1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 254 if (Subtarget.is64Bit()) { 255 setOperationAction(ISD::ROTL, MVT::i32, Custom); 256 setOperationAction(ISD::ROTR, MVT::i32, Custom); 257 } 258 } else { 259 setOperationAction(ISD::ROTL, XLenVT, Expand); 260 setOperationAction(ISD::ROTR, XLenVT, Expand); 261 } 262 263 if (Subtarget.hasStdExtZbp()) { 264 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 265 // more combining. 266 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 267 setOperationAction(ISD::BSWAP, XLenVT, Custom); 268 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 269 // BSWAP i8 doesn't exist. 270 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 271 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 275 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 276 } 277 } else { 278 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 279 // pattern match it directly in isel. 280 setOperationAction(ISD::BSWAP, XLenVT, 281 Subtarget.hasStdExtZbb() ? Legal : Expand); 282 } 283 284 if (Subtarget.hasStdExtZbb()) { 285 setOperationAction(ISD::SMIN, XLenVT, Legal); 286 setOperationAction(ISD::SMAX, XLenVT, Legal); 287 setOperationAction(ISD::UMIN, XLenVT, Legal); 288 setOperationAction(ISD::UMAX, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 292 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 293 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 294 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 295 } 296 } else { 297 setOperationAction(ISD::CTTZ, XLenVT, Expand); 298 setOperationAction(ISD::CTLZ, XLenVT, Expand); 299 setOperationAction(ISD::CTPOP, XLenVT, Expand); 300 } 301 302 if (Subtarget.hasStdExtZbt()) { 303 setOperationAction(ISD::FSHL, XLenVT, Custom); 304 setOperationAction(ISD::FSHR, XLenVT, Custom); 305 setOperationAction(ISD::SELECT, XLenVT, Legal); 306 307 if (Subtarget.is64Bit()) { 308 setOperationAction(ISD::FSHL, MVT::i32, Custom); 309 setOperationAction(ISD::FSHR, MVT::i32, Custom); 310 } 311 } else { 312 setOperationAction(ISD::SELECT, XLenVT, Custom); 313 } 314 315 static const ISD::CondCode FPCCToExpand[] = { 316 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 317 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 318 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 319 320 static const ISD::NodeType FPOpToExpand[] = { 321 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 322 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 323 324 if (Subtarget.hasStdExtZfh()) 325 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 326 327 if (Subtarget.hasStdExtZfh()) { 328 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 329 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 330 setOperationAction(ISD::LRINT, MVT::f16, Legal); 331 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 332 setOperationAction(ISD::LROUND, MVT::f16, Legal); 333 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 334 setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); 335 setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); 336 setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); 337 setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); 338 setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); 339 setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); 343 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 344 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 345 setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); 346 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); 348 for (auto CC : FPCCToExpand) 349 setCondCodeAction(CC, MVT::f16, Expand); 350 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT, MVT::f16, Custom); 352 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 353 354 setOperationAction(ISD::FREM, MVT::f16, Promote); 355 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 356 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 357 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 358 setOperationAction(ISD::FRINT, MVT::f16, Promote); 359 setOperationAction(ISD::FROUND, MVT::f16, Promote); 360 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 361 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 362 setOperationAction(ISD::FPOW, MVT::f16, Promote); 363 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 364 setOperationAction(ISD::FCOS, MVT::f16, Promote); 365 setOperationAction(ISD::FSIN, MVT::f16, Promote); 366 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 367 setOperationAction(ISD::FEXP, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 369 setOperationAction(ISD::FLOG, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 372 373 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 374 // complete support for all operations in LegalizeDAG. 375 376 // We need to custom promote this. 377 if (Subtarget.is64Bit()) 378 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 384 setOperationAction(ISD::LRINT, MVT::f32, Legal); 385 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 386 setOperationAction(ISD::LROUND, MVT::f32, Legal); 387 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 388 setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); 389 setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); 390 setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); 391 setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); 392 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 393 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 394 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 395 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 396 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 397 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 398 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 399 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 400 for (auto CC : FPCCToExpand) 401 setCondCodeAction(CC, MVT::f32, Expand); 402 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 403 setOperationAction(ISD::SELECT, MVT::f32, Custom); 404 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 405 for (auto Op : FPOpToExpand) 406 setOperationAction(Op, MVT::f32, Expand); 407 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 408 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 409 } 410 411 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 412 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 413 414 if (Subtarget.hasStdExtD()) { 415 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 416 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 417 setOperationAction(ISD::LRINT, MVT::f64, Legal); 418 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 419 setOperationAction(ISD::LROUND, MVT::f64, Legal); 420 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 421 setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); 422 setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); 423 setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); 424 setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); 425 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 426 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 427 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 428 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 429 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 430 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 431 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 432 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 433 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 434 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 435 for (auto CC : FPCCToExpand) 436 setCondCodeAction(CC, MVT::f64, Expand); 437 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 438 setOperationAction(ISD::SELECT, MVT::f64, Custom); 439 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 440 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 441 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 442 for (auto Op : FPOpToExpand) 443 setOperationAction(Op, MVT::f64, Expand); 444 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 445 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 446 } 447 448 if (Subtarget.is64Bit()) { 449 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 450 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 451 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 452 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 453 } 454 455 if (Subtarget.hasStdExtF()) { 456 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 457 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 458 459 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 460 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 461 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 462 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 463 464 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 465 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 466 } 467 468 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 469 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 470 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 471 setOperationAction(ISD::JumpTable, XLenVT, Custom); 472 473 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 474 475 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 476 // Unfortunately this can't be determined just from the ISA naming string. 477 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 478 Subtarget.is64Bit() ? Legal : Custom); 479 480 setOperationAction(ISD::TRAP, MVT::Other, Legal); 481 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 482 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 483 if (Subtarget.is64Bit()) 484 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 485 486 if (Subtarget.hasStdExtA()) { 487 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 488 setMinCmpXchgSizeInBits(32); 489 } else { 490 setMaxAtomicSizeInBitsSupported(0); 491 } 492 493 setBooleanContents(ZeroOrOneBooleanContent); 494 495 if (Subtarget.hasVInstructions()) { 496 setBooleanVectorContents(ZeroOrOneBooleanContent); 497 498 setOperationAction(ISD::VSCALE, XLenVT, Custom); 499 500 // RVV intrinsics may have illegal operands. 501 // We also need to custom legalize vmv.x.s. 502 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 503 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 504 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 505 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 506 if (Subtarget.is64Bit()) { 507 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 508 } else { 509 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 510 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 511 } 512 513 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 514 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 515 516 static const unsigned IntegerVPOps[] = { 517 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 518 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 519 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 520 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 521 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 522 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 523 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 524 ISD::VP_SELECT}; 525 526 static const unsigned FloatingPointVPOps[] = { 527 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 528 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 529 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT}; 530 531 if (!Subtarget.is64Bit()) { 532 // We must custom-lower certain vXi64 operations on RV32 due to the vector 533 // element type being illegal. 534 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 535 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 536 537 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 538 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 539 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 540 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 541 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 542 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 543 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 544 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 545 546 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 547 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 548 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 549 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 550 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 551 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 552 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 553 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 554 } 555 556 for (MVT VT : BoolVecVTs) { 557 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 558 559 // Mask VTs are custom-expanded into a series of standard nodes 560 setOperationAction(ISD::TRUNCATE, VT, Custom); 561 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 562 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 563 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 564 565 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 567 568 setOperationAction(ISD::SELECT, VT, Custom); 569 setOperationAction(ISD::SELECT_CC, VT, Expand); 570 setOperationAction(ISD::VSELECT, VT, Expand); 571 setOperationAction(ISD::VP_SELECT, VT, Expand); 572 573 setOperationAction(ISD::VP_AND, VT, Custom); 574 setOperationAction(ISD::VP_OR, VT, Custom); 575 setOperationAction(ISD::VP_XOR, VT, Custom); 576 577 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 578 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 579 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 580 581 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 582 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 583 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 584 585 // RVV has native int->float & float->int conversions where the 586 // element type sizes are within one power-of-two of each other. Any 587 // wider distances between type sizes have to be lowered as sequences 588 // which progressively narrow the gap in stages. 589 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 590 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 591 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 592 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 593 594 // Expand all extending loads to types larger than this, and truncating 595 // stores from types larger than this. 596 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 597 setTruncStoreAction(OtherVT, VT, Expand); 598 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 599 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 600 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 601 } 602 } 603 604 for (MVT VT : IntVecVTs) { 605 if (VT.getVectorElementType() == MVT::i64 && 606 !Subtarget.hasVInstructionsI64()) 607 continue; 608 609 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 610 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 611 612 // Vectors implement MULHS/MULHU. 613 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 614 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 615 616 setOperationAction(ISD::SMIN, VT, Legal); 617 setOperationAction(ISD::SMAX, VT, Legal); 618 setOperationAction(ISD::UMIN, VT, Legal); 619 setOperationAction(ISD::UMAX, VT, Legal); 620 621 setOperationAction(ISD::ROTL, VT, Expand); 622 setOperationAction(ISD::ROTR, VT, Expand); 623 624 setOperationAction(ISD::CTTZ, VT, Expand); 625 setOperationAction(ISD::CTLZ, VT, Expand); 626 setOperationAction(ISD::CTPOP, VT, Expand); 627 628 setOperationAction(ISD::BSWAP, VT, Expand); 629 630 // Custom-lower extensions and truncations from/to mask types. 631 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 632 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 633 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 634 635 // RVV has native int->float & float->int conversions where the 636 // element type sizes are within one power-of-two of each other. Any 637 // wider distances between type sizes have to be lowered as sequences 638 // which progressively narrow the gap in stages. 639 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 640 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 641 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 642 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 643 644 setOperationAction(ISD::SADDSAT, VT, Legal); 645 setOperationAction(ISD::UADDSAT, VT, Legal); 646 setOperationAction(ISD::SSUBSAT, VT, Legal); 647 setOperationAction(ISD::USUBSAT, VT, Legal); 648 649 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 650 // nodes which truncate by one power of two at a time. 651 setOperationAction(ISD::TRUNCATE, VT, Custom); 652 653 // Custom-lower insert/extract operations to simplify patterns. 654 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 655 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 656 657 // Custom-lower reduction operations to set up the corresponding custom 658 // nodes' operands. 659 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 660 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 661 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 662 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 663 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 664 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 665 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 666 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 667 668 for (unsigned VPOpc : IntegerVPOps) 669 setOperationAction(VPOpc, VT, Custom); 670 671 setOperationAction(ISD::LOAD, VT, Custom); 672 setOperationAction(ISD::STORE, VT, Custom); 673 674 setOperationAction(ISD::MLOAD, VT, Custom); 675 setOperationAction(ISD::MSTORE, VT, Custom); 676 setOperationAction(ISD::MGATHER, VT, Custom); 677 setOperationAction(ISD::MSCATTER, VT, Custom); 678 679 setOperationAction(ISD::VP_LOAD, VT, Custom); 680 setOperationAction(ISD::VP_STORE, VT, Custom); 681 setOperationAction(ISD::VP_GATHER, VT, Custom); 682 setOperationAction(ISD::VP_SCATTER, VT, Custom); 683 684 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 685 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 686 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 687 688 setOperationAction(ISD::SELECT, VT, Custom); 689 setOperationAction(ISD::SELECT_CC, VT, Expand); 690 691 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 692 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 693 694 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 695 setTruncStoreAction(VT, OtherVT, Expand); 696 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 697 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 698 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 699 } 700 701 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 702 // type that can represent the value exactly. 703 if (VT.getVectorElementType() != MVT::i64) { 704 MVT FloatEltVT = 705 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 706 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 707 if (isTypeLegal(FloatVT)) { 708 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 709 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 710 } 711 } 712 } 713 714 // Expand various CCs to best match the RVV ISA, which natively supports UNE 715 // but no other unordered comparisons, and supports all ordered comparisons 716 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 717 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 718 // and we pattern-match those back to the "original", swapping operands once 719 // more. This way we catch both operations and both "vf" and "fv" forms with 720 // fewer patterns. 721 static const ISD::CondCode VFPCCToExpand[] = { 722 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 723 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 724 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 725 }; 726 727 // Sets common operation actions on RVV floating-point vector types. 728 const auto SetCommonVFPActions = [&](MVT VT) { 729 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 730 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 731 // sizes are within one power-of-two of each other. Therefore conversions 732 // between vXf16 and vXf64 must be lowered as sequences which convert via 733 // vXf32. 734 setOperationAction(ISD::FP_ROUND, VT, Custom); 735 setOperationAction(ISD::FP_EXTEND, VT, Custom); 736 // Custom-lower insert/extract operations to simplify patterns. 737 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 739 // Expand various condition codes (explained above). 740 for (auto CC : VFPCCToExpand) 741 setCondCodeAction(CC, VT, Expand); 742 743 setOperationAction(ISD::FMINNUM, VT, Legal); 744 setOperationAction(ISD::FMAXNUM, VT, Legal); 745 746 setOperationAction(ISD::FTRUNC, VT, Custom); 747 setOperationAction(ISD::FCEIL, VT, Custom); 748 setOperationAction(ISD::FFLOOR, VT, Custom); 749 750 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 751 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 752 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 753 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 754 755 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 756 757 setOperationAction(ISD::LOAD, VT, Custom); 758 setOperationAction(ISD::STORE, VT, Custom); 759 760 setOperationAction(ISD::MLOAD, VT, Custom); 761 setOperationAction(ISD::MSTORE, VT, Custom); 762 setOperationAction(ISD::MGATHER, VT, Custom); 763 setOperationAction(ISD::MSCATTER, VT, Custom); 764 765 setOperationAction(ISD::VP_LOAD, VT, Custom); 766 setOperationAction(ISD::VP_STORE, VT, Custom); 767 setOperationAction(ISD::VP_GATHER, VT, Custom); 768 setOperationAction(ISD::VP_SCATTER, VT, Custom); 769 770 setOperationAction(ISD::SELECT, VT, Custom); 771 setOperationAction(ISD::SELECT_CC, VT, Expand); 772 773 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 774 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 775 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 776 777 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 778 779 for (unsigned VPOpc : FloatingPointVPOps) 780 setOperationAction(VPOpc, VT, Custom); 781 }; 782 783 // Sets common extload/truncstore actions on RVV floating-point vector 784 // types. 785 const auto SetCommonVFPExtLoadTruncStoreActions = 786 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 787 for (auto SmallVT : SmallerVTs) { 788 setTruncStoreAction(VT, SmallVT, Expand); 789 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 790 } 791 }; 792 793 if (Subtarget.hasVInstructionsF16()) 794 for (MVT VT : F16VecVTs) 795 SetCommonVFPActions(VT); 796 797 for (MVT VT : F32VecVTs) { 798 if (Subtarget.hasVInstructionsF32()) 799 SetCommonVFPActions(VT); 800 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 801 } 802 803 for (MVT VT : F64VecVTs) { 804 if (Subtarget.hasVInstructionsF64()) 805 SetCommonVFPActions(VT); 806 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 807 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 808 } 809 810 if (Subtarget.useRVVForFixedLengthVectors()) { 811 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 812 if (!useRVVForFixedLengthVectorVT(VT)) 813 continue; 814 815 // By default everything must be expanded. 816 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 817 setOperationAction(Op, VT, Expand); 818 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 819 setTruncStoreAction(VT, OtherVT, Expand); 820 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 821 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 822 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 823 } 824 825 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 826 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 827 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 828 829 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 830 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 831 832 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 833 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 834 835 setOperationAction(ISD::LOAD, VT, Custom); 836 setOperationAction(ISD::STORE, VT, Custom); 837 838 setOperationAction(ISD::SETCC, VT, Custom); 839 840 setOperationAction(ISD::SELECT, VT, Custom); 841 842 setOperationAction(ISD::TRUNCATE, VT, Custom); 843 844 setOperationAction(ISD::BITCAST, VT, Custom); 845 846 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 847 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 848 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 849 850 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 851 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 852 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 853 854 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 855 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 856 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 857 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 858 859 // Operations below are different for between masks and other vectors. 860 if (VT.getVectorElementType() == MVT::i1) { 861 setOperationAction(ISD::VP_AND, VT, Custom); 862 setOperationAction(ISD::VP_OR, VT, Custom); 863 setOperationAction(ISD::VP_XOR, VT, Custom); 864 setOperationAction(ISD::AND, VT, Custom); 865 setOperationAction(ISD::OR, VT, Custom); 866 setOperationAction(ISD::XOR, VT, Custom); 867 continue; 868 } 869 870 // Use SPLAT_VECTOR to prevent type legalization from destroying the 871 // splats when type legalizing i64 scalar on RV32. 872 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 873 // improvements first. 874 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 875 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 876 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 877 } 878 879 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 880 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 881 882 setOperationAction(ISD::MLOAD, VT, Custom); 883 setOperationAction(ISD::MSTORE, VT, Custom); 884 setOperationAction(ISD::MGATHER, VT, Custom); 885 setOperationAction(ISD::MSCATTER, VT, Custom); 886 887 setOperationAction(ISD::VP_LOAD, VT, Custom); 888 setOperationAction(ISD::VP_STORE, VT, Custom); 889 setOperationAction(ISD::VP_GATHER, VT, Custom); 890 setOperationAction(ISD::VP_SCATTER, VT, Custom); 891 892 setOperationAction(ISD::ADD, VT, Custom); 893 setOperationAction(ISD::MUL, VT, Custom); 894 setOperationAction(ISD::SUB, VT, Custom); 895 setOperationAction(ISD::AND, VT, Custom); 896 setOperationAction(ISD::OR, VT, Custom); 897 setOperationAction(ISD::XOR, VT, Custom); 898 setOperationAction(ISD::SDIV, VT, Custom); 899 setOperationAction(ISD::SREM, VT, Custom); 900 setOperationAction(ISD::UDIV, VT, Custom); 901 setOperationAction(ISD::UREM, VT, Custom); 902 setOperationAction(ISD::SHL, VT, Custom); 903 setOperationAction(ISD::SRA, VT, Custom); 904 setOperationAction(ISD::SRL, VT, Custom); 905 906 setOperationAction(ISD::SMIN, VT, Custom); 907 setOperationAction(ISD::SMAX, VT, Custom); 908 setOperationAction(ISD::UMIN, VT, Custom); 909 setOperationAction(ISD::UMAX, VT, Custom); 910 setOperationAction(ISD::ABS, VT, Custom); 911 912 setOperationAction(ISD::MULHS, VT, Custom); 913 setOperationAction(ISD::MULHU, VT, Custom); 914 915 setOperationAction(ISD::SADDSAT, VT, Custom); 916 setOperationAction(ISD::UADDSAT, VT, Custom); 917 setOperationAction(ISD::SSUBSAT, VT, Custom); 918 setOperationAction(ISD::USUBSAT, VT, Custom); 919 920 setOperationAction(ISD::VSELECT, VT, Custom); 921 setOperationAction(ISD::SELECT_CC, VT, Expand); 922 923 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 924 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 925 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 926 927 // Custom-lower reduction operations to set up the corresponding custom 928 // nodes' operands. 929 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 930 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 931 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 932 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 933 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 934 935 for (unsigned VPOpc : IntegerVPOps) 936 setOperationAction(VPOpc, VT, Custom); 937 938 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 939 // type that can represent the value exactly. 940 if (VT.getVectorElementType() != MVT::i64) { 941 MVT FloatEltVT = 942 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 943 EVT FloatVT = 944 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 945 if (isTypeLegal(FloatVT)) { 946 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 947 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 948 } 949 } 950 } 951 952 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 953 if (!useRVVForFixedLengthVectorVT(VT)) 954 continue; 955 956 // By default everything must be expanded. 957 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 958 setOperationAction(Op, VT, Expand); 959 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 960 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 961 setTruncStoreAction(VT, OtherVT, Expand); 962 } 963 964 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 965 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 966 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 967 968 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 969 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 970 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 971 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 972 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 973 974 setOperationAction(ISD::LOAD, VT, Custom); 975 setOperationAction(ISD::STORE, VT, Custom); 976 setOperationAction(ISD::MLOAD, VT, Custom); 977 setOperationAction(ISD::MSTORE, VT, Custom); 978 setOperationAction(ISD::MGATHER, VT, Custom); 979 setOperationAction(ISD::MSCATTER, VT, Custom); 980 981 setOperationAction(ISD::VP_LOAD, VT, Custom); 982 setOperationAction(ISD::VP_STORE, VT, Custom); 983 setOperationAction(ISD::VP_GATHER, VT, Custom); 984 setOperationAction(ISD::VP_SCATTER, VT, Custom); 985 986 setOperationAction(ISD::FADD, VT, Custom); 987 setOperationAction(ISD::FSUB, VT, Custom); 988 setOperationAction(ISD::FMUL, VT, Custom); 989 setOperationAction(ISD::FDIV, VT, Custom); 990 setOperationAction(ISD::FNEG, VT, Custom); 991 setOperationAction(ISD::FABS, VT, Custom); 992 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 993 setOperationAction(ISD::FSQRT, VT, Custom); 994 setOperationAction(ISD::FMA, VT, Custom); 995 setOperationAction(ISD::FMINNUM, VT, Custom); 996 setOperationAction(ISD::FMAXNUM, VT, Custom); 997 998 setOperationAction(ISD::FP_ROUND, VT, Custom); 999 setOperationAction(ISD::FP_EXTEND, VT, Custom); 1000 1001 setOperationAction(ISD::FTRUNC, VT, Custom); 1002 setOperationAction(ISD::FCEIL, VT, Custom); 1003 setOperationAction(ISD::FFLOOR, VT, Custom); 1004 1005 for (auto CC : VFPCCToExpand) 1006 setCondCodeAction(CC, VT, Expand); 1007 1008 setOperationAction(ISD::VSELECT, VT, Custom); 1009 setOperationAction(ISD::SELECT, VT, Custom); 1010 setOperationAction(ISD::SELECT_CC, VT, Expand); 1011 1012 setOperationAction(ISD::BITCAST, VT, Custom); 1013 1014 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1015 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1016 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1017 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1018 1019 for (unsigned VPOpc : FloatingPointVPOps) 1020 setOperationAction(VPOpc, VT, Custom); 1021 } 1022 1023 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1024 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1025 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1026 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1027 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1028 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1029 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1030 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1031 } 1032 } 1033 1034 // Function alignments. 1035 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1036 setMinFunctionAlignment(FunctionAlignment); 1037 setPrefFunctionAlignment(FunctionAlignment); 1038 1039 setMinimumJumpTableEntries(5); 1040 1041 // Jumps are expensive, compared to logic 1042 setJumpIsExpensive(); 1043 1044 setTargetDAGCombine(ISD::ADD); 1045 setTargetDAGCombine(ISD::SUB); 1046 setTargetDAGCombine(ISD::AND); 1047 setTargetDAGCombine(ISD::OR); 1048 setTargetDAGCombine(ISD::XOR); 1049 setTargetDAGCombine(ISD::ANY_EXTEND); 1050 if (Subtarget.hasStdExtF()) { 1051 setTargetDAGCombine(ISD::ZERO_EXTEND); 1052 setTargetDAGCombine(ISD::FP_TO_SINT); 1053 setTargetDAGCombine(ISD::FP_TO_UINT); 1054 } 1055 if (Subtarget.hasVInstructions()) { 1056 setTargetDAGCombine(ISD::FCOPYSIGN); 1057 setTargetDAGCombine(ISD::MGATHER); 1058 setTargetDAGCombine(ISD::MSCATTER); 1059 setTargetDAGCombine(ISD::VP_GATHER); 1060 setTargetDAGCombine(ISD::VP_SCATTER); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SHL); 1064 setTargetDAGCombine(ISD::STORE); 1065 } 1066 } 1067 1068 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1069 LLVMContext &Context, 1070 EVT VT) const { 1071 if (!VT.isVector()) 1072 return getPointerTy(DL); 1073 if (Subtarget.hasVInstructions() && 1074 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1075 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1076 return VT.changeVectorElementTypeToInteger(); 1077 } 1078 1079 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1080 return Subtarget.getXLenVT(); 1081 } 1082 1083 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1084 const CallInst &I, 1085 MachineFunction &MF, 1086 unsigned Intrinsic) const { 1087 auto &DL = I.getModule()->getDataLayout(); 1088 switch (Intrinsic) { 1089 default: 1090 return false; 1091 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1092 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1093 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1094 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1095 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1099 case Intrinsic::riscv_masked_cmpxchg_i32: { 1100 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 1101 Info.opc = ISD::INTRINSIC_W_CHAIN; 1102 Info.memVT = MVT::getVT(PtrTy->getElementType()); 1103 Info.ptrVal = I.getArgOperand(0); 1104 Info.offset = 0; 1105 Info.align = Align(4); 1106 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1107 MachineMemOperand::MOVolatile; 1108 return true; 1109 } 1110 case Intrinsic::riscv_masked_strided_load: 1111 Info.opc = ISD::INTRINSIC_W_CHAIN; 1112 Info.ptrVal = I.getArgOperand(1); 1113 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1114 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1115 Info.size = MemoryLocation::UnknownSize; 1116 Info.flags |= MachineMemOperand::MOLoad; 1117 return true; 1118 case Intrinsic::riscv_masked_strided_store: 1119 Info.opc = ISD::INTRINSIC_VOID; 1120 Info.ptrVal = I.getArgOperand(1); 1121 Info.memVT = 1122 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1123 Info.align = Align( 1124 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1125 8); 1126 Info.size = MemoryLocation::UnknownSize; 1127 Info.flags |= MachineMemOperand::MOStore; 1128 return true; 1129 } 1130 } 1131 1132 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1133 const AddrMode &AM, Type *Ty, 1134 unsigned AS, 1135 Instruction *I) const { 1136 // No global is ever allowed as a base. 1137 if (AM.BaseGV) 1138 return false; 1139 1140 // Require a 12-bit signed offset. 1141 if (!isInt<12>(AM.BaseOffs)) 1142 return false; 1143 1144 switch (AM.Scale) { 1145 case 0: // "r+i" or just "i", depending on HasBaseReg. 1146 break; 1147 case 1: 1148 if (!AM.HasBaseReg) // allow "r+i". 1149 break; 1150 return false; // disallow "r+r" or "r+r+i". 1151 default: 1152 return false; 1153 } 1154 1155 return true; 1156 } 1157 1158 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1159 return isInt<12>(Imm); 1160 } 1161 1162 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1163 return isInt<12>(Imm); 1164 } 1165 1166 // On RV32, 64-bit integers are split into their high and low parts and held 1167 // in two different registers, so the trunc is free since the low register can 1168 // just be used. 1169 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1170 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1171 return false; 1172 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1173 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1174 return (SrcBits == 64 && DestBits == 32); 1175 } 1176 1177 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1178 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1179 !SrcVT.isInteger() || !DstVT.isInteger()) 1180 return false; 1181 unsigned SrcBits = SrcVT.getSizeInBits(); 1182 unsigned DestBits = DstVT.getSizeInBits(); 1183 return (SrcBits == 64 && DestBits == 32); 1184 } 1185 1186 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1187 // Zexts are free if they can be combined with a load. 1188 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1189 // poorly with type legalization of compares preferring sext. 1190 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1191 EVT MemVT = LD->getMemoryVT(); 1192 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1193 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1194 LD->getExtensionType() == ISD::ZEXTLOAD)) 1195 return true; 1196 } 1197 1198 return TargetLowering::isZExtFree(Val, VT2); 1199 } 1200 1201 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1202 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1203 } 1204 1205 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1206 return Subtarget.hasStdExtZbb(); 1207 } 1208 1209 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1210 return Subtarget.hasStdExtZbb(); 1211 } 1212 1213 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1214 EVT VT = Y.getValueType(); 1215 1216 // FIXME: Support vectors once we have tests. 1217 if (VT.isVector()) 1218 return false; 1219 1220 return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y); 1221 } 1222 1223 /// Check if sinking \p I's operands to I's basic block is profitable, because 1224 /// the operands can be folded into a target instruction, e.g. 1225 /// splats of scalars can fold into vector instructions. 1226 bool RISCVTargetLowering::shouldSinkOperands( 1227 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1228 using namespace llvm::PatternMatch; 1229 1230 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1231 return false; 1232 1233 auto IsSinker = [&](Instruction *I, int Operand) { 1234 switch (I->getOpcode()) { 1235 case Instruction::Add: 1236 case Instruction::Sub: 1237 case Instruction::Mul: 1238 case Instruction::And: 1239 case Instruction::Or: 1240 case Instruction::Xor: 1241 case Instruction::FAdd: 1242 case Instruction::FSub: 1243 case Instruction::FMul: 1244 case Instruction::FDiv: 1245 case Instruction::ICmp: 1246 case Instruction::FCmp: 1247 return true; 1248 case Instruction::Shl: 1249 case Instruction::LShr: 1250 case Instruction::AShr: 1251 case Instruction::UDiv: 1252 case Instruction::SDiv: 1253 case Instruction::URem: 1254 case Instruction::SRem: 1255 return Operand == 1; 1256 case Instruction::Call: 1257 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1258 switch (II->getIntrinsicID()) { 1259 case Intrinsic::fma: 1260 return Operand == 0 || Operand == 1; 1261 default: 1262 return false; 1263 } 1264 } 1265 return false; 1266 default: 1267 return false; 1268 } 1269 }; 1270 1271 for (auto OpIdx : enumerate(I->operands())) { 1272 if (!IsSinker(I, OpIdx.index())) 1273 continue; 1274 1275 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1276 // Make sure we are not already sinking this operand 1277 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1278 continue; 1279 1280 // We are looking for a splat that can be sunk. 1281 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1282 m_Undef(), m_ZeroMask()))) 1283 continue; 1284 1285 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1286 // and vector registers 1287 for (Use &U : Op->uses()) { 1288 Instruction *Insn = cast<Instruction>(U.getUser()); 1289 if (!IsSinker(Insn, U.getOperandNo())) 1290 return false; 1291 } 1292 1293 Ops.push_back(&Op->getOperandUse(0)); 1294 Ops.push_back(&OpIdx.value()); 1295 } 1296 return true; 1297 } 1298 1299 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1300 bool ForCodeSize) const { 1301 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1302 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1303 return false; 1304 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1305 return false; 1306 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1307 return false; 1308 if (Imm.isNegZero()) 1309 return false; 1310 return Imm.isZero(); 1311 } 1312 1313 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1314 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1315 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1316 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1317 } 1318 1319 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1320 CallingConv::ID CC, 1321 EVT VT) const { 1322 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1323 // We might still end up using a GPR but that will be decided based on ABI. 1324 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1325 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1326 return MVT::f32; 1327 1328 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1329 } 1330 1331 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1332 CallingConv::ID CC, 1333 EVT VT) const { 1334 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1335 // We might still end up using a GPR but that will be decided based on ABI. 1336 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1337 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1338 return 1; 1339 1340 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1341 } 1342 1343 // Changes the condition code and swaps operands if necessary, so the SetCC 1344 // operation matches one of the comparisons supported directly by branches 1345 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1346 // with 1/-1. 1347 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1348 ISD::CondCode &CC, SelectionDAG &DAG) { 1349 // Convert X > -1 to X >= 0. 1350 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1351 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1352 CC = ISD::SETGE; 1353 return; 1354 } 1355 // Convert X < 1 to 0 >= X. 1356 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1357 RHS = LHS; 1358 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1359 CC = ISD::SETGE; 1360 return; 1361 } 1362 1363 switch (CC) { 1364 default: 1365 break; 1366 case ISD::SETGT: 1367 case ISD::SETLE: 1368 case ISD::SETUGT: 1369 case ISD::SETULE: 1370 CC = ISD::getSetCCSwappedOperands(CC); 1371 std::swap(LHS, RHS); 1372 break; 1373 } 1374 } 1375 1376 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1377 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1378 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1379 if (VT.getVectorElementType() == MVT::i1) 1380 KnownSize *= 8; 1381 1382 switch (KnownSize) { 1383 default: 1384 llvm_unreachable("Invalid LMUL."); 1385 case 8: 1386 return RISCVII::VLMUL::LMUL_F8; 1387 case 16: 1388 return RISCVII::VLMUL::LMUL_F4; 1389 case 32: 1390 return RISCVII::VLMUL::LMUL_F2; 1391 case 64: 1392 return RISCVII::VLMUL::LMUL_1; 1393 case 128: 1394 return RISCVII::VLMUL::LMUL_2; 1395 case 256: 1396 return RISCVII::VLMUL::LMUL_4; 1397 case 512: 1398 return RISCVII::VLMUL::LMUL_8; 1399 } 1400 } 1401 1402 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1403 switch (LMul) { 1404 default: 1405 llvm_unreachable("Invalid LMUL."); 1406 case RISCVII::VLMUL::LMUL_F8: 1407 case RISCVII::VLMUL::LMUL_F4: 1408 case RISCVII::VLMUL::LMUL_F2: 1409 case RISCVII::VLMUL::LMUL_1: 1410 return RISCV::VRRegClassID; 1411 case RISCVII::VLMUL::LMUL_2: 1412 return RISCV::VRM2RegClassID; 1413 case RISCVII::VLMUL::LMUL_4: 1414 return RISCV::VRM4RegClassID; 1415 case RISCVII::VLMUL::LMUL_8: 1416 return RISCV::VRM8RegClassID; 1417 } 1418 } 1419 1420 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1421 RISCVII::VLMUL LMUL = getLMUL(VT); 1422 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1423 LMUL == RISCVII::VLMUL::LMUL_F4 || 1424 LMUL == RISCVII::VLMUL::LMUL_F2 || 1425 LMUL == RISCVII::VLMUL::LMUL_1) { 1426 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1427 "Unexpected subreg numbering"); 1428 return RISCV::sub_vrm1_0 + Index; 1429 } 1430 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1431 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1432 "Unexpected subreg numbering"); 1433 return RISCV::sub_vrm2_0 + Index; 1434 } 1435 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1436 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1437 "Unexpected subreg numbering"); 1438 return RISCV::sub_vrm4_0 + Index; 1439 } 1440 llvm_unreachable("Invalid vector type."); 1441 } 1442 1443 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1444 if (VT.getVectorElementType() == MVT::i1) 1445 return RISCV::VRRegClassID; 1446 return getRegClassIDForLMUL(getLMUL(VT)); 1447 } 1448 1449 // Attempt to decompose a subvector insert/extract between VecVT and 1450 // SubVecVT via subregister indices. Returns the subregister index that 1451 // can perform the subvector insert/extract with the given element index, as 1452 // well as the index corresponding to any leftover subvectors that must be 1453 // further inserted/extracted within the register class for SubVecVT. 1454 std::pair<unsigned, unsigned> 1455 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1456 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1457 const RISCVRegisterInfo *TRI) { 1458 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1459 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1460 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1461 "Register classes not ordered"); 1462 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1463 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1464 // Try to compose a subregister index that takes us from the incoming 1465 // LMUL>1 register class down to the outgoing one. At each step we half 1466 // the LMUL: 1467 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1468 // Note that this is not guaranteed to find a subregister index, such as 1469 // when we are extracting from one VR type to another. 1470 unsigned SubRegIdx = RISCV::NoSubRegister; 1471 for (const unsigned RCID : 1472 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1473 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1474 VecVT = VecVT.getHalfNumVectorElementsVT(); 1475 bool IsHi = 1476 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1477 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1478 getSubregIndexByMVT(VecVT, IsHi)); 1479 if (IsHi) 1480 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1481 } 1482 return {SubRegIdx, InsertExtractIdx}; 1483 } 1484 1485 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1486 // stores for those types. 1487 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1488 return !Subtarget.useRVVForFixedLengthVectors() || 1489 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1490 } 1491 1492 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1493 if (ScalarTy->isPointerTy()) 1494 return true; 1495 1496 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1497 ScalarTy->isIntegerTy(32)) 1498 return true; 1499 1500 if (ScalarTy->isIntegerTy(64)) 1501 return Subtarget.hasVInstructionsI64(); 1502 1503 if (ScalarTy->isHalfTy()) 1504 return Subtarget.hasVInstructionsF16(); 1505 if (ScalarTy->isFloatTy()) 1506 return Subtarget.hasVInstructionsF32(); 1507 if (ScalarTy->isDoubleTy()) 1508 return Subtarget.hasVInstructionsF64(); 1509 1510 return false; 1511 } 1512 1513 static bool useRVVForFixedLengthVectorVT(MVT VT, 1514 const RISCVSubtarget &Subtarget) { 1515 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1516 if (!Subtarget.useRVVForFixedLengthVectors()) 1517 return false; 1518 1519 // We only support a set of vector types with a consistent maximum fixed size 1520 // across all supported vector element types to avoid legalization issues. 1521 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1522 // fixed-length vector type we support is 1024 bytes. 1523 if (VT.getFixedSizeInBits() > 1024 * 8) 1524 return false; 1525 1526 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1527 1528 MVT EltVT = VT.getVectorElementType(); 1529 1530 // Don't use RVV for vectors we cannot scalarize if required. 1531 switch (EltVT.SimpleTy) { 1532 // i1 is supported but has different rules. 1533 default: 1534 return false; 1535 case MVT::i1: 1536 // Masks can only use a single register. 