) when zext.h is supported.
8913   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8914     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8915     if (IsLegalMask(NewMask))
8916       return UseMask(NewMask);
8917   }
8918 
8919   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8920   if (VT == MVT::i64) {
8921     APInt NewMask = APInt(64, 0xffffffff);
8922     if (IsLegalMask(NewMask))
8923       return UseMask(NewMask);
8924   }
8925 
8926   // For the remaining optimizations, we need to be able to make a negative
8927   // number through a combination of mask and undemanded bits.
8928   if (!ExpandedMask.isNegative())
8929     return false;
8930 
8931   // What is the fewest number of bits we need to represent the negative number.
8932   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8933 
8934   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8935   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8936   APInt NewMask = ShrunkMask;
8937   if (MinSignedBits <= 12)
8938     NewMask.setBitsFrom(11);
8939   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8940     NewMask.setBitsFrom(31);
8941   else
8942     return false;
8943 
8944   // Check that our new mask is a subset of the demanded mask.
8945   assert(IsLegalMask(NewMask));
8946   return UseMask(NewMask);
8947 }
8948 
8949 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
8950   static const uint64_t GREVMasks[] = {
8951       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
8952       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
8953 
8954   for (unsigned Stage = 0; Stage != 6; ++Stage) {
8955     unsigned Shift = 1 << Stage;
8956     if (ShAmt & Shift) {
8957       uint64_t Mask = GREVMasks[Stage];
8958       uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
8959       if (IsGORC)
8960         Res |= x;
8961       x = Res;
8962     }
8963   }
8964 
8965   return x;
8966 }
8967 
8968 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8969                                                         KnownBits &Known,
8970                                                         const APInt &DemandedElts,
8971                                                         const SelectionDAG &DAG,
8972                                                         unsigned Depth) const {
8973   unsigned BitWidth = Known.getBitWidth();
8974   unsigned Opc = Op.getOpcode();
8975   assert((Opc >= ISD::BUILTIN_OP_END ||
8976           Opc == ISD::INTRINSIC_WO_CHAIN ||
8977           Opc == ISD::INTRINSIC_W_CHAIN ||
8978           Opc == ISD::INTRINSIC_VOID) &&
8979          "Should use MaskedValueIsZero if you don't know whether Op"
8980          " is a target node!");
8981 
8982   Known.resetAll();
8983   switch (Opc) {
8984   default: break;
8985   case RISCVISD::SELECT_CC: {
8986     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8987     // If we don't know any bits, early out.
8988     if (Known.isUnknown())
8989       break;
8990     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8991 
8992     // Only known if known in both the LHS and RHS.
8993     Known = KnownBits::commonBits(Known, Known2);
8994     break;
8995   }
8996   case RISCVISD::REMUW: {
8997     KnownBits Known2;
8998     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8999     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9000     // We only care about the lower 32 bits.
9001     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9002     // Restore the original width by sign extending.
9003     Known = Known.sext(BitWidth);
9004     break;
9005   }
9006   case RISCVISD::DIVUW: {
9007     KnownBits Known2;
9008     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9009     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9010     // We only care about the lower 32 bits.
9011     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9012     // Restore the original width by sign extending.
9013     Known = Known.sext(BitWidth);
9014     break;
9015   }
9016   case RISCVISD::CTZW: {
9017     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9018     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9019     unsigned LowBits = Log2_32(PossibleTZ) + 1;
9020     Known.Zero.setBitsFrom(LowBits);
9021     break;
9022   }
9023   case RISCVISD::CLZW: {
9024     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9025     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9026     unsigned LowBits = Log2_32(PossibleLZ) + 1;
9027     Known.Zero.setBitsFrom(LowBits);
9028     break;
9029   }
9030   case RISCVISD::GREV:
9031   case RISCVISD::GORC: {
9032     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9033       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9034       unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9035       bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9036       // To compute zeros, we need to invert the value and invert it back after.
9037       Known.Zero =
9038           ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9039       Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9040     }
9041     break;
9042   }
9043   case RISCVISD::READ_VLENB: {
9044     // If we know the minimum VLen from Zvl extensions, we can use that to
9045     // determine the trailing zeros of VLENB.
9046     // FIXME: Limit to 128 bit vectors until we have more testing.
9047     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
9048     if (MinVLenB > 0)
9049       Known.Zero.setLowBits(Log2_32(MinVLenB));
9050     // We assume VLENB is no more than 65536 / 8 bytes.
9051     Known.Zero.setBitsFrom(14);
9052     break;
9053   }
9054   case ISD::INTRINSIC_W_CHAIN:
9055   case ISD::INTRINSIC_WO_CHAIN: {
9056     unsigned IntNo =
9057         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9058     switch (IntNo) {
9059     default:
9060       // We can't do anything for most intrinsics.
9061       break;
9062     case Intrinsic::riscv_vsetvli:
9063     case Intrinsic::riscv_vsetvlimax:
9064     case Intrinsic::riscv_vsetvli_opt:
9065     case Intrinsic::riscv_vsetvlimax_opt:
9066       // Assume that VL output is positive and would fit in an int32_t.
9067       // TODO: VLEN might be capped at 16 bits in a future V spec update.
9068       if (BitWidth >= 32)
9069         Known.Zero.setBitsFrom(31);
9070       break;
9071     }
9072     break;
9073   }
9074   }
9075 }
9076 
9077 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9078     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9079     unsigned Depth) const {
9080   switch (Op.getOpcode()) {
9081   default:
9082     break;
9083   case RISCVISD::SELECT_CC: {
9084     unsigned Tmp =
9085         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9086     if (Tmp == 1) return 1;  // Early out.
9087     unsigned Tmp2 =
9088         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9089     return std::min(Tmp, Tmp2);
9090   }
9091   case RISCVISD::SLLW:
9092   case RISCVISD::SRAW:
9093   case RISCVISD::SRLW:
9094   case RISCVISD::DIVW:
9095   case RISCVISD::DIVUW:
9096   case RISCVISD::REMUW:
9097   case RISCVISD::ROLW:
9098   case RISCVISD::RORW:
9099   case RISCVISD::GREVW:
9100   case RISCVISD::GORCW:
9101   case RISCVISD::FSLW:
9102   case RISCVISD::FSRW:
9103   case RISCVISD::SHFLW:
9104   case RISCVISD::UNSHFLW:
9105   case RISCVISD::BCOMPRESSW:
9106   case RISCVISD::BDECOMPRESSW:
9107   case RISCVISD::BFPW:
9108   case RISCVISD::FCVT_W_RV64:
9109   case RISCVISD::FCVT_WU_RV64:
9110   case RISCVISD::STRICT_FCVT_W_RV64:
9111   case RISCVISD::STRICT_FCVT_WU_RV64:
9112     // TODO: As the result is sign-extended, this is conservatively correct. A
9113     // more precise answer could be calculated for SRAW depending on known
9114     // bits in the shift amount.
9115     return 33;
9116   case RISCVISD::SHFL:
9117   case RISCVISD::UNSHFL: {
9118     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9119     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9120     // will stay within the upper 32 bits. If there were more than 32 sign bits
9121     // before there will be at least 33 sign bits after.
9122     if (Op.getValueType() == MVT::i64 &&
9123         isa<ConstantSDNode>(Op.getOperand(1)) &&
9124         (Op.getConstantOperandVal(1) & 0x10) == 0) {
9125       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9126       if (Tmp > 32)
9127         return 33;
9128     }
9129     break;
9130   }
9131   case RISCVISD::VMV_X_S: {
9132     // The number of sign bits of the scalar result is computed by obtaining the
9133     // element type of the input vector operand, subtracting its width from the
9134     // XLEN, and then adding one (sign bit within the element type). If the
9135     // element type is wider than XLen, the least-significant XLEN bits are
9136     // taken.
9137     unsigned XLen = Subtarget.getXLen();
9138     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9139     if (EltBits <= XLen)
9140       return XLen - EltBits + 1;
9141     break;
9142   }
9143   }
9144 
9145   return 1;
9146 }
9147 
9148 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9149                                                   MachineBasicBlock *BB) {
9150   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9151 
9152   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9153   // Should the count have wrapped while it was being read, we need to try
9154   // again.
9155   // ...
9156   // read:
9157   // rdcycleh x3 # load high word of cycle
9158   // rdcycle  x2 # load low word of cycle
9159   // rdcycleh x4 # load high word of cycle
9160   // bne x3, x4, read # check if high word reads match, otherwise try again
9161   // ...
9162 
9163   MachineFunction &MF = *BB->getParent();
9164   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9165   MachineFunction::iterator It = ++BB->getIterator();
9166 
9167   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9168   MF.insert(It, LoopMBB);
9169 
9170   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9171   MF.insert(It, DoneMBB);
9172 
9173   // Transfer the remainder of BB and its successor edges to DoneMBB.
9174   DoneMBB->splice(DoneMBB->begin(), BB,
9175                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9176   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9177 
9178   BB->addSuccessor(LoopMBB);
9179 
9180   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9181   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9182   Register LoReg = MI.getOperand(0).getReg();
9183   Register HiReg = MI.getOperand(1).getReg();
9184   DebugLoc DL = MI.getDebugLoc();
9185 
9186   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9187   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9188       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9189       .addReg(RISCV::X0);
9190   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9191       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9192       .addReg(RISCV::X0);
9193   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9194       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9195       .addReg(RISCV::X0);
9196 
9197   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9198       .addReg(HiReg)
9199       .addReg(ReadAgainReg)
9200       .addMBB(LoopMBB);
9201 
9202   LoopMBB->addSuccessor(LoopMBB);
9203   LoopMBB->addSuccessor(DoneMBB);
9204 
9205   MI.eraseFromParent();
9206 
9207   return DoneMBB;
9208 }
9209 
9210 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9211                                              MachineBasicBlock *BB) {
9212   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9213 
9214   MachineFunction &MF = *BB->getParent();
9215   DebugLoc DL = MI.getDebugLoc();
9216   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9217   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9218   Register LoReg = MI.getOperand(0).getReg();
9219   Register HiReg = MI.getOperand(1).getReg();
9220   Register SrcReg = MI.getOperand(2).getReg();
9221   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9222   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9223 
9224   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9225                           RI);
9226   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9227   MachineMemOperand *MMOLo =
9228       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9229   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9230       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9231   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9232       .addFrameIndex(FI)
9233       .addImm(0)
9234       .addMemOperand(MMOLo);
9235   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9236       .addFrameIndex(FI)
9237       .addImm(4)
9238       .addMemOperand(MMOHi);
9239   MI.eraseFromParent(); // The pseudo instruction is gone now.
9240   return BB;
9241 }
9242 
9243 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9244                                                  MachineBasicBlock *BB) {
9245   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9246          "Unexpected instruction");
9247 
9248   MachineFunction &MF = *BB->getParent();
9249   DebugLoc DL = MI.getDebugLoc();
9250   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9251   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9252   Register DstReg = MI.getOperand(0).getReg();
9253   Register LoReg = MI.getOperand(1).getReg();
9254   Register HiReg = MI.getOperand(2).getReg();
9255   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9256   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9257 
9258   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9259   MachineMemOperand *MMOLo =
9260       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9261   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9262       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9263   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9264       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9265       .addFrameIndex(FI)
9266       .addImm(0)
9267       .addMemOperand(MMOLo);
9268   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9269       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9270       .addFrameIndex(FI)
9271       .addImm(4)
9272       .addMemOperand(MMOHi);
9273   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9274   MI.eraseFromParent(); // The pseudo instruction is gone now.
