1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/IntrinsicsRISCV.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "riscv-lower" 44 45 STATISTIC(NumTailCalls, "Number of tail calls"); 46 47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 48 const RISCVSubtarget &STI) 49 : TargetLowering(TM), Subtarget(STI) { 50 51 if (Subtarget.isRV32E()) 52 report_fatal_error("Codegen not yet implemented for RV32E"); 53 54 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 55 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 56 57 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 58 !Subtarget.hasStdExtF()) { 59 errs() << "Hard-float 'f' ABI can't be used for a target that " 60 "doesn't support the F instruction set extension (ignoring " 61 "target-abi)\n"; 62 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 63 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 64 !Subtarget.hasStdExtD()) { 65 errs() << "Hard-float 'd' ABI can't be used for a target that " 66 "doesn't support the D instruction set extension (ignoring " 67 "target-abi)\n"; 68 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 69 } 70 71 switch (ABI) { 72 default: 73 report_fatal_error("Don't know how to lower this ABI"); 74 case RISCVABI::ABI_ILP32: 75 case RISCVABI::ABI_ILP32F: 76 case RISCVABI::ABI_ILP32D: 77 case RISCVABI::ABI_LP64: 78 case RISCVABI::ABI_LP64F: 79 case RISCVABI::ABI_LP64D: 80 break; 81 } 82 83 MVT XLenVT = Subtarget.getXLenVT(); 84 85 // Set up the register classes. 86 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 87 88 if (Subtarget.hasStdExtZfh()) 89 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 90 if (Subtarget.hasStdExtF()) 91 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 92 if (Subtarget.hasStdExtD()) 93 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 94 95 static const MVT::SimpleValueType BoolVecVTs[] = { 96 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 97 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 98 static const MVT::SimpleValueType IntVecVTs[] = { 99 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 100 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 101 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 102 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 103 MVT::nxv4i64, MVT::nxv8i64}; 104 static const MVT::SimpleValueType F16VecVTs[] = { 105 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 106 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 107 static const MVT::SimpleValueType F32VecVTs[] = { 108 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 109 static const MVT::SimpleValueType F64VecVTs[] = { 110 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 111 112 if (Subtarget.hasStdExtV()) { 113 auto addRegClassForRVV = [this](MVT VT) { 114 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 115 assert(Size <= 512 && isPowerOf2_32(Size)); 116 const TargetRegisterClass *RC; 117 if (Size <= 64) 118 RC = &RISCV::VRRegClass; 119 else if (Size == 128) 120 RC = &RISCV::VRM2RegClass; 121 else if (Size == 256) 122 RC = &RISCV::VRM4RegClass; 123 else 124 RC = &RISCV::VRM8RegClass; 125 126 addRegisterClass(VT, RC); 127 }; 128 129 for (MVT VT : BoolVecVTs) 130 addRegClassForRVV(VT); 131 for (MVT VT : IntVecVTs) 132 addRegClassForRVV(VT); 133 134 if (Subtarget.hasStdExtZfh()) 135 for (MVT VT : F16VecVTs) 136 addRegClassForRVV(VT); 137 138 if (Subtarget.hasStdExtF()) 139 for (MVT VT : F32VecVTs) 140 addRegClassForRVV(VT); 141 142 if (Subtarget.hasStdExtD()) 143 for (MVT VT : F64VecVTs) 144 addRegClassForRVV(VT); 145 146 if (Subtarget.useRVVForFixedLengthVectors()) { 147 auto addRegClassForFixedVectors = [this](MVT VT) { 148 MVT ContainerVT = getContainerForFixedLengthVector(VT); 149 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 150 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 151 addRegisterClass(VT, TRI.getRegClass(RCID)); 152 }; 153 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 154 if (useRVVForFixedLengthVectorVT(VT)) 155 addRegClassForFixedVectors(VT); 156 157 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 158 if (useRVVForFixedLengthVectorVT(VT)) 159 addRegClassForFixedVectors(VT); 160 } 161 } 162 163 // Compute derived properties from the register classes. 164 computeRegisterProperties(STI.getRegisterInfo()); 165 166 setStackPointerRegisterToSaveRestore(RISCV::X2); 167 168 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 169 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 170 171 // TODO: add all necessary setOperationAction calls. 172 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 173 174 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 175 setOperationAction(ISD::BR_CC, XLenVT, Expand); 176 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 177 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 178 179 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 180 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 181 182 setOperationAction(ISD::VASTART, MVT::Other, Custom); 183 setOperationAction(ISD::VAARG, MVT::Other, Expand); 184 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 185 setOperationAction(ISD::VAEND, MVT::Other, Expand); 186 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 188 if (!Subtarget.hasStdExtZbb()) { 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 191 } 192 193 if (Subtarget.is64Bit()) { 194 setOperationAction(ISD::ADD, MVT::i32, Custom); 195 setOperationAction(ISD::SUB, MVT::i32, Custom); 196 setOperationAction(ISD::SHL, MVT::i32, Custom); 197 setOperationAction(ISD::SRA, MVT::i32, Custom); 198 setOperationAction(ISD::SRL, MVT::i32, Custom); 199 200 setOperationAction(ISD::UADDO, MVT::i32, Custom); 201 setOperationAction(ISD::USUBO, MVT::i32, Custom); 202 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 203 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 204 } else { 205 setLibcallName(RTLIB::SHL_I128, nullptr); 206 setLibcallName(RTLIB::SRL_I128, nullptr); 207 setLibcallName(RTLIB::SRA_I128, nullptr); 208 setLibcallName(RTLIB::MUL_I128, nullptr); 209 setLibcallName(RTLIB::MULO_I64, nullptr); 210 } 211 212 if (!Subtarget.hasStdExtM()) { 213 setOperationAction(ISD::MUL, XLenVT, Expand); 214 setOperationAction(ISD::MULHS, XLenVT, Expand); 215 setOperationAction(ISD::MULHU, XLenVT, Expand); 216 setOperationAction(ISD::SDIV, XLenVT, Expand); 217 setOperationAction(ISD::UDIV, XLenVT, Expand); 218 setOperationAction(ISD::SREM, XLenVT, Expand); 219 setOperationAction(ISD::UREM, XLenVT, Expand); 220 } else { 221 if (Subtarget.is64Bit()) { 222 setOperationAction(ISD::MUL, MVT::i32, Custom); 223 setOperationAction(ISD::MUL, MVT::i128, Custom); 224 225 setOperationAction(ISD::SDIV, MVT::i8, Custom); 226 setOperationAction(ISD::UDIV, MVT::i8, Custom); 227 setOperationAction(ISD::UREM, MVT::i8, Custom); 228 setOperationAction(ISD::SDIV, MVT::i16, Custom); 229 setOperationAction(ISD::UDIV, MVT::i16, Custom); 230 setOperationAction(ISD::UREM, MVT::i16, Custom); 231 setOperationAction(ISD::SDIV, MVT::i32, Custom); 232 setOperationAction(ISD::UDIV, MVT::i32, Custom); 233 setOperationAction(ISD::UREM, MVT::i32, Custom); 234 } else { 235 setOperationAction(ISD::MUL, MVT::i64, Custom); 236 } 237 } 238 239 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 240 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 241 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 242 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 243 244 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 245 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 246 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 247 248 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 249 if (Subtarget.is64Bit()) { 250 setOperationAction(ISD::ROTL, MVT::i32, Custom); 251 setOperationAction(ISD::ROTR, MVT::i32, Custom); 252 } 253 } else { 254 setOperationAction(ISD::ROTL, XLenVT, Expand); 255 setOperationAction(ISD::ROTR, XLenVT, Expand); 256 } 257 258 if (Subtarget.hasStdExtZbp()) { 259 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 260 // more combining. 261 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 262 setOperationAction(ISD::BSWAP, XLenVT, Custom); 263 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 264 // BSWAP i8 doesn't exist. 265 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 266 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 267 268 if (Subtarget.is64Bit()) { 269 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 270 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 271 } 272 } else { 273 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 274 // pattern match it directly in isel. 275 setOperationAction(ISD::BSWAP, XLenVT, 276 Subtarget.hasStdExtZbb() ? Legal : Expand); 277 } 278 279 if (Subtarget.hasStdExtZbb()) { 280 setOperationAction(ISD::SMIN, XLenVT, Legal); 281 setOperationAction(ISD::SMAX, XLenVT, Legal); 282 setOperationAction(ISD::UMIN, XLenVT, Legal); 283 setOperationAction(ISD::UMAX, XLenVT, Legal); 284 285 if (Subtarget.is64Bit()) { 286 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 287 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 288 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 289 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 290 } 291 } else { 292 setOperationAction(ISD::CTTZ, XLenVT, Expand); 293 setOperationAction(ISD::CTLZ, XLenVT, Expand); 294 setOperationAction(ISD::CTPOP, XLenVT, Expand); 295 } 296 297 if (Subtarget.hasStdExtZbt()) { 298 setOperationAction(ISD::FSHL, XLenVT, Custom); 299 setOperationAction(ISD::FSHR, XLenVT, Custom); 300 setOperationAction(ISD::SELECT, XLenVT, Legal); 301 302 if (Subtarget.is64Bit()) { 303 setOperationAction(ISD::FSHL, MVT::i32, Custom); 304 setOperationAction(ISD::FSHR, MVT::i32, Custom); 305 } 306 } else { 307 setOperationAction(ISD::SELECT, XLenVT, Custom); 308 } 309 310 static const ISD::CondCode FPCCToExpand[] = { 311 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 312 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 313 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 314 315 static const ISD::NodeType FPOpToExpand[] = { 316 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 317 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 318 319 if (Subtarget.hasStdExtZfh()) 320 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 321 322 if (Subtarget.hasStdExtZfh()) { 323 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 325 setOperationAction(ISD::LRINT, MVT::f16, Legal); 326 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 327 setOperationAction(ISD::LROUND, MVT::f16, Legal); 328 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 329 for (auto CC : FPCCToExpand) 330 setCondCodeAction(CC, MVT::f16, Expand); 331 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 332 setOperationAction(ISD::SELECT, MVT::f16, Custom); 333 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 334 for (auto Op : FPOpToExpand) 335 setOperationAction(Op, MVT::f16, Expand); 336 } 337 338 if (Subtarget.hasStdExtF()) { 339 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 340 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 341 setOperationAction(ISD::LRINT, MVT::f32, Legal); 342 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 343 setOperationAction(ISD::LROUND, MVT::f32, Legal); 344 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 345 for (auto CC : FPCCToExpand) 346 setCondCodeAction(CC, MVT::f32, Expand); 347 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 348 setOperationAction(ISD::SELECT, MVT::f32, Custom); 349 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 350 for (auto Op : FPOpToExpand) 351 setOperationAction(Op, MVT::f32, Expand); 352 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 353 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 354 } 355 356 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 357 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 358 359 if (Subtarget.hasStdExtD()) { 360 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 361 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 362 setOperationAction(ISD::LRINT, MVT::f64, Legal); 363 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 364 setOperationAction(ISD::LROUND, MVT::f64, Legal); 365 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 366 for (auto CC : FPCCToExpand) 367 setCondCodeAction(CC, MVT::f64, Expand); 368 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 369 setOperationAction(ISD::SELECT, MVT::f64, Custom); 370 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 372 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 373 for (auto Op : FPOpToExpand) 374 setOperationAction(Op, MVT::f64, Expand); 375 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 376 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 377 } 378 379 if (Subtarget.is64Bit()) { 380 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 381 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 382 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 383 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 384 } 385 386 if (Subtarget.hasStdExtF()) { 387 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 388 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 389 390 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 391 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 392 } 393 394 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 395 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 396 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 397 setOperationAction(ISD::JumpTable, XLenVT, Custom); 398 399 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 400 401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 402 // Unfortunately this can't be determined just from the ISA naming string. 403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 404 Subtarget.is64Bit() ? Legal : Custom); 405 406 setOperationAction(ISD::TRAP, MVT::Other, Legal); 407 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 409 if (Subtarget.is64Bit()) 410 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 411 412 if (Subtarget.hasStdExtA()) { 413 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 414 setMinCmpXchgSizeInBits(32); 415 } else { 416 setMaxAtomicSizeInBitsSupported(0); 417 } 418 419 setBooleanContents(ZeroOrOneBooleanContent); 420 421 if (Subtarget.hasStdExtV()) { 422 setBooleanVectorContents(ZeroOrOneBooleanContent); 423 424 setOperationAction(ISD::VSCALE, XLenVT, Custom); 425 426 // RVV intrinsics may have illegal operands. 427 // We also need to custom legalize vmv.x.s. 428 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 429 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 432 if (Subtarget.is64Bit()) { 433 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 434 } else { 435 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 436 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 437 } 438 439 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 440 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 441 442 static const unsigned IntegerVPOps[] = { 443 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 444 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 445 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 446 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 447 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 448 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 449 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}; 450 451 static const unsigned FloatingPointVPOps[] = { 452 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 453 ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, 454 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX}; 455 456 if (!Subtarget.is64Bit()) { 457 // We must custom-lower certain vXi64 operations on RV32 due to the vector 458 // element type being illegal. 459 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 460 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 461 462 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 463 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 464 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 465 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 466 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 467 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 468 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 469 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 470 471 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 472 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 473 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 474 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 475 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 476 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 477 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 478 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 479 } 480 481 for (MVT VT : BoolVecVTs) { 482 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 483 484 // Mask VTs are custom-expanded into a series of standard nodes 485 setOperationAction(ISD::TRUNCATE, VT, Custom); 486 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 487 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 488 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 489 490 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 491 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 492 493 setOperationAction(ISD::SELECT, VT, Custom); 494 setOperationAction(ISD::SELECT_CC, VT, Expand); 495 setOperationAction(ISD::VSELECT, VT, Expand); 496 497 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 498 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 499 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 500 501 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 502 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 503 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 504 505 // RVV has native int->float & float->int conversions where the 506 // element type sizes are within one power-of-two of each other. Any 507 // wider distances between type sizes have to be lowered as sequences 508 // which progressively narrow the gap in stages. 509 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 510 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 511 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 512 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 513 514 // Expand all extending loads to types larger than this, and truncating 515 // stores from types larger than this. 516 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 517 setTruncStoreAction(OtherVT, VT, Expand); 518 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 519 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 520 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 521 } 522 } 523 524 for (MVT VT : IntVecVTs) { 525 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 526 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 527 528 setOperationAction(ISD::SMIN, VT, Legal); 529 setOperationAction(ISD::SMAX, VT, Legal); 530 setOperationAction(ISD::UMIN, VT, Legal); 531 setOperationAction(ISD::UMAX, VT, Legal); 532 533 setOperationAction(ISD::ROTL, VT, Expand); 534 setOperationAction(ISD::ROTR, VT, Expand); 535 536 // Custom-lower extensions and truncations from/to mask types. 537 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 538 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 539 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 540 541 // RVV has native int->float & float->int conversions where the 542 // element type sizes are within one power-of-two of each other. Any 543 // wider distances between type sizes have to be lowered as sequences 544 // which progressively narrow the gap in stages. 545 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 546 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 547 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 548 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 549 550 setOperationAction(ISD::SADDSAT, VT, Legal); 551 setOperationAction(ISD::UADDSAT, VT, Legal); 552 setOperationAction(ISD::SSUBSAT, VT, Legal); 553 setOperationAction(ISD::USUBSAT, VT, Legal); 554 555 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 556 // nodes which truncate by one power of two at a time. 557 setOperationAction(ISD::TRUNCATE, VT, Custom); 558 559 // Custom-lower insert/extract operations to simplify patterns. 560 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 562 563 // Custom-lower reduction operations to set up the corresponding custom 564 // nodes' operands. 565 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 566 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 567 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 568 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 569 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 570 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 573 574 for (unsigned VPOpc : IntegerVPOps) 575 setOperationAction(VPOpc, VT, Custom); 576 577 setOperationAction(ISD::LOAD, VT, Custom); 578 setOperationAction(ISD::STORE, VT, Custom); 579 580 setOperationAction(ISD::MLOAD, VT, Custom); 581 setOperationAction(ISD::MSTORE, VT, Custom); 582 setOperationAction(ISD::MGATHER, VT, Custom); 583 setOperationAction(ISD::MSCATTER, VT, Custom); 584 585 setOperationAction(ISD::VP_LOAD, VT, Custom); 586 setOperationAction(ISD::VP_STORE, VT, Custom); 587 setOperationAction(ISD::VP_GATHER, VT, Custom); 588 setOperationAction(ISD::VP_SCATTER, VT, Custom); 589 590 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 591 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 592 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 593 594 setOperationAction(ISD::SELECT, VT, Custom); 595 setOperationAction(ISD::SELECT_CC, VT, Expand); 596 597 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 598 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 599 600 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 601 setTruncStoreAction(VT, OtherVT, Expand); 602 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 603 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 604 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 605 } 606 } 607 608 // Expand various CCs to best match the RVV ISA, which natively supports UNE 609 // but no other unordered comparisons, and supports all ordered comparisons 610 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 611 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 612 // and we pattern-match those back to the "original", swapping operands once 613 // more. This way we catch both operations and both "vf" and "fv" forms with 614 // fewer patterns. 615 static const ISD::CondCode VFPCCToExpand[] = { 616 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 617 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 618 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 619 }; 620 621 // Sets common operation actions on RVV floating-point vector types. 622 const auto SetCommonVFPActions = [&](MVT VT) { 623 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 624 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 625 // sizes are within one power-of-two of each other. Therefore conversions 626 // between vXf16 and vXf64 must be lowered as sequences which convert via 627 // vXf32. 628 setOperationAction(ISD::FP_ROUND, VT, Custom); 629 setOperationAction(ISD::FP_EXTEND, VT, Custom); 630 // Custom-lower insert/extract operations to simplify patterns. 631 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 633 // Expand various condition codes (explained above). 634 for (auto CC : VFPCCToExpand) 635 setCondCodeAction(CC, VT, Expand); 636 637 setOperationAction(ISD::FMINNUM, VT, Legal); 638 setOperationAction(ISD::FMAXNUM, VT, Legal); 639 640 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 644 645 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 646 647 setOperationAction(ISD::LOAD, VT, Custom); 648 setOperationAction(ISD::STORE, VT, Custom); 649 650 setOperationAction(ISD::MLOAD, VT, Custom); 651 setOperationAction(ISD::MSTORE, VT, Custom); 652 setOperationAction(ISD::MGATHER, VT, Custom); 653 setOperationAction(ISD::MSCATTER, VT, Custom); 654 655 setOperationAction(ISD::VP_LOAD, VT, Custom); 656 setOperationAction(ISD::VP_STORE, VT, Custom); 657 setOperationAction(ISD::VP_GATHER, VT, Custom); 658 setOperationAction(ISD::VP_SCATTER, VT, Custom); 659 660 setOperationAction(ISD::SELECT, VT, Custom); 661 setOperationAction(ISD::SELECT_CC, VT, Expand); 662 663 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 664 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 665 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 666 667 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 668 669 for (unsigned VPOpc : FloatingPointVPOps) 670 setOperationAction(VPOpc, VT, Custom); 671 }; 672 673 // Sets common extload/truncstore actions on RVV floating-point vector 674 // types. 675 const auto SetCommonVFPExtLoadTruncStoreActions = 676 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 677 for (auto SmallVT : SmallerVTs) { 678 setTruncStoreAction(VT, SmallVT, Expand); 679 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 680 } 681 }; 682 683 if (Subtarget.hasStdExtZfh()) 684 for (MVT VT : F16VecVTs) 685 SetCommonVFPActions(VT); 686 687 for (MVT VT : F32VecVTs) { 688 if (Subtarget.hasStdExtF()) 689 SetCommonVFPActions(VT); 690 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 691 } 692 693 for (MVT VT : F64VecVTs) { 694 if (Subtarget.hasStdExtD()) 695 SetCommonVFPActions(VT); 696 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 697 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 698 } 699 700 if (Subtarget.useRVVForFixedLengthVectors()) { 701 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 702 if (!useRVVForFixedLengthVectorVT(VT)) 703 continue; 704 705 // By default everything must be expanded. 706 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 707 setOperationAction(Op, VT, Expand); 708 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 709 setTruncStoreAction(VT, OtherVT, Expand); 710 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 711 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 712 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 713 } 714 715 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 716 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 717 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 718 719 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 720 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 721 722 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 724 725 setOperationAction(ISD::LOAD, VT, Custom); 726 setOperationAction(ISD::STORE, VT, Custom); 727 728 setOperationAction(ISD::SETCC, VT, Custom); 729 730 setOperationAction(ISD::SELECT, VT, Custom); 731 732 setOperationAction(ISD::TRUNCATE, VT, Custom); 733 734 setOperationAction(ISD::BITCAST, VT, Custom); 735 736 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 737 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 738 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 739 740 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 741 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 742 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 743 744 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 745 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 746 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 747 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 748 749 // Operations below are different for between masks and other vectors. 750 if (VT.getVectorElementType() == MVT::i1) { 751 setOperationAction(ISD::AND, VT, Custom); 752 setOperationAction(ISD::OR, VT, Custom); 753 setOperationAction(ISD::XOR, VT, Custom); 754 continue; 755 } 756 757 // Use SPLAT_VECTOR to prevent type legalization from destroying the 758 // splats when type legalizing i64 scalar on RV32. 759 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 760 // improvements first. 761 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 762 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 763 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 764 } 765 766 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 767 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 768 769 setOperationAction(ISD::MLOAD, VT, Custom); 770 setOperationAction(ISD::MSTORE, VT, Custom); 771 setOperationAction(ISD::MGATHER, VT, Custom); 772 setOperationAction(ISD::MSCATTER, VT, Custom); 773 774 setOperationAction(ISD::VP_LOAD, VT, Custom); 775 setOperationAction(ISD::VP_STORE, VT, Custom); 776 setOperationAction(ISD::VP_GATHER, VT, Custom); 777 setOperationAction(ISD::VP_SCATTER, VT, Custom); 778 779 setOperationAction(ISD::ADD, VT, Custom); 780 setOperationAction(ISD::MUL, VT, Custom); 781 setOperationAction(ISD::SUB, VT, Custom); 782 setOperationAction(ISD::AND, VT, Custom); 783 setOperationAction(ISD::OR, VT, Custom); 784 setOperationAction(ISD::XOR, VT, Custom); 785 setOperationAction(ISD::SDIV, VT, Custom); 786 setOperationAction(ISD::SREM, VT, Custom); 787 setOperationAction(ISD::UDIV, VT, Custom); 788 setOperationAction(ISD::UREM, VT, Custom); 789 setOperationAction(ISD::SHL, VT, Custom); 790 setOperationAction(ISD::SRA, VT, Custom); 791 setOperationAction(ISD::SRL, VT, Custom); 792 793 setOperationAction(ISD::SMIN, VT, Custom); 794 setOperationAction(ISD::SMAX, VT, Custom); 795 setOperationAction(ISD::UMIN, VT, Custom); 796 setOperationAction(ISD::UMAX, VT, Custom); 797 setOperationAction(ISD::ABS, VT, Custom); 798 799 setOperationAction(ISD::MULHS, VT, Custom); 800 setOperationAction(ISD::MULHU, VT, Custom); 801 802 setOperationAction(ISD::SADDSAT, VT, Custom); 803 setOperationAction(ISD::UADDSAT, VT, Custom); 804 setOperationAction(ISD::SSUBSAT, VT, Custom); 805 setOperationAction(ISD::USUBSAT, VT, Custom); 806 807 setOperationAction(ISD::VSELECT, VT, Custom); 808 setOperationAction(ISD::SELECT_CC, VT, Expand); 809 810 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 811 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 812 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 813 814 // Custom-lower reduction operations to set up the corresponding custom 815 // nodes' operands. 816 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 817 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 818 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 819 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 820 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 821 822 for (unsigned VPOpc : IntegerVPOps) 823 setOperationAction(VPOpc, VT, Custom); 824 } 825 826 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 827 if (!useRVVForFixedLengthVectorVT(VT)) 828 continue; 829 830 // By default everything must be expanded. 831 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 832 setOperationAction(Op, VT, Expand); 833 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 834 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 835 setTruncStoreAction(VT, OtherVT, Expand); 836 } 837 838 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 839 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 840 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 841 842 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 843 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 844 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 845 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 846 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 847 848 setOperationAction(ISD::LOAD, VT, Custom); 849 setOperationAction(ISD::STORE, VT, Custom); 850 setOperationAction(ISD::MLOAD, VT, Custom); 851 setOperationAction(ISD::MSTORE, VT, Custom); 852 setOperationAction(ISD::MGATHER, VT, Custom); 853 setOperationAction(ISD::MSCATTER, VT, Custom); 854 855 setOperationAction(ISD::VP_LOAD, VT, Custom); 856 setOperationAction(ISD::VP_STORE, VT, Custom); 857 setOperationAction(ISD::VP_GATHER, VT, Custom); 858 setOperationAction(ISD::VP_SCATTER, VT, Custom); 859 860 setOperationAction(ISD::FADD, VT, Custom); 861 setOperationAction(ISD::FSUB, VT, Custom); 862 setOperationAction(ISD::FMUL, VT, Custom); 863 setOperationAction(ISD::FDIV, VT, Custom); 864 setOperationAction(ISD::FNEG, VT, Custom); 865 setOperationAction(ISD::FABS, VT, Custom); 866 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 867 setOperationAction(ISD::FSQRT, VT, Custom); 868 setOperationAction(ISD::FMA, VT, Custom); 869 setOperationAction(ISD::FMINNUM, VT, Custom); 870 setOperationAction(ISD::FMAXNUM, VT, Custom); 871 872 setOperationAction(ISD::FP_ROUND, VT, Custom); 873 setOperationAction(ISD::FP_EXTEND, VT, Custom); 874 875 for (auto CC : VFPCCToExpand) 876 setCondCodeAction(CC, VT, Expand); 877 878 setOperationAction(ISD::VSELECT, VT, Custom); 879 setOperationAction(ISD::SELECT, VT, Custom); 880 setOperationAction(ISD::SELECT_CC, VT, Expand); 881 882 setOperationAction(ISD::BITCAST, VT, Custom); 883 884 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 885 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 886 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 887 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 888 889 for (unsigned VPOpc : FloatingPointVPOps) 890 setOperationAction(VPOpc, VT, Custom); 891 } 892 893 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 894 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 895 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 896 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 897 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 898 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 899 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 900 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 901 } 902 } 903 904 // Function alignments. 