1537 if (VT.getVectorNumElements() > MinVLen) 1538 return false; 1539 MinVLen /= 8; 1540 break; 1541 case MVT::i8: 1542 case MVT::i16: 1543 case MVT::i32: 1544 break; 1545 case MVT::i64: 1546 if (!Subtarget.hasVInstructionsI64()) 1547 return false; 1548 break; 1549 case MVT::f16: 1550 if (!Subtarget.hasVInstructionsF16()) 1551 return false; 1552 break; 1553 case MVT::f32: 1554 if (!Subtarget.hasVInstructionsF32()) 1555 return false; 1556 break; 1557 case MVT::f64: 1558 if (!Subtarget.hasVInstructionsF64()) 1559 return false; 1560 break; 1561 } 1562 1563 // Reject elements larger than ELEN. 1564 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1565 return false; 1566 1567 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1568 // Don't use RVV for types that don't fit. 1569 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1570 return false; 1571 1572 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1573 // the base fixed length RVV support in place. 1574 if (!VT.isPow2VectorType()) 1575 return false; 1576 1577 return true; 1578 } 1579 1580 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1581 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1582 } 1583 1584 // Return the largest legal scalable vector type that matches VT's element type. 1585 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1586 const RISCVSubtarget &Subtarget) { 1587 // This may be called before legal types are setup. 1588 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1589 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1590 "Expected legal fixed length vector!"); 1591 1592 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1593 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1594 1595 MVT EltVT = VT.getVectorElementType(); 1596 switch (EltVT.SimpleTy) { 1597 default: 1598 llvm_unreachable("unexpected element type for RVV container"); 1599 case MVT::i1: 1600 case MVT::i8: 1601 case MVT::i16: 1602 case MVT::i32: 1603 case MVT::i64: 1604 case MVT::f16: 1605 case MVT::f32: 1606 case MVT::f64: { 1607 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1608 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1609 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1610 unsigned NumElts = 1611 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1612 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1613 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1614 return MVT::getScalableVectorVT(EltVT, NumElts); 1615 } 1616 } 1617 } 1618 1619 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1620 const RISCVSubtarget &Subtarget) { 1621 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1622 Subtarget); 1623 } 1624 1625 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1626 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1627 } 1628 1629 // Grow V to consume an entire RVV register. 1630 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1631 const RISCVSubtarget &Subtarget) { 1632 assert(VT.isScalableVector() && 1633 "Expected to convert into a scalable vector!"); 1634 assert(V.getValueType().isFixedLengthVector() && 1635 "Expected a fixed length vector operand!"); 1636 SDLoc DL(V); 1637 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1639 } 1640 1641 // Shrink V so it's just big enough to maintain a VT's worth of data. 1642 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1643 const RISCVSubtarget &Subtarget) { 1644 assert(VT.isFixedLengthVector() && 1645 "Expected to convert into a fixed length vector!"); 1646 assert(V.getValueType().isScalableVector() && 1647 "Expected a scalable vector operand!"); 1648 SDLoc DL(V); 1649 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1650 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1651 } 1652 1653 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1654 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1655 // the vector type that it is contained in. 1656 static std::pair<SDValue, SDValue> 1657 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1658 const RISCVSubtarget &Subtarget) { 1659 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1660 MVT XLenVT = Subtarget.getXLenVT(); 1661 SDValue VL = VecVT.isFixedLengthVector() 1662 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1663 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1664 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1665 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1666 return {Mask, VL}; 1667 } 1668 1669 // As above but assuming the given type is a scalable vector type. 1670 static std::pair<SDValue, SDValue> 1671 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1672 const RISCVSubtarget &Subtarget) { 1673 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1674 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1675 } 1676 1677 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1678 // of either is (currently) supported. This can get us into an infinite loop 1679 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1680 // as a ..., etc. 1681 // Until either (or both) of these can reliably lower any node, reporting that 1682 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1683 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1684 // which is not desirable. 1685 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1686 EVT VT, unsigned DefinedValues) const { 1687 return false; 1688 } 1689 1690 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1691 // Only splats are currently supported. 1692 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1693 return true; 1694 1695 return false; 1696 } 1697 1698 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1699 const RISCVSubtarget &Subtarget) { 1700 // RISCV FP-to-int conversions saturate to the destination register size, but 1701 // don't produce 0 for nan. We can use a conversion instruction and fix the 1702 // nan case with a compare and a select. 1703 SDValue Src = Op.getOperand(0); 1704 1705 EVT DstVT = Op.getValueType(); 1706 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1707 1708 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1709 unsigned Opc; 1710 if (SatVT == DstVT) 1711 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1712 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1713 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1714 else 1715 return SDValue(); 1716 // FIXME: Support other SatVTs by clamping before or after the conversion. 1717 1718 SDLoc DL(Op); 1719 SDValue FpToInt = DAG.getNode( 1720 Opc, DL, DstVT, Src, 1721 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1722 1723 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1724 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1725 } 1726 1727 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1728 // and back. Taking care to avoid converting values that are nan or already 1729 // correct. 1730 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1731 // have FRM dependencies modeled yet. 1732 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1733 MVT VT = Op.getSimpleValueType(); 1734 assert(VT.isVector() && "Unexpected type"); 1735 1736 SDLoc DL(Op); 1737 1738 // Freeze the source since we are increasing the number of uses. 1739 SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); 1740 1741 // Truncate to integer and convert back to FP. 1742 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1743 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1744 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1745 1746 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1747 1748 if (Op.getOpcode() == ISD::FCEIL) { 1749 // If the truncated value is the greater than or equal to the original 1750 // value, we've computed the ceil. Otherwise, we went the wrong way and 1751 // need to increase by 1. 1752 // FIXME: This should use a masked operation. Handle here or in isel? 1753 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1754 DAG.getConstantFP(1.0, DL, VT)); 1755 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1756 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1757 } else if (Op.getOpcode() == ISD::FFLOOR) { 1758 // If the truncated value is the less than or equal to the original value, 1759 // we've computed the floor. Otherwise, we went the wrong way and need to 1760 // decrease by 1. 1761 // FIXME: This should use a masked operation. Handle here or in isel? 1762 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1763 DAG.getConstantFP(1.0, DL, VT)); 1764 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1765 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1766 } 1767 1768 // Restore the original sign so that -0.0 is preserved. 1769 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1770 1771 // Determine the largest integer that can be represented exactly. This and 1772 // values larger than it don't have any fractional bits so don't need to 1773 // be converted. 1774 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1775 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1776 APFloat MaxVal = APFloat(FltSem); 1777 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1778 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1779 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1780 1781 // If abs(Src) was larger than MaxVal or nan, keep it. 1782 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1783 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1784 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1785 } 1786 1787 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1788 const RISCVSubtarget &Subtarget) { 1789 MVT VT = Op.getSimpleValueType(); 1790 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1791 1792 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1793 1794 SDLoc DL(Op); 1795 SDValue Mask, VL; 1796 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1797 1798 unsigned Opc = 1799 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1800 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1801 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1802 } 1803 1804 struct VIDSequence { 1805 int64_t StepNumerator; 1806 unsigned StepDenominator; 1807 int64_t Addend; 1808 }; 1809 1810 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1811 // to the (non-zero) step S and start value X. This can be then lowered as the 1812 // RVV sequence (VID * S) + X, for example. 1813 // The step S is represented as an integer numerator divided by a positive 1814 // denominator. Note that the implementation currently only identifies 1815 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1816 // cannot detect 2/3, for example. 1817 // Note that this method will also match potentially unappealing index 1818 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1819 // determine whether this is worth generating code for. 1820 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1821 unsigned NumElts = Op.getNumOperands(); 1822 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1823 if (!Op.getValueType().isInteger()) 1824 return None; 1825 1826 Optional<unsigned> SeqStepDenom; 1827 Optional<int64_t> SeqStepNum, SeqAddend; 1828 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1829 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1830 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1831 // Assume undef elements match the sequence; we just have to be careful 1832 // when interpolating across them. 1833 if (Op.getOperand(Idx).isUndef()) 1834 continue; 1835 // The BUILD_VECTOR must be all constants. 1836 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1837 return None; 1838 1839 uint64_t Val = Op.getConstantOperandVal(Idx) & 1840 maskTrailingOnes<uint64_t>(EltSizeInBits); 1841 1842 if (PrevElt) { 1843 // Calculate the step since the last non-undef element, and ensure 1844 // it's consistent across the entire sequence. 1845 unsigned IdxDiff = Idx - PrevElt->second; 1846 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1847 1848 // A zero-value value difference means that we're somewhere in the middle 1849 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1850 // step change before evaluating the sequence. 1851 if (ValDiff != 0) { 1852 int64_t Remainder = ValDiff % IdxDiff; 1853 // Normalize the step if it's greater than 1. 1854 if (Remainder != ValDiff) { 1855 // The difference must cleanly divide the element span. 1856 if (Remainder != 0) 1857 return None; 1858 ValDiff /= IdxDiff; 1859 IdxDiff = 1; 1860 } 1861 1862 if (!SeqStepNum) 1863 SeqStepNum = ValDiff; 1864 else if (ValDiff != SeqStepNum) 1865 return None; 1866 1867 if (!SeqStepDenom) 1868 SeqStepDenom = IdxDiff; 1869 else if (IdxDiff != *SeqStepDenom) 1870 return None; 1871 } 1872 } 1873 1874 // Record and/or check any addend. 1875 if (SeqStepNum && SeqStepDenom) { 1876 uint64_t ExpectedVal = 1877 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1878 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1879 if (!SeqAddend) 1880 SeqAddend = Addend; 1881 else if (SeqAddend != Addend) 1882 return None; 1883 } 1884 1885 // Record this non-undef element for later. 1886 if (!PrevElt || PrevElt->first != Val) 1887 PrevElt = std::make_pair(Val, Idx); 1888 } 1889 // We need to have logged both a step and an addend for this to count as 1890 // a legal index sequence. 1891 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1892 return None; 1893 1894 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1895 } 1896 1897 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1898 const RISCVSubtarget &Subtarget) { 1899 MVT VT = Op.getSimpleValueType(); 1900 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1901 1902 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1903 1904 SDLoc DL(Op); 1905 SDValue Mask, VL; 1906 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1907 1908 MVT XLenVT = Subtarget.getXLenVT(); 1909 unsigned NumElts = Op.getNumOperands(); 1910 1911 if (VT.getVectorElementType() == MVT::i1) { 1912 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1913 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1914 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1915 } 1916 1917 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1918 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1919 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1920 } 1921 1922 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1923 // scalar integer chunks whose bit-width depends on the number of mask 1924 // bits and XLEN. 1925 // First, determine the most appropriate scalar integer type to use. This 1926 // is at most XLenVT, but may be shrunk to a smaller vector element type 1927 // according to the size of the final vector - use i8 chunks rather than 1928 // XLenVT if we're producing a v8i1. This results in more consistent 1929 // codegen across RV32 and RV64. 1930 unsigned NumViaIntegerBits = 1931 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1932 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1933 // If we have to use more than one INSERT_VECTOR_ELT then this 1934 // optimization is likely to increase code size; avoid peforming it in 1935 // such a case. We can use a load from a constant pool in this case. 1936 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1937 return SDValue(); 1938 // Now we can create our integer vector type. Note that it may be larger 1939 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1940 MVT IntegerViaVecVT = 1941 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1942 divideCeil(NumElts, NumViaIntegerBits)); 1943 1944 uint64_t Bits = 0; 1945 unsigned BitPos = 0, IntegerEltIdx = 0; 1946 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1947 1948 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1949 // Once we accumulate enough bits to fill our scalar type, insert into 1950 // our vector and clear our accumulated data. 1951 if (I != 0 && I % NumViaIntegerBits == 0) { 1952 if (NumViaIntegerBits <= 32) 1953 Bits = SignExtend64(Bits, 32); 1954 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1955 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1956 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1957 Bits = 0; 1958 BitPos = 0; 1959 IntegerEltIdx++; 1960 } 1961 SDValue V = Op.getOperand(I); 1962 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1963 Bits |= ((uint64_t)BitValue << BitPos); 1964 } 1965 1966 // Insert the (remaining) scalar value into position in our integer 1967 // vector type. 1968 if (NumViaIntegerBits <= 32) 1969 Bits = SignExtend64(Bits, 32); 1970 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1971 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1972 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1973 1974 if (NumElts < NumViaIntegerBits) { 1975 // If we're producing a smaller vector than our minimum legal integer 1976 // type, bitcast to the equivalent (known-legal) mask type, and extract 1977 // our final mask. 1978 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1979 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1980 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1981 DAG.getConstant(0, DL, XLenVT)); 1982 } else { 1983 // Else we must have produced an integer type with the same size as the 1984 // mask type; bitcast for the final result. 1985 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1986 Vec = DAG.getBitcast(VT, Vec); 1987 } 1988 1989 return Vec; 1990 } 1991 1992 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1993 // vector type, we have a legal equivalently-sized i8 type, so we can use 1994 // that. 1995 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1996 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1997 1998 SDValue WideVec; 1999 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2000 // For a splat, perform a scalar truncate before creating the wider 2001 // vector. 2002 assert(Splat.getValueType() == XLenVT && 2003 "Unexpected type for i1 splat value"); 2004 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2005 DAG.getConstant(1, DL, XLenVT)); 2006 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2007 } else { 2008 SmallVector<SDValue, 8> Ops(Op->op_values()); 2009 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2010 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2011 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2012 } 2013 2014 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2015 } 2016 2017 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2018 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2019 : RISCVISD::VMV_V_X_VL; 2020 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 2021 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2022 } 2023 2024 // Try and match index sequences, which we can lower to the vid instruction 2025 // with optional modifications. An all-undef vector is matched by 2026 // getSplatValue, above. 2027 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2028 int64_t StepNumerator = SimpleVID->StepNumerator; 2029 unsigned StepDenominator = SimpleVID->StepDenominator; 2030 int64_t Addend = SimpleVID->Addend; 2031 2032 assert(StepNumerator != 0 && "Invalid step"); 2033 bool Negate = false; 2034 int64_t SplatStepVal = StepNumerator; 2035 unsigned StepOpcode = ISD::MUL; 2036 if (StepNumerator != 1) { 2037 if (isPowerOf2_64(std::abs(StepNumerator))) { 2038 Negate = StepNumerator < 0; 2039 StepOpcode = ISD::SHL; 2040 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2041 } 2042 } 2043 2044 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2045 // threshold since it's the immediate value many RVV instructions accept. 2046 // There is no vmul.vi instruction so ensure multiply constant can fit in 2047 // a single addi instruction. 2048 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2049 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2050 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2051 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2052 // Convert right out of the scalable type so we can use standard ISD 2053 // nodes for the rest of the computation. If we used scalable types with 2054 // these, we'd lose the fixed-length vector info and generate worse 2055 // vsetvli code. 2056 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2057 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2058 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2059 SDValue SplatStep = DAG.getSplatVector( 2060 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2061 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2062 } 2063 if (StepDenominator != 1) { 2064 SDValue SplatStep = DAG.getSplatVector( 2065 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2066 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2067 } 2068 if (Addend != 0 || Negate) { 2069 SDValue SplatAddend = 2070 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2071 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2072 } 2073 return VID; 2074 } 2075 } 2076 2077 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2078 // when re-interpreted as a vector with a larger element type. For example, 2079 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2080 // could be instead splat as 2081 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2082 // TODO: This optimization could also work on non-constant splats, but it 2083 // would require bit-manipulation instructions to construct the splat value. 2084 SmallVector<SDValue> Sequence; 2085 unsigned EltBitSize = VT.getScalarSizeInBits(); 2086 const auto *BV = cast<BuildVectorSDNode>(Op); 2087 if (VT.isInteger() && EltBitSize < 64 && 2088 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2089 BV->getRepeatedSequence(Sequence) && 2090 (Sequence.size() * EltBitSize) <= 64) { 2091 unsigned SeqLen = Sequence.size(); 2092 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2093 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2094 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2095 ViaIntVT == MVT::i64) && 2096 "Unexpected sequence type"); 2097 2098 unsigned EltIdx = 0; 2099 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2100 uint64_t SplatValue = 0; 2101 // Construct the amalgamated value which can be splatted as this larger 2102 // vector type. 2103 for (const auto &SeqV : Sequence) { 2104 if (!SeqV.isUndef()) 2105 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2106 << (EltIdx * EltBitSize)); 2107 EltIdx++; 2108 } 2109 2110 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2111 // achieve better constant materializion. 2112 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2113 SplatValue = SignExtend64(SplatValue, 32); 2114 2115 // Since we can't introduce illegal i64 types at this stage, we can only 2116 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2117 // way we can use RVV instructions to splat. 2118 assert((ViaIntVT.bitsLE(XLenVT) || 2119 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2120 "Unexpected bitcast sequence"); 2121 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2122 SDValue ViaVL = 2123 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2124 MVT ViaContainerVT = 2125 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2126 SDValue Splat = 2127 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2128 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2129 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2130 return DAG.getBitcast(VT, Splat); 2131 } 2132 } 2133 2134 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2135 // which constitute a large proportion of the elements. In such cases we can 2136 // splat a vector with the dominant element and make up the shortfall with 2137 // INSERT_VECTOR_ELTs. 2138 // Note that this includes vectors of 2 elements by association. The 2139 // upper-most element is the "dominant" one, allowing us to use a splat to 2140 // "insert" the upper element, and an insert of the lower element at position 2141 // 0, which improves codegen. 2142 SDValue DominantValue; 2143 unsigned MostCommonCount = 0; 2144 DenseMap<SDValue, unsigned> ValueCounts; 2145 unsigned NumUndefElts = 2146 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2147 2148 // Track the number of scalar loads we know we'd be inserting, estimated as 2149 // any non-zero floating-point constant. Other kinds of element are either 2150 // already in registers or are materialized on demand. The threshold at which 2151 // a vector load is more desirable than several scalar materializion and 2152 // vector-insertion instructions is not known. 2153 unsigned NumScalarLoads = 0; 2154 2155 for (SDValue V : Op->op_values()) { 2156 if (V.isUndef()) 2157 continue; 2158 2159 ValueCounts.insert(std::make_pair(V, 0)); 2160 unsigned &Count = ValueCounts[V]; 2161 2162 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2163 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2164 2165 // Is this value dominant? In case of a tie, prefer the highest element as 2166 // it's cheaper to insert near the beginning of a vector than it is at the 2167 // end. 2168 if (++Count >= MostCommonCount) { 2169 DominantValue = V; 2170 MostCommonCount = Count; 2171 } 2172 } 2173 2174 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2175 unsigned NumDefElts = NumElts - NumUndefElts; 2176 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2177 2178 // Don't perform this optimization when optimizing for size, since 2179 // materializing elements and inserting them tends to cause code bloat. 2180 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2181 ((MostCommonCount > DominantValueCountThreshold) || 2182 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2183 // Start by splatting the most common element. 2184 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2185 2186 DenseSet<SDValue> Processed{DominantValue}; 2187 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2188 for (const auto &OpIdx : enumerate(Op->ops())) { 2189 const SDValue &V = OpIdx.value(); 2190 if (V.isUndef() || !Processed.insert(V).second) 2191 continue; 2192 if (ValueCounts[V] == 1) { 2193 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2194 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2195 } else { 2196 // Blend in all instances of this value using a VSELECT, using a 2197 // mask where each bit signals whether that element is the one 2198 // we're after. 2199 SmallVector<SDValue> Ops; 2200 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2201 return DAG.getConstant(V == V1, DL, XLenVT); 2202 }); 2203 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2204 DAG.getBuildVector(SelMaskTy, DL, Ops), 2205 DAG.getSplatBuildVector(VT, DL, V), Vec); 2206 } 2207 } 2208 2209 return Vec; 2210 } 2211 2212 return SDValue(); 2213 } 2214 2215 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 2216 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 2217 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2218 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2219 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2220 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2221 // node in order to try and match RVV vector/scalar instructions. 2222 if ((LoC >> 31) == HiC) 2223 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 2224 2225 // If vl is equal to VLMax and Hi constant is equal to Lo, we could use 2226 // vmv.v.x whose EEW = 32 to lower it. 2227 auto *Const = dyn_cast<ConstantSDNode>(VL); 2228 if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { 2229 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2230 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2231 // access the subtarget here now. 2232 auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); 2233 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2234 } 2235 } 2236 2237 // Fall back to a stack store and stride x0 vector load. 2238 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 2239 } 2240 2241 // Called by type legalization to handle splat of i64 on RV32. 2242 // FIXME: We can optimize this when the type has sign or zero bits in one 2243 // of the halves. 2244 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2245 SDValue VL, SelectionDAG &DAG) { 2246 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2247 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2248 DAG.getConstant(0, DL, MVT::i32)); 2249 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2250 DAG.getConstant(1, DL, MVT::i32)); 2251 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2252 } 2253 2254 // This function lowers a splat of a scalar operand Splat with the vector 2255 // length VL. It ensures the final sequence is type legal, which is useful when 2256 // lowering a splat after type legalization. 2257 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2258 SelectionDAG &DAG, 2259 const RISCVSubtarget &Subtarget) { 2260 if (VT.isFloatingPoint()) { 2261 // If VL is 1, we could use vfmv.s.f. 2262 if (isOneConstant(VL)) 2263 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), 2264 Scalar, VL); 2265 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2266 } 2267 2268 MVT XLenVT = Subtarget.getXLenVT(); 2269 2270 // Simplest case is that the operand needs to be promoted to XLenVT. 2271 if (Scalar.getValueType().bitsLE(XLenVT)) { 2272 // If the operand is a constant, sign extend to increase our chances 2273 // of being able to use a .vi instruction. ANY_EXTEND would become a 2274 // a zero extend and the simm5 check in isel would fail. 2275 // FIXME: Should we ignore the upper bits in isel instead? 2276 unsigned ExtOpc = 2277 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2278 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2279 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2280 // If VL is 1 and the scalar value won't benefit from immediate, we could 2281 // use vmv.s.x. 2282 if (isOneConstant(VL) && 2283 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2284 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, 2285 VL); 2286 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2287 } 2288 2289 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2290 "Unexpected scalar for splat lowering!"); 2291 2292 if (isOneConstant(VL) && isNullConstant(Scalar)) 2293 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), 2294 DAG.getConstant(0, DL, XLenVT), VL); 2295 2296 // Otherwise use the more complicated splatting algorithm. 2297 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2298 } 2299 2300 // Is the mask a slidedown that shifts in undefs. 2301 static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { 2302 int Size = Mask.size(); 2303 2304 // Elements shifted in should be undef. 2305 auto CheckUndefs = [&](int Shift) { 2306 for (int i = Size - Shift; i != Size; ++i) 2307 if (Mask[i] >= 0) 2308 return false; 2309 return true; 2310 }; 2311 2312 // Elements should be shifted or undef. 2313 auto MatchShift = [&](int Shift) { 2314 for (int i = 0; i != Size - Shift; ++i) 2315 if (Mask[i] >= 0 && Mask[i] != Shift + i) 2316 return false; 2317 return true; 2318 }; 2319 2320 // Try all possible shifts. 2321 for (int Shift = 1; Shift != Size; ++Shift) 2322 if (CheckUndefs(Shift) && MatchShift(Shift)) 2323 return Shift; 2324 2325 // No match. 2326 return -1; 2327 } 2328 2329 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2330 const RISCVSubtarget &Subtarget) { 2331 SDValue V1 = Op.getOperand(0); 2332 SDValue V2 = Op.getOperand(1); 2333 SDLoc DL(Op); 2334 MVT XLenVT = Subtarget.getXLenVT(); 2335 MVT VT = Op.getSimpleValueType(); 2336 unsigned NumElts = VT.getVectorNumElements(); 2337 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2338 2339 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2340 2341 SDValue TrueMask, VL; 2342 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2343 2344 if (SVN->isSplat()) { 2345 const int Lane = SVN->getSplatIndex(); 2346 if (Lane >= 0) { 2347 MVT SVT = VT.getVectorElementType(); 2348 2349 // Turn splatted vector load into a strided load with an X0 stride. 2350 SDValue V = V1; 2351 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2352 // with undef. 2353 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2354 int Offset = Lane; 2355 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2356 int OpElements = 2357 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2358 V = V.getOperand(Offset / OpElements); 2359 Offset %= OpElements; 2360 } 2361 2362 // We need to ensure the load isn't atomic or volatile. 2363 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2364 auto *Ld = cast<LoadSDNode>(V); 2365 Offset *= SVT.getStoreSize(); 2366 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2367 TypeSize::Fixed(Offset), DL); 2368 2369 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2370 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2371 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2372 SDValue IntID = 2373 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2374 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2375 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2376 SDValue NewLoad = DAG.getMemIntrinsicNode( 2377 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2378 DAG.getMachineFunction().getMachineMemOperand( 2379 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2380 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2381 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2382 } 2383 2384 // Otherwise use a scalar load and splat. This will give the best 2385 // opportunity to fold a splat into the operation. ISel can turn it into 2386 // the x0 strided load if we aren't able to fold away the select. 2387 if (SVT.isFloatingPoint()) 2388 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2389 Ld->getPointerInfo().getWithOffset(Offset), 2390 Ld->getOriginalAlign(), 2391 Ld->getMemOperand()->getFlags()); 2392 else 2393 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2394 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2395 Ld->getOriginalAlign(), 2396 Ld->getMemOperand()->getFlags()); 2397 DAG.makeEquivalentMemoryOrdering(Ld, V); 2398 2399 unsigned Opc = 2400 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2401 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2402 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2403 } 2404 2405 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2406 assert(Lane < (int)NumElts && "Unexpected lane!"); 2407 SDValue Gather = 2408 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2409 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2410 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2411 } 2412 } 2413 2414 // Try to match as a slidedown. 2415 int SlideAmt = matchShuffleAsSlideDown(SVN->getMask()); 2416 if (SlideAmt >= 0) { 2417 // TODO: Should we reduce the VL to account for the upper undef elements? 2418 // Requires additional vsetvlis, but might be faster to execute. 2419 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2420 SDValue SlideDown = 2421 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 2422 DAG.getUNDEF(ContainerVT), V1, 2423 DAG.getConstant(SlideAmt, DL, XLenVT), 2424 TrueMask, VL); 2425 return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); 2426 } 2427 2428 // Detect shuffles which can be re-expressed as vector selects; these are 2429 // shuffles in which each element in the destination is taken from an element 2430 // at the corresponding index in either source vectors. 2431 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2432 int MaskIndex = MaskIdx.value(); 2433 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2434 }); 2435 2436 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2437 2438 SmallVector<SDValue> MaskVals; 2439 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2440 // merged with a second vrgather. 2441 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2442 2443 // By default we preserve the original operand order, and use a mask to 2444 // select LHS as true and RHS as false. However, since RVV vector selects may 2445 // feature splats but only on the LHS, we may choose to invert our mask and 2446 // instead select between RHS and LHS. 2447 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2448 bool InvertMask = IsSelect == SwapOps; 2449 2450 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2451 // half. 2452 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2453 2454 // Now construct the mask that will be used by the vselect or blended 2455 // vrgather operation. For vrgathers, construct the appropriate indices into 2456 // each vector. 2457 for (int MaskIndex : SVN->getMask()) { 2458 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2459 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2460 if (!IsSelect) { 2461 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2462 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2463 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2464 : DAG.getUNDEF(XLenVT)); 2465 GatherIndicesRHS.push_back( 2466 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2467 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2468 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2469 ++LHSIndexCounts[MaskIndex]; 2470 if (!IsLHSOrUndefIndex) 2471 ++RHSIndexCounts[MaskIndex - NumElts]; 2472 } 2473 } 2474 2475 if (SwapOps) { 2476 std::swap(V1, V2); 2477 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2478 } 2479 2480 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2481 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2482 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2483 2484 if (IsSelect) 2485 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2486 2487 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2488 // On such a large vector we're unable to use i8 as the index type. 2489 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2490 // may involve vector splitting if we're already at LMUL=8, or our 2491 // user-supplied maximum fixed-length LMUL. 2492 return SDValue(); 2493 } 2494 2495 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2496 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2497 MVT IndexVT = VT.changeTypeToInteger(); 2498 // Since we can't introduce illegal index types at this stage, use i16 and 2499 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2500 // than XLenVT. 2501 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2502 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2503 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2504 } 2505 2506 MVT IndexContainerVT = 2507 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2508 2509 SDValue Gather; 2510 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2511 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2512 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2513 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2514 } else { 2515 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2516 // If only one index is used, we can use a "splat" vrgather. 2517 // TODO: We can splat the most-common index and fix-up any stragglers, if 2518 // that's beneficial. 2519 if (LHSIndexCounts.size() == 1) { 2520 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2521 Gather = 2522 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2523 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2524 } else { 2525 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2526 LHSIndices = 2527 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2528 2529 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2530 TrueMask, VL); 2531 } 2532 } 2533 2534 // If a second vector operand is used by this shuffle, blend it in with an 2535 // additional vrgather. 2536 if (!V2.isUndef()) { 2537 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2538 // If only one index is used, we can use a "splat" vrgather. 2539 // TODO: We can splat the most-common index and fix-up any stragglers, if 2540 // that's beneficial. 2541 if (RHSIndexCounts.size() == 1) { 2542 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2543 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2544 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2545 } else { 2546 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2547 RHSIndices = 2548 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2549 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2550 VL); 2551 } 2552 2553 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2554 SelectMask = 2555 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2556 2557 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2558 Gather, VL); 2559 } 2560 2561 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2562 } 2563 2564 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2565 SDLoc DL, SelectionDAG &DAG, 2566 const RISCVSubtarget &Subtarget) { 2567 if (VT.isScalableVector()) 2568 return DAG.getFPExtendOrRound(Op, DL, VT); 2569 assert(VT.isFixedLengthVector() && 2570 "Unexpected value type for RVV FP extend/round lowering"); 2571 SDValue Mask, VL; 2572 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2573 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2574 ? RISCVISD::FP_EXTEND_VL 2575 : RISCVISD::FP_ROUND_VL; 2576 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2577 } 2578 2579 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2580 // the exponent. 2581 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2582 MVT VT = Op.getSimpleValueType(); 2583 unsigned EltSize = VT.getScalarSizeInBits(); 2584 SDValue Src = Op.getOperand(0); 2585 SDLoc DL(Op); 2586 2587 // We need a FP type that can represent the value. 2588 // TODO: Use f16 for i8 when possible? 2589 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2590 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2591 2592 // Legal types should have been checked in the RISCVTargetLowering 2593 // constructor. 2594 // TODO: Splitting may make sense in some cases. 2595 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2596 "Expected legal float type!"); 2597 2598 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2599 // The trailing zero count is equal to log2 of this single bit value. 2600 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2601 SDValue Neg = 2602 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2603 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2604 } 2605 2606 // We have a legal FP type, convert to it. 2607 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2608 // Bitcast to integer and shift the exponent to the LSB. 2609 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2610 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2611 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2612 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2613 DAG.getConstant(ShiftAmt, DL, IntVT)); 2614 // Truncate back to original type to allow vnsrl. 2615 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2616 // The exponent contains log2 of the value in biased form. 2617 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2618 2619 // For trailing zeros, we just need to subtract the bias. 2620 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2621 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2622 DAG.getConstant(ExponentBias, DL, VT)); 2623 2624 // For leading zeros, we need to remove the bias and convert from log2 to 2625 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2626 unsigned Adjust = ExponentBias + (EltSize - 1); 2627 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2628 } 2629 2630 // While RVV has alignment restrictions, we should always be able to load as a 2631 // legal equivalently-sized byte-typed vector instead. This method is 2632 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2633 // the load is already correctly-aligned, it returns SDValue(). 2634 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2635 SelectionDAG &DAG) const { 2636 auto *Load = cast<LoadSDNode>(Op); 2637 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2638 2639 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2640 Load->getMemoryVT(), 2641 *Load->getMemOperand())) 2642 return SDValue(); 2643 2644 SDLoc DL(Op); 2645 MVT VT = Op.getSimpleValueType(); 2646 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2647 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2648 "Unexpected unaligned RVV load type"); 2649 MVT NewVT = 2650 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2651 assert(NewVT.isValid() && 2652 "Expecting equally-sized RVV vector types to be legal"); 2653 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2654 Load->getPointerInfo(), Load->getOriginalAlign(), 2655 Load->getMemOperand()->getFlags()); 2656 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2657 } 2658 2659 // While RVV has alignment restrictions, we should always be able to store as a 2660 // legal equivalently-sized byte-typed vector instead. This method is 2661 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2662 // returns SDValue() if the store is already correctly aligned. 2663 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2664 SelectionDAG &DAG) const { 2665 auto *Store = cast<StoreSDNode>(Op); 2666 assert(Store && Store->getValue().getValueType().isVector() && 2667 "Expected vector store"); 2668 2669 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2670 Store->getMemoryVT(), 2671 *Store->getMemOperand())) 2672 return SDValue(); 2673 2674 SDLoc DL(Op); 2675 SDValue StoredVal = Store->getValue(); 2676 MVT VT = StoredVal.getSimpleValueType(); 2677 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2678 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2679 "Unexpected unaligned RVV store type"); 2680 MVT NewVT = 2681 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2682 assert(NewVT.isValid() && 2683 "Expecting equally-sized RVV vector types to be legal"); 2684 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2685 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2686 Store->getPointerInfo(), Store->getOriginalAlign(), 2687 Store->getMemOperand()->getFlags()); 2688 } 2689 2690 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2691 SelectionDAG &DAG) const { 2692 switch (Op.getOpcode()) { 2693 default: 2694 report_fatal_error("unimplemented operand"); 2695 case ISD::GlobalAddress: 2696 return lowerGlobalAddress(Op, DAG); 2697 case ISD::BlockAddress: 2698 return lowerBlockAddress(Op, DAG); 2699 case ISD::ConstantPool: 2700 return lowerConstantPool(Op, DAG); 2701 case ISD::JumpTable: 2702 return lowerJumpTable(Op, DAG); 2703 case ISD::GlobalTLSAddress: 2704 return lowerGlobalTLSAddress(Op, DAG); 2705 case ISD::SELECT: 2706 return lowerSELECT(Op, DAG); 2707 case ISD::BRCOND: 2708 return lowerBRCOND(Op, DAG); 2709 case ISD::VASTART: 2710 return lowerVASTART(Op, DAG); 2711 case ISD::FRAMEADDR: 2712 return lowerFRAMEADDR(Op, DAG); 2713 case ISD::RETURNADDR: 2714 return lowerRETURNADDR(Op, DAG); 2715 case ISD::SHL_PARTS: 2716 return lowerShiftLeftParts(Op, DAG); 2717 case ISD::SRA_PARTS: 2718 return lowerShiftRightParts(Op, DAG, true); 2719 case ISD::SRL_PARTS: 2720 return lowerShiftRightParts(Op, DAG, false); 2721 case ISD::BITCAST: { 2722 SDLoc DL(Op); 2723 EVT VT = Op.getValueType(); 2724 SDValue Op0 = Op.getOperand(0); 2725 EVT Op0VT = Op0.getValueType(); 2726 MVT XLenVT = Subtarget.getXLenVT(); 2727 if (VT.isFixedLengthVector()) { 2728 // We can handle fixed length vector bitcasts with a simple replacement 2729 // in isel. 2730 if (Op0VT.isFixedLengthVector()) 2731 return Op; 2732 // When bitcasting from scalar to fixed-length vector, insert the scalar 2733 // into a one-element vector of the result type, and perform a vector 2734 // bitcast. 2735 if (!Op0VT.isVector()) { 2736 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2737 if (!isTypeLegal(BVT)) 2738 return SDValue(); 2739 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2740 DAG.getUNDEF(BVT), Op0, 2741 DAG.getConstant(0, DL, XLenVT))); 2742 } 2743 return SDValue(); 2744 } 2745 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2746 // thus: bitcast the vector to a one-element vector type whose element type 2747 // is the same as the result type, and extract the first element. 2748 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2749 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 2750 if (!isTypeLegal(BVT)) 2751 return SDValue(); 2752 SDValue BVec = DAG.getBitcast(BVT, Op0); 2753 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2754 DAG.getConstant(0, DL, XLenVT)); 2755 } 2756 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2757 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2758 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2759 return FPConv; 2760 } 2761 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2762 Subtarget.hasStdExtF()) { 2763 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2764 SDValue FPConv = 2765 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2766 return FPConv; 2767 } 2768 return SDValue(); 2769 } 2770 case ISD::INTRINSIC_WO_CHAIN: 2771 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2772 case ISD::INTRINSIC_W_CHAIN: 2773 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2774 case ISD::INTRINSIC_VOID: 2775 return LowerINTRINSIC_VOID(Op, DAG); 2776 case ISD::BSWAP: 2777 case ISD::BITREVERSE: { 2778 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2779 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2780 MVT VT = Op.getSimpleValueType(); 2781 SDLoc DL(Op); 2782 // Start with the maximum immediate value which is the bitwidth - 1. 