9275   return BB;
9276 }
9277 
9278 static bool isSelectPseudo(MachineInstr &MI) {
9279   switch (MI.getOpcode()) {
9280   default:
9281     return false;
9282   case RISCV::Select_GPR_Using_CC_GPR:
9283   case RISCV::Select_FPR16_Using_CC_GPR:
9284   case RISCV::Select_FPR32_Using_CC_GPR:
9285   case RISCV::Select_FPR64_Using_CC_GPR:
9286     return true;
9287   }
9288 }
9289 
9290 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9291                                         unsigned RelOpcode, unsigned EqOpcode,
9292                                         const RISCVSubtarget &Subtarget) {
9293   DebugLoc DL = MI.getDebugLoc();
9294   Register DstReg = MI.getOperand(0).getReg();
9295   Register Src1Reg = MI.getOperand(1).getReg();
9296   Register Src2Reg = MI.getOperand(2).getReg();
9297   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9298   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9299   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9300 
9301   // Save the current FFLAGS.
9302   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9303 
9304   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9305                  .addReg(Src1Reg)
9306                  .addReg(Src2Reg);
9307   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9308     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9309 
9310   // Restore the FFLAGS.
9311   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9312       .addReg(SavedFFlags, RegState::Kill);
9313 
9314   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9315   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9316                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9317                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9318   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9319     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9320 
9321   // Erase the pseudoinstruction.
9322   MI.eraseFromParent();
9323   return BB;
9324 }
9325 
9326 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9327                                            MachineBasicBlock *BB,
9328                                            const RISCVSubtarget &Subtarget) {
9329   // To "insert" Select_* instructions, we actually have to insert the triangle
9330   // control-flow pattern.  The incoming instructions know the destination vreg
9331   // to set, the condition code register to branch on, the true/false values to
9332   // select between, and the condcode to use to select the appropriate branch.
9333   //
9334   // We produce the following control flow:
9335   //     HeadMBB
9336   //     |  \
9337   //     |  IfFalseMBB
9338   //     | /
9339   //    TailMBB
9340   //
9341   // When we find a sequence of selects we attempt to optimize their emission
9342   // by sharing the control flow. Currently we only handle cases where we have
9343   // multiple selects with the exact same condition (same LHS, RHS and CC).
9344   // The selects may be interleaved with other instructions if the other
9345   // instructions meet some requirements we deem safe:
9346   // - They are debug instructions. Otherwise,
9347   // - They do not have side-effects, do not access memory and their inputs do
9348   //   not depend on the results of the select pseudo-instructions.
9349   // The TrueV/FalseV operands of the selects cannot depend on the result of
9350   // previous selects in the sequence.
9351   // These conditions could be further relaxed. See the X86 target for a
9352   // related approach and more information.
9353   Register LHS = MI.getOperand(1).getReg();
9354   Register RHS = MI.getOperand(2).getReg();
9355   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9356 
9357   SmallVector<MachineInstr *, 4> SelectDebugValues;
9358   SmallSet<Register, 4> SelectDests;
9359   SelectDests.insert(MI.getOperand(0).getReg());
9360 
9361   MachineInstr *LastSelectPseudo = &MI;
9362 
9363   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9364        SequenceMBBI != E; ++SequenceMBBI) {
9365     if (SequenceMBBI->isDebugInstr())
9366       continue;
9367     else if (isSelectPseudo(*SequenceMBBI)) {
9368       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9369           SequenceMBBI->getOperand(2).getReg() != RHS ||
9370           SequenceMBBI->getOperand(3).getImm() != CC ||
9371           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9372           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9373         break;
9374       LastSelectPseudo = &*SequenceMBBI;
9375       SequenceMBBI->collectDebugValues(SelectDebugValues);
9376       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9377     } else {
9378       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9379           SequenceMBBI->mayLoadOrStore())
9380         break;
9381       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9382             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9383           }))
9384         break;
9385     }
9386   }
9387 
9388   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9389   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9390   DebugLoc DL = MI.getDebugLoc();
9391   MachineFunction::iterator I = ++BB->getIterator();
9392 
9393   MachineBasicBlock *HeadMBB = BB;
9394   MachineFunction *F = BB->getParent();
9395   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9396   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9397 
9398   F->insert(I, IfFalseMBB);
9399   F->insert(I, TailMBB);
9400 
9401   // Transfer debug instructions associated with the selects to TailMBB.
9402   for (MachineInstr *DebugInstr : SelectDebugValues) {
9403     TailMBB->push_back(DebugInstr->removeFromParent());
9404   }
9405 
9406   // Move all instructions after the sequence to TailMBB.
9407   TailMBB->splice(TailMBB->end(), HeadMBB,
9408                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9409   // Update machine-CFG edges by transferring all successors of the current
9410   // block to the new block which will contain the Phi nodes for the selects.
9411   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9412   // Set the successors for HeadMBB.
9413   HeadMBB->addSuccessor(IfFalseMBB);
9414   HeadMBB->addSuccessor(TailMBB);
9415 
9416   // Insert appropriate branch.
9417   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9418     .addReg(LHS)
9419     .addReg(RHS)
9420     .addMBB(TailMBB);
9421 
9422   // IfFalseMBB just falls through to TailMBB.
9423   IfFalseMBB->addSuccessor(TailMBB);
9424 
9425   // Create PHIs for all of the select pseudo-instructions.
9426   auto SelectMBBI = MI.getIterator();
9427   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9428   auto InsertionPoint = TailMBB->begin();
9429   while (SelectMBBI != SelectEnd) {
9430     auto Next = std::next(SelectMBBI);
9431     if (isSelectPseudo(*SelectMBBI)) {
9432       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9433       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9434               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9435           .addReg(SelectMBBI->getOperand(4).getReg())
9436           .addMBB(HeadMBB)
9437           .addReg(SelectMBBI->getOperand(5).getReg())
9438           .addMBB(IfFalseMBB);
9439       SelectMBBI->eraseFromParent();
9440     }
9441     SelectMBBI = Next;
9442   }
9443 
9444   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9445   return TailMBB;
9446 }
9447 
9448 MachineBasicBlock *
9449 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9450                                                  MachineBasicBlock *BB) const {
9451   switch (MI.getOpcode()) {
9452   default:
9453     llvm_unreachable("Unexpected instr type to insert");
9454   case RISCV::ReadCycleWide:
9455     assert(!Subtarget.is64Bit() &&
9456            "ReadCycleWrite is only to be used on riscv32");
9457     return emitReadCycleWidePseudo(MI, BB);
9458   case RISCV::Select_GPR_Using_CC_GPR:
9459   case RISCV::Select_FPR16_Using_CC_GPR:
9460   case RISCV::Select_FPR32_Using_CC_GPR:
9461   case RISCV::Select_FPR64_Using_CC_GPR:
9462     return emitSelectPseudo(MI, BB, Subtarget);
9463   case RISCV::BuildPairF64Pseudo:
9464     return emitBuildPairF64Pseudo(MI, BB);
9465   case RISCV::SplitF64Pseudo:
9466     return emitSplitF64Pseudo(MI, BB);
9467   case RISCV::PseudoQuietFLE_H:
9468     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9469   case RISCV::PseudoQuietFLT_H:
9470     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9471   case RISCV::PseudoQuietFLE_S:
9472     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9473   case RISCV::PseudoQuietFLT_S:
9474     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9475   case RISCV::PseudoQuietFLE_D:
9476     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9477   case RISCV::PseudoQuietFLT_D:
9478     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9479   }
9480 }
9481 
9482 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9483                                                         SDNode *Node) const {
9484   // Add FRM dependency to any instructions with dynamic rounding mode.
9485   unsigned Opc = MI.getOpcode();
9486   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9487   if (Idx < 0)
9488     return;
9489   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9490     return;
9491   // If the instruction already reads FRM, don't add another read.
9492   if (MI.readsRegister(RISCV::FRM))
9493     return;
9494   MI.addOperand(
9495       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9496 }
9497 
9498 // Calling Convention Implementation.
9499 // The expectations for frontend ABI lowering vary from target to target.
9500 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9501 // details, but this is a longer term goal. For now, we simply try to keep the
9502 // role of the frontend as simple and well-defined as possible. The rules can
9503 // be summarised as:
9504 // * Never split up large scalar arguments. We handle them here.
9505 // * If a hardfloat calling convention is being used, and the struct may be
9506 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9507 // available, then pass as two separate arguments. If either the GPRs or FPRs
9508 // are exhausted, then pass according to the rule below.
9509 // * If a struct could never be passed in registers or directly in a stack
9510 // slot (as it is larger than 2*XLEN and the floating point rules don't
9511 // apply), then pass it using a pointer with the byval attribute.
9512 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9513 // word-sized array or a 2*XLEN scalar (depending on alignment).
9514 // * The frontend can determine whether a struct is returned by reference or
9515 // not based on its size and fields. If it will be returned by reference, the
9516 // frontend must modify the prototype so a pointer with the sret annotation is
9517 // passed as the first argument. This is not necessary for large scalar
9518 // returns.
9519 // * Struct return values and varargs should be coerced to structs containing
9520 // register-size fields in the same situations they would be for fixed
9521 // arguments.
9522 
9523 static const MCPhysReg ArgGPRs[] = {
9524   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9525   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9526 };
9527 static const MCPhysReg ArgFPR16s[] = {
9528   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9529   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9530 };
9531 static const MCPhysReg ArgFPR32s[] = {
9532   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9533   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9534 };
9535 static const MCPhysReg ArgFPR64s[] = {
9536   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9537   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9538 };
9539 // This is an interim calling convention and it may be changed in the future.
9540 static const MCPhysReg ArgVRs[] = {
9541     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9542     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9543     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9544 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9545                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9546                                      RISCV::V20M2, RISCV::V22M2};
9547 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9548                                      RISCV::V20M4};
9549 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9550 
9551 // Pass a 2*XLEN argument that has been split into two XLEN values through
9552 // registers or the stack as necessary.
9553 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9554                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9555                                 MVT ValVT2, MVT LocVT2,
9556                                 ISD::ArgFlagsTy ArgFlags2) {
9557   unsigned XLenInBytes = XLen / 8;
9558   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9559     // At least one half can be passed via register.
9560     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9561                                      VA1.getLocVT(), CCValAssign::Full));
9562   } else {
9563     // Both halves must be passed on the stack, with proper alignment.
9564     Align StackAlign =
9565         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9566     State.addLoc(
9567         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9568                             State.AllocateStack(XLenInBytes, StackAlign),
9569                             VA1.getLocVT(), CCValAssign::Full));
9570     State.addLoc(CCValAssign::getMem(
9571         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9572         LocVT2, CCValAssign::Full));
9573     return false;
9574   }
9575 
9576   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9577     // The second half can also be passed via register.
9578     State.addLoc(
9579         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9580   } else {
9581     // The second half is passed via the stack, without additional alignment.
9582     State.addLoc(CCValAssign::getMem(
9583         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9584         LocVT2, CCValAssign::Full));
9585   }
9586 
9587   return false;
9588 }
9589 
9590 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9591                                Optional<unsigned> FirstMaskArgument,
9592                                CCState &State, const RISCVTargetLowering &TLI) {
9593   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9594   if (RC == &RISCV::VRRegClass) {
9595     // Assign the first mask argument to V0.
9596     // This is an interim calling convention and it may be changed in the
9597     // future.
9598     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9599       return State.AllocateReg(RISCV::V0);
9600     return State.AllocateReg(ArgVRs);
9601   }
9602   if (RC == &RISCV::VRM2RegClass)
9603     return State.AllocateReg(ArgVRM2s);
9604   if (RC == &RISCV::VRM4RegClass)
9605     return State.AllocateReg(ArgVRM4s);
9606   if (RC == &RISCV::VRM8RegClass)
9607     return State.AllocateReg(ArgVRM8s);
9608   llvm_unreachable("Unhandled register class for ValueType");
9609 }
9610 
9611 // Implements the RISC-V calling convention. Returns true upon failure.