905 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 906 setMinFunctionAlignment(FunctionAlignment); 907 setPrefFunctionAlignment(FunctionAlignment); 908 909 setMinimumJumpTableEntries(5); 910 911 // Jumps are expensive, compared to logic 912 setJumpIsExpensive(); 913 914 // We can use any register for comparisons 915 setHasMultipleConditionRegisters(); 916 917 setTargetDAGCombine(ISD::ADD); 918 setTargetDAGCombine(ISD::SUB); 919 setTargetDAGCombine(ISD::AND); 920 setTargetDAGCombine(ISD::OR); 921 setTargetDAGCombine(ISD::XOR); 922 setTargetDAGCombine(ISD::ANY_EXTEND); 923 setTargetDAGCombine(ISD::ZERO_EXTEND); 924 if (Subtarget.hasStdExtV()) { 925 setTargetDAGCombine(ISD::FCOPYSIGN); 926 setTargetDAGCombine(ISD::MGATHER); 927 setTargetDAGCombine(ISD::MSCATTER); 928 setTargetDAGCombine(ISD::VP_GATHER); 929 setTargetDAGCombine(ISD::VP_SCATTER); 930 setTargetDAGCombine(ISD::SRA); 931 setTargetDAGCombine(ISD::SRL); 932 setTargetDAGCombine(ISD::SHL); 933 } 934 } 935 936 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 937 LLVMContext &Context, 938 EVT VT) const { 939 if (!VT.isVector()) 940 return getPointerTy(DL); 941 if (Subtarget.hasStdExtV() && 942 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 943 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 944 return VT.changeVectorElementTypeToInteger(); 945 } 946 947 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 948 return Subtarget.getXLenVT(); 949 } 950 951 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 952 const CallInst &I, 953 MachineFunction &MF, 954 unsigned Intrinsic) const { 955 switch (Intrinsic) { 956 default: 957 return false; 958 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 959 case Intrinsic::riscv_masked_atomicrmw_add_i32: 960 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 961 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 962 case Intrinsic::riscv_masked_atomicrmw_max_i32: 963 case Intrinsic::riscv_masked_atomicrmw_min_i32: 964 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 965 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 966 case Intrinsic::riscv_masked_cmpxchg_i32: { 967 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 968 Info.opc = ISD::INTRINSIC_W_CHAIN; 969 Info.memVT = MVT::getVT(PtrTy->getElementType()); 970 Info.ptrVal = I.getArgOperand(0); 971 Info.offset = 0; 972 Info.align = Align(4); 973 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 974 MachineMemOperand::MOVolatile; 975 return true; 976 } 977 case Intrinsic::riscv_masked_strided_load: 978 Info.opc = ISD::INTRINSIC_W_CHAIN; 979 Info.ptrVal = I.getArgOperand(1); 980 Info.memVT = MVT::getVT(I.getType()->getScalarType()); 981 Info.align = Align(I.getType()->getScalarSizeInBits() / 8); 982 Info.size = MemoryLocation::UnknownSize; 983 Info.flags |= MachineMemOperand::MOLoad; 984 return true; 985 case Intrinsic::riscv_masked_strided_store: 986 Info.opc = ISD::INTRINSIC_VOID; 987 Info.ptrVal = I.getArgOperand(1); 988 Info.memVT = MVT::getVT(I.getArgOperand(0)->getType()->getScalarType()); 989 Info.align = 990 Align(I.getArgOperand(0)->getType()->getScalarSizeInBits() / 8); 991 Info.size = MemoryLocation::UnknownSize; 992 Info.flags |= MachineMemOperand::MOStore; 993 return true; 994 } 995 } 996 997 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 998 const AddrMode &AM, Type *Ty, 999 unsigned AS, 1000 Instruction *I) const { 1001 // No global is ever allowed as a base. 1002 if (AM.BaseGV) 1003 return false; 1004 1005 // Require a 12-bit signed offset. 1006 if (!isInt<12>(AM.BaseOffs)) 1007 return false; 1008 1009 switch (AM.Scale) { 1010 case 0: // "r+i" or just "i", depending on HasBaseReg. 1011 break; 1012 case 1: 1013 if (!AM.HasBaseReg) // allow "r+i". 1014 break; 1015 return false; // disallow "r+r" or "r+r+i". 1016 default: 1017 return false; 1018 } 1019 1020 return true; 1021 } 1022 1023 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1024 return isInt<12>(Imm); 1025 } 1026 1027 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1028 return isInt<12>(Imm); 1029 } 1030 1031 // On RV32, 64-bit integers are split into their high and low parts and held 1032 // in two different registers, so the trunc is free since the low register can 1033 // just be used. 1034 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1035 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1036 return false; 1037 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1038 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1039 return (SrcBits == 64 && DestBits == 32); 1040 } 1041 1042 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1043 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1044 !SrcVT.isInteger() || !DstVT.isInteger()) 1045 return false; 1046 unsigned SrcBits = SrcVT.getSizeInBits(); 1047 unsigned DestBits = DstVT.getSizeInBits(); 1048 return (SrcBits == 64 && DestBits == 32); 1049 } 1050 1051 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1052 // Zexts are free if they can be combined with a load. 1053 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1054 EVT MemVT = LD->getMemoryVT(); 1055 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 1056 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 1057 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1058 LD->getExtensionType() == ISD::ZEXTLOAD)) 1059 return true; 1060 } 1061 1062 return TargetLowering::isZExtFree(Val, VT2); 1063 } 1064 1065 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1066 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1067 } 1068 1069 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1070 return Subtarget.hasStdExtZbb(); 1071 } 1072 1073 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1074 return Subtarget.hasStdExtZbb(); 1075 } 1076 1077 /// Check if sinking \p I's operands to I's basic block is profitable, because 1078 /// the operands can be folded into a target instruction, e.g. 1079 /// splats of scalars can fold into vector instructions. 1080 bool RISCVTargetLowering::shouldSinkOperands( 1081 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1082 using namespace llvm::PatternMatch; 1083 1084 if (!I->getType()->isVectorTy() || !Subtarget.hasStdExtV()) 1085 return false; 1086 1087 auto IsSinker = [&](Instruction *I, int Operand) { 1088 switch (I->getOpcode()) { 1089 case Instruction::Add: 1090 case Instruction::Sub: 1091 case Instruction::Mul: 1092 case Instruction::And: 1093 case Instruction::Or: 1094 case Instruction::Xor: 1095 case Instruction::FAdd: 1096 case Instruction::FSub: 1097 case Instruction::FMul: 1098 case Instruction::FDiv: 1099 return true; 1100 case Instruction::Shl: 1101 case Instruction::LShr: 1102 case Instruction::AShr: 1103 return Operand == 1; 1104 case Instruction::Call: 1105 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1106 switch (II->getIntrinsicID()) { 1107 case Intrinsic::fma: 1108 return Operand == 0 || Operand == 1; 1109 default: 1110 return false; 1111 } 1112 } 1113 return false; 1114 default: 1115 return false; 1116 } 1117 }; 1118 1119 for (auto OpIdx : enumerate(I->operands())) { 1120 if (!IsSinker(I, OpIdx.index())) 1121 continue; 1122 1123 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1124 // Make sure we are not already sinking this operand 1125 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1126 continue; 1127 1128 // We are looking for a splat that can be sunk. 1129 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1130 m_Undef(), m_ZeroMask()))) 1131 continue; 1132 1133 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1134 // and vector registers 1135 for (Use &U : Op->uses()) { 1136 Instruction *Insn = cast<Instruction>(U.getUser()); 1137 if (!IsSinker(Insn, U.getOperandNo())) 1138 return false; 1139 } 1140 1141 Ops.push_back(&Op->getOperandUse(0)); 1142 Ops.push_back(&OpIdx.value()); 1143 } 1144 return true; 1145 } 1146 1147 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1148 bool ForCodeSize) const { 1149 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1150 return false; 1151 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1152 return false; 1153 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1154 return false; 1155 if (Imm.isNegZero()) 1156 return false; 1157 return Imm.isZero(); 1158 } 1159 1160 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1161 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1162 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1163 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1164 } 1165 1166 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1167 CallingConv::ID CC, 1168 EVT VT) const { 1169 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1170 // end up using a GPR but that will be decided based on ABI. 1171 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1172 return MVT::f32; 1173 1174 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1175 } 1176 1177 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1178 CallingConv::ID CC, 1179 EVT VT) const { 1180 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1181 // end up using a GPR but that will be decided based on ABI. 1182 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1183 return 1; 1184 1185 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1186 } 1187 1188 // Changes the condition code and swaps operands if necessary, so the SetCC 1189 // operation matches one of the comparisons supported directly by branches 1190 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1191 // with 1/-1. 1192 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1193 ISD::CondCode &CC, SelectionDAG &DAG) { 1194 // Convert X > -1 to X >= 0. 1195 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1196 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1197 CC = ISD::SETGE; 1198 return; 1199 } 1200 // Convert X < 1 to 0 >= X. 1201 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1202 RHS = LHS; 1203 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1204 CC = ISD::SETGE; 1205 return; 1206 } 1207 1208 switch (CC) { 1209 default: 1210 break; 1211 case ISD::SETGT: 1212 case ISD::SETLE: 1213 case ISD::SETUGT: 1214 case ISD::SETULE: 1215 CC = ISD::getSetCCSwappedOperands(CC); 1216 std::swap(LHS, RHS); 1217 break; 1218 } 1219 } 1220 1221 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1222 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1223 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1224 if (VT.getVectorElementType() == MVT::i1) 1225 KnownSize *= 8; 1226 1227 switch (KnownSize) { 1228 default: 1229 llvm_unreachable("Invalid LMUL."); 1230 case 8: 1231 return RISCVII::VLMUL::LMUL_F8; 1232 case 16: 1233 return RISCVII::VLMUL::LMUL_F4; 1234 case 32: 1235 return RISCVII::VLMUL::LMUL_F2; 1236 case 64: 1237 return RISCVII::VLMUL::LMUL_1; 1238 case 128: 1239 return RISCVII::VLMUL::LMUL_2; 1240 case 256: 1241 return RISCVII::VLMUL::LMUL_4; 1242 case 512: 1243 return RISCVII::VLMUL::LMUL_8; 1244 } 1245 } 1246 1247 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1248 switch (LMul) { 1249 default: 1250 llvm_unreachable("Invalid LMUL."); 1251 case RISCVII::VLMUL::LMUL_F8: 1252 case RISCVII::VLMUL::LMUL_F4: 1253 case RISCVII::VLMUL::LMUL_F2: 1254 case RISCVII::VLMUL::LMUL_1: 1255 return RISCV::VRRegClassID; 1256 case RISCVII::VLMUL::LMUL_2: 1257 return RISCV::VRM2RegClassID; 1258 case RISCVII::VLMUL::LMUL_4: 1259 return RISCV::VRM4RegClassID; 1260 case RISCVII::VLMUL::LMUL_8: 1261 return RISCV::VRM8RegClassID; 1262 } 1263 } 1264 1265 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1266 RISCVII::VLMUL LMUL = getLMUL(VT); 1267 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1268 LMUL == RISCVII::VLMUL::LMUL_F4 || 1269 LMUL == RISCVII::VLMUL::LMUL_F2 || 1270 LMUL == RISCVII::VLMUL::LMUL_1) { 1271 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1272 "Unexpected subreg numbering"); 1273 return RISCV::sub_vrm1_0 + Index; 1274 } 1275 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1276 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1277 "Unexpected subreg numbering"); 1278 return RISCV::sub_vrm2_0 + Index; 1279 } 1280 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1281 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1282 "Unexpected subreg numbering"); 1283 return RISCV::sub_vrm4_0 + Index; 1284 } 1285 llvm_unreachable("Invalid vector type."); 1286 } 1287 1288 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1289 if (VT.getVectorElementType() == MVT::i1) 1290 return RISCV::VRRegClassID; 1291 return getRegClassIDForLMUL(getLMUL(VT)); 1292 } 1293 1294 // Attempt to decompose a subvector insert/extract between VecVT and 1295 // SubVecVT via subregister indices. Returns the subregister index that 1296 // can perform the subvector insert/extract with the given element index, as 1297 // well as the index corresponding to any leftover subvectors that must be 1298 // further inserted/extracted within the register class for SubVecVT. 1299 std::pair<unsigned, unsigned> 1300 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1301 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1302 const RISCVRegisterInfo *TRI) { 1303 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1304 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1305 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1306 "Register classes not ordered"); 1307 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1308 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1309 // Try to compose a subregister index that takes us from the incoming 1310 // LMUL>1 register class down to the outgoing one. At each step we half 1311 // the LMUL: 1312 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1313 // Note that this is not guaranteed to find a subregister index, such as 1314 // when we are extracting from one VR type to another. 1315 unsigned SubRegIdx = RISCV::NoSubRegister; 1316 for (const unsigned RCID : 1317 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1318 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1319 VecVT = VecVT.getHalfNumVectorElementsVT(); 1320 bool IsHi = 1321 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1322 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1323 getSubregIndexByMVT(VecVT, IsHi)); 1324 if (IsHi) 1325 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1326 } 1327 return {SubRegIdx, InsertExtractIdx}; 1328 } 1329 1330 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1331 // stores for those types. 1332 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1333 return !Subtarget.useRVVForFixedLengthVectors() || 1334 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1335 } 1336 1337 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1338 if (ScalarTy->isPointerTy()) 1339 return true; 1340 1341 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1342 ScalarTy->isIntegerTy(32) || ScalarTy->isIntegerTy(64)) 1343 return true; 1344 1345 if (ScalarTy->isHalfTy()) 1346 return Subtarget.hasStdExtZfh(); 1347 if (ScalarTy->isFloatTy()) 1348 return Subtarget.hasStdExtF(); 1349 if (ScalarTy->isDoubleTy()) 1350 return Subtarget.hasStdExtD(); 1351 1352 return false; 1353 } 1354 1355 static bool useRVVForFixedLengthVectorVT(MVT VT, 1356 const RISCVSubtarget &Subtarget) { 1357 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1358 if (!Subtarget.useRVVForFixedLengthVectors()) 1359 return false; 1360 1361 // We only support a set of vector types with a consistent maximum fixed size 1362 // across all supported vector element types to avoid legalization issues. 1363 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1364 // fixed-length vector type we support is 1024 bytes. 1365 if (VT.getFixedSizeInBits() > 1024 * 8) 1366 return false; 1367 1368 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1369 1370 MVT EltVT = VT.getVectorElementType(); 1371 1372 // Don't use RVV for vectors we cannot scalarize if required. 1373 switch (EltVT.SimpleTy) { 1374 // i1 is supported but has different rules. 1375 default: 1376 return false; 1377 case MVT::i1: 1378 // Masks can only use a single register. 1379 if (VT.getVectorNumElements() > MinVLen) 1380 return false; 1381 MinVLen /= 8; 1382 break; 1383 case MVT::i8: 1384 case MVT::i16: 1385 case MVT::i32: 1386 case MVT::i64: 1387 break; 1388 case MVT::f16: 1389 if (!Subtarget.hasStdExtZfh()) 1390 return false; 1391 break; 1392 case MVT::f32: 1393 if (!Subtarget.hasStdExtF()) 1394 return false; 1395 break; 1396 case MVT::f64: 1397 if (!Subtarget.hasStdExtD()) 1398 return false; 1399 break; 1400 } 1401 1402 // Reject elements larger than ELEN. 1403 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1404 return false; 1405 1406 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1407 // Don't use RVV for types that don't fit. 1408 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1409 return false; 1410 1411 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1412 // the base fixed length RVV support in place. 1413 if (!VT.isPow2VectorType()) 1414 return false; 1415 1416 return true; 1417 } 1418 1419 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1420 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1421 } 1422 1423 // Return the largest legal scalable vector type that matches VT's element type. 1424 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1425 const RISCVSubtarget &Subtarget) { 1426 // This may be called before legal types are setup. 1427 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1428 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1429 "Expected legal fixed length vector!"); 1430 1431 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1432 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1433 1434 MVT EltVT = VT.getVectorElementType(); 1435 switch (EltVT.SimpleTy) { 1436 default: 1437 llvm_unreachable("unexpected element type for RVV container"); 1438 case MVT::i1: 1439 case MVT::i8: 1440 case MVT::i16: 1441 case MVT::i32: 1442 case MVT::i64: 1443 case MVT::f16: 1444 case MVT::f32: 1445 case MVT::f64: { 1446 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1447 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1448 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1449 unsigned NumElts = 1450 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1451 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1452 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1453 return MVT::getScalableVectorVT(EltVT, NumElts); 1454 } 1455 } 1456 } 1457 1458 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1459 const RISCVSubtarget &Subtarget) { 1460 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1461 Subtarget); 1462 } 1463 1464 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1465 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1466 } 1467 1468 // Grow V to consume an entire RVV register. 1469 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1470 const RISCVSubtarget &Subtarget) { 1471 assert(VT.isScalableVector() && 1472 "Expected to convert into a scalable vector!"); 1473 assert(V.getValueType().isFixedLengthVector() && 1474 "Expected a fixed length vector operand!"); 1475 SDLoc DL(V); 1476 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1477 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1478 } 1479 1480 // Shrink V so it's just big enough to maintain a VT's worth of data. 1481 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1482 const RISCVSubtarget &Subtarget) { 1483 assert(VT.isFixedLengthVector() && 1484 "Expected to convert into a fixed length vector!"); 1485 assert(V.getValueType().isScalableVector() && 1486 "Expected a scalable vector operand!"); 1487 SDLoc DL(V); 1488 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1489 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1490 } 1491 1492 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1493 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1494 // the vector type that it is contained in. 1495 static std::pair<SDValue, SDValue> 1496 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1497 const RISCVSubtarget &Subtarget) { 1498 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1499 MVT XLenVT = Subtarget.getXLenVT(); 1500 SDValue VL = VecVT.isFixedLengthVector() 1501 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1502 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1503 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1504 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1505 return {Mask, VL}; 1506 } 1507 1508 // As above but assuming the given type is a scalable vector type. 1509 static std::pair<SDValue, SDValue> 1510 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1511 const RISCVSubtarget &Subtarget) { 1512 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1513 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1514 } 1515 1516 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1517 // of either is (currently) supported. This can get us into an infinite loop 1518 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1519 // as a ..., etc. 1520 // Until either (or both) of these can reliably lower any node, reporting that 1521 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1522 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1523 // which is not desirable. 1524 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1525 EVT VT, unsigned DefinedValues) const { 1526 return false; 1527 } 1528 1529 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1530 // Only splats are currently supported. 1531 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1532 return true; 1533 1534 return false; 1535 } 1536 1537 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1538 // RISCV FP-to-int conversions saturate to the destination register size, but 1539 // don't produce 0 for nan. We can use a conversion instruction and fix the 1540 // nan case with a compare and a select. 1541 SDValue Src = Op.getOperand(0); 1542 1543 EVT DstVT = Op.getValueType(); 1544 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1545 1546 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1547 unsigned Opc; 1548 if (SatVT == DstVT) 1549 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1550 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1551 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1552 else 1553 return SDValue(); 1554 // FIXME: Support other SatVTs by clamping before or after the conversion. 1555 1556 SDLoc DL(Op); 1557 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1558 1559 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1560 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1561 } 1562 1563 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1564 const RISCVSubtarget &Subtarget) { 1565 MVT VT = Op.getSimpleValueType(); 1566 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1567 1568 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1569 1570 SDLoc DL(Op); 1571 SDValue Mask, VL; 1572 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1573 1574 unsigned Opc = 1575 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1576 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1577 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1578 } 1579 1580 struct VIDSequence { 1581 int64_t StepNumerator; 1582 unsigned StepDenominator; 1583 int64_t Addend; 1584 }; 1585 1586 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1587 // to the (non-zero) step S and start value X. This can be then lowered as the 1588 // RVV sequence (VID * S) + X, for example. 1589 // The step S is represented as an integer numerator divided by a positive 1590 // denominator. Note that the implementation currently only identifies 1591 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1592 // cannot detect 2/3, for example. 1593 // Note that this method will also match potentially unappealing index 1594 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1595 // determine whether this is worth generating code for. 1596 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1597 unsigned NumElts = Op.getNumOperands(); 1598 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1599 if (!Op.getValueType().isInteger()) 1600 return None; 1601 1602 Optional<unsigned> SeqStepDenom; 1603 Optional<int64_t> SeqStepNum, SeqAddend; 1604 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1605 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1606 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1607 // Assume undef elements match the sequence; we just have to be careful 1608 // when interpolating across them. 1609 if (Op.getOperand(Idx).isUndef()) 1610 continue; 1611 // The BUILD_VECTOR must be all constants. 1612 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1613 return None; 1614 1615 uint64_t Val = Op.getConstantOperandVal(Idx) & 1616 maskTrailingOnes<uint64_t>(EltSizeInBits); 1617 1618 if (PrevElt) { 1619 // Calculate the step since the last non-undef element, and ensure 1620 // it's consistent across the entire sequence. 1621 unsigned IdxDiff = Idx - PrevElt->second; 1622 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1623 1624 // A zero-value value difference means that we're somewhere in the middle 1625 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1626 // step change before evaluating the sequence. 1627 if (ValDiff != 0) { 1628 int64_t Remainder = ValDiff % IdxDiff; 1629 // Normalize the step if it's greater than 1. 1630 if (Remainder != ValDiff) { 1631 // The difference must cleanly divide the element span. 1632 if (Remainder != 0) 1633 return None; 1634 ValDiff /= IdxDiff; 1635 IdxDiff = 1; 1636 } 1637 1638 if (!SeqStepNum) 1639 SeqStepNum = ValDiff; 1640 else if (ValDiff != SeqStepNum) 1641 return None; 1642 1643 if (!SeqStepDenom) 1644 SeqStepDenom = IdxDiff; 1645 else if (IdxDiff != *SeqStepDenom) 1646 return None; 1647 } 1648 } 1649 1650 // Record and/or check any addend. 1651 if (SeqStepNum && SeqStepDenom) { 1652 uint64_t ExpectedVal = 1653 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1654 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1655 if (!SeqAddend) 1656 SeqAddend = Addend; 1657 else if (SeqAddend != Addend) 1658 return None; 1659 } 1660 1661 // Record this non-undef element for later. 1662 if (!PrevElt || PrevElt->first != Val) 1663 PrevElt = std::make_pair(Val, Idx); 1664 } 1665 // We need to have logged both a step and an addend for this to count as 1666 // a legal index sequence. 1667 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1668 return None; 1669 1670 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1671 } 1672 1673 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1674 const RISCVSubtarget &Subtarget) { 1675 MVT VT = Op.getSimpleValueType(); 1676 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1677 1678 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1679 1680 SDLoc DL(Op); 1681 SDValue Mask, VL; 1682 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1683 1684 MVT XLenVT = Subtarget.getXLenVT(); 1685 unsigned NumElts = Op.getNumOperands(); 1686 1687 if (VT.getVectorElementType() == MVT::i1) { 1688 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1689 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1690 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1691 } 1692 1693 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1694 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1695 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1696 } 1697 1698 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1699 // scalar integer chunks whose bit-width depends on the number of mask 1700 // bits and XLEN. 1701 // First, determine the most appropriate scalar integer type to use. This 1702 // is at most XLenVT, but may be shrunk to a smaller vector element type 1703 // according to the size of the final vector - use i8 chunks rather than 1704 // XLenVT if we're producing a v8i1. This results in more consistent 1705 // codegen across RV32 and RV64. 1706 unsigned NumViaIntegerBits = 1707 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1708 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1709 // If we have to use more than one INSERT_VECTOR_ELT then this 1710 // optimization is likely to increase code size; avoid peforming it in 1711 // such a case. We can use a load from a constant pool in this case. 1712 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1713 return SDValue(); 1714 // Now we can create our integer vector type. Note that it may be larger 1715 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1716 MVT IntegerViaVecVT = 1717 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1718 divideCeil(NumElts, NumViaIntegerBits)); 1719 1720 uint64_t Bits = 0; 1721 unsigned BitPos = 0, IntegerEltIdx = 0; 1722 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1723 1724 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1725 // Once we accumulate enough bits to fill our scalar type, insert into 1726 // our vector and clear our accumulated data. 1727 if (I != 0 && I % NumViaIntegerBits == 0) { 1728 if (NumViaIntegerBits <= 32) 1729 Bits = SignExtend64(Bits, 32); 1730 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1731 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1732 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1733 Bits = 0; 1734 BitPos = 0; 1735 IntegerEltIdx++; 1736 } 1737 SDValue V = Op.getOperand(I); 1738 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1739 Bits |= ((uint64_t)BitValue << BitPos); 1740 } 1741 1742 // Insert the (remaining) scalar value into position in our integer 1743 // vector type. 1744 if (NumViaIntegerBits <= 32) 1745 Bits = SignExtend64(Bits, 32); 1746 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1747 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1748 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1749 1750 if (NumElts < NumViaIntegerBits) { 1751 // If we're producing a smaller vector than our minimum legal integer 1752 // type, bitcast to the equivalent (known-legal) mask type, and extract 1753 // our final mask. 1754 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1755 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1756 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1757 DAG.getConstant(0, DL, XLenVT)); 1758 } else { 1759 // Else we must have produced an integer type with the same size as the 1760 // mask type; bitcast for the final result. 1761 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1762 Vec = DAG.getBitcast(VT, Vec); 1763 } 1764 1765 return Vec; 1766 } 1767 1768 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1769 // vector type, we have a legal equivalently-sized i8 type, so we can use 1770 // that. 1771 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1772 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1773 1774 SDValue WideVec; 1775 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1776 // For a splat, perform a scalar truncate before creating the wider 1777 // vector. 1778 assert(Splat.getValueType() == XLenVT && 1779 "Unexpected type for i1 splat value"); 1780 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1781 DAG.getConstant(1, DL, XLenVT)); 1782 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1783 } else { 1784 SmallVector<SDValue, 8> Ops(Op->op_values()); 1785 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1786 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1787 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1788 } 1789 1790 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1791 } 1792 1793 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1794 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1795 : RISCVISD::VMV_V_X_VL; 1796 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1797 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1798 } 1799 1800 // Try and match index sequences, which we can lower to the vid instruction 1801 // with optional modifications. An all-undef vector is matched by 1802 // getSplatValue, above. 1803 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1804 int64_t StepNumerator = SimpleVID->StepNumerator; 1805 unsigned StepDenominator = SimpleVID->StepDenominator; 1806 int64_t Addend = SimpleVID->Addend; 1807 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1808 // threshold since it's the immediate value many RVV instructions accept. 1809 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1810 isInt<5>(Addend)) { 1811 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1812 // Convert right out of the scalable type so we can use standard ISD 1813 // nodes for the rest of the computation. If we used scalable types with 1814 // these, we'd lose the fixed-length vector info and generate worse 1815 // vsetvli code. 1816 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1817 assert(StepNumerator != 0 && "Invalid step"); 1818 bool Negate = false; 1819 if (StepNumerator != 1) { 1820 int64_t SplatStepVal = StepNumerator; 1821 unsigned Opcode = ISD::MUL; 1822 if (isPowerOf2_64(std::abs(StepNumerator))) { 1823 Negate = StepNumerator < 0; 1824 Opcode = ISD::SHL; 1825 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1826 } 1827 SDValue SplatStep = DAG.getSplatVector( 1828 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1829 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1830 } 1831 if (StepDenominator != 1) { 1832 SDValue SplatStep = DAG.getSplatVector( 1833 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1834 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1835 } 1836 if (Addend != 0 || Negate) { 1837 SDValue SplatAddend = 1838 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1839 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1840 } 1841 return VID; 1842 } 1843 } 1844 1845 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1846 // when re-interpreted as a vector with a larger element type. For example, 1847 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1848 // could be instead splat as 1849 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1850 // TODO: This optimization could also work on non-constant splats, but it 1851 // would require bit-manipulation instructions to construct the splat value. 1852 SmallVector<SDValue> Sequence; 1853 unsigned EltBitSize = VT.getScalarSizeInBits(); 1854 const auto *BV = cast<BuildVectorSDNode>(Op); 1855 if (VT.isInteger() && EltBitSize < 64 && 1856 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1857 BV->getRepeatedSequence(Sequence) && 1858 (Sequence.size() * EltBitSize) <= 64) { 1859 unsigned SeqLen = Sequence.size(); 1860 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1861 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1862 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1863 ViaIntVT == MVT::i64) && 1864 "Unexpected sequence type"); 1865 1866 unsigned EltIdx = 0; 1867 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1868 uint64_t SplatValue = 0; 1869 // Construct the amalgamated value which can be splatted as this larger 1870 // vector type. 1871 for (const auto &SeqV : Sequence) { 1872 if (!SeqV.isUndef()) 1873 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1874 << (EltIdx * EltBitSize)); 1875 EltIdx++; 1876 } 1877 1878 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1879 // achieve better constant materializion. 1880 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1881 SplatValue = SignExtend64(SplatValue, 32); 1882 1883 // Since we can't introduce illegal i64 types at this stage, we can only 1884 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1885 // way we can use RVV instructions to splat. 1886 assert((ViaIntVT.bitsLE(XLenVT) || 1887 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1888 "Unexpected bitcast sequence"); 1889 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1890 SDValue ViaVL = 1891 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1892 MVT ViaContainerVT = 1893 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1894 SDValue Splat = 1895 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1896 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1897 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1898 return DAG.getBitcast(VT, Splat); 1899 } 1900 } 1901 1902 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1903 // which constitute a large proportion of the elements. In such cases we can 1904 // splat a vector with the dominant element and make up the shortfall with 1905 // INSERT_VECTOR_ELTs. 1906 // Note that this includes vectors of 2 elements by association. The 1907 // upper-most element is the "dominant" one, allowing us to use a splat to 1908 // "insert" the upper element, and an insert of the lower element at position 1909 // 0, which improves codegen. 