2783 unsigned Imm = VT.getSizeInBits() - 1; 2784 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2785 if (Op.getOpcode() == ISD::BSWAP) 2786 Imm &= ~0x7U; 2787 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2788 DAG.getConstant(Imm, DL, VT)); 2789 } 2790 case ISD::FSHL: 2791 case ISD::FSHR: { 2792 MVT VT = Op.getSimpleValueType(); 2793 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2794 SDLoc DL(Op); 2795 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2796 return Op; 2797 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2798 // use log(XLen) bits. Mask the shift amount accordingly. 2799 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2800 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2801 DAG.getConstant(ShAmtWidth, DL, VT)); 2802 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2803 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2804 } 2805 case ISD::TRUNCATE: { 2806 SDLoc DL(Op); 2807 MVT VT = Op.getSimpleValueType(); 2808 // Only custom-lower vector truncates 2809 if (!VT.isVector()) 2810 return Op; 2811 2812 // Truncates to mask types are handled differently 2813 if (VT.getVectorElementType() == MVT::i1) 2814 return lowerVectorMaskTrunc(Op, DAG); 2815 2816 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2817 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2818 // truncate by one power of two at a time. 2819 MVT DstEltVT = VT.getVectorElementType(); 2820 2821 SDValue Src = Op.getOperand(0); 2822 MVT SrcVT = Src.getSimpleValueType(); 2823 MVT SrcEltVT = SrcVT.getVectorElementType(); 2824 2825 assert(DstEltVT.bitsLT(SrcEltVT) && 2826 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2827 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2828 "Unexpected vector truncate lowering"); 2829 2830 MVT ContainerVT = SrcVT; 2831 if (SrcVT.isFixedLengthVector()) { 2832 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2833 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2834 } 2835 2836 SDValue Result = Src; 2837 SDValue Mask, VL; 2838 std::tie(Mask, VL) = 2839 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2840 LLVMContext &Context = *DAG.getContext(); 2841 const ElementCount Count = ContainerVT.getVectorElementCount(); 2842 do { 2843 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2844 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2845 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2846 Mask, VL); 2847 } while (SrcEltVT != DstEltVT); 2848 2849 if (SrcVT.isFixedLengthVector()) 2850 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2851 2852 return Result; 2853 } 2854 case ISD::ANY_EXTEND: 2855 case ISD::ZERO_EXTEND: 2856 if (Op.getOperand(0).getValueType().isVector() && 2857 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2858 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2859 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2860 case ISD::SIGN_EXTEND: 2861 if (Op.getOperand(0).getValueType().isVector() && 2862 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2863 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2864 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2865 case ISD::SPLAT_VECTOR_PARTS: 2866 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2867 case ISD::INSERT_VECTOR_ELT: 2868 return lowerINSERT_VECTOR_ELT(Op, DAG); 2869 case ISD::EXTRACT_VECTOR_ELT: 2870 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2871 case ISD::VSCALE: { 2872 MVT VT = Op.getSimpleValueType(); 2873 SDLoc DL(Op); 2874 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2875 // We define our scalable vector types for lmul=1 to use a 64 bit known 2876 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2877 // vscale as VLENB / 8. 2878 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 2879 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2880 // We assume VLENB is a multiple of 8. We manually choose the best shift 2881 // here because SimplifyDemandedBits isn't always able to simplify it. 2882 uint64_t Val = Op.getConstantOperandVal(0); 2883 if (isPowerOf2_64(Val)) { 2884 uint64_t Log2 = Log2_64(Val); 2885 if (Log2 < 3) 2886 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2887 DAG.getConstant(3 - Log2, DL, VT)); 2888 if (Log2 > 3) 2889 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2890 DAG.getConstant(Log2 - 3, DL, VT)); 2891 return VLENB; 2892 } 2893 // If the multiplier is a multiple of 8, scale it down to avoid needing 2894 // to shift the VLENB value. 2895 if ((Val % 8) == 0) 2896 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2897 DAG.getConstant(Val / 8, DL, VT)); 2898 } 2899 2900 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2901 DAG.getConstant(3, DL, VT)); 2902 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2903 } 2904 case ISD::FPOWI: { 2905 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 2906 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 2907 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 2908 Op.getOperand(1).getValueType() == MVT::i32) { 2909 SDLoc DL(Op); 2910 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 2911 SDValue Powi = 2912 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 2913 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 2914 DAG.getIntPtrConstant(0, DL)); 2915 } 2916 return SDValue(); 2917 } 2918 case ISD::FP_EXTEND: { 2919 // RVV can only do fp_extend to types double the size as the source. We 2920 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2921 // via f32. 2922 SDLoc DL(Op); 2923 MVT VT = Op.getSimpleValueType(); 2924 SDValue Src = Op.getOperand(0); 2925 MVT SrcVT = Src.getSimpleValueType(); 2926 2927 // Prepare any fixed-length vector operands. 2928 MVT ContainerVT = VT; 2929 if (SrcVT.isFixedLengthVector()) { 2930 ContainerVT = getContainerForFixedLengthVector(VT); 2931 MVT SrcContainerVT = 2932 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2933 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2934 } 2935 2936 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2937 SrcVT.getVectorElementType() != MVT::f16) { 2938 // For scalable vectors, we only need to close the gap between 2939 // vXf16->vXf64. 2940 if (!VT.isFixedLengthVector()) 2941 return Op; 2942 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2943 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2944 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2945 } 2946 2947 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2948 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2949 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2950 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2951 2952 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2953 DL, DAG, Subtarget); 2954 if (VT.isFixedLengthVector()) 2955 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2956 return Extend; 2957 } 2958 case ISD::FP_ROUND: { 2959 // RVV can only do fp_round to types half the size as the source. We 2960 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2961 // conversion instruction. 2962 SDLoc DL(Op); 2963 MVT VT = Op.getSimpleValueType(); 2964 SDValue Src = Op.getOperand(0); 2965 MVT SrcVT = Src.getSimpleValueType(); 2966 2967 // Prepare any fixed-length vector operands. 2968 MVT ContainerVT = VT; 2969 if (VT.isFixedLengthVector()) { 2970 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2971 ContainerVT = 2972 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2973 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2974 } 2975 2976 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2977 SrcVT.getVectorElementType() != MVT::f64) { 2978 // For scalable vectors, we only need to close the gap between 2979 // vXf64<->vXf16. 2980 if (!VT.isFixedLengthVector()) 2981 return Op; 2982 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2983 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2984 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2985 } 2986 2987 SDValue Mask, VL; 2988 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2989 2990 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2991 SDValue IntermediateRound = 2992 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2993 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2994 DL, DAG, Subtarget); 2995 2996 if (VT.isFixedLengthVector()) 2997 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2998 return Round; 2999 } 3000 case ISD::FP_TO_SINT: 3001 case ISD::FP_TO_UINT: 3002 case ISD::SINT_TO_FP: 3003 case ISD::UINT_TO_FP: { 3004 // RVV can only do fp<->int conversions to types half/double the size as 3005 // the source. We custom-lower any conversions that do two hops into 3006 // sequences. 3007 MVT VT = Op.getSimpleValueType(); 3008 if (!VT.isVector()) 3009 return Op; 3010 SDLoc DL(Op); 3011 SDValue Src = Op.getOperand(0); 3012 MVT EltVT = VT.getVectorElementType(); 3013 MVT SrcVT = Src.getSimpleValueType(); 3014 MVT SrcEltVT = SrcVT.getVectorElementType(); 3015 unsigned EltSize = EltVT.getSizeInBits(); 3016 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3017 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3018 "Unexpected vector element types"); 3019 3020 bool IsInt2FP = SrcEltVT.isInteger(); 3021 // Widening conversions 3022 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3023 if (IsInt2FP) { 3024 // Do a regular integer sign/zero extension then convert to float. 3025 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3026 VT.getVectorElementCount()); 3027 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3028 ? ISD::ZERO_EXTEND 3029 : ISD::SIGN_EXTEND; 3030 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3031 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3032 } 3033 // FP2Int 3034 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3035 // Do one doubling fp_extend then complete the operation by converting 3036 // to int. 3037 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3038 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3039 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3040 } 3041 3042 // Narrowing conversions 3043 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3044 if (IsInt2FP) { 3045 // One narrowing int_to_fp, then an fp_round. 3046 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3047 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3048 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3049 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3050 } 3051 // FP2Int 3052 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3053 // representable by the integer, the result is poison. 3054 MVT IVecVT = 3055 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3056 VT.getVectorElementCount()); 3057 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3058 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3059 } 3060 3061 // Scalable vectors can exit here. Patterns will handle equally-sized 3062 // conversions halving/doubling ones. 3063 if (!VT.isFixedLengthVector()) 3064 return Op; 3065 3066 // For fixed-length vectors we lower to a custom "VL" node. 3067 unsigned RVVOpc = 0; 3068 switch (Op.getOpcode()) { 3069 default: 3070 llvm_unreachable("Impossible opcode"); 3071 case ISD::FP_TO_SINT: 3072 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3073 break; 3074 case ISD::FP_TO_UINT: 3075 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3076 break; 3077 case ISD::SINT_TO_FP: 3078 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3079 break; 3080 case ISD::UINT_TO_FP: 3081 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3082 break; 3083 } 3084 3085 MVT ContainerVT, SrcContainerVT; 3086 // Derive the reference container type from the larger vector type. 3087 if (SrcEltSize > EltSize) { 3088 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3089 ContainerVT = 3090 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3091 } else { 3092 ContainerVT = getContainerForFixedLengthVector(VT); 3093 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3094 } 3095 3096 SDValue Mask, VL; 3097 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3098 3099 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3100 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3101 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3102 } 3103 case ISD::FP_TO_SINT_SAT: 3104 case ISD::FP_TO_UINT_SAT: 3105 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3106 case ISD::FTRUNC: 3107 case ISD::FCEIL: 3108 case ISD::FFLOOR: 3109 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3110 case ISD::VECREDUCE_ADD: 3111 case ISD::VECREDUCE_UMAX: 3112 case ISD::VECREDUCE_SMAX: 3113 case ISD::VECREDUCE_UMIN: 3114 case ISD::VECREDUCE_SMIN: 3115 return lowerVECREDUCE(Op, DAG); 3116 case ISD::VECREDUCE_AND: 3117 case ISD::VECREDUCE_OR: 3118 case ISD::VECREDUCE_XOR: 3119 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3120 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3121 return lowerVECREDUCE(Op, DAG); 3122 case ISD::VECREDUCE_FADD: 3123 case ISD::VECREDUCE_SEQ_FADD: 3124 case ISD::VECREDUCE_FMIN: 3125 case ISD::VECREDUCE_FMAX: 3126 return lowerFPVECREDUCE(Op, DAG); 3127 case ISD::VP_REDUCE_ADD: 3128 case ISD::VP_REDUCE_UMAX: 3129 case ISD::VP_REDUCE_SMAX: 3130 case ISD::VP_REDUCE_UMIN: 3131 case ISD::VP_REDUCE_SMIN: 3132 case ISD::VP_REDUCE_FADD: 3133 case ISD::VP_REDUCE_SEQ_FADD: 3134 case ISD::VP_REDUCE_FMIN: 3135 case ISD::VP_REDUCE_FMAX: 3136 return lowerVPREDUCE(Op, DAG); 3137 case ISD::VP_REDUCE_AND: 3138 case ISD::VP_REDUCE_OR: 3139 case ISD::VP_REDUCE_XOR: 3140 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3141 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3142 return lowerVPREDUCE(Op, DAG); 3143 case ISD::INSERT_SUBVECTOR: 3144 return lowerINSERT_SUBVECTOR(Op, DAG); 3145 case ISD::EXTRACT_SUBVECTOR: 3146 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3147 case ISD::STEP_VECTOR: 3148 return lowerSTEP_VECTOR(Op, DAG); 3149 case ISD::VECTOR_REVERSE: 3150 return lowerVECTOR_REVERSE(Op, DAG); 3151 case ISD::BUILD_VECTOR: 3152 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3153 case ISD::SPLAT_VECTOR: 3154 if (Op.getValueType().getVectorElementType() == MVT::i1) 3155 return lowerVectorMaskSplat(Op, DAG); 3156 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 3157 case ISD::VECTOR_SHUFFLE: 3158 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3159 case ISD::CONCAT_VECTORS: { 3160 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3161 // better than going through the stack, as the default expansion does. 3162 SDLoc DL(Op); 3163 MVT VT = Op.getSimpleValueType(); 3164 unsigned NumOpElts = 3165 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3166 SDValue Vec = DAG.getUNDEF(VT); 3167 for (const auto &OpIdx : enumerate(Op->ops())) 3168 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 3169 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3170 return Vec; 3171 } 3172 case ISD::LOAD: 3173 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3174 return V; 3175 if (Op.getValueType().isFixedLengthVector()) 3176 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3177 return Op; 3178 case ISD::STORE: 3179 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3180 return V; 3181 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3182 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3183 return Op; 3184 case ISD::MLOAD: 3185 case ISD::VP_LOAD: 3186 return lowerMaskedLoad(Op, DAG); 3187 case ISD::MSTORE: 3188 case ISD::VP_STORE: 3189 return lowerMaskedStore(Op, DAG); 3190 case ISD::SETCC: 3191 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3192 case ISD::ADD: 3193 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3194 case ISD::SUB: 3195 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3196 case ISD::MUL: 3197 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3198 case ISD::MULHS: 3199 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3200 case ISD::MULHU: 3201 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3202 case ISD::AND: 3203 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3204 RISCVISD::AND_VL); 3205 case ISD::OR: 3206 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3207 RISCVISD::OR_VL); 3208 case ISD::XOR: 3209 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3210 RISCVISD::XOR_VL); 3211 case ISD::SDIV: 3212 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3213 case ISD::SREM: 3214 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3215 case ISD::UDIV: 3216 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3217 case ISD::UREM: 3218 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3219 case ISD::SHL: 3220 case ISD::SRA: 3221 case ISD::SRL: 3222 if (Op.getSimpleValueType().isFixedLengthVector()) 3223 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3224 // This can be called for an i32 shift amount that needs to be promoted. 3225 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3226 "Unexpected custom legalisation"); 3227 return SDValue(); 3228 case ISD::SADDSAT: 3229 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3230 case ISD::UADDSAT: 3231 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3232 case ISD::SSUBSAT: 3233 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3234 case ISD::USUBSAT: 3235 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3236 case ISD::FADD: 3237 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3238 case ISD::FSUB: 3239 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3240 case ISD::FMUL: 3241 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3242 case ISD::FDIV: 3243 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3244 case ISD::FNEG: 3245 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3246 case ISD::FABS: 3247 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3248 case ISD::FSQRT: 3249 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3250 case ISD::FMA: 3251 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3252 case ISD::SMIN: 3253 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3254 case ISD::SMAX: 3255 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3256 case ISD::UMIN: 3257 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3258 case ISD::UMAX: 3259 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3260 case ISD::FMINNUM: 3261 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3262 case ISD::FMAXNUM: 3263 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3264 case ISD::ABS: 3265 return lowerABS(Op, DAG); 3266 case ISD::CTLZ_ZERO_UNDEF: 3267 case ISD::CTTZ_ZERO_UNDEF: 3268 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3269 case ISD::VSELECT: 3270 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3271 case ISD::FCOPYSIGN: 3272 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3273 case ISD::MGATHER: 3274 case ISD::VP_GATHER: 3275 return lowerMaskedGather(Op, DAG); 3276 case ISD::MSCATTER: 3277 case ISD::VP_SCATTER: 3278 return lowerMaskedScatter(Op, DAG); 3279 case ISD::FLT_ROUNDS_: 3280 return lowerGET_ROUNDING(Op, DAG); 3281 case ISD::SET_ROUNDING: 3282 return lowerSET_ROUNDING(Op, DAG); 3283 case ISD::VP_SELECT: 3284 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3285 case ISD::VP_ADD: 3286 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3287 case ISD::VP_SUB: 3288 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3289 case ISD::VP_MUL: 3290 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3291 case ISD::VP_SDIV: 3292 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3293 case ISD::VP_UDIV: 3294 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3295 case ISD::VP_SREM: 3296 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3297 case ISD::VP_UREM: 3298 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3299 case ISD::VP_AND: 3300 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3301 case ISD::VP_OR: 3302 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3303 case ISD::VP_XOR: 3304 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3305 case ISD::VP_ASHR: 3306 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3307 case ISD::VP_LSHR: 3308 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3309 case ISD::VP_SHL: 3310 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3311 case ISD::VP_FADD: 3312 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3313 case ISD::VP_FSUB: 3314 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3315 case ISD::VP_FMUL: 3316 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3317 case ISD::VP_FDIV: 3318 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3319 } 3320 } 3321 3322 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3323 SelectionDAG &DAG, unsigned Flags) { 3324 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3325 } 3326 3327 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3328 SelectionDAG &DAG, unsigned Flags) { 3329 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3330 Flags); 3331 } 3332 3333 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3334 SelectionDAG &DAG, unsigned Flags) { 3335 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3336 N->getOffset(), Flags); 3337 } 3338 3339 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3340 SelectionDAG &DAG, unsigned Flags) { 3341 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3342 } 3343 3344 template <class NodeTy> 3345 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3346 bool IsLocal) const { 3347 SDLoc DL(N); 3348 EVT Ty = getPointerTy(DAG.getDataLayout()); 3349 3350 if (isPositionIndependent()) { 3351 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3352 if (IsLocal) 3353 // Use PC-relative addressing to access the symbol. This generates the 3354 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3355 // %pcrel_lo(auipc)). 3356 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3357 3358 // Use PC-relative addressing to access the GOT for this symbol, then load 3359 // the address from the GOT. This generates the pattern (PseudoLA sym), 3360 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3361 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3362 } 3363 3364 switch (getTargetMachine().getCodeModel()) { 3365 default: 3366 report_fatal_error("Unsupported code model for lowering"); 3367 case CodeModel::Small: { 3368 // Generate a sequence for accessing addresses within the first 2 GiB of 3369 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3370 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3371 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3372 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3373 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3374 } 3375 case CodeModel::Medium: { 3376 // Generate a sequence for accessing addresses within any 2GiB range within 3377 // the address space. This generates the pattern (PseudoLLA sym), which 3378 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3379 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3380 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3381 } 3382 } 3383 } 3384 3385 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3386 SelectionDAG &DAG) const { 3387 SDLoc DL(Op); 3388 EVT Ty = Op.getValueType(); 3389 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3390 int64_t Offset = N->getOffset(); 3391 MVT XLenVT = Subtarget.getXLenVT(); 3392 3393 const GlobalValue *GV = N->getGlobal(); 3394 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3395 SDValue Addr = getAddr(N, DAG, IsLocal); 3396 3397 // In order to maximise the opportunity for common subexpression elimination, 3398 // emit a separate ADD node for the global address offset instead of folding 3399 // it in the global address node. Later peephole optimisations may choose to 3400 // fold it back in when profitable. 3401 if (Offset != 0) 3402 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3403 DAG.getConstant(Offset, DL, XLenVT)); 3404 return Addr; 3405 } 3406 3407 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3408 SelectionDAG &DAG) const { 3409 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3410 3411 return getAddr(N, DAG); 3412 } 3413 3414 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3415 SelectionDAG &DAG) const { 3416 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3417 3418 return getAddr(N, DAG); 3419 } 3420 3421 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3422 SelectionDAG &DAG) const { 3423 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3424 3425 return getAddr(N, DAG); 3426 } 3427 3428 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3429 SelectionDAG &DAG, 3430 bool UseGOT) const { 3431 SDLoc DL(N); 3432 EVT Ty = getPointerTy(DAG.getDataLayout()); 3433 const GlobalValue *GV = N->getGlobal(); 3434 MVT XLenVT = Subtarget.getXLenVT(); 3435 3436 if (UseGOT) { 3437 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3438 // load the address from the GOT and add the thread pointer. This generates 3439 // the pattern (PseudoLA_TLS_IE sym), which expands to 3440 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3441 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3442 SDValue Load = 3443 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3444 3445 // Add the thread pointer. 3446 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3447 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3448 } 3449 3450 // Generate a sequence for accessing the address relative to the thread 3451 // pointer, with the appropriate adjustment for the thread pointer offset. 3452 // This generates the pattern 3453 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3454 SDValue AddrHi = 3455 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3456 SDValue AddrAdd = 3457 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3458 SDValue AddrLo = 3459 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3460 3461 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3462 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3463 SDValue MNAdd = SDValue( 3464 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3465 0); 3466 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3467 } 3468 3469 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3470 SelectionDAG &DAG) const { 3471 SDLoc DL(N); 3472 EVT Ty = getPointerTy(DAG.getDataLayout()); 3473 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3474 const GlobalValue *GV = N->getGlobal(); 3475 3476 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3477 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3478 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3479 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3480 SDValue Load = 3481 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3482 3483 // Prepare argument list to generate call. 3484 ArgListTy Args; 3485 ArgListEntry Entry; 3486 Entry.Node = Load; 3487 Entry.Ty = CallTy; 3488 Args.push_back(Entry); 3489 3490 // Setup call to __tls_get_addr. 3491 TargetLowering::CallLoweringInfo CLI(DAG); 3492 CLI.setDebugLoc(DL) 3493 .setChain(DAG.getEntryNode()) 3494 .setLibCallee(CallingConv::C, CallTy, 3495 DAG.getExternalSymbol("__tls_get_addr", Ty), 3496 std::move(Args)); 3497 3498 return LowerCallTo(CLI).first; 3499 } 3500 3501 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3502 SelectionDAG &DAG) const { 3503 SDLoc DL(Op); 3504 EVT Ty = Op.getValueType(); 3505 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3506 int64_t Offset = N->getOffset(); 3507 MVT XLenVT = Subtarget.getXLenVT(); 3508 3509 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3510 3511 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3512 CallingConv::GHC) 3513 report_fatal_error("In GHC calling convention TLS is not supported"); 3514 3515 SDValue Addr; 3516 switch (Model) { 3517 case TLSModel::LocalExec: 3518 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3519 break; 3520 case TLSModel::InitialExec: 3521 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3522 break; 3523 case TLSModel::LocalDynamic: 3524 case TLSModel::GeneralDynamic: 3525 Addr = getDynamicTLSAddr(N, DAG); 3526 break; 3527 } 3528 3529 // In order to maximise the opportunity for common subexpression elimination, 3530 // emit a separate ADD node for the global address offset instead of folding 3531 // it in the global address node. Later peephole optimisations may choose to 3532 // fold it back in when profitable. 3533 if (Offset != 0) 3534 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3535 DAG.getConstant(Offset, DL, XLenVT)); 3536 return Addr; 3537 } 3538 3539 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3540 SDValue CondV = Op.getOperand(0); 3541 SDValue TrueV = Op.getOperand(1); 3542 SDValue FalseV = Op.getOperand(2); 3543 SDLoc DL(Op); 3544 MVT VT = Op.getSimpleValueType(); 3545 MVT XLenVT = Subtarget.getXLenVT(); 3546 3547 // Lower vector SELECTs to VSELECTs by splatting the condition. 3548 if (VT.isVector()) { 3549 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3550 SDValue CondSplat = VT.isScalableVector() 3551 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3552 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3553 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3554 } 3555 3556 // If the result type is XLenVT and CondV is the output of a SETCC node 3557 // which also operated on XLenVT inputs, then merge the SETCC node into the 3558 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3559 // compare+branch instructions. i.e.: 3560 // (select (setcc lhs, rhs, cc), truev, falsev) 3561 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3562 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3563 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3564 SDValue LHS = CondV.getOperand(0); 3565 SDValue RHS = CondV.getOperand(1); 3566 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3567 ISD::CondCode CCVal = CC->get(); 3568 3569 // Special case for a select of 2 constants that have a diffence of 1. 3570 // Normally this is done by DAGCombine, but if the select is introduced by 3571 // type legalization or op legalization, we miss it. Restricting to SETLT 3572 // case for now because that is what signed saturating add/sub need. 3573 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3574 // but we would probably want to swap the true/false values if the condition 3575 // is SETGE/SETLE to avoid an XORI. 3576 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3577 CCVal == ISD::SETLT) { 3578 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3579 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3580 if (TrueVal - 1 == FalseVal) 3581 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3582 if (TrueVal + 1 == FalseVal) 3583 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3584 } 3585 3586 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3587 3588 SDValue TargetCC = DAG.getCondCode(CCVal); 3589 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3590 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3591 } 3592 3593 // Otherwise: 3594 // (select condv, truev, falsev) 3595 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3596 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3597 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3598 3599 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3600 3601 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3602 } 3603 3604 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3605 SDValue CondV = Op.getOperand(1); 3606 SDLoc DL(Op); 3607 MVT XLenVT = Subtarget.getXLenVT(); 3608 3609 if (CondV.getOpcode() == ISD::SETCC && 3610 CondV.getOperand(0).getValueType() == XLenVT) { 3611 SDValue LHS = CondV.getOperand(0); 3612 SDValue RHS = CondV.getOperand(1); 3613 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3614 3615 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3616 3617 SDValue TargetCC = DAG.getCondCode(CCVal); 3618 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3619 LHS, RHS, TargetCC, Op.getOperand(2)); 3620 } 3621 3622 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3623 CondV, DAG.getConstant(0, DL, XLenVT), 3624 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3625 } 3626 3627 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3628 MachineFunction &MF = DAG.getMachineFunction(); 3629 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3630 3631 SDLoc DL(Op); 3632 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3633 getPointerTy(MF.getDataLayout())); 3634 3635 // vastart just stores the address of the VarArgsFrameIndex slot into the 3636 // memory location argument. 3637 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3638 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3639 MachinePointerInfo(SV)); 3640 } 3641 3642 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3643 SelectionDAG &DAG) const { 3644 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3645 MachineFunction &MF = DAG.getMachineFunction(); 3646 MachineFrameInfo &MFI = MF.getFrameInfo(); 3647 MFI.setFrameAddressIsTaken(true); 3648 Register FrameReg = RI.getFrameRegister(MF); 3649 int XLenInBytes = Subtarget.getXLen() / 8; 3650 3651 EVT VT = Op.getValueType(); 3652 SDLoc DL(Op); 3653 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3654 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3655 while (Depth--) { 3656 int Offset = -(XLenInBytes * 2); 3657 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3658 DAG.getIntPtrConstant(Offset, DL)); 3659 FrameAddr = 3660 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3661 } 3662 return FrameAddr; 3663 } 3664 3665 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3666 SelectionDAG &DAG) const { 3667 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3668 MachineFunction &MF = DAG.getMachineFunction(); 3669 MachineFrameInfo &MFI = MF.getFrameInfo(); 3670 MFI.setReturnAddressIsTaken(true); 3671 MVT XLenVT = Subtarget.getXLenVT(); 3672 int XLenInBytes = Subtarget.getXLen() / 8; 3673 3674 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3675 return SDValue(); 3676 3677 EVT VT = Op.getValueType(); 3678 SDLoc DL(Op); 3679 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3680 if (Depth) { 3681 int Off = -XLenInBytes; 3682 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3683 SDValue Offset = DAG.getConstant(Off, DL, VT); 3684 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3685 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3686 MachinePointerInfo()); 3687 } 3688 3689 // Return the value of the return address register, marking it an implicit 3690 // live-in. 3691 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3692 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3693 } 3694 3695 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3696 SelectionDAG &DAG) const { 3697 SDLoc DL(Op); 3698 SDValue Lo = Op.getOperand(0); 3699 SDValue Hi = Op.getOperand(1); 3700 SDValue Shamt = Op.getOperand(2); 3701 EVT VT = Lo.getValueType(); 3702 3703 // if Shamt-XLEN < 0: // Shamt < XLEN 3704 // Lo = Lo << Shamt 3705 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3706 // else: 3707 // Lo = 0 3708 // Hi = Lo << (Shamt-XLEN) 3709 3710 SDValue Zero = DAG.getConstant(0, DL, VT); 3711 SDValue One = DAG.getConstant(1, DL, VT); 3712 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3713 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3714 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3715 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3716 3717 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3718 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3719 SDValue ShiftRightLo = 3720 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3721 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3722 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3723 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3724 3725 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3726 3727 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3728 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3729 3730 SDValue Parts[2] = {Lo, Hi}; 3731 return DAG.getMergeValues(Parts, DL); 3732 } 3733 3734 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3735 bool IsSRA) const { 3736 SDLoc DL(Op); 3737 SDValue Lo = Op.getOperand(0); 3738 SDValue Hi = Op.getOperand(1); 3739 SDValue Shamt = Op.getOperand(2); 3740 EVT VT = Lo.getValueType(); 3741 3742 // SRA expansion: 3743 // if Shamt-XLEN < 0: // Shamt < XLEN 3744 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3745 // Hi = Hi >>s Shamt 3746 // else: 3747 // Lo = Hi >>s (Shamt-XLEN); 3748 // Hi = Hi >>s (XLEN-1) 3749 // 3750 // SRL expansion: 3751 // if Shamt-XLEN < 0: // Shamt < XLEN 3752 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3753 // Hi = Hi >>u Shamt 3754 // else: 3755 // Lo = Hi >>u (Shamt-XLEN); 3756 // Hi = 0; 3757 3758 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3759 3760 SDValue Zero = DAG.getConstant(0, DL, VT); 3761 SDValue One = DAG.getConstant(1, DL, VT); 3762 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3763 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3764 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3765 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3766 3767 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3768 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3769 SDValue ShiftLeftHi = 3770 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3771 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3772 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3773 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3774 SDValue HiFalse = 3775 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3776 3777 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3778 3779 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3780 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3781 3782 SDValue Parts[2] = {Lo, Hi}; 3783 return DAG.getMergeValues(Parts, DL); 3784 } 3785 3786 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3787 // legal equivalently-sized i8 type, so we can use that as a go-between. 3788 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3789 SelectionDAG &DAG) const { 3790 SDLoc DL(Op); 3791 MVT VT = Op.getSimpleValueType(); 3792 SDValue SplatVal = Op.getOperand(0); 3793 // All-zeros or all-ones splats are handled specially. 3794 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3795 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3796 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3797 } 3798 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3799 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3800 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3801 } 3802 MVT XLenVT = Subtarget.getXLenVT(); 3803 assert(SplatVal.getValueType() == XLenVT && 3804 "Unexpected type for i1 splat value"); 3805 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3806 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3807 DAG.getConstant(1, DL, XLenVT)); 3808 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3809 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3810 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3811 } 3812 3813 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3814 // illegal (currently only vXi64 RV32). 3815 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3816 // them to SPLAT_VECTOR_I64 3817 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3818 SelectionDAG &DAG) const { 3819 SDLoc DL(Op); 3820 MVT VecVT = Op.getSimpleValueType(); 3821 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3822 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3823 3824 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3825 SDValue Lo = Op.getOperand(0); 3826 SDValue Hi = Op.getOperand(1); 3827 3828 if (VecVT.isFixedLengthVector()) { 3829 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3830 SDLoc DL(Op); 3831 SDValue Mask, VL; 3832 std::tie(Mask, VL) = 3833 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3834 3835 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3836 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3837 } 3838 3839 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3840 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3841 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3842 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3843 // node in order to try and match RVV vector/scalar instructions. 3844 if ((LoC >> 31) == HiC) 3845 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3846 } 3847 3848 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3849 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3850 isa<ConstantSDNode>(Hi.getOperand(1)) && 3851 Hi.getConstantOperandVal(1) == 31) 3852 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3853 3854 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3855 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3856 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3857 } 3858 3859 // Custom-lower extensions from mask vectors by using a vselect either with 1 3860 // for zero/any-extension or -1 for sign-extension: 3861 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3862 // Note that any-extension is lowered identically to zero-extension. 3863 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3864 int64_t ExtTrueVal) const { 3865 SDLoc DL(Op); 3866 MVT VecVT = Op.getSimpleValueType(); 3867 SDValue Src = Op.getOperand(0); 3868 // Only custom-lower extensions from mask types 3869 assert(Src.getValueType().isVector() && 3870 Src.getValueType().getVectorElementType() == MVT::i1); 3871 3872 MVT XLenVT = Subtarget.getXLenVT(); 3873 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3874 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3875 3876 if (VecVT.isScalableVector()) { 3877 // Be careful not to introduce illegal scalar types at this stage, and be 3878 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3879 // illegal and must be expanded. Since we know that the constants are 3880 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3881 bool IsRV32E64 = 3882 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3883 3884 if (!IsRV32E64) { 3885 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3886 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3887 } else { 3888 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3889 SplatTrueVal = 3890 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3891 } 3892 3893 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3894 } 3895 3896 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3897 MVT I1ContainerVT = 3898 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3899 3900 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3901 3902 SDValue Mask, VL; 3903 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3904 3905 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3906 SplatTrueVal = 3907 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3908 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3909 SplatTrueVal, SplatZero, VL); 3910 3911 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3912 } 3913 3914 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3915 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3916 MVT ExtVT = Op.getSimpleValueType(); 3917 // Only custom-lower extensions from fixed-length vector types. 3918 if (!ExtVT.isFixedLengthVector()) 3919 return Op; 3920 MVT VT = Op.getOperand(0).getSimpleValueType(); 3921 // Grab the canonical container type for the extended type. Infer the smaller 3922 // type from that to ensure the same number of vector elements, as we know 3923 // the LMUL will be sufficient to hold the smaller type. 3924 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3925 // Get the extended container type manually to ensure the same number of 3926 // vector elements between source and dest. 3927 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3928 ContainerExtVT.getVectorElementCount()); 3929 3930 SDValue Op1 = 3931 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3932 3933 SDLoc DL(Op); 3934 SDValue Mask, VL; 3935 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3936 3937 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3938 3939 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3940 } 3941 3942 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3943 // setcc operation: 3944 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3945 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3946 SelectionDAG &DAG) const { 3947 SDLoc DL(Op); 3948 EVT MaskVT = Op.getValueType(); 3949 // Only expect to custom-lower truncations to mask types 3950 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3951 "Unexpected type for vector mask lowering"); 3952 SDValue Src = Op.getOperand(0); 3953 MVT VecVT = Src.getSimpleValueType(); 3954 3955 // If this is a fixed vector, we need to convert it to a scalable vector. 3956 MVT ContainerVT = VecVT; 3957 if (VecVT.isFixedLengthVector()) { 3958 ContainerVT = getContainerForFixedLengthVector(VecVT); 3959 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3960 } 3961 3962 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3963 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3964 3965 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3966 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3967 3968 if (VecVT.isScalableVector()) { 3969 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3970 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3971 } 3972 3973 SDValue Mask, VL; 3974 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3975 3976 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3977 SDValue Trunc = 3978 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3979 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3980 DAG.getCondCode(ISD::SETNE), Mask, VL); 3981 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3982 } 3983 3984 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3985 // first position of a vector, and that vector is slid up to the insert index. 3986 // By limiting the active vector length to index+1 and merging with the 3987 // original vector (with an undisturbed tail policy for elements >= VL), we 3988 // achieve the desired result of leaving all elements untouched except the one 3989 // at VL-1, which is replaced with the desired value. 3990 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3991 SelectionDAG &DAG) const { 3992 SDLoc DL(Op); 3993 MVT VecVT = Op.getSimpleValueType(); 3994 SDValue Vec = Op.getOperand(0); 3995 SDValue Val = Op.getOperand(1); 3996 SDValue Idx = Op.getOperand(2); 3997 3998 if (VecVT.getVectorElementType() == MVT::i1) { 3999 // FIXME: For now we just promote to an i8 vector and insert into that, 4000 // but this is probably not optimal. 4001 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4002 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4003 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4004 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4005 } 4006 4007 MVT ContainerVT = VecVT; 4008 // If the operand is a fixed-length vector, convert to a scalable one. 4009 if (VecVT.isFixedLengthVector()) { 4010 ContainerVT = getContainerForFixedLengthVector(VecVT); 4011 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4012 } 4013 4014 MVT XLenVT = Subtarget.getXLenVT(); 4015 4016 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4017 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4018 // Even i64-element vectors on RV32 can be lowered without scalar 4019 // legalization if the most-significant 32 bits of the value are not affected 4020 // by the sign-extension of the lower 32 bits. 4021 // TODO: We could also catch sign extensions of a 32-bit value. 4022 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4023 const auto *CVal = cast<ConstantSDNode>(Val); 4024 if (isInt<32>(CVal->getSExtValue())) { 4025 IsLegalInsert = true; 4026 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4027 } 4028 } 4029 4030 SDValue Mask, VL; 4031 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4032 4033 SDValue ValInVec; 4034 4035 if (IsLegalInsert) { 4036 unsigned Opc = 4037 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4038 if (isNullConstant(Idx)) { 4039 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4040 if (!VecVT.isFixedLengthVector()) 4041 return Vec; 4042 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4043 } 4044 ValInVec = 4045 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4046 } else { 4047 // On RV32, i64-element vectors must be specially handled to place the 4048 // value at element 0, by using two vslide1up instructions in sequence on 4049 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4050 // this. 4051 SDValue One = DAG.getConstant(1, DL, XLenVT); 4052 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4053 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4054 MVT I32ContainerVT = 4055 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4056 SDValue I32Mask = 4057 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4058 // Limit the active VL to two. 4059 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4060 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4061 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4062 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 4063 InsertI64VL); 4064 // First slide in the hi value, then the lo in underneath it. 4065 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4066 ValHi, I32Mask, InsertI64VL); 4067 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 4068 ValLo, I32Mask, InsertI64VL); 4069 // Bitcast back to the right container type. 4070 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4071 } 4072 4073 // Now that the value is in a vector, slide it into position. 