9612 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9613                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9614                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9615                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9616                      Optional<unsigned> FirstMaskArgument) {
9617   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9618   assert(XLen == 32 || XLen == 64);
9619   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9620 
9621   // Any return value split in to more than two values can't be returned
9622   // directly. Vectors are returned via the available vector registers.
9623   if (!LocVT.isVector() && IsRet && ValNo > 1)
9624     return true;
9625 
9626   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9627   // variadic argument, or if no F16/F32 argument registers are available.
9628   bool UseGPRForF16_F32 = true;
9629   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9630   // variadic argument, or if no F64 argument registers are available.
9631   bool UseGPRForF64 = true;
9632 
9633   switch (ABI) {
9634   default:
9635     llvm_unreachable("Unexpected ABI");
9636   case RISCVABI::ABI_ILP32:
9637   case RISCVABI::ABI_LP64:
9638     break;
9639   case RISCVABI::ABI_ILP32F:
9640   case RISCVABI::ABI_LP64F:
9641     UseGPRForF16_F32 = !IsFixed;
9642     break;
9643   case RISCVABI::ABI_ILP32D:
9644   case RISCVABI::ABI_LP64D:
9645     UseGPRForF16_F32 = !IsFixed;
9646     UseGPRForF64 = !IsFixed;
9647     break;
9648   }
9649 
9650   // FPR16, FPR32, and FPR64 alias each other.
9651   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9652     UseGPRForF16_F32 = true;
9653     UseGPRForF64 = true;
9654   }
9655 
9656   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9657   // similar local variables rather than directly checking against the target
9658   // ABI.
9659 
9660   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9661     LocVT = XLenVT;
9662     LocInfo = CCValAssign::BCvt;
9663   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9664     LocVT = MVT::i64;
9665     LocInfo = CCValAssign::BCvt;
9666   }
9667 
9668   // If this is a variadic argument, the RISC-V calling convention requires
9669   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9670   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9671   // be used regardless of whether the original argument was split during
9672   // legalisation or not. The argument will not be passed by registers if the
9673   // original type is larger than 2*XLEN, so the register alignment rule does
9674   // not apply.
9675   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9676   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9677       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9678     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9679     // Skip 'odd' register if necessary.
9680     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9681       State.AllocateReg(ArgGPRs);
9682   }
9683 
9684   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9685   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9686       State.getPendingArgFlags();
9687 
9688   assert(PendingLocs.size() == PendingArgFlags.size() &&
9689          "PendingLocs and PendingArgFlags out of sync");
9690 
9691   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9692   // registers are exhausted.
9693   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9694     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9695            "Can't lower f64 if it is split");
9696     // Depending on available argument GPRS, f64 may be passed in a pair of
9697     // GPRs, split between a GPR and the stack, or passed completely on the
9698     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9699     // cases.
9700     Register Reg = State.AllocateReg(ArgGPRs);
9701     LocVT = MVT::i32;
9702     if (!Reg) {
9703       unsigned StackOffset = State.AllocateStack(8, Align(8));
9704       State.addLoc(
9705           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9706       return false;
9707     }
9708     if (!State.AllocateReg(ArgGPRs))
9709       State.AllocateStack(4, Align(4));
9710     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9711     return false;
9712   }
9713 
9714   // Fixed-length vectors are located in the corresponding scalable-vector
9715   // container types.
9716   if (ValVT.isFixedLengthVector())
9717     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9718 
9719   // Split arguments might be passed indirectly, so keep track of the pending
9720   // values. Split vectors are passed via a mix of registers and indirectly, so
9721   // treat them as we would any other argument.
9722   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9723     LocVT = XLenVT;
9724     LocInfo = CCValAssign::Indirect;
9725     PendingLocs.push_back(
9726         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9727     PendingArgFlags.push_back(ArgFlags);
9728     if (!ArgFlags.isSplitEnd()) {
9729       return false;
9730     }
9731   }
9732 
9733   // If the split argument only had two elements, it should be passed directly
9734   // in registers or on the stack.
9735   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9736       PendingLocs.size() <= 2) {
9737     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9738     // Apply the normal calling convention rules to the first half of the
9739     // split argument.
9740     CCValAssign VA = PendingLocs[0];
9741     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9742     PendingLocs.clear();
9743     PendingArgFlags.clear();
9744     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9745                                ArgFlags);
9746   }
9747 
9748   // Allocate to a register if possible, or else a stack slot.
9749   Register Reg;
9750   unsigned StoreSizeBytes = XLen / 8;
9751   Align StackAlign = Align(XLen / 8);
9752 
9753   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9754     Reg = State.AllocateReg(ArgFPR16s);
9755   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9756     Reg = State.AllocateReg(ArgFPR32s);
9757   else if (ValVT == MVT::f64 && !UseGPRForF64)
9758     Reg = State.AllocateReg(ArgFPR64s);
9759   else if (ValVT.isVector()) {
9760     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9761     if (!Reg) {
9762       // For return values, the vector must be passed fully via registers or
9763       // via the stack.
9764       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9765       // but we're using all of them.
9766       if (IsRet)
9767         return true;
9768       // Try using a GPR to pass the address
9769       if ((Reg = State.AllocateReg(ArgGPRs))) {
9770         LocVT = XLenVT;
9771         LocInfo = CCValAssign::Indirect;
9772       } else if (ValVT.isScalableVector()) {
9773         LocVT = XLenVT;
9774         LocInfo = CCValAssign::Indirect;
9775       } else {
9776         // Pass fixed-length vectors on the stack.
9777         LocVT = ValVT;
9778         StoreSizeBytes = ValVT.getStoreSize();
9779         // Align vectors to their element sizes, being careful for vXi1
9780         // vectors.
9781         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9782       }
9783     }
9784   } else {
9785     Reg = State.AllocateReg(ArgGPRs);
9786   }
9787 
9788   unsigned StackOffset =
9789       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9790 
9791   // If we reach this point and PendingLocs is non-empty, we must be at the
9792   // end of a split argument that must be passed indirectly.
9793   if (!PendingLocs.empty()) {
9794     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9795     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9796 
9797     for (auto &It : PendingLocs) {
9798       if (Reg)
9799         It.convertToReg(Reg);
9800       else
9801         It.convertToMem(StackOffset);
9802       State.addLoc(It);
9803     }
9804     PendingLocs.clear();
9805     PendingArgFlags.clear();
9806     return false;
9807   }
9808 
9809   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9810           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9811          "Expected an XLenVT or vector types at this stage");
9812 
9813   if (Reg) {
9814     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9815     return false;
9816   }
9817 
9818   // When a floating-point value is passed on the stack, no bit-conversion is
9819   // needed.
9820   if (ValVT.isFloatingPoint()) {
9821     LocVT = ValVT;
9822     LocInfo = CCValAssign::Full;
9823   }
9824   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9825   return false;
9826 }
9827 
9828 template <typename ArgTy>
9829 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9830   for (const auto &ArgIdx : enumerate(Args)) {
9831     MVT ArgVT = ArgIdx.value().VT;
9832     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9833       return ArgIdx.index();
9834   }
9835   return None;
9836 }
9837 
9838 void RISCVTargetLowering::analyzeInputArgs(
9839     MachineFunction &MF, CCState &CCInfo,
9840     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9841     RISCVCCAssignFn Fn) const {
9842   unsigned NumArgs = Ins.size();
9843   FunctionType *FType = MF.getFunction().getFunctionType();
9844 
9845   Optional<unsigned> FirstMaskArgument;
9846   if (Subtarget.hasVInstructions())
9847     FirstMaskArgument = preAssignMask(Ins);
9848 
9849   for (unsigned i = 0; i != NumArgs; ++i) {
9850     MVT ArgVT = Ins[i].VT;
9851     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9852 
9853     Type *ArgTy = nullptr;
9854     if (IsRet)
9855       ArgTy = FType->getReturnType();
9856     else if (Ins[i].isOrigArg())
9857       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9858 
9859     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9860     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9861            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9862            FirstMaskArgument)) {
9863       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9864                         << EVT(ArgVT).getEVTString() << '\n');
9865       llvm_unreachable(nullptr);
9866     }
9867   }
9868 }
9869 
9870 void RISCVTargetLowering::analyzeOutputArgs(
9871     MachineFunction &MF, CCState &CCInfo,
9872     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9873     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9874   unsigned NumArgs = Outs.size();
9875 
9876   Optional<unsigned> FirstMaskArgument;
9877   if (Subtarget.hasVInstructions())
9878     FirstMaskArgument = preAssignMask(Outs);
9879 
9880   for (unsigned i = 0; i != NumArgs; i++) {
9881     MVT ArgVT = Outs[i].VT;
9882     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9883     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9884 
9885     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9886     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9887            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9888            FirstMaskArgument)) {
9889       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9890                         << EVT(ArgVT).getEVTString() << "\n");
9891       llvm_unreachable(nullptr);
9892     }
9893   }
9894 }
9895 
9896 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9897 // values.
9898 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9899                                    const CCValAssign &VA, const SDLoc &DL,
9900                                    const RISCVSubtarget &Subtarget) {
9901   switch (VA.getLocInfo()) {
9902   default:
9903     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9904   case CCValAssign::Full:
9905     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9906       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9907     break;
9908   case CCValAssign::BCvt:
9909     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9910       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9911     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9912       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9913     else
9914       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9915     break;
9916   }
9917   return Val;
9918 }
9919 
9920 // The caller is responsible for loading the full value if the argument is
9921 // passed with CCValAssign::Indirect.
9922 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9923                                 const CCValAssign &VA, const SDLoc &DL,
9924                                 const RISCVTargetLowering &TLI) {
9925   MachineFunction &MF = DAG.getMachineFunction();
9926   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9927   EVT LocVT = VA.getLocVT();
9928   SDValue Val;
9929   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9930   Register VReg = RegInfo.createVirtualRegister(RC);
9931   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9932   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9933 
9934   if (VA.getLocInfo() == CCValAssign::Indirect)
9935     return Val;
9936 
9937   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9938 }
9939 
9940 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9941                                    const CCValAssign &VA, const SDLoc &DL,
9942                                    const RISCVSubtarget &Subtarget) {
9943   EVT LocVT = VA.getLocVT();
9944 
9945   switch (VA.getLocInfo()) {
9946   default:
9947     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9948   case CCValAssign::Full:
9949     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9950       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9951     break;
9952   case CCValAssign::BCvt:
9953     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9954       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9955     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9956       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9957     else
9958       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9959     break;
9960   }
9961   return Val;
9962 }
9963 
9964 // The caller is responsible for loading the full value if the argument is
9965 // passed with CCValAssign::Indirect.
9966 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9967                                 const CCValAssign &VA, const SDLoc &DL) {
9968   MachineFunction &MF = DAG.getMachineFunction();
9969   MachineFrameInfo &MFI = MF.getFrameInfo();
9970   EVT LocVT = VA.getLocVT();
9971   EVT ValVT = VA.getValVT();
9972   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9973   if (ValVT.isScalableVector()) {
9974     // When the value is a scalable vector, we save the pointer which points to
9975     // the scalable vector value in the stack. The ValVT will be the pointer
9976     // type, instead of the scalable vector type.