1910 SDValue DominantValue; 1911 unsigned MostCommonCount = 0; 1912 DenseMap<SDValue, unsigned> ValueCounts; 1913 unsigned NumUndefElts = 1914 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1915 1916 // Track the number of scalar loads we know we'd be inserting, estimated as 1917 // any non-zero floating-point constant. Other kinds of element are either 1918 // already in registers or are materialized on demand. The threshold at which 1919 // a vector load is more desirable than several scalar materializion and 1920 // vector-insertion instructions is not known. 1921 unsigned NumScalarLoads = 0; 1922 1923 for (SDValue V : Op->op_values()) { 1924 if (V.isUndef()) 1925 continue; 1926 1927 ValueCounts.insert(std::make_pair(V, 0)); 1928 unsigned &Count = ValueCounts[V]; 1929 1930 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1931 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1932 1933 // Is this value dominant? In case of a tie, prefer the highest element as 1934 // it's cheaper to insert near the beginning of a vector than it is at the 1935 // end. 1936 if (++Count >= MostCommonCount) { 1937 DominantValue = V; 1938 MostCommonCount = Count; 1939 } 1940 } 1941 1942 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1943 unsigned NumDefElts = NumElts - NumUndefElts; 1944 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1945 1946 // Don't perform this optimization when optimizing for size, since 1947 // materializing elements and inserting them tends to cause code bloat. 1948 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1949 ((MostCommonCount > DominantValueCountThreshold) || 1950 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1951 // Start by splatting the most common element. 1952 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1953 1954 DenseSet<SDValue> Processed{DominantValue}; 1955 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1956 for (const auto &OpIdx : enumerate(Op->ops())) { 1957 const SDValue &V = OpIdx.value(); 1958 if (V.isUndef() || !Processed.insert(V).second) 1959 continue; 1960 if (ValueCounts[V] == 1) { 1961 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1962 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1963 } else { 1964 // Blend in all instances of this value using a VSELECT, using a 1965 // mask where each bit signals whether that element is the one 1966 // we're after. 1967 SmallVector<SDValue> Ops; 1968 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1969 return DAG.getConstant(V == V1, DL, XLenVT); 1970 }); 1971 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1972 DAG.getBuildVector(SelMaskTy, DL, Ops), 1973 DAG.getSplatBuildVector(VT, DL, V), Vec); 1974 } 1975 } 1976 1977 return Vec; 1978 } 1979 1980 return SDValue(); 1981 } 1982 1983 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1984 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1985 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1986 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1987 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1988 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1989 // node in order to try and match RVV vector/scalar instructions. 1990 if ((LoC >> 31) == HiC) 1991 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1992 } 1993 1994 // Fall back to a stack store and stride x0 vector load. 1995 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1996 } 1997 1998 // Called by type legalization to handle splat of i64 on RV32. 1999 // FIXME: We can optimize this when the type has sign or zero bits in one 2000 // of the halves. 2001 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 2002 SDValue VL, SelectionDAG &DAG) { 2003 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2004 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2005 DAG.getConstant(0, DL, MVT::i32)); 2006 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2007 DAG.getConstant(1, DL, MVT::i32)); 2008 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 2009 } 2010 2011 // This function lowers a splat of a scalar operand Splat with the vector 2012 // length VL. It ensures the final sequence is type legal, which is useful when 2013 // lowering a splat after type legalization. 2014 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 2015 SelectionDAG &DAG, 2016 const RISCVSubtarget &Subtarget) { 2017 if (VT.isFloatingPoint()) 2018 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 2019 2020 MVT XLenVT = Subtarget.getXLenVT(); 2021 2022 // Simplest case is that the operand needs to be promoted to XLenVT. 2023 if (Scalar.getValueType().bitsLE(XLenVT)) { 2024 // If the operand is a constant, sign extend to increase our chances 2025 // of being able to use a .vi instruction. ANY_EXTEND would become a 2026 // a zero extend and the simm5 check in isel would fail. 2027 // FIXME: Should we ignore the upper bits in isel instead? 2028 unsigned ExtOpc = 2029 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2030 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2031 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 2032 } 2033 2034 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2035 "Unexpected scalar for splat lowering!"); 2036 2037 // Otherwise use the more complicated splatting algorithm. 2038 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 2039 } 2040 2041 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2042 const RISCVSubtarget &Subtarget) { 2043 SDValue V1 = Op.getOperand(0); 2044 SDValue V2 = Op.getOperand(1); 2045 SDLoc DL(Op); 2046 MVT XLenVT = Subtarget.getXLenVT(); 2047 MVT VT = Op.getSimpleValueType(); 2048 unsigned NumElts = VT.getVectorNumElements(); 2049 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2050 2051 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2052 2053 SDValue TrueMask, VL; 2054 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2055 2056 if (SVN->isSplat()) { 2057 const int Lane = SVN->getSplatIndex(); 2058 if (Lane >= 0) { 2059 MVT SVT = VT.getVectorElementType(); 2060 2061 // Turn splatted vector load into a strided load with an X0 stride. 2062 SDValue V = V1; 2063 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2064 // with undef. 2065 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2066 int Offset = Lane; 2067 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2068 int OpElements = 2069 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2070 V = V.getOperand(Offset / OpElements); 2071 Offset %= OpElements; 2072 } 2073 2074 // We need to ensure the load isn't atomic or volatile. 2075 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2076 auto *Ld = cast<LoadSDNode>(V); 2077 Offset *= SVT.getStoreSize(); 2078 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2079 TypeSize::Fixed(Offset), DL); 2080 2081 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2082 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2083 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2084 SDValue IntID = 2085 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2086 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 2087 DAG.getRegister(RISCV::X0, XLenVT), VL}; 2088 SDValue NewLoad = DAG.getMemIntrinsicNode( 2089 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2090 DAG.getMachineFunction().getMachineMemOperand( 2091 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2092 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2093 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2094 } 2095 2096 // Otherwise use a scalar load and splat. This will give the best 2097 // opportunity to fold a splat into the operation. ISel can turn it into 2098 // the x0 strided load if we aren't able to fold away the select. 2099 if (SVT.isFloatingPoint()) 2100 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2101 Ld->getPointerInfo().getWithOffset(Offset), 2102 Ld->getOriginalAlign(), 2103 Ld->getMemOperand()->getFlags()); 2104 else 2105 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2106 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2107 Ld->getOriginalAlign(), 2108 Ld->getMemOperand()->getFlags()); 2109 DAG.makeEquivalentMemoryOrdering(Ld, V); 2110 2111 unsigned Opc = 2112 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2113 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 2114 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2115 } 2116 2117 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2118 assert(Lane < (int)NumElts && "Unexpected lane!"); 2119 SDValue Gather = 2120 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2121 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2122 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2123 } 2124 } 2125 2126 // Detect shuffles which can be re-expressed as vector selects; these are 2127 // shuffles in which each element in the destination is taken from an element 2128 // at the corresponding index in either source vectors. 2129 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 2130 int MaskIndex = MaskIdx.value(); 2131 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2132 }); 2133 2134 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2135 2136 SmallVector<SDValue> MaskVals; 2137 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2138 // merged with a second vrgather. 2139 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2140 2141 // By default we preserve the original operand order, and use a mask to 2142 // select LHS as true and RHS as false. However, since RVV vector selects may 2143 // feature splats but only on the LHS, we may choose to invert our mask and 2144 // instead select between RHS and LHS. 2145 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2146 bool InvertMask = IsSelect == SwapOps; 2147 2148 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2149 // half. 2150 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2151 2152 // Now construct the mask that will be used by the vselect or blended 2153 // vrgather operation. For vrgathers, construct the appropriate indices into 2154 // each vector. 2155 for (int MaskIndex : SVN->getMask()) { 2156 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2157 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2158 if (!IsSelect) { 2159 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2160 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2161 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2162 : DAG.getUNDEF(XLenVT)); 2163 GatherIndicesRHS.push_back( 2164 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2165 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2166 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2167 ++LHSIndexCounts[MaskIndex]; 2168 if (!IsLHSOrUndefIndex) 2169 ++RHSIndexCounts[MaskIndex - NumElts]; 2170 } 2171 } 2172 2173 if (SwapOps) { 2174 std::swap(V1, V2); 2175 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2176 } 2177 2178 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2179 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2180 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2181 2182 if (IsSelect) 2183 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2184 2185 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2186 // On such a large vector we're unable to use i8 as the index type. 2187 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2188 // may involve vector splitting if we're already at LMUL=8, or our 2189 // user-supplied maximum fixed-length LMUL. 2190 return SDValue(); 2191 } 2192 2193 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2194 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2195 MVT IndexVT = VT.changeTypeToInteger(); 2196 // Since we can't introduce illegal index types at this stage, use i16 and 2197 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2198 // than XLenVT. 2199 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2200 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2201 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2202 } 2203 2204 MVT IndexContainerVT = 2205 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2206 2207 SDValue Gather; 2208 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2209 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2210 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2211 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2212 } else { 2213 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2214 // If only one index is used, we can use a "splat" vrgather. 2215 // TODO: We can splat the most-common index and fix-up any stragglers, if 2216 // that's beneficial. 2217 if (LHSIndexCounts.size() == 1) { 2218 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2219 Gather = 2220 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2221 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2222 } else { 2223 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2224 LHSIndices = 2225 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2226 2227 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2228 TrueMask, VL); 2229 } 2230 } 2231 2232 // If a second vector operand is used by this shuffle, blend it in with an 2233 // additional vrgather. 2234 if (!V2.isUndef()) { 2235 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2236 // If only one index is used, we can use a "splat" vrgather. 2237 // TODO: We can splat the most-common index and fix-up any stragglers, if 2238 // that's beneficial. 2239 if (RHSIndexCounts.size() == 1) { 2240 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2241 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2242 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2243 } else { 2244 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2245 RHSIndices = 2246 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2247 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2248 VL); 2249 } 2250 2251 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2252 SelectMask = 2253 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2254 2255 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2256 Gather, VL); 2257 } 2258 2259 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2260 } 2261 2262 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2263 SDLoc DL, SelectionDAG &DAG, 2264 const RISCVSubtarget &Subtarget) { 2265 if (VT.isScalableVector()) 2266 return DAG.getFPExtendOrRound(Op, DL, VT); 2267 assert(VT.isFixedLengthVector() && 2268 "Unexpected value type for RVV FP extend/round lowering"); 2269 SDValue Mask, VL; 2270 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2271 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2272 ? RISCVISD::FP_EXTEND_VL 2273 : RISCVISD::FP_ROUND_VL; 2274 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2275 } 2276 2277 // While RVV has alignment restrictions, we should always be able to load as a 2278 // legal equivalently-sized byte-typed vector instead. This method is 2279 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2280 // the load is already correctly-aligned, it returns SDValue(). 2281 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2282 SelectionDAG &DAG) const { 2283 auto *Load = cast<LoadSDNode>(Op); 2284 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2285 2286 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2287 Load->getMemoryVT(), 2288 *Load->getMemOperand())) 2289 return SDValue(); 2290 2291 SDLoc DL(Op); 2292 MVT VT = Op.getSimpleValueType(); 2293 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2294 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2295 "Unexpected unaligned RVV load type"); 2296 MVT NewVT = 2297 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2298 assert(NewVT.isValid() && 2299 "Expecting equally-sized RVV vector types to be legal"); 2300 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2301 Load->getPointerInfo(), Load->getOriginalAlign(), 2302 Load->getMemOperand()->getFlags()); 2303 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2304 } 2305 2306 // While RVV has alignment restrictions, we should always be able to store as a 2307 // legal equivalently-sized byte-typed vector instead. This method is 2308 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2309 // returns SDValue() if the store is already correctly aligned. 2310 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2311 SelectionDAG &DAG) const { 2312 auto *Store = cast<StoreSDNode>(Op); 2313 assert(Store && Store->getValue().getValueType().isVector() && 2314 "Expected vector store"); 2315 2316 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2317 Store->getMemoryVT(), 2318 *Store->getMemOperand())) 2319 return SDValue(); 2320 2321 SDLoc DL(Op); 2322 SDValue StoredVal = Store->getValue(); 2323 MVT VT = StoredVal.getSimpleValueType(); 2324 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2325 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2326 "Unexpected unaligned RVV store type"); 2327 MVT NewVT = 2328 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2329 assert(NewVT.isValid() && 2330 "Expecting equally-sized RVV vector types to be legal"); 2331 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2332 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2333 Store->getPointerInfo(), Store->getOriginalAlign(), 2334 Store->getMemOperand()->getFlags()); 2335 } 2336 2337 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2338 SelectionDAG &DAG) const { 2339 switch (Op.getOpcode()) { 2340 default: 2341 report_fatal_error("unimplemented operand"); 2342 case ISD::GlobalAddress: 2343 return lowerGlobalAddress(Op, DAG); 2344 case ISD::BlockAddress: 2345 return lowerBlockAddress(Op, DAG); 2346 case ISD::ConstantPool: 2347 return lowerConstantPool(Op, DAG); 2348 case ISD::JumpTable: 2349 return lowerJumpTable(Op, DAG); 2350 case ISD::GlobalTLSAddress: 2351 return lowerGlobalTLSAddress(Op, DAG); 2352 case ISD::SELECT: 2353 return lowerSELECT(Op, DAG); 2354 case ISD::BRCOND: 2355 return lowerBRCOND(Op, DAG); 2356 case ISD::VASTART: 2357 return lowerVASTART(Op, DAG); 2358 case ISD::FRAMEADDR: 2359 return lowerFRAMEADDR(Op, DAG); 2360 case ISD::RETURNADDR: 2361 return lowerRETURNADDR(Op, DAG); 2362 case ISD::SHL_PARTS: 2363 return lowerShiftLeftParts(Op, DAG); 2364 case ISD::SRA_PARTS: 2365 return lowerShiftRightParts(Op, DAG, true); 2366 case ISD::SRL_PARTS: 2367 return lowerShiftRightParts(Op, DAG, false); 2368 case ISD::BITCAST: { 2369 SDLoc DL(Op); 2370 EVT VT = Op.getValueType(); 2371 SDValue Op0 = Op.getOperand(0); 2372 EVT Op0VT = Op0.getValueType(); 2373 MVT XLenVT = Subtarget.getXLenVT(); 2374 if (VT.isFixedLengthVector()) { 2375 // We can handle fixed length vector bitcasts with a simple replacement 2376 // in isel. 2377 if (Op0VT.isFixedLengthVector()) 2378 return Op; 2379 // When bitcasting from scalar to fixed-length vector, insert the scalar 2380 // into a one-element vector of the result type, and perform a vector 2381 // bitcast. 2382 if (!Op0VT.isVector()) { 2383 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2384 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2385 DAG.getUNDEF(BVT), Op0, 2386 DAG.getConstant(0, DL, XLenVT))); 2387 } 2388 return SDValue(); 2389 } 2390 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2391 // thus: bitcast the vector to a one-element vector type whose element type 2392 // is the same as the result type, and extract the first element. 2393 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2394 LLVMContext &Context = *DAG.getContext(); 2395 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2396 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2397 DAG.getConstant(0, DL, XLenVT)); 2398 } 2399 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2400 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2401 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2402 return FPConv; 2403 } 2404 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2405 Subtarget.hasStdExtF()) { 2406 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2407 SDValue FPConv = 2408 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2409 return FPConv; 2410 } 2411 return SDValue(); 2412 } 2413 case ISD::INTRINSIC_WO_CHAIN: 2414 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2415 case ISD::INTRINSIC_W_CHAIN: 2416 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2417 case ISD::INTRINSIC_VOID: 2418 return LowerINTRINSIC_VOID(Op, DAG); 2419 case ISD::BSWAP: 2420 case ISD::BITREVERSE: { 2421 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2422 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2423 MVT VT = Op.getSimpleValueType(); 2424 SDLoc DL(Op); 2425 // Start with the maximum immediate value which is the bitwidth - 1. 2426 unsigned Imm = VT.getSizeInBits() - 1; 2427 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2428 if (Op.getOpcode() == ISD::BSWAP) 2429 Imm &= ~0x7U; 2430 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2431 DAG.getConstant(Imm, DL, VT)); 2432 } 2433 case ISD::FSHL: 2434 case ISD::FSHR: { 2435 MVT VT = Op.getSimpleValueType(); 2436 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2437 SDLoc DL(Op); 2438 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2439 return Op; 2440 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2441 // use log(XLen) bits. Mask the shift amount accordingly. 2442 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2443 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2444 DAG.getConstant(ShAmtWidth, DL, VT)); 2445 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2446 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2447 } 2448 case ISD::TRUNCATE: { 2449 SDLoc DL(Op); 2450 MVT VT = Op.getSimpleValueType(); 2451 // Only custom-lower vector truncates 2452 if (!VT.isVector()) 2453 return Op; 2454 2455 // Truncates to mask types are handled differently 2456 if (VT.getVectorElementType() == MVT::i1) 2457 return lowerVectorMaskTrunc(Op, DAG); 2458 2459 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2460 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2461 // truncate by one power of two at a time. 2462 MVT DstEltVT = VT.getVectorElementType(); 2463 2464 SDValue Src = Op.getOperand(0); 2465 MVT SrcVT = Src.getSimpleValueType(); 2466 MVT SrcEltVT = SrcVT.getVectorElementType(); 2467 2468 assert(DstEltVT.bitsLT(SrcEltVT) && 2469 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2470 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2471 "Unexpected vector truncate lowering"); 2472 2473 MVT ContainerVT = SrcVT; 2474 if (SrcVT.isFixedLengthVector()) { 2475 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2476 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2477 } 2478 2479 SDValue Result = Src; 2480 SDValue Mask, VL; 2481 std::tie(Mask, VL) = 2482 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2483 LLVMContext &Context = *DAG.getContext(); 2484 const ElementCount Count = ContainerVT.getVectorElementCount(); 2485 do { 2486 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2487 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2488 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2489 Mask, VL); 2490 } while (SrcEltVT != DstEltVT); 2491 2492 if (SrcVT.isFixedLengthVector()) 2493 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2494 2495 return Result; 2496 } 2497 case ISD::ANY_EXTEND: 2498 case ISD::ZERO_EXTEND: 2499 if (Op.getOperand(0).getValueType().isVector() && 2500 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2501 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2502 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2503 case ISD::SIGN_EXTEND: 2504 if (Op.getOperand(0).getValueType().isVector() && 2505 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2506 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2507 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2508 case ISD::SPLAT_VECTOR_PARTS: 2509 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2510 case ISD::INSERT_VECTOR_ELT: 2511 return lowerINSERT_VECTOR_ELT(Op, DAG); 2512 case ISD::EXTRACT_VECTOR_ELT: 2513 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2514 case ISD::VSCALE: { 2515 MVT VT = Op.getSimpleValueType(); 2516 SDLoc DL(Op); 2517 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2518 // We define our scalable vector types for lmul=1 to use a 64 bit known 2519 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2520 // vscale as VLENB / 8. 2521 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2522 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2523 // We assume VLENB is a multiple of 8. We manually choose the best shift 2524 // here because SimplifyDemandedBits isn't always able to simplify it. 2525 uint64_t Val = Op.getConstantOperandVal(0); 2526 if (isPowerOf2_64(Val)) { 2527 uint64_t Log2 = Log2_64(Val); 2528 if (Log2 < 3) 2529 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2530 DAG.getConstant(3 - Log2, DL, VT)); 2531 if (Log2 > 3) 2532 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2533 DAG.getConstant(Log2 - 3, DL, VT)); 2534 return VLENB; 2535 } 2536 // If the multiplier is a multiple of 8, scale it down to avoid needing 2537 // to shift the VLENB value. 2538 if ((Val % 8) == 0) 2539 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2540 DAG.getConstant(Val / 8, DL, VT)); 2541 } 2542 2543 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2544 DAG.getConstant(3, DL, VT)); 2545 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2546 } 2547 case ISD::FP_EXTEND: { 2548 // RVV can only do fp_extend to types double the size as the source. We 2549 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2550 // via f32. 2551 SDLoc DL(Op); 2552 MVT VT = Op.getSimpleValueType(); 2553 SDValue Src = Op.getOperand(0); 2554 MVT SrcVT = Src.getSimpleValueType(); 2555 2556 // Prepare any fixed-length vector operands. 2557 MVT ContainerVT = VT; 2558 if (SrcVT.isFixedLengthVector()) { 2559 ContainerVT = getContainerForFixedLengthVector(VT); 2560 MVT SrcContainerVT = 2561 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2562 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2563 } 2564 2565 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2566 SrcVT.getVectorElementType() != MVT::f16) { 2567 // For scalable vectors, we only need to close the gap between 2568 // vXf16->vXf64. 2569 if (!VT.isFixedLengthVector()) 2570 return Op; 2571 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2572 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2573 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2574 } 2575 2576 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2577 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2578 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2579 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2580 2581 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2582 DL, DAG, Subtarget); 2583 if (VT.isFixedLengthVector()) 2584 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2585 return Extend; 2586 } 2587 case ISD::FP_ROUND: { 2588 // RVV can only do fp_round to types half the size as the source. We 2589 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2590 // conversion instruction. 2591 SDLoc DL(Op); 2592 MVT VT = Op.getSimpleValueType(); 2593 SDValue Src = Op.getOperand(0); 2594 MVT SrcVT = Src.getSimpleValueType(); 2595 2596 // Prepare any fixed-length vector operands. 2597 MVT ContainerVT = VT; 2598 if (VT.isFixedLengthVector()) { 2599 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2600 ContainerVT = 2601 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2602 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2603 } 2604 2605 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2606 SrcVT.getVectorElementType() != MVT::f64) { 2607 // For scalable vectors, we only need to close the gap between 2608 // vXf64<->vXf16. 2609 if (!VT.isFixedLengthVector()) 2610 return Op; 2611 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2612 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2613 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2614 } 2615 2616 SDValue Mask, VL; 2617 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2618 2619 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2620 SDValue IntermediateRound = 2621 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2622 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2623 DL, DAG, Subtarget); 2624 2625 if (VT.isFixedLengthVector()) 2626 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2627 return Round; 2628 } 2629 case ISD::FP_TO_SINT: 2630 case ISD::FP_TO_UINT: 2631 case ISD::SINT_TO_FP: 2632 case ISD::UINT_TO_FP: { 2633 // RVV can only do fp<->int conversions to types half/double the size as 2634 // the source. We custom-lower any conversions that do two hops into 2635 // sequences. 2636 MVT VT = Op.getSimpleValueType(); 2637 if (!VT.isVector()) 2638 return Op; 2639 SDLoc DL(Op); 2640 SDValue Src = Op.getOperand(0); 2641 MVT EltVT = VT.getVectorElementType(); 2642 MVT SrcVT = Src.getSimpleValueType(); 2643 MVT SrcEltVT = SrcVT.getVectorElementType(); 2644 unsigned EltSize = EltVT.getSizeInBits(); 2645 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2646 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2647 "Unexpected vector element types"); 2648 2649 bool IsInt2FP = SrcEltVT.isInteger(); 2650 // Widening conversions 2651 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2652 if (IsInt2FP) { 2653 // Do a regular integer sign/zero extension then convert to float. 2654 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2655 VT.getVectorElementCount()); 2656 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2657 ? ISD::ZERO_EXTEND 2658 : ISD::SIGN_EXTEND; 2659 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2660 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2661 } 2662 // FP2Int 2663 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2664 // Do one doubling fp_extend then complete the operation by converting 2665 // to int. 2666 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2667 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2668 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2669 } 2670 2671 // Narrowing conversions 2672 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2673 if (IsInt2FP) { 2674 // One narrowing int_to_fp, then an fp_round. 2675 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2676 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2677 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2678 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2679 } 2680 // FP2Int 2681 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2682 // representable by the integer, the result is poison. 2683 MVT IVecVT = 2684 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2685 VT.getVectorElementCount()); 2686 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2687 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2688 } 2689 2690 // Scalable vectors can exit here. Patterns will handle equally-sized 2691 // conversions halving/doubling ones. 2692 if (!VT.isFixedLengthVector()) 2693 return Op; 2694 2695 // For fixed-length vectors we lower to a custom "VL" node. 2696 unsigned RVVOpc = 0; 2697 switch (Op.getOpcode()) { 2698 default: 2699 llvm_unreachable("Impossible opcode"); 2700 case ISD::FP_TO_SINT: 2701 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2702 break; 2703 case ISD::FP_TO_UINT: 2704 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2705 break; 2706 case ISD::SINT_TO_FP: 2707 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2708 break; 2709 case ISD::UINT_TO_FP: 2710 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2711 break; 2712 } 2713 2714 MVT ContainerVT, SrcContainerVT; 2715 // Derive the reference container type from the larger vector type. 2716 if (SrcEltSize > EltSize) { 2717 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2718 ContainerVT = 2719 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2720 } else { 2721 ContainerVT = getContainerForFixedLengthVector(VT); 2722 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2723 } 2724 2725 SDValue Mask, VL; 2726 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2727 2728 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2729 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2730 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2731 } 2732 case ISD::FP_TO_SINT_SAT: 2733 case ISD::FP_TO_UINT_SAT: 2734 return lowerFP_TO_INT_SAT(Op, DAG); 2735 case ISD::VECREDUCE_ADD: 2736 case ISD::VECREDUCE_UMAX: 2737 case ISD::VECREDUCE_SMAX: 2738 case ISD::VECREDUCE_UMIN: 2739 case ISD::VECREDUCE_SMIN: 2740 return lowerVECREDUCE(Op, DAG); 2741 case ISD::VECREDUCE_AND: 2742 case ISD::VECREDUCE_OR: 2743 case ISD::VECREDUCE_XOR: 2744 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2745 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 2746 return lowerVECREDUCE(Op, DAG); 2747 case ISD::VECREDUCE_FADD: 2748 case ISD::VECREDUCE_SEQ_FADD: 2749 case ISD::VECREDUCE_FMIN: 2750 case ISD::VECREDUCE_FMAX: 2751 return lowerFPVECREDUCE(Op, DAG); 2752 case ISD::VP_REDUCE_ADD: 2753 case ISD::VP_REDUCE_UMAX: 2754 case ISD::VP_REDUCE_SMAX: 2755 case ISD::VP_REDUCE_UMIN: 2756 case ISD::VP_REDUCE_SMIN: 2757 case ISD::VP_REDUCE_FADD: 2758 case ISD::VP_REDUCE_SEQ_FADD: 2759 case ISD::VP_REDUCE_FMIN: 2760 case ISD::VP_REDUCE_FMAX: 2761 return lowerVPREDUCE(Op, DAG); 2762 case ISD::VP_REDUCE_AND: 2763 case ISD::VP_REDUCE_OR: 2764 case ISD::VP_REDUCE_XOR: 2765 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 2766 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 2767 return lowerVPREDUCE(Op, DAG); 2768 case ISD::INSERT_SUBVECTOR: 2769 return lowerINSERT_SUBVECTOR(Op, DAG); 2770 case ISD::EXTRACT_SUBVECTOR: 2771 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2772 case ISD::STEP_VECTOR: 2773 return lowerSTEP_VECTOR(Op, DAG); 2774 case ISD::VECTOR_REVERSE: 2775 return lowerVECTOR_REVERSE(Op, DAG); 2776 case ISD::BUILD_VECTOR: 2777 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2778 case ISD::SPLAT_VECTOR: 2779 if (Op.getValueType().getVectorElementType() == MVT::i1) 2780 return lowerVectorMaskSplat(Op, DAG); 2781 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2782 case ISD::VECTOR_SHUFFLE: 2783 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2784 case ISD::CONCAT_VECTORS: { 2785 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2786 // better than going through the stack, as the default expansion does. 2787 SDLoc DL(Op); 2788 MVT VT = Op.getSimpleValueType(); 2789 unsigned NumOpElts = 2790 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2791 SDValue Vec = DAG.getUNDEF(VT); 2792 for (const auto &OpIdx : enumerate(Op->ops())) 2793 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2794 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2795 return Vec; 2796 } 2797 case ISD::LOAD: 2798 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2799 return V; 2800 if (Op.getValueType().isFixedLengthVector()) 2801 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2802 return Op; 2803 case ISD::STORE: 2804 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2805 return V; 2806 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2807 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2808 return Op; 2809 case ISD::MLOAD: 2810 case ISD::VP_LOAD: 2811 return lowerMaskedLoad(Op, DAG); 2812 case ISD::MSTORE: 2813 case ISD::VP_STORE: 2814 return lowerMaskedStore(Op, DAG); 2815 case ISD::SETCC: 2816 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2817 case ISD::ADD: 2818 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2819 case ISD::SUB: 2820 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2821 case ISD::MUL: 2822 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2823 case ISD::MULHS: 2824 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2825 case ISD::MULHU: 2826 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2827 case ISD::AND: 2828 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2829 RISCVISD::AND_VL); 2830 case ISD::OR: 2831 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2832 RISCVISD::OR_VL); 2833 case ISD::XOR: 2834 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2835 RISCVISD::XOR_VL); 2836 case ISD::SDIV: 2837 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2838 case ISD::SREM: 2839 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2840 case ISD::UDIV: 2841 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2842 case ISD::UREM: 2843 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2844 case ISD::SHL: 2845 case ISD::SRA: 2846 case ISD::SRL: 2847 if (Op.getSimpleValueType().isFixedLengthVector()) 2848 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2849 // This can be called for an i32 shift amount that needs to be promoted. 