4074 SDValue InsertVL = 4075 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4076 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4077 ValInVec, Idx, Mask, InsertVL); 4078 if (!VecVT.isFixedLengthVector()) 4079 return Slideup; 4080 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4081 } 4082 4083 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4084 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4085 // types this is done using VMV_X_S to allow us to glean information about the 4086 // sign bits of the result. 4087 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4088 SelectionDAG &DAG) const { 4089 SDLoc DL(Op); 4090 SDValue Idx = Op.getOperand(1); 4091 SDValue Vec = Op.getOperand(0); 4092 EVT EltVT = Op.getValueType(); 4093 MVT VecVT = Vec.getSimpleValueType(); 4094 MVT XLenVT = Subtarget.getXLenVT(); 4095 4096 if (VecVT.getVectorElementType() == MVT::i1) { 4097 // FIXME: For now we just promote to an i8 vector and extract from that, 4098 // but this is probably not optimal. 4099 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4100 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4101 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4102 } 4103 4104 // If this is a fixed vector, we need to convert it to a scalable vector. 4105 MVT ContainerVT = VecVT; 4106 if (VecVT.isFixedLengthVector()) { 4107 ContainerVT = getContainerForFixedLengthVector(VecVT); 4108 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4109 } 4110 4111 // If the index is 0, the vector is already in the right position. 4112 if (!isNullConstant(Idx)) { 4113 // Use a VL of 1 to avoid processing more elements than we need. 4114 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4115 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4116 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4117 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4118 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4119 } 4120 4121 if (!EltVT.isInteger()) { 4122 // Floating-point extracts are handled in TableGen. 4123 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4124 DAG.getConstant(0, DL, XLenVT)); 4125 } 4126 4127 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4128 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4129 } 4130 4131 // Some RVV intrinsics may claim that they want an integer operand to be 4132 // promoted or expanded. 4133 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 4134 const RISCVSubtarget &Subtarget) { 4135 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4136 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4137 "Unexpected opcode"); 4138 4139 if (!Subtarget.hasVInstructions()) 4140 return SDValue(); 4141 4142 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4143 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4144 SDLoc DL(Op); 4145 4146 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4147 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4148 if (!II || !II->SplatOperand) 4149 return SDValue(); 4150 4151 unsigned SplatOp = II->SplatOperand + HasChain; 4152 assert(SplatOp < Op.getNumOperands()); 4153 4154 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4155 SDValue &ScalarOp = Operands[SplatOp]; 4156 MVT OpVT = ScalarOp.getSimpleValueType(); 4157 MVT XLenVT = Subtarget.getXLenVT(); 4158 4159 // If this isn't a scalar, or its type is XLenVT we're done. 4160 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4161 return SDValue(); 4162 4163 // Simplest case is that the operand needs to be promoted to XLenVT. 4164 if (OpVT.bitsLT(XLenVT)) { 4165 // If the operand is a constant, sign extend to increase our chances 4166 // of being able to use a .vi instruction. ANY_EXTEND would become a 4167 // a zero extend and the simm5 check in isel would fail. 4168 // FIXME: Should we ignore the upper bits in isel instead? 4169 unsigned ExtOpc = 4170 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4171 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4172 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4173 } 4174 4175 // Use the previous operand to get the vXi64 VT. The result might be a mask 4176 // VT for compares. Using the previous operand assumes that the previous 4177 // operand will never have a smaller element size than a scalar operand and 4178 // that a widening operation never uses SEW=64. 4179 // NOTE: If this fails the below assert, we can probably just find the 4180 // element count from any operand or result and use it to construct the VT. 4181 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 4182 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4183 4184 // The more complex case is when the scalar is larger than XLenVT. 4185 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4186 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4187 4188 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4189 // on the instruction to sign-extend since SEW>XLEN. 4190 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4191 if (isInt<32>(CVal->getSExtValue())) { 4192 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4193 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4194 } 4195 } 4196 4197 // We need to convert the scalar to a splat vector. 4198 // FIXME: Can we implicitly truncate the scalar if it is known to 4199 // be sign extended? 4200 // VL should be the last operand. 4201 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 4202 assert(VL.getValueType() == XLenVT); 4203 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 4204 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4205 } 4206 4207 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4208 SelectionDAG &DAG) const { 4209 unsigned IntNo = Op.getConstantOperandVal(0); 4210 SDLoc DL(Op); 4211 MVT XLenVT = Subtarget.getXLenVT(); 4212 4213 switch (IntNo) { 4214 default: 4215 break; // Don't custom lower most intrinsics. 4216 case Intrinsic::thread_pointer: { 4217 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4218 return DAG.getRegister(RISCV::X4, PtrVT); 4219 } 4220 case Intrinsic::riscv_orc_b: 4221 // Lower to the GORCI encoding for orc.b. 4222 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 4223 DAG.getConstant(7, DL, XLenVT)); 4224 case Intrinsic::riscv_grev: 4225 case Intrinsic::riscv_gorc: { 4226 unsigned Opc = 4227 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4228 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4229 } 4230 case Intrinsic::riscv_shfl: 4231 case Intrinsic::riscv_unshfl: { 4232 unsigned Opc = 4233 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4234 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4235 } 4236 case Intrinsic::riscv_bcompress: 4237 case Intrinsic::riscv_bdecompress: { 4238 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4239 : RISCVISD::BDECOMPRESS; 4240 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4241 } 4242 case Intrinsic::riscv_bfp: 4243 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4244 Op.getOperand(2)); 4245 case Intrinsic::riscv_vmv_x_s: 4246 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4247 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4248 Op.getOperand(1)); 4249 case Intrinsic::riscv_vmv_v_x: 4250 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4251 Op.getSimpleValueType(), DL, DAG, Subtarget); 4252 case Intrinsic::riscv_vfmv_v_f: 4253 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4254 Op.getOperand(1), Op.getOperand(2)); 4255 case Intrinsic::riscv_vmv_s_x: { 4256 SDValue Scalar = Op.getOperand(2); 4257 4258 if (Scalar.getValueType().bitsLE(XLenVT)) { 4259 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4260 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4261 Op.getOperand(1), Scalar, Op.getOperand(3)); 4262 } 4263 4264 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4265 4266 // This is an i64 value that lives in two scalar registers. We have to 4267 // insert this in a convoluted way. First we build vXi64 splat containing 4268 // the/ two values that we assemble using some bit math. Next we'll use 4269 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4270 // to merge element 0 from our splat into the source vector. 4271 // FIXME: This is probably not the best way to do this, but it is 4272 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4273 // point. 4274 // sw lo, (a0) 4275 // sw hi, 4(a0) 4276 // vlse vX, (a0) 4277 // 4278 // vid.v vVid 4279 // vmseq.vx mMask, vVid, 0 4280 // vmerge.vvm vDest, vSrc, vVal, mMask 4281 MVT VT = Op.getSimpleValueType(); 4282 SDValue Vec = Op.getOperand(1); 4283 SDValue VL = Op.getOperand(3); 4284 4285 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 4286 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4287 DAG.getConstant(0, DL, MVT::i32), VL); 4288 4289 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4290 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4291 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4292 SDValue SelectCond = 4293 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4294 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4295 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4296 Vec, VL); 4297 } 4298 case Intrinsic::riscv_vslide1up: 4299 case Intrinsic::riscv_vslide1down: 4300 case Intrinsic::riscv_vslide1up_mask: 4301 case Intrinsic::riscv_vslide1down_mask: { 4302 // We need to special case these when the scalar is larger than XLen. 4303 unsigned NumOps = Op.getNumOperands(); 4304 bool IsMasked = NumOps == 7; 4305 unsigned OpOffset = IsMasked ? 1 : 0; 4306 SDValue Scalar = Op.getOperand(2 + OpOffset); 4307 if (Scalar.getValueType().bitsLE(XLenVT)) 4308 break; 4309 4310 // Splatting a sign extended constant is fine. 4311 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 4312 if (isInt<32>(CVal->getSExtValue())) 4313 break; 4314 4315 MVT VT = Op.getSimpleValueType(); 4316 assert(VT.getVectorElementType() == MVT::i64 && 4317 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 4318 4319 // Convert the vector source to the equivalent nxvXi32 vector. 4320 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4321 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 4322 4323 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4324 DAG.getConstant(0, DL, XLenVT)); 4325 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 4326 DAG.getConstant(1, DL, XLenVT)); 4327 4328 // Double the VL since we halved SEW. 4329 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 4330 SDValue I32VL = 4331 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4332 4333 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4334 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 4335 4336 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4337 // instructions. 4338 if (IntNo == Intrinsic::riscv_vslide1up || 4339 IntNo == Intrinsic::riscv_vslide1up_mask) { 4340 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 4341 I32Mask, I32VL); 4342 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 4343 I32Mask, I32VL); 4344 } else { 4345 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 4346 I32Mask, I32VL); 4347 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 4348 I32Mask, I32VL); 4349 } 4350 4351 // Convert back to nxvXi64. 4352 Vec = DAG.getBitcast(VT, Vec); 4353 4354 if (!IsMasked) 4355 return Vec; 4356 4357 // Apply mask after the operation. 4358 SDValue Mask = Op.getOperand(NumOps - 3); 4359 SDValue MaskedOff = Op.getOperand(1); 4360 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 4361 } 4362 } 4363 4364 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4365 } 4366 4367 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4368 SelectionDAG &DAG) const { 4369 unsigned IntNo = Op.getConstantOperandVal(1); 4370 switch (IntNo) { 4371 default: 4372 break; 4373 case Intrinsic::riscv_masked_strided_load: { 4374 SDLoc DL(Op); 4375 MVT XLenVT = Subtarget.getXLenVT(); 4376 4377 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4378 // the selection of the masked intrinsics doesn't do this for us. 4379 SDValue Mask = Op.getOperand(5); 4380 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4381 4382 MVT VT = Op->getSimpleValueType(0); 4383 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4384 4385 SDValue PassThru = Op.getOperand(2); 4386 if (!IsUnmasked) { 4387 MVT MaskVT = 4388 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4389 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4390 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4391 } 4392 4393 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4394 4395 SDValue IntID = DAG.getTargetConstant( 4396 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4397 XLenVT); 4398 4399 auto *Load = cast<MemIntrinsicSDNode>(Op); 4400 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4401 if (!IsUnmasked) 4402 Ops.push_back(PassThru); 4403 Ops.push_back(Op.getOperand(3)); // Ptr 4404 Ops.push_back(Op.getOperand(4)); // Stride 4405 if (!IsUnmasked) 4406 Ops.push_back(Mask); 4407 Ops.push_back(VL); 4408 if (!IsUnmasked) { 4409 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4410 Ops.push_back(Policy); 4411 } 4412 4413 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4414 SDValue Result = 4415 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4416 Load->getMemoryVT(), Load->getMemOperand()); 4417 SDValue Chain = Result.getValue(1); 4418 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4419 return DAG.getMergeValues({Result, Chain}, DL); 4420 } 4421 } 4422 4423 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4424 } 4425 4426 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4427 SelectionDAG &DAG) const { 4428 unsigned IntNo = Op.getConstantOperandVal(1); 4429 switch (IntNo) { 4430 default: 4431 break; 4432 case Intrinsic::riscv_masked_strided_store: { 4433 SDLoc DL(Op); 4434 MVT XLenVT = Subtarget.getXLenVT(); 4435 4436 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4437 // the selection of the masked intrinsics doesn't do this for us. 4438 SDValue Mask = Op.getOperand(5); 4439 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4440 4441 SDValue Val = Op.getOperand(2); 4442 MVT VT = Val.getSimpleValueType(); 4443 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4444 4445 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4446 if (!IsUnmasked) { 4447 MVT MaskVT = 4448 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4449 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4450 } 4451 4452 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4453 4454 SDValue IntID = DAG.getTargetConstant( 4455 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4456 XLenVT); 4457 4458 auto *Store = cast<MemIntrinsicSDNode>(Op); 4459 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4460 Ops.push_back(Val); 4461 Ops.push_back(Op.getOperand(3)); // Ptr 4462 Ops.push_back(Op.getOperand(4)); // Stride 4463 if (!IsUnmasked) 4464 Ops.push_back(Mask); 4465 Ops.push_back(VL); 4466 4467 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4468 Ops, Store->getMemoryVT(), 4469 Store->getMemOperand()); 4470 } 4471 } 4472 4473 return SDValue(); 4474 } 4475 4476 static MVT getLMUL1VT(MVT VT) { 4477 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4478 "Unexpected vector MVT"); 4479 return MVT::getScalableVectorVT( 4480 VT.getVectorElementType(), 4481 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4482 } 4483 4484 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4485 switch (ISDOpcode) { 4486 default: 4487 llvm_unreachable("Unhandled reduction"); 4488 case ISD::VECREDUCE_ADD: 4489 return RISCVISD::VECREDUCE_ADD_VL; 4490 case ISD::VECREDUCE_UMAX: 4491 return RISCVISD::VECREDUCE_UMAX_VL; 4492 case ISD::VECREDUCE_SMAX: 4493 return RISCVISD::VECREDUCE_SMAX_VL; 4494 case ISD::VECREDUCE_UMIN: 4495 return RISCVISD::VECREDUCE_UMIN_VL; 4496 case ISD::VECREDUCE_SMIN: 4497 return RISCVISD::VECREDUCE_SMIN_VL; 4498 case ISD::VECREDUCE_AND: 4499 return RISCVISD::VECREDUCE_AND_VL; 4500 case ISD::VECREDUCE_OR: 4501 return RISCVISD::VECREDUCE_OR_VL; 4502 case ISD::VECREDUCE_XOR: 4503 return RISCVISD::VECREDUCE_XOR_VL; 4504 } 4505 } 4506 4507 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4508 SelectionDAG &DAG, 4509 bool IsVP) const { 4510 SDLoc DL(Op); 4511 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4512 MVT VecVT = Vec.getSimpleValueType(); 4513 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4514 Op.getOpcode() == ISD::VECREDUCE_OR || 4515 Op.getOpcode() == ISD::VECREDUCE_XOR || 4516 Op.getOpcode() == ISD::VP_REDUCE_AND || 4517 Op.getOpcode() == ISD::VP_REDUCE_OR || 4518 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4519 "Unexpected reduction lowering"); 4520 4521 MVT XLenVT = Subtarget.getXLenVT(); 4522 assert(Op.getValueType() == XLenVT && 4523 "Expected reduction output to be legalized to XLenVT"); 4524 4525 MVT ContainerVT = VecVT; 4526 if (VecVT.isFixedLengthVector()) { 4527 ContainerVT = getContainerForFixedLengthVector(VecVT); 4528 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4529 } 4530 4531 SDValue Mask, VL; 4532 if (IsVP) { 4533 Mask = Op.getOperand(2); 4534 VL = Op.getOperand(3); 4535 } else { 4536 std::tie(Mask, VL) = 4537 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4538 } 4539 4540 unsigned BaseOpc; 4541 ISD::CondCode CC; 4542 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4543 4544 switch (Op.getOpcode()) { 4545 default: 4546 llvm_unreachable("Unhandled reduction"); 4547 case ISD::VECREDUCE_AND: 4548 case ISD::VP_REDUCE_AND: { 4549 // vcpop ~x == 0 4550 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4551 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4552 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4553 CC = ISD::SETEQ; 4554 BaseOpc = ISD::AND; 4555 break; 4556 } 4557 case ISD::VECREDUCE_OR: 4558 case ISD::VP_REDUCE_OR: 4559 // vcpop x != 0 4560 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4561 CC = ISD::SETNE; 4562 BaseOpc = ISD::OR; 4563 break; 4564 case ISD::VECREDUCE_XOR: 4565 case ISD::VP_REDUCE_XOR: { 4566 // ((vcpop x) & 1) != 0 4567 SDValue One = DAG.getConstant(1, DL, XLenVT); 4568 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 4569 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4570 CC = ISD::SETNE; 4571 BaseOpc = ISD::XOR; 4572 break; 4573 } 4574 } 4575 4576 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4577 4578 if (!IsVP) 4579 return SetCC; 4580 4581 // Now include the start value in the operation. 4582 // Note that we must return the start value when no elements are operated 4583 // upon. The vcpop instructions we've emitted in each case above will return 4584 // 0 for an inactive vector, and so we've already received the neutral value: 4585 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4586 // can simply include the start value. 4587 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4588 } 4589 4590 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4591 SelectionDAG &DAG) const { 4592 SDLoc DL(Op); 4593 SDValue Vec = Op.getOperand(0); 4594 EVT VecEVT = Vec.getValueType(); 4595 4596 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4597 4598 // Due to ordering in legalize types we may have a vector type that needs to 4599 // be split. Do that manually so we can get down to a legal type. 4600 while (getTypeAction(*DAG.getContext(), VecEVT) == 4601 TargetLowering::TypeSplitVector) { 4602 SDValue Lo, Hi; 4603 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4604 VecEVT = Lo.getValueType(); 4605 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4606 } 4607 4608 // TODO: The type may need to be widened rather than split. Or widened before 4609 // it can be split. 4610 if (!isTypeLegal(VecEVT)) 4611 return SDValue(); 4612 4613 MVT VecVT = VecEVT.getSimpleVT(); 4614 MVT VecEltVT = VecVT.getVectorElementType(); 4615 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4616 4617 MVT ContainerVT = VecVT; 4618 if (VecVT.isFixedLengthVector()) { 4619 ContainerVT = getContainerForFixedLengthVector(VecVT); 4620 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4621 } 4622 4623 MVT M1VT = getLMUL1VT(ContainerVT); 4624 MVT XLenVT = Subtarget.getXLenVT(); 4625 4626 SDValue Mask, VL; 4627 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4628 4629 SDValue NeutralElem = 4630 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4631 SDValue IdentitySplat = lowerScalarSplat( 4632 NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4633 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4634 IdentitySplat, Mask, VL); 4635 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4636 DAG.getConstant(0, DL, XLenVT)); 4637 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4638 } 4639 4640 // Given a reduction op, this function returns the matching reduction opcode, 4641 // the vector SDValue and the scalar SDValue required to lower this to a 4642 // RISCVISD node. 4643 static std::tuple<unsigned, SDValue, SDValue> 4644 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4645 SDLoc DL(Op); 4646 auto Flags = Op->getFlags(); 4647 unsigned Opcode = Op.getOpcode(); 4648 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4649 switch (Opcode) { 4650 default: 4651 llvm_unreachable("Unhandled reduction"); 4652 case ISD::VECREDUCE_FADD: { 4653 // Use positive zero if we can. It is cheaper to materialize. 4654 SDValue Zero = 4655 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 4656 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 4657 } 4658 case ISD::VECREDUCE_SEQ_FADD: 4659 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4660 Op.getOperand(0)); 4661 case ISD::VECREDUCE_FMIN: 4662 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4663 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4664 case ISD::VECREDUCE_FMAX: 4665 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4666 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4667 } 4668 } 4669 4670 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4671 SelectionDAG &DAG) const { 4672 SDLoc DL(Op); 4673 MVT VecEltVT = Op.getSimpleValueType(); 4674 4675 unsigned RVVOpcode; 4676 SDValue VectorVal, ScalarVal; 4677 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4678 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4679 MVT VecVT = VectorVal.getSimpleValueType(); 4680 4681 MVT ContainerVT = VecVT; 4682 if (VecVT.isFixedLengthVector()) { 4683 ContainerVT = getContainerForFixedLengthVector(VecVT); 4684 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4685 } 4686 4687 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4688 MVT XLenVT = Subtarget.getXLenVT(); 4689 4690 SDValue Mask, VL; 4691 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4692 4693 SDValue ScalarSplat = lowerScalarSplat( 4694 ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); 4695 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4696 VectorVal, ScalarSplat, Mask, VL); 4697 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4698 DAG.getConstant(0, DL, XLenVT)); 4699 } 4700 4701 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4702 switch (ISDOpcode) { 4703 default: 4704 llvm_unreachable("Unhandled reduction"); 4705 case ISD::VP_REDUCE_ADD: 4706 return RISCVISD::VECREDUCE_ADD_VL; 4707 case ISD::VP_REDUCE_UMAX: 4708 return RISCVISD::VECREDUCE_UMAX_VL; 4709 case ISD::VP_REDUCE_SMAX: 4710 return RISCVISD::VECREDUCE_SMAX_VL; 4711 case ISD::VP_REDUCE_UMIN: 4712 return RISCVISD::VECREDUCE_UMIN_VL; 4713 case ISD::VP_REDUCE_SMIN: 4714 return RISCVISD::VECREDUCE_SMIN_VL; 4715 case ISD::VP_REDUCE_AND: 4716 return RISCVISD::VECREDUCE_AND_VL; 4717 case ISD::VP_REDUCE_OR: 4718 return RISCVISD::VECREDUCE_OR_VL; 4719 case ISD::VP_REDUCE_XOR: 4720 return RISCVISD::VECREDUCE_XOR_VL; 4721 case ISD::VP_REDUCE_FADD: 4722 return RISCVISD::VECREDUCE_FADD_VL; 4723 case ISD::VP_REDUCE_SEQ_FADD: 4724 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4725 case ISD::VP_REDUCE_FMAX: 4726 return RISCVISD::VECREDUCE_FMAX_VL; 4727 case ISD::VP_REDUCE_FMIN: 4728 return RISCVISD::VECREDUCE_FMIN_VL; 4729 } 4730 } 4731 4732 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4733 SelectionDAG &DAG) const { 4734 SDLoc DL(Op); 4735 SDValue Vec = Op.getOperand(1); 4736 EVT VecEVT = Vec.getValueType(); 4737 4738 // TODO: The type may need to be widened rather than split. Or widened before 4739 // it can be split. 4740 if (!isTypeLegal(VecEVT)) 4741 return SDValue(); 4742 4743 MVT VecVT = VecEVT.getSimpleVT(); 4744 MVT VecEltVT = VecVT.getVectorElementType(); 4745 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4746 4747 MVT ContainerVT = VecVT; 4748 if (VecVT.isFixedLengthVector()) { 4749 ContainerVT = getContainerForFixedLengthVector(VecVT); 4750 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4751 } 4752 4753 SDValue VL = Op.getOperand(3); 4754 SDValue Mask = Op.getOperand(2); 4755 4756 MVT M1VT = getLMUL1VT(ContainerVT); 4757 MVT XLenVT = Subtarget.getXLenVT(); 4758 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4759 4760 SDValue StartSplat = 4761 lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, 4762 DL, DAG, Subtarget); 4763 SDValue Reduction = 4764 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4765 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4766 DAG.getConstant(0, DL, XLenVT)); 4767 if (!VecVT.isInteger()) 4768 return Elt0; 4769 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4770 } 4771 4772 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4773 SelectionDAG &DAG) const { 4774 SDValue Vec = Op.getOperand(0); 4775 SDValue SubVec = Op.getOperand(1); 4776 MVT VecVT = Vec.getSimpleValueType(); 4777 MVT SubVecVT = SubVec.getSimpleValueType(); 4778 4779 SDLoc DL(Op); 4780 MVT XLenVT = Subtarget.getXLenVT(); 4781 unsigned OrigIdx = Op.getConstantOperandVal(2); 4782 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4783 4784 // We don't have the ability to slide mask vectors up indexed by their i1 4785 // elements; the smallest we can do is i8. Often we are able to bitcast to 4786 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4787 // into a scalable one, we might not necessarily have enough scalable 4788 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4789 if (SubVecVT.getVectorElementType() == MVT::i1 && 4790 (OrigIdx != 0 || !Vec.isUndef())) { 4791 if (VecVT.getVectorMinNumElements() >= 8 && 4792 SubVecVT.getVectorMinNumElements() >= 8) { 4793 assert(OrigIdx % 8 == 0 && "Invalid index"); 4794 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4795 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4796 "Unexpected mask vector lowering"); 4797 OrigIdx /= 8; 4798 SubVecVT = 4799 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4800 SubVecVT.isScalableVector()); 4801 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4802 VecVT.isScalableVector()); 4803 Vec = DAG.getBitcast(VecVT, Vec); 4804 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4805 } else { 4806 // We can't slide this mask vector up indexed by its i1 elements. 4807 // This poses a problem when we wish to insert a scalable vector which 4808 // can't be re-expressed as a larger type. Just choose the slow path and 4809 // extend to a larger type, then truncate back down. 4810 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4811 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4812 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4813 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4814 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4815 Op.getOperand(2)); 4816 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4817 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4818 } 4819 } 4820 4821 // If the subvector vector is a fixed-length type, we cannot use subregister 4822 // manipulation to simplify the codegen; we don't know which register of a 4823 // LMUL group contains the specific subvector as we only know the minimum 4824 // register size. Therefore we must slide the vector group up the full 4825 // amount. 4826 if (SubVecVT.isFixedLengthVector()) { 4827 if (OrigIdx == 0 && Vec.isUndef()) 4828 return Op; 4829 MVT ContainerVT = VecVT; 4830 if (VecVT.isFixedLengthVector()) { 4831 ContainerVT = getContainerForFixedLengthVector(VecVT); 4832 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4833 } 4834 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4835 DAG.getUNDEF(ContainerVT), SubVec, 4836 DAG.getConstant(0, DL, XLenVT)); 4837 SDValue Mask = 4838 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4839 // Set the vector length to only the number of elements we care about. Note 4840 // that for slideup this includes the offset. 4841 SDValue VL = 4842 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4843 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4844 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4845 SubVec, SlideupAmt, Mask, VL); 4846 if (VecVT.isFixedLengthVector()) 4847 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4848 return DAG.getBitcast(Op.getValueType(), Slideup); 4849 } 4850 4851 unsigned SubRegIdx, RemIdx; 4852 std::tie(SubRegIdx, RemIdx) = 4853 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4854 VecVT, SubVecVT, OrigIdx, TRI); 4855 4856 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4857 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4858 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4859 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4860 4861 // 1. If the Idx has been completely eliminated and this subvector's size is 4862 // a vector register or a multiple thereof, or the surrounding elements are 4863 // undef, then this is a subvector insert which naturally aligns to a vector 4864 // register. These can easily be handled using subregister manipulation. 4865 // 2. If the subvector is smaller than a vector register, then the insertion 4866 // must preserve the undisturbed elements of the register. We do this by 4867 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4868 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4869 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4870 // LMUL=1 type back into the larger vector (resolving to another subregister 4871 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4872 // to avoid allocating a large register group to hold our subvector. 4873 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4874 return Op; 4875 4876 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4877 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4878 // (in our case undisturbed). This means we can set up a subvector insertion 4879 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4880 // size of the subvector. 4881 MVT InterSubVT = VecVT; 4882 SDValue AlignedExtract = Vec; 4883 unsigned AlignedIdx = OrigIdx - RemIdx; 4884 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4885 InterSubVT = getLMUL1VT(VecVT); 4886 // Extract a subvector equal to the nearest full vector register type. This 4887 // should resolve to a EXTRACT_SUBREG instruction. 4888 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4889 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4890 } 4891 4892 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4893 // For scalable vectors this must be further multiplied by vscale. 4894 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4895 4896 SDValue Mask, VL; 4897 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4898 4899 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4900 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4901 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4902 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4903 4904 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4905 DAG.getUNDEF(InterSubVT), SubVec, 4906 DAG.getConstant(0, DL, XLenVT)); 4907 4908 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4909 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4910 4911 // If required, insert this subvector back into the correct vector register. 4912 // This should resolve to an INSERT_SUBREG instruction. 4913 if (VecVT.bitsGT(InterSubVT)) 4914 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4915 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4916 4917 // We might have bitcast from a mask type: cast back to the original type if 4918 // required. 4919 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4920 } 4921 4922 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4923 SelectionDAG &DAG) const { 4924 SDValue Vec = Op.getOperand(0); 4925 MVT SubVecVT = Op.getSimpleValueType(); 4926 MVT VecVT = Vec.getSimpleValueType(); 4927 4928 SDLoc DL(Op); 4929 MVT XLenVT = Subtarget.getXLenVT(); 4930 unsigned OrigIdx = Op.getConstantOperandVal(1); 4931 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4932 4933 // We don't have the ability to slide mask vectors down indexed by their i1 4934 // elements; the smallest we can do is i8. Often we are able to bitcast to 4935 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4936 // from a scalable one, we might not necessarily have enough scalable 4937 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4938 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4939 if (VecVT.getVectorMinNumElements() >= 8 && 4940 SubVecVT.getVectorMinNumElements() >= 8) { 4941 assert(OrigIdx % 8 == 0 && "Invalid index"); 4942 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4943 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4944 "Unexpected mask vector lowering"); 4945 OrigIdx /= 8; 4946 SubVecVT = 4947 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4948 SubVecVT.isScalableVector()); 4949 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4950 VecVT.isScalableVector()); 4951 Vec = DAG.getBitcast(VecVT, Vec); 4952 } else { 4953 // We can't slide this mask vector down, indexed by its i1 elements. 4954 // This poses a problem when we wish to extract a scalable vector which 4955 // can't be re-expressed as a larger type. Just choose the slow path and 4956 // extend to a larger type, then truncate back down. 4957 // TODO: We could probably improve this when extracting certain fixed 4958 // from fixed, where we can extract as i8 and shift the correct element 4959 // right to reach the desired subvector? 4960 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4961 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4962 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4963 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4964 Op.getOperand(1)); 4965 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4966 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4967 } 4968 } 4969 4970 // If the subvector vector is a fixed-length type, we cannot use subregister 4971 // manipulation to simplify the codegen; we don't know which register of a 4972 // LMUL group contains the specific subvector as we only know the minimum 4973 // register size. Therefore we must slide the vector group down the full 4974 // amount. 4975 if (SubVecVT.isFixedLengthVector()) { 4976 // With an index of 0 this is a cast-like subvector, which can be performed 4977 // with subregister operations. 4978 if (OrigIdx == 0) 4979 return Op; 4980 MVT ContainerVT = VecVT; 4981 if (VecVT.isFixedLengthVector()) { 4982 ContainerVT = getContainerForFixedLengthVector(VecVT); 4983 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4984 } 4985 SDValue Mask = 4986 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4987 // Set the vector length to only the number of elements we care about. This 4988 // avoids sliding down elements we're going to discard straight away. 4989 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4990 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4991 SDValue Slidedown = 4992 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4993 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4994 // Now we can use a cast-like subvector extract to get the result. 4995 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4996 DAG.getConstant(0, DL, XLenVT)); 4997 return DAG.getBitcast(Op.getValueType(), Slidedown); 4998 } 4999 5000 unsigned SubRegIdx, RemIdx; 5001 std::tie(SubRegIdx, RemIdx) = 5002 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5003 VecVT, SubVecVT, OrigIdx, TRI); 5004 5005 // If the Idx has been completely eliminated then this is a subvector extract 5006 // which naturally aligns to a vector register. These can easily be handled 5007 // using subregister manipulation. 5008 if (RemIdx == 0) 5009 return Op; 5010 5011 // Else we must shift our vector register directly to extract the subvector. 5012 // Do this using VSLIDEDOWN. 5013 5014 // If the vector type is an LMUL-group type, extract a subvector equal to the 5015 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5016 // instruction. 5017 MVT InterSubVT = VecVT; 5018 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5019 InterSubVT = getLMUL1VT(VecVT); 5020 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5021 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5022 } 5023 5024 // Slide this vector register down by the desired number of elements in order 5025 // to place the desired subvector starting at element 0. 5026 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5027 // For scalable vectors this must be further multiplied by vscale. 5028 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5029 5030 SDValue Mask, VL; 5031 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5032 SDValue Slidedown = 5033 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5034 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5035 5036 // Now the vector is in the right position, extract our final subvector. This 5037 // should resolve to a COPY. 5038 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5039 DAG.getConstant(0, DL, XLenVT)); 5040 5041 // We might have bitcast from a mask type: cast back to the original type if 5042 // required. 5043 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5044 } 5045 5046 // Lower step_vector to the vid instruction. Any non-identity step value must 5047 // be accounted for my manual expansion. 5048 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5049 SelectionDAG &DAG) const { 5050 SDLoc DL(Op); 5051 MVT VT = Op.getSimpleValueType(); 5052 MVT XLenVT = Subtarget.getXLenVT(); 5053 SDValue Mask, VL; 5054 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5055 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5056 uint64_t StepValImm = Op.getConstantOperandVal(0); 5057 if (StepValImm != 1) { 5058 if (isPowerOf2_64(StepValImm)) { 5059 SDValue StepVal = 5060 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 5061 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5062 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5063 } else { 5064 SDValue StepVal = lowerScalarSplat( 5065 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 5066 DL, DAG, Subtarget); 5067 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5068 } 5069 } 5070 return StepVec; 5071 } 5072 5073 // Implement vector_reverse using vrgather.vv with indices determined by 5074 // subtracting the id of each element from (VLMAX-1). This will convert 5075 // the indices like so: 5076 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5077 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5078 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5079 SelectionDAG &DAG) const { 5080 SDLoc DL(Op); 5081 MVT VecVT = Op.getSimpleValueType(); 5082 unsigned EltSize = VecVT.getScalarSizeInBits(); 5083 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5084 5085 unsigned MaxVLMAX = 0; 5086 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5087 if (VectorBitsMax != 0) 5088 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 5089 5090 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5091 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5092 5093 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5094 // to use vrgatherei16.vv. 5095 // TODO: It's also possible to use vrgatherei16.vv for other types to 5096 // decrease register width for the index calculation. 5097 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5098 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5099 // Reverse each half, then reassemble them in reverse order. 5100 // NOTE: It's also possible that after splitting that VLMAX no longer 5101 // requires vrgatherei16.vv. 5102 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5103 SDValue Lo, Hi; 5104 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5105 EVT LoVT, HiVT; 5106 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5107 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5108 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5109 // Reassemble the low and high pieces reversed. 5110 // FIXME: This is a CONCAT_VECTORS. 5111 SDValue Res = 5112 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5113 DAG.getIntPtrConstant(0, DL)); 5114 return DAG.getNode( 5115 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5116 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5117 } 5118 5119 // Just promote the int type to i16 which will double the LMUL. 5120 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5121 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5122 } 5123 5124 MVT XLenVT = Subtarget.getXLenVT(); 5125 SDValue Mask, VL; 5126 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5127 5128 // Calculate VLMAX-1 for the desired SEW. 5129 unsigned MinElts = VecVT.getVectorMinNumElements(); 5130 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5131 DAG.getConstant(MinElts, DL, XLenVT)); 5132 SDValue VLMinus1 = 5133 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5134 5135 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5136 bool IsRV32E64 = 5137 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5138 SDValue SplatVL; 5139 if (!IsRV32E64) 5140 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5141 else 5142 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 5143 5144 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5145 SDValue Indices = 5146 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5147 5148 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5149 } 5150 5151 SDValue 5152 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5153 SelectionDAG &DAG) const { 5154 SDLoc DL(Op); 5155 auto *Load = cast<LoadSDNode>(Op); 5156 5157 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5158 Load->getMemoryVT(), 5159 *Load->getMemOperand()) && 5160 "Expecting a correctly-aligned load"); 5161 5162 MVT VT = Op.getSimpleValueType(); 5163 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5164 5165 SDValue VL = 5166 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5167 5168 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5169 SDValue NewLoad = DAG.getMemIntrinsicNode( 5170 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 5171 Load->getMemoryVT(), Load->getMemOperand()); 5172 5173 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5174 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5175 } 5176 5177 SDValue 5178 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5179 SelectionDAG &DAG) const { 5180 SDLoc DL(Op); 5181 auto *Store = cast<StoreSDNode>(Op); 5182 5183 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5184 Store->getMemoryVT(), 5185 *Store->getMemOperand()) && 5186 "Expecting a correctly-aligned store"); 5187 5188 SDValue StoreVal = Store->getValue(); 5189 MVT VT = StoreVal.getSimpleValueType(); 5190 5191 // If the size less than a byte, we need to pad with zeros to make a byte. 5192 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5193 VT = MVT::v8i1; 5194 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5195 DAG.getConstant(0, DL, VT), StoreVal, 5196 DAG.getIntPtrConstant(0, DL)); 5197 } 5198 5199 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5200 5201 SDValue VL = 5202 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5203 5204 SDValue NewValue = 5205 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5206 return DAG.getMemIntrinsicNode( 5207 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 5208 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 5209 Store->getMemoryVT(), Store->getMemOperand()); 5210 } 5211 5212 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5213 SelectionDAG &DAG) const { 5214 SDLoc DL(Op); 5215 MVT VT = Op.getSimpleValueType(); 5216 5217 const auto *MemSD = cast<MemSDNode>(Op); 5218 EVT MemVT = MemSD->getMemoryVT(); 5219 MachineMemOperand *MMO = MemSD->getMemOperand(); 5220 SDValue Chain = MemSD->getChain(); 5221 SDValue BasePtr = MemSD->getBasePtr(); 5222 5223 SDValue Mask, PassThru, VL; 5224 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5225 Mask = VPLoad->getMask(); 5226 PassThru = DAG.getUNDEF(VT); 5227 VL = VPLoad->getVectorLength(); 5228 } else { 5229 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5230 Mask = MLoad->getMask(); 5231 PassThru = MLoad->getPassThru(); 5232 } 5233 5234 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5235 5236 MVT XLenVT = Subtarget.getXLenVT(); 5237 5238 MVT ContainerVT = VT; 5239 if (VT.isFixedLengthVector()) { 5240 ContainerVT = getContainerForFixedLengthVector(VT); 5241 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5242 if (!IsUnmasked) { 5243 MVT MaskVT = 5244 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5245 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5246 } 5247 } 5248 5249 if (!VL) 5250 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5251 5252 unsigned IntID = 5253 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5254 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5255 if (!IsUnmasked) 5256 Ops.push_back(PassThru); 5257 Ops.push_back(BasePtr); 5258 if (!IsUnmasked) 5259 Ops.push_back(Mask); 5260 Ops.push_back(VL); 5261 if (!IsUnmasked) 5262 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5263 5264 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5265 5266 SDValue Result = 5267 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5268 Chain = Result.getValue(1); 5269 5270 if (VT.isFixedLengthVector()) 5271 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5272 5273 return DAG.getMergeValues({Result, Chain}, DL); 5274 } 5275 5276 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5277 SelectionDAG &DAG) const { 5278 SDLoc DL(Op); 5279 5280 const auto *MemSD = cast<MemSDNode>(Op); 5281 EVT MemVT = MemSD->getMemoryVT(); 5282 MachineMemOperand *MMO = MemSD->getMemOperand(); 5283 SDValue Chain = MemSD->getChain(); 5284 SDValue BasePtr = MemSD->getBasePtr(); 5285 SDValue Val, Mask, VL; 5286 5287 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5288 Val = VPStore->getValue(); 5289 Mask = VPStore->getMask(); 5290 VL = VPStore->getVectorLength(); 5291 } else { 5292 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5293 Val = MStore->getValue(); 5294 Mask = MStore->getMask(); 5295 } 5296 5297 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5298 5299 MVT VT = Val.getSimpleValueType(); 5300 MVT XLenVT = Subtarget.getXLenVT(); 5301 5302 MVT ContainerVT = VT; 5303 if (VT.isFixedLengthVector()) { 5304 ContainerVT = getContainerForFixedLengthVector(VT); 5305 5306 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5307 if (!IsUnmasked) { 5308 MVT MaskVT = 5309 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5310 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5311 } 5312 } 5313 5314 if (!VL) 5315 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5316 5317 unsigned IntID = 5318 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5319 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5320 Ops.push_back(Val); 5321 Ops.push_back(BasePtr); 5322 if (!IsUnmasked) 5323 Ops.push_back(Mask); 5324 Ops.push_back(VL); 5325 5326 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5327 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5328 } 5329 5330 SDValue 5331 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5332 SelectionDAG &DAG) const { 5333 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5334 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5335 5336 MVT VT = Op.getSimpleValueType(); 5337 5338 SDValue Op1 = 5339 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5340 SDValue Op2 = 5341 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5342 5343 SDLoc DL(Op); 5344 SDValue VL = 5345 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5346 5347 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5348 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5349 5350 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5351 Op.getOperand(2), Mask, VL); 5352 5353 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5354 } 5355 5356 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5357 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5358 MVT VT = Op.getSimpleValueType(); 5359 5360 if (VT.getVectorElementType() == MVT::i1) 5361 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5362 5363 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5364 } 5365 5366 SDValue 5367 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5368 SelectionDAG &DAG) const { 5369 unsigned Opc; 5370 switch (Op.getOpcode()) { 5371 default: llvm_unreachable("Unexpected opcode!"); 5372 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5373 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5374 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5375 } 5376 5377 return lowerToScalableOp(Op, DAG, Opc); 5378 } 5379 5380 // Lower vector ABS to smax(X, sub(0, X)). 