9977     ValVT = LocVT;
9978   }
9979   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9980                                  /*IsImmutable=*/true);
9981   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9982   SDValue Val;
9983 
9984   ISD::LoadExtType ExtType;
9985   switch (VA.getLocInfo()) {
9986   default:
9987     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9988   case CCValAssign::Full:
9989   case CCValAssign::Indirect:
9990   case CCValAssign::BCvt:
9991     ExtType = ISD::NON_EXTLOAD;
9992     break;
9993   }
9994   Val = DAG.getExtLoad(
9995       ExtType, DL, LocVT, Chain, FIN,
9996       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9997   return Val;
9998 }
9999 
10000 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10001                                        const CCValAssign &VA, const SDLoc &DL) {
10002   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10003          "Unexpected VA");
10004   MachineFunction &MF = DAG.getMachineFunction();
10005   MachineFrameInfo &MFI = MF.getFrameInfo();
10006   MachineRegisterInfo &RegInfo = MF.getRegInfo();
10007 
10008   if (VA.isMemLoc()) {
10009     // f64 is passed on the stack.
10010     int FI =
10011         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10012     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10013     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10014                        MachinePointerInfo::getFixedStack(MF, FI));
10015   }
10016 
10017   assert(VA.isRegLoc() && "Expected register VA assignment");
10018 
10019   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10020   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10021   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10022   SDValue Hi;
10023   if (VA.getLocReg() == RISCV::X17) {
10024     // Second half of f64 is passed on the stack.
10025     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10026     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10027     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10028                      MachinePointerInfo::getFixedStack(MF, FI));
10029   } else {
10030     // Second half of f64 is passed in another GPR.
10031     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10032     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10033     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10034   }
10035   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10036 }
10037 
10038 // FastCC has less than 1% performance improvement for some particular
10039 // benchmark. But theoretically, it may has benenfit for some cases.
10040 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10041                             unsigned ValNo, MVT ValVT, MVT LocVT,
10042                             CCValAssign::LocInfo LocInfo,
10043                             ISD::ArgFlagsTy ArgFlags, CCState &State,
10044                             bool IsFixed, bool IsRet, Type *OrigTy,
10045                             const RISCVTargetLowering &TLI,
10046                             Optional<unsigned> FirstMaskArgument) {
10047 
10048   // X5 and X6 might be used for save-restore libcall.
10049   static const MCPhysReg GPRList[] = {
10050       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10051       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
10052       RISCV::X29, RISCV::X30, RISCV::X31};
10053 
10054   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10055     if (unsigned Reg = State.AllocateReg(GPRList)) {
10056       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10057       return false;
10058     }
10059   }
10060 
10061   if (LocVT == MVT::f16) {
10062     static const MCPhysReg FPR16List[] = {
10063         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10064         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
10065         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
10066         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10067     if (unsigned Reg = State.AllocateReg(FPR16List)) {
10068       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10069       return false;
10070     }
10071   }
10072 
10073   if (LocVT == MVT::f32) {
10074     static const MCPhysReg FPR32List[] = {
10075         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10076         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
10077         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
10078         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10079     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10080       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10081       return false;
10082     }
10083   }
10084 
10085   if (LocVT == MVT::f64) {
10086     static const MCPhysReg FPR64List[] = {
10087         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10088         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
10089         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
10090         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10091     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10092       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10093       return false;
10094     }
10095   }
10096 
10097   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10098     unsigned Offset4 = State.AllocateStack(4, Align(4));
10099     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10100     return false;
10101   }
10102 
10103   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10104     unsigned Offset5 = State.AllocateStack(8, Align(8));
10105     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10106     return false;
10107   }
10108 
10109   if (LocVT.isVector()) {
10110     if (unsigned Reg =
10111             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10112       // Fixed-length vectors are located in the corresponding scalable-vector
10113       // container types.
10114       if (ValVT.isFixedLengthVector())
10115         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10116       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10117     } else {
10118       // Try and pass the address via a "fast" GPR.
10119       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10120         LocInfo = CCValAssign::Indirect;
10121         LocVT = TLI.getSubtarget().getXLenVT();
10122         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10123       } else if (ValVT.isFixedLengthVector()) {
10124         auto StackAlign =
10125             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10126         unsigned StackOffset =
10127             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10128         State.addLoc(
10129             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10130       } else {
10131         // Can't pass scalable vectors on the stack.
10132         return true;
10133       }
10134     }
10135 
10136     return false;
10137   }
10138 
10139   return true; // CC didn't match.
10140 }
10141 
10142 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10143                          CCValAssign::LocInfo LocInfo,
10144                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
10145 
10146   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10147     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10148     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
10149     static const MCPhysReg GPRList[] = {
10150         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10151         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10152     if (unsigned Reg = State.AllocateReg(GPRList)) {
10153       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10154       return false;
10155     }
10156   }
10157 
10158   if (LocVT == MVT::f32) {
10159     // Pass in STG registers: F1, ..., F6
10160     //                        fs0 ... fs5
10161     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10162                                           RISCV::F18_F, RISCV::F19_F,
10163                                           RISCV::F20_F, RISCV::F21_F};
10164     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10165       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10166       return false;
10167     }
10168   }
10169 
10170   if (LocVT == MVT::f64) {
10171     // Pass in STG registers: D1, ..., D6
10172     //                        fs6 ... fs11
10173     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10174                                           RISCV::F24_D, RISCV::F25_D,
10175                                           RISCV::F26_D, RISCV::F27_D};
10176     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10177       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10178       return false;
10179     }
10180   }
10181 
10182   report_fatal_error("No registers left in GHC calling convention");
10183   return true;
10184 }
10185 
10186 // Transform physical registers into virtual registers.
10187 SDValue RISCVTargetLowering::LowerFormalArguments(
10188     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10189     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10190     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10191 
10192   MachineFunction &MF = DAG.getMachineFunction();
10193 
10194   switch (CallConv) {
10195   default:
10196     report_fatal_error("Unsupported calling convention");
10197   case CallingConv::C:
10198   case CallingConv::Fast:
10199     break;
10200   case CallingConv::GHC:
10201     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10202         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10203       report_fatal_error(
10204         "GHC calling convention requires the F and D instruction set extensions");
10205   }
10206 
10207   const Function &Func = MF.getFunction();
10208   if (Func.hasFnAttribute("interrupt")) {
10209     if (!Func.arg_empty())
10210       report_fatal_error(
10211         "Functions with the interrupt attribute cannot have arguments!");
10212 
10213     StringRef Kind =
10214       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10215 
10216     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10217       report_fatal_error(
10218         "Function interrupt attribute argument not supported!");
10219   }
10220 
10221   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10222   MVT XLenVT = Subtarget.getXLenVT();
10223   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10224   // Used with vargs to acumulate store chains.
10225   std::vector<SDValue> OutChains;
10226 
10227   // Assign locations to all of the incoming arguments.
10228   SmallVector<CCValAssign, 16> ArgLocs;
10229   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10230 
10231   if (CallConv == CallingConv::GHC)
10232     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10233   else
10234     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10235                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10236                                                    : CC_RISCV);
10237 
10238   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10239     CCValAssign &VA = ArgLocs[i];
10240     SDValue ArgValue;
10241     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10242     // case.
10243     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10244       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10245     else if (VA.isRegLoc())
10246       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10247     else
10248       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10249 
10250     if (VA.getLocInfo() == CCValAssign::Indirect) {
10251       // If the original argument was split and passed by reference (e.g. i128
10252       // on RV32), we need to load all parts of it here (using the same
10253       // address). Vectors may be partly split to registers and partly to the
10254       // stack, in which case the base address is partly offset and subsequent
10255       // stores are relative to that.
10256       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10257                                    MachinePointerInfo()));
10258       unsigned ArgIndex = Ins[i].OrigArgIndex;
10259       unsigned ArgPartOffset = Ins[i].PartOffset;
10260       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10261       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10262         CCValAssign &PartVA = ArgLocs[i + 1];
10263         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10264         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10265         if (PartVA.getValVT().isScalableVector())
10266           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10267         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10268         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10269                                      MachinePointerInfo()));
10270         ++i;
10271       }
10272       continue;
10273     }
10274     InVals.push_back(ArgValue);
10275   }
10276 
10277   if (IsVarArg) {
10278     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10279     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10280     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10281     MachineFrameInfo &MFI = MF.getFrameInfo();
10282     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10283     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10284 
10285     // Offset of the first variable argument from stack pointer, and size of
10286     // the vararg save area. For now, the varargs save area is either zero or
10287     // large enough to hold a0-a7.
10288     int VaArgOffset, VarArgsSaveSize;
10289 
10290     // If all registers are allocated, then all varargs must be passed on the
10291     // stack and we don't need to save any argregs.
10292     if (ArgRegs.size() == Idx) {
10293       VaArgOffset = CCInfo.getNextStackOffset();
10294       VarArgsSaveSize = 0;
10295     } else {
10296       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10297       VaArgOffset = -VarArgsSaveSize;
10298     }
10299 
10300     // Record the frame index of the first variable argument
10301     // which is a value necessary to VASTART.
10302     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10303     RVFI->setVarArgsFrameIndex(FI);
10304 
10305     // If saving an odd number of registers then create an extra stack slot to
10306     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10307     // offsets to even-numbered registered remain 2*XLEN-aligned.
10308     if (Idx % 2) {
10309       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10310       VarArgsSaveSize += XLenInBytes;
10311     }
10312 
10313     // Copy the integer registers that may have been used for passing varargs
10314     // to the vararg save area.
10315     for (unsigned I = Idx; I < ArgRegs.size();
10316          ++I, VaArgOffset += XLenInBytes) {
10317       const Register Reg = RegInfo.createVirtualRegister(RC);
10318       RegInfo.addLiveIn(ArgRegs[I], Reg);
10319       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10320       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10321       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10322       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10323                                    MachinePointerInfo::getFixedStack(MF, FI));
10324       cast<StoreSDNode>(Store.getNode())
10325           ->getMemOperand()
10326           ->setValue((Value *)nullptr);
10327       OutChains.push_back(Store);
10328     }
10329     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10330   }
10331 
10332   // All stores are grouped in one node to allow the matching between
10333   // the size of Ins and InVals. This only happens for vararg functions.
10334   if (!OutChains.empty()) {
10335     OutChains.push_back(Chain);
10336     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10337   }
10338 
10339   return Chain;
10340 }
10341 
10342 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10343 /// for tail call optimization.
10344 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10345 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10346     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10347     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10348 
10349   auto &Callee = CLI.Callee;
10350   auto CalleeCC = CLI.CallConv;
10351   auto &Outs = CLI.Outs;
10352   auto &Caller = MF.getFunction();
10353   auto CallerCC = Caller.getCallingConv();
10354 
10355   // Exception-handling functions need a special set of instructions to
10356   // indicate a return to the hardware. Tail-calling another function would
10357   // probably break this.
10358   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10359   // should be expanded as new function attributes are introduced.
10360   if (Caller.hasFnAttribute("interrupt"))
10361     return false;
10362 
10363   // Do not tail call opt if the stack is used to pass parameters.
10364   if (CCInfo.getNextStackOffset() != 0)
10365     return false;
10366 
10367   // Do not tail call opt if any parameters need to be passed indirectly.
10368   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10369   // passed indirectly. So the address of the value will be passed in a
10370   // register, or if not available, then the address is put on the stack. In
10371   // order to pass indirectly, space on the stack often needs to be allocated
10372   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10373   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10374   // are passed CCValAssign::Indirect.
10375   for (auto &VA : ArgLocs)
10376     if (VA.getLocInfo() == CCValAssign::Indirect)
10377       return false;
10378 
10379   // Do not tail call opt if either caller or callee uses struct return
10380   // semantics.