2850 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2851 "Unexpected custom legalisation"); 2852 return SDValue(); 2853 case ISD::SADDSAT: 2854 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2855 case ISD::UADDSAT: 2856 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2857 case ISD::SSUBSAT: 2858 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2859 case ISD::USUBSAT: 2860 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2861 case ISD::FADD: 2862 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2863 case ISD::FSUB: 2864 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2865 case ISD::FMUL: 2866 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2867 case ISD::FDIV: 2868 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2869 case ISD::FNEG: 2870 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2871 case ISD::FABS: 2872 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2873 case ISD::FSQRT: 2874 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2875 case ISD::FMA: 2876 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2877 case ISD::SMIN: 2878 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2879 case ISD::SMAX: 2880 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2881 case ISD::UMIN: 2882 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2883 case ISD::UMAX: 2884 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2885 case ISD::FMINNUM: 2886 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2887 case ISD::FMAXNUM: 2888 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2889 case ISD::ABS: 2890 return lowerABS(Op, DAG); 2891 case ISD::VSELECT: 2892 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2893 case ISD::FCOPYSIGN: 2894 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2895 case ISD::MGATHER: 2896 case ISD::VP_GATHER: 2897 return lowerMaskedGather(Op, DAG); 2898 case ISD::MSCATTER: 2899 case ISD::VP_SCATTER: 2900 return lowerMaskedScatter(Op, DAG); 2901 case ISD::FLT_ROUNDS_: 2902 return lowerGET_ROUNDING(Op, DAG); 2903 case ISD::SET_ROUNDING: 2904 return lowerSET_ROUNDING(Op, DAG); 2905 case ISD::VP_ADD: 2906 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2907 case ISD::VP_SUB: 2908 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2909 case ISD::VP_MUL: 2910 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2911 case ISD::VP_SDIV: 2912 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2913 case ISD::VP_UDIV: 2914 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2915 case ISD::VP_SREM: 2916 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2917 case ISD::VP_UREM: 2918 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2919 case ISD::VP_AND: 2920 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2921 case ISD::VP_OR: 2922 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2923 case ISD::VP_XOR: 2924 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2925 case ISD::VP_ASHR: 2926 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2927 case ISD::VP_LSHR: 2928 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2929 case ISD::VP_SHL: 2930 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2931 case ISD::VP_FADD: 2932 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2933 case ISD::VP_FSUB: 2934 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2935 case ISD::VP_FMUL: 2936 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2937 case ISD::VP_FDIV: 2938 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2939 } 2940 } 2941 2942 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2943 SelectionDAG &DAG, unsigned Flags) { 2944 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2945 } 2946 2947 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2948 SelectionDAG &DAG, unsigned Flags) { 2949 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2950 Flags); 2951 } 2952 2953 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2954 SelectionDAG &DAG, unsigned Flags) { 2955 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2956 N->getOffset(), Flags); 2957 } 2958 2959 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2960 SelectionDAG &DAG, unsigned Flags) { 2961 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2962 } 2963 2964 template <class NodeTy> 2965 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2966 bool IsLocal) const { 2967 SDLoc DL(N); 2968 EVT Ty = getPointerTy(DAG.getDataLayout()); 2969 2970 if (isPositionIndependent()) { 2971 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2972 if (IsLocal) 2973 // Use PC-relative addressing to access the symbol. This generates the 2974 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2975 // %pcrel_lo(auipc)). 2976 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2977 2978 // Use PC-relative addressing to access the GOT for this symbol, then load 2979 // the address from the GOT. This generates the pattern (PseudoLA sym), 2980 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2981 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2982 } 2983 2984 switch (getTargetMachine().getCodeModel()) { 2985 default: 2986 report_fatal_error("Unsupported code model for lowering"); 2987 case CodeModel::Small: { 2988 // Generate a sequence for accessing addresses within the first 2 GiB of 2989 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2990 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2991 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2992 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2993 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2994 } 2995 case CodeModel::Medium: { 2996 // Generate a sequence for accessing addresses within any 2GiB range within 2997 // the address space. This generates the pattern (PseudoLLA sym), which 2998 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2999 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3000 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3001 } 3002 } 3003 } 3004 3005 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3006 SelectionDAG &DAG) const { 3007 SDLoc DL(Op); 3008 EVT Ty = Op.getValueType(); 3009 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3010 int64_t Offset = N->getOffset(); 3011 MVT XLenVT = Subtarget.getXLenVT(); 3012 3013 const GlobalValue *GV = N->getGlobal(); 3014 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3015 SDValue Addr = getAddr(N, DAG, IsLocal); 3016 3017 // In order to maximise the opportunity for common subexpression elimination, 3018 // emit a separate ADD node for the global address offset instead of folding 3019 // it in the global address node. Later peephole optimisations may choose to 3020 // fold it back in when profitable. 3021 if (Offset != 0) 3022 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3023 DAG.getConstant(Offset, DL, XLenVT)); 3024 return Addr; 3025 } 3026 3027 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3028 SelectionDAG &DAG) const { 3029 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3030 3031 return getAddr(N, DAG); 3032 } 3033 3034 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3035 SelectionDAG &DAG) const { 3036 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3037 3038 return getAddr(N, DAG); 3039 } 3040 3041 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3042 SelectionDAG &DAG) const { 3043 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3044 3045 return getAddr(N, DAG); 3046 } 3047 3048 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3049 SelectionDAG &DAG, 3050 bool UseGOT) const { 3051 SDLoc DL(N); 3052 EVT Ty = getPointerTy(DAG.getDataLayout()); 3053 const GlobalValue *GV = N->getGlobal(); 3054 MVT XLenVT = Subtarget.getXLenVT(); 3055 3056 if (UseGOT) { 3057 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3058 // load the address from the GOT and add the thread pointer. This generates 3059 // the pattern (PseudoLA_TLS_IE sym), which expands to 3060 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3061 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3062 SDValue Load = 3063 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3064 3065 // Add the thread pointer. 3066 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3067 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3068 } 3069 3070 // Generate a sequence for accessing the address relative to the thread 3071 // pointer, with the appropriate adjustment for the thread pointer offset. 3072 // This generates the pattern 3073 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3074 SDValue AddrHi = 3075 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3076 SDValue AddrAdd = 3077 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3078 SDValue AddrLo = 3079 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3080 3081 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3082 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3083 SDValue MNAdd = SDValue( 3084 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3085 0); 3086 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3087 } 3088 3089 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3090 SelectionDAG &DAG) const { 3091 SDLoc DL(N); 3092 EVT Ty = getPointerTy(DAG.getDataLayout()); 3093 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3094 const GlobalValue *GV = N->getGlobal(); 3095 3096 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3097 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3098 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3099 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3100 SDValue Load = 3101 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3102 3103 // Prepare argument list to generate call. 3104 ArgListTy Args; 3105 ArgListEntry Entry; 3106 Entry.Node = Load; 3107 Entry.Ty = CallTy; 3108 Args.push_back(Entry); 3109 3110 // Setup call to __tls_get_addr. 3111 TargetLowering::CallLoweringInfo CLI(DAG); 3112 CLI.setDebugLoc(DL) 3113 .setChain(DAG.getEntryNode()) 3114 .setLibCallee(CallingConv::C, CallTy, 3115 DAG.getExternalSymbol("__tls_get_addr", Ty), 3116 std::move(Args)); 3117 3118 return LowerCallTo(CLI).first; 3119 } 3120 3121 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3122 SelectionDAG &DAG) const { 3123 SDLoc DL(Op); 3124 EVT Ty = Op.getValueType(); 3125 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3126 int64_t Offset = N->getOffset(); 3127 MVT XLenVT = Subtarget.getXLenVT(); 3128 3129 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3130 3131 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3132 CallingConv::GHC) 3133 report_fatal_error("In GHC calling convention TLS is not supported"); 3134 3135 SDValue Addr; 3136 switch (Model) { 3137 case TLSModel::LocalExec: 3138 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3139 break; 3140 case TLSModel::InitialExec: 3141 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3142 break; 3143 case TLSModel::LocalDynamic: 3144 case TLSModel::GeneralDynamic: 3145 Addr = getDynamicTLSAddr(N, DAG); 3146 break; 3147 } 3148 3149 // In order to maximise the opportunity for common subexpression elimination, 3150 // emit a separate ADD node for the global address offset instead of folding 3151 // it in the global address node. Later peephole optimisations may choose to 3152 // fold it back in when profitable. 3153 if (Offset != 0) 3154 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3155 DAG.getConstant(Offset, DL, XLenVT)); 3156 return Addr; 3157 } 3158 3159 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3160 SDValue CondV = Op.getOperand(0); 3161 SDValue TrueV = Op.getOperand(1); 3162 SDValue FalseV = Op.getOperand(2); 3163 SDLoc DL(Op); 3164 MVT VT = Op.getSimpleValueType(); 3165 MVT XLenVT = Subtarget.getXLenVT(); 3166 3167 // Lower vector SELECTs to VSELECTs by splatting the condition. 3168 if (VT.isVector()) { 3169 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3170 SDValue CondSplat = VT.isScalableVector() 3171 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3172 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3173 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3174 } 3175 3176 // If the result type is XLenVT and CondV is the output of a SETCC node 3177 // which also operated on XLenVT inputs, then merge the SETCC node into the 3178 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3179 // compare+branch instructions. i.e.: 3180 // (select (setcc lhs, rhs, cc), truev, falsev) 3181 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3182 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3183 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3184 SDValue LHS = CondV.getOperand(0); 3185 SDValue RHS = CondV.getOperand(1); 3186 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3187 ISD::CondCode CCVal = CC->get(); 3188 3189 // Special case for a select of 2 constants that have a diffence of 1. 3190 // Normally this is done by DAGCombine, but if the select is introduced by 3191 // type legalization or op legalization, we miss it. Restricting to SETLT 3192 // case for now because that is what signed saturating add/sub need. 3193 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3194 // but we would probably want to swap the true/false values if the condition 3195 // is SETGE/SETLE to avoid an XORI. 3196 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3197 CCVal == ISD::SETLT) { 3198 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3199 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3200 if (TrueVal - 1 == FalseVal) 3201 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3202 if (TrueVal + 1 == FalseVal) 3203 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3204 } 3205 3206 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3207 3208 SDValue TargetCC = DAG.getCondCode(CCVal); 3209 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3210 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3211 } 3212 3213 // Otherwise: 3214 // (select condv, truev, falsev) 3215 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3216 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3217 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3218 3219 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3220 3221 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3222 } 3223 3224 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3225 SDValue CondV = Op.getOperand(1); 3226 SDLoc DL(Op); 3227 MVT XLenVT = Subtarget.getXLenVT(); 3228 3229 if (CondV.getOpcode() == ISD::SETCC && 3230 CondV.getOperand(0).getValueType() == XLenVT) { 3231 SDValue LHS = CondV.getOperand(0); 3232 SDValue RHS = CondV.getOperand(1); 3233 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3234 3235 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3236 3237 SDValue TargetCC = DAG.getCondCode(CCVal); 3238 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3239 LHS, RHS, TargetCC, Op.getOperand(2)); 3240 } 3241 3242 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3243 CondV, DAG.getConstant(0, DL, XLenVT), 3244 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3245 } 3246 3247 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3248 MachineFunction &MF = DAG.getMachineFunction(); 3249 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3250 3251 SDLoc DL(Op); 3252 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3253 getPointerTy(MF.getDataLayout())); 3254 3255 // vastart just stores the address of the VarArgsFrameIndex slot into the 3256 // memory location argument. 3257 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3258 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3259 MachinePointerInfo(SV)); 3260 } 3261 3262 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3263 SelectionDAG &DAG) const { 3264 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3265 MachineFunction &MF = DAG.getMachineFunction(); 3266 MachineFrameInfo &MFI = MF.getFrameInfo(); 3267 MFI.setFrameAddressIsTaken(true); 3268 Register FrameReg = RI.getFrameRegister(MF); 3269 int XLenInBytes = Subtarget.getXLen() / 8; 3270 3271 EVT VT = Op.getValueType(); 3272 SDLoc DL(Op); 3273 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3274 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3275 while (Depth--) { 3276 int Offset = -(XLenInBytes * 2); 3277 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3278 DAG.getIntPtrConstant(Offset, DL)); 3279 FrameAddr = 3280 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3281 } 3282 return FrameAddr; 3283 } 3284 3285 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3286 SelectionDAG &DAG) const { 3287 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3288 MachineFunction &MF = DAG.getMachineFunction(); 3289 MachineFrameInfo &MFI = MF.getFrameInfo(); 3290 MFI.setReturnAddressIsTaken(true); 3291 MVT XLenVT = Subtarget.getXLenVT(); 3292 int XLenInBytes = Subtarget.getXLen() / 8; 3293 3294 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3295 return SDValue(); 3296 3297 EVT VT = Op.getValueType(); 3298 SDLoc DL(Op); 3299 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3300 if (Depth) { 3301 int Off = -XLenInBytes; 3302 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3303 SDValue Offset = DAG.getConstant(Off, DL, VT); 3304 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3305 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3306 MachinePointerInfo()); 3307 } 3308 3309 // Return the value of the return address register, marking it an implicit 3310 // live-in. 3311 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3312 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3313 } 3314 3315 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3316 SelectionDAG &DAG) const { 3317 SDLoc DL(Op); 3318 SDValue Lo = Op.getOperand(0); 3319 SDValue Hi = Op.getOperand(1); 3320 SDValue Shamt = Op.getOperand(2); 3321 EVT VT = Lo.getValueType(); 3322 3323 // if Shamt-XLEN < 0: // Shamt < XLEN 3324 // Lo = Lo << Shamt 3325 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3326 // else: 3327 // Lo = 0 3328 // Hi = Lo << (Shamt-XLEN) 3329 3330 SDValue Zero = DAG.getConstant(0, DL, VT); 3331 SDValue One = DAG.getConstant(1, DL, VT); 3332 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3333 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3334 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3335 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3336 3337 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3338 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3339 SDValue ShiftRightLo = 3340 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3341 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3342 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3343 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3344 3345 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3346 3347 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3348 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3349 3350 SDValue Parts[2] = {Lo, Hi}; 3351 return DAG.getMergeValues(Parts, DL); 3352 } 3353 3354 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3355 bool IsSRA) const { 3356 SDLoc DL(Op); 3357 SDValue Lo = Op.getOperand(0); 3358 SDValue Hi = Op.getOperand(1); 3359 SDValue Shamt = Op.getOperand(2); 3360 EVT VT = Lo.getValueType(); 3361 3362 // SRA expansion: 3363 // if Shamt-XLEN < 0: // Shamt < XLEN 3364 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3365 // Hi = Hi >>s Shamt 3366 // else: 3367 // Lo = Hi >>s (Shamt-XLEN); 3368 // Hi = Hi >>s (XLEN-1) 3369 // 3370 // SRL expansion: 3371 // if Shamt-XLEN < 0: // Shamt < XLEN 3372 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3373 // Hi = Hi >>u Shamt 3374 // else: 3375 // Lo = Hi >>u (Shamt-XLEN); 3376 // Hi = 0; 3377 3378 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3379 3380 SDValue Zero = DAG.getConstant(0, DL, VT); 3381 SDValue One = DAG.getConstant(1, DL, VT); 3382 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3383 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3384 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3385 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3386 3387 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3388 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3389 SDValue ShiftLeftHi = 3390 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3391 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3392 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3393 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3394 SDValue HiFalse = 3395 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3396 3397 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3398 3399 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3400 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3401 3402 SDValue Parts[2] = {Lo, Hi}; 3403 return DAG.getMergeValues(Parts, DL); 3404 } 3405 3406 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3407 // legal equivalently-sized i8 type, so we can use that as a go-between. 3408 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3409 SelectionDAG &DAG) const { 3410 SDLoc DL(Op); 3411 MVT VT = Op.getSimpleValueType(); 3412 SDValue SplatVal = Op.getOperand(0); 3413 // All-zeros or all-ones splats are handled specially. 3414 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3415 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3416 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3417 } 3418 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3419 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3420 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3421 } 3422 MVT XLenVT = Subtarget.getXLenVT(); 3423 assert(SplatVal.getValueType() == XLenVT && 3424 "Unexpected type for i1 splat value"); 3425 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3426 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3427 DAG.getConstant(1, DL, XLenVT)); 3428 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3429 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3430 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3431 } 3432 3433 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3434 // illegal (currently only vXi64 RV32). 3435 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3436 // them to SPLAT_VECTOR_I64 3437 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3438 SelectionDAG &DAG) const { 3439 SDLoc DL(Op); 3440 MVT VecVT = Op.getSimpleValueType(); 3441 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3442 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3443 3444 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3445 SDValue Lo = Op.getOperand(0); 3446 SDValue Hi = Op.getOperand(1); 3447 3448 if (VecVT.isFixedLengthVector()) { 3449 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3450 SDLoc DL(Op); 3451 SDValue Mask, VL; 3452 std::tie(Mask, VL) = 3453 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3454 3455 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3456 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3457 } 3458 3459 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3460 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3461 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3462 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3463 // node in order to try and match RVV vector/scalar instructions. 3464 if ((LoC >> 31) == HiC) 3465 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3466 } 3467 3468 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3469 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3470 isa<ConstantSDNode>(Hi.getOperand(1)) && 3471 Hi.getConstantOperandVal(1) == 31) 3472 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3473 3474 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3475 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3476 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3477 } 3478 3479 // Custom-lower extensions from mask vectors by using a vselect either with 1 3480 // for zero/any-extension or -1 for sign-extension: 3481 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3482 // Note that any-extension is lowered identically to zero-extension. 3483 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3484 int64_t ExtTrueVal) const { 3485 SDLoc DL(Op); 3486 MVT VecVT = Op.getSimpleValueType(); 3487 SDValue Src = Op.getOperand(0); 3488 // Only custom-lower extensions from mask types 3489 assert(Src.getValueType().isVector() && 3490 Src.getValueType().getVectorElementType() == MVT::i1); 3491 3492 MVT XLenVT = Subtarget.getXLenVT(); 3493 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3494 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3495 3496 if (VecVT.isScalableVector()) { 3497 // Be careful not to introduce illegal scalar types at this stage, and be 3498 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3499 // illegal and must be expanded. Since we know that the constants are 3500 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3501 bool IsRV32E64 = 3502 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3503 3504 if (!IsRV32E64) { 3505 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3506 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3507 } else { 3508 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3509 SplatTrueVal = 3510 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3511 } 3512 3513 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3514 } 3515 3516 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3517 MVT I1ContainerVT = 3518 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3519 3520 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3521 3522 SDValue Mask, VL; 3523 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3524 3525 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3526 SplatTrueVal = 3527 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3528 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3529 SplatTrueVal, SplatZero, VL); 3530 3531 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3532 } 3533 3534 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3535 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3536 MVT ExtVT = Op.getSimpleValueType(); 3537 // Only custom-lower extensions from fixed-length vector types. 3538 if (!ExtVT.isFixedLengthVector()) 3539 return Op; 3540 MVT VT = Op.getOperand(0).getSimpleValueType(); 3541 // Grab the canonical container type for the extended type. Infer the smaller 3542 // type from that to ensure the same number of vector elements, as we know 3543 // the LMUL will be sufficient to hold the smaller type. 3544 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3545 // Get the extended container type manually to ensure the same number of 3546 // vector elements between source and dest. 3547 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3548 ContainerExtVT.getVectorElementCount()); 3549 3550 SDValue Op1 = 3551 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3552 3553 SDLoc DL(Op); 3554 SDValue Mask, VL; 3555 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3556 3557 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3558 3559 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3560 } 3561 3562 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3563 // setcc operation: 3564 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3565 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3566 SelectionDAG &DAG) const { 3567 SDLoc DL(Op); 3568 EVT MaskVT = Op.getValueType(); 3569 // Only expect to custom-lower truncations to mask types 3570 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3571 "Unexpected type for vector mask lowering"); 3572 SDValue Src = Op.getOperand(0); 3573 MVT VecVT = Src.getSimpleValueType(); 3574 3575 // If this is a fixed vector, we need to convert it to a scalable vector. 3576 MVT ContainerVT = VecVT; 3577 if (VecVT.isFixedLengthVector()) { 3578 ContainerVT = getContainerForFixedLengthVector(VecVT); 3579 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3580 } 3581 3582 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3583 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3584 3585 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3586 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3587 3588 if (VecVT.isScalableVector()) { 3589 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3590 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3591 } 3592 3593 SDValue Mask, VL; 3594 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3595 3596 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3597 SDValue Trunc = 3598 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3599 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3600 DAG.getCondCode(ISD::SETNE), Mask, VL); 3601 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3602 } 3603 3604 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3605 // first position of a vector, and that vector is slid up to the insert index. 3606 // By limiting the active vector length to index+1 and merging with the 3607 // original vector (with an undisturbed tail policy for elements >= VL), we 3608 // achieve the desired result of leaving all elements untouched except the one 3609 // at VL-1, which is replaced with the desired value. 3610 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3611 SelectionDAG &DAG) const { 3612 SDLoc DL(Op); 3613 MVT VecVT = Op.getSimpleValueType(); 3614 SDValue Vec = Op.getOperand(0); 3615 SDValue Val = Op.getOperand(1); 3616 SDValue Idx = Op.getOperand(2); 3617 3618 if (VecVT.getVectorElementType() == MVT::i1) { 3619 // FIXME: For now we just promote to an i8 vector and insert into that, 3620 // but this is probably not optimal. 3621 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3622 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3623 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3624 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3625 } 3626 3627 MVT ContainerVT = VecVT; 3628 // If the operand is a fixed-length vector, convert to a scalable one. 3629 if (VecVT.isFixedLengthVector()) { 3630 ContainerVT = getContainerForFixedLengthVector(VecVT); 3631 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3632 } 3633 3634 MVT XLenVT = Subtarget.getXLenVT(); 3635 3636 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3637 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3638 // Even i64-element vectors on RV32 can be lowered without scalar 3639 // legalization if the most-significant 32 bits of the value are not affected 3640 // by the sign-extension of the lower 32 bits. 3641 // TODO: We could also catch sign extensions of a 32-bit value. 3642 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3643 const auto *CVal = cast<ConstantSDNode>(Val); 3644 if (isInt<32>(CVal->getSExtValue())) { 3645 IsLegalInsert = true; 3646 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3647 } 3648 } 3649 3650 SDValue Mask, VL; 3651 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3652 3653 SDValue ValInVec; 3654 3655 if (IsLegalInsert) { 3656 unsigned Opc = 3657 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3658 if (isNullConstant(Idx)) { 3659 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3660 if (!VecVT.isFixedLengthVector()) 3661 return Vec; 3662 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3663 } 3664 ValInVec = 3665 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3666 } else { 3667 // On RV32, i64-element vectors must be specially handled to place the 3668 // value at element 0, by using two vslide1up instructions in sequence on 3669 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3670 // this. 3671 SDValue One = DAG.getConstant(1, DL, XLenVT); 3672 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3673 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3674 MVT I32ContainerVT = 3675 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3676 SDValue I32Mask = 3677 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3678 // Limit the active VL to two. 3679 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3680 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3681 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3682 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3683 InsertI64VL); 3684 // First slide in the hi value, then the lo in underneath it. 3685 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3686 ValHi, I32Mask, InsertI64VL); 3687 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3688 ValLo, I32Mask, InsertI64VL); 3689 // Bitcast back to the right container type. 3690 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3691 } 3692 3693 // Now that the value is in a vector, slide it into position. 3694 SDValue InsertVL = 3695 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3696 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3697 ValInVec, Idx, Mask, InsertVL); 3698 if (!VecVT.isFixedLengthVector()) 3699 return Slideup; 3700 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3701 } 3702 3703 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3704 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3705 // types this is done using VMV_X_S to allow us to glean information about the 3706 // sign bits of the result. 