5381 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5382 SDLoc DL(Op); 5383 MVT VT = Op.getSimpleValueType(); 5384 SDValue X = Op.getOperand(0); 5385 5386 assert(VT.isFixedLengthVector() && "Unexpected type"); 5387 5388 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5389 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5390 5391 SDValue Mask, VL; 5392 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5393 5394 SDValue SplatZero = 5395 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5396 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 5397 SDValue NegX = 5398 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 5399 SDValue Max = 5400 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5401 5402 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5403 } 5404 5405 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5406 SDValue Op, SelectionDAG &DAG) const { 5407 SDLoc DL(Op); 5408 MVT VT = Op.getSimpleValueType(); 5409 SDValue Mag = Op.getOperand(0); 5410 SDValue Sign = Op.getOperand(1); 5411 assert(Mag.getValueType() == Sign.getValueType() && 5412 "Can only handle COPYSIGN with matching types."); 5413 5414 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5415 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5416 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5417 5418 SDValue Mask, VL; 5419 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5420 5421 SDValue CopySign = 5422 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5423 5424 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5425 } 5426 5427 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5428 SDValue Op, SelectionDAG &DAG) const { 5429 MVT VT = Op.getSimpleValueType(); 5430 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5431 5432 MVT I1ContainerVT = 5433 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5434 5435 SDValue CC = 5436 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5437 SDValue Op1 = 5438 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5439 SDValue Op2 = 5440 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5441 5442 SDLoc DL(Op); 5443 SDValue Mask, VL; 5444 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5445 5446 SDValue Select = 5447 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5448 5449 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5450 } 5451 5452 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5453 unsigned NewOpc, 5454 bool HasMask) const { 5455 MVT VT = Op.getSimpleValueType(); 5456 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5457 5458 // Create list of operands by converting existing ones to scalable types. 5459 SmallVector<SDValue, 6> Ops; 5460 for (const SDValue &V : Op->op_values()) { 5461 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5462 5463 // Pass through non-vector operands. 5464 if (!V.getValueType().isVector()) { 5465 Ops.push_back(V); 5466 continue; 5467 } 5468 5469 // "cast" fixed length vector to a scalable vector. 5470 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5471 "Only fixed length vectors are supported!"); 5472 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5473 } 5474 5475 SDLoc DL(Op); 5476 SDValue Mask, VL; 5477 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5478 if (HasMask) 5479 Ops.push_back(Mask); 5480 Ops.push_back(VL); 5481 5482 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5483 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5484 } 5485 5486 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5487 // * Operands of each node are assumed to be in the same order. 5488 // * The EVL operand is promoted from i32 to i64 on RV64. 5489 // * Fixed-length vectors are converted to their scalable-vector container 5490 // types. 5491 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5492 unsigned RISCVISDOpc) const { 5493 SDLoc DL(Op); 5494 MVT VT = Op.getSimpleValueType(); 5495 SmallVector<SDValue, 4> Ops; 5496 5497 for (const auto &OpIdx : enumerate(Op->ops())) { 5498 SDValue V = OpIdx.value(); 5499 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5500 // Pass through operands which aren't fixed-length vectors. 5501 if (!V.getValueType().isFixedLengthVector()) { 5502 Ops.push_back(V); 5503 continue; 5504 } 5505 // "cast" fixed length vector to a scalable vector. 5506 MVT OpVT = V.getSimpleValueType(); 5507 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5508 assert(useRVVForFixedLengthVectorVT(OpVT) && 5509 "Only fixed length vectors are supported!"); 5510 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5511 } 5512 5513 if (!VT.isFixedLengthVector()) 5514 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5515 5516 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5517 5518 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5519 5520 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5521 } 5522 5523 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 5524 unsigned MaskOpc, 5525 unsigned VecOpc) const { 5526 MVT VT = Op.getSimpleValueType(); 5527 if (VT.getVectorElementType() != MVT::i1) 5528 return lowerVPOp(Op, DAG, VecOpc); 5529 5530 // It is safe to drop mask parameter as masked-off elements are undef. 5531 SDValue Op1 = Op->getOperand(0); 5532 SDValue Op2 = Op->getOperand(1); 5533 SDValue VL = Op->getOperand(3); 5534 5535 MVT ContainerVT = VT; 5536 const bool IsFixed = VT.isFixedLengthVector(); 5537 if (IsFixed) { 5538 ContainerVT = getContainerForFixedLengthVector(VT); 5539 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 5540 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 5541 } 5542 5543 SDLoc DL(Op); 5544 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 5545 if (!IsFixed) 5546 return Val; 5547 return convertFromScalableVector(VT, Val, DAG, Subtarget); 5548 } 5549 5550 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5551 // matched to a RVV indexed load. The RVV indexed load instructions only 5552 // support the "unsigned unscaled" addressing mode; indices are implicitly 5553 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5554 // signed or scaled indexing is extended to the XLEN value type and scaled 5555 // accordingly. 5556 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5557 SelectionDAG &DAG) const { 5558 SDLoc DL(Op); 5559 MVT VT = Op.getSimpleValueType(); 5560 5561 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5562 EVT MemVT = MemSD->getMemoryVT(); 5563 MachineMemOperand *MMO = MemSD->getMemOperand(); 5564 SDValue Chain = MemSD->getChain(); 5565 SDValue BasePtr = MemSD->getBasePtr(); 5566 5567 ISD::LoadExtType LoadExtType; 5568 SDValue Index, Mask, PassThru, VL; 5569 5570 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5571 Index = VPGN->getIndex(); 5572 Mask = VPGN->getMask(); 5573 PassThru = DAG.getUNDEF(VT); 5574 VL = VPGN->getVectorLength(); 5575 // VP doesn't support extending loads. 5576 LoadExtType = ISD::NON_EXTLOAD; 5577 } else { 5578 // Else it must be a MGATHER. 5579 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5580 Index = MGN->getIndex(); 5581 Mask = MGN->getMask(); 5582 PassThru = MGN->getPassThru(); 5583 LoadExtType = MGN->getExtensionType(); 5584 } 5585 5586 MVT IndexVT = Index.getSimpleValueType(); 5587 MVT XLenVT = Subtarget.getXLenVT(); 5588 5589 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5590 "Unexpected VTs!"); 5591 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5592 // Targets have to explicitly opt-in for extending vector loads. 5593 assert(LoadExtType == ISD::NON_EXTLOAD && 5594 "Unexpected extending MGATHER/VP_GATHER"); 5595 (void)LoadExtType; 5596 5597 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5598 // the selection of the masked intrinsics doesn't do this for us. 5599 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5600 5601 MVT ContainerVT = VT; 5602 if (VT.isFixedLengthVector()) { 5603 // We need to use the larger of the result and index type to determine the 5604 // scalable type to use so we don't increase LMUL for any operand/result. 5605 if (VT.bitsGE(IndexVT)) { 5606 ContainerVT = getContainerForFixedLengthVector(VT); 5607 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5608 ContainerVT.getVectorElementCount()); 5609 } else { 5610 IndexVT = getContainerForFixedLengthVector(IndexVT); 5611 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5612 IndexVT.getVectorElementCount()); 5613 } 5614 5615 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5616 5617 if (!IsUnmasked) { 5618 MVT MaskVT = 5619 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5620 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5621 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5622 } 5623 } 5624 5625 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5626 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5627 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5628 } 5629 5630 if (!VL) 5631 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5632 5633 unsigned IntID = 5634 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5635 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5636 if (!IsUnmasked) 5637 Ops.push_back(PassThru); 5638 Ops.push_back(BasePtr); 5639 Ops.push_back(Index); 5640 if (!IsUnmasked) 5641 Ops.push_back(Mask); 5642 Ops.push_back(VL); 5643 if (!IsUnmasked) 5644 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5645 5646 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5647 SDValue Result = 5648 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5649 Chain = Result.getValue(1); 5650 5651 if (VT.isFixedLengthVector()) 5652 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5653 5654 return DAG.getMergeValues({Result, Chain}, DL); 5655 } 5656 5657 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5658 // matched to a RVV indexed store. The RVV indexed store instructions only 5659 // support the "unsigned unscaled" addressing mode; indices are implicitly 5660 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5661 // signed or scaled indexing is extended to the XLEN value type and scaled 5662 // accordingly. 5663 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5664 SelectionDAG &DAG) const { 5665 SDLoc DL(Op); 5666 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5667 EVT MemVT = MemSD->getMemoryVT(); 5668 MachineMemOperand *MMO = MemSD->getMemOperand(); 5669 SDValue Chain = MemSD->getChain(); 5670 SDValue BasePtr = MemSD->getBasePtr(); 5671 5672 bool IsTruncatingStore = false; 5673 SDValue Index, Mask, Val, VL; 5674 5675 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5676 Index = VPSN->getIndex(); 5677 Mask = VPSN->getMask(); 5678 Val = VPSN->getValue(); 5679 VL = VPSN->getVectorLength(); 5680 // VP doesn't support truncating stores. 5681 IsTruncatingStore = false; 5682 } else { 5683 // Else it must be a MSCATTER. 5684 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5685 Index = MSN->getIndex(); 5686 Mask = MSN->getMask(); 5687 Val = MSN->getValue(); 5688 IsTruncatingStore = MSN->isTruncatingStore(); 5689 } 5690 5691 MVT VT = Val.getSimpleValueType(); 5692 MVT IndexVT = Index.getSimpleValueType(); 5693 MVT XLenVT = Subtarget.getXLenVT(); 5694 5695 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5696 "Unexpected VTs!"); 5697 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5698 // Targets have to explicitly opt-in for extending vector loads and 5699 // truncating vector stores. 5700 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5701 (void)IsTruncatingStore; 5702 5703 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5704 // the selection of the masked intrinsics doesn't do this for us. 5705 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5706 5707 MVT ContainerVT = VT; 5708 if (VT.isFixedLengthVector()) { 5709 // We need to use the larger of the value and index type to determine the 5710 // scalable type to use so we don't increase LMUL for any operand/result. 5711 if (VT.bitsGE(IndexVT)) { 5712 ContainerVT = getContainerForFixedLengthVector(VT); 5713 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5714 ContainerVT.getVectorElementCount()); 5715 } else { 5716 IndexVT = getContainerForFixedLengthVector(IndexVT); 5717 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5718 IndexVT.getVectorElementCount()); 5719 } 5720 5721 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5722 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5723 5724 if (!IsUnmasked) { 5725 MVT MaskVT = 5726 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5727 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5728 } 5729 } 5730 5731 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 5732 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5733 Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index); 5734 } 5735 5736 if (!VL) 5737 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5738 5739 unsigned IntID = 5740 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5741 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5742 Ops.push_back(Val); 5743 Ops.push_back(BasePtr); 5744 Ops.push_back(Index); 5745 if (!IsUnmasked) 5746 Ops.push_back(Mask); 5747 Ops.push_back(VL); 5748 5749 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5750 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5751 } 5752 5753 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5754 SelectionDAG &DAG) const { 5755 const MVT XLenVT = Subtarget.getXLenVT(); 5756 SDLoc DL(Op); 5757 SDValue Chain = Op->getOperand(0); 5758 SDValue SysRegNo = DAG.getTargetConstant( 5759 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5760 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5761 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5762 5763 // Encoding used for rounding mode in RISCV differs from that used in 5764 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5765 // table, which consists of a sequence of 4-bit fields, each representing 5766 // corresponding FLT_ROUNDS mode. 5767 static const int Table = 5768 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5769 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5770 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5771 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5772 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5773 5774 SDValue Shift = 5775 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5776 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5777 DAG.getConstant(Table, DL, XLenVT), Shift); 5778 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5779 DAG.getConstant(7, DL, XLenVT)); 5780 5781 return DAG.getMergeValues({Masked, Chain}, DL); 5782 } 5783 5784 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5785 SelectionDAG &DAG) const { 5786 const MVT XLenVT = Subtarget.getXLenVT(); 5787 SDLoc DL(Op); 5788 SDValue Chain = Op->getOperand(0); 5789 SDValue RMValue = Op->getOperand(1); 5790 SDValue SysRegNo = DAG.getTargetConstant( 5791 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5792 5793 // Encoding used for rounding mode in RISCV differs from that used in 5794 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5795 // a table, which consists of a sequence of 4-bit fields, each representing 5796 // corresponding RISCV mode. 5797 static const unsigned Table = 5798 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5799 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5800 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5801 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5802 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5803 5804 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5805 DAG.getConstant(2, DL, XLenVT)); 5806 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5807 DAG.getConstant(Table, DL, XLenVT), Shift); 5808 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5809 DAG.getConstant(0x7, DL, XLenVT)); 5810 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5811 RMValue); 5812 } 5813 5814 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5815 // form of the given Opcode. 5816 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5817 switch (Opcode) { 5818 default: 5819 llvm_unreachable("Unexpected opcode"); 5820 case ISD::SHL: 5821 return RISCVISD::SLLW; 5822 case ISD::SRA: 5823 return RISCVISD::SRAW; 5824 case ISD::SRL: 5825 return RISCVISD::SRLW; 5826 case ISD::SDIV: 5827 return RISCVISD::DIVW; 5828 case ISD::UDIV: 5829 return RISCVISD::DIVUW; 5830 case ISD::UREM: 5831 return RISCVISD::REMUW; 5832 case ISD::ROTL: 5833 return RISCVISD::ROLW; 5834 case ISD::ROTR: 5835 return RISCVISD::RORW; 5836 case RISCVISD::GREV: 5837 return RISCVISD::GREVW; 5838 case RISCVISD::GORC: 5839 return RISCVISD::GORCW; 5840 } 5841 } 5842 5843 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5844 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5845 // otherwise be promoted to i64, making it difficult to select the 5846 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5847 // type i8/i16/i32 is lost. 5848 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5849 unsigned ExtOpc = ISD::ANY_EXTEND) { 5850 SDLoc DL(N); 5851 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5852 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5853 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5854 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5855 // ReplaceNodeResults requires we maintain the same type for the return value. 5856 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5857 } 5858 5859 // Converts the given 32-bit operation to a i64 operation with signed extension 5860 // semantic to reduce the signed extension instructions. 5861 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5862 SDLoc DL(N); 5863 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5864 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5865 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5866 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5867 DAG.getValueType(MVT::i32)); 5868 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5869 } 5870 5871 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5872 SmallVectorImpl<SDValue> &Results, 5873 SelectionDAG &DAG) const { 5874 SDLoc DL(N); 5875 switch (N->getOpcode()) { 5876 default: 5877 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5878 case ISD::STRICT_FP_TO_SINT: 5879 case ISD::STRICT_FP_TO_UINT: 5880 case ISD::FP_TO_SINT: 5881 case ISD::FP_TO_UINT: { 5882 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5883 "Unexpected custom legalisation"); 5884 bool IsStrict = N->isStrictFPOpcode(); 5885 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5886 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5887 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5888 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5889 TargetLowering::TypeSoftenFloat) { 5890 if (!isTypeLegal(Op0.getValueType())) 5891 return; 5892 if (IsStrict) { 5893 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 5894 : RISCVISD::STRICT_FCVT_WU_RV64; 5895 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 5896 SDValue Res = DAG.getNode( 5897 Opc, DL, VTs, N->getOperand(0), Op0, 5898 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5899 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5900 Results.push_back(Res.getValue(1)); 5901 return; 5902 } 5903 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 5904 SDValue Res = 5905 DAG.getNode(Opc, DL, MVT::i64, Op0, 5906 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 5907 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5908 return; 5909 } 5910 // If the FP type needs to be softened, emit a library call using the 'si' 5911 // version. If we left it to default legalization we'd end up with 'di'. If 5912 // the FP type doesn't need to be softened just let generic type 5913 // legalization promote the result type. 5914 RTLIB::Libcall LC; 5915 if (IsSigned) 5916 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5917 else 5918 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5919 MakeLibCallOptions CallOptions; 5920 EVT OpVT = Op0.getValueType(); 5921 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5922 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5923 SDValue Result; 5924 std::tie(Result, Chain) = 5925 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5926 Results.push_back(Result); 5927 if (IsStrict) 5928 Results.push_back(Chain); 5929 break; 5930 } 5931 case ISD::READCYCLECOUNTER: { 5932 assert(!Subtarget.is64Bit() && 5933 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5934 5935 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5936 SDValue RCW = 5937 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5938 5939 Results.push_back( 5940 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5941 Results.push_back(RCW.getValue(2)); 5942 break; 5943 } 5944 case ISD::MUL: { 5945 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5946 unsigned XLen = Subtarget.getXLen(); 5947 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5948 if (Size > XLen) { 5949 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5950 SDValue LHS = N->getOperand(0); 5951 SDValue RHS = N->getOperand(1); 5952 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5953 5954 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5955 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5956 // We need exactly one side to be unsigned. 5957 if (LHSIsU == RHSIsU) 5958 return; 5959 5960 auto MakeMULPair = [&](SDValue S, SDValue U) { 5961 MVT XLenVT = Subtarget.getXLenVT(); 5962 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5963 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5964 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5965 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5966 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5967 }; 5968 5969 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5970 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5971 5972 // The other operand should be signed, but still prefer MULH when 5973 // possible. 5974 if (RHSIsU && LHSIsS && !RHSIsS) 5975 Results.push_back(MakeMULPair(LHS, RHS)); 5976 else if (LHSIsU && RHSIsS && !LHSIsS) 5977 Results.push_back(MakeMULPair(RHS, LHS)); 5978 5979 return; 5980 } 5981 LLVM_FALLTHROUGH; 5982 } 5983 case ISD::ADD: 5984 case ISD::SUB: 5985 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5986 "Unexpected custom legalisation"); 5987 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5988 break; 5989 case ISD::SHL: 5990 case ISD::SRA: 5991 case ISD::SRL: 5992 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5993 "Unexpected custom legalisation"); 5994 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5995 Results.push_back(customLegalizeToWOp(N, DAG)); 5996 break; 5997 } 5998 5999 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6000 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6001 // shift amount. 6002 if (N->getOpcode() == ISD::SHL) { 6003 SDLoc DL(N); 6004 SDValue NewOp0 = 6005 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6006 SDValue NewOp1 = 6007 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6008 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6009 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6010 DAG.getValueType(MVT::i32)); 6011 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6012 } 6013 6014 break; 6015 case ISD::ROTL: 6016 case ISD::ROTR: 6017 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6018 "Unexpected custom legalisation"); 6019 Results.push_back(customLegalizeToWOp(N, DAG)); 6020 break; 6021 case ISD::CTTZ: 6022 case ISD::CTTZ_ZERO_UNDEF: 6023 case ISD::CTLZ: 6024 case ISD::CTLZ_ZERO_UNDEF: { 6025 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6026 "Unexpected custom legalisation"); 6027 6028 SDValue NewOp0 = 6029 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6030 bool IsCTZ = 6031 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6032 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6033 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6034 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6035 return; 6036 } 6037 case ISD::SDIV: 6038 case ISD::UDIV: 6039 case ISD::UREM: { 6040 MVT VT = N->getSimpleValueType(0); 6041 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6042 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6043 "Unexpected custom legalisation"); 6044 // Don't promote division/remainder by constant since we should expand those 6045 // to multiply by magic constant. 6046 // FIXME: What if the expansion is disabled for minsize. 6047 if (N->getOperand(1).getOpcode() == ISD::Constant) 6048 return; 6049 6050 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6051 // the upper 32 bits. For other types we need to sign or zero extend 6052 // based on the opcode. 6053 unsigned ExtOpc = ISD::ANY_EXTEND; 6054 if (VT != MVT::i32) 6055 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6056 : ISD::ZERO_EXTEND; 6057 6058 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6059 break; 6060 } 6061 case ISD::UADDO: 6062 case ISD::USUBO: { 6063 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6064 "Unexpected custom legalisation"); 6065 bool IsAdd = N->getOpcode() == ISD::UADDO; 6066 // Create an ADDW or SUBW. 6067 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6068 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6069 SDValue Res = 6070 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6071 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6072 DAG.getValueType(MVT::i32)); 6073 6074 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6075 // Since the inputs are sign extended from i32, this is equivalent to 6076 // comparing the lower 32 bits. 6077 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6078 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6079 IsAdd ? ISD::SETULT : ISD::SETUGT); 6080 6081 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6082 Results.push_back(Overflow); 6083 return; 6084 } 6085 case ISD::UADDSAT: 6086 case ISD::USUBSAT: { 6087 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6088 "Unexpected custom legalisation"); 6089 if (Subtarget.hasStdExtZbb()) { 6090 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6091 // sign extend allows overflow of the lower 32 bits to be detected on 6092 // the promoted size. 6093 SDValue LHS = 6094 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6095 SDValue RHS = 6096 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6097 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6098 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6099 return; 6100 } 6101 6102 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6103 // promotion for UADDO/USUBO. 6104 Results.push_back(expandAddSubSat(N, DAG)); 6105 return; 6106 } 6107 case ISD::BITCAST: { 6108 EVT VT = N->getValueType(0); 6109 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6110 SDValue Op0 = N->getOperand(0); 6111 EVT Op0VT = Op0.getValueType(); 6112 MVT XLenVT = Subtarget.getXLenVT(); 6113 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6114 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6115 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6116 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6117 Subtarget.hasStdExtF()) { 6118 SDValue FPConv = 6119 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6120 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6121 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6122 isTypeLegal(Op0VT)) { 6123 // Custom-legalize bitcasts from fixed-length vector types to illegal 6124 // scalar types in order to improve codegen. Bitcast the vector to a 6125 // one-element vector type whose element type is the same as the result 6126 // type, and extract the first element. 6127 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6128 if (isTypeLegal(BVT)) { 6129 SDValue BVec = DAG.getBitcast(BVT, Op0); 6130 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6131 DAG.getConstant(0, DL, XLenVT))); 6132 } 6133 } 6134 break; 6135 } 6136 case RISCVISD::GREV: 6137 case RISCVISD::GORC: { 6138 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6139 "Unexpected custom legalisation"); 6140 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6141 // This is similar to customLegalizeToWOp, except that we pass the second 6142 // operand (a TargetConstant) straight through: it is already of type 6143 // XLenVT. 6144 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6145 SDValue NewOp0 = 6146 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6147 SDValue NewOp1 = 6148 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6149 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6150 // ReplaceNodeResults requires we maintain the same type for the return 6151 // value. 6152 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6153 break; 6154 } 6155 case RISCVISD::SHFL: { 6156 // There is no SHFLIW instruction, but we can just promote the operation. 6157 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6158 "Unexpected custom legalisation"); 6159 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6160 SDValue NewOp0 = 6161 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6162 SDValue NewOp1 = 6163 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6164 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 6165 // ReplaceNodeResults requires we maintain the same type for the return 6166 // value. 6167 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6168 break; 6169 } 6170 case ISD::BSWAP: 6171 case ISD::BITREVERSE: { 6172 MVT VT = N->getSimpleValueType(0); 6173 MVT XLenVT = Subtarget.getXLenVT(); 6174 assert((VT == MVT::i8 || VT == MVT::i16 || 6175 (VT == MVT::i32 && Subtarget.is64Bit())) && 6176 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6177 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6178 unsigned Imm = VT.getSizeInBits() - 1; 6179 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6180 if (N->getOpcode() == ISD::BSWAP) 6181 Imm &= ~0x7U; 6182 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 6183 SDValue GREVI = 6184 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 6185 // ReplaceNodeResults requires we maintain the same type for the return 6186 // value. 6187 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6188 break; 6189 } 6190 case ISD::FSHL: 6191 case ISD::FSHR: { 6192 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6193 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6194 SDValue NewOp0 = 6195 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6196 SDValue NewOp1 = 6197 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6198 SDValue NewOp2 = 6199 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6200 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6201 // Mask the shift amount to 5 bits. 6202 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6203 DAG.getConstant(0x1f, DL, MVT::i64)); 6204 unsigned Opc = 6205 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 6206 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 6207 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6208 break; 6209 } 6210 case ISD::EXTRACT_VECTOR_ELT: { 6211 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6212 // type is illegal (currently only vXi64 RV32). 6213 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6214 // transferred to the destination register. We issue two of these from the 6215 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6216 // first element. 6217 SDValue Vec = N->getOperand(0); 6218 SDValue Idx = N->getOperand(1); 6219 6220 // The vector type hasn't been legalized yet so we can't issue target 6221 // specific nodes if it needs legalization. 6222 // FIXME: We would manually legalize if it's important. 6223 if (!isTypeLegal(Vec.getValueType())) 6224 return; 6225 6226 MVT VecVT = Vec.getSimpleValueType(); 6227 6228 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6229 VecVT.getVectorElementType() == MVT::i64 && 6230 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6231 6232 // If this is a fixed vector, we need to convert it to a scalable vector. 6233 MVT ContainerVT = VecVT; 6234 if (VecVT.isFixedLengthVector()) { 6235 ContainerVT = getContainerForFixedLengthVector(VecVT); 6236 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6237 } 6238 6239 MVT XLenVT = Subtarget.getXLenVT(); 6240 6241 // Use a VL of 1 to avoid processing more elements than we need. 6242 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6243 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6244 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6245 6246 // Unless the index is known to be 0, we must slide the vector down to get 6247 // the desired element into index 0. 6248 if (!isNullConstant(Idx)) { 6249 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6250 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6251 } 6252 6253 // Extract the lower XLEN bits of the correct vector element. 6254 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6255 6256 // To extract the upper XLEN bits of the vector element, shift the first 6257 // element right by 32 bits and re-extract the lower XLEN bits. 6258 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6259 DAG.getConstant(32, DL, XLenVT), VL); 6260 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6261 ThirtyTwoV, Mask, VL); 6262 6263 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6264 6265 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6266 break; 6267 } 6268 case ISD::INTRINSIC_WO_CHAIN: { 6269 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6270 switch (IntNo) { 6271 default: 6272 llvm_unreachable( 6273 "Don't know how to custom type legalize this intrinsic!"); 6274 case Intrinsic::riscv_orc_b: { 6275 // Lower to the GORCI encoding for orc.b with the operand extended. 6276 SDValue NewOp = 6277 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6278 // If Zbp is enabled, use GORCIW which will sign extend the result. 6279 unsigned Opc = 6280 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 6281 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 6282 DAG.getConstant(7, DL, MVT::i64)); 6283 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6284 return; 6285 } 6286 case Intrinsic::riscv_grev: 6287 case Intrinsic::riscv_gorc: { 6288 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6289 "Unexpected custom legalisation"); 6290 SDValue NewOp1 = 6291 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6292 SDValue NewOp2 = 6293 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6294 unsigned Opc = 6295 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6296 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6297 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6298 break; 6299 } 6300 case Intrinsic::riscv_shfl: 6301 case Intrinsic::riscv_unshfl: { 6302 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6303 "Unexpected custom legalisation"); 6304 SDValue NewOp1 = 6305 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6306 SDValue NewOp2 = 6307 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6308 unsigned Opc = 6309 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6310 if (isa<ConstantSDNode>(N->getOperand(2))) { 6311 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6312 DAG.getConstant(0xf, DL, MVT::i64)); 6313 Opc = 6314 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 6315 } 6316 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6317 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6318 break; 6319 } 6320 case Intrinsic::riscv_bcompress: 6321 case Intrinsic::riscv_bdecompress: { 6322 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6323 "Unexpected custom legalisation"); 6324 SDValue NewOp1 = 6325 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6326 SDValue NewOp2 = 6327 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6328 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 6329 ? RISCVISD::BCOMPRESSW 6330 : RISCVISD::BDECOMPRESSW; 6331 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6332 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6333 break; 6334 } 6335 case Intrinsic::riscv_bfp: { 6336 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6337 "Unexpected custom legalisation"); 6338 SDValue NewOp1 = 6339 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6340 SDValue NewOp2 = 6341 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6342 SDValue Res = DAG.getNode(RISCVISD::BFPW, DL, MVT::i64, NewOp1, NewOp2); 6343 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6344 break; 6345 } 6346 case Intrinsic::riscv_vmv_x_s: { 6347 EVT VT = N->getValueType(0); 6348 MVT XLenVT = Subtarget.getXLenVT(); 6349 if (VT.bitsLT(XLenVT)) { 6350 // Simple case just extract using vmv.x.s and truncate. 6351 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 6352 Subtarget.getXLenVT(), N->getOperand(1)); 6353 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 6354 return; 6355 } 6356 6357 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 6358 "Unexpected custom legalization"); 6359 6360 // We need to do the move in two steps. 6361 SDValue Vec = N->getOperand(1); 6362 MVT VecVT = Vec.getSimpleValueType(); 6363 6364 // First extract the lower XLEN bits of the element. 6365 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6366 6367 // To extract the upper XLEN bits of the vector element, shift the first 6368 // element right by 32 bits and re-extract the lower XLEN bits. 6369 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6370 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 6371 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6372 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 6373 DAG.getConstant(32, DL, XLenVT), VL); 6374 SDValue LShr32 = 6375 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 6376 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6377 6378 Results.push_back( 6379 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6380 break; 6381 } 6382 } 6383 break; 6384 } 6385 case ISD::VECREDUCE_ADD: 6386 case ISD::VECREDUCE_AND: 6387 case ISD::VECREDUCE_OR: 6388 case ISD::VECREDUCE_XOR: 6389 case ISD::VECREDUCE_SMAX: 6390 case ISD::VECREDUCE_UMAX: 6391 case ISD::VECREDUCE_SMIN: 6392 case ISD::VECREDUCE_UMIN: 6393 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 6394 Results.push_back(V); 6395 break; 6396 case ISD::VP_REDUCE_ADD: 6397 case ISD::VP_REDUCE_AND: 6398 case ISD::VP_REDUCE_OR: 6399 case ISD::VP_REDUCE_XOR: 6400 case ISD::VP_REDUCE_SMAX: 6401 case ISD::VP_REDUCE_UMAX: 6402 case ISD::VP_REDUCE_SMIN: 6403 case ISD::VP_REDUCE_UMIN: 6404 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 6405 Results.push_back(V); 6406 break; 6407 case ISD::FLT_ROUNDS_: { 6408 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 6409 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 6410 Results.push_back(Res.getValue(0)); 6411 Results.push_back(Res.getValue(1)); 6412 break; 6413 } 6414 } 6415 } 6416 6417 // A structure to hold one of the bit-manipulation patterns below. Together, a 6418 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 6419 // (or (and (shl x, 1), 0xAAAAAAAA), 6420 // (and (srl x, 1), 0x55555555)) 6421 struct RISCVBitmanipPat { 6422 SDValue Op; 6423 unsigned ShAmt; 6424 bool IsSHL; 6425 6426 bool formsPairWith(const RISCVBitmanipPat &Other) const { 6427 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 6428 } 6429 }; 6430 6431 // Matches patterns of the form 6432 // (and (shl x, C2), (C1 << C2)) 6433 // (and (srl x, C2), C1) 6434 // (shl (and x, C1), C2) 6435 // (srl (and x, (C1 << C2)), C2) 6436 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 6437 // The expected masks for each shift amount are specified in BitmanipMasks where 6438 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 6439 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 6440 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 6441 // XLen is 64. 6442 static Optional<RISCVBitmanipPat> 6443 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 6444 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 6445 "Unexpected number of masks"); 6446 Optional<uint64_t> Mask; 6447 // Optionally consume a mask around the shift operation. 6448 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 6449 Mask = Op.getConstantOperandVal(1); 6450 Op = Op.getOperand(0); 6451 } 6452 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 6453 return None; 6454 bool IsSHL = Op.getOpcode() == ISD::SHL; 6455 6456 if (!isa<ConstantSDNode>(Op.getOperand(1))) 6457 return None; 6458 uint64_t ShAmt = Op.getConstantOperandVal(1); 6459 6460 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6461 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6462 return None; 6463 // If we don't have enough masks for 64 bit, then we must be trying to 6464 // match SHFL so we're only allowed to shift 1/4 of the width. 6465 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6466 return None; 6467 6468 SDValue Src = Op.getOperand(0); 6469 6470 // The expected mask is shifted left when the AND is found around SHL 6471 // patterns. 6472 // ((x >> 1) & 0x55555555) 6473 // ((x << 1) & 0xAAAAAAAA) 6474 bool SHLExpMask = IsSHL; 6475 6476 if (!Mask) { 6477 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6478 // the mask is all ones: consume that now. 6479 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6480 Mask = Src.getConstantOperandVal(1); 6481 Src = Src.getOperand(0); 6482 // The expected mask is now in fact shifted left for SRL, so reverse the 6483 // decision. 6484 // ((x & 0xAAAAAAAA) >> 1) 6485 // ((x & 0x55555555) << 1) 6486 SHLExpMask = !SHLExpMask; 6487 } else { 6488 // Use a default shifted mask of all-ones if there's no AND, truncated 6489 // down to the expected width. This simplifies the logic later on. 6490 Mask = maskTrailingOnes<uint64_t>(Width); 6491 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6492 } 6493 } 6494 6495 unsigned MaskIdx = Log2_32(ShAmt); 6496 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6497 6498 if (SHLExpMask) 6499 ExpMask <<= ShAmt; 6500 6501 if (Mask != ExpMask) 6502 return None; 6503 6504 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6505 } 6506 6507 // Matches any of the following bit-manipulation patterns: 6508 // (and (shl x, 1), (0x55555555 << 1)) 6509 // (and (srl x, 1), 0x55555555) 6510 // (shl (and x, 0x55555555), 1) 6511 // (srl (and x, (0x55555555 << 1)), 1) 6512 // where the shift amount and mask may vary thus: 6513 // [1] = 0x55555555 / 0xAAAAAAAA 6514 // [2] = 0x33333333 / 0xCCCCCCCC 6515 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6516 // [8] = 0x00FF00FF / 0xFF00FF00 6517 // [16] = 0x0000FFFF / 0xFFFFFFFF 6518 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6519 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6520 // These are the unshifted masks which we use to match bit-manipulation 6521 // patterns. They may be shifted left in certain circumstances. 6522 static const uint64_t BitmanipMasks[] = { 6523 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6524 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6525 6526 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6527 } 6528 6529 // Match the following pattern as a GREVI(W) operation 6530 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6531 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6532 const RISCVSubtarget &Subtarget) { 6533 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6534 EVT VT = Op.getValueType(); 6535 6536 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6537 auto LHS = matchGREVIPat(Op.getOperand(0)); 6538 auto RHS = matchGREVIPat(Op.getOperand(1)); 6539 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6540 SDLoc DL(Op); 6541 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6542 DAG.getConstant(LHS->ShAmt, DL, VT)); 6543 } 6544 } 6545 return SDValue(); 6546 } 6547 6548 // Matches any the following pattern as a GORCI(W) operation 6549 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6550 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6551 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6552 // Note that with the variant of 3., 6553 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6554 // the inner pattern will first be matched as GREVI and then the outer 6555 // pattern will be matched to GORC via the first rule above. 6556 // 4. (or (rotl/rotr x, bitwidth/2), x) 6557 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6558 const RISCVSubtarget &Subtarget) { 6559 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6560 EVT VT = Op.getValueType(); 6561 6562 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6563 SDLoc DL(Op); 6564 SDValue Op0 = Op.getOperand(0); 6565 SDValue Op1 = Op.getOperand(1); 6566 6567 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6568 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6569 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6570 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6571 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6572 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6573 if ((Reverse.getOpcode() == ISD::ROTL || 6574 Reverse.getOpcode() == ISD::ROTR) && 6575 Reverse.getOperand(0) == X && 6576 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6577 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6578 if (RotAmt == (VT.getSizeInBits() / 2)) 6579 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6580 DAG.getConstant(RotAmt, DL, VT)); 6581 } 6582 return SDValue(); 6583 }; 6584 6585 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6586 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6587 return V; 6588 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6589 return V; 6590 6591 // OR is commutable so canonicalize its OR operand to the left 6592 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6593 std::swap(Op0, Op1); 6594 if (Op0.getOpcode() != ISD::OR) 6595 return SDValue(); 6596 SDValue OrOp0 = Op0.getOperand(0); 6597 SDValue OrOp1 = Op0.getOperand(1); 6598 auto LHS = matchGREVIPat(OrOp0); 6599 // OR is commutable so swap the operands and try again: x might have been 6600 // on the left 6601 if (!LHS) { 6602 std::swap(OrOp0, OrOp1); 6603 LHS = matchGREVIPat(OrOp0); 6604 } 6605 auto RHS = matchGREVIPat(Op1); 6606 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6607 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6608 DAG.getConstant(LHS->ShAmt, DL, VT)); 6609 } 6610 } 6611 return SDValue(); 6612 } 6613 6614 // Matches any of the following bit-manipulation patterns: 6615 // (and (shl x, 1), (0x22222222 << 1)) 6616 // (and (srl x, 1), 0x22222222) 6617 // (shl (and x, 0x22222222), 1) 6618 // (srl (and x, (0x22222222 << 1)), 1) 6619 // where the shift amount and mask may vary thus: 6620 // [1] = 0x22222222 / 0x44444444 6621 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6622 // [4] = 0x00F000F0 / 0x0F000F00 6623 // [8] = 0x0000FF00 / 0x00FF0000 6624 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6625 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6626 // These are the unshifted masks which we use to match bit-manipulation 6627 // patterns. They may be shifted left in certain circumstances. 6628 static const uint64_t BitmanipMasks[] = { 6629 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6630 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6631 6632 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6633 } 6634 6635 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6636 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6637 const RISCVSubtarget &Subtarget) { 6638 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6639 EVT VT = Op.getValueType(); 6640 6641 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6642 return SDValue(); 6643 6644 SDValue Op0 = Op.getOperand(0); 6645 SDValue Op1 = Op.getOperand(1); 6646 6647 // Or is commutable so canonicalize the second OR to the LHS. 6648 if (Op0.getOpcode() != ISD::OR) 6649 std::swap(Op0, Op1); 6650 if (Op0.getOpcode() != ISD::OR) 6651 return SDValue(); 6652 6653 // We found an inner OR, so our operands are the operands of the inner OR 6654 // and the other operand of the outer OR. 6655 SDValue A = Op0.getOperand(0); 6656 SDValue B = Op0.getOperand(1); 6657 SDValue C = Op1; 6658 6659 auto Match1 = matchSHFLPat(A); 6660 auto Match2 = matchSHFLPat(B); 6661 6662 // If neither matched, we failed. 