10381   auto IsCallerStructRet = Caller.hasStructRetAttr();
10382   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10383   if (IsCallerStructRet || IsCalleeStructRet)
10384     return false;
10385 
10386   // Externally-defined functions with weak linkage should not be
10387   // tail-called. The behaviour of branch instructions in this situation (as
10388   // used for tail calls) is implementation-defined, so we cannot rely on the
10389   // linker replacing the tail call with a return.
10390   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10391     const GlobalValue *GV = G->getGlobal();
10392     if (GV->hasExternalWeakLinkage())
10393       return false;
10394   }
10395 
10396   // The callee has to preserve all registers the caller needs to preserve.
10397   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10398   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10399   if (CalleeCC != CallerCC) {
10400     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10401     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10402       return false;
10403   }
10404 
10405   // Byval parameters hand the function a pointer directly into the stack area
10406   // we want to reuse during a tail call. Working around this *is* possible
10407   // but less efficient and uglier in LowerCall.
10408   for (auto &Arg : Outs)
10409     if (Arg.Flags.isByVal())
10410       return false;
10411 
10412   return true;
10413 }
10414 
10415 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10416   return DAG.getDataLayout().getPrefTypeAlign(
10417       VT.getTypeForEVT(*DAG.getContext()));
10418 }
10419 
10420 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10421 // and output parameter nodes.
10422 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10423                                        SmallVectorImpl<SDValue> &InVals) const {
10424   SelectionDAG &DAG = CLI.DAG;
10425   SDLoc &DL = CLI.DL;
10426   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10427   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10428   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10429   SDValue Chain = CLI.Chain;
10430   SDValue Callee = CLI.Callee;
10431   bool &IsTailCall = CLI.IsTailCall;
10432   CallingConv::ID CallConv = CLI.CallConv;
10433   bool IsVarArg = CLI.IsVarArg;
10434   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10435   MVT XLenVT = Subtarget.getXLenVT();
10436 
10437   MachineFunction &MF = DAG.getMachineFunction();
10438 
10439   // Analyze the operands of the call, assigning locations to each operand.
10440   SmallVector<CCValAssign, 16> ArgLocs;
10441   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10442 
10443   if (CallConv == CallingConv::GHC)
10444     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10445   else
10446     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10447                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10448                                                     : CC_RISCV);
10449 
10450   // Check if it's really possible to do a tail call.
10451   if (IsTailCall)
10452     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10453 
10454   if (IsTailCall)
10455     ++NumTailCalls;
10456   else if (CLI.CB && CLI.CB->isMustTailCall())
10457     report_fatal_error("failed to perform tail call elimination on a call "
10458                        "site marked musttail");
10459 
10460   // Get a count of how many bytes are to be pushed on the stack.
10461   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10462 
10463   // Create local copies for byval args
10464   SmallVector<SDValue, 8> ByValArgs;
10465   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10466     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10467     if (!Flags.isByVal())
10468       continue;
10469 
10470     SDValue Arg = OutVals[i];
10471     unsigned Size = Flags.getByValSize();
10472     Align Alignment = Flags.getNonZeroByValAlign();
10473 
10474     int FI =
10475         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10476     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10477     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10478 
10479     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10480                           /*IsVolatile=*/false,
10481                           /*AlwaysInline=*/false, IsTailCall,
10482                           MachinePointerInfo(), MachinePointerInfo());
10483     ByValArgs.push_back(FIPtr);
10484   }
10485 
10486   if (!IsTailCall)
10487     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10488 
10489   // Copy argument values to their designated locations.
10490   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10491   SmallVector<SDValue, 8> MemOpChains;
10492   SDValue StackPtr;
10493   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10494     CCValAssign &VA = ArgLocs[i];
10495     SDValue ArgValue = OutVals[i];
10496     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10497 
10498     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10499     bool IsF64OnRV32DSoftABI =
10500         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10501     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10502       SDValue SplitF64 = DAG.getNode(
10503           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10504       SDValue Lo = SplitF64.getValue(0);
10505       SDValue Hi = SplitF64.getValue(1);
10506 
10507       Register RegLo = VA.getLocReg();
10508       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10509 
10510       if (RegLo == RISCV::X17) {
10511         // Second half of f64 is passed on the stack.
10512         // Work out the address of the stack slot.
10513         if (!StackPtr.getNode())
10514           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10515         // Emit the store.
10516         MemOpChains.push_back(
10517             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10518       } else {
10519         // Second half of f64 is passed in another GPR.
10520         assert(RegLo < RISCV::X31 && "Invalid register pair");
10521         Register RegHigh = RegLo + 1;
10522         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10523       }
10524       continue;
10525     }
10526 
10527     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10528     // as any other MemLoc.
10529 
10530     // Promote the value if needed.
10531     // For now, only handle fully promoted and indirect arguments.
10532     if (VA.getLocInfo() == CCValAssign::Indirect) {
10533       // Store the argument in a stack slot and pass its address.
10534       Align StackAlign =
10535           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10536                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10537       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10538       // If the original argument was split (e.g. i128), we need
10539       // to store the required parts of it here (and pass just one address).
10540       // Vectors may be partly split to registers and partly to the stack, in
10541       // which case the base address is partly offset and subsequent stores are
10542       // relative to that.
10543       unsigned ArgIndex = Outs[i].OrigArgIndex;
10544       unsigned ArgPartOffset = Outs[i].PartOffset;
10545       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10546       // Calculate the total size to store. We don't have access to what we're
10547       // actually storing other than performing the loop and collecting the
10548       // info.
10549       SmallVector<std::pair<SDValue, SDValue>> Parts;
10550       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10551         SDValue PartValue = OutVals[i + 1];
10552         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10553         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10554         EVT PartVT = PartValue.getValueType();
10555         if (PartVT.isScalableVector())
10556           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10557         StoredSize += PartVT.getStoreSize();
10558         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10559         Parts.push_back(std::make_pair(PartValue, Offset));
10560         ++i;
10561       }
10562       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10563       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10564       MemOpChains.push_back(
10565           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10566                        MachinePointerInfo::getFixedStack(MF, FI)));
10567       for (const auto &Part : Parts) {
10568         SDValue PartValue = Part.first;
10569         SDValue PartOffset = Part.second;
10570         SDValue Address =
10571             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10572         MemOpChains.push_back(
10573             DAG.getStore(Chain, DL, PartValue, Address,
10574                          MachinePointerInfo::getFixedStack(MF, FI)));
10575       }
10576       ArgValue = SpillSlot;
10577     } else {
10578       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10579     }
10580 
10581     // Use local copy if it is a byval arg.
10582     if (Flags.isByVal())
10583       ArgValue = ByValArgs[j++];
10584 
10585     if (VA.isRegLoc()) {
10586       // Queue up the argument copies and emit them at the end.
10587       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10588     } else {
10589       assert(VA.isMemLoc() && "Argument not register or memory");
10590       assert(!IsTailCall && "Tail call not allowed if stack is used "
10591                             "for passing parameters");
10592 
10593       // Work out the address of the stack slot.
10594       if (!StackPtr.getNode())
10595         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10596       SDValue Address =
10597           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10598                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10599 
10600       // Emit the store.
10601       MemOpChains.push_back(
10602           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10603     }
10604   }
10605 
10606   // Join the stores, which are independent of one another.
10607   if (!MemOpChains.empty())
10608     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10609 
10610   SDValue Glue;
10611 
10612   // Build a sequence of copy-to-reg nodes, chained and glued together.
10613   for (auto &Reg : RegsToPass) {
10614     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10615     Glue = Chain.getValue(1);
10616   }
10617 
10618   // Validate that none of the argument registers have been marked as
10619   // reserved, if so report an error. Do the same for the return address if this
10620   // is not a tailcall.
10621   validateCCReservedRegs(RegsToPass, MF);
10622   if (!IsTailCall &&
10623       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10624     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10625         MF.getFunction(),
10626         "Return address register required, but has been reserved."});
10627 
10628   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10629   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10630   // split it and then direct call can be matched by PseudoCALL.
10631   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10632     const GlobalValue *GV = S->getGlobal();
10633 
10634     unsigned OpFlags = RISCVII::MO_CALL;
10635     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10636       OpFlags = RISCVII::MO_PLT;
10637 
10638     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10639   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10640     unsigned OpFlags = RISCVII::MO_CALL;
10641 
10642     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10643                                                  nullptr))
10644       OpFlags = RISCVII::MO_PLT;
10645 
10646     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10647   }
10648 
10649   // The first call operand is the chain and the second is the target address.
10650   SmallVector<SDValue, 8> Ops;
10651   Ops.push_back(Chain);
10652   Ops.push_back(Callee);
10653 
10654   // Add argument registers to the end of the list so that they are
10655   // known live into the call.
10656   for (auto &Reg : RegsToPass)
10657     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10658 
10659   if (!IsTailCall) {
10660     // Add a register mask operand representing the call-preserved registers.
10661     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10662     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10663     assert(Mask && "Missing call preserved mask for calling convention");
10664     Ops.push_back(DAG.getRegisterMask(Mask));
10665   }
10666 
10667   // Glue the call to the argument copies, if any.
10668   if (Glue.getNode())
10669     Ops.push_back(Glue);
10670 
10671   // Emit the call.
10672   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10673 
10674   if (IsTailCall) {
10675     MF.getFrameInfo().setHasTailCall();
10676     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10677   }
10678 
10679   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10680   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10681   Glue = Chain.getValue(1);
10682 
10683   // Mark the end of the call, which is glued to the call itself.
10684   Chain = DAG.getCALLSEQ_END(Chain,
10685                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10686                              DAG.getConstant(0, DL, PtrVT, true),
10687                              Glue, DL);
10688   Glue = Chain.getValue(1);
10689 
10690   // Assign locations to each value returned by this call.
10691   SmallVector<CCValAssign, 16> RVLocs;
10692   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10693   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10694 
10695   // Copy all of the result registers out of their specified physreg.
10696   for (auto &VA : RVLocs) {
10697     // Copy the value out
10698     SDValue RetValue =
10699         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10700     // Glue the RetValue to the end of the call sequence
10701     Chain = RetValue.getValue(1);
10702     Glue = RetValue.getValue(2);
10703 
10704     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10705       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10706       SDValue RetValue2 =
10707           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10708       Chain = RetValue2.getValue(1);
10709       Glue = RetValue2.getValue(2);
10710       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10711                              RetValue2);
10712     }
10713 
10714     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10715 
10716     InVals.push_back(RetValue);
10717   }
10718 
10719   return Chain;
10720 }
10721 
10722 bool RISCVTargetLowering::CanLowerReturn(
10723     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10724     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10725   SmallVector<CCValAssign, 16> RVLocs;
10726   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10727 
10728   Optional<unsigned> FirstMaskArgument;
10729   if (Subtarget.hasVInstructions())
10730     FirstMaskArgument = preAssignMask(Outs);
10731 
10732   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10733     MVT VT = Outs[i].VT;
10734     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10735     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10736     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10737                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10738                  *this, FirstMaskArgument))
10739       return false;
10740   }
10741   return true;
10742 }
10743 
10744 SDValue
10745 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10746                                  bool IsVarArg,
10747                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10748                                  const SmallVectorImpl<SDValue> &OutVals,
10749                                  const SDLoc &DL, SelectionDAG &DAG) const {
10750   const MachineFunction &MF = DAG.getMachineFunction();
10751   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10752 
10753   // Stores the assignment of the return value to a location.
10754   SmallVector<CCValAssign, 16> RVLocs;
10755 
10756   // Info about the registers and stack slot.
10757   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10758                  *DAG.getContext());
10759 
10760   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10761                     nullptr, CC_RISCV);
10762 
10763   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10764     report_fatal_error("GHC functions return void only");
10765 
10766   SDValue Glue;
10767   SmallVector<SDValue, 4> RetOps(1, Chain);
10768 
10769   // Copy the result values into the output registers.