3707 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3708 SelectionDAG &DAG) const { 3709 SDLoc DL(Op); 3710 SDValue Idx = Op.getOperand(1); 3711 SDValue Vec = Op.getOperand(0); 3712 EVT EltVT = Op.getValueType(); 3713 MVT VecVT = Vec.getSimpleValueType(); 3714 MVT XLenVT = Subtarget.getXLenVT(); 3715 3716 if (VecVT.getVectorElementType() == MVT::i1) { 3717 // FIXME: For now we just promote to an i8 vector and extract from that, 3718 // but this is probably not optimal. 3719 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3720 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3721 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3722 } 3723 3724 // If this is a fixed vector, we need to convert it to a scalable vector. 3725 MVT ContainerVT = VecVT; 3726 if (VecVT.isFixedLengthVector()) { 3727 ContainerVT = getContainerForFixedLengthVector(VecVT); 3728 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3729 } 3730 3731 // If the index is 0, the vector is already in the right position. 3732 if (!isNullConstant(Idx)) { 3733 // Use a VL of 1 to avoid processing more elements than we need. 3734 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3735 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3736 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3737 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3738 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3739 } 3740 3741 if (!EltVT.isInteger()) { 3742 // Floating-point extracts are handled in TableGen. 3743 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3744 DAG.getConstant(0, DL, XLenVT)); 3745 } 3746 3747 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3748 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3749 } 3750 3751 // Some RVV intrinsics may claim that they want an integer operand to be 3752 // promoted or expanded. 3753 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3754 const RISCVSubtarget &Subtarget) { 3755 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3756 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3757 "Unexpected opcode"); 3758 3759 if (!Subtarget.hasStdExtV()) 3760 return SDValue(); 3761 3762 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3763 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3764 SDLoc DL(Op); 3765 3766 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3767 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3768 if (!II || !II->SplatOperand) 3769 return SDValue(); 3770 3771 unsigned SplatOp = II->SplatOperand + HasChain; 3772 assert(SplatOp < Op.getNumOperands()); 3773 3774 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3775 SDValue &ScalarOp = Operands[SplatOp]; 3776 MVT OpVT = ScalarOp.getSimpleValueType(); 3777 MVT XLenVT = Subtarget.getXLenVT(); 3778 3779 // If this isn't a scalar, or its type is XLenVT we're done. 3780 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3781 return SDValue(); 3782 3783 // Simplest case is that the operand needs to be promoted to XLenVT. 3784 if (OpVT.bitsLT(XLenVT)) { 3785 // If the operand is a constant, sign extend to increase our chances 3786 // of being able to use a .vi instruction. ANY_EXTEND would become a 3787 // a zero extend and the simm5 check in isel would fail. 3788 // FIXME: Should we ignore the upper bits in isel instead? 3789 unsigned ExtOpc = 3790 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3791 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3792 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3793 } 3794 3795 // Use the previous operand to get the vXi64 VT. The result might be a mask 3796 // VT for compares. Using the previous operand assumes that the previous 3797 // operand will never have a smaller element size than a scalar operand and 3798 // that a widening operation never uses SEW=64. 3799 // NOTE: If this fails the below assert, we can probably just find the 3800 // element count from any operand or result and use it to construct the VT. 3801 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3802 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3803 3804 // The more complex case is when the scalar is larger than XLenVT. 3805 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3806 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3807 3808 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3809 // on the instruction to sign-extend since SEW>XLEN. 3810 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3811 if (isInt<32>(CVal->getSExtValue())) { 3812 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3813 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3814 } 3815 } 3816 3817 // We need to convert the scalar to a splat vector. 3818 // FIXME: Can we implicitly truncate the scalar if it is known to 3819 // be sign extended? 3820 // VL should be the last operand. 3821 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3822 assert(VL.getValueType() == XLenVT); 3823 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3824 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3825 } 3826 3827 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3828 SelectionDAG &DAG) const { 3829 unsigned IntNo = Op.getConstantOperandVal(0); 3830 SDLoc DL(Op); 3831 MVT XLenVT = Subtarget.getXLenVT(); 3832 3833 switch (IntNo) { 3834 default: 3835 break; // Don't custom lower most intrinsics. 3836 case Intrinsic::thread_pointer: { 3837 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3838 return DAG.getRegister(RISCV::X4, PtrVT); 3839 } 3840 case Intrinsic::riscv_orc_b: 3841 // Lower to the GORCI encoding for orc.b. 3842 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3843 DAG.getConstant(7, DL, XLenVT)); 3844 case Intrinsic::riscv_grev: 3845 case Intrinsic::riscv_gorc: { 3846 unsigned Opc = 3847 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3848 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3849 } 3850 case Intrinsic::riscv_shfl: 3851 case Intrinsic::riscv_unshfl: { 3852 unsigned Opc = 3853 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3854 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3855 } 3856 case Intrinsic::riscv_bcompress: 3857 case Intrinsic::riscv_bdecompress: { 3858 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3859 : RISCVISD::BDECOMPRESS; 3860 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3861 } 3862 case Intrinsic::riscv_vmv_x_s: 3863 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3864 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3865 Op.getOperand(1)); 3866 case Intrinsic::riscv_vmv_v_x: 3867 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3868 Op.getSimpleValueType(), DL, DAG, Subtarget); 3869 case Intrinsic::riscv_vfmv_v_f: 3870 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3871 Op.getOperand(1), Op.getOperand(2)); 3872 case Intrinsic::riscv_vmv_s_x: { 3873 SDValue Scalar = Op.getOperand(2); 3874 3875 if (Scalar.getValueType().bitsLE(XLenVT)) { 3876 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3877 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3878 Op.getOperand(1), Scalar, Op.getOperand(3)); 3879 } 3880 3881 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3882 3883 // This is an i64 value that lives in two scalar registers. We have to 3884 // insert this in a convoluted way. First we build vXi64 splat containing 3885 // the/ two values that we assemble using some bit math. Next we'll use 3886 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3887 // to merge element 0 from our splat into the source vector. 3888 // FIXME: This is probably not the best way to do this, but it is 3889 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3890 // point. 3891 // sw lo, (a0) 3892 // sw hi, 4(a0) 3893 // vlse vX, (a0) 3894 // 3895 // vid.v vVid 3896 // vmseq.vx mMask, vVid, 0 3897 // vmerge.vvm vDest, vSrc, vVal, mMask 3898 MVT VT = Op.getSimpleValueType(); 3899 SDValue Vec = Op.getOperand(1); 3900 SDValue VL = Op.getOperand(3); 3901 3902 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3903 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3904 DAG.getConstant(0, DL, MVT::i32), VL); 3905 3906 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3907 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3908 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3909 SDValue SelectCond = 3910 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3911 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3912 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3913 Vec, VL); 3914 } 3915 case Intrinsic::riscv_vslide1up: 3916 case Intrinsic::riscv_vslide1down: 3917 case Intrinsic::riscv_vslide1up_mask: 3918 case Intrinsic::riscv_vslide1down_mask: { 3919 // We need to special case these when the scalar is larger than XLen. 3920 unsigned NumOps = Op.getNumOperands(); 3921 bool IsMasked = NumOps == 7; 3922 unsigned OpOffset = IsMasked ? 1 : 0; 3923 SDValue Scalar = Op.getOperand(2 + OpOffset); 3924 if (Scalar.getValueType().bitsLE(XLenVT)) 3925 break; 3926 3927 // Splatting a sign extended constant is fine. 3928 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3929 if (isInt<32>(CVal->getSExtValue())) 3930 break; 3931 3932 MVT VT = Op.getSimpleValueType(); 3933 assert(VT.getVectorElementType() == MVT::i64 && 3934 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3935 3936 // Convert the vector source to the equivalent nxvXi32 vector. 3937 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3938 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3939 3940 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3941 DAG.getConstant(0, DL, XLenVT)); 3942 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3943 DAG.getConstant(1, DL, XLenVT)); 3944 3945 // Double the VL since we halved SEW. 3946 SDValue VL = Op.getOperand(NumOps - (1 + OpOffset)); 3947 SDValue I32VL = 3948 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3949 3950 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3951 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3952 3953 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3954 // instructions. 3955 if (IntNo == Intrinsic::riscv_vslide1up || 3956 IntNo == Intrinsic::riscv_vslide1up_mask) { 3957 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3958 I32Mask, I32VL); 3959 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3960 I32Mask, I32VL); 3961 } else { 3962 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3963 I32Mask, I32VL); 3964 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3965 I32Mask, I32VL); 3966 } 3967 3968 // Convert back to nxvXi64. 3969 Vec = DAG.getBitcast(VT, Vec); 3970 3971 if (!IsMasked) 3972 return Vec; 3973 3974 // Apply mask after the operation. 3975 SDValue Mask = Op.getOperand(NumOps - 3); 3976 SDValue MaskedOff = Op.getOperand(1); 3977 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3978 } 3979 } 3980 3981 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3982 } 3983 3984 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3985 SelectionDAG &DAG) const { 3986 unsigned IntNo = Op.getConstantOperandVal(1); 3987 switch (IntNo) { 3988 default: 3989 break; 3990 case Intrinsic::riscv_masked_strided_load: { 3991 SDLoc DL(Op); 3992 MVT XLenVT = Subtarget.getXLenVT(); 3993 3994 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 3995 // the selection of the masked intrinsics doesn't do this for us. 3996 SDValue Mask = Op.getOperand(5); 3997 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 3998 3999 MVT VT = Op->getSimpleValueType(0); 4000 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4001 4002 SDValue PassThru = Op.getOperand(2); 4003 if (!IsUnmasked) { 4004 MVT MaskVT = 4005 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4006 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4007 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4008 } 4009 4010 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4011 4012 SDValue IntID = DAG.getTargetConstant( 4013 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4014 XLenVT); 4015 4016 auto *Load = cast<MemIntrinsicSDNode>(Op); 4017 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4018 if (!IsUnmasked) 4019 Ops.push_back(PassThru); 4020 Ops.push_back(Op.getOperand(3)); // Ptr 4021 Ops.push_back(Op.getOperand(4)); // Stride 4022 if (!IsUnmasked) 4023 Ops.push_back(Mask); 4024 Ops.push_back(VL); 4025 if (!IsUnmasked) { 4026 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4027 Ops.push_back(Policy); 4028 } 4029 4030 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4031 SDValue Result = 4032 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4033 Load->getMemoryVT(), Load->getMemOperand()); 4034 SDValue Chain = Result.getValue(1); 4035 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4036 return DAG.getMergeValues({Result, Chain}, DL); 4037 } 4038 } 4039 4040 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 4041 } 4042 4043 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4044 SelectionDAG &DAG) const { 4045 unsigned IntNo = Op.getConstantOperandVal(1); 4046 switch (IntNo) { 4047 default: 4048 break; 4049 case Intrinsic::riscv_masked_strided_store: { 4050 SDLoc DL(Op); 4051 MVT XLenVT = Subtarget.getXLenVT(); 4052 4053 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4054 // the selection of the masked intrinsics doesn't do this for us. 4055 SDValue Mask = Op.getOperand(5); 4056 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4057 4058 SDValue Val = Op.getOperand(2); 4059 MVT VT = Val.getSimpleValueType(); 4060 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4061 4062 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4063 if (!IsUnmasked) { 4064 MVT MaskVT = 4065 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4066 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4067 } 4068 4069 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4070 4071 SDValue IntID = DAG.getTargetConstant( 4072 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 4073 XLenVT); 4074 4075 auto *Store = cast<MemIntrinsicSDNode>(Op); 4076 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 4077 Ops.push_back(Val); 4078 Ops.push_back(Op.getOperand(3)); // Ptr 4079 Ops.push_back(Op.getOperand(4)); // Stride 4080 if (!IsUnmasked) 4081 Ops.push_back(Mask); 4082 Ops.push_back(VL); 4083 4084 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 4085 Ops, Store->getMemoryVT(), 4086 Store->getMemOperand()); 4087 } 4088 } 4089 4090 return SDValue(); 4091 } 4092 4093 static MVT getLMUL1VT(MVT VT) { 4094 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 4095 "Unexpected vector MVT"); 4096 return MVT::getScalableVectorVT( 4097 VT.getVectorElementType(), 4098 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 4099 } 4100 4101 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 4102 switch (ISDOpcode) { 4103 default: 4104 llvm_unreachable("Unhandled reduction"); 4105 case ISD::VECREDUCE_ADD: 4106 return RISCVISD::VECREDUCE_ADD_VL; 4107 case ISD::VECREDUCE_UMAX: 4108 return RISCVISD::VECREDUCE_UMAX_VL; 4109 case ISD::VECREDUCE_SMAX: 4110 return RISCVISD::VECREDUCE_SMAX_VL; 4111 case ISD::VECREDUCE_UMIN: 4112 return RISCVISD::VECREDUCE_UMIN_VL; 4113 case ISD::VECREDUCE_SMIN: 4114 return RISCVISD::VECREDUCE_SMIN_VL; 4115 case ISD::VECREDUCE_AND: 4116 return RISCVISD::VECREDUCE_AND_VL; 4117 case ISD::VECREDUCE_OR: 4118 return RISCVISD::VECREDUCE_OR_VL; 4119 case ISD::VECREDUCE_XOR: 4120 return RISCVISD::VECREDUCE_XOR_VL; 4121 } 4122 } 4123 4124 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 4125 SelectionDAG &DAG, 4126 bool IsVP) const { 4127 SDLoc DL(Op); 4128 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 4129 MVT VecVT = Vec.getSimpleValueType(); 4130 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 4131 Op.getOpcode() == ISD::VECREDUCE_OR || 4132 Op.getOpcode() == ISD::VECREDUCE_XOR || 4133 Op.getOpcode() == ISD::VP_REDUCE_AND || 4134 Op.getOpcode() == ISD::VP_REDUCE_OR || 4135 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 4136 "Unexpected reduction lowering"); 4137 4138 MVT XLenVT = Subtarget.getXLenVT(); 4139 assert(Op.getValueType() == XLenVT && 4140 "Expected reduction output to be legalized to XLenVT"); 4141 4142 MVT ContainerVT = VecVT; 4143 if (VecVT.isFixedLengthVector()) { 4144 ContainerVT = getContainerForFixedLengthVector(VecVT); 4145 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4146 } 4147 4148 SDValue Mask, VL; 4149 if (IsVP) { 4150 Mask = Op.getOperand(2); 4151 VL = Op.getOperand(3); 4152 } else { 4153 std::tie(Mask, VL) = 4154 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4155 } 4156 4157 unsigned BaseOpc; 4158 ISD::CondCode CC; 4159 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4160 4161 switch (Op.getOpcode()) { 4162 default: 4163 llvm_unreachable("Unhandled reduction"); 4164 case ISD::VECREDUCE_AND: 4165 case ISD::VP_REDUCE_AND: { 4166 // vpopc ~x == 0 4167 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 4168 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 4169 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4170 CC = ISD::SETEQ; 4171 BaseOpc = ISD::AND; 4172 break; 4173 } 4174 case ISD::VECREDUCE_OR: 4175 case ISD::VP_REDUCE_OR: 4176 // vpopc x != 0 4177 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4178 CC = ISD::SETNE; 4179 BaseOpc = ISD::OR; 4180 break; 4181 case ISD::VECREDUCE_XOR: 4182 case ISD::VP_REDUCE_XOR: { 4183 // ((vpopc x) & 1) != 0 4184 SDValue One = DAG.getConstant(1, DL, XLenVT); 4185 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 4186 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 4187 CC = ISD::SETNE; 4188 BaseOpc = ISD::XOR; 4189 break; 4190 } 4191 } 4192 4193 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 4194 4195 if (!IsVP) 4196 return SetCC; 4197 4198 // Now include the start value in the operation. 4199 // Note that we must return the start value when no elements are operated 4200 // upon. The vpopc instructions we've emitted in each case above will return 4201 // 0 for an inactive vector, and so we've already received the neutral value: 4202 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 4203 // can simply include the start value. 4204 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 4205 } 4206 4207 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 4208 SelectionDAG &DAG) const { 4209 SDLoc DL(Op); 4210 SDValue Vec = Op.getOperand(0); 4211 EVT VecEVT = Vec.getValueType(); 4212 4213 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 4214 4215 // Due to ordering in legalize types we may have a vector type that needs to 4216 // be split. Do that manually so we can get down to a legal type. 4217 while (getTypeAction(*DAG.getContext(), VecEVT) == 4218 TargetLowering::TypeSplitVector) { 4219 SDValue Lo, Hi; 4220 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 4221 VecEVT = Lo.getValueType(); 4222 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 4223 } 4224 4225 // TODO: The type may need to be widened rather than split. Or widened before 4226 // it can be split. 4227 if (!isTypeLegal(VecEVT)) 4228 return SDValue(); 4229 4230 MVT VecVT = VecEVT.getSimpleVT(); 4231 MVT VecEltVT = VecVT.getVectorElementType(); 4232 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 4233 4234 MVT ContainerVT = VecVT; 4235 if (VecVT.isFixedLengthVector()) { 4236 ContainerVT = getContainerForFixedLengthVector(VecVT); 4237 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4238 } 4239 4240 MVT M1VT = getLMUL1VT(ContainerVT); 4241 4242 SDValue Mask, VL; 4243 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4244 4245 // FIXME: This is a VLMAX splat which might be too large and can prevent 4246 // vsetvli removal. 4247 SDValue NeutralElem = 4248 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 4249 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 4250 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 4251 IdentitySplat, Mask, VL); 4252 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4253 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4254 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4255 } 4256 4257 // Given a reduction op, this function returns the matching reduction opcode, 4258 // the vector SDValue and the scalar SDValue required to lower this to a 4259 // RISCVISD node. 4260 static std::tuple<unsigned, SDValue, SDValue> 4261 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 4262 SDLoc DL(Op); 4263 auto Flags = Op->getFlags(); 4264 unsigned Opcode = Op.getOpcode(); 4265 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 4266 switch (Opcode) { 4267 default: 4268 llvm_unreachable("Unhandled reduction"); 4269 case ISD::VECREDUCE_FADD: 4270 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 4271 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4272 case ISD::VECREDUCE_SEQ_FADD: 4273 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 4274 Op.getOperand(0)); 4275 case ISD::VECREDUCE_FMIN: 4276 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 4277 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4278 case ISD::VECREDUCE_FMAX: 4279 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 4280 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 4281 } 4282 } 4283 4284 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 4285 SelectionDAG &DAG) const { 4286 SDLoc DL(Op); 4287 MVT VecEltVT = Op.getSimpleValueType(); 4288 4289 unsigned RVVOpcode; 4290 SDValue VectorVal, ScalarVal; 4291 std::tie(RVVOpcode, VectorVal, ScalarVal) = 4292 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 4293 MVT VecVT = VectorVal.getSimpleValueType(); 4294 4295 MVT ContainerVT = VecVT; 4296 if (VecVT.isFixedLengthVector()) { 4297 ContainerVT = getContainerForFixedLengthVector(VecVT); 4298 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 4299 } 4300 4301 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 4302 4303 SDValue Mask, VL; 4304 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4305 4306 // FIXME: This is a VLMAX splat which might be too large and can prevent 4307 // vsetvli removal. 4308 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 4309 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 4310 VectorVal, ScalarSplat, Mask, VL); 4311 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 4312 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4313 } 4314 4315 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 4316 switch (ISDOpcode) { 4317 default: 4318 llvm_unreachable("Unhandled reduction"); 4319 case ISD::VP_REDUCE_ADD: 4320 return RISCVISD::VECREDUCE_ADD_VL; 4321 case ISD::VP_REDUCE_UMAX: 4322 return RISCVISD::VECREDUCE_UMAX_VL; 4323 case ISD::VP_REDUCE_SMAX: 4324 return RISCVISD::VECREDUCE_SMAX_VL; 4325 case ISD::VP_REDUCE_UMIN: 4326 return RISCVISD::VECREDUCE_UMIN_VL; 4327 case ISD::VP_REDUCE_SMIN: 4328 return RISCVISD::VECREDUCE_SMIN_VL; 4329 case ISD::VP_REDUCE_AND: 4330 return RISCVISD::VECREDUCE_AND_VL; 4331 case ISD::VP_REDUCE_OR: 4332 return RISCVISD::VECREDUCE_OR_VL; 4333 case ISD::VP_REDUCE_XOR: 4334 return RISCVISD::VECREDUCE_XOR_VL; 4335 case ISD::VP_REDUCE_FADD: 4336 return RISCVISD::VECREDUCE_FADD_VL; 4337 case ISD::VP_REDUCE_SEQ_FADD: 4338 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 4339 case ISD::VP_REDUCE_FMAX: 4340 return RISCVISD::VECREDUCE_FMAX_VL; 4341 case ISD::VP_REDUCE_FMIN: 4342 return RISCVISD::VECREDUCE_FMIN_VL; 4343 } 4344 } 4345 4346 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 4347 SelectionDAG &DAG) const { 4348 SDLoc DL(Op); 4349 SDValue Vec = Op.getOperand(1); 4350 EVT VecEVT = Vec.getValueType(); 4351 4352 // TODO: The type may need to be widened rather than split. Or widened before 4353 // it can be split. 4354 if (!isTypeLegal(VecEVT)) 4355 return SDValue(); 4356 4357 MVT VecVT = VecEVT.getSimpleVT(); 4358 MVT VecEltVT = VecVT.getVectorElementType(); 4359 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 4360 4361 MVT ContainerVT = VecVT; 4362 if (VecVT.isFixedLengthVector()) { 4363 ContainerVT = getContainerForFixedLengthVector(VecVT); 4364 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4365 } 4366 4367 SDValue VL = Op.getOperand(3); 4368 SDValue Mask = Op.getOperand(2); 4369 4370 MVT M1VT = getLMUL1VT(ContainerVT); 4371 MVT XLenVT = Subtarget.getXLenVT(); 4372 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 4373 4374 // FIXME: This is a VLMAX splat which might be too large and can prevent 4375 // vsetvli removal. 4376 SDValue StartSplat = DAG.getSplatVector(M1VT, DL, Op.getOperand(0)); 4377 SDValue Reduction = 4378 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 4379 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 4380 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4381 if (!VecVT.isInteger()) 4382 return Elt0; 4383 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 4384 } 4385 4386 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 4387 SelectionDAG &DAG) const { 4388 SDValue Vec = Op.getOperand(0); 4389 SDValue SubVec = Op.getOperand(1); 4390 MVT VecVT = Vec.getSimpleValueType(); 4391 MVT SubVecVT = SubVec.getSimpleValueType(); 4392 4393 SDLoc DL(Op); 4394 MVT XLenVT = Subtarget.getXLenVT(); 4395 unsigned OrigIdx = Op.getConstantOperandVal(2); 4396 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4397 4398 // We don't have the ability to slide mask vectors up indexed by their i1 4399 // elements; the smallest we can do is i8. Often we are able to bitcast to 4400 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4401 // into a scalable one, we might not necessarily have enough scalable 4402 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4403 if (SubVecVT.getVectorElementType() == MVT::i1 && 4404 (OrigIdx != 0 || !Vec.isUndef())) { 4405 if (VecVT.getVectorMinNumElements() >= 8 && 4406 SubVecVT.getVectorMinNumElements() >= 8) { 4407 assert(OrigIdx % 8 == 0 && "Invalid index"); 4408 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4409 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4410 "Unexpected mask vector lowering"); 4411 OrigIdx /= 8; 4412 SubVecVT = 4413 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4414 SubVecVT.isScalableVector()); 4415 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4416 VecVT.isScalableVector()); 4417 Vec = DAG.getBitcast(VecVT, Vec); 4418 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4419 } else { 4420 // We can't slide this mask vector up indexed by its i1 elements. 4421 // This poses a problem when we wish to insert a scalable vector which 4422 // can't be re-expressed as a larger type. Just choose the slow path and 4423 // extend to a larger type, then truncate back down. 4424 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4425 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4426 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4427 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4428 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4429 Op.getOperand(2)); 4430 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4431 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4432 } 4433 } 4434 4435 // If the subvector vector is a fixed-length type, we cannot use subregister 4436 // manipulation to simplify the codegen; we don't know which register of a 4437 // LMUL group contains the specific subvector as we only know the minimum 4438 // register size. Therefore we must slide the vector group up the full 4439 // amount. 4440 if (SubVecVT.isFixedLengthVector()) { 4441 if (OrigIdx == 0 && Vec.isUndef()) 4442 return Op; 4443 MVT ContainerVT = VecVT; 4444 if (VecVT.isFixedLengthVector()) { 4445 ContainerVT = getContainerForFixedLengthVector(VecVT); 4446 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4447 } 4448 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4449 DAG.getUNDEF(ContainerVT), SubVec, 4450 DAG.getConstant(0, DL, XLenVT)); 4451 SDValue Mask = 4452 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4453 // Set the vector length to only the number of elements we care about. Note 4454 // that for slideup this includes the offset. 4455 SDValue VL = 4456 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4457 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4458 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4459 SubVec, SlideupAmt, Mask, VL); 4460 if (VecVT.isFixedLengthVector()) 4461 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4462 return DAG.getBitcast(Op.getValueType(), Slideup); 4463 } 4464 4465 unsigned SubRegIdx, RemIdx; 4466 std::tie(SubRegIdx, RemIdx) = 4467 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4468 VecVT, SubVecVT, OrigIdx, TRI); 4469 4470 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4471 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4472 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4473 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4474 4475 // 1. If the Idx has been completely eliminated and this subvector's size is 4476 // a vector register or a multiple thereof, or the surrounding elements are 4477 // undef, then this is a subvector insert which naturally aligns to a vector 4478 // register. These can easily be handled using subregister manipulation. 4479 // 2. If the subvector is smaller than a vector register, then the insertion 4480 // must preserve the undisturbed elements of the register. We do this by 4481 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4482 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4483 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4484 // LMUL=1 type back into the larger vector (resolving to another subregister 4485 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4486 // to avoid allocating a large register group to hold our subvector. 4487 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4488 return Op; 4489 4490 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4491 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4492 // (in our case undisturbed). This means we can set up a subvector insertion 4493 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4494 // size of the subvector. 4495 MVT InterSubVT = VecVT; 4496 SDValue AlignedExtract = Vec; 4497 unsigned AlignedIdx = OrigIdx - RemIdx; 4498 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4499 InterSubVT = getLMUL1VT(VecVT); 4500 // Extract a subvector equal to the nearest full vector register type. This 4501 // should resolve to a EXTRACT_SUBREG instruction. 4502 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4503 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4504 } 4505 4506 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4507 // For scalable vectors this must be further multiplied by vscale. 4508 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4509 4510 SDValue Mask, VL; 4511 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4512 4513 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4514 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4515 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4516 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4517 4518 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4519 DAG.getUNDEF(InterSubVT), SubVec, 4520 DAG.getConstant(0, DL, XLenVT)); 4521 4522 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4523 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4524 4525 // If required, insert this subvector back into the correct vector register. 4526 // This should resolve to an INSERT_SUBREG instruction. 4527 if (VecVT.bitsGT(InterSubVT)) 4528 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4529 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4530 4531 // We might have bitcast from a mask type: cast back to the original type if 4532 // required. 4533 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4534 } 4535 4536 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4537 SelectionDAG &DAG) const { 4538 SDValue Vec = Op.getOperand(0); 4539 MVT SubVecVT = Op.getSimpleValueType(); 4540 MVT VecVT = Vec.getSimpleValueType(); 4541 4542 SDLoc DL(Op); 4543 MVT XLenVT = Subtarget.getXLenVT(); 4544 unsigned OrigIdx = Op.getConstantOperandVal(1); 4545 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4546 4547 // We don't have the ability to slide mask vectors down indexed by their i1 4548 // elements; the smallest we can do is i8. Often we are able to bitcast to 4549 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4550 // from a scalable one, we might not necessarily have enough scalable 4551 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4552 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4553 if (VecVT.getVectorMinNumElements() >= 8 && 4554 SubVecVT.getVectorMinNumElements() >= 8) { 4555 assert(OrigIdx % 8 == 0 && "Invalid index"); 4556 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4557 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4558 "Unexpected mask vector lowering"); 4559 OrigIdx /= 8; 4560 SubVecVT = 4561 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4562 SubVecVT.isScalableVector()); 4563 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4564 VecVT.isScalableVector()); 4565 Vec = DAG.getBitcast(VecVT, Vec); 4566 } else { 4567 // We can't slide this mask vector down, indexed by its i1 elements. 4568 // This poses a problem when we wish to extract a scalable vector which 4569 // can't be re-expressed as a larger type. Just choose the slow path and 4570 // extend to a larger type, then truncate back down. 4571 // TODO: We could probably improve this when extracting certain fixed 4572 // from fixed, where we can extract as i8 and shift the correct element 4573 // right to reach the desired subvector? 4574 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4575 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4576 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4577 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4578 Op.getOperand(1)); 4579 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4580 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4581 } 4582 } 4583 4584 // If the subvector vector is a fixed-length type, we cannot use subregister 4585 // manipulation to simplify the codegen; we don't know which register of a 4586 // LMUL group contains the specific subvector as we only know the minimum 4587 // register size. Therefore we must slide the vector group down the full 4588 // amount. 4589 if (SubVecVT.isFixedLengthVector()) { 4590 // With an index of 0 this is a cast-like subvector, which can be performed 4591 // with subregister operations. 4592 if (OrigIdx == 0) 4593 return Op; 4594 MVT ContainerVT = VecVT; 4595 if (VecVT.isFixedLengthVector()) { 4596 ContainerVT = getContainerForFixedLengthVector(VecVT); 4597 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4598 } 4599 SDValue Mask = 4600 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4601 // Set the vector length to only the number of elements we care about. This 4602 // avoids sliding down elements we're going to discard straight away. 4603 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4604 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4605 SDValue Slidedown = 4606 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4607 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4608 // Now we can use a cast-like subvector extract to get the result. 