6663 if (!Match1 && !Match2) 6664 return SDValue(); 6665 6666 // We had at least one match. if one failed, try the remaining C operand. 6667 if (!Match1) { 6668 std::swap(A, C); 6669 Match1 = matchSHFLPat(A); 6670 if (!Match1) 6671 return SDValue(); 6672 } else if (!Match2) { 6673 std::swap(B, C); 6674 Match2 = matchSHFLPat(B); 6675 if (!Match2) 6676 return SDValue(); 6677 } 6678 assert(Match1 && Match2); 6679 6680 // Make sure our matches pair up. 6681 if (!Match1->formsPairWith(*Match2)) 6682 return SDValue(); 6683 6684 // All the remains is to make sure C is an AND with the same input, that masks 6685 // out the bits that are being shuffled. 6686 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6687 C.getOperand(0) != Match1->Op) 6688 return SDValue(); 6689 6690 uint64_t Mask = C.getConstantOperandVal(1); 6691 6692 static const uint64_t BitmanipMasks[] = { 6693 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6694 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6695 }; 6696 6697 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6698 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6699 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6700 6701 if (Mask != ExpMask) 6702 return SDValue(); 6703 6704 SDLoc DL(Op); 6705 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6706 DAG.getConstant(Match1->ShAmt, DL, VT)); 6707 } 6708 6709 // Optimize (add (shl x, c0), (shl y, c1)) -> 6710 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6711 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6712 const RISCVSubtarget &Subtarget) { 6713 // Perform this optimization only in the zba extension. 6714 if (!Subtarget.hasStdExtZba()) 6715 return SDValue(); 6716 6717 // Skip for vector types and larger types. 6718 EVT VT = N->getValueType(0); 6719 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6720 return SDValue(); 6721 6722 // The two operand nodes must be SHL and have no other use. 6723 SDValue N0 = N->getOperand(0); 6724 SDValue N1 = N->getOperand(1); 6725 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6726 !N0->hasOneUse() || !N1->hasOneUse()) 6727 return SDValue(); 6728 6729 // Check c0 and c1. 6730 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6731 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6732 if (!N0C || !N1C) 6733 return SDValue(); 6734 int64_t C0 = N0C->getSExtValue(); 6735 int64_t C1 = N1C->getSExtValue(); 6736 if (C0 <= 0 || C1 <= 0) 6737 return SDValue(); 6738 6739 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6740 int64_t Bits = std::min(C0, C1); 6741 int64_t Diff = std::abs(C0 - C1); 6742 if (Diff != 1 && Diff != 2 && Diff != 3) 6743 return SDValue(); 6744 6745 // Build nodes. 6746 SDLoc DL(N); 6747 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6748 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6749 SDValue NA0 = 6750 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6751 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6752 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6753 } 6754 6755 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6756 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6757 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6758 // not undo itself, but they are redundant. 6759 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6760 SDValue Src = N->getOperand(0); 6761 6762 if (Src.getOpcode() != N->getOpcode()) 6763 return SDValue(); 6764 6765 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6766 !isa<ConstantSDNode>(Src.getOperand(1))) 6767 return SDValue(); 6768 6769 unsigned ShAmt1 = N->getConstantOperandVal(1); 6770 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6771 Src = Src.getOperand(0); 6772 6773 unsigned CombinedShAmt; 6774 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6775 CombinedShAmt = ShAmt1 | ShAmt2; 6776 else 6777 CombinedShAmt = ShAmt1 ^ ShAmt2; 6778 6779 if (CombinedShAmt == 0) 6780 return Src; 6781 6782 SDLoc DL(N); 6783 return DAG.getNode( 6784 N->getOpcode(), DL, N->getValueType(0), Src, 6785 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6786 } 6787 6788 // Combine a constant select operand into its use: 6789 // 6790 // (and (select cond, -1, c), x) 6791 // -> (select cond, x, (and x, c)) [AllOnes=1] 6792 // (or (select cond, 0, c), x) 6793 // -> (select cond, x, (or x, c)) [AllOnes=0] 6794 // (xor (select cond, 0, c), x) 6795 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6796 // (add (select cond, 0, c), x) 6797 // -> (select cond, x, (add x, c)) [AllOnes=0] 6798 // (sub x, (select cond, 0, c)) 6799 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6800 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6801 SelectionDAG &DAG, bool AllOnes) { 6802 EVT VT = N->getValueType(0); 6803 6804 // Skip vectors. 6805 if (VT.isVector()) 6806 return SDValue(); 6807 6808 if ((Slct.getOpcode() != ISD::SELECT && 6809 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6810 !Slct.hasOneUse()) 6811 return SDValue(); 6812 6813 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6814 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6815 }; 6816 6817 bool SwapSelectOps; 6818 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6819 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6820 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6821 SDValue NonConstantVal; 6822 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6823 SwapSelectOps = false; 6824 NonConstantVal = FalseVal; 6825 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6826 SwapSelectOps = true; 6827 NonConstantVal = TrueVal; 6828 } else 6829 return SDValue(); 6830 6831 // Slct is now know to be the desired identity constant when CC is true. 6832 TrueVal = OtherOp; 6833 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6834 // Unless SwapSelectOps says the condition should be false. 6835 if (SwapSelectOps) 6836 std::swap(TrueVal, FalseVal); 6837 6838 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6839 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6840 {Slct.getOperand(0), Slct.getOperand(1), 6841 Slct.getOperand(2), TrueVal, FalseVal}); 6842 6843 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6844 {Slct.getOperand(0), TrueVal, FalseVal}); 6845 } 6846 6847 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6848 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6849 bool AllOnes) { 6850 SDValue N0 = N->getOperand(0); 6851 SDValue N1 = N->getOperand(1); 6852 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6853 return Result; 6854 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6855 return Result; 6856 return SDValue(); 6857 } 6858 6859 // Transform (add (mul x, c0), c1) -> 6860 // (add (mul (add x, c1/c0), c0), c1%c0). 6861 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 6862 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 6863 // to an infinite loop in DAGCombine if transformed. 6864 // Or transform (add (mul x, c0), c1) -> 6865 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 6866 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 6867 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 6868 // lead to an infinite loop in DAGCombine if transformed. 6869 // Or transform (add (mul x, c0), c1) -> 6870 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 6871 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 6872 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 6873 // lead to an infinite loop in DAGCombine if transformed. 6874 // Or transform (add (mul x, c0), c1) -> 6875 // (mul (add x, c1/c0), c0). 6876 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6877 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6878 const RISCVSubtarget &Subtarget) { 6879 // Skip for vector types and larger types. 6880 EVT VT = N->getValueType(0); 6881 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6882 return SDValue(); 6883 // The first operand node must be a MUL and has no other use. 6884 SDValue N0 = N->getOperand(0); 6885 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6886 return SDValue(); 6887 // Check if c0 and c1 match above conditions. 6888 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6889 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6890 if (!N0C || !N1C) 6891 return SDValue(); 6892 int64_t C0 = N0C->getSExtValue(); 6893 int64_t C1 = N1C->getSExtValue(); 6894 int64_t CA, CB; 6895 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 6896 return SDValue(); 6897 // Search for proper CA (non-zero) and CB that both are simm12. 6898 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 6899 !isInt<12>(C0 * (C1 / C0))) { 6900 CA = C1 / C0; 6901 CB = C1 % C0; 6902 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 6903 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 6904 CA = C1 / C0 + 1; 6905 CB = C1 % C0 - C0; 6906 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 6907 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 6908 CA = C1 / C0 - 1; 6909 CB = C1 % C0 + C0; 6910 } else 6911 return SDValue(); 6912 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6913 SDLoc DL(N); 6914 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6915 DAG.getConstant(CA, DL, VT)); 6916 SDValue New1 = 6917 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6918 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 6919 } 6920 6921 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6922 const RISCVSubtarget &Subtarget) { 6923 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6924 return V; 6925 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6926 return V; 6927 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6928 // (select lhs, rhs, cc, x, (add x, y)) 6929 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6930 } 6931 6932 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6933 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6934 // (select lhs, rhs, cc, x, (sub x, y)) 6935 SDValue N0 = N->getOperand(0); 6936 SDValue N1 = N->getOperand(1); 6937 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6938 } 6939 6940 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6941 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6942 // (select lhs, rhs, cc, x, (and x, y)) 6943 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6944 } 6945 6946 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6947 const RISCVSubtarget &Subtarget) { 6948 if (Subtarget.hasStdExtZbp()) { 6949 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6950 return GREV; 6951 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6952 return GORC; 6953 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6954 return SHFL; 6955 } 6956 6957 // fold (or (select cond, 0, y), x) -> 6958 // (select cond, x, (or x, y)) 6959 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6960 } 6961 6962 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6963 // fold (xor (select cond, 0, y), x) -> 6964 // (select cond, x, (xor x, y)) 6965 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6966 } 6967 6968 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6969 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6970 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6971 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6972 // ADDW/SUBW/MULW. 6973 static SDValue performANY_EXTENDCombine(SDNode *N, 6974 TargetLowering::DAGCombinerInfo &DCI, 6975 const RISCVSubtarget &Subtarget) { 6976 if (!Subtarget.is64Bit()) 6977 return SDValue(); 6978 6979 SelectionDAG &DAG = DCI.DAG; 6980 6981 SDValue Src = N->getOperand(0); 6982 EVT VT = N->getValueType(0); 6983 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6984 return SDValue(); 6985 6986 // The opcode must be one that can implicitly sign_extend. 6987 // FIXME: Additional opcodes. 6988 switch (Src.getOpcode()) { 6989 default: 6990 return SDValue(); 6991 case ISD::MUL: 6992 if (!Subtarget.hasStdExtM()) 6993 return SDValue(); 6994 LLVM_FALLTHROUGH; 6995 case ISD::ADD: 6996 case ISD::SUB: 6997 break; 6998 } 6999 7000 // Only handle cases where the result is used by a CopyToReg. That likely 7001 // means the value is a liveout of the basic block. This helps prevent 7002 // infinite combine loops like PR51206. 7003 if (none_of(N->uses(), 7004 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 7005 return SDValue(); 7006 7007 SmallVector<SDNode *, 4> SetCCs; 7008 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 7009 UE = Src.getNode()->use_end(); 7010 UI != UE; ++UI) { 7011 SDNode *User = *UI; 7012 if (User == N) 7013 continue; 7014 if (UI.getUse().getResNo() != Src.getResNo()) 7015 continue; 7016 // All i32 setccs are legalized by sign extending operands. 7017 if (User->getOpcode() == ISD::SETCC) { 7018 SetCCs.push_back(User); 7019 continue; 7020 } 7021 // We don't know if we can extend this user. 7022 break; 7023 } 7024 7025 // If we don't have any SetCCs, this isn't worthwhile. 7026 if (SetCCs.empty()) 7027 return SDValue(); 7028 7029 SDLoc DL(N); 7030 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 7031 DCI.CombineTo(N, SExt); 7032 7033 // Promote all the setccs. 7034 for (SDNode *SetCC : SetCCs) { 7035 SmallVector<SDValue, 4> Ops; 7036 7037 for (unsigned j = 0; j != 2; ++j) { 7038 SDValue SOp = SetCC->getOperand(j); 7039 if (SOp == Src) 7040 Ops.push_back(SExt); 7041 else 7042 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 7043 } 7044 7045 Ops.push_back(SetCC->getOperand(2)); 7046 DCI.CombineTo(SetCC, 7047 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 7048 } 7049 return SDValue(N, 0); 7050 } 7051 7052 // Try to form VWMUL or VWMULU. 7053 // FIXME: Support VWMULSU. 7054 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1, 7055 SelectionDAG &DAG) { 7056 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7057 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7058 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7059 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7060 return SDValue(); 7061 7062 SDValue Mask = N->getOperand(2); 7063 SDValue VL = N->getOperand(3); 7064 7065 // Make sure the mask and VL match. 7066 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7067 return SDValue(); 7068 7069 MVT VT = N->getSimpleValueType(0); 7070 7071 // Determine the narrow size for a widening multiply. 7072 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7073 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7074 VT.getVectorElementCount()); 7075 7076 SDLoc DL(N); 7077 7078 // See if the other operand is the same opcode. 7079 if (Op0.getOpcode() == Op1.getOpcode()) { 7080 if (!Op1.hasOneUse()) 7081 return SDValue(); 7082 7083 // Make sure the mask and VL match. 7084 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7085 return SDValue(); 7086 7087 Op1 = Op1.getOperand(0); 7088 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7089 // The operand is a splat of a scalar. 7090 7091 // The VL must be the same. 7092 if (Op1.getOperand(1) != VL) 7093 return SDValue(); 7094 7095 // Get the scalar value. 7096 Op1 = Op1.getOperand(0); 7097 7098 // See if have enough sign bits or zero bits in the scalar to use a 7099 // widening multiply by splatting to smaller element size. 7100 unsigned EltBits = VT.getScalarSizeInBits(); 7101 unsigned ScalarBits = Op1.getValueSizeInBits(); 7102 // Make sure we're getting all element bits from the scalar register. 7103 // FIXME: Support implicit sign extension of vmv.v.x? 7104 if (ScalarBits < EltBits) 7105 return SDValue(); 7106 7107 if (IsSignExt) { 7108 if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) 7109 return SDValue(); 7110 } else { 7111 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7112 if (!DAG.MaskedValueIsZero(Op1, Mask)) 7113 return SDValue(); 7114 } 7115 7116 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); 7117 } else 7118 return SDValue(); 7119 7120 Op0 = Op0.getOperand(0); 7121 7122 // Re-introduce narrower extends if needed. 7123 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7124 if (Op0.getValueType() != NarrowVT) 7125 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7126 if (Op1.getValueType() != NarrowVT) 7127 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7128 7129 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7130 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7131 } 7132 7133 // Fold 7134 // (fp_to_int (froundeven X)) -> fcvt X, rne 7135 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7136 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7137 // (fp_to_int (fceil X)) -> fcvt X, rup 7138 // (fp_to_int (fround X)) -> fcvt X, rmm 7139 // FIXME: We should also do this for fp_to_int_sat. 7140 static SDValue performFP_TO_INTCombine(SDNode *N, 7141 TargetLowering::DAGCombinerInfo &DCI, 7142 const RISCVSubtarget &Subtarget) { 7143 SelectionDAG &DAG = DCI.DAG; 7144 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7145 MVT XLenVT = Subtarget.getXLenVT(); 7146 7147 // Only handle XLen or i32 types. Other types narrower than XLen will 7148 // eventually be legalized to XLenVT. 7149 EVT VT = N->getValueType(0); 7150 if (VT != MVT::i32 && VT != XLenVT) 7151 return SDValue(); 7152 7153 SDValue Src = N->getOperand(0); 7154 7155 // Ensure the FP type is also legal. 7156 if (!TLI.isTypeLegal(Src.getValueType())) 7157 return SDValue(); 7158 7159 // Don't do this for f16 with Zfhmin and not Zfh. 7160 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 7161 return SDValue(); 7162 7163 RISCVFPRndMode::RoundingMode FRM; 7164 switch (Src->getOpcode()) { 7165 default: 7166 return SDValue(); 7167 case ISD::FROUNDEVEN: FRM = RISCVFPRndMode::RNE; break; 7168 case ISD::FTRUNC: FRM = RISCVFPRndMode::RTZ; break; 7169 case ISD::FFLOOR: FRM = RISCVFPRndMode::RDN; break; 7170 case ISD::FCEIL: FRM = RISCVFPRndMode::RUP; break; 7171 case ISD::FROUND: FRM = RISCVFPRndMode::RMM; break; 7172 } 7173 7174 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 7175 7176 unsigned Opc; 7177 if (VT == XLenVT) 7178 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 7179 else 7180 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 7181 7182 SDLoc DL(N); 7183 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 7184 DAG.getTargetConstant(FRM, DL, XLenVT)); 7185 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 7186 } 7187 7188 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 7189 DAGCombinerInfo &DCI) const { 7190 SelectionDAG &DAG = DCI.DAG; 7191 7192 // Helper to call SimplifyDemandedBits on an operand of N where only some low 7193 // bits are demanded. N will be added to the Worklist if it was not deleted. 7194 // Caller should return SDValue(N, 0) if this returns true. 7195 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 7196 SDValue Op = N->getOperand(OpNo); 7197 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 7198 if (!SimplifyDemandedBits(Op, Mask, DCI)) 7199 return false; 7200 7201 if (N->getOpcode() != ISD::DELETED_NODE) 7202 DCI.AddToWorklist(N); 7203 return true; 7204 }; 7205 7206 switch (N->getOpcode()) { 7207 default: 7208 break; 7209 case RISCVISD::SplitF64: { 7210 SDValue Op0 = N->getOperand(0); 7211 // If the input to SplitF64 is just BuildPairF64 then the operation is 7212 // redundant. Instead, use BuildPairF64's operands directly. 7213 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 7214 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 7215 7216 SDLoc DL(N); 7217 7218 // It's cheaper to materialise two 32-bit integers than to load a double 7219 // from the constant pool and transfer it to integer registers through the 7220 // stack. 7221 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 7222 APInt V = C->getValueAPF().bitcastToAPInt(); 7223 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 7224 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 7225 return DCI.CombineTo(N, Lo, Hi); 7226 } 7227 7228 // This is a target-specific version of a DAGCombine performed in 7229 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7230 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7231 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7232 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7233 !Op0.getNode()->hasOneUse()) 7234 break; 7235 SDValue NewSplitF64 = 7236 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 7237 Op0.getOperand(0)); 7238 SDValue Lo = NewSplitF64.getValue(0); 7239 SDValue Hi = NewSplitF64.getValue(1); 7240 APInt SignBit = APInt::getSignMask(32); 7241 if (Op0.getOpcode() == ISD::FNEG) { 7242 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 7243 DAG.getConstant(SignBit, DL, MVT::i32)); 7244 return DCI.CombineTo(N, Lo, NewHi); 7245 } 7246 assert(Op0.getOpcode() == ISD::FABS); 7247 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 7248 DAG.getConstant(~SignBit, DL, MVT::i32)); 7249 return DCI.CombineTo(N, Lo, NewHi); 7250 } 7251 case RISCVISD::SLLW: 7252 case RISCVISD::SRAW: 7253 case RISCVISD::SRLW: 7254 case RISCVISD::ROLW: 7255 case RISCVISD::RORW: { 7256 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7257 if (SimplifyDemandedLowBitsHelper(0, 32) || 7258 SimplifyDemandedLowBitsHelper(1, 5)) 7259 return SDValue(N, 0); 7260 break; 7261 } 7262 case RISCVISD::CLZW: 7263 case RISCVISD::CTZW: { 7264 // Only the lower 32 bits of the first operand are read 7265 if (SimplifyDemandedLowBitsHelper(0, 32)) 7266 return SDValue(N, 0); 7267 break; 7268 } 7269 case RISCVISD::FSL: 7270 case RISCVISD::FSR: { 7271 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 7272 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 7273 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7274 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 7275 return SDValue(N, 0); 7276 break; 7277 } 7278 case RISCVISD::FSLW: 7279 case RISCVISD::FSRW: { 7280 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 7281 // read. 7282 if (SimplifyDemandedLowBitsHelper(0, 32) || 7283 SimplifyDemandedLowBitsHelper(1, 32) || 7284 SimplifyDemandedLowBitsHelper(2, 6)) 7285 return SDValue(N, 0); 7286 break; 7287 } 7288 case RISCVISD::GREV: 7289 case RISCVISD::GORC: { 7290 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 7291 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7292 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7293 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 7294 return SDValue(N, 0); 7295 7296 return combineGREVI_GORCI(N, DAG); 7297 } 7298 case RISCVISD::GREVW: 7299 case RISCVISD::GORCW: { 7300 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 7301 if (SimplifyDemandedLowBitsHelper(0, 32) || 7302 SimplifyDemandedLowBitsHelper(1, 5)) 7303 return SDValue(N, 0); 7304 7305 return combineGREVI_GORCI(N, DAG); 7306 } 7307 case RISCVISD::SHFL: 7308 case RISCVISD::UNSHFL: { 7309 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 7310 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 7311 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 7312 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 7313 return SDValue(N, 0); 7314 7315 break; 7316 } 7317 case RISCVISD::SHFLW: 7318 case RISCVISD::UNSHFLW: { 7319 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 7320 SDValue LHS = N->getOperand(0); 7321 SDValue RHS = N->getOperand(1); 7322 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 7323 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 7324 if (SimplifyDemandedLowBitsHelper(0, 32) || 7325 SimplifyDemandedLowBitsHelper(1, 4)) 7326 return SDValue(N, 0); 7327 7328 break; 7329 } 7330 case RISCVISD::BCOMPRESSW: 7331 case RISCVISD::BDECOMPRESSW: { 7332 // Only the lower 32 bits of LHS and RHS are read. 7333 if (SimplifyDemandedLowBitsHelper(0, 32) || 7334 SimplifyDemandedLowBitsHelper(1, 32)) 7335 return SDValue(N, 0); 7336 7337 break; 7338 } 7339 case RISCVISD::FMV_X_ANYEXTH: 7340 case RISCVISD::FMV_X_ANYEXTW_RV64: { 7341 SDLoc DL(N); 7342 SDValue Op0 = N->getOperand(0); 7343 MVT VT = N->getSimpleValueType(0); 7344 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 7345 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 7346 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 7347 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 7348 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 7349 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7350 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 7351 assert(Op0.getOperand(0).getValueType() == VT && 7352 "Unexpected value type!"); 7353 return Op0.getOperand(0); 7354 } 7355 7356 // This is a target-specific version of a DAGCombine performed in 7357 // DAGCombiner::visitBITCAST. It performs the equivalent of: 7358 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7359 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7360 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 7361 !Op0.getNode()->hasOneUse()) 7362 break; 7363 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 7364 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 7365 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 7366 if (Op0.getOpcode() == ISD::FNEG) 7367 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 7368 DAG.getConstant(SignBit, DL, VT)); 7369 7370 assert(Op0.getOpcode() == ISD::FABS); 7371 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 7372 DAG.getConstant(~SignBit, DL, VT)); 7373 } 7374 case ISD::ADD: 7375 return performADDCombine(N, DAG, Subtarget); 7376 case ISD::SUB: 7377 return performSUBCombine(N, DAG); 7378 case ISD::AND: 7379 return performANDCombine(N, DAG); 7380 case ISD::OR: 7381 return performORCombine(N, DAG, Subtarget); 7382 case ISD::XOR: 7383 return performXORCombine(N, DAG); 7384 case ISD::ANY_EXTEND: 7385 return performANY_EXTENDCombine(N, DCI, Subtarget); 7386 case ISD::ZERO_EXTEND: 7387 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 7388 // type legalization. This is safe because fp_to_uint produces poison if 7389 // it overflows. 7390 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 7391 SDValue Src = N->getOperand(0); 7392 if (Src.getOpcode() == ISD::FP_TO_UINT && 7393 isTypeLegal(Src.getOperand(0).getValueType())) 7394 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 7395 Src.getOperand(0)); 7396 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 7397 isTypeLegal(Src.getOperand(1).getValueType())) { 7398 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 7399 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 7400 Src.getOperand(0), Src.getOperand(1)); 7401 DCI.CombineTo(N, Res); 7402 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 7403 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 7404 return SDValue(N, 0); // Return N so it doesn't get rechecked. 7405 } 7406 } 7407 return SDValue(); 7408 case RISCVISD::SELECT_CC: { 7409 // Transform 7410 SDValue LHS = N->getOperand(0); 7411 SDValue RHS = N->getOperand(1); 7412 SDValue TrueV = N->getOperand(3); 7413 SDValue FalseV = N->getOperand(4); 7414 7415 // If the True and False values are the same, we don't need a select_cc. 7416 if (TrueV == FalseV) 7417 return TrueV; 7418 7419 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 7420 if (!ISD::isIntEqualitySetCC(CCVal)) 7421 break; 7422 7423 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 7424 // (select_cc X, Y, lt, trueV, falseV) 7425 // Sometimes the setcc is introduced after select_cc has been formed. 7426 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7427 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7428 // If we're looking for eq 0 instead of ne 0, we need to invert the 7429 // condition. 7430 bool Invert = CCVal == ISD::SETEQ; 7431 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7432 if (Invert) 7433 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7434 7435 SDLoc DL(N); 7436 RHS = LHS.getOperand(1); 7437 LHS = LHS.getOperand(0); 7438 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7439 7440 SDValue TargetCC = DAG.getCondCode(CCVal); 7441 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7442 {LHS, RHS, TargetCC, TrueV, FalseV}); 7443 } 7444 7445 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 7446 // (select_cc X, Y, eq/ne, trueV, falseV) 7447 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7448 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 7449 {LHS.getOperand(0), LHS.getOperand(1), 7450 N->getOperand(2), TrueV, FalseV}); 7451 // (select_cc X, 1, setne, trueV, falseV) -> 7452 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 7453 // This can occur when legalizing some floating point comparisons. 7454 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7455 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7456 SDLoc DL(N); 7457 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7458 SDValue TargetCC = DAG.getCondCode(CCVal); 7459 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7460 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 7461 {LHS, RHS, TargetCC, TrueV, FalseV}); 7462 } 7463 7464 break; 7465 } 7466 case RISCVISD::BR_CC: { 7467 SDValue LHS = N->getOperand(1); 7468 SDValue RHS = N->getOperand(2); 7469 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 7470 if (!ISD::isIntEqualitySetCC(CCVal)) 7471 break; 7472 7473 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 7474 // (br_cc X, Y, lt, dest) 7475 // Sometimes the setcc is introduced after br_cc has been formed. 7476 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 7477 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 7478 // If we're looking for eq 0 instead of ne 0, we need to invert the 7479 // condition. 7480 bool Invert = CCVal == ISD::SETEQ; 7481 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 7482 if (Invert) 7483 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7484 7485 SDLoc DL(N); 7486 RHS = LHS.getOperand(1); 7487 LHS = LHS.getOperand(0); 7488 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 7489 7490 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7491 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 7492 N->getOperand(4)); 7493 } 7494 7495 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 7496 // (br_cc X, Y, eq/ne, trueV, falseV) 7497 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 7498 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 7499 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 7500 N->getOperand(3), N->getOperand(4)); 7501 7502 // (br_cc X, 1, setne, br_cc) -> 7503 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 7504 // This can occur when legalizing some floating point comparisons. 7505 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 7506 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 7507 SDLoc DL(N); 7508 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 7509 SDValue TargetCC = DAG.getCondCode(CCVal); 7510 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 7511 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 7512 N->getOperand(0), LHS, RHS, TargetCC, 7513 N->getOperand(4)); 7514 } 7515 break; 7516 } 7517 case ISD::FP_TO_SINT: 7518 case ISD::FP_TO_UINT: 7519 return performFP_TO_INTCombine(N, DCI, Subtarget); 7520 case ISD::FCOPYSIGN: { 7521 EVT VT = N->getValueType(0); 7522 if (!VT.isVector()) 7523 break; 7524 // There is a form of VFSGNJ which injects the negated sign of its second 7525 // operand. Try and bubble any FNEG up after the extend/round to produce 7526 // this optimized pattern. Avoid modifying cases where FP_ROUND and 7527 // TRUNC=1. 7528 SDValue In2 = N->getOperand(1); 7529 // Avoid cases where the extend/round has multiple uses, as duplicating 7530 // those is typically more expensive than removing a fneg. 7531 if (!In2.hasOneUse()) 7532 break; 7533 if (In2.getOpcode() != ISD::FP_EXTEND && 7534 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 7535 break; 7536 In2 = In2.getOperand(0); 7537 if (In2.getOpcode() != ISD::FNEG) 7538 break; 7539 SDLoc DL(N); 7540 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 7541 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 7542 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 7543 } 7544 case ISD::MGATHER: 7545 case ISD::MSCATTER: 7546 case ISD::VP_GATHER: 7547 case ISD::VP_SCATTER: { 7548 if (!DCI.isBeforeLegalize()) 7549 break; 7550 SDValue Index, ScaleOp; 7551 bool IsIndexScaled = false; 7552 bool IsIndexSigned = false; 7553 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 7554 Index = VPGSN->getIndex(); 7555 ScaleOp = VPGSN->getScale(); 7556 IsIndexScaled = VPGSN->isIndexScaled(); 7557 IsIndexSigned = VPGSN->isIndexSigned(); 7558 } else { 7559 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 7560 Index = MGSN->getIndex(); 7561 ScaleOp = MGSN->getScale(); 7562 IsIndexScaled = MGSN->isIndexScaled(); 7563 IsIndexSigned = MGSN->isIndexSigned(); 7564 } 7565 EVT IndexVT = Index.getValueType(); 7566 MVT XLenVT = Subtarget.getXLenVT(); 7567 // RISCV indexed loads only support the "unsigned unscaled" addressing 7568 // mode, so anything else must be manually legalized. 7569 bool NeedsIdxLegalization = 7570 IsIndexScaled || 7571 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 7572 if (!NeedsIdxLegalization) 7573 break; 7574 7575 SDLoc DL(N); 7576 7577 // Any index legalization should first promote to XLenVT, so we don't lose 7578 // bits when scaling. This may create an illegal index type so we let 7579 // LLVM's legalization take care of the splitting. 7580 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 7581 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 7582 IndexVT = IndexVT.changeVectorElementType(XLenVT); 7583 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 7584 DL, IndexVT, Index); 7585 } 7586 7587 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 7588 if (IsIndexScaled && Scale != 1) { 7589 // Manually scale the indices by the element size. 7590 // TODO: Sanitize the scale operand here? 7591 // TODO: For VP nodes, should we use VP_SHL here? 7592 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 7593 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 7594 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 7595 } 7596 7597 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 7598 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 7599 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 7600 {VPGN->getChain(), VPGN->getBasePtr(), Index, 7601 VPGN->getScale(), VPGN->getMask(), 7602 VPGN->getVectorLength()}, 7603 VPGN->getMemOperand(), NewIndexTy); 7604 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 7605 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 7606 {VPSN->getChain(), VPSN->getValue(), 7607 VPSN->getBasePtr(), Index, VPSN->getScale(), 7608 VPSN->getMask(), VPSN->getVectorLength()}, 7609 VPSN->getMemOperand(), NewIndexTy); 7610 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 7611 return DAG.getMaskedGather( 7612 N->getVTList(), MGN->getMemoryVT(), DL, 7613 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 7614 MGN->getBasePtr(), Index, MGN->getScale()}, 7615 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 7616 const auto *MSN = cast<MaskedScatterSDNode>(N); 7617 return DAG.getMaskedScatter( 7618 N->getVTList(), MSN->getMemoryVT(), DL, 7619 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 7620 Index, MSN->getScale()}, 7621 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 7622 } 7623 case RISCVISD::SRA_VL: 7624 case RISCVISD::SRL_VL: 7625 case RISCVISD::SHL_VL: { 7626 SDValue ShAmt = N->getOperand(1); 7627 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7628 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7629 SDLoc DL(N); 7630 SDValue VL = N->getOperand(3); 7631 EVT VT = N->getValueType(0); 7632 ShAmt = 7633 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7634 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7635 N->getOperand(2), N->getOperand(3)); 7636 } 7637 break; 7638 } 7639 case ISD::SRA: 7640 case ISD::SRL: 7641 case ISD::SHL: { 7642 SDValue ShAmt = N->getOperand(1); 7643 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7644 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7645 SDLoc DL(N); 7646 EVT VT = N->getValueType(0); 7647 ShAmt = 7648 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7649 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7650 } 7651 break; 7652 } 7653 case RISCVISD::MUL_VL: { 7654 SDValue Op0 = N->getOperand(0); 7655 SDValue Op1 = N->getOperand(1); 7656 if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG)) 7657 return V; 7658 if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG)) 7659 return V; 7660 return SDValue(); 7661 } 7662 case ISD::STORE: { 7663 auto *Store = cast<StoreSDNode>(N); 7664 SDValue Val = Store->getValue(); 7665 // Combine store of vmv.x.s to vse with VL of 1. 7666 // FIXME: Support FP. 7667 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 7668 SDValue Src = Val.getOperand(0); 7669 EVT VecVT = Src.getValueType(); 7670 EVT MemVT = Store->getMemoryVT(); 7671 // The memory VT and the element type must match. 7672 if (VecVT.getVectorElementType() == MemVT) { 7673 SDLoc DL(N); 7674 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7675 return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(), 7676 DAG.getConstant(1, DL, MaskVT), 7677 DAG.getConstant(1, DL, Subtarget.getXLenVT()), 7678 Store->getPointerInfo(), 7679 Store->getOriginalAlign(), 7680 Store->getMemOperand()->getFlags()); 7681 } 7682 } 7683 7684 break; 7685 } 7686 } 7687 7688 return SDValue(); 7689 } 7690 7691 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7692 const SDNode *N, CombineLevel Level) const { 7693 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7694 // materialised in fewer instructions than `(OP _, c1)`: 7695 // 7696 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7697 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7698 SDValue N0 = N->getOperand(0); 7699 EVT Ty = N0.getValueType(); 7700 if (Ty.isScalarInteger() && 7701 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7702 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7703 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7704 if (C1 && C2) { 7705 const APInt &C1Int = C1->getAPIntValue(); 7706 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7707 7708 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7709 // and the combine should happen, to potentially allow further combines 7710 // later. 7711 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7712 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7713 return true; 7714 7715 // We can materialise `c1` in an add immediate, so it's "free", and the 7716 // combine should be prevented. 7717 if (C1Int.getMinSignedBits() <= 64 && 7718 isLegalAddImmediate(C1Int.getSExtValue())) 7719 return false; 7720 7721 // Neither constant will fit into an immediate, so find materialisation 7722 // costs. 7723 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7724 Subtarget.getFeatureBits(), 7725 /*CompressionCost*/true); 7726 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7727 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7728 /*CompressionCost*/true); 7729 7730 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7731 // combine should be prevented. 7732 if (C1Cost < ShiftedC1Cost) 7733 return false; 7734 } 7735 } 7736 return true; 7737 } 7738 7739 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7740 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7741 TargetLoweringOpt &TLO) const { 7742 // Delay this optimization as late as possible. 7743 if (!TLO.LegalOps) 7744 return false; 7745 7746 EVT VT = Op.getValueType(); 7747 if (VT.isVector()) 7748 return false; 7749 7750 // Only handle AND for now. 7751 if (Op.getOpcode() != ISD::AND) 7752 return false; 7753 7754 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7755 if (!C) 7756 return false; 7757 7758 const APInt &Mask = C->getAPIntValue(); 7759 7760 // Clear all non-demanded bits initially. 7761 APInt ShrunkMask = Mask & DemandedBits; 7762 7763 // Try to make a smaller immediate by setting undemanded bits. 7764 7765 APInt ExpandedMask = Mask | ~DemandedBits; 7766 7767 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7768 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7769 }; 7770 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7771 if (NewMask == Mask) 7772 return true; 7773 SDLoc DL(Op); 7774 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7775 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7776 return TLO.CombineTo(Op, NewOp); 7777 }; 7778 7779 // If the shrunk mask fits in sign extended 12 bits, let the target 7780 // independent code apply it. 7781 if (ShrunkMask.isSignedIntN(12)) 7782 return false; 7783 7784 // Preserve (and X, 0xffff) when zext.h is supported. 7785 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7786 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7787 if (IsLegalMask(NewMask)) 7788 return UseMask(NewMask); 7789 } 7790 7791 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7792 if (VT == MVT::i64) { 7793 APInt NewMask = APInt(64, 0xffffffff); 7794 if (IsLegalMask(NewMask)) 7795 return UseMask(NewMask); 7796 } 7797 7798 // For the remaining optimizations, we need to be able to make a negative 7799 // number through a combination of mask and undemanded bits. 7800 if (!ExpandedMask.isNegative()) 7801 return false; 7802 7803 // What is the fewest number of bits we need to represent the negative number. 7804 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7805 7806 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7807 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7808 APInt NewMask = ShrunkMask; 7809 if (MinSignedBits <= 12) 7810 NewMask.setBitsFrom(11); 7811 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7812 NewMask.setBitsFrom(31); 7813 else 7814 return false; 7815 7816 // Check that our new mask is a subset of the demanded mask. 7817 assert(IsLegalMask(NewMask)); 7818 return UseMask(NewMask); 7819 } 7820 7821 static void computeGREV(APInt &Src, unsigned ShAmt) { 7822 ShAmt &= Src.getBitWidth() - 1; 7823 uint64_t x = Src.getZExtValue(); 7824 if (ShAmt & 1) 7825 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7826 if (ShAmt & 2) 7827 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7828 if (ShAmt & 4) 7829 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7830 if (ShAmt & 8) 7831 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7832 if (ShAmt & 16) 7833 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7834 if (ShAmt & 32) 7835 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7836 Src = x; 7837 } 7838 7839 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7840 KnownBits &Known, 7841 const APInt &DemandedElts, 7842 const SelectionDAG &DAG, 7843 unsigned Depth) const { 7844 unsigned BitWidth = Known.getBitWidth(); 7845 unsigned Opc = Op.getOpcode(); 7846 assert((Opc >= ISD::BUILTIN_OP_END || 7847 Opc == ISD::INTRINSIC_WO_CHAIN || 7848 Opc == ISD::INTRINSIC_W_CHAIN || 7849 Opc == ISD::INTRINSIC_VOID) && 7850 "Should use MaskedValueIsZero if you don't know whether Op" 7851 " is a target node!"); 7852 7853 Known.resetAll(); 7854 switch (Opc) { 7855 default: break; 7856 case RISCVISD::SELECT_CC: { 7857 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7858 // If we don't know any bits, early out. 7859 if (Known.isUnknown()) 7860 break; 7861 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7862 7863 // Only known if known in both the LHS and RHS. 7864 Known = KnownBits::commonBits(Known, Known2); 7865 break; 7866 } 7867 case RISCVISD::REMUW: { 7868 KnownBits Known2; 7869 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7870 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7871 // We only care about the lower 32 bits. 7872 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7873 // Restore the original width by sign extending. 7874 Known = Known.sext(BitWidth); 7875 break; 7876 } 7877 case RISCVISD::DIVUW: { 7878 KnownBits Known2; 7879 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7880 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7881 // We only care about the lower 32 bits. 7882 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7883 // Restore the original width by sign extending. 7884 Known = Known.sext(BitWidth); 7885 break; 7886 } 7887 case RISCVISD::CTZW: { 7888 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7889 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7890 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7891 Known.Zero.setBitsFrom(LowBits); 7892 break; 7893 } 7894 case RISCVISD::CLZW: { 7895 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7896 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7897 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7898 Known.Zero.setBitsFrom(LowBits); 7899 break; 7900 } 7901 case RISCVISD::GREV: 7902 case RISCVISD::GREVW: { 7903 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7904 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7905 if (Opc == RISCVISD::GREVW) 7906 Known = Known.trunc(32); 7907 unsigned ShAmt = C->getZExtValue(); 7908 computeGREV(Known.Zero, ShAmt); 7909 computeGREV(Known.One, ShAmt); 7910 if (Opc == RISCVISD::GREVW) 7911 Known = Known.sext(BitWidth); 7912 } 7913 break; 7914 } 7915 case RISCVISD::READ_VLENB: 7916 // We assume VLENB is at least 16 bytes. 7917 Known.Zero.setLowBits(4); 7918 // We assume VLENB is no more than 65536 / 8 bytes. 7919 Known.Zero.setBitsFrom(14); 7920 break; 7921 case ISD::INTRINSIC_W_CHAIN: { 7922 unsigned IntNo = Op.getConstantOperandVal(1); 7923 switch (IntNo) { 7924 default: 7925 // We can't do anything for most intrinsics. 7926 break; 7927 case Intrinsic::riscv_vsetvli: 7928 case Intrinsic::riscv_vsetvlimax: 7929 // Assume that VL output is positive and would fit in an int32_t. 7930 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7931 if (BitWidth >= 32) 7932 Known.Zero.setBitsFrom(31); 7933 break; 7934 } 7935 break; 7936 } 7937 } 7938 } 7939 7940 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7941 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7942 unsigned Depth) const { 7943 switch (Op.getOpcode()) { 7944 default: 7945 break; 7946 case RISCVISD::SELECT_CC: { 7947 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7948 if (Tmp == 1) return 1; // Early out. 7949 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7950 return std::min(Tmp, Tmp2); 7951 } 7952 case RISCVISD::SLLW: 7953 case RISCVISD::SRAW: 7954 case RISCVISD::SRLW: 7955 case RISCVISD::DIVW: 7956 case RISCVISD::DIVUW: 7957 case RISCVISD::REMUW: 7958 case RISCVISD::ROLW: 7959 case RISCVISD::RORW: 7960 case RISCVISD::GREVW: 7961 case RISCVISD::GORCW: 7962 case RISCVISD::FSLW: 7963 case RISCVISD::FSRW: 7964 case RISCVISD::SHFLW: 7965 case RISCVISD::UNSHFLW: 7966 case RISCVISD::BCOMPRESSW: 7967 case RISCVISD::BDECOMPRESSW: 7968 case RISCVISD::FCVT_W_RV64: 7969 case RISCVISD::FCVT_WU_RV64: 7970 case RISCVISD::STRICT_FCVT_W_RV64: 7971 case RISCVISD::STRICT_FCVT_WU_RV64: 7972 // TODO: As the result is sign-extended, this is conservatively correct. A 7973 // more precise answer could be calculated for SRAW depending on known 7974 // bits in the shift amount. 7975 return 33; 7976 case RISCVISD::SHFL: 7977 case RISCVISD::UNSHFL: { 7978 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7979 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7980 // will stay within the upper 32 bits. If there were more than 32 sign bits 7981 // before there will be at least 33 sign bits after. 7982 if (Op.getValueType() == MVT::i64 && 7983 isa<ConstantSDNode>(Op.getOperand(1)) && 7984 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7985 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7986 if (Tmp > 32) 7987 return 33; 7988 } 7989 break; 7990 } 7991 case RISCVISD::VMV_X_S: 7992 // The number of sign bits of the scalar result is computed by obtaining the 7993 // element type of the input vector operand, subtracting its width from the 7994 // XLEN, and then adding one (sign bit within the element type). If the 7995 // element type is wider than XLen, the least-significant XLEN bits are 7996 // taken. 7997 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7998 return 1; 7999 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 8000 } 8001 8002 return 1; 8003 } 8004 8005 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8006 MachineBasicBlock *BB) { 8007 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8008 8009 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 8010 // Should the count have wrapped while it was being read, we need to try 8011 // again. 8012 // ... 8013 // read: 8014 // rdcycleh x3 # load high word of cycle 8015 // rdcycle x2 # load low word of cycle 8016 // rdcycleh x4 # load high word of cycle 8017 // bne x3, x4, read # check if high word reads match, otherwise try again 8018 // ... 8019 8020 MachineFunction &MF = *BB->getParent(); 8021 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8022 MachineFunction::iterator It = ++BB->getIterator(); 8023 8024 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8025 MF.insert(It, LoopMBB); 8026 8027 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 8028 MF.insert(It, DoneMBB); 8029 8030 // Transfer the remainder of BB and its successor edges to DoneMBB. 