10770   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10771     SDValue Val = OutVals[i];
10772     CCValAssign &VA = RVLocs[i];
10773     assert(VA.isRegLoc() && "Can only return in registers!");
10774 
10775     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10776       // Handle returning f64 on RV32D with a soft float ABI.
10777       assert(VA.isRegLoc() && "Expected return via registers");
10778       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10779                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10780       SDValue Lo = SplitF64.getValue(0);
10781       SDValue Hi = SplitF64.getValue(1);
10782       Register RegLo = VA.getLocReg();
10783       assert(RegLo < RISCV::X31 && "Invalid register pair");
10784       Register RegHi = RegLo + 1;
10785 
10786       if (STI.isRegisterReservedByUser(RegLo) ||
10787           STI.isRegisterReservedByUser(RegHi))
10788         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10789             MF.getFunction(),
10790             "Return value register required, but has been reserved."});
10791 
10792       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10793       Glue = Chain.getValue(1);
10794       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10795       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10796       Glue = Chain.getValue(1);
10797       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10798     } else {
10799       // Handle a 'normal' return.
10800       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10801       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10802 
10803       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10804         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10805             MF.getFunction(),
10806             "Return value register required, but has been reserved."});
10807 
10808       // Guarantee that all emitted copies are stuck together.
10809       Glue = Chain.getValue(1);
10810       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10811     }
10812   }
10813 
10814   RetOps[0] = Chain; // Update chain.
10815 
10816   // Add the glue node if we have it.
10817   if (Glue.getNode()) {
10818     RetOps.push_back(Glue);
10819   }
10820 
10821   unsigned RetOpc = RISCVISD::RET_FLAG;
10822   // Interrupt service routines use different return instructions.
10823   const Function &Func = DAG.getMachineFunction().getFunction();
10824   if (Func.hasFnAttribute("interrupt")) {
10825     if (!Func.getReturnType()->isVoidTy())
10826       report_fatal_error(
10827           "Functions with the interrupt attribute must have void return type!");
10828 
10829     MachineFunction &MF = DAG.getMachineFunction();
10830     StringRef Kind =
10831       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10832 
10833     if (Kind == "user")
10834       RetOpc = RISCVISD::URET_FLAG;
10835     else if (Kind == "supervisor")
10836       RetOpc = RISCVISD::SRET_FLAG;
10837     else
10838       RetOpc = RISCVISD::MRET_FLAG;
10839   }
10840 
10841   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10842 }
10843 
10844 void RISCVTargetLowering::validateCCReservedRegs(
10845     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10846     MachineFunction &MF) const {
10847   const Function &F = MF.getFunction();
10848   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10849 
10850   if (llvm::any_of(Regs, [&STI](auto Reg) {
10851         return STI.isRegisterReservedByUser(Reg.first);
10852       }))
10853     F.getContext().diagnose(DiagnosticInfoUnsupported{
10854         F, "Argument register required, but has been reserved."});
10855 }
10856 
10857 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10858   return CI->isTailCall();
10859 }
10860 
10861 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10862 #define NODE_NAME_CASE(NODE)                                                   \
10863   case RISCVISD::NODE:                                                         \
10864     return "RISCVISD::" #NODE;
10865   // clang-format off
10866   switch ((RISCVISD::NodeType)Opcode) {
10867   case RISCVISD::FIRST_NUMBER:
10868     break;
10869   NODE_NAME_CASE(RET_FLAG)
10870   NODE_NAME_CASE(URET_FLAG)
10871   NODE_NAME_CASE(SRET_FLAG)
10872   NODE_NAME_CASE(MRET_FLAG)
10873   NODE_NAME_CASE(CALL)
10874   NODE_NAME_CASE(SELECT_CC)
10875   NODE_NAME_CASE(BR_CC)
10876   NODE_NAME_CASE(BuildPairF64)
10877   NODE_NAME_CASE(SplitF64)
10878   NODE_NAME_CASE(TAIL)
10879   NODE_NAME_CASE(MULHSU)
10880   NODE_NAME_CASE(SLLW)
10881   NODE_NAME_CASE(SRAW)
10882   NODE_NAME_CASE(SRLW)
10883   NODE_NAME_CASE(DIVW)
10884   NODE_NAME_CASE(DIVUW)
10885   NODE_NAME_CASE(REMUW)
10886   NODE_NAME_CASE(ROLW)
10887   NODE_NAME_CASE(RORW)
10888   NODE_NAME_CASE(CLZW)
10889   NODE_NAME_CASE(CTZW)
10890   NODE_NAME_CASE(FSLW)
10891   NODE_NAME_CASE(FSRW)
10892   NODE_NAME_CASE(FSL)
10893   NODE_NAME_CASE(FSR)
10894   NODE_NAME_CASE(FMV_H_X)
10895   NODE_NAME_CASE(FMV_X_ANYEXTH)
10896   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10897   NODE_NAME_CASE(FMV_W_X_RV64)
10898   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10899   NODE_NAME_CASE(FCVT_X)
10900   NODE_NAME_CASE(FCVT_XU)
10901   NODE_NAME_CASE(FCVT_W_RV64)
10902   NODE_NAME_CASE(FCVT_WU_RV64)
10903   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10904   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10905   NODE_NAME_CASE(READ_CYCLE_WIDE)
10906   NODE_NAME_CASE(GREV)
10907   NODE_NAME_CASE(GREVW)
10908   NODE_NAME_CASE(GORC)
10909   NODE_NAME_CASE(GORCW)
10910   NODE_NAME_CASE(SHFL)
10911   NODE_NAME_CASE(SHFLW)
10912   NODE_NAME_CASE(UNSHFL)
10913   NODE_NAME_CASE(UNSHFLW)
10914   NODE_NAME_CASE(BFP)
10915   NODE_NAME_CASE(BFPW)
10916   NODE_NAME_CASE(BCOMPRESS)
10917   NODE_NAME_CASE(BCOMPRESSW)
10918   NODE_NAME_CASE(BDECOMPRESS)
10919   NODE_NAME_CASE(BDECOMPRESSW)
10920   NODE_NAME_CASE(VMV_V_X_VL)
10921   NODE_NAME_CASE(VFMV_V_F_VL)
10922   NODE_NAME_CASE(VMV_X_S)
10923   NODE_NAME_CASE(VMV_S_X_VL)
10924   NODE_NAME_CASE(VFMV_S_F_VL)
10925   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10926   NODE_NAME_CASE(READ_VLENB)
10927   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10928   NODE_NAME_CASE(VSLIDEUP_VL)
10929   NODE_NAME_CASE(VSLIDE1UP_VL)
10930   NODE_NAME_CASE(VSLIDEDOWN_VL)
10931   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10932   NODE_NAME_CASE(VID_VL)
10933   NODE_NAME_CASE(VFNCVT_ROD_VL)
10934   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10935   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10936   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10937   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10938   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10939   NODE_NAME_CASE(VECREDUCE_AND_VL)
10940   NODE_NAME_CASE(VECREDUCE_OR_VL)
10941   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10942   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10943   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10944   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10945   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10946   NODE_NAME_CASE(ADD_VL)
10947   NODE_NAME_CASE(AND_VL)
10948   NODE_NAME_CASE(MUL_VL)
10949   NODE_NAME_CASE(OR_VL)
10950   NODE_NAME_CASE(SDIV_VL)
10951   NODE_NAME_CASE(SHL_VL)
10952   NODE_NAME_CASE(SREM_VL)
10953   NODE_NAME_CASE(SRA_VL)
10954   NODE_NAME_CASE(SRL_VL)
10955   NODE_NAME_CASE(SUB_VL)
10956   NODE_NAME_CASE(UDIV_VL)
10957   NODE_NAME_CASE(UREM_VL)
10958   NODE_NAME_CASE(XOR_VL)
10959   NODE_NAME_CASE(SADDSAT_VL)
10960   NODE_NAME_CASE(UADDSAT_VL)
10961   NODE_NAME_CASE(SSUBSAT_VL)
10962   NODE_NAME_CASE(USUBSAT_VL)
10963   NODE_NAME_CASE(FADD_VL)
10964   NODE_NAME_CASE(FSUB_VL)
10965   NODE_NAME_CASE(FMUL_VL)
10966   NODE_NAME_CASE(FDIV_VL)
10967   NODE_NAME_CASE(FNEG_VL)
10968   NODE_NAME_CASE(FABS_VL)
10969   NODE_NAME_CASE(FSQRT_VL)
10970   NODE_NAME_CASE(FMA_VL)
10971   NODE_NAME_CASE(FCOPYSIGN_VL)
10972   NODE_NAME_CASE(SMIN_VL)
10973   NODE_NAME_CASE(SMAX_VL)
10974   NODE_NAME_CASE(UMIN_VL)
10975   NODE_NAME_CASE(UMAX_VL)
10976   NODE_NAME_CASE(FMINNUM_VL)
10977   NODE_NAME_CASE(FMAXNUM_VL)
10978   NODE_NAME_CASE(MULHS_VL)
10979   NODE_NAME_CASE(MULHU_VL)
10980   NODE_NAME_CASE(FP_TO_SINT_VL)
10981   NODE_NAME_CASE(FP_TO_UINT_VL)
10982   NODE_NAME_CASE(SINT_TO_FP_VL)
10983   NODE_NAME_CASE(UINT_TO_FP_VL)
10984   NODE_NAME_CASE(FP_EXTEND_VL)
10985   NODE_NAME_CASE(FP_ROUND_VL)
10986   NODE_NAME_CASE(VWMUL_VL)
10987   NODE_NAME_CASE(VWMULU_VL)
10988   NODE_NAME_CASE(VWMULSU_VL)
10989   NODE_NAME_CASE(VWADD_VL)
10990   NODE_NAME_CASE(VWADDU_VL)
10991   NODE_NAME_CASE(VWSUB_VL)
10992   NODE_NAME_CASE(VWSUBU_VL)
10993   NODE_NAME_CASE(VWADD_W_VL)
10994   NODE_NAME_CASE(VWADDU_W_VL)
10995   NODE_NAME_CASE(VWSUB_W_VL)
10996   NODE_NAME_CASE(VWSUBU_W_VL)
10997   NODE_NAME_CASE(SETCC_VL)
10998   NODE_NAME_CASE(VSELECT_VL)
10999   NODE_NAME_CASE(VP_MERGE_VL)
11000   NODE_NAME_CASE(VMAND_VL)
11001   NODE_NAME_CASE(VMOR_VL)
11002   NODE_NAME_CASE(VMXOR_VL)
11003   NODE_NAME_CASE(VMCLR_VL)
11004   NODE_NAME_CASE(VMSET_VL)
11005   NODE_NAME_CASE(VRGATHER_VX_VL)
11006   NODE_NAME_CASE(VRGATHER_VV_VL)
11007   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11008   NODE_NAME_CASE(VSEXT_VL)
11009   NODE_NAME_CASE(VZEXT_VL)
11010   NODE_NAME_CASE(VCPOP_VL)
11011   NODE_NAME_CASE(READ_CSR)
11012   NODE_NAME_CASE(WRITE_CSR)
11013   NODE_NAME_CASE(SWAP_CSR)
11014   }
11015   // clang-format on
11016   return nullptr;
11017 #undef NODE_NAME_CASE
11018 }
11019 
11020 /// getConstraintType - Given a constraint letter, return the type of
11021 /// constraint it is for this target.