4609 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4610 DAG.getConstant(0, DL, XLenVT)); 4611 return DAG.getBitcast(Op.getValueType(), Slidedown); 4612 } 4613 4614 unsigned SubRegIdx, RemIdx; 4615 std::tie(SubRegIdx, RemIdx) = 4616 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4617 VecVT, SubVecVT, OrigIdx, TRI); 4618 4619 // If the Idx has been completely eliminated then this is a subvector extract 4620 // which naturally aligns to a vector register. These can easily be handled 4621 // using subregister manipulation. 4622 if (RemIdx == 0) 4623 return Op; 4624 4625 // Else we must shift our vector register directly to extract the subvector. 4626 // Do this using VSLIDEDOWN. 4627 4628 // If the vector type is an LMUL-group type, extract a subvector equal to the 4629 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4630 // instruction. 4631 MVT InterSubVT = VecVT; 4632 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4633 InterSubVT = getLMUL1VT(VecVT); 4634 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4635 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4636 } 4637 4638 // Slide this vector register down by the desired number of elements in order 4639 // to place the desired subvector starting at element 0. 4640 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4641 // For scalable vectors this must be further multiplied by vscale. 4642 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4643 4644 SDValue Mask, VL; 4645 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4646 SDValue Slidedown = 4647 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4648 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4649 4650 // Now the vector is in the right position, extract our final subvector. This 4651 // should resolve to a COPY. 4652 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4653 DAG.getConstant(0, DL, XLenVT)); 4654 4655 // We might have bitcast from a mask type: cast back to the original type if 4656 // required. 4657 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4658 } 4659 4660 // Lower step_vector to the vid instruction. Any non-identity step value must 4661 // be accounted for my manual expansion. 4662 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4663 SelectionDAG &DAG) const { 4664 SDLoc DL(Op); 4665 MVT VT = Op.getSimpleValueType(); 4666 MVT XLenVT = Subtarget.getXLenVT(); 4667 SDValue Mask, VL; 4668 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4669 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4670 uint64_t StepValImm = Op.getConstantOperandVal(0); 4671 if (StepValImm != 1) { 4672 if (isPowerOf2_64(StepValImm)) { 4673 SDValue StepVal = 4674 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4675 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4676 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4677 } else { 4678 SDValue StepVal = lowerScalarSplat( 4679 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4680 DL, DAG, Subtarget); 4681 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4682 } 4683 } 4684 return StepVec; 4685 } 4686 4687 // Implement vector_reverse using vrgather.vv with indices determined by 4688 // subtracting the id of each element from (VLMAX-1). This will convert 4689 // the indices like so: 4690 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4691 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4692 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4693 SelectionDAG &DAG) const { 4694 SDLoc DL(Op); 4695 MVT VecVT = Op.getSimpleValueType(); 4696 unsigned EltSize = VecVT.getScalarSizeInBits(); 4697 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4698 4699 unsigned MaxVLMAX = 0; 4700 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4701 if (VectorBitsMax != 0) 4702 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4703 4704 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4705 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4706 4707 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4708 // to use vrgatherei16.vv. 4709 // TODO: It's also possible to use vrgatherei16.vv for other types to 4710 // decrease register width for the index calculation. 4711 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4712 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4713 // Reverse each half, then reassemble them in reverse order. 4714 // NOTE: It's also possible that after splitting that VLMAX no longer 4715 // requires vrgatherei16.vv. 4716 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4717 SDValue Lo, Hi; 4718 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4719 EVT LoVT, HiVT; 4720 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4721 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4722 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4723 // Reassemble the low and high pieces reversed. 4724 // FIXME: This is a CONCAT_VECTORS. 4725 SDValue Res = 4726 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4727 DAG.getIntPtrConstant(0, DL)); 4728 return DAG.getNode( 4729 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4730 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4731 } 4732 4733 // Just promote the int type to i16 which will double the LMUL. 4734 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4735 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4736 } 4737 4738 MVT XLenVT = Subtarget.getXLenVT(); 4739 SDValue Mask, VL; 4740 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4741 4742 // Calculate VLMAX-1 for the desired SEW. 4743 unsigned MinElts = VecVT.getVectorMinNumElements(); 4744 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4745 DAG.getConstant(MinElts, DL, XLenVT)); 4746 SDValue VLMinus1 = 4747 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4748 4749 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4750 bool IsRV32E64 = 4751 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4752 SDValue SplatVL; 4753 if (!IsRV32E64) 4754 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4755 else 4756 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4757 4758 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4759 SDValue Indices = 4760 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4761 4762 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4763 } 4764 4765 SDValue 4766 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4767 SelectionDAG &DAG) const { 4768 SDLoc DL(Op); 4769 auto *Load = cast<LoadSDNode>(Op); 4770 4771 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4772 Load->getMemoryVT(), 4773 *Load->getMemOperand()) && 4774 "Expecting a correctly-aligned load"); 4775 4776 MVT VT = Op.getSimpleValueType(); 4777 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4778 4779 SDValue VL = 4780 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4781 4782 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4783 SDValue NewLoad = DAG.getMemIntrinsicNode( 4784 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4785 Load->getMemoryVT(), Load->getMemOperand()); 4786 4787 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4788 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4789 } 4790 4791 SDValue 4792 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4793 SelectionDAG &DAG) const { 4794 SDLoc DL(Op); 4795 auto *Store = cast<StoreSDNode>(Op); 4796 4797 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4798 Store->getMemoryVT(), 4799 *Store->getMemOperand()) && 4800 "Expecting a correctly-aligned store"); 4801 4802 SDValue StoreVal = Store->getValue(); 4803 MVT VT = StoreVal.getSimpleValueType(); 4804 4805 // If the size less than a byte, we need to pad with zeros to make a byte. 4806 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4807 VT = MVT::v8i1; 4808 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4809 DAG.getConstant(0, DL, VT), StoreVal, 4810 DAG.getIntPtrConstant(0, DL)); 4811 } 4812 4813 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4814 4815 SDValue VL = 4816 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4817 4818 SDValue NewValue = 4819 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4820 return DAG.getMemIntrinsicNode( 4821 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4822 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4823 Store->getMemoryVT(), Store->getMemOperand()); 4824 } 4825 4826 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 4827 SelectionDAG &DAG) const { 4828 SDLoc DL(Op); 4829 MVT VT = Op.getSimpleValueType(); 4830 4831 const auto *MemSD = cast<MemSDNode>(Op); 4832 EVT MemVT = MemSD->getMemoryVT(); 4833 MachineMemOperand *MMO = MemSD->getMemOperand(); 4834 SDValue Chain = MemSD->getChain(); 4835 SDValue BasePtr = MemSD->getBasePtr(); 4836 4837 SDValue Mask, PassThru, VL; 4838 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 4839 Mask = VPLoad->getMask(); 4840 PassThru = DAG.getUNDEF(VT); 4841 VL = VPLoad->getVectorLength(); 4842 } else { 4843 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 4844 Mask = MLoad->getMask(); 4845 PassThru = MLoad->getPassThru(); 4846 } 4847 4848 MVT XLenVT = Subtarget.getXLenVT(); 4849 4850 MVT ContainerVT = VT; 4851 if (VT.isFixedLengthVector()) { 4852 ContainerVT = getContainerForFixedLengthVector(VT); 4853 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4854 4855 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4856 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4857 } 4858 4859 if (!VL) 4860 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4861 4862 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4863 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4864 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4865 SDValue Ops[] = {Chain, IntID, PassThru, BasePtr, Mask, VL, Policy}; 4866 SDValue Result = 4867 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 4868 Chain = Result.getValue(1); 4869 4870 if (VT.isFixedLengthVector()) 4871 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4872 4873 return DAG.getMergeValues({Result, Chain}, DL); 4874 } 4875 4876 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 4877 SelectionDAG &DAG) const { 4878 SDLoc DL(Op); 4879 4880 const auto *MemSD = cast<MemSDNode>(Op); 4881 EVT MemVT = MemSD->getMemoryVT(); 4882 MachineMemOperand *MMO = MemSD->getMemOperand(); 4883 SDValue Chain = MemSD->getChain(); 4884 SDValue BasePtr = MemSD->getBasePtr(); 4885 SDValue Val, Mask, VL; 4886 4887 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 4888 Val = VPStore->getValue(); 4889 Mask = VPStore->getMask(); 4890 VL = VPStore->getVectorLength(); 4891 } else { 4892 const auto *MStore = cast<MaskedStoreSDNode>(Op); 4893 Val = MStore->getValue(); 4894 Mask = MStore->getMask(); 4895 } 4896 4897 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4898 4899 MVT VT = Val.getSimpleValueType(); 4900 MVT XLenVT = Subtarget.getXLenVT(); 4901 4902 MVT ContainerVT = VT; 4903 if (VT.isFixedLengthVector()) { 4904 ContainerVT = getContainerForFixedLengthVector(VT); 4905 4906 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4907 if (!IsUnmasked) { 4908 MVT MaskVT = 4909 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4910 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4911 } 4912 } 4913 4914 if (!VL) 4915 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 4916 4917 unsigned IntID = 4918 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 4919 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 4920 Ops.push_back(Val); 4921 Ops.push_back(BasePtr); 4922 if (!IsUnmasked) 4923 Ops.push_back(Mask); 4924 Ops.push_back(VL); 4925 4926 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 4927 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 4928 } 4929 4930 SDValue 4931 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4932 SelectionDAG &DAG) const { 4933 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4934 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4935 4936 MVT VT = Op.getSimpleValueType(); 4937 4938 SDValue Op1 = 4939 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4940 SDValue Op2 = 4941 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4942 4943 SDLoc DL(Op); 4944 SDValue VL = 4945 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4946 4947 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4948 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4949 4950 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4951 Op.getOperand(2), Mask, VL); 4952 4953 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4954 } 4955 4956 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4957 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4958 MVT VT = Op.getSimpleValueType(); 4959 4960 if (VT.getVectorElementType() == MVT::i1) 4961 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4962 4963 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4964 } 4965 4966 SDValue 4967 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4968 SelectionDAG &DAG) const { 4969 unsigned Opc; 4970 switch (Op.getOpcode()) { 4971 default: llvm_unreachable("Unexpected opcode!"); 4972 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4973 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4974 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4975 } 4976 4977 return lowerToScalableOp(Op, DAG, Opc); 4978 } 4979 4980 // Lower vector ABS to smax(X, sub(0, X)). 4981 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4982 SDLoc DL(Op); 4983 MVT VT = Op.getSimpleValueType(); 4984 SDValue X = Op.getOperand(0); 4985 4986 assert(VT.isFixedLengthVector() && "Unexpected type"); 4987 4988 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4989 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4990 4991 SDValue Mask, VL; 4992 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4993 4994 SDValue SplatZero = 4995 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4996 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4997 SDValue NegX = 4998 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4999 SDValue Max = 5000 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 5001 5002 return convertFromScalableVector(VT, Max, DAG, Subtarget); 5003 } 5004 5005 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 5006 SDValue Op, SelectionDAG &DAG) const { 5007 SDLoc DL(Op); 5008 MVT VT = Op.getSimpleValueType(); 5009 SDValue Mag = Op.getOperand(0); 5010 SDValue Sign = Op.getOperand(1); 5011 assert(Mag.getValueType() == Sign.getValueType() && 5012 "Can only handle COPYSIGN with matching types."); 5013 5014 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5015 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 5016 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 5017 5018 SDValue Mask, VL; 5019 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5020 5021 SDValue CopySign = 5022 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 5023 5024 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 5025 } 5026 5027 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 5028 SDValue Op, SelectionDAG &DAG) const { 5029 MVT VT = Op.getSimpleValueType(); 5030 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5031 5032 MVT I1ContainerVT = 5033 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5034 5035 SDValue CC = 5036 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 5037 SDValue Op1 = 5038 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5039 SDValue Op2 = 5040 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 5041 5042 SDLoc DL(Op); 5043 SDValue Mask, VL; 5044 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5045 5046 SDValue Select = 5047 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 5048 5049 return convertFromScalableVector(VT, Select, DAG, Subtarget); 5050 } 5051 5052 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 5053 unsigned NewOpc, 5054 bool HasMask) const { 5055 MVT VT = Op.getSimpleValueType(); 5056 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5057 5058 // Create list of operands by converting existing ones to scalable types. 5059 SmallVector<SDValue, 6> Ops; 5060 for (const SDValue &V : Op->op_values()) { 5061 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5062 5063 // Pass through non-vector operands. 5064 if (!V.getValueType().isVector()) { 5065 Ops.push_back(V); 5066 continue; 5067 } 5068 5069 // "cast" fixed length vector to a scalable vector. 5070 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 5071 "Only fixed length vectors are supported!"); 5072 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5073 } 5074 5075 SDLoc DL(Op); 5076 SDValue Mask, VL; 5077 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5078 if (HasMask) 5079 Ops.push_back(Mask); 5080 Ops.push_back(VL); 5081 5082 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 5083 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 5084 } 5085 5086 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 5087 // * Operands of each node are assumed to be in the same order. 5088 // * The EVL operand is promoted from i32 to i64 on RV64. 5089 // * Fixed-length vectors are converted to their scalable-vector container 5090 // types. 5091 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 5092 unsigned RISCVISDOpc) const { 5093 SDLoc DL(Op); 5094 MVT VT = Op.getSimpleValueType(); 5095 SmallVector<SDValue, 4> Ops; 5096 5097 for (const auto &OpIdx : enumerate(Op->ops())) { 5098 SDValue V = OpIdx.value(); 5099 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 5100 // Pass through operands which aren't fixed-length vectors. 5101 if (!V.getValueType().isFixedLengthVector()) { 5102 Ops.push_back(V); 5103 continue; 5104 } 5105 // "cast" fixed length vector to a scalable vector. 5106 MVT OpVT = V.getSimpleValueType(); 5107 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 5108 assert(useRVVForFixedLengthVectorVT(OpVT) && 5109 "Only fixed length vectors are supported!"); 5110 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 5111 } 5112 5113 if (!VT.isFixedLengthVector()) 5114 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 5115 5116 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5117 5118 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 5119 5120 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 5121 } 5122 5123 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 5124 // matched to a RVV indexed load. The RVV indexed load instructions only 5125 // support the "unsigned unscaled" addressing mode; indices are implicitly 5126 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5127 // signed or scaled indexing is extended to the XLEN value type and scaled 5128 // accordingly. 5129 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 5130 SelectionDAG &DAG) const { 5131 SDLoc DL(Op); 5132 MVT VT = Op.getSimpleValueType(); 5133 5134 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5135 EVT MemVT = MemSD->getMemoryVT(); 5136 MachineMemOperand *MMO = MemSD->getMemOperand(); 5137 SDValue Chain = MemSD->getChain(); 5138 SDValue BasePtr = MemSD->getBasePtr(); 5139 5140 ISD::LoadExtType LoadExtType; 5141 SDValue Index, Mask, PassThru, VL; 5142 5143 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 5144 Index = VPGN->getIndex(); 5145 Mask = VPGN->getMask(); 5146 PassThru = DAG.getUNDEF(VT); 5147 VL = VPGN->getVectorLength(); 5148 // VP doesn't support extending loads. 5149 LoadExtType = ISD::NON_EXTLOAD; 5150 } else { 5151 // Else it must be a MGATHER. 5152 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 5153 Index = MGN->getIndex(); 5154 Mask = MGN->getMask(); 5155 PassThru = MGN->getPassThru(); 5156 LoadExtType = MGN->getExtensionType(); 5157 } 5158 5159 MVT IndexVT = Index.getSimpleValueType(); 5160 MVT XLenVT = Subtarget.getXLenVT(); 5161 5162 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5163 "Unexpected VTs!"); 5164 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5165 // Targets have to explicitly opt-in for extending vector loads. 5166 assert(LoadExtType == ISD::NON_EXTLOAD && 5167 "Unexpected extending MGATHER/VP_GATHER"); 5168 (void)LoadExtType; 5169 5170 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5171 // the selection of the masked intrinsics doesn't do this for us. 5172 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5173 5174 MVT ContainerVT = VT; 5175 if (VT.isFixedLengthVector()) { 5176 // We need to use the larger of the result and index type to determine the 5177 // scalable type to use so we don't increase LMUL for any operand/result. 5178 if (VT.bitsGE(IndexVT)) { 5179 ContainerVT = getContainerForFixedLengthVector(VT); 5180 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5181 ContainerVT.getVectorElementCount()); 5182 } else { 5183 IndexVT = getContainerForFixedLengthVector(IndexVT); 5184 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 5185 IndexVT.getVectorElementCount()); 5186 } 5187 5188 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5189 5190 if (!IsUnmasked) { 5191 MVT MaskVT = 5192 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5193 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5194 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5195 } 5196 } 5197 5198 if (!VL) 5199 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5200 5201 unsigned IntID = 5202 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 5203 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5204 if (!IsUnmasked) 5205 Ops.push_back(PassThru); 5206 Ops.push_back(BasePtr); 5207 Ops.push_back(Index); 5208 if (!IsUnmasked) 5209 Ops.push_back(Mask); 5210 Ops.push_back(VL); 5211 if (!IsUnmasked) 5212 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5213 5214 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5215 SDValue Result = 5216 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5217 Chain = Result.getValue(1); 5218 5219 if (VT.isFixedLengthVector()) 5220 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5221 5222 return DAG.getMergeValues({Result, Chain}, DL); 5223 } 5224 5225 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 5226 // matched to a RVV indexed store. The RVV indexed store instructions only 5227 // support the "unsigned unscaled" addressing mode; indices are implicitly 5228 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 5229 // signed or scaled indexing is extended to the XLEN value type and scaled 5230 // accordingly. 5231 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 5232 SelectionDAG &DAG) const { 5233 SDLoc DL(Op); 5234 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 5235 EVT MemVT = MemSD->getMemoryVT(); 5236 MachineMemOperand *MMO = MemSD->getMemOperand(); 5237 SDValue Chain = MemSD->getChain(); 5238 SDValue BasePtr = MemSD->getBasePtr(); 5239 5240 bool IsTruncatingStore = false; 5241 SDValue Index, Mask, Val, VL; 5242 5243 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 5244 Index = VPSN->getIndex(); 5245 Mask = VPSN->getMask(); 5246 Val = VPSN->getValue(); 5247 VL = VPSN->getVectorLength(); 5248 // VP doesn't support truncating stores. 5249 IsTruncatingStore = false; 5250 } else { 5251 // Else it must be a MSCATTER. 5252 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 5253 Index = MSN->getIndex(); 5254 Mask = MSN->getMask(); 5255 Val = MSN->getValue(); 5256 IsTruncatingStore = MSN->isTruncatingStore(); 5257 } 5258 5259 MVT VT = Val.getSimpleValueType(); 5260 MVT IndexVT = Index.getSimpleValueType(); 5261 MVT XLenVT = Subtarget.getXLenVT(); 5262 5263 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 5264 "Unexpected VTs!"); 5265 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 5266 // Targets have to explicitly opt-in for extending vector loads and 5267 // truncating vector stores. 5268 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 5269 (void)IsTruncatingStore; 5270 5271 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 5272 // the selection of the masked intrinsics doesn't do this for us. 5273 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5274 5275 MVT ContainerVT = VT; 5276 if (VT.isFixedLengthVector()) { 5277 // We need to use the larger of the value and index type to determine the 5278 // scalable type to use so we don't increase LMUL for any operand/result. 5279 if (VT.bitsGE(IndexVT)) { 5280 ContainerVT = getContainerForFixedLengthVector(VT); 5281 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 5282 ContainerVT.getVectorElementCount()); 5283 } else { 5284 IndexVT = getContainerForFixedLengthVector(IndexVT); 5285 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 5286 IndexVT.getVectorElementCount()); 5287 } 5288 5289 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 5290 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5291 5292 if (!IsUnmasked) { 5293 MVT MaskVT = 5294 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5295 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5296 } 5297 } 5298 5299 if (!VL) 5300 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5301 5302 unsigned IntID = 5303 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 5304 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5305 Ops.push_back(Val); 5306 Ops.push_back(BasePtr); 5307 Ops.push_back(Index); 5308 if (!IsUnmasked) 5309 Ops.push_back(Mask); 5310 Ops.push_back(VL); 5311 5312 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5313 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5314 } 5315 5316 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 5317 SelectionDAG &DAG) const { 5318 const MVT XLenVT = Subtarget.getXLenVT(); 5319 SDLoc DL(Op); 5320 SDValue Chain = Op->getOperand(0); 5321 SDValue SysRegNo = DAG.getConstant( 5322 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5323 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 5324 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 5325 5326 // Encoding used for rounding mode in RISCV differs from that used in 5327 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 5328 // table, which consists of a sequence of 4-bit fields, each representing 5329 // corresponding FLT_ROUNDS mode. 5330 static const int Table = 5331 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 5332 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 5333 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 5334 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 5335 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 5336 5337 SDValue Shift = 5338 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 5339 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5340 DAG.getConstant(Table, DL, XLenVT), Shift); 5341 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5342 DAG.getConstant(7, DL, XLenVT)); 5343 5344 return DAG.getMergeValues({Masked, Chain}, DL); 5345 } 5346 5347 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 5348 SelectionDAG &DAG) const { 5349 const MVT XLenVT = Subtarget.getXLenVT(); 5350 SDLoc DL(Op); 5351 SDValue Chain = Op->getOperand(0); 5352 SDValue RMValue = Op->getOperand(1); 5353 SDValue SysRegNo = DAG.getConstant( 5354 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 5355 5356 // Encoding used for rounding mode in RISCV differs from that used in 5357 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 5358 // a table, which consists of a sequence of 4-bit fields, each representing 5359 // corresponding RISCV mode. 5360 static const unsigned Table = 5361 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 5362 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 5363 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 5364 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 5365 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 5366 5367 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 5368 DAG.getConstant(2, DL, XLenVT)); 5369 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 5370 DAG.getConstant(Table, DL, XLenVT), Shift); 5371 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 5372 DAG.getConstant(0x7, DL, XLenVT)); 5373 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 5374 RMValue); 5375 } 5376 5377 // Returns the opcode of the target-specific SDNode that implements the 32-bit 5378 // form of the given Opcode. 5379 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 5380 switch (Opcode) { 5381 default: 5382 llvm_unreachable("Unexpected opcode"); 5383 case ISD::SHL: 5384 return RISCVISD::SLLW; 5385 case ISD::SRA: 5386 return RISCVISD::SRAW; 5387 case ISD::SRL: 5388 return RISCVISD::SRLW; 5389 case ISD::SDIV: 5390 return RISCVISD::DIVW; 5391 case ISD::UDIV: 5392 return RISCVISD::DIVUW; 5393 case ISD::UREM: 5394 return RISCVISD::REMUW; 5395 case ISD::ROTL: 5396 return RISCVISD::ROLW; 5397 case ISD::ROTR: 5398 return RISCVISD::RORW; 5399 case RISCVISD::GREV: 5400 return RISCVISD::GREVW; 5401 case RISCVISD::GORC: 5402 return RISCVISD::GORCW; 5403 } 5404 } 5405 5406 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 5407 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 5408 // otherwise be promoted to i64, making it difficult to select the 5409 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 5410 // type i8/i16/i32 is lost. 5411 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 5412 unsigned ExtOpc = ISD::ANY_EXTEND) { 5413 SDLoc DL(N); 5414 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5415 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 5416 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 5417 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5418 // ReplaceNodeResults requires we maintain the same type for the return value. 5419 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 5420 } 5421 5422 // Converts the given 32-bit operation to a i64 operation with signed extension 5423 // semantic to reduce the signed extension instructions. 5424 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 5425 SDLoc DL(N); 5426 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5427 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5428 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 5429 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5430 DAG.getValueType(MVT::i32)); 5431 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 5432 } 5433 5434 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 5435 SmallVectorImpl<SDValue> &Results, 5436 SelectionDAG &DAG) const { 5437 SDLoc DL(N); 5438 switch (N->getOpcode()) { 5439 default: 5440 llvm_unreachable("Don't know how to custom type legalize this operation!"); 5441 case ISD::STRICT_FP_TO_SINT: 5442 case ISD::STRICT_FP_TO_UINT: 5443 case ISD::FP_TO_SINT: 5444 case ISD::FP_TO_UINT: { 5445 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5446 "Unexpected custom legalisation"); 5447 bool IsStrict = N->isStrictFPOpcode(); 5448 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 5449 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 5450 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 5451 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 5452 TargetLowering::TypeSoftenFloat) { 5453 // FIXME: Support strict FP. 5454 if (IsStrict) 5455 return; 5456 if (!isTypeLegal(Op0.getValueType())) 5457 return; 5458 unsigned Opc = 5459 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 5460 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 5461 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5462 return; 5463 } 5464 // If the FP type needs to be softened, emit a library call using the 'si' 5465 // version. If we left it to default legalization we'd end up with 'di'. If 5466 // the FP type doesn't need to be softened just let generic type 5467 // legalization promote the result type. 5468 RTLIB::Libcall LC; 5469 if (IsSigned) 5470 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 5471 else 5472 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5473 MakeLibCallOptions CallOptions; 5474 EVT OpVT = Op0.getValueType(); 5475 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5476 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5477 SDValue Result; 5478 std::tie(Result, Chain) = 5479 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5480 Results.push_back(Result); 5481 if (IsStrict) 5482 Results.push_back(Chain); 5483 break; 5484 } 5485 case ISD::READCYCLECOUNTER: { 5486 assert(!Subtarget.is64Bit() && 5487 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5488 5489 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5490 SDValue RCW = 5491 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5492 5493 Results.push_back( 5494 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5495 Results.push_back(RCW.getValue(2)); 5496 break; 5497 } 5498 case ISD::MUL: { 5499 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5500 unsigned XLen = Subtarget.getXLen(); 5501 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5502 if (Size > XLen) { 5503 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5504 SDValue LHS = N->getOperand(0); 5505 SDValue RHS = N->getOperand(1); 5506 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5507 5508 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5509 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5510 // We need exactly one side to be unsigned. 5511 if (LHSIsU == RHSIsU) 5512 return; 5513 5514 auto MakeMULPair = [&](SDValue S, SDValue U) { 5515 MVT XLenVT = Subtarget.getXLenVT(); 5516 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5517 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5518 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5519 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5520 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5521 }; 5522 5523 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5524 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5525 5526 // The other operand should be signed, but still prefer MULH when 5527 // possible. 5528 if (RHSIsU && LHSIsS && !RHSIsS) 5529 Results.push_back(MakeMULPair(LHS, RHS)); 5530 else if (LHSIsU && RHSIsS && !LHSIsS) 5531 Results.push_back(MakeMULPair(RHS, LHS)); 5532 5533 return; 5534 } 5535 LLVM_FALLTHROUGH; 5536 } 5537 case ISD::ADD: 5538 case ISD::SUB: 5539 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5540 "Unexpected custom legalisation"); 5541 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5542 break; 5543 case ISD::SHL: 5544 case ISD::SRA: 5545 case ISD::SRL: 5546 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5547 "Unexpected custom legalisation"); 5548 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5549 Results.push_back(customLegalizeToWOp(N, DAG)); 5550 break; 5551 } 5552 5553 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5554 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5555 // shift amount. 