8031 DoneMBB->splice(DoneMBB->begin(), BB, 8032 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8033 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 8034 8035 BB->addSuccessor(LoopMBB); 8036 8037 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8038 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8039 Register LoReg = MI.getOperand(0).getReg(); 8040 Register HiReg = MI.getOperand(1).getReg(); 8041 DebugLoc DL = MI.getDebugLoc(); 8042 8043 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 8044 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 8045 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8046 .addReg(RISCV::X0); 8047 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 8048 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 8049 .addReg(RISCV::X0); 8050 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 8051 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 8052 .addReg(RISCV::X0); 8053 8054 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 8055 .addReg(HiReg) 8056 .addReg(ReadAgainReg) 8057 .addMBB(LoopMBB); 8058 8059 LoopMBB->addSuccessor(LoopMBB); 8060 LoopMBB->addSuccessor(DoneMBB); 8061 8062 MI.eraseFromParent(); 8063 8064 return DoneMBB; 8065 } 8066 8067 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 8068 MachineBasicBlock *BB) { 8069 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 8070 8071 MachineFunction &MF = *BB->getParent(); 8072 DebugLoc DL = MI.getDebugLoc(); 8073 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8074 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8075 Register LoReg = MI.getOperand(0).getReg(); 8076 Register HiReg = MI.getOperand(1).getReg(); 8077 Register SrcReg = MI.getOperand(2).getReg(); 8078 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 8079 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8080 8081 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 8082 RI); 8083 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8084 MachineMemOperand *MMOLo = 8085 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 8086 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8087 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 8088 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 8089 .addFrameIndex(FI) 8090 .addImm(0) 8091 .addMemOperand(MMOLo); 8092 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 8093 .addFrameIndex(FI) 8094 .addImm(4) 8095 .addMemOperand(MMOHi); 8096 MI.eraseFromParent(); // The pseudo instruction is gone now. 8097 return BB; 8098 } 8099 8100 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 8101 MachineBasicBlock *BB) { 8102 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 8103 "Unexpected instruction"); 8104 8105 MachineFunction &MF = *BB->getParent(); 8106 DebugLoc DL = MI.getDebugLoc(); 8107 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 8108 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 8109 Register DstReg = MI.getOperand(0).getReg(); 8110 Register LoReg = MI.getOperand(1).getReg(); 8111 Register HiReg = MI.getOperand(2).getReg(); 8112 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 8113 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 8114 8115 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 8116 MachineMemOperand *MMOLo = 8117 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 8118 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 8119 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 8120 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8121 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 8122 .addFrameIndex(FI) 8123 .addImm(0) 8124 .addMemOperand(MMOLo); 8125 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 8126 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 8127 .addFrameIndex(FI) 8128 .addImm(4) 8129 .addMemOperand(MMOHi); 8130 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 8131 MI.eraseFromParent(); // The pseudo instruction is gone now. 8132 return BB; 8133 } 8134 8135 static bool isSelectPseudo(MachineInstr &MI) { 8136 switch (MI.getOpcode()) { 8137 default: 8138 return false; 8139 case RISCV::Select_GPR_Using_CC_GPR: 8140 case RISCV::Select_FPR16_Using_CC_GPR: 8141 case RISCV::Select_FPR32_Using_CC_GPR: 8142 case RISCV::Select_FPR64_Using_CC_GPR: 8143 return true; 8144 } 8145 } 8146 8147 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 8148 unsigned RelOpcode, unsigned EqOpcode, 8149 const RISCVSubtarget &Subtarget) { 8150 DebugLoc DL = MI.getDebugLoc(); 8151 Register DstReg = MI.getOperand(0).getReg(); 8152 Register Src1Reg = MI.getOperand(1).getReg(); 8153 Register Src2Reg = MI.getOperand(2).getReg(); 8154 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 8155 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 8156 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 8157 8158 // Save the current FFLAGS. 8159 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 8160 8161 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 8162 .addReg(Src1Reg) 8163 .addReg(Src2Reg); 8164 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8165 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 8166 8167 // Restore the FFLAGS. 8168 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 8169 .addReg(SavedFFlags, RegState::Kill); 8170 8171 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 8172 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 8173 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 8174 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 8175 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 8176 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 8177 8178 // Erase the pseudoinstruction. 8179 MI.eraseFromParent(); 8180 return BB; 8181 } 8182 8183 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 8184 MachineBasicBlock *BB, 8185 const RISCVSubtarget &Subtarget) { 8186 // To "insert" Select_* instructions, we actually have to insert the triangle 8187 // control-flow pattern. The incoming instructions know the destination vreg 8188 // to set, the condition code register to branch on, the true/false values to 8189 // select between, and the condcode to use to select the appropriate branch. 8190 // 8191 // We produce the following control flow: 8192 // HeadMBB 8193 // | \ 8194 // | IfFalseMBB 8195 // | / 8196 // TailMBB 8197 // 8198 // When we find a sequence of selects we attempt to optimize their emission 8199 // by sharing the control flow. Currently we only handle cases where we have 8200 // multiple selects with the exact same condition (same LHS, RHS and CC). 8201 // The selects may be interleaved with other instructions if the other 8202 // instructions meet some requirements we deem safe: 8203 // - They are debug instructions. Otherwise, 8204 // - They do not have side-effects, do not access memory and their inputs do 8205 // not depend on the results of the select pseudo-instructions. 8206 // The TrueV/FalseV operands of the selects cannot depend on the result of 8207 // previous selects in the sequence. 8208 // These conditions could be further relaxed. See the X86 target for a 8209 // related approach and more information. 8210 Register LHS = MI.getOperand(1).getReg(); 8211 Register RHS = MI.getOperand(2).getReg(); 8212 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 8213 8214 SmallVector<MachineInstr *, 4> SelectDebugValues; 8215 SmallSet<Register, 4> SelectDests; 8216 SelectDests.insert(MI.getOperand(0).getReg()); 8217 8218 MachineInstr *LastSelectPseudo = &MI; 8219 8220 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 8221 SequenceMBBI != E; ++SequenceMBBI) { 8222 if (SequenceMBBI->isDebugInstr()) 8223 continue; 8224 else if (isSelectPseudo(*SequenceMBBI)) { 8225 if (SequenceMBBI->getOperand(1).getReg() != LHS || 8226 SequenceMBBI->getOperand(2).getReg() != RHS || 8227 SequenceMBBI->getOperand(3).getImm() != CC || 8228 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 8229 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 8230 break; 8231 LastSelectPseudo = &*SequenceMBBI; 8232 SequenceMBBI->collectDebugValues(SelectDebugValues); 8233 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 8234 } else { 8235 if (SequenceMBBI->hasUnmodeledSideEffects() || 8236 SequenceMBBI->mayLoadOrStore()) 8237 break; 8238 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 8239 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 8240 })) 8241 break; 8242 } 8243 } 8244 8245 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 8246 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8247 DebugLoc DL = MI.getDebugLoc(); 8248 MachineFunction::iterator I = ++BB->getIterator(); 8249 8250 MachineBasicBlock *HeadMBB = BB; 8251 MachineFunction *F = BB->getParent(); 8252 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 8253 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 8254 8255 F->insert(I, IfFalseMBB); 8256 F->insert(I, TailMBB); 8257 8258 // Transfer debug instructions associated with the selects to TailMBB. 8259 for (MachineInstr *DebugInstr : SelectDebugValues) { 8260 TailMBB->push_back(DebugInstr->removeFromParent()); 8261 } 8262 8263 // Move all instructions after the sequence to TailMBB. 8264 TailMBB->splice(TailMBB->end(), HeadMBB, 8265 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 8266 // Update machine-CFG edges by transferring all successors of the current 8267 // block to the new block which will contain the Phi nodes for the selects. 8268 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 8269 // Set the successors for HeadMBB. 8270 HeadMBB->addSuccessor(IfFalseMBB); 8271 HeadMBB->addSuccessor(TailMBB); 8272 8273 // Insert appropriate branch. 8274 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 8275 .addReg(LHS) 8276 .addReg(RHS) 8277 .addMBB(TailMBB); 8278 8279 // IfFalseMBB just falls through to TailMBB. 8280 IfFalseMBB->addSuccessor(TailMBB); 8281 8282 // Create PHIs for all of the select pseudo-instructions. 8283 auto SelectMBBI = MI.getIterator(); 8284 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 8285 auto InsertionPoint = TailMBB->begin(); 8286 while (SelectMBBI != SelectEnd) { 8287 auto Next = std::next(SelectMBBI); 8288 if (isSelectPseudo(*SelectMBBI)) { 8289 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 8290 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 8291 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 8292 .addReg(SelectMBBI->getOperand(4).getReg()) 8293 .addMBB(HeadMBB) 8294 .addReg(SelectMBBI->getOperand(5).getReg()) 8295 .addMBB(IfFalseMBB); 8296 SelectMBBI->eraseFromParent(); 8297 } 8298 SelectMBBI = Next; 8299 } 8300 8301 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8302 return TailMBB; 8303 } 8304 8305 MachineBasicBlock * 8306 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 8307 MachineBasicBlock *BB) const { 8308 switch (MI.getOpcode()) { 8309 default: 8310 llvm_unreachable("Unexpected instr type to insert"); 8311 case RISCV::ReadCycleWide: 8312 assert(!Subtarget.is64Bit() && 8313 "ReadCycleWrite is only to be used on riscv32"); 8314 return emitReadCycleWidePseudo(MI, BB); 8315 case RISCV::Select_GPR_Using_CC_GPR: 8316 case RISCV::Select_FPR16_Using_CC_GPR: 8317 case RISCV::Select_FPR32_Using_CC_GPR: 8318 case RISCV::Select_FPR64_Using_CC_GPR: 8319 return emitSelectPseudo(MI, BB, Subtarget); 8320 case RISCV::BuildPairF64Pseudo: 8321 return emitBuildPairF64Pseudo(MI, BB); 8322 case RISCV::SplitF64Pseudo: 8323 return emitSplitF64Pseudo(MI, BB); 8324 case RISCV::PseudoQuietFLE_H: 8325 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 8326 case RISCV::PseudoQuietFLT_H: 8327 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 8328 case RISCV::PseudoQuietFLE_S: 8329 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 8330 case RISCV::PseudoQuietFLT_S: 8331 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 8332 case RISCV::PseudoQuietFLE_D: 8333 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 8334 case RISCV::PseudoQuietFLT_D: 8335 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 8336 } 8337 } 8338 8339 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 8340 SDNode *Node) const { 8341 // Add FRM dependency to any instructions with dynamic rounding mode. 8342 unsigned Opc = MI.getOpcode(); 8343 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 8344 if (Idx < 0) 8345 return; 8346 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 8347 return; 8348 // If the instruction already reads FRM, don't add another read. 8349 if (MI.readsRegister(RISCV::FRM)) 8350 return; 8351 MI.addOperand( 8352 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 8353 } 8354 8355 // Calling Convention Implementation. 8356 // The expectations for frontend ABI lowering vary from target to target. 8357 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 8358 // details, but this is a longer term goal. For now, we simply try to keep the 8359 // role of the frontend as simple and well-defined as possible. The rules can 8360 // be summarised as: 8361 // * Never split up large scalar arguments. We handle them here. 8362 // * If a hardfloat calling convention is being used, and the struct may be 8363 // passed in a pair of registers (fp+fp, int+fp), and both registers are 8364 // available, then pass as two separate arguments. If either the GPRs or FPRs 8365 // are exhausted, then pass according to the rule below. 8366 // * If a struct could never be passed in registers or directly in a stack 8367 // slot (as it is larger than 2*XLEN and the floating point rules don't 8368 // apply), then pass it using a pointer with the byval attribute. 8369 // * If a struct is less than 2*XLEN, then coerce to either a two-element 8370 // word-sized array or a 2*XLEN scalar (depending on alignment). 8371 // * The frontend can determine whether a struct is returned by reference or 8372 // not based on its size and fields. If it will be returned by reference, the 8373 // frontend must modify the prototype so a pointer with the sret annotation is 8374 // passed as the first argument. This is not necessary for large scalar 8375 // returns. 8376 // * Struct return values and varargs should be coerced to structs containing 8377 // register-size fields in the same situations they would be for fixed 8378 // arguments. 8379 8380 static const MCPhysReg ArgGPRs[] = { 8381 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 8382 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 8383 }; 8384 static const MCPhysReg ArgFPR16s[] = { 8385 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 8386 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 8387 }; 8388 static const MCPhysReg ArgFPR32s[] = { 8389 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 8390 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 8391 }; 8392 static const MCPhysReg ArgFPR64s[] = { 8393 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 8394 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 8395 }; 8396 // This is an interim calling convention and it may be changed in the future. 8397 static const MCPhysReg ArgVRs[] = { 8398 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 8399 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 8400 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 8401 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 8402 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 8403 RISCV::V20M2, RISCV::V22M2}; 8404 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 8405 RISCV::V20M4}; 8406 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 8407 8408 // Pass a 2*XLEN argument that has been split into two XLEN values through 8409 // registers or the stack as necessary. 8410 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 8411 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 8412 MVT ValVT2, MVT LocVT2, 8413 ISD::ArgFlagsTy ArgFlags2) { 8414 unsigned XLenInBytes = XLen / 8; 8415 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8416 // At least one half can be passed via register. 8417 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 8418 VA1.getLocVT(), CCValAssign::Full)); 8419 } else { 8420 // Both halves must be passed on the stack, with proper alignment. 8421 Align StackAlign = 8422 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 8423 State.addLoc( 8424 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 8425 State.AllocateStack(XLenInBytes, StackAlign), 8426 VA1.getLocVT(), CCValAssign::Full)); 8427 State.addLoc(CCValAssign::getMem( 8428 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8429 LocVT2, CCValAssign::Full)); 8430 return false; 8431 } 8432 8433 if (Register Reg = State.AllocateReg(ArgGPRs)) { 8434 // The second half can also be passed via register. 8435 State.addLoc( 8436 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 8437 } else { 8438 // The second half is passed via the stack, without additional alignment. 8439 State.addLoc(CCValAssign::getMem( 8440 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 8441 LocVT2, CCValAssign::Full)); 8442 } 8443 8444 return false; 8445 } 8446 8447 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 8448 Optional<unsigned> FirstMaskArgument, 8449 CCState &State, const RISCVTargetLowering &TLI) { 8450 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 8451 if (RC == &RISCV::VRRegClass) { 8452 // Assign the first mask argument to V0. 8453 // This is an interim calling convention and it may be changed in the 8454 // future. 8455 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 8456 return State.AllocateReg(RISCV::V0); 8457 return State.AllocateReg(ArgVRs); 8458 } 8459 if (RC == &RISCV::VRM2RegClass) 8460 return State.AllocateReg(ArgVRM2s); 8461 if (RC == &RISCV::VRM4RegClass) 8462 return State.AllocateReg(ArgVRM4s); 8463 if (RC == &RISCV::VRM8RegClass) 8464 return State.AllocateReg(ArgVRM8s); 8465 llvm_unreachable("Unhandled register class for ValueType"); 8466 } 8467 8468 // Implements the RISC-V calling convention. Returns true upon failure. 8469 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 8470 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 8471 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 8472 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 8473 Optional<unsigned> FirstMaskArgument) { 8474 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 8475 assert(XLen == 32 || XLen == 64); 8476 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 8477 8478 // Any return value split in to more than two values can't be returned 8479 // directly. Vectors are returned via the available vector registers. 8480 if (!LocVT.isVector() && IsRet && ValNo > 1) 8481 return true; 8482 8483 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 8484 // variadic argument, or if no F16/F32 argument registers are available. 8485 bool UseGPRForF16_F32 = true; 8486 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 8487 // variadic argument, or if no F64 argument registers are available. 8488 bool UseGPRForF64 = true; 8489 8490 switch (ABI) { 8491 default: 8492 llvm_unreachable("Unexpected ABI"); 8493 case RISCVABI::ABI_ILP32: 8494 case RISCVABI::ABI_LP64: 8495 break; 8496 case RISCVABI::ABI_ILP32F: 8497 case RISCVABI::ABI_LP64F: 8498 UseGPRForF16_F32 = !IsFixed; 8499 break; 8500 case RISCVABI::ABI_ILP32D: 8501 case RISCVABI::ABI_LP64D: 8502 UseGPRForF16_F32 = !IsFixed; 8503 UseGPRForF64 = !IsFixed; 8504 break; 8505 } 8506 8507 // FPR16, FPR32, and FPR64 alias each other. 8508 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 8509 UseGPRForF16_F32 = true; 8510 UseGPRForF64 = true; 8511 } 8512 8513 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 8514 // similar local variables rather than directly checking against the target 8515 // ABI. 8516 8517 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 8518 LocVT = XLenVT; 8519 LocInfo = CCValAssign::BCvt; 8520 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 8521 LocVT = MVT::i64; 8522 LocInfo = CCValAssign::BCvt; 8523 } 8524 8525 // If this is a variadic argument, the RISC-V calling convention requires 8526 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 8527 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 8528 // be used regardless of whether the original argument was split during 8529 // legalisation or not. The argument will not be passed by registers if the 8530 // original type is larger than 2*XLEN, so the register alignment rule does 8531 // not apply. 8532 unsigned TwoXLenInBytes = (2 * XLen) / 8; 8533 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 8534 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 8535 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 8536 // Skip 'odd' register if necessary. 8537 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 8538 State.AllocateReg(ArgGPRs); 8539 } 8540 8541 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 8542 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 8543 State.getPendingArgFlags(); 8544 8545 assert(PendingLocs.size() == PendingArgFlags.size() && 8546 "PendingLocs and PendingArgFlags out of sync"); 8547 8548 // Handle passing f64 on RV32D with a soft float ABI or when floating point 8549 // registers are exhausted. 8550 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 8551 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 8552 "Can't lower f64 if it is split"); 8553 // Depending on available argument GPRS, f64 may be passed in a pair of 8554 // GPRs, split between a GPR and the stack, or passed completely on the 8555 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 8556 // cases. 8557 Register Reg = State.AllocateReg(ArgGPRs); 8558 LocVT = MVT::i32; 8559 if (!Reg) { 8560 unsigned StackOffset = State.AllocateStack(8, Align(8)); 8561 State.addLoc( 8562 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8563 return false; 8564 } 8565 if (!State.AllocateReg(ArgGPRs)) 8566 State.AllocateStack(4, Align(4)); 8567 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8568 return false; 8569 } 8570 8571 // Fixed-length vectors are located in the corresponding scalable-vector 8572 // container types. 8573 if (ValVT.isFixedLengthVector()) 8574 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8575 8576 // Split arguments might be passed indirectly, so keep track of the pending 8577 // values. Split vectors are passed via a mix of registers and indirectly, so 8578 // treat them as we would any other argument. 8579 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 8580 LocVT = XLenVT; 8581 LocInfo = CCValAssign::Indirect; 8582 PendingLocs.push_back( 8583 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 8584 PendingArgFlags.push_back(ArgFlags); 8585 if (!ArgFlags.isSplitEnd()) { 8586 return false; 8587 } 8588 } 8589 8590 // If the split argument only had two elements, it should be passed directly 8591 // in registers or on the stack. 8592 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 8593 PendingLocs.size() <= 2) { 8594 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 8595 // Apply the normal calling convention rules to the first half of the 8596 // split argument. 8597 CCValAssign VA = PendingLocs[0]; 8598 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 8599 PendingLocs.clear(); 8600 PendingArgFlags.clear(); 8601 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 8602 ArgFlags); 8603 } 8604 8605 // Allocate to a register if possible, or else a stack slot. 8606 Register Reg; 8607 unsigned StoreSizeBytes = XLen / 8; 8608 Align StackAlign = Align(XLen / 8); 8609 8610 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 8611 Reg = State.AllocateReg(ArgFPR16s); 8612 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 8613 Reg = State.AllocateReg(ArgFPR32s); 8614 else if (ValVT == MVT::f64 && !UseGPRForF64) 8615 Reg = State.AllocateReg(ArgFPR64s); 8616 else if (ValVT.isVector()) { 8617 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 8618 if (!Reg) { 8619 // For return values, the vector must be passed fully via registers or 8620 // via the stack. 8621 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 8622 // but we're using all of them. 8623 if (IsRet) 8624 return true; 8625 // Try using a GPR to pass the address 8626 if ((Reg = State.AllocateReg(ArgGPRs))) { 8627 LocVT = XLenVT; 8628 LocInfo = CCValAssign::Indirect; 8629 } else if (ValVT.isScalableVector()) { 8630 LocVT = XLenVT; 8631 LocInfo = CCValAssign::Indirect; 8632 } else { 8633 // Pass fixed-length vectors on the stack. 8634 LocVT = ValVT; 8635 StoreSizeBytes = ValVT.getStoreSize(); 8636 // Align vectors to their element sizes, being careful for vXi1 8637 // vectors. 8638 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8639 } 8640 } 8641 } else { 8642 Reg = State.AllocateReg(ArgGPRs); 8643 } 8644 8645 unsigned StackOffset = 8646 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 8647 8648 // If we reach this point and PendingLocs is non-empty, we must be at the 8649 // end of a split argument that must be passed indirectly. 8650 if (!PendingLocs.empty()) { 8651 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 8652 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 8653 8654 for (auto &It : PendingLocs) { 8655 if (Reg) 8656 It.convertToReg(Reg); 8657 else 8658 It.convertToMem(StackOffset); 8659 State.addLoc(It); 8660 } 8661 PendingLocs.clear(); 8662 PendingArgFlags.clear(); 8663 return false; 8664 } 8665 8666 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 8667 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 8668 "Expected an XLenVT or vector types at this stage"); 8669 8670 if (Reg) { 8671 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8672 return false; 8673 } 8674 8675 // When a floating-point value is passed on the stack, no bit-conversion is 8676 // needed. 8677 if (ValVT.isFloatingPoint()) { 8678 LocVT = ValVT; 8679 LocInfo = CCValAssign::Full; 8680 } 8681 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8682 return false; 8683 } 8684 8685 template <typename ArgTy> 8686 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8687 for (const auto &ArgIdx : enumerate(Args)) { 8688 MVT ArgVT = ArgIdx.value().VT; 8689 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8690 return ArgIdx.index(); 8691 } 8692 return None; 8693 } 8694 8695 void RISCVTargetLowering::analyzeInputArgs( 8696 MachineFunction &MF, CCState &CCInfo, 8697 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8698 RISCVCCAssignFn Fn) const { 8699 unsigned NumArgs = Ins.size(); 8700 FunctionType *FType = MF.getFunction().getFunctionType(); 8701 8702 Optional<unsigned> FirstMaskArgument; 8703 if (Subtarget.hasVInstructions()) 8704 FirstMaskArgument = preAssignMask(Ins); 8705 8706 for (unsigned i = 0; i != NumArgs; ++i) { 8707 MVT ArgVT = Ins[i].VT; 8708 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8709 8710 Type *ArgTy = nullptr; 8711 if (IsRet) 8712 ArgTy = FType->getReturnType(); 8713 else if (Ins[i].isOrigArg()) 8714 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8715 8716 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8717 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8718 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8719 FirstMaskArgument)) { 8720 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8721 << EVT(ArgVT).getEVTString() << '\n'); 8722 llvm_unreachable(nullptr); 8723 } 8724 } 8725 } 8726 8727 void RISCVTargetLowering::analyzeOutputArgs( 8728 MachineFunction &MF, CCState &CCInfo, 8729 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8730 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8731 unsigned NumArgs = Outs.size(); 8732 8733 Optional<unsigned> FirstMaskArgument; 8734 if (Subtarget.hasVInstructions()) 8735 FirstMaskArgument = preAssignMask(Outs); 8736 8737 for (unsigned i = 0; i != NumArgs; i++) { 8738 MVT ArgVT = Outs[i].VT; 8739 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8740 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8741 8742 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8743 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8744 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8745 FirstMaskArgument)) { 8746 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8747 << EVT(ArgVT).getEVTString() << "\n"); 8748 llvm_unreachable(nullptr); 8749 } 8750 } 8751 } 8752 8753 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8754 // values. 8755 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8756 const CCValAssign &VA, const SDLoc &DL, 8757 const RISCVSubtarget &Subtarget) { 8758 switch (VA.getLocInfo()) { 8759 default: 8760 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8761 case CCValAssign::Full: 8762 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8763 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8764 break; 8765 case CCValAssign::BCvt: 8766 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8767 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8768 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8769 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8770 else 8771 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8772 break; 8773 } 8774 return Val; 8775 } 8776 8777 // The caller is responsible for loading the full value if the argument is 8778 // passed with CCValAssign::Indirect. 8779 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8780 const CCValAssign &VA, const SDLoc &DL, 8781 const RISCVTargetLowering &TLI) { 8782 MachineFunction &MF = DAG.getMachineFunction(); 8783 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8784 EVT LocVT = VA.getLocVT(); 8785 SDValue Val; 8786 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8787 Register VReg = RegInfo.createVirtualRegister(RC); 8788 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8789 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8790 8791 if (VA.getLocInfo() == CCValAssign::Indirect) 8792 return Val; 8793 8794 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8795 } 8796 8797 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8798 const CCValAssign &VA, const SDLoc &DL, 8799 const RISCVSubtarget &Subtarget) { 8800 EVT LocVT = VA.getLocVT(); 8801 8802 switch (VA.getLocInfo()) { 8803 default: 8804 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8805 case CCValAssign::Full: 8806 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8807 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8808 break; 8809 case CCValAssign::BCvt: 8810 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8811 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8812 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8813 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8814 else 8815 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8816 break; 8817 } 8818 return Val; 8819 } 8820 8821 // The caller is responsible for loading the full value if the argument is 8822 // passed with CCValAssign::Indirect. 8823 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8824 const CCValAssign &VA, const SDLoc &DL) { 8825 MachineFunction &MF = DAG.getMachineFunction(); 8826 MachineFrameInfo &MFI = MF.getFrameInfo(); 8827 EVT LocVT = VA.getLocVT(); 8828 EVT ValVT = VA.getValVT(); 8829 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8830 if (ValVT.isScalableVector()) { 8831 // When the value is a scalable vector, we save the pointer which points to 8832 // the scalable vector value in the stack. The ValVT will be the pointer 8833 // type, instead of the scalable vector type. 8834 ValVT = LocVT; 8835 } 8836 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8837 /*IsImmutable=*/true); 8838 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8839 SDValue Val; 8840 8841 ISD::LoadExtType ExtType; 8842 switch (VA.getLocInfo()) { 8843 default: 8844 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8845 case CCValAssign::Full: 8846 case CCValAssign::Indirect: 8847 case CCValAssign::BCvt: 8848 ExtType = ISD::NON_EXTLOAD; 8849 break; 8850 } 8851 Val = DAG.getExtLoad( 8852 ExtType, DL, LocVT, Chain, FIN, 8853 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8854 return Val; 8855 } 8856 8857 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8858 const CCValAssign &VA, const SDLoc &DL) { 8859 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8860 "Unexpected VA"); 8861 MachineFunction &MF = DAG.getMachineFunction(); 8862 MachineFrameInfo &MFI = MF.getFrameInfo(); 8863 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8864 8865 if (VA.isMemLoc()) { 8866 // f64 is passed on the stack. 8867 int FI = 8868 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 8869 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8870 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8871 MachinePointerInfo::getFixedStack(MF, FI)); 8872 } 8873 8874 assert(VA.isRegLoc() && "Expected register VA assignment"); 8875 8876 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8877 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8878 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8879 SDValue Hi; 8880 if (VA.getLocReg() == RISCV::X17) { 8881 // Second half of f64 is passed on the stack. 8882 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 8883 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8884 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8885 MachinePointerInfo::getFixedStack(MF, FI)); 8886 } else { 8887 // Second half of f64 is passed in another GPR. 8888 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8889 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8890 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8891 } 8892 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8893 } 8894 8895 // FastCC has less than 1% performance improvement for some particular 8896 // benchmark. But theoretically, it may has benenfit for some cases. 8897 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8898 unsigned ValNo, MVT ValVT, MVT LocVT, 8899 CCValAssign::LocInfo LocInfo, 8900 ISD::ArgFlagsTy ArgFlags, CCState &State, 8901 bool IsFixed, bool IsRet, Type *OrigTy, 8902 const RISCVTargetLowering &TLI, 8903 Optional<unsigned> FirstMaskArgument) { 8904 8905 // X5 and X6 might be used for save-restore libcall. 8906 static const MCPhysReg GPRList[] = { 8907 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8908 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8909 RISCV::X29, RISCV::X30, RISCV::X31}; 8910 8911 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8912 if (unsigned Reg = State.AllocateReg(GPRList)) { 8913 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8914 return false; 8915 } 8916 } 8917 8918 if (LocVT == MVT::f16) { 8919 static const MCPhysReg FPR16List[] = { 8920 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8921 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8922 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8923 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8924 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8925 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8926 return false; 8927 } 8928 } 8929 8930 if (LocVT == MVT::f32) { 8931 static const MCPhysReg FPR32List[] = { 8932 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8933 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8934 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8935 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8936 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8937 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8938 return false; 8939 } 8940 } 8941 8942 if (LocVT == MVT::f64) { 8943 static const MCPhysReg FPR64List[] = { 8944 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8945 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8946 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8947 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8948 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8949 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8950 return false; 8951 } 8952 } 8953 8954 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8955 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8956 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8957 return false; 8958 } 8959 8960 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8961 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8962 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8963 return false; 8964 } 8965 8966 if (LocVT.isVector()) { 8967 if (unsigned Reg = 8968 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8969 // Fixed-length vectors are located in the corresponding scalable-vector 8970 // container types. 8971 if (ValVT.isFixedLengthVector()) 8972 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8973 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8974 } else { 8975 // Try and pass the address via a "fast" GPR. 8976 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8977 LocInfo = CCValAssign::Indirect; 8978 LocVT = TLI.getSubtarget().getXLenVT(); 8979 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8980 } else if (ValVT.isFixedLengthVector()) { 8981 auto StackAlign = 8982 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8983 unsigned StackOffset = 8984 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8985 State.addLoc( 8986 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8987 } else { 8988 // Can't pass scalable vectors on the stack. 8989 return true; 8990 } 8991 } 8992 8993 return false; 8994 } 8995 8996 return true; // CC didn't match. 8997 } 8998 8999 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9000 CCValAssign::LocInfo LocInfo, 9001 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9002 9003 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9004 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9005 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9006 static const MCPhysReg GPRList[] = { 9007 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9008 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9009 if (unsigned Reg = State.AllocateReg(GPRList)) { 9010 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9011 return false; 9012 } 9013 } 9014 9015 if (LocVT == MVT::f32) { 9016 // Pass in STG registers: F1, ..., F6 9017 // fs0 ... fs5 9018 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 9019 RISCV::F18_F, RISCV::F19_F, 9020 RISCV::F20_F, RISCV::F21_F}; 9021 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9022 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9023 return false; 9024 } 9025 } 9026 9027 if (LocVT == MVT::f64) { 9028 // Pass in STG registers: D1, ..., D6 9029 // fs6 ... fs11 9030 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 9031 RISCV::F24_D, RISCV::F25_D, 9032 RISCV::F26_D, RISCV::F27_D}; 9033 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9034 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9035 return false; 9036 } 9037 } 9038 9039 report_fatal_error("No registers left in GHC calling convention"); 9040 return true; 9041 } 9042 9043 // Transform physical registers into virtual registers. 9044 SDValue RISCVTargetLowering::LowerFormalArguments( 9045 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 9046 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 9047 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 9048 9049 MachineFunction &MF = DAG.getMachineFunction(); 9050 9051 switch (CallConv) { 9052 default: 9053 report_fatal_error("Unsupported calling convention"); 9054 case CallingConv::C: 9055 case CallingConv::Fast: 9056 break; 9057 case CallingConv::GHC: 9058 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 9059 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 9060 report_fatal_error( 9061 "GHC calling convention requires the F and D instruction set extensions"); 9062 } 9063 9064 const Function &Func = MF.getFunction(); 9065 if (Func.hasFnAttribute("interrupt")) { 9066 if (!Func.arg_empty()) 9067 report_fatal_error( 9068 "Functions with the interrupt attribute cannot have arguments!"); 9069 9070 StringRef Kind = 9071 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9072 9073 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 9074 report_fatal_error( 9075 "Function interrupt attribute argument not supported!"); 9076 } 9077 9078 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9079 MVT XLenVT = Subtarget.getXLenVT(); 9080 unsigned XLenInBytes = Subtarget.getXLen() / 8; 9081 // Used with vargs to acumulate store chains. 9082 std::vector<SDValue> OutChains; 9083 9084 // Assign locations to all of the incoming arguments. 9085 SmallVector<CCValAssign, 16> ArgLocs; 9086 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9087 9088 if (CallConv == CallingConv::GHC) 9089 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 9090 else 9091 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 9092 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9093 : CC_RISCV); 9094 9095 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 9096 CCValAssign &VA = ArgLocs[i]; 9097 SDValue ArgValue; 9098 // Passing f64 on RV32D with a soft float ABI must be handled as a special 9099 // case. 9100 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 9101 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 9102 else if (VA.isRegLoc()) 9103 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 9104 else 9105 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 9106 9107 if (VA.getLocInfo() == CCValAssign::Indirect) { 9108 // If the original argument was split and passed by reference (e.g. i128 9109 // on RV32), we need to load all parts of it here (using the same 9110 // address). Vectors may be partly split to registers and partly to the 9111 // stack, in which case the base address is partly offset and subsequent 9112 // stores are relative to that. 9113 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 9114 MachinePointerInfo())); 9115 unsigned ArgIndex = Ins[i].OrigArgIndex; 9116 unsigned ArgPartOffset = Ins[i].PartOffset; 9117 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9118 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 9119 CCValAssign &PartVA = ArgLocs[i + 1]; 9120 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 9121 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9122 if (PartVA.getValVT().isScalableVector()) 9123 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9124 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 9125 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 9126 MachinePointerInfo())); 9127 ++i; 9128 } 9129 continue; 9130 } 9131 InVals.push_back(ArgValue); 9132 } 9133 9134 if (IsVarArg) { 9135 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 9136 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 9137 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 9138 MachineFrameInfo &MFI = MF.getFrameInfo(); 9139 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9140 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 9141 9142 // Offset of the first variable argument from stack pointer, and size of 9143 // the vararg save area. For now, the varargs save area is either zero or 9144 // large enough to hold a0-a7. 9145 int VaArgOffset, VarArgsSaveSize; 9146 9147 // If all registers are allocated, then all varargs must be passed on the 9148 // stack and we don't need to save any argregs. 9149 if (ArgRegs.size() == Idx) { 9150 VaArgOffset = CCInfo.getNextStackOffset(); 9151 VarArgsSaveSize = 0; 9152 } else { 9153 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 9154 VaArgOffset = -VarArgsSaveSize; 9155 } 9156 9157 // Record the frame index of the first variable argument 9158 // which is a value necessary to VASTART. 9159 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9160 RVFI->setVarArgsFrameIndex(FI); 9161 9162 // If saving an odd number of registers then create an extra stack slot to 9163 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 9164 // offsets to even-numbered registered remain 2*XLEN-aligned. 9165 if (Idx % 2) { 9166 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 9167 VarArgsSaveSize += XLenInBytes; 9168 } 9169 9170 // Copy the integer registers that may have been used for passing varargs 9171 // to the vararg save area. 9172 for (unsigned I = Idx; I < ArgRegs.size(); 9173 ++I, VaArgOffset += XLenInBytes) { 9174 const Register Reg = RegInfo.createVirtualRegister(RC); 9175 RegInfo.addLiveIn(ArgRegs[I], Reg); 9176 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 9177 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 9178 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9179 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 9180 MachinePointerInfo::getFixedStack(MF, FI)); 9181 cast<StoreSDNode>(Store.getNode()) 9182 ->getMemOperand() 9183 ->setValue((Value *)nullptr); 9184 OutChains.push_back(Store); 9185 } 9186 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 9187 } 9188 9189 // All stores are grouped in one node to allow the matching between 9190 // the size of Ins and InVals. This only happens for vararg functions. 9191 if (!OutChains.empty()) { 9192 OutChains.push_back(Chain); 9193 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 9194 } 9195 9196 return Chain; 9197 } 9198 9199 /// isEligibleForTailCallOptimization - Check whether the call is eligible 9200 /// for tail call optimization. 9201 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 9202 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 9203 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 9204 const SmallVector<CCValAssign, 16> &ArgLocs) const { 9205 9206 auto &Callee = CLI.Callee; 9207 auto CalleeCC = CLI.CallConv; 9208 auto &Outs = CLI.Outs; 9209 auto &Caller = MF.getFunction(); 9210 auto CallerCC = Caller.getCallingConv(); 9211 9212 // Exception-handling functions need a special set of instructions to 9213 // indicate a return to the hardware. Tail-calling another function would 9214 // probably break this. 9215 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 9216 // should be expanded as new function attributes are introduced. 9217 if (Caller.hasFnAttribute("interrupt")) 9218 return false; 9219 9220 // Do not tail call opt if the stack is used to pass parameters. 9221 if (CCInfo.getNextStackOffset() != 0) 9222 return false; 9223 9224 // Do not tail call opt if any parameters need to be passed indirectly. 9225 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 9226 // passed indirectly. So the address of the value will be passed in a 9227 // register, or if not available, then the address is put on the stack. In 9228 // order to pass indirectly, space on the stack often needs to be allocated 9229 // in order to store the value. In this case the CCInfo.getNextStackOffset() 9230 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 9231 // are passed CCValAssign::Indirect. 9232 for (auto &VA : ArgLocs) 9233 if (VA.getLocInfo() == CCValAssign::Indirect) 9234 return false; 9235 9236 // Do not tail call opt if either caller or callee uses struct return 9237 // semantics. 9238 auto IsCallerStructRet = Caller.hasStructRetAttr(); 9239 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 9240 if (IsCallerStructRet || IsCalleeStructRet) 9241 return false; 9242 9243 // Externally-defined functions with weak linkage should not be 9244 // tail-called. The behaviour of branch instructions in this situation (as 9245 // used for tail calls) is implementation-defined, so we cannot rely on the 9246 // linker replacing the tail call with a return. 9247 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 9248 const GlobalValue *GV = G->getGlobal(); 9249 if (GV->hasExternalWeakLinkage()) 9250 return false; 9251 } 9252 9253 // The callee has to preserve all registers the caller needs to preserve. 9254 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9255 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 9256 if (CalleeCC != CallerCC) { 9257 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 9258 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 9259 return false; 9260 } 9261 9262 // Byval parameters hand the function a pointer directly into the stack area 9263 // we want to reuse during a tail call. Working around this *is* possible 9264 // but less efficient and uglier in LowerCall. 9265 for (auto &Arg : Outs) 9266 if (Arg.Flags.isByVal()) 9267 return false; 9268 9269 return true; 9270 } 9271 9272 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 9273 return DAG.getDataLayout().getPrefTypeAlign( 9274 VT.getTypeForEVT(*DAG.getContext())); 9275 } 9276 9277 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 9278 // and output parameter nodes. 9279 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 9280 SmallVectorImpl<SDValue> &InVals) const { 9281 SelectionDAG &DAG = CLI.DAG; 9282 SDLoc &DL = CLI.DL; 9283 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 9284 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 9285 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 9286 SDValue Chain = CLI.Chain; 9287 SDValue Callee = CLI.Callee; 9288 bool &IsTailCall = CLI.IsTailCall; 9289 CallingConv::ID CallConv = CLI.CallConv; 9290 bool IsVarArg = CLI.IsVarArg; 9291 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9292 MVT XLenVT = Subtarget.getXLenVT(); 9293 9294 MachineFunction &MF = DAG.getMachineFunction(); 9295 9296 // Analyze the operands of the call, assigning locations to each operand. 