11022 RISCVTargetLowering::ConstraintType
11023 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11024   if (Constraint.size() == 1) {
11025     switch (Constraint[0]) {
11026     default:
11027       break;
11028     case 'f':
11029       return C_RegisterClass;
11030     case 'I':
11031     case 'J':
11032     case 'K':
11033       return C_Immediate;
11034     case 'A':
11035       return C_Memory;
11036     case 'S': // A symbolic address
11037       return C_Other;
11038     }
11039   } else {
11040     if (Constraint == "vr" || Constraint == "vm")
11041       return C_RegisterClass;
11042   }
11043   return TargetLowering::getConstraintType(Constraint);
11044 }
11045 
11046 std::pair<unsigned, const TargetRegisterClass *>
11047 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11048                                                   StringRef Constraint,
11049                                                   MVT VT) const {
11050   // First, see if this is a constraint that directly corresponds to a
11051   // RISCV register class.
11052   if (Constraint.size() == 1) {
11053     switch (Constraint[0]) {
11054     case 'r':
11055       // TODO: Support fixed vectors up to XLen for P extension?
11056       if (VT.isVector())
11057         break;
11058       return std::make_pair(0U, &RISCV::GPRRegClass);
11059     case 'f':
11060       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11061         return std::make_pair(0U, &RISCV::FPR16RegClass);
11062       if (Subtarget.hasStdExtF() && VT == MVT::f32)
11063         return std::make_pair(0U, &RISCV::FPR32RegClass);
11064       if (Subtarget.hasStdExtD() && VT == MVT::f64)
11065         return std::make_pair(0U, &RISCV::FPR64RegClass);
11066       break;
11067     default:
11068       break;
11069     }
11070   } else if (Constraint == "vr") {
11071     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11072                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11073       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11074         return std::make_pair(0U, RC);
11075     }
11076   } else if (Constraint == "vm") {
11077     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11078       return std::make_pair(0U, &RISCV::VMV0RegClass);
11079   }
11080 
11081   // Clang will correctly decode the usage of register name aliases into their
11082   // official names. However, other frontends like `rustc` do not. This allows
11083   // users of these frontends to use the ABI names for registers in LLVM-style
11084   // register constraints.
11085   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11086                                .Case("{zero}", RISCV::X0)
11087                                .Case("{ra}", RISCV::X1)
11088                                .Case("{sp}", RISCV::X2)
11089                                .Case("{gp}", RISCV::X3)
11090                                .Case("{tp}", RISCV::X4)
11091                                .Case("{t0}", RISCV::X5)
11092                                .Case("{t1}", RISCV::X6)
11093                                .Case("{t2}", RISCV::X7)
11094                                .Cases("{s0}", "{fp}", RISCV::X8)
11095                                .Case("{s1}", RISCV::X9)
11096                                .Case("{a0}", RISCV::X10)
11097                                .Case("{a1}", RISCV::X11)
11098                                .Case("{a2}", RISCV::X12)
11099                                .Case("{a3}", RISCV::X13)
11100                                .Case("{a4}", RISCV::X14)
11101                                .Case("{a5}", RISCV::X15)
11102                                .Case("{a6}", RISCV::X16)
11103                                .Case("{a7}", RISCV::X17)
11104                                .Case("{s2}", RISCV::X18)
11105                                .Case("{s3}", RISCV::X19)
11106                                .Case("{s4}", RISCV::X20)
11107                                .Case("{s5}", RISCV::X21)
11108                                .Case("{s6}", RISCV::X22)
11109                                .Case("{s7}", RISCV::X23)
11110                                .Case("{s8}", RISCV::X24)
11111                                .Case("{s9}", RISCV::X25)
11112                                .Case("{s10}", RISCV::X26)
11113                                .Case("{s11}", RISCV::X27)
11114                                .Case("{t3}", RISCV::X28)
11115                                .Case("{t4}", RISCV::X29)
11116                                .Case("{t5}", RISCV::X30)
11117                                .Case("{t6}", RISCV::X31)
11118                                .Default(RISCV::NoRegister);
11119   if (XRegFromAlias != RISCV::NoRegister)
11120     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11121 
11122   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11123   // TableGen record rather than the AsmName to choose registers for InlineAsm
11124   // constraints, plus we want to match those names to the widest floating point
11125   // register type available, manually select floating point registers here.
11126   //
11127   // The second case is the ABI name of the register, so that frontends can also
11128   // use the ABI names in register constraint lists.
11129   if (Subtarget.hasStdExtF()) {
11130     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11131                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
11132                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
11133                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
11134                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
11135                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
11136                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
11137                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
11138                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
11139                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
11140                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
11141                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
11142                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
11143                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
11144                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
11145                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
11146                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
11147                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
11148                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
11149                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
11150                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
11151                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
11152                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11153                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11154                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11155                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11156                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11157                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11158                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11159                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11160                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11161                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11162                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11163                         .Default(RISCV::NoRegister);
11164     if (FReg != RISCV::NoRegister) {
11165       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11166       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11167         unsigned RegNo = FReg - RISCV::F0_F;
11168         unsigned DReg = RISCV::F0_D + RegNo;
11169         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11170       }
11171       if (VT == MVT::f32 || VT == MVT::Other)
11172         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11173       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11174         unsigned RegNo = FReg - RISCV::F0_F;
11175         unsigned HReg = RISCV::F0_H + RegNo;
11176         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11177       }
11178     }
11179   }
11180 
11181   if (Subtarget.hasVInstructions()) {
11182     Register VReg = StringSwitch<Register>(Constraint.lower())
11183                         .Case("{v0}", RISCV::V0)
11184                         .Case("{v1}", RISCV::V1)
11185                         .Case("{v2}", RISCV::V2)
11186                         .Case("{v3}", RISCV::V3)
11187                         .Case("{v4}", RISCV::V4)
11188                         .Case("{v5}", RISCV::V5)
11189                         .Case("{v6}", RISCV::V6)
11190                         .Case("{v7}", RISCV::V7)
11191                         .Case("{v8}", RISCV::V8)
11192                         .Case("{v9}", RISCV::V9)
11193                         .Case("{v10}", RISCV::V10)
11194                         .Case("{v11}", RISCV::V11)
11195                         .Case("{v12}", RISCV::V12)
11196                         .Case("{v13}", RISCV::V13)
11197                         .Case("{v14}", RISCV::V14)
11198                         .Case("{v15}", RISCV::V15)
11199                         .Case("{v16}", RISCV::V16)
11200                         .Case("{v17}", RISCV::V17)
11201                         .Case("{v18}", RISCV::V18)
11202                         .Case("{v19}", RISCV::V19)
11203                         .Case("{v20}", RISCV::V20)
11204                         .Case("{v21}", RISCV::V21)
11205                         .Case("{v22}", RISCV::V22)
11206                         .Case("{v23}", RISCV::V23)
11207                         .Case("{v24}", RISCV::V24)
11208                         .Case("{v25}", RISCV::V25)
11209                         .Case("{v26}", RISCV::V26)
11210                         .Case("{v27}", RISCV::V27)
11211                         .Case("{v28}", RISCV::V28)
11212                         .Case("{v29}", RISCV::V29)
11213                         .Case("{v30}", RISCV::V30)
11214                         .Case("{v31}", RISCV::V31)
11215                         .Default(RISCV::NoRegister);
11216     if (VReg != RISCV::NoRegister) {
11217       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11218         return std::make_pair(VReg, &RISCV::VMRegClass);
11219       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11220         return std::make_pair(VReg, &RISCV::VRRegClass);
11221       for (const auto *RC :
11222            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11223         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11224           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11225           return std::make_pair(VReg, RC);
11226         }
11227       }
11228     }
11229   }
11230 
11231   std::pair<Register, const TargetRegisterClass *> Res =
11232       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11233 
11234   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11235   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11236   // Subtarget into account.
11237   if (Res.second == &RISCV::GPRF16RegClass ||
11238       Res.second == &RISCV::GPRF32RegClass ||
11239       Res.second == &RISCV::GPRF64RegClass)
11240     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11241 
11242   return Res;
11243 }
11244 
11245 unsigned
11246 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11247   // Currently only support length 1 constraints.
11248   if (ConstraintCode.size() == 1) {
11249     switch (ConstraintCode[0]) {
11250     case 'A':
11251       return InlineAsm::Constraint_A;
11252     default:
11253       break;
11254     }
11255   }
11256 
11257   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11258 }
11259 
11260 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11261     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11262     SelectionDAG &DAG) const {
11263   // Currently only support length 1 constraints.
11264   if (Constraint.length() == 1) {
11265     switch (Constraint[0]) {
11266     case 'I':
11267       // Validate & create a 12-bit signed immediate operand.
11268       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11269         uint64_t CVal = C->getSExtValue();
11270         if (isInt<12>(CVal))
11271           Ops.push_back(
11272               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11273       }
11274       return;
11275     case 'J':
11276       // Validate & create an integer zero operand.
11277       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11278         if (C->getZExtValue() == 0)
11279           Ops.push_back(
11280               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11281       return;
11282     case 'K':
11283       // Validate & create a 5-bit unsigned immediate operand.
11284       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11285         uint64_t CVal = C->getZExtValue();
11286         if (isUInt<5>(CVal))
11287           Ops.push_back(
11288               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11289       }
11290       return;
11291     case 'S':
11292       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11293         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11294                                                  GA->getValueType(0)));
11295       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11296         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11297                                                 BA->getValueType(0)));
11298       }
11299       return;
11300     default:
11301       break;
11302     }
11303   }
11304   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11305 }
11306 
11307 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11308                                                    Instruction *Inst,
11309                                                    AtomicOrdering Ord) const {
11310   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11311     return Builder.CreateFence(Ord);
11312   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11313     return Builder.CreateFence(AtomicOrdering::Release);
11314   return nullptr;
11315 }
11316 
11317 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11318                                                     Instruction *Inst,
11319                                                     AtomicOrdering Ord) const {
11320   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11321     return Builder.CreateFence(AtomicOrdering::Acquire);
11322   return nullptr;
11323 }
11324 
11325 TargetLowering::AtomicExpansionKind
11326 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11327   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11328   // point operations can't be used in an lr/sc sequence without breaking the
11329   // forward-progress guarantee.
11330   if (AI->isFloatingPointOperation())
11331     return AtomicExpansionKind::CmpXChg;
11332 
11333   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11334   if (Size == 8 || Size == 16)
11335     return AtomicExpansionKind::MaskedIntrinsic;
11336   return AtomicExpansionKind::None;
11337 }
11338 
11339 static Intrinsic::ID
11340 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11341   if (XLen == 32) {
11342     switch (BinOp) {
11343     default:
11344       llvm_unreachable("Unexpected AtomicRMW BinOp");
11345     case AtomicRMWInst::Xchg:
11346       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11347     case AtomicRMWInst::Add:
11348       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11349     case AtomicRMWInst::Sub:
11350       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11351     case AtomicRMWInst::Nand:
11352       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11353     case AtomicRMWInst::Max:
11354       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11355     case AtomicRMWInst::Min:
11356       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11357     case AtomicRMWInst::UMax:
11358       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11359     case AtomicRMWInst::UMin:
11360       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11361     }
11362   }
11363 
11364   if (XLen == 64) {
11365     switch (BinOp) {
11366     default:
11367       llvm_unreachable("Unexpected AtomicRMW BinOp");
11368     case AtomicRMWInst::Xchg:
11369       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11370     case AtomicRMWInst::Add:
11371       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11372     case AtomicRMWInst::Sub:
11373       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11374     case AtomicRMWInst::Nand:
11375       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11376     case AtomicRMWInst::Max:
11377       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11378     case AtomicRMWInst::Min:
11379       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11380     case AtomicRMWInst::UMax:
11381       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11382     case AtomicRMWInst::UMin:
11383       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11384     }
11385   }
11386 
11387   llvm_unreachable("Unexpected XLen\n");
11388 }
11389 
11390 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11391     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11392     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11393   unsigned XLen = Subtarget.getXLen();
11394   Value *Ordering =
11395       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11396   Type *Tys[] = {AlignedAddr->getType()};
11397   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11398       AI->getModule(),
11399       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11400 
11401   if (XLen == 64) {
11402     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11403     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11404     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11405   }
11406 
11407   Value *Result;
11408 
11409   // Must pass the shift amount needed to sign extend the loaded value prior
11410   // to performing a signed comparison for min/max. ShiftAmt is the number of
11411   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11412   // is the number of bits to left+right shift the value in order to
11413   // sign-extend.