5556 if (N->getOpcode() == ISD::SHL) { 5557 SDLoc DL(N); 5558 SDValue NewOp0 = 5559 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5560 SDValue NewOp1 = 5561 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5562 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5563 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5564 DAG.getValueType(MVT::i32)); 5565 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5566 } 5567 5568 break; 5569 case ISD::ROTL: 5570 case ISD::ROTR: 5571 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5572 "Unexpected custom legalisation"); 5573 Results.push_back(customLegalizeToWOp(N, DAG)); 5574 break; 5575 case ISD::CTTZ: 5576 case ISD::CTTZ_ZERO_UNDEF: 5577 case ISD::CTLZ: 5578 case ISD::CTLZ_ZERO_UNDEF: { 5579 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5580 "Unexpected custom legalisation"); 5581 5582 SDValue NewOp0 = 5583 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5584 bool IsCTZ = 5585 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5586 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5587 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5588 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5589 return; 5590 } 5591 case ISD::SDIV: 5592 case ISD::UDIV: 5593 case ISD::UREM: { 5594 MVT VT = N->getSimpleValueType(0); 5595 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5596 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5597 "Unexpected custom legalisation"); 5598 // Don't promote division/remainder by constant since we should expand those 5599 // to multiply by magic constant. 5600 // FIXME: What if the expansion is disabled for minsize. 5601 if (N->getOperand(1).getOpcode() == ISD::Constant) 5602 return; 5603 5604 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5605 // the upper 32 bits. For other types we need to sign or zero extend 5606 // based on the opcode. 5607 unsigned ExtOpc = ISD::ANY_EXTEND; 5608 if (VT != MVT::i32) 5609 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5610 : ISD::ZERO_EXTEND; 5611 5612 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5613 break; 5614 } 5615 case ISD::UADDO: 5616 case ISD::USUBO: { 5617 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5618 "Unexpected custom legalisation"); 5619 bool IsAdd = N->getOpcode() == ISD::UADDO; 5620 // Create an ADDW or SUBW. 5621 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5622 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5623 SDValue Res = 5624 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5625 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5626 DAG.getValueType(MVT::i32)); 5627 5628 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5629 // Since the inputs are sign extended from i32, this is equivalent to 5630 // comparing the lower 32 bits. 5631 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5632 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5633 IsAdd ? ISD::SETULT : ISD::SETUGT); 5634 5635 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5636 Results.push_back(Overflow); 5637 return; 5638 } 5639 case ISD::UADDSAT: 5640 case ISD::USUBSAT: { 5641 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5642 "Unexpected custom legalisation"); 5643 if (Subtarget.hasStdExtZbb()) { 5644 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5645 // sign extend allows overflow of the lower 32 bits to be detected on 5646 // the promoted size. 5647 SDValue LHS = 5648 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5649 SDValue RHS = 5650 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5651 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5652 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5653 return; 5654 } 5655 5656 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5657 // promotion for UADDO/USUBO. 5658 Results.push_back(expandAddSubSat(N, DAG)); 5659 return; 5660 } 5661 case ISD::BITCAST: { 5662 EVT VT = N->getValueType(0); 5663 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5664 SDValue Op0 = N->getOperand(0); 5665 EVT Op0VT = Op0.getValueType(); 5666 MVT XLenVT = Subtarget.getXLenVT(); 5667 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5668 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5669 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5670 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5671 Subtarget.hasStdExtF()) { 5672 SDValue FPConv = 5673 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5674 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5675 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5676 isTypeLegal(Op0VT)) { 5677 // Custom-legalize bitcasts from fixed-length vector types to illegal 5678 // scalar types in order to improve codegen. Bitcast the vector to a 5679 // one-element vector type whose element type is the same as the result 5680 // type, and extract the first element. 5681 LLVMContext &Context = *DAG.getContext(); 5682 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5683 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5684 DAG.getConstant(0, DL, XLenVT))); 5685 } 5686 break; 5687 } 5688 case RISCVISD::GREV: 5689 case RISCVISD::GORC: { 5690 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5691 "Unexpected custom legalisation"); 5692 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5693 // This is similar to customLegalizeToWOp, except that we pass the second 5694 // operand (a TargetConstant) straight through: it is already of type 5695 // XLenVT. 5696 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5697 SDValue NewOp0 = 5698 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5699 SDValue NewOp1 = 5700 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5701 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5702 // ReplaceNodeResults requires we maintain the same type for the return 5703 // value. 5704 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5705 break; 5706 } 5707 case RISCVISD::SHFL: { 5708 // There is no SHFLIW instruction, but we can just promote the operation. 5709 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5710 "Unexpected custom legalisation"); 5711 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5712 SDValue NewOp0 = 5713 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5714 SDValue NewOp1 = 5715 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5716 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5717 // ReplaceNodeResults requires we maintain the same type for the return 5718 // value. 5719 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5720 break; 5721 } 5722 case ISD::BSWAP: 5723 case ISD::BITREVERSE: { 5724 MVT VT = N->getSimpleValueType(0); 5725 MVT XLenVT = Subtarget.getXLenVT(); 5726 assert((VT == MVT::i8 || VT == MVT::i16 || 5727 (VT == MVT::i32 && Subtarget.is64Bit())) && 5728 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5729 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5730 unsigned Imm = VT.getSizeInBits() - 1; 5731 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5732 if (N->getOpcode() == ISD::BSWAP) 5733 Imm &= ~0x7U; 5734 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5735 SDValue GREVI = 5736 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5737 // ReplaceNodeResults requires we maintain the same type for the return 5738 // value. 5739 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5740 break; 5741 } 5742 case ISD::FSHL: 5743 case ISD::FSHR: { 5744 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5745 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5746 SDValue NewOp0 = 5747 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5748 SDValue NewOp1 = 5749 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5750 SDValue NewOp2 = 5751 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5752 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5753 // Mask the shift amount to 5 bits. 5754 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5755 DAG.getConstant(0x1f, DL, MVT::i64)); 5756 unsigned Opc = 5757 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5758 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5759 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5760 break; 5761 } 5762 case ISD::EXTRACT_VECTOR_ELT: { 5763 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5764 // type is illegal (currently only vXi64 RV32). 5765 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5766 // transferred to the destination register. We issue two of these from the 5767 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5768 // first element. 5769 SDValue Vec = N->getOperand(0); 5770 SDValue Idx = N->getOperand(1); 5771 5772 // The vector type hasn't been legalized yet so we can't issue target 5773 // specific nodes if it needs legalization. 5774 // FIXME: We would manually legalize if it's important. 5775 if (!isTypeLegal(Vec.getValueType())) 5776 return; 5777 5778 MVT VecVT = Vec.getSimpleValueType(); 5779 5780 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5781 VecVT.getVectorElementType() == MVT::i64 && 5782 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5783 5784 // If this is a fixed vector, we need to convert it to a scalable vector. 5785 MVT ContainerVT = VecVT; 5786 if (VecVT.isFixedLengthVector()) { 5787 ContainerVT = getContainerForFixedLengthVector(VecVT); 5788 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5789 } 5790 5791 MVT XLenVT = Subtarget.getXLenVT(); 5792 5793 // Use a VL of 1 to avoid processing more elements than we need. 5794 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5795 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5796 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5797 5798 // Unless the index is known to be 0, we must slide the vector down to get 5799 // the desired element into index 0. 5800 if (!isNullConstant(Idx)) { 5801 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5802 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5803 } 5804 5805 // Extract the lower XLEN bits of the correct vector element. 5806 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5807 5808 // To extract the upper XLEN bits of the vector element, shift the first 5809 // element right by 32 bits and re-extract the lower XLEN bits. 5810 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5811 DAG.getConstant(32, DL, XLenVT), VL); 5812 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5813 ThirtyTwoV, Mask, VL); 5814 5815 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5816 5817 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5818 break; 5819 } 5820 case ISD::INTRINSIC_WO_CHAIN: { 5821 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5822 switch (IntNo) { 5823 default: 5824 llvm_unreachable( 5825 "Don't know how to custom type legalize this intrinsic!"); 5826 case Intrinsic::riscv_orc_b: { 5827 // Lower to the GORCI encoding for orc.b with the operand extended. 5828 SDValue NewOp = 5829 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5830 // If Zbp is enabled, use GORCIW which will sign extend the result. 5831 unsigned Opc = 5832 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5833 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5834 DAG.getConstant(7, DL, MVT::i64)); 5835 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5836 return; 5837 } 5838 case Intrinsic::riscv_grev: 5839 case Intrinsic::riscv_gorc: { 5840 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5841 "Unexpected custom legalisation"); 5842 SDValue NewOp1 = 5843 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5844 SDValue NewOp2 = 5845 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5846 unsigned Opc = 5847 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5848 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5849 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5850 break; 5851 } 5852 case Intrinsic::riscv_shfl: 5853 case Intrinsic::riscv_unshfl: { 5854 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5855 "Unexpected custom legalisation"); 5856 SDValue NewOp1 = 5857 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5858 SDValue NewOp2 = 5859 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5860 unsigned Opc = 5861 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5862 if (isa<ConstantSDNode>(N->getOperand(2))) { 5863 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5864 DAG.getConstant(0xf, DL, MVT::i64)); 5865 Opc = 5866 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5867 } 5868 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5869 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5870 break; 5871 } 5872 case Intrinsic::riscv_bcompress: 5873 case Intrinsic::riscv_bdecompress: { 5874 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5875 "Unexpected custom legalisation"); 5876 SDValue NewOp1 = 5877 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5878 SDValue NewOp2 = 5879 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5880 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5881 ? RISCVISD::BCOMPRESSW 5882 : RISCVISD::BDECOMPRESSW; 5883 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5884 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5885 break; 5886 } 5887 case Intrinsic::riscv_vmv_x_s: { 5888 EVT VT = N->getValueType(0); 5889 MVT XLenVT = Subtarget.getXLenVT(); 5890 if (VT.bitsLT(XLenVT)) { 5891 // Simple case just extract using vmv.x.s and truncate. 5892 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5893 Subtarget.getXLenVT(), N->getOperand(1)); 5894 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5895 return; 5896 } 5897 5898 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5899 "Unexpected custom legalization"); 5900 5901 // We need to do the move in two steps. 5902 SDValue Vec = N->getOperand(1); 5903 MVT VecVT = Vec.getSimpleValueType(); 5904 5905 // First extract the lower XLEN bits of the element. 5906 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5907 5908 // To extract the upper XLEN bits of the vector element, shift the first 5909 // element right by 32 bits and re-extract the lower XLEN bits. 5910 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5911 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5912 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5913 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5914 DAG.getConstant(32, DL, XLenVT), VL); 5915 SDValue LShr32 = 5916 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5917 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5918 5919 Results.push_back( 5920 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5921 break; 5922 } 5923 } 5924 break; 5925 } 5926 case ISD::VECREDUCE_ADD: 5927 case ISD::VECREDUCE_AND: 5928 case ISD::VECREDUCE_OR: 5929 case ISD::VECREDUCE_XOR: 5930 case ISD::VECREDUCE_SMAX: 5931 case ISD::VECREDUCE_UMAX: 5932 case ISD::VECREDUCE_SMIN: 5933 case ISD::VECREDUCE_UMIN: 5934 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5935 Results.push_back(V); 5936 break; 5937 case ISD::VP_REDUCE_ADD: 5938 case ISD::VP_REDUCE_AND: 5939 case ISD::VP_REDUCE_OR: 5940 case ISD::VP_REDUCE_XOR: 5941 case ISD::VP_REDUCE_SMAX: 5942 case ISD::VP_REDUCE_UMAX: 5943 case ISD::VP_REDUCE_SMIN: 5944 case ISD::VP_REDUCE_UMIN: 5945 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 5946 Results.push_back(V); 5947 break; 5948 case ISD::FLT_ROUNDS_: { 5949 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5950 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5951 Results.push_back(Res.getValue(0)); 5952 Results.push_back(Res.getValue(1)); 5953 break; 5954 } 5955 } 5956 } 5957 5958 // A structure to hold one of the bit-manipulation patterns below. Together, a 5959 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5960 // (or (and (shl x, 1), 0xAAAAAAAA), 5961 // (and (srl x, 1), 0x55555555)) 5962 struct RISCVBitmanipPat { 5963 SDValue Op; 5964 unsigned ShAmt; 5965 bool IsSHL; 5966 5967 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5968 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5969 } 5970 }; 5971 5972 // Matches patterns of the form 5973 // (and (shl x, C2), (C1 << C2)) 5974 // (and (srl x, C2), C1) 5975 // (shl (and x, C1), C2) 5976 // (srl (and x, (C1 << C2)), C2) 5977 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5978 // The expected masks for each shift amount are specified in BitmanipMasks where 5979 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5980 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5981 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5982 // XLen is 64. 5983 static Optional<RISCVBitmanipPat> 5984 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5985 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5986 "Unexpected number of masks"); 5987 Optional<uint64_t> Mask; 5988 // Optionally consume a mask around the shift operation. 5989 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5990 Mask = Op.getConstantOperandVal(1); 5991 Op = Op.getOperand(0); 5992 } 5993 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5994 return None; 5995 bool IsSHL = Op.getOpcode() == ISD::SHL; 5996 5997 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5998 return None; 5999 uint64_t ShAmt = Op.getConstantOperandVal(1); 6000 6001 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6002 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 6003 return None; 6004 // If we don't have enough masks for 64 bit, then we must be trying to 6005 // match SHFL so we're only allowed to shift 1/4 of the width. 6006 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 6007 return None; 6008 6009 SDValue Src = Op.getOperand(0); 6010 6011 // The expected mask is shifted left when the AND is found around SHL 6012 // patterns. 6013 // ((x >> 1) & 0x55555555) 6014 // ((x << 1) & 0xAAAAAAAA) 6015 bool SHLExpMask = IsSHL; 6016 6017 if (!Mask) { 6018 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 6019 // the mask is all ones: consume that now. 6020 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 6021 Mask = Src.getConstantOperandVal(1); 6022 Src = Src.getOperand(0); 6023 // The expected mask is now in fact shifted left for SRL, so reverse the 6024 // decision. 6025 // ((x & 0xAAAAAAAA) >> 1) 6026 // ((x & 0x55555555) << 1) 6027 SHLExpMask = !SHLExpMask; 6028 } else { 6029 // Use a default shifted mask of all-ones if there's no AND, truncated 6030 // down to the expected width. This simplifies the logic later on. 6031 Mask = maskTrailingOnes<uint64_t>(Width); 6032 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 6033 } 6034 } 6035 6036 unsigned MaskIdx = Log2_32(ShAmt); 6037 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6038 6039 if (SHLExpMask) 6040 ExpMask <<= ShAmt; 6041 6042 if (Mask != ExpMask) 6043 return None; 6044 6045 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 6046 } 6047 6048 // Matches any of the following bit-manipulation patterns: 6049 // (and (shl x, 1), (0x55555555 << 1)) 6050 // (and (srl x, 1), 0x55555555) 6051 // (shl (and x, 0x55555555), 1) 6052 // (srl (and x, (0x55555555 << 1)), 1) 6053 // where the shift amount and mask may vary thus: 6054 // [1] = 0x55555555 / 0xAAAAAAAA 6055 // [2] = 0x33333333 / 0xCCCCCCCC 6056 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 6057 // [8] = 0x00FF00FF / 0xFF00FF00 6058 // [16] = 0x0000FFFF / 0xFFFFFFFF 6059 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 6060 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 6061 // These are the unshifted masks which we use to match bit-manipulation 6062 // patterns. They may be shifted left in certain circumstances. 6063 static const uint64_t BitmanipMasks[] = { 6064 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 6065 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 6066 6067 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6068 } 6069 6070 // Match the following pattern as a GREVI(W) operation 6071 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 6072 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 6073 const RISCVSubtarget &Subtarget) { 6074 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6075 EVT VT = Op.getValueType(); 6076 6077 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6078 auto LHS = matchGREVIPat(Op.getOperand(0)); 6079 auto RHS = matchGREVIPat(Op.getOperand(1)); 6080 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 6081 SDLoc DL(Op); 6082 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 6083 DAG.getConstant(LHS->ShAmt, DL, VT)); 6084 } 6085 } 6086 return SDValue(); 6087 } 6088 6089 // Matches any the following pattern as a GORCI(W) operation 6090 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 6091 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 6092 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 6093 // Note that with the variant of 3., 6094 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 6095 // the inner pattern will first be matched as GREVI and then the outer 6096 // pattern will be matched to GORC via the first rule above. 6097 // 4. (or (rotl/rotr x, bitwidth/2), x) 6098 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 6099 const RISCVSubtarget &Subtarget) { 6100 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6101 EVT VT = Op.getValueType(); 6102 6103 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 6104 SDLoc DL(Op); 6105 SDValue Op0 = Op.getOperand(0); 6106 SDValue Op1 = Op.getOperand(1); 6107 6108 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 6109 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 6110 isa<ConstantSDNode>(Reverse.getOperand(1)) && 6111 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 6112 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 6113 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 6114 if ((Reverse.getOpcode() == ISD::ROTL || 6115 Reverse.getOpcode() == ISD::ROTR) && 6116 Reverse.getOperand(0) == X && 6117 isa<ConstantSDNode>(Reverse.getOperand(1))) { 6118 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 6119 if (RotAmt == (VT.getSizeInBits() / 2)) 6120 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 6121 DAG.getConstant(RotAmt, DL, VT)); 6122 } 6123 return SDValue(); 6124 }; 6125 6126 // Check for either commutable permutation of (or (GREVI x, shamt), x) 6127 if (SDValue V = MatchOROfReverse(Op0, Op1)) 6128 return V; 6129 if (SDValue V = MatchOROfReverse(Op1, Op0)) 6130 return V; 6131 6132 // OR is commutable so canonicalize its OR operand to the left 6133 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 6134 std::swap(Op0, Op1); 6135 if (Op0.getOpcode() != ISD::OR) 6136 return SDValue(); 6137 SDValue OrOp0 = Op0.getOperand(0); 6138 SDValue OrOp1 = Op0.getOperand(1); 6139 auto LHS = matchGREVIPat(OrOp0); 6140 // OR is commutable so swap the operands and try again: x might have been 6141 // on the left 6142 if (!LHS) { 6143 std::swap(OrOp0, OrOp1); 6144 LHS = matchGREVIPat(OrOp0); 6145 } 6146 auto RHS = matchGREVIPat(Op1); 6147 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 6148 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 6149 DAG.getConstant(LHS->ShAmt, DL, VT)); 6150 } 6151 } 6152 return SDValue(); 6153 } 6154 6155 // Matches any of the following bit-manipulation patterns: 6156 // (and (shl x, 1), (0x22222222 << 1)) 6157 // (and (srl x, 1), 0x22222222) 6158 // (shl (and x, 0x22222222), 1) 6159 // (srl (and x, (0x22222222 << 1)), 1) 6160 // where the shift amount and mask may vary thus: 6161 // [1] = 0x22222222 / 0x44444444 6162 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 6163 // [4] = 0x00F000F0 / 0x0F000F00 6164 // [8] = 0x0000FF00 / 0x00FF0000 6165 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 6166 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 6167 // These are the unshifted masks which we use to match bit-manipulation 6168 // patterns. They may be shifted left in certain circumstances. 6169 static const uint64_t BitmanipMasks[] = { 6170 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 6171 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 6172 6173 return matchRISCVBitmanipPat(Op, BitmanipMasks); 6174 } 6175 6176 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 6177 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 6178 const RISCVSubtarget &Subtarget) { 6179 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 6180 EVT VT = Op.getValueType(); 6181 6182 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 6183 return SDValue(); 6184 6185 SDValue Op0 = Op.getOperand(0); 6186 SDValue Op1 = Op.getOperand(1); 6187 6188 // Or is commutable so canonicalize the second OR to the LHS. 6189 if (Op0.getOpcode() != ISD::OR) 6190 std::swap(Op0, Op1); 6191 if (Op0.getOpcode() != ISD::OR) 6192 return SDValue(); 6193 6194 // We found an inner OR, so our operands are the operands of the inner OR 6195 // and the other operand of the outer OR. 6196 SDValue A = Op0.getOperand(0); 6197 SDValue B = Op0.getOperand(1); 6198 SDValue C = Op1; 6199 6200 auto Match1 = matchSHFLPat(A); 6201 auto Match2 = matchSHFLPat(B); 6202 6203 // If neither matched, we failed. 6204 if (!Match1 && !Match2) 6205 return SDValue(); 6206 6207 // We had at least one match. if one failed, try the remaining C operand. 6208 if (!Match1) { 6209 std::swap(A, C); 6210 Match1 = matchSHFLPat(A); 6211 if (!Match1) 6212 return SDValue(); 6213 } else if (!Match2) { 6214 std::swap(B, C); 6215 Match2 = matchSHFLPat(B); 6216 if (!Match2) 6217 return SDValue(); 6218 } 6219 assert(Match1 && Match2); 6220 6221 // Make sure our matches pair up. 6222 if (!Match1->formsPairWith(*Match2)) 6223 return SDValue(); 6224 6225 // All the remains is to make sure C is an AND with the same input, that masks 6226 // out the bits that are being shuffled. 6227 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 6228 C.getOperand(0) != Match1->Op) 6229 return SDValue(); 6230 6231 uint64_t Mask = C.getConstantOperandVal(1); 6232 6233 static const uint64_t BitmanipMasks[] = { 6234 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 6235 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 6236 }; 6237 6238 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 6239 unsigned MaskIdx = Log2_32(Match1->ShAmt); 6240 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 6241 6242 if (Mask != ExpMask) 6243 return SDValue(); 6244 6245 SDLoc DL(Op); 6246 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 6247 DAG.getConstant(Match1->ShAmt, DL, VT)); 6248 } 6249 6250 // Optimize (add (shl x, c0), (shl y, c1)) -> 6251 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6252 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 6253 const RISCVSubtarget &Subtarget) { 6254 // Perform this optimization only in the zba extension. 6255 if (!Subtarget.hasStdExtZba()) 6256 return SDValue(); 6257 6258 // Skip for vector types and larger types. 6259 EVT VT = N->getValueType(0); 6260 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6261 return SDValue(); 6262 6263 // The two operand nodes must be SHL and have no other use. 6264 SDValue N0 = N->getOperand(0); 6265 SDValue N1 = N->getOperand(1); 6266 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 6267 !N0->hasOneUse() || !N1->hasOneUse()) 6268 return SDValue(); 6269 6270 // Check c0 and c1. 6271 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6272 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 6273 if (!N0C || !N1C) 6274 return SDValue(); 6275 int64_t C0 = N0C->getSExtValue(); 6276 int64_t C1 = N1C->getSExtValue(); 6277 if (C0 <= 0 || C1 <= 0) 6278 return SDValue(); 6279 6280 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 6281 int64_t Bits = std::min(C0, C1); 6282 int64_t Diff = std::abs(C0 - C1); 6283 if (Diff != 1 && Diff != 2 && Diff != 3) 6284 return SDValue(); 6285 6286 // Build nodes. 6287 SDLoc DL(N); 6288 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 6289 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 6290 SDValue NA0 = 6291 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 6292 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 6293 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 6294 } 6295 6296 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 6297 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 6298 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 6299 // not undo itself, but they are redundant. 6300 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 6301 SDValue Src = N->getOperand(0); 6302 6303 if (Src.getOpcode() != N->getOpcode()) 6304 return SDValue(); 6305 6306 if (!isa<ConstantSDNode>(N->getOperand(1)) || 6307 !isa<ConstantSDNode>(Src.getOperand(1))) 6308 return SDValue(); 6309 6310 unsigned ShAmt1 = N->getConstantOperandVal(1); 6311 unsigned ShAmt2 = Src.getConstantOperandVal(1); 6312 Src = Src.getOperand(0); 6313 6314 unsigned CombinedShAmt; 6315 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 6316 CombinedShAmt = ShAmt1 | ShAmt2; 6317 else 6318 CombinedShAmt = ShAmt1 ^ ShAmt2; 6319 6320 if (CombinedShAmt == 0) 6321 return Src; 6322 6323 SDLoc DL(N); 6324 return DAG.getNode( 6325 N->getOpcode(), DL, N->getValueType(0), Src, 6326 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 6327 } 6328 6329 // Combine a constant select operand into its use: 6330 // 6331 // (and (select cond, -1, c), x) 6332 // -> (select cond, x, (and x, c)) [AllOnes=1] 6333 // (or (select cond, 0, c), x) 6334 // -> (select cond, x, (or x, c)) [AllOnes=0] 6335 // (xor (select cond, 0, c), x) 6336 // -> (select cond, x, (xor x, c)) [AllOnes=0] 6337 // (add (select cond, 0, c), x) 6338 // -> (select cond, x, (add x, c)) [AllOnes=0] 6339 // (sub x, (select cond, 0, c)) 6340 // -> (select cond, x, (sub x, c)) [AllOnes=0] 6341 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 6342 SelectionDAG &DAG, bool AllOnes) { 6343 EVT VT = N->getValueType(0); 6344 6345 // Skip vectors. 6346 if (VT.isVector()) 6347 return SDValue(); 6348 6349 if ((Slct.getOpcode() != ISD::SELECT && 6350 Slct.getOpcode() != RISCVISD::SELECT_CC) || 6351 !Slct.hasOneUse()) 6352 return SDValue(); 6353 6354 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 6355 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 6356 }; 6357 6358 bool SwapSelectOps; 6359 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 6360 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 6361 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 6362 SDValue NonConstantVal; 6363 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 6364 SwapSelectOps = false; 6365 NonConstantVal = FalseVal; 6366 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 6367 SwapSelectOps = true; 6368 NonConstantVal = TrueVal; 6369 } else 6370 return SDValue(); 6371 6372 // Slct is now know to be the desired identity constant when CC is true. 6373 TrueVal = OtherOp; 6374 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 6375 // Unless SwapSelectOps says the condition should be false. 6376 if (SwapSelectOps) 6377 std::swap(TrueVal, FalseVal); 6378 6379 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 6380 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 6381 {Slct.getOperand(0), Slct.getOperand(1), 6382 Slct.getOperand(2), TrueVal, FalseVal}); 6383 6384 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 6385 {Slct.getOperand(0), TrueVal, FalseVal}); 6386 } 6387 6388 // Attempt combineSelectAndUse on each operand of a commutative operator N. 6389 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 6390 bool AllOnes) { 6391 SDValue N0 = N->getOperand(0); 6392 SDValue N1 = N->getOperand(1); 6393 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 6394 return Result; 6395 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 6396 return Result; 6397 return SDValue(); 6398 } 6399 6400 // Transform (add (mul x, c0), c1) -> 6401 // (add (mul (add x, c1/c0), c0), c1%c0). 6402 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6403 // Or transform (add (mul x, c0), c1) -> 6404 // (mul (add x, c1/c0), c0). 6405 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6406 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 6407 const RISCVSubtarget &Subtarget) { 6408 // Skip for vector types and larger types. 6409 EVT VT = N->getValueType(0); 6410 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 6411 return SDValue(); 6412 // The first operand node must be a MUL and has no other use. 6413 SDValue N0 = N->getOperand(0); 6414 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 6415 return SDValue(); 6416 // Check if c0 and c1 match above conditions. 6417 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6418 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6419 if (!N0C || !N1C) 6420 return SDValue(); 6421 int64_t C0 = N0C->getSExtValue(); 6422 int64_t C1 = N1C->getSExtValue(); 6423 if (C0 == -1 || C0 == 0 || C0 == 1 || (C1 / C0) == 0 || isInt<12>(C1) || 6424 !isInt<12>(C1 % C0) || !isInt<12>(C1 / C0)) 6425 return SDValue(); 6426 // If C0 * (C1 / C0) is a 12-bit integer, this transform will be reversed. 6427 if (isInt<12>(C0 * (C1 / C0))) 6428 return SDValue(); 6429 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 6430 SDLoc DL(N); 6431 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 6432 DAG.getConstant(C1 / C0, DL, VT)); 6433 SDValue New1 = 6434 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 6435 if ((C1 % C0) == 0) 6436 return New1; 6437 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(C1 % C0, DL, VT)); 6438 } 6439 6440 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 6441 const RISCVSubtarget &Subtarget) { 6442 // Transform (add (mul x, c0), c1) -> 6443 // (add (mul (add x, c1/c0), c0), c1%c0). 6444 // if c1/c0 and c1%c0 are simm12, while c1 is not. 6445 // Or transform (add (mul x, c0), c1) -> 6446 // (mul (add x, c1/c0), c0). 6447 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 6448 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 6449 return V; 6450 // Fold (add (shl x, c0), (shl y, c1)) -> 6451 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 6452 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 6453 return V; 6454 // fold (add (select lhs, rhs, cc, 0, y), x) -> 6455 // (select lhs, rhs, cc, x, (add x, y)) 6456 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6457 } 6458 6459 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 6460 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 6461 // (select lhs, rhs, cc, x, (sub x, y)) 6462 SDValue N0 = N->getOperand(0); 6463 SDValue N1 = N->getOperand(1); 6464 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 6465 } 6466 6467 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 6468 // fold (and (select lhs, rhs, cc, -1, y), x) -> 6469 // (select lhs, rhs, cc, x, (and x, y)) 6470 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 6471 } 6472 6473 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 6474 const RISCVSubtarget &Subtarget) { 6475 if (Subtarget.hasStdExtZbp()) { 6476 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 6477 return GREV; 6478 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 6479 return GORC; 6480 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 6481 return SHFL; 6482 } 6483 6484 // fold (or (select cond, 0, y), x) -> 6485 // (select cond, x, (or x, y)) 6486 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6487 } 6488 6489 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 6490 // fold (xor (select cond, 0, y), x) -> 6491 // (select cond, x, (xor x, y)) 6492 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 6493 } 6494 6495 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 6496 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 6497 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 6498 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 6499 // ADDW/SUBW/MULW. 6500 static SDValue performANY_EXTENDCombine(SDNode *N, 6501 TargetLowering::DAGCombinerInfo &DCI, 6502 const RISCVSubtarget &Subtarget) { 6503 if (!Subtarget.is64Bit()) 6504 return SDValue(); 6505 6506 SelectionDAG &DAG = DCI.DAG; 6507 6508 SDValue Src = N->getOperand(0); 6509 EVT VT = N->getValueType(0); 6510 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 6511 return SDValue(); 6512 6513 // The opcode must be one that can implicitly sign_extend. 6514 // FIXME: Additional opcodes. 6515 switch (Src.getOpcode()) { 6516 default: 6517 return SDValue(); 6518 case ISD::MUL: 6519 if (!Subtarget.hasStdExtM()) 6520 return SDValue(); 6521 LLVM_FALLTHROUGH; 6522 case ISD::ADD: 6523 case ISD::SUB: 6524 break; 6525 } 6526 6527 // Only handle cases where the result is used by a CopyToReg. That likely 6528 // means the value is a liveout of the basic block. This helps prevent 6529 // infinite combine loops like PR51206. 6530 if (none_of(N->uses(), 6531 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 6532 return SDValue(); 6533 6534 SmallVector<SDNode *, 4> SetCCs; 6535 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 6536 UE = Src.getNode()->use_end(); 6537 UI != UE; ++UI) { 6538 SDNode *User = *UI; 6539 if (User == N) 6540 continue; 6541 if (UI.getUse().getResNo() != Src.getResNo()) 6542 continue; 6543 // All i32 setccs are legalized by sign extending operands. 6544 if (User->getOpcode() == ISD::SETCC) { 6545 SetCCs.push_back(User); 6546 continue; 6547 } 6548 // We don't know if we can extend this user. 6549 break; 6550 } 6551 6552 // If we don't have any SetCCs, this isn't worthwhile. 6553 if (SetCCs.empty()) 6554 return SDValue(); 6555 6556 SDLoc DL(N); 6557 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 6558 DCI.CombineTo(N, SExt); 6559 6560 // Promote all the setccs. 6561 for (SDNode *SetCC : SetCCs) { 6562 SmallVector<SDValue, 4> Ops; 6563 6564 for (unsigned j = 0; j != 2; ++j) { 6565 SDValue SOp = SetCC->getOperand(j); 6566 if (SOp == Src) 6567 Ops.push_back(SExt); 6568 else 6569 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 6570 } 6571 6572 Ops.push_back(SetCC->getOperand(2)); 6573 DCI.CombineTo(SetCC, 6574 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 6575 } 6576 return SDValue(N, 0); 6577 } 6578 6579 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 6580 DAGCombinerInfo &DCI) const { 6581 SelectionDAG &DAG = DCI.DAG; 6582 6583 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6584 // bits are demanded. N will be added to the Worklist if it was not deleted. 6585 // Caller should return SDValue(N, 0) if this returns true. 6586 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6587 SDValue Op = N->getOperand(OpNo); 6588 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6589 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6590 return false; 6591 6592 if (N->getOpcode() != ISD::DELETED_NODE) 6593 DCI.AddToWorklist(N); 6594 return true; 6595 }; 6596 6597 switch (N->getOpcode()) { 6598 default: 6599 break; 6600 case RISCVISD::SplitF64: { 6601 SDValue Op0 = N->getOperand(0); 6602 // If the input to SplitF64 is just BuildPairF64 then the operation is 6603 // redundant. Instead, use BuildPairF64's operands directly. 6604 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6605 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6606 6607 SDLoc DL(N); 6608 6609 // It's cheaper to materialise two 32-bit integers than to load a double 6610 // from the constant pool and transfer it to integer registers through the 6611 // stack. 6612 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6613 APInt V = C->getValueAPF().bitcastToAPInt(); 6614 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6615 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6616 return DCI.CombineTo(N, Lo, Hi); 6617 } 6618 6619 // This is a target-specific version of a DAGCombine performed in 6620 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6621 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6622 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6623 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6624 !Op0.getNode()->hasOneUse()) 6625 break; 6626 SDValue NewSplitF64 = 6627 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6628 Op0.getOperand(0)); 6629 SDValue Lo = NewSplitF64.getValue(0); 6630 SDValue Hi = NewSplitF64.getValue(1); 6631 APInt SignBit = APInt::getSignMask(32); 6632 if (Op0.getOpcode() == ISD::FNEG) { 6633 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6634 DAG.getConstant(SignBit, DL, MVT::i32)); 6635 return DCI.CombineTo(N, Lo, NewHi); 6636 } 6637 assert(Op0.getOpcode() == ISD::FABS); 6638 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6639 DAG.getConstant(~SignBit, DL, MVT::i32)); 6640 return DCI.CombineTo(N, Lo, NewHi); 6641 } 6642 case RISCVISD::SLLW: 6643 case RISCVISD::SRAW: 6644 case RISCVISD::SRLW: 6645 case RISCVISD::ROLW: 6646 case RISCVISD::RORW: { 6647 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6648 if (SimplifyDemandedLowBitsHelper(0, 32) || 6649 SimplifyDemandedLowBitsHelper(1, 5)) 6650 return SDValue(N, 0); 6651 break; 6652 } 6653 case RISCVISD::CLZW: 6654 case RISCVISD::CTZW: { 6655 // Only the lower 32 bits of the first operand are read 6656 if (SimplifyDemandedLowBitsHelper(0, 32)) 6657 return SDValue(N, 0); 6658 break; 6659 } 6660 case RISCVISD::FSL: 6661 case RISCVISD::FSR: { 6662 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6663 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6664 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6665 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6666 return SDValue(N, 0); 6667 break; 6668 } 6669 case RISCVISD::FSLW: 6670 case RISCVISD::FSRW: { 6671 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6672 // read. 6673 if (SimplifyDemandedLowBitsHelper(0, 32) || 6674 SimplifyDemandedLowBitsHelper(1, 32) || 6675 SimplifyDemandedLowBitsHelper(2, 6)) 6676 return SDValue(N, 0); 6677 break; 6678 } 6679 case RISCVISD::GREV: 6680 case RISCVISD::GORC: { 6681 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6682 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6683 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6684 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6685 return SDValue(N, 0); 6686 6687 return combineGREVI_GORCI(N, DCI.DAG); 6688 } 6689 case RISCVISD::GREVW: 6690 case RISCVISD::GORCW: { 6691 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6692 if (SimplifyDemandedLowBitsHelper(0, 32) || 6693 SimplifyDemandedLowBitsHelper(1, 5)) 6694 return SDValue(N, 0); 6695 6696 return combineGREVI_GORCI(N, DCI.DAG); 6697 } 6698 case RISCVISD::SHFL: 6699 case RISCVISD::UNSHFL: { 6700 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6701 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6702 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6703 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6704 return SDValue(N, 0); 6705 6706 break; 6707 } 6708 case RISCVISD::SHFLW: 6709 case RISCVISD::UNSHFLW: { 6710 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6711 SDValue LHS = N->getOperand(0); 6712 SDValue RHS = N->getOperand(1); 6713 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6714 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6715 if (SimplifyDemandedLowBitsHelper(0, 32) || 6716 SimplifyDemandedLowBitsHelper(1, 4)) 6717 return SDValue(N, 0); 6718 6719 break; 6720 } 6721 case RISCVISD::BCOMPRESSW: 6722 case RISCVISD::BDECOMPRESSW: { 6723 // Only the lower 32 bits of LHS and RHS are read. 6724 if (SimplifyDemandedLowBitsHelper(0, 32) || 6725 SimplifyDemandedLowBitsHelper(1, 32)) 6726 return SDValue(N, 0); 6727 6728 break; 6729 } 6730 case RISCVISD::FMV_X_ANYEXTH: 6731 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6732 SDLoc DL(N); 6733 SDValue Op0 = N->getOperand(0); 6734 MVT VT = N->getSimpleValueType(0); 6735 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6736 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6737 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6738 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6739 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6740 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6741 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6742 assert(Op0.getOperand(0).getValueType() == VT && 6743 "Unexpected value type!"); 6744 return Op0.getOperand(0); 6745 } 6746 6747 // This is a target-specific version of a DAGCombine performed in 6748 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6749 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6750 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6751 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6752 !Op0.getNode()->hasOneUse()) 6753 break; 6754 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6755 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6756 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6757 if (Op0.getOpcode() == ISD::FNEG) 6758 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6759 DAG.getConstant(SignBit, DL, VT)); 6760 6761 assert(Op0.getOpcode() == ISD::FABS); 6762 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6763 DAG.getConstant(~SignBit, DL, VT)); 6764 } 6765 case ISD::ADD: 6766 return performADDCombine(N, DAG, Subtarget); 6767 case ISD::SUB: 6768 return performSUBCombine(N, DAG); 6769 case ISD::AND: 6770 return performANDCombine(N, DAG); 6771 case ISD::OR: 6772 return performORCombine(N, DAG, Subtarget); 6773 case ISD::XOR: 6774 return performXORCombine(N, DAG); 6775 case ISD::ANY_EXTEND: 6776 return performANY_EXTENDCombine(N, DCI, Subtarget); 6777 case ISD::ZERO_EXTEND: 6778 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6779 // type legalization. This is safe because fp_to_uint produces poison if 6780 // it overflows. 6781 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6782 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6783 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6784 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6785 N->getOperand(0).getOperand(0)); 6786 return SDValue(); 6787 case RISCVISD::SELECT_CC: { 6788 // Transform 6789 SDValue LHS = N->getOperand(0); 6790 SDValue RHS = N->getOperand(1); 6791 SDValue TrueV = N->getOperand(3); 6792 SDValue FalseV = N->getOperand(4); 6793 6794 // If the True and False values are the same, we don't need a select_cc. 6795 if (TrueV == FalseV) 6796 return TrueV; 6797 6798 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6799 if (!ISD::isIntEqualitySetCC(CCVal)) 6800 break; 6801 6802 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6803 // (select_cc X, Y, lt, trueV, falseV) 6804 // Sometimes the setcc is introduced after select_cc has been formed. 6805 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6806 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6807 // If we're looking for eq 0 instead of ne 0, we need to invert the 6808 // condition. 6809 bool Invert = CCVal == ISD::SETEQ; 6810 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6811 if (Invert) 6812 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6813 6814 SDLoc DL(N); 6815 RHS = LHS.getOperand(1); 6816 LHS = LHS.getOperand(0); 6817 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6818 6819 SDValue TargetCC = DAG.getCondCode(CCVal); 6820 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6821 {LHS, RHS, TargetCC, TrueV, FalseV}); 6822 } 6823 6824 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6825 // (select_cc X, Y, eq/ne, trueV, falseV) 6826 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6827 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6828 {LHS.getOperand(0), LHS.getOperand(1), 6829 N->getOperand(2), TrueV, FalseV}); 6830 // (select_cc X, 1, setne, trueV, falseV) -> 6831 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6832 // This can occur when legalizing some floating point comparisons. 6833 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6834 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6835 SDLoc DL(N); 6836 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6837 SDValue TargetCC = DAG.getCondCode(CCVal); 6838 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6839 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6840 {LHS, RHS, TargetCC, TrueV, FalseV}); 6841 } 6842 6843 break; 6844 } 6845 case RISCVISD::BR_CC: { 6846 SDValue LHS = N->getOperand(1); 6847 SDValue RHS = N->getOperand(2); 6848 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6849 if (!ISD::isIntEqualitySetCC(CCVal)) 6850 break; 6851 6852 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6853 // (br_cc X, Y, lt, dest) 6854 // Sometimes the setcc is introduced after br_cc has been formed. 6855 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6856 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6857 // If we're looking for eq 0 instead of ne 0, we need to invert the 6858 // condition. 6859 bool Invert = CCVal == ISD::SETEQ; 6860 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6861 if (Invert) 6862 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6863 6864 SDLoc DL(N); 6865 RHS = LHS.getOperand(1); 6866 LHS = LHS.getOperand(0); 6867 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6868 6869 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6870 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6871 N->getOperand(4)); 6872 } 6873 6874 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6875 // (br_cc X, Y, eq/ne, trueV, falseV) 6876 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6877 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6878 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6879 N->getOperand(3), N->getOperand(4)); 6880 6881 // (br_cc X, 1, setne, br_cc) -> 6882 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6883 // This can occur when legalizing some floating point comparisons. 6884 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6885 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6886 SDLoc DL(N); 6887 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6888 SDValue TargetCC = DAG.getCondCode(CCVal); 6889 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6890 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6891 N->getOperand(0), LHS, RHS, TargetCC, 6892 N->getOperand(4)); 6893 } 6894 break; 6895 } 6896 case ISD::FCOPYSIGN: { 6897 EVT VT = N->getValueType(0); 6898 if (!VT.isVector()) 6899 break; 6900 // There is a form of VFSGNJ which injects the negated sign of its second 6901 // operand. Try and bubble any FNEG up after the extend/round to produce 6902 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6903 // TRUNC=1. 6904 SDValue In2 = N->getOperand(1); 6905 // Avoid cases where the extend/round has multiple uses, as duplicating 6906 // those is typically more expensive than removing a fneg. 6907 if (!In2.hasOneUse()) 6908 break; 6909 if (In2.getOpcode() != ISD::FP_EXTEND && 6910 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6911 break; 6912 In2 = In2.getOperand(0); 6913 if (In2.getOpcode() != ISD::FNEG) 6914 break; 6915 SDLoc DL(N); 6916 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6917 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6918 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6919 } 6920 case ISD::MGATHER: 6921 case ISD::MSCATTER: 6922 case ISD::VP_GATHER: 6923 case ISD::VP_SCATTER: { 6924 if (!DCI.isBeforeLegalize()) 6925 break; 6926 SDValue Index, ScaleOp; 6927 bool IsIndexScaled = false; 6928 bool IsIndexSigned = false; 6929 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 6930 Index = VPGSN->getIndex(); 6931 ScaleOp = VPGSN->getScale(); 6932 IsIndexScaled = VPGSN->isIndexScaled(); 6933 IsIndexSigned = VPGSN->isIndexSigned(); 6934 } else { 6935 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 6936 Index = MGSN->getIndex(); 6937 ScaleOp = MGSN->getScale(); 6938 IsIndexScaled = MGSN->isIndexScaled(); 6939 IsIndexSigned = MGSN->isIndexSigned(); 6940 } 6941 EVT IndexVT = Index.getValueType(); 6942 MVT XLenVT = Subtarget.getXLenVT(); 6943 // RISCV indexed loads only support the "unsigned unscaled" addressing 6944 // mode, so anything else must be manually legalized. 6945 bool NeedsIdxLegalization = 6946 IsIndexScaled || 6947 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 6948 if (!NeedsIdxLegalization) 6949 break; 6950 6951 SDLoc DL(N); 6952 6953 // Any index legalization should first promote to XLenVT, so we don't lose 6954 // bits when scaling. This may create an illegal index type so we let 6955 // LLVM's legalization take care of the splitting. 6956 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 6957 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6958 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6959 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6960 DL, IndexVT, Index); 6961 } 6962 6963 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 6964 if (IsIndexScaled && Scale != 1) { 6965 // Manually scale the indices by the element size. 6966 // TODO: Sanitize the scale operand here? 6967 // TODO: For VP nodes, should we use VP_SHL here? 6968 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6969 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6970 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6971 } 6972 6973 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6974 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 6975 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 6976 {VPGN->getChain(), VPGN->getBasePtr(), Index, 6977 VPGN->getScale(), VPGN->getMask(), 6978 VPGN->getVectorLength()}, 6979 VPGN->getMemOperand(), NewIndexTy); 6980 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 6981 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 6982 {VPSN->getChain(), VPSN->getValue(), 6983 VPSN->getBasePtr(), Index, VPSN->getScale(), 6984 VPSN->getMask(), VPSN->getVectorLength()}, 6985 VPSN->getMemOperand(), NewIndexTy); 6986 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 6987 return DAG.getMaskedGather( 6988 N->getVTList(), MGN->getMemoryVT(), DL, 6989 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 6990 MGN->getBasePtr(), Index, MGN->getScale()}, 6991 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6992 const auto *MSN = cast<MaskedScatterSDNode>(N); 6993 return DAG.getMaskedScatter( 6994 N->getVTList(), MSN->getMemoryVT(), DL, 6995 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 6996 Index, MSN->getScale()}, 6997 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6998 } 6999 case RISCVISD::SRA_VL: 7000 case RISCVISD::SRL_VL: 7001 case RISCVISD::SHL_VL: { 7002 SDValue ShAmt = N->getOperand(1); 7003 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7004 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7005 SDLoc DL(N); 7006 SDValue VL = N->getOperand(3); 7007 EVT VT = N->getValueType(0); 7008 ShAmt = 7009 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 7010 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 7011 N->getOperand(2), N->getOperand(3)); 7012 } 7013 break; 7014 } 7015 case ISD::SRA: 7016 case ISD::SRL: 7017 case ISD::SHL: { 7018 SDValue ShAmt = N->getOperand(1); 7019 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 7020 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 7021 SDLoc DL(N); 7022 EVT VT = N->getValueType(0); 7023 ShAmt = 7024 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 7025 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 7026 } 7027 break; 7028 } 7029 case RISCVISD::MUL_VL: { 7030 // Try to form VWMUL or VWMULU. 7031 // FIXME: Look for splat of extended scalar as well. 7032 // FIXME: Support VWMULSU. 7033 SDValue Op0 = N->getOperand(0); 7034 SDValue Op1 = N->getOperand(1); 7035 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7036 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7037 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 7038 return SDValue(); 7039 7040 // Make sure the extends have a single use. 7041 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 7042 return SDValue(); 7043 7044 SDValue Mask = N->getOperand(2); 7045 SDValue VL = N->getOperand(3); 7046 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 7047 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 7048 return SDValue(); 7049 7050 Op0 = Op0.getOperand(0); 7051 Op1 = Op1.getOperand(0); 7052 7053 MVT VT = N->getSimpleValueType(0); 7054 MVT NarrowVT = 7055 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 7056 VT.getVectorElementCount()); 7057 7058 SDLoc DL(N); 7059 7060 // Re-introduce narrower extends if needed. 7061 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7062 if (Op0.getValueType() != NarrowVT) 7063 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7064 if (Op1.getValueType() != NarrowVT) 7065 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7066 7067 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7068 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7069 } 7070 } 7071 7072 return SDValue(); 7073 } 7074 7075 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 7076 const SDNode *N, CombineLevel Level) const { 7077 // The following folds are only desirable if `(OP _, c1 << c2)` can be 7078 // materialised in fewer instructions than `(OP _, c1)`: 7079 // 7080 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 7081 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 7082 SDValue N0 = N->getOperand(0); 7083 EVT Ty = N0.getValueType(); 7084 if (Ty.isScalarInteger() && 7085 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 7086 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7087 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7088 if (C1 && C2) { 7089 const APInt &C1Int = C1->getAPIntValue(); 7090 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 7091 7092 // We can materialise `c1 << c2` into an add immediate, so it's "free", 7093 // and the combine should happen, to potentially allow further combines 7094 // later. 7095 if (ShiftedC1Int.getMinSignedBits() <= 64 && 7096 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 7097 return true; 7098 7099 // We can materialise `c1` in an add immediate, so it's "free", and the 7100 // combine should be prevented. 7101 if (C1Int.getMinSignedBits() <= 64 && 7102 isLegalAddImmediate(C1Int.getSExtValue())) 7103 return false; 7104 7105 // Neither constant will fit into an immediate, so find materialisation 7106 // costs. 7107 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 7108 Subtarget.getFeatureBits(), 7109 /*CompressionCost*/true); 7110 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 7111 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 7112 /*CompressionCost*/true); 7113 7114 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 7115 // combine should be prevented. 7116 if (C1Cost < ShiftedC1Cost) 7117 return false; 7118 } 7119 } 7120 return true; 7121 } 7122 7123 bool RISCVTargetLowering::targetShrinkDemandedConstant( 7124 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 7125 TargetLoweringOpt &TLO) const { 7126 // Delay this optimization as late as possible. 7127 if (!TLO.LegalOps) 7128 return false; 7129 7130 EVT VT = Op.getValueType(); 7131 if (VT.isVector()) 7132 return false; 7133 7134 // Only handle AND for now. 7135 if (Op.getOpcode() != ISD::AND) 7136 return false; 7137 7138 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7139 if (!C) 7140 return false; 7141 7142 const APInt &Mask = C->getAPIntValue(); 7143 7144 // Clear all non-demanded bits initially. 7145 APInt ShrunkMask = Mask & DemandedBits; 7146 7147 // Try to make a smaller immediate by setting undemanded bits. 7148 7149 APInt ExpandedMask = Mask | ~DemandedBits; 7150 7151 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 7152 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 7153 }; 7154 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 7155 if (NewMask == Mask) 7156 return true; 7157 SDLoc DL(Op); 7158 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 7159 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 7160 return TLO.CombineTo(Op, NewOp); 7161 }; 7162 7163 // If the shrunk mask fits in sign extended 12 bits, let the target 7164 // independent code apply it. 7165 if (ShrunkMask.isSignedIntN(12)) 7166 return false; 7167 7168 // Preserve (and X, 0xffff) when zext.h is supported. 7169 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 7170 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 7171 if (IsLegalMask(NewMask)) 7172 return UseMask(NewMask); 7173 } 7174 7175 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 7176 if (VT == MVT::i64) { 7177 APInt NewMask = APInt(64, 0xffffffff); 7178 if (IsLegalMask(NewMask)) 7179 return UseMask(NewMask); 7180 } 7181 7182 // For the remaining optimizations, we need to be able to make a negative 7183 // number through a combination of mask and undemanded bits. 7184 if (!ExpandedMask.isNegative()) 7185 return false; 7186 7187 // What is the fewest number of bits we need to represent the negative number. 7188 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 7189 7190 // Try to make a 12 bit negative immediate. If that fails try to make a 32 7191 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 7192 APInt NewMask = ShrunkMask; 7193 if (MinSignedBits <= 12) 7194 NewMask.setBitsFrom(11); 7195 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 7196 NewMask.setBitsFrom(31); 7197 else 7198 return false; 7199 7200 // Sanity check that our new mask is a subset of the demanded mask. 7201 assert(IsLegalMask(NewMask)); 7202 return UseMask(NewMask); 7203 } 7204 7205 static void computeGREV(APInt &Src, unsigned ShAmt) { 7206 ShAmt &= Src.getBitWidth() - 1; 7207 uint64_t x = Src.getZExtValue(); 7208 if (ShAmt & 1) 7209 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 7210 if (ShAmt & 2) 7211 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 7212 if (ShAmt & 4) 7213 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 7214 if (ShAmt & 8) 7215 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 7216 if (ShAmt & 16) 7217 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 7218 if (ShAmt & 32) 7219 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 7220 Src = x; 7221 } 7222 7223 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7224 KnownBits &Known, 7225 const APInt &DemandedElts, 7226 const SelectionDAG &DAG, 7227 unsigned Depth) const { 7228 unsigned BitWidth = Known.getBitWidth(); 7229 unsigned Opc = Op.getOpcode(); 7230 assert((Opc >= ISD::BUILTIN_OP_END || 7231 Opc == ISD::INTRINSIC_WO_CHAIN || 7232 Opc == ISD::INTRINSIC_W_CHAIN || 7233 Opc == ISD::INTRINSIC_VOID) && 7234 "Should use MaskedValueIsZero if you don't know whether Op" 7235 " is a target node!"); 7236 7237 Known.resetAll(); 7238 switch (Opc) { 7239 default: break; 7240 case RISCVISD::SELECT_CC: { 7241 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 7242 // If we don't know any bits, early out. 7243 if (Known.isUnknown()) 7244 break; 7245 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 7246 7247 // Only known if known in both the LHS and RHS. 7248 Known = KnownBits::commonBits(Known, Known2); 7249 break; 7250 } 7251 case RISCVISD::REMUW: { 7252 KnownBits Known2; 7253 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7254 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7255 // We only care about the lower 32 bits. 7256 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 7257 // Restore the original width by sign extending. 7258 Known = Known.sext(BitWidth); 7259 break; 7260 } 7261 case RISCVISD::DIVUW: { 7262 KnownBits Known2; 7263 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 7264 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 7265 // We only care about the lower 32 bits. 7266 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 7267 // Restore the original width by sign extending. 7268 Known = Known.sext(BitWidth); 7269 break; 7270 } 7271 case RISCVISD::CTZW: { 7272 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7273 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 7274 unsigned LowBits = Log2_32(PossibleTZ) + 1; 7275 Known.Zero.setBitsFrom(LowBits); 7276 break; 7277 } 7278 case RISCVISD::CLZW: { 7279 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7280 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 7281 unsigned LowBits = Log2_32(PossibleLZ) + 1; 7282 Known.Zero.setBitsFrom(LowBits); 7283 break; 7284 } 7285 case RISCVISD::GREV: 7286 case RISCVISD::GREVW: { 7287 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7288 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 7289 if (Opc == RISCVISD::GREVW) 7290 Known = Known.trunc(32); 7291 unsigned ShAmt = C->getZExtValue(); 7292 computeGREV(Known.Zero, ShAmt); 7293 computeGREV(Known.One, ShAmt); 7294 if (Opc == RISCVISD::GREVW) 7295 Known = Known.sext(BitWidth); 7296 } 7297 break; 7298 } 7299 case RISCVISD::READ_VLENB: 7300 // We assume VLENB is at least 16 bytes. 7301 Known.Zero.setLowBits(4); 7302 // We assume VLENB is no more than 65536 / 8 bytes. 7303 Known.Zero.setBitsFrom(14); 7304 break; 7305 case ISD::INTRINSIC_W_CHAIN: { 7306 unsigned IntNo = Op.getConstantOperandVal(1); 7307 switch (IntNo) { 7308 default: 7309 // We can't do anything for most intrinsics. 7310 break; 7311 case Intrinsic::riscv_vsetvli: 7312 case Intrinsic::riscv_vsetvlimax: 7313 // Assume that VL output is positive and would fit in an int32_t. 7314 // TODO: VLEN might be capped at 16 bits in a future V spec update. 7315 if (BitWidth >= 32) 7316 Known.Zero.setBitsFrom(31); 7317 break; 7318 } 7319 break; 7320 } 7321 } 7322 } 7323 7324 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 7325 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7326 unsigned Depth) const { 7327 switch (Op.getOpcode()) { 7328 default: 7329 break; 7330 case RISCVISD::SELECT_CC: { 7331 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 7332 if (Tmp == 1) return 1; // Early out. 7333 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 7334 return std::min(Tmp, Tmp2); 7335 } 7336 case RISCVISD::SLLW: 7337 case RISCVISD::SRAW: 7338 case RISCVISD::SRLW: 7339 case RISCVISD::DIVW: 7340 case RISCVISD::DIVUW: 7341 case RISCVISD::REMUW: 7342 case RISCVISD::ROLW: 7343 case RISCVISD::RORW: 7344 case RISCVISD::GREVW: 7345 case RISCVISD::GORCW: 7346 case RISCVISD::FSLW: 7347 case RISCVISD::FSRW: 7348 case RISCVISD::SHFLW: 7349 case RISCVISD::UNSHFLW: 7350 case RISCVISD::BCOMPRESSW: 7351 case RISCVISD::BDECOMPRESSW: 7352 case RISCVISD::FCVT_W_RTZ_RV64: 7353 case RISCVISD::FCVT_WU_RTZ_RV64: 7354 // TODO: As the result is sign-extended, this is conservatively correct. A 7355 // more precise answer could be calculated for SRAW depending on known 7356 // bits in the shift amount. 7357 return 33; 7358 case RISCVISD::SHFL: 7359 case RISCVISD::UNSHFL: { 7360 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 7361 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 7362 // will stay within the upper 32 bits. If there were more than 32 sign bits 7363 // before there will be at least 33 sign bits after. 7364 if (Op.getValueType() == MVT::i64 && 7365 isa<ConstantSDNode>(Op.getOperand(1)) && 7366 (Op.getConstantOperandVal(1) & 0x10) == 0) { 7367 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 7368 if (Tmp > 32) 7369 return 33; 7370 } 7371 break; 7372 } 7373 case RISCVISD::VMV_X_S: 7374 // The number of sign bits of the scalar result is computed by obtaining the 7375 // element type of the input vector operand, subtracting its width from the 7376 // XLEN, and then adding one (sign bit within the element type). If the 7377 // element type is wider than XLen, the least-significant XLEN bits are 7378 // taken. 7379 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 7380 return 1; 7381 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 7382 } 7383 7384 return 1; 7385 } 7386 7387 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 7388 MachineBasicBlock *BB) { 7389 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 7390 7391 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 7392 // Should the count have wrapped while it was being read, we need to try 7393 // again. 7394 // ... 7395 // read: 7396 // rdcycleh x3 # load high word of cycle 7397 // rdcycle x2 # load low word of cycle 7398 // rdcycleh x4 # load high word of cycle 7399 // bne x3, x4, read # check if high word reads match, otherwise try again 7400 // ... 7401 7402 MachineFunction &MF = *BB->getParent(); 7403 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7404 MachineFunction::iterator It = ++BB->getIterator(); 7405 7406 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7407 MF.insert(It, LoopMBB); 7408 7409 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 7410 MF.insert(It, DoneMBB); 7411 7412 // Transfer the remainder of BB and its successor edges to DoneMBB. 7413 DoneMBB->splice(DoneMBB->begin(), BB, 7414 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7415 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 7416 7417 BB->addSuccessor(LoopMBB); 7418 7419 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7420 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7421 Register LoReg = MI.getOperand(0).getReg(); 7422 Register HiReg = MI.getOperand(1).getReg(); 7423 DebugLoc DL = MI.getDebugLoc(); 7424 7425 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 7426 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 7427 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7428 .addReg(RISCV::X0); 7429 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 7430 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 7431 .addReg(RISCV::X0); 7432 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 7433 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 7434 .addReg(RISCV::X0); 7435 7436 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 7437 .addReg(HiReg) 7438 .addReg(ReadAgainReg) 7439 .addMBB(LoopMBB); 7440 7441 LoopMBB->addSuccessor(LoopMBB); 7442 LoopMBB->addSuccessor(DoneMBB); 7443 7444 MI.eraseFromParent(); 7445 7446 return DoneMBB; 7447 } 7448 7449 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 7450 MachineBasicBlock *BB) { 7451 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 7452 7453 MachineFunction &MF = *BB->getParent(); 7454 DebugLoc DL = MI.getDebugLoc(); 7455 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7456 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7457 Register LoReg = MI.getOperand(0).getReg(); 7458 Register HiReg = MI.getOperand(1).getReg(); 7459 Register SrcReg = MI.getOperand(2).getReg(); 7460 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 7461 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7462 7463 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 7464 RI); 7465 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7466 MachineMemOperand *MMOLo = 7467 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