9297 SmallVector<CCValAssign, 16> ArgLocs; 9298 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 9299 9300 if (CallConv == CallingConv::GHC) 9301 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 9302 else 9303 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 9304 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 9305 : CC_RISCV); 9306 9307 // Check if it's really possible to do a tail call. 9308 if (IsTailCall) 9309 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 9310 9311 if (IsTailCall) 9312 ++NumTailCalls; 9313 else if (CLI.CB && CLI.CB->isMustTailCall()) 9314 report_fatal_error("failed to perform tail call elimination on a call " 9315 "site marked musttail"); 9316 9317 // Get a count of how many bytes are to be pushed on the stack. 9318 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 9319 9320 // Create local copies for byval args 9321 SmallVector<SDValue, 8> ByValArgs; 9322 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9323 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9324 if (!Flags.isByVal()) 9325 continue; 9326 9327 SDValue Arg = OutVals[i]; 9328 unsigned Size = Flags.getByValSize(); 9329 Align Alignment = Flags.getNonZeroByValAlign(); 9330 9331 int FI = 9332 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 9333 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 9334 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 9335 9336 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 9337 /*IsVolatile=*/false, 9338 /*AlwaysInline=*/false, IsTailCall, 9339 MachinePointerInfo(), MachinePointerInfo()); 9340 ByValArgs.push_back(FIPtr); 9341 } 9342 9343 if (!IsTailCall) 9344 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 9345 9346 // Copy argument values to their designated locations. 9347 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 9348 SmallVector<SDValue, 8> MemOpChains; 9349 SDValue StackPtr; 9350 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 9351 CCValAssign &VA = ArgLocs[i]; 9352 SDValue ArgValue = OutVals[i]; 9353 ISD::ArgFlagsTy Flags = Outs[i].Flags; 9354 9355 // Handle passing f64 on RV32D with a soft float ABI as a special case. 9356 bool IsF64OnRV32DSoftABI = 9357 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 9358 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 9359 SDValue SplitF64 = DAG.getNode( 9360 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 9361 SDValue Lo = SplitF64.getValue(0); 9362 SDValue Hi = SplitF64.getValue(1); 9363 9364 Register RegLo = VA.getLocReg(); 9365 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 9366 9367 if (RegLo == RISCV::X17) { 9368 // Second half of f64 is passed on the stack. 9369 // Work out the address of the stack slot. 9370 if (!StackPtr.getNode()) 9371 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9372 // Emit the store. 9373 MemOpChains.push_back( 9374 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 9375 } else { 9376 // Second half of f64 is passed in another GPR. 9377 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9378 Register RegHigh = RegLo + 1; 9379 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 9380 } 9381 continue; 9382 } 9383 9384 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 9385 // as any other MemLoc. 9386 9387 // Promote the value if needed. 9388 // For now, only handle fully promoted and indirect arguments. 9389 if (VA.getLocInfo() == CCValAssign::Indirect) { 9390 // Store the argument in a stack slot and pass its address. 9391 Align StackAlign = 9392 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 9393 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 9394 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 9395 // If the original argument was split (e.g. i128), we need 9396 // to store the required parts of it here (and pass just one address). 9397 // Vectors may be partly split to registers and partly to the stack, in 9398 // which case the base address is partly offset and subsequent stores are 9399 // relative to that. 9400 unsigned ArgIndex = Outs[i].OrigArgIndex; 9401 unsigned ArgPartOffset = Outs[i].PartOffset; 9402 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 9403 // Calculate the total size to store. We don't have access to what we're 9404 // actually storing other than performing the loop and collecting the 9405 // info. 9406 SmallVector<std::pair<SDValue, SDValue>> Parts; 9407 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 9408 SDValue PartValue = OutVals[i + 1]; 9409 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 9410 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 9411 EVT PartVT = PartValue.getValueType(); 9412 if (PartVT.isScalableVector()) 9413 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 9414 StoredSize += PartVT.getStoreSize(); 9415 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 9416 Parts.push_back(std::make_pair(PartValue, Offset)); 9417 ++i; 9418 } 9419 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 9420 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 9421 MemOpChains.push_back( 9422 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 9423 MachinePointerInfo::getFixedStack(MF, FI))); 9424 for (const auto &Part : Parts) { 9425 SDValue PartValue = Part.first; 9426 SDValue PartOffset = Part.second; 9427 SDValue Address = 9428 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 9429 MemOpChains.push_back( 9430 DAG.getStore(Chain, DL, PartValue, Address, 9431 MachinePointerInfo::getFixedStack(MF, FI))); 9432 } 9433 ArgValue = SpillSlot; 9434 } else { 9435 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 9436 } 9437 9438 // Use local copy if it is a byval arg. 9439 if (Flags.isByVal()) 9440 ArgValue = ByValArgs[j++]; 9441 9442 if (VA.isRegLoc()) { 9443 // Queue up the argument copies and emit them at the end. 9444 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 9445 } else { 9446 assert(VA.isMemLoc() && "Argument not register or memory"); 9447 assert(!IsTailCall && "Tail call not allowed if stack is used " 9448 "for passing parameters"); 9449 9450 // Work out the address of the stack slot. 9451 if (!StackPtr.getNode()) 9452 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 9453 SDValue Address = 9454 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 9455 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 9456 9457 // Emit the store. 9458 MemOpChains.push_back( 9459 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 9460 } 9461 } 9462 9463 // Join the stores, which are independent of one another. 9464 if (!MemOpChains.empty()) 9465 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 9466 9467 SDValue Glue; 9468 9469 // Build a sequence of copy-to-reg nodes, chained and glued together. 9470 for (auto &Reg : RegsToPass) { 9471 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 9472 Glue = Chain.getValue(1); 9473 } 9474 9475 // Validate that none of the argument registers have been marked as 9476 // reserved, if so report an error. Do the same for the return address if this 9477 // is not a tailcall. 9478 validateCCReservedRegs(RegsToPass, MF); 9479 if (!IsTailCall && 9480 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 9481 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9482 MF.getFunction(), 9483 "Return address register required, but has been reserved."}); 9484 9485 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 9486 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 9487 // split it and then direct call can be matched by PseudoCALL. 9488 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 9489 const GlobalValue *GV = S->getGlobal(); 9490 9491 unsigned OpFlags = RISCVII::MO_CALL; 9492 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 9493 OpFlags = RISCVII::MO_PLT; 9494 9495 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 9496 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 9497 unsigned OpFlags = RISCVII::MO_CALL; 9498 9499 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 9500 nullptr)) 9501 OpFlags = RISCVII::MO_PLT; 9502 9503 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 9504 } 9505 9506 // The first call operand is the chain and the second is the target address. 9507 SmallVector<SDValue, 8> Ops; 9508 Ops.push_back(Chain); 9509 Ops.push_back(Callee); 9510 9511 // Add argument registers to the end of the list so that they are 9512 // known live into the call. 9513 for (auto &Reg : RegsToPass) 9514 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 9515 9516 if (!IsTailCall) { 9517 // Add a register mask operand representing the call-preserved registers. 9518 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 9519 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 9520 assert(Mask && "Missing call preserved mask for calling convention"); 9521 Ops.push_back(DAG.getRegisterMask(Mask)); 9522 } 9523 9524 // Glue the call to the argument copies, if any. 9525 if (Glue.getNode()) 9526 Ops.push_back(Glue); 9527 9528 // Emit the call. 9529 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9530 9531 if (IsTailCall) { 9532 MF.getFrameInfo().setHasTailCall(); 9533 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 9534 } 9535 9536 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 9537 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 9538 Glue = Chain.getValue(1); 9539 9540 // Mark the end of the call, which is glued to the call itself. 9541 Chain = DAG.getCALLSEQ_END(Chain, 9542 DAG.getConstant(NumBytes, DL, PtrVT, true), 9543 DAG.getConstant(0, DL, PtrVT, true), 9544 Glue, DL); 9545 Glue = Chain.getValue(1); 9546 9547 // Assign locations to each value returned by this call. 9548 SmallVector<CCValAssign, 16> RVLocs; 9549 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 9550 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 9551 9552 // Copy all of the result registers out of their specified physreg. 9553 for (auto &VA : RVLocs) { 9554 // Copy the value out 9555 SDValue RetValue = 9556 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 9557 // Glue the RetValue to the end of the call sequence 9558 Chain = RetValue.getValue(1); 9559 Glue = RetValue.getValue(2); 9560 9561 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9562 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 9563 SDValue RetValue2 = 9564 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 9565 Chain = RetValue2.getValue(1); 9566 Glue = RetValue2.getValue(2); 9567 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 9568 RetValue2); 9569 } 9570 9571 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 9572 9573 InVals.push_back(RetValue); 9574 } 9575 9576 return Chain; 9577 } 9578 9579 bool RISCVTargetLowering::CanLowerReturn( 9580 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 9581 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 9582 SmallVector<CCValAssign, 16> RVLocs; 9583 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 9584 9585 Optional<unsigned> FirstMaskArgument; 9586 if (Subtarget.hasVInstructions()) 9587 FirstMaskArgument = preAssignMask(Outs); 9588 9589 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 9590 MVT VT = Outs[i].VT; 9591 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9592 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9593 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 9594 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 9595 *this, FirstMaskArgument)) 9596 return false; 9597 } 9598 return true; 9599 } 9600 9601 SDValue 9602 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 9603 bool IsVarArg, 9604 const SmallVectorImpl<ISD::OutputArg> &Outs, 9605 const SmallVectorImpl<SDValue> &OutVals, 9606 const SDLoc &DL, SelectionDAG &DAG) const { 9607 const MachineFunction &MF = DAG.getMachineFunction(); 9608 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9609 9610 // Stores the assignment of the return value to a location. 9611 SmallVector<CCValAssign, 16> RVLocs; 9612 9613 // Info about the registers and stack slot. 9614 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 9615 *DAG.getContext()); 9616 9617 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 9618 nullptr, CC_RISCV); 9619 9620 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 9621 report_fatal_error("GHC functions return void only"); 9622 9623 SDValue Glue; 9624 SmallVector<SDValue, 4> RetOps(1, Chain); 9625 9626 // Copy the result values into the output registers. 9627 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 9628 SDValue Val = OutVals[i]; 9629 CCValAssign &VA = RVLocs[i]; 9630 assert(VA.isRegLoc() && "Can only return in registers!"); 9631 9632 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 9633 // Handle returning f64 on RV32D with a soft float ABI. 9634 assert(VA.isRegLoc() && "Expected return via registers"); 9635 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 9636 DAG.getVTList(MVT::i32, MVT::i32), Val); 9637 SDValue Lo = SplitF64.getValue(0); 9638 SDValue Hi = SplitF64.getValue(1); 9639 Register RegLo = VA.getLocReg(); 9640 assert(RegLo < RISCV::X31 && "Invalid register pair"); 9641 Register RegHi = RegLo + 1; 9642 9643 if (STI.isRegisterReservedByUser(RegLo) || 9644 STI.isRegisterReservedByUser(RegHi)) 9645 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9646 MF.getFunction(), 9647 "Return value register required, but has been reserved."}); 9648 9649 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 9650 Glue = Chain.getValue(1); 9651 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 9652 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 9653 Glue = Chain.getValue(1); 9654 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 9655 } else { 9656 // Handle a 'normal' return. 9657 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 9658 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 9659 9660 if (STI.isRegisterReservedByUser(VA.getLocReg())) 9661 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 9662 MF.getFunction(), 9663 "Return value register required, but has been reserved."}); 9664 9665 // Guarantee that all emitted copies are stuck together. 9666 Glue = Chain.getValue(1); 9667 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 9668 } 9669 } 9670 9671 RetOps[0] = Chain; // Update chain. 9672 9673 // Add the glue node if we have it. 9674 if (Glue.getNode()) { 9675 RetOps.push_back(Glue); 9676 } 9677 9678 unsigned RetOpc = RISCVISD::RET_FLAG; 9679 // Interrupt service routines use different return instructions. 9680 const Function &Func = DAG.getMachineFunction().getFunction(); 9681 if (Func.hasFnAttribute("interrupt")) { 9682 if (!Func.getReturnType()->isVoidTy()) 9683 report_fatal_error( 9684 "Functions with the interrupt attribute must have void return type!"); 9685 9686 MachineFunction &MF = DAG.getMachineFunction(); 9687 StringRef Kind = 9688 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 9689 9690 if (Kind == "user") 9691 RetOpc = RISCVISD::URET_FLAG; 9692 else if (Kind == "supervisor") 9693 RetOpc = RISCVISD::SRET_FLAG; 9694 else 9695 RetOpc = RISCVISD::MRET_FLAG; 9696 } 9697 9698 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9699 } 9700 9701 void RISCVTargetLowering::validateCCReservedRegs( 9702 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9703 MachineFunction &MF) const { 9704 const Function &F = MF.getFunction(); 9705 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9706 9707 if (llvm::any_of(Regs, [&STI](auto Reg) { 9708 return STI.isRegisterReservedByUser(Reg.first); 9709 })) 9710 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9711 F, "Argument register required, but has been reserved."}); 9712 } 9713 9714 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9715 return CI->isTailCall(); 9716 } 9717 9718 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9719 #define NODE_NAME_CASE(NODE) \ 9720 case RISCVISD::NODE: \ 9721 return "RISCVISD::" #NODE; 9722 // clang-format off 9723 switch ((RISCVISD::NodeType)Opcode) { 9724 case RISCVISD::FIRST_NUMBER: 9725 break; 9726 NODE_NAME_CASE(RET_FLAG) 9727 NODE_NAME_CASE(URET_FLAG) 9728 NODE_NAME_CASE(SRET_FLAG) 9729 NODE_NAME_CASE(MRET_FLAG) 9730 NODE_NAME_CASE(CALL) 9731 NODE_NAME_CASE(SELECT_CC) 9732 NODE_NAME_CASE(BR_CC) 9733 NODE_NAME_CASE(BuildPairF64) 9734 NODE_NAME_CASE(SplitF64) 9735 NODE_NAME_CASE(TAIL) 9736 NODE_NAME_CASE(MULHSU) 9737 NODE_NAME_CASE(SLLW) 9738 NODE_NAME_CASE(SRAW) 9739 NODE_NAME_CASE(SRLW) 9740 NODE_NAME_CASE(DIVW) 9741 NODE_NAME_CASE(DIVUW) 9742 NODE_NAME_CASE(REMUW) 9743 NODE_NAME_CASE(ROLW) 9744 NODE_NAME_CASE(RORW) 9745 NODE_NAME_CASE(CLZW) 9746 NODE_NAME_CASE(CTZW) 9747 NODE_NAME_CASE(FSLW) 9748 NODE_NAME_CASE(FSRW) 9749 NODE_NAME_CASE(FSL) 9750 NODE_NAME_CASE(FSR) 9751 NODE_NAME_CASE(FMV_H_X) 9752 NODE_NAME_CASE(FMV_X_ANYEXTH) 9753 NODE_NAME_CASE(FMV_W_X_RV64) 9754 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9755 NODE_NAME_CASE(FCVT_X) 9756 NODE_NAME_CASE(FCVT_XU) 9757 NODE_NAME_CASE(FCVT_W_RV64) 9758 NODE_NAME_CASE(FCVT_WU_RV64) 9759 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 9760 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 9761 NODE_NAME_CASE(READ_CYCLE_WIDE) 9762 NODE_NAME_CASE(GREV) 9763 NODE_NAME_CASE(GREVW) 9764 NODE_NAME_CASE(GORC) 9765 NODE_NAME_CASE(GORCW) 9766 NODE_NAME_CASE(SHFL) 9767 NODE_NAME_CASE(SHFLW) 9768 NODE_NAME_CASE(UNSHFL) 9769 NODE_NAME_CASE(UNSHFLW) 9770 NODE_NAME_CASE(BFP) 9771 NODE_NAME_CASE(BFPW) 9772 NODE_NAME_CASE(BCOMPRESS) 9773 NODE_NAME_CASE(BCOMPRESSW) 9774 NODE_NAME_CASE(BDECOMPRESS) 9775 NODE_NAME_CASE(BDECOMPRESSW) 9776 NODE_NAME_CASE(VMV_V_X_VL) 9777 NODE_NAME_CASE(VFMV_V_F_VL) 9778 NODE_NAME_CASE(VMV_X_S) 9779 NODE_NAME_CASE(VMV_S_X_VL) 9780 NODE_NAME_CASE(VFMV_S_F_VL) 9781 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9782 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9783 NODE_NAME_CASE(READ_VLENB) 9784 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9785 NODE_NAME_CASE(VSLIDEUP_VL) 9786 NODE_NAME_CASE(VSLIDE1UP_VL) 9787 NODE_NAME_CASE(VSLIDEDOWN_VL) 9788 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9789 NODE_NAME_CASE(VID_VL) 9790 NODE_NAME_CASE(VFNCVT_ROD_VL) 9791 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9792 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9793 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9794 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9795 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9796 NODE_NAME_CASE(VECREDUCE_AND_VL) 9797 NODE_NAME_CASE(VECREDUCE_OR_VL) 9798 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9799 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9800 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9801 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9802 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9803 NODE_NAME_CASE(ADD_VL) 9804 NODE_NAME_CASE(AND_VL) 9805 NODE_NAME_CASE(MUL_VL) 9806 NODE_NAME_CASE(OR_VL) 9807 NODE_NAME_CASE(SDIV_VL) 9808 NODE_NAME_CASE(SHL_VL) 9809 NODE_NAME_CASE(SREM_VL) 9810 NODE_NAME_CASE(SRA_VL) 9811 NODE_NAME_CASE(SRL_VL) 9812 NODE_NAME_CASE(SUB_VL) 9813 NODE_NAME_CASE(UDIV_VL) 9814 NODE_NAME_CASE(UREM_VL) 9815 NODE_NAME_CASE(XOR_VL) 9816 NODE_NAME_CASE(SADDSAT_VL) 9817 NODE_NAME_CASE(UADDSAT_VL) 9818 NODE_NAME_CASE(SSUBSAT_VL) 9819 NODE_NAME_CASE(USUBSAT_VL) 9820 NODE_NAME_CASE(FADD_VL) 9821 NODE_NAME_CASE(FSUB_VL) 9822 NODE_NAME_CASE(FMUL_VL) 9823 NODE_NAME_CASE(FDIV_VL) 9824 NODE_NAME_CASE(FNEG_VL) 9825 NODE_NAME_CASE(FABS_VL) 9826 NODE_NAME_CASE(FSQRT_VL) 9827 NODE_NAME_CASE(FMA_VL) 9828 NODE_NAME_CASE(FCOPYSIGN_VL) 9829 NODE_NAME_CASE(SMIN_VL) 9830 NODE_NAME_CASE(SMAX_VL) 9831 NODE_NAME_CASE(UMIN_VL) 9832 NODE_NAME_CASE(UMAX_VL) 9833 NODE_NAME_CASE(FMINNUM_VL) 9834 NODE_NAME_CASE(FMAXNUM_VL) 9835 NODE_NAME_CASE(MULHS_VL) 9836 NODE_NAME_CASE(MULHU_VL) 9837 NODE_NAME_CASE(FP_TO_SINT_VL) 9838 NODE_NAME_CASE(FP_TO_UINT_VL) 9839 NODE_NAME_CASE(SINT_TO_FP_VL) 9840 NODE_NAME_CASE(UINT_TO_FP_VL) 9841 NODE_NAME_CASE(FP_EXTEND_VL) 9842 NODE_NAME_CASE(FP_ROUND_VL) 9843 NODE_NAME_CASE(VWMUL_VL) 9844 NODE_NAME_CASE(VWMULU_VL) 9845 NODE_NAME_CASE(SETCC_VL) 9846 NODE_NAME_CASE(VSELECT_VL) 9847 NODE_NAME_CASE(VMAND_VL) 9848 NODE_NAME_CASE(VMOR_VL) 9849 NODE_NAME_CASE(VMXOR_VL) 9850 NODE_NAME_CASE(VMCLR_VL) 9851 NODE_NAME_CASE(VMSET_VL) 9852 NODE_NAME_CASE(VRGATHER_VX_VL) 9853 NODE_NAME_CASE(VRGATHER_VV_VL) 9854 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9855 NODE_NAME_CASE(VSEXT_VL) 9856 NODE_NAME_CASE(VZEXT_VL) 9857 NODE_NAME_CASE(VCPOP_VL) 9858 NODE_NAME_CASE(VLE_VL) 9859 NODE_NAME_CASE(VSE_VL) 9860 NODE_NAME_CASE(READ_CSR) 9861 NODE_NAME_CASE(WRITE_CSR) 9862 NODE_NAME_CASE(SWAP_CSR) 9863 } 9864 // clang-format on 9865 return nullptr; 9866 #undef NODE_NAME_CASE 9867 } 9868 9869 /// getConstraintType - Given a constraint letter, return the type of 9870 /// constraint it is for this target. 9871 RISCVTargetLowering::ConstraintType 9872 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9873 if (Constraint.size() == 1) { 9874 switch (Constraint[0]) { 9875 default: 9876 break; 9877 case 'f': 9878 return C_RegisterClass; 9879 case 'I': 9880 case 'J': 9881 case 'K': 9882 return C_Immediate; 9883 case 'A': 9884 return C_Memory; 9885 case 'S': // A symbolic address 9886 return C_Other; 9887 } 9888 } else { 9889 if (Constraint == "vr" || Constraint == "vm") 9890 return C_RegisterClass; 9891 } 9892 return TargetLowering::getConstraintType(Constraint); 9893 } 9894 9895 std::pair<unsigned, const TargetRegisterClass *> 9896 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9897 StringRef Constraint, 9898 MVT VT) const { 9899 // First, see if this is a constraint that directly corresponds to a 9900 // RISCV register class. 9901 if (Constraint.size() == 1) { 9902 switch (Constraint[0]) { 9903 case 'r': 9904 // TODO: Support fixed vectors up to XLen for P extension? 9905 if (VT.isVector()) 9906 break; 9907 return std::make_pair(0U, &RISCV::GPRRegClass); 9908 case 'f': 9909 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9910 return std::make_pair(0U, &RISCV::FPR16RegClass); 9911 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9912 return std::make_pair(0U, &RISCV::FPR32RegClass); 9913 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9914 return std::make_pair(0U, &RISCV::FPR64RegClass); 9915 break; 9916 default: 9917 break; 9918 } 9919 } else if (Constraint == "vr") { 9920 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9921 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9922 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9923 return std::make_pair(0U, RC); 9924 } 9925 } else if (Constraint == "vm") { 9926 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 9927 return std::make_pair(0U, &RISCV::VMV0RegClass); 9928 } 9929 9930 // Clang will correctly decode the usage of register name aliases into their 9931 // official names. However, other frontends like `rustc` do not. This allows 9932 // users of these frontends to use the ABI names for registers in LLVM-style 9933 // register constraints. 9934 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9935 .Case("{zero}", RISCV::X0) 9936 .Case("{ra}", RISCV::X1) 9937 .Case("{sp}", RISCV::X2) 9938 .Case("{gp}", RISCV::X3) 9939 .Case("{tp}", RISCV::X4) 9940 .Case("{t0}", RISCV::X5) 9941 .Case("{t1}", RISCV::X6) 9942 .Case("{t2}", RISCV::X7) 9943 .Cases("{s0}", "{fp}", RISCV::X8) 9944 .Case("{s1}", RISCV::X9) 9945 .Case("{a0}", RISCV::X10) 9946 .Case("{a1}", RISCV::X11) 9947 .Case("{a2}", RISCV::X12) 9948 .Case("{a3}", RISCV::X13) 9949 .Case("{a4}", RISCV::X14) 9950 .Case("{a5}", RISCV::X15) 9951 .Case("{a6}", RISCV::X16) 9952 .Case("{a7}", RISCV::X17) 9953 .Case("{s2}", RISCV::X18) 9954 .Case("{s3}", RISCV::X19) 9955 .Case("{s4}", RISCV::X20) 9956 .Case("{s5}", RISCV::X21) 9957 .Case("{s6}", RISCV::X22) 9958 .Case("{s7}", RISCV::X23) 9959 .Case("{s8}", RISCV::X24) 9960 .Case("{s9}", RISCV::X25) 9961 .Case("{s10}", RISCV::X26) 9962 .Case("{s11}", RISCV::X27) 9963 .Case("{t3}", RISCV::X28) 9964 .Case("{t4}", RISCV::X29) 9965 .Case("{t5}", RISCV::X30) 9966 .Case("{t6}", RISCV::X31) 9967 .Default(RISCV::NoRegister); 9968 if (XRegFromAlias != RISCV::NoRegister) 9969 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9970 9971 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9972 // TableGen record rather than the AsmName to choose registers for InlineAsm 9973 // constraints, plus we want to match those names to the widest floating point 9974 // register type available, manually select floating point registers here. 9975 // 9976 // The second case is the ABI name of the register, so that frontends can also 9977 // use the ABI names in register constraint lists. 9978 if (Subtarget.hasStdExtF()) { 9979 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9980 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9981 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9982 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9983 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9984 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9985 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9986 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9987 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9988 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9989 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9990 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9991 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9992 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9993 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9994 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9995 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9996 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9997 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9998 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9999 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10000 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10001 .Cases("{f21}", "{fs5}", RISCV::F21_F) 10002 .Cases("{f22}", "{fs6}", RISCV::F22_F) 10003 .Cases("{f23}", "{fs7}", RISCV::F23_F) 10004 .Cases("{f24}", "{fs8}", RISCV::F24_F) 10005 .Cases("{f25}", "{fs9}", RISCV::F25_F) 10006 .Cases("{f26}", "{fs10}", RISCV::F26_F) 10007 .Cases("{f27}", "{fs11}", RISCV::F27_F) 10008 .Cases("{f28}", "{ft8}", RISCV::F28_F) 10009 .Cases("{f29}", "{ft9}", RISCV::F29_F) 10010 .Cases("{f30}", "{ft10}", RISCV::F30_F) 10011 .Cases("{f31}", "{ft11}", RISCV::F31_F) 10012 .Default(RISCV::NoRegister); 10013 if (FReg != RISCV::NoRegister) { 10014 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 10015 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 10016 unsigned RegNo = FReg - RISCV::F0_F; 10017 unsigned DReg = RISCV::F0_D + RegNo; 10018 return std::make_pair(DReg, &RISCV::FPR64RegClass); 10019 } 10020 if (VT == MVT::f32 || VT == MVT::Other) 10021 return std::make_pair(FReg, &RISCV::FPR32RegClass); 10022 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 10023 unsigned RegNo = FReg - RISCV::F0_F; 10024 unsigned HReg = RISCV::F0_H + RegNo; 10025 return std::make_pair(HReg, &RISCV::FPR16RegClass); 10026 } 10027 } 10028 } 10029 10030 if (Subtarget.hasVInstructions()) { 10031 Register VReg = StringSwitch<Register>(Constraint.lower()) 10032 .Case("{v0}", RISCV::V0) 10033 .Case("{v1}", RISCV::V1) 10034 .Case("{v2}", RISCV::V2) 10035 .Case("{v3}", RISCV::V3) 10036 .Case("{v4}", RISCV::V4) 10037 .Case("{v5}", RISCV::V5) 10038 .Case("{v6}", RISCV::V6) 10039 .Case("{v7}", RISCV::V7) 10040 .Case("{v8}", RISCV::V8) 10041 .Case("{v9}", RISCV::V9) 10042 .Case("{v10}", RISCV::V10) 10043 .Case("{v11}", RISCV::V11) 10044 .Case("{v12}", RISCV::V12) 10045 .Case("{v13}", RISCV::V13) 10046 .Case("{v14}", RISCV::V14) 10047 .Case("{v15}", RISCV::V15) 10048 .Case("{v16}", RISCV::V16) 10049 .Case("{v17}", RISCV::V17) 10050 .Case("{v18}", RISCV::V18) 10051 .Case("{v19}", RISCV::V19) 10052 .Case("{v20}", RISCV::V20) 10053 .Case("{v21}", RISCV::V21) 10054 .Case("{v22}", RISCV::V22) 10055 .Case("{v23}", RISCV::V23) 10056 .Case("{v24}", RISCV::V24) 10057 .Case("{v25}", RISCV::V25) 10058 .Case("{v26}", RISCV::V26) 10059 .Case("{v27}", RISCV::V27) 10060 .Case("{v28}", RISCV::V28) 10061 .Case("{v29}", RISCV::V29) 10062 .Case("{v30}", RISCV::V30) 10063 .Case("{v31}", RISCV::V31) 10064 .Default(RISCV::NoRegister); 10065 if (VReg != RISCV::NoRegister) { 10066 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 10067 return std::make_pair(VReg, &RISCV::VMRegClass); 10068 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 10069 return std::make_pair(VReg, &RISCV::VRRegClass); 10070 for (const auto *RC : 10071 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10072 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 10073 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 10074 return std::make_pair(VReg, RC); 10075 } 10076 } 10077 } 10078 } 10079 10080 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10081 } 10082 10083 unsigned 10084 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 10085 // Currently only support length 1 constraints. 10086 if (ConstraintCode.size() == 1) { 10087 switch (ConstraintCode[0]) { 10088 case 'A': 10089 return InlineAsm::Constraint_A; 10090 default: 10091 break; 10092 } 10093 } 10094 10095 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 10096 } 10097 10098 void RISCVTargetLowering::LowerAsmOperandForConstraint( 10099 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 10100 SelectionDAG &DAG) const { 10101 // Currently only support length 1 constraints. 10102 if (Constraint.length() == 1) { 10103 switch (Constraint[0]) { 10104 case 'I': 10105 // Validate & create a 12-bit signed immediate operand. 10106 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10107 uint64_t CVal = C->getSExtValue(); 10108 if (isInt<12>(CVal)) 10109 Ops.push_back( 10110 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10111 } 10112 return; 10113 case 'J': 10114 // Validate & create an integer zero operand. 10115 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 10116 if (C->getZExtValue() == 0) 10117 Ops.push_back( 10118 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 10119 return; 10120 case 'K': 10121 // Validate & create a 5-bit unsigned immediate operand. 10122 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 10123 uint64_t CVal = C->getZExtValue(); 10124 if (isUInt<5>(CVal)) 10125 Ops.push_back( 10126 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 10127 } 10128 return; 10129 case 'S': 10130 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 10131 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 10132 GA->getValueType(0))); 10133 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 10134 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 10135 BA->getValueType(0))); 10136 } 10137 return; 10138 default: 10139 break; 10140 } 10141 } 10142 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10143 } 10144 10145 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 10146 Instruction *Inst, 10147 AtomicOrdering Ord) const { 10148 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 10149 return Builder.CreateFence(Ord); 10150 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 10151 return Builder.CreateFence(AtomicOrdering::Release); 10152 return nullptr; 10153 } 10154 10155 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 10156 Instruction *Inst, 10157 AtomicOrdering Ord) const { 10158 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 10159 return Builder.CreateFence(AtomicOrdering::Acquire); 10160 return nullptr; 10161 } 10162 10163 TargetLowering::AtomicExpansionKind 10164 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 10165 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 10166 // point operations can't be used in an lr/sc sequence without breaking the 10167 // forward-progress guarantee. 10168 if (AI->isFloatingPointOperation()) 10169 return AtomicExpansionKind::CmpXChg; 10170 10171 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 10172 if (Size == 8 || Size == 16) 10173 return AtomicExpansionKind::MaskedIntrinsic; 10174 return AtomicExpansionKind::None; 10175 } 10176 10177 static Intrinsic::ID 10178 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 10179 if (XLen == 32) { 10180 switch (BinOp) { 10181 default: 10182 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10183 case AtomicRMWInst::Xchg: 10184 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 10185 case AtomicRMWInst::Add: 10186 return Intrinsic::riscv_masked_atomicrmw_add_i32; 10187 case AtomicRMWInst::Sub: 10188 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 10189 case AtomicRMWInst::Nand: 10190 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 10191 case AtomicRMWInst::Max: 10192 return Intrinsic::riscv_masked_atomicrmw_max_i32; 10193 case AtomicRMWInst::Min: 10194 return Intrinsic::riscv_masked_atomicrmw_min_i32; 10195 case AtomicRMWInst::UMax: 10196 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 10197 case AtomicRMWInst::UMin: 10198 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 10199 } 10200 } 10201 10202 if (XLen == 64) { 10203 switch (BinOp) { 10204 default: 10205 llvm_unreachable("Unexpected AtomicRMW BinOp"); 10206 case AtomicRMWInst::Xchg: 10207 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 10208 case AtomicRMWInst::Add: 10209 return Intrinsic::riscv_masked_atomicrmw_add_i64; 10210 case AtomicRMWInst::Sub: 10211 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 10212 case AtomicRMWInst::Nand: 10213 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 10214 case AtomicRMWInst::Max: 10215 return Intrinsic::riscv_masked_atomicrmw_max_i64; 10216 case AtomicRMWInst::Min: 10217 return Intrinsic::riscv_masked_atomicrmw_min_i64; 10218 case AtomicRMWInst::UMax: 10219 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 10220 case AtomicRMWInst::UMin: 10221 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 10222 } 10223 } 10224 10225 llvm_unreachable("Unexpected XLen\n"); 10226 } 10227 10228 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 10229 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 10230 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 10231 unsigned XLen = Subtarget.getXLen(); 10232 Value *Ordering = 10233 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 10234 Type *Tys[] = {AlignedAddr->getType()}; 10235 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 10236 AI->getModule(), 10237 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 10238 10239 if (XLen == 64) { 10240 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 10241 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10242 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 10243 } 10244 10245 Value *Result; 10246 10247 // Must pass the shift amount needed to sign extend the loaded value prior 10248 // to performing a signed comparison for min/max. ShiftAmt is the number of 10249 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 10250 // is the number of bits to left+right shift the value in order to 10251 // sign-extend. 10252 if (AI->getOperation() == AtomicRMWInst::Min || 10253 AI->getOperation() == AtomicRMWInst::Max) { 10254 const DataLayout &DL = AI->getModule()->getDataLayout(); 10255 unsigned ValWidth = 10256 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 10257 Value *SextShamt = 10258 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 10259 Result = Builder.CreateCall(LrwOpScwLoop, 10260 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 10261 } else { 10262 Result = 10263 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 10264 } 10265 10266 if (XLen == 64) 10267 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10268 return Result; 10269 } 10270 10271 TargetLowering::AtomicExpansionKind 10272 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 10273 AtomicCmpXchgInst *CI) const { 10274 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 10275 if (Size == 8 || Size == 16) 10276 return AtomicExpansionKind::MaskedIntrinsic; 10277 return AtomicExpansionKind::None; 10278 } 10279 10280 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 10281 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 10282 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 10283 unsigned XLen = Subtarget.getXLen(); 10284 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 10285 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 10286 if (XLen == 64) { 10287 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 10288 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 10289 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 10290 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 10291 } 10292 Type *Tys[] = {AlignedAddr->getType()}; 10293 Function *MaskedCmpXchg = 10294 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 10295 Value *Result = Builder.CreateCall( 10296 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 10297 if (XLen == 64) 10298 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 10299 return Result; 10300 } 10301 10302 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 10303 return false; 10304 } 10305 10306 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 10307 EVT VT) const { 10308 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 10309 return false; 10310 10311 switch (FPVT.getSimpleVT().SimpleTy) { 10312 case MVT::f16: 10313 return Subtarget.hasStdExtZfh(); 10314 case MVT::f32: 10315 return Subtarget.hasStdExtF(); 10316 case MVT::f64: 10317 return Subtarget.hasStdExtD(); 10318 default: 10319 return false; 10320 } 10321 } 10322 10323 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 10324 // If we are using the small code model, we can reduce size of jump table 10325 // entry to 4 bytes. 10326 if (Subtarget.is64Bit() && !isPositionIndependent() && 10327 getTargetMachine().getCodeModel() == CodeModel::Small) { 10328 return MachineJumpTableInfo::EK_Custom32; 10329 } 10330 return TargetLowering::getJumpTableEncoding(); 10331 } 10332 10333 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 10334 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 10335 unsigned uid, MCContext &Ctx) const { 10336 assert(Subtarget.is64Bit() && !isPositionIndependent() && 10337 getTargetMachine().getCodeModel() == CodeModel::Small); 10338 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 10339 } 10340 10341 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 10342 EVT VT) const { 10343 VT = VT.getScalarType(); 10344 10345 if (!VT.isSimple()) 10346 return false; 10347 10348 switch (VT.getSimpleVT().SimpleTy) { 10349 case MVT::f16: 10350 return Subtarget.hasStdExtZfh(); 10351 case MVT::f32: 10352 return Subtarget.hasStdExtF(); 10353 case MVT::f64: 10354 return Subtarget.hasStdExtD(); 10355 default: 10356 break; 10357 } 10358 10359 return false; 10360 } 10361 10362 Register RISCVTargetLowering::getExceptionPointerRegister( 10363 const Constant *PersonalityFn) const { 10364 return RISCV::X10; 10365 } 10366 10367 Register RISCVTargetLowering::getExceptionSelectorRegister( 10368 const Constant *PersonalityFn) const { 10369 return RISCV::X11; 10370 } 10371 10372 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 10373 // Return false to suppress the unnecessary extensions if the LibCall 10374 // arguments or return value is f32 type for LP64 ABI. 10375 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 10376 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 10377 return false; 10378 10379 return true; 10380 } 10381 10382 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 10383 if (Subtarget.is64Bit() && Type == MVT::i32) 10384 return true; 10385 10386 return IsSigned; 10387 } 10388 10389 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 10390 SDValue C) const { 10391 // Check integral scalar types. 10392 if (VT.isScalarInteger()) { 10393 // Omit the optimization if the sub target has the M extension and the data 10394 // size exceeds XLen. 10395 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 10396 return false; 10397 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 10398 // Break the MUL to a SLLI and an ADD/SUB. 10399 const APInt &Imm = ConstNode->getAPIntValue(); 10400 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 10401 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 10402 return true; 10403 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 10404 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 10405 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 10406 (Imm - 8).isPowerOf2())) 10407 return true; 10408 // Omit the following optimization if the sub target has the M extension 10409 // and the data size >= XLen. 10410 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 10411 return false; 10412 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 10413 // a pair of LUI/ADDI. 10414 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 10415 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 10416 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 10417 (1 - ImmS).isPowerOf2()) 10418 return true; 10419 } 10420 } 10421 } 10422 10423 return false; 10424 } 10425 10426 bool RISCVTargetLowering::isMulAddWithConstProfitable( 10427 const SDValue &AddNode, const SDValue &ConstNode) const { 10428 // Let the DAGCombiner decide for vectors. 10429 EVT VT = AddNode.getValueType(); 10430 if (VT.isVector()) 10431 return true; 10432 10433 // Let the DAGCombiner decide for larger types. 10434 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 10435 return true; 10436 10437 // It is worse if c1 is simm12 while c1*c2 is not. 10438 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 10439 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 10440 const APInt &C1 = C1Node->getAPIntValue(); 10441 const APInt &C2 = C2Node->getAPIntValue(); 10442 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 10443 return false; 10444 10445 // Default to true and let the DAGCombiner decide. 10446 return true; 10447 } 10448 10449 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 10450 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 10451 bool *Fast) const { 10452 if (!VT.isVector()) 10453 return false; 10454 10455 EVT ElemVT = VT.getVectorElementType(); 10456 if (Alignment >= ElemVT.getStoreSize()) { 10457 if (Fast) 10458 *Fast = true; 10459 return true; 10460 } 10461 10462 return false; 10463 } 10464 10465 bool RISCVTargetLowering::splitValueIntoRegisterParts( 10466 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 10467 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 10468 bool IsABIRegCopy = CC.hasValue(); 10469 EVT ValueVT = Val.getValueType(); 10470 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10471 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 10472 // and cast to f32. 10473 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 10474 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 10475 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 10476 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 10477 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 10478 Parts[0] = Val; 10479 return true; 10480 } 10481 10482 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10483 LLVMContext &Context = *DAG.getContext(); 10484 EVT ValueEltVT = ValueVT.getVectorElementType(); 10485 EVT PartEltVT = PartVT.getVectorElementType(); 10486 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10487 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10488 if (PartVTBitSize % ValueVTBitSize == 0) { 10489 assert(PartVTBitSize >= ValueVTBitSize); 10490 // If the element types are different, bitcast to the same element type of 10491 // PartVT first. 10492 // Give an example here, we want copy a <vscale x 1 x i8> value to 10493 // <vscale x 4 x i16>. 10494 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 10495 // subvector, then we can bitcast to <vscale x 4 x i16>. 10496 if (ValueEltVT != PartEltVT) { 10497 if (PartVTBitSize > ValueVTBitSize) { 10498 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10499 assert(Count != 0 && "The number of element should not be zero."); 10500 EVT SameEltTypeVT = 10501 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10502 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 10503 DAG.getUNDEF(SameEltTypeVT), Val, 10504 DAG.getVectorIdxConstant(0, DL)); 10505 } 10506 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 10507 } else { 10508 Val = 10509 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 10510 Val, DAG.getVectorIdxConstant(0, DL)); 10511 } 10512 Parts[0] = Val; 10513 return true; 10514 } 10515 } 10516 return false; 10517 } 10518 10519 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 10520 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 10521 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 10522 bool IsABIRegCopy = CC.hasValue(); 10523 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 10524 SDValue Val = Parts[0]; 10525 10526 // Cast the f32 to i32, truncate to i16, and cast back to f16. 10527 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 10528 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 10529 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 10530 return Val; 10531 } 10532 10533 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 10534 LLVMContext &Context = *DAG.getContext(); 10535 SDValue Val = Parts[0]; 10536 EVT ValueEltVT = ValueVT.getVectorElementType(); 10537 EVT PartEltVT = PartVT.getVectorElementType(); 10538 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 10539 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 10540 if (PartVTBitSize % ValueVTBitSize == 0) { 10541 assert(PartVTBitSize >= ValueVTBitSize); 10542 EVT SameEltTypeVT = ValueVT; 10543 // If the element types are different, convert it to the same element type 10544 // of PartVT. 10545 // Give an example here, we want copy a <vscale x 1 x i8> value from 10546 // <vscale x 4 x i16>. 10547 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 10548 // then we can extract <vscale x 1 x i8>. 10549 if (ValueEltVT != PartEltVT) { 10550 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 10551 assert(Count != 0 && "The number of element should not be zero."); 10552 SameEltTypeVT = 10553 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 10554 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 10555 } 10556 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 10557 DAG.getVectorIdxConstant(0, DL)); 10558 return Val; 10559 } 10560 } 10561 return SDValue(); 10562 } 10563 10564 SDValue 10565 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10566 SelectionDAG &DAG, 10567 SmallVectorImpl<SDNode *> &Created) const { 10568 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10569 if (isIntDivCheap(N->getValueType(0), Attr)) 10570 return SDValue(N, 0); // Lower SDIV as SDIV 10571 10572 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 10573 "Unexpected divisor!"); 10574 10575 // Conditional move is needed, so do the transformation iff Zbt is enabled. 10576 if (!Subtarget.hasStdExtZbt()) 10577 return SDValue(); 10578 10579 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 10580 // Besides, more critical path instructions will be generated when dividing 10581 // by 2. So we keep using the original DAGs for these cases. 10582 unsigned Lg2 = Divisor.countTrailingZeros(); 10583 if (Lg2 == 1 || Lg2 >= 12) 10584 return SDValue(); 10585 10586 // fold (sdiv X, pow2) 10587 EVT VT = N->getValueType(0); 10588 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 10589 return SDValue(); 10590 10591 SDLoc DL(N); 10592 SDValue N0 = N->getOperand(0); 10593 SDValue Zero = DAG.getConstant(0, DL, VT); 10594 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10595 10596 // Add (N0 < 0) ? Pow2 - 1 : 0; 10597 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 10598 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10599 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 10600 10601 Created.push_back(Cmp.getNode()); 10602 Created.push_back(Add.getNode()); 10603 Created.push_back(Sel.getNode()); 10604 10605 // Divide by pow2. 10606 SDValue SRA = 10607 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 10608 10609 // If we're dividing by a positive value, we're done. Otherwise, we must 10610 // negate the result. 10611 if (Divisor.isNonNegative()) 10612 return SRA; 10613 10614 Created.push_back(SRA.getNode()); 10615 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10616 } 10617 10618 #define GET_REGISTER_MATCHER 10619 #include "RISCVGenAsmMatcher.inc" 10620 10621 Register 10622 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 10623 const MachineFunction &MF) const { 10624 Register Reg = MatchRegisterAltName(RegName); 10625 if (Reg == RISCV::NoRegister) 10626 Reg = MatchRegisterName(RegName); 10627 if (Reg == RISCV::NoRegister) 10628 report_fatal_error( 10629 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 10630 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 10631 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 10632 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 10633 StringRef(RegName) + "\".")); 10634 return Reg; 10635 } 10636 10637 namespace llvm { 10638 namespace RISCVVIntrinsicsTable { 10639 10640 #define GET_RISCVVIntrinsicsTable_IMPL 10641 #include "RISCVGenSearchableTables.inc" 10642 10643 } // namespace RISCVVIntrinsicsTable 10644 10645 } // namespace llvm 10646