11414   if (AI->getOperation() == AtomicRMWInst::Min ||
11415       AI->getOperation() == AtomicRMWInst::Max) {
11416     const DataLayout &DL = AI->getModule()->getDataLayout();
11417     unsigned ValWidth =
11418         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11419     Value *SextShamt =
11420         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11421     Result = Builder.CreateCall(LrwOpScwLoop,
11422                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11423   } else {
11424     Result =
11425         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11426   }
11427 
11428   if (XLen == 64)
11429     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11430   return Result;
11431 }
11432 
11433 TargetLowering::AtomicExpansionKind
11434 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11435     AtomicCmpXchgInst *CI) const {
11436   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11437   if (Size == 8 || Size == 16)
11438     return AtomicExpansionKind::MaskedIntrinsic;
11439   return AtomicExpansionKind::None;
11440 }
11441 
11442 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11443     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11444     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11445   unsigned XLen = Subtarget.getXLen();
11446   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11447   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11448   if (XLen == 64) {
11449     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11450     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11451     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11452     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11453   }
11454   Type *Tys[] = {AlignedAddr->getType()};
11455   Function *MaskedCmpXchg =
11456       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11457   Value *Result = Builder.CreateCall(
11458       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11459   if (XLen == 64)
11460     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11461   return Result;
11462 }
11463 
11464 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11465   return false;
11466 }
11467 
11468 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11469                                                EVT VT) const {
11470   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11471     return false;
11472 
11473   switch (FPVT.getSimpleVT().SimpleTy) {
11474   case MVT::f16:
11475     return Subtarget.hasStdExtZfh();
11476   case MVT::f32:
11477     return Subtarget.hasStdExtF();
11478   case MVT::f64:
11479     return Subtarget.hasStdExtD();
11480   default:
11481     return false;
11482   }
11483 }
11484 
11485 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11486   // If we are using the small code model, we can reduce size of jump table
11487   // entry to 4 bytes.
11488   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11489       getTargetMachine().getCodeModel() == CodeModel::Small) {
11490     return MachineJumpTableInfo::EK_Custom32;
11491   }
11492   return TargetLowering::getJumpTableEncoding();
11493 }
11494 
11495 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11496     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11497     unsigned uid, MCContext &Ctx) const {
11498   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11499          getTargetMachine().getCodeModel() == CodeModel::Small);
11500   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11501 }
11502 
11503 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11504                                                      EVT VT) const {
11505   VT = VT.getScalarType();
11506 
11507   if (!VT.isSimple())
11508     return false;
11509 
11510   switch (VT.getSimpleVT().SimpleTy) {
11511   case MVT::f16:
11512     return Subtarget.hasStdExtZfh();
11513   case MVT::f32:
11514     return Subtarget.hasStdExtF();
11515   case MVT::f64:
11516     return Subtarget.hasStdExtD();
11517   default:
11518     break;
11519   }
11520 
11521   return false;
11522 }
11523 
11524 Register RISCVTargetLowering::getExceptionPointerRegister(
11525     const Constant *PersonalityFn) const {
11526   return RISCV::X10;
11527 }
11528 
11529 Register RISCVTargetLowering::getExceptionSelectorRegister(
11530     const Constant *PersonalityFn) const {
11531   return RISCV::X11;
11532 }
11533 
11534 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11535   // Return false to suppress the unnecessary extensions if the LibCall
11536   // arguments or return value is f32 type for LP64 ABI.
11537   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11538   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11539     return false;
11540 
11541   return true;
11542 }
11543 
11544 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11545   if (Subtarget.is64Bit() && Type == MVT::i32)
11546     return true;
11547 
11548   return IsSigned;
11549 }
11550 
11551 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11552                                                  SDValue C) const {
11553   // Check integral scalar types.
11554   if (VT.isScalarInteger()) {
11555     // Omit the optimization if the sub target has the M extension and the data
11556     // size exceeds XLen.
11557     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11558       return false;
11559     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11560       // Break the MUL to a SLLI and an ADD/SUB.
11561       const APInt &Imm = ConstNode->getAPIntValue();
11562       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11563           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11564         return true;
11565       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11566       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11567           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11568            (Imm - 8).isPowerOf2()))
11569         return true;
11570       // Omit the following optimization if the sub target has the M extension
11571       // and the data size >= XLen.
11572       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11573         return false;
11574       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11575       // a pair of LUI/ADDI.
11576       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11577         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11578         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11579             (1 - ImmS).isPowerOf2())
11580         return true;
11581       }
11582     }
11583   }
11584 
11585   return false;
11586 }
11587 
11588 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11589                                                       SDValue ConstNode) const {
11590   // Let the DAGCombiner decide for vectors.
11591   EVT VT = AddNode.getValueType();
11592   if (VT.isVector())
11593     return true;
11594 
11595   // Let the DAGCombiner decide for larger types.
11596   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11597     return true;
11598 
11599   // It is worse if c1 is simm12 while c1*c2 is not.
11600   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11601   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11602   const APInt &C1 = C1Node->getAPIntValue();
11603   const APInt &C2 = C2Node->getAPIntValue();
11604   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11605     return false;
11606 
11607   // Default to true and let the DAGCombiner decide.
11608   return true;
11609 }
11610 
11611 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11612     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11613     bool *Fast) const {
11614   if (!VT.isVector())
11615     return false;
11616 
11617   EVT ElemVT = VT.getVectorElementType();
11618   if (Alignment >= ElemVT.getStoreSize()) {
11619     if (Fast)
11620       *Fast = true;
11621     return true;
11622   }
11623 
11624   return false;
11625 }
11626 
11627 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11628     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11629     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11630   bool IsABIRegCopy = CC.hasValue();
11631   EVT ValueVT = Val.getValueType();
11632   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11633     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11634     // and cast to f32.
11635     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11636     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11637     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11638                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11639     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11640     Parts[0] = Val;
11641     return true;
11642   }
11643 
11644   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11645     LLVMContext &Context = *DAG.getContext();
11646     EVT ValueEltVT = ValueVT.getVectorElementType();
11647     EVT PartEltVT = PartVT.getVectorElementType();
11648     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11649     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11650     if (PartVTBitSize % ValueVTBitSize == 0) {
11651       assert(PartVTBitSize >= ValueVTBitSize);
11652       // If the element types are different, bitcast to the same element type of
11653       // PartVT first.
11654       // Give an example here, we want copy a <vscale x 1 x i8> value to
11655       // <vscale x 4 x i16>.
11656       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11657       // subvector, then we can bitcast to <vscale x 4 x i16>.
11658       if (ValueEltVT != PartEltVT) {
11659         if (PartVTBitSize > ValueVTBitSize) {
11660           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11661           assert(Count != 0 && "The number of element should not be zero.");
11662           EVT SameEltTypeVT =
11663               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11664           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11665                             DAG.getUNDEF(SameEltTypeVT), Val,
11666                             DAG.getVectorIdxConstant(0, DL));
11667         }
11668         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11669       } else {
11670         Val =
11671             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11672                         Val, DAG.getVectorIdxConstant(0, DL));
11673       }
11674       Parts[0] = Val;
11675       return true;
11676     }
11677   }
11678   return false;
11679 }
11680 
11681 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11682     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11683     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11684   bool IsABIRegCopy = CC.hasValue();
11685   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11686     SDValue Val = Parts[0];
11687 
11688     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11689     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11690     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11691     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11692     return Val;
11693   }
11694 
11695   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11696     LLVMContext &Context = *DAG.getContext();
11697     SDValue Val = Parts[0];
11698     EVT ValueEltVT = ValueVT.getVectorElementType();
11699     EVT PartEltVT = PartVT.getVectorElementType();
11700     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11701     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11702     if (PartVTBitSize % ValueVTBitSize == 0) {
11703       assert(PartVTBitSize >= ValueVTBitSize);
11704       EVT SameEltTypeVT = ValueVT;
11705       // If the element types are different, convert it to the same element type
11706       // of PartVT.
11707       // Give an example here, we want copy a <vscale x 1 x i8> value from
11708       // <vscale x 4 x i16>.
11709       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11710       // then we can extract <vscale x 1 x i8>.
11711       if (ValueEltVT != PartEltVT) {
11712         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11713         assert(Count != 0 && "The number of element should not be zero.");
11714         SameEltTypeVT =
11715             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11716         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11717       }
11718       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11719                         DAG.getVectorIdxConstant(0, DL));
11720       return Val;
11721     }
11722   }
11723   return SDValue();
11724 }
11725 
11726 SDValue
11727 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11728                                    SelectionDAG &DAG,
11729                                    SmallVectorImpl<SDNode *> &Created) const {
11730   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11731   if (isIntDivCheap(N->getValueType(0), Attr))
11732     return SDValue(N, 0); // Lower SDIV as SDIV
11733 
11734   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11735          "Unexpected divisor!");
11736 
11737   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11738   if (!Subtarget.hasStdExtZbt())
11739     return SDValue();
11740 
11741   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11742   // Besides, more critical path instructions will be generated when dividing
11743   // by 2. So we keep using the original DAGs for these cases.
11744   unsigned Lg2 = Divisor.countTrailingZeros();
11745   if (Lg2 == 1 || Lg2 >= 12)
11746     return SDValue();
11747 
11748   // fold (sdiv X, pow2)
11749   EVT VT = N->getValueType(0);
11750   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11751     return SDValue();
11752 
11753   SDLoc DL(N);
11754   SDValue N0 = N->getOperand(0);
11755   SDValue Zero = DAG.getConstant(0, DL, VT);
11756   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11757 
11758   // Add (N0 < 0) ? Pow2 - 1 : 0;
11759   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11760   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11761   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11762 
11763   Created.push_back(Cmp.getNode());
11764   Created.push_back(Add.getNode());
11765   Created.push_back(Sel.getNode());
11766 
11767   // Divide by pow2.
11768   SDValue SRA =
11769       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11770 
11771   // If we're dividing by a positive value, we're done.  Otherwise, we must
11772   // negate the result.
11773   if (Divisor.isNonNegative())
11774     return SRA;
11775 
11776   Created.push_back(SRA.getNode());
11777   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11778 }
11779 
11780 #define GET_REGISTER_MATCHER
11781 #include "RISCVGenAsmMatcher.inc"
11782 
11783 Register
11784 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11785                                        const MachineFunction &MF) const {
11786   Register Reg = MatchRegisterAltName(RegName);
11787   if (Reg == RISCV::NoRegister)
11788     Reg = MatchRegisterName(RegName);
11789   if (Reg == RISCV::NoRegister)
11790     report_fatal_error(
11791         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11792   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11793   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11794     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11795                              StringRef(RegName) + "\"."));
11796   return Reg;
11797 }
11798 
11799 namespace llvm {
11800 namespace RISCVVIntrinsicsTable {
11801 
11802 #define GET_RISCVVIntrinsicsTable_IMPL
11803 #include "RISCVGenSearchableTables.inc"
11804 
11805 } // namespace RISCVVIntrinsicsTable
11806 
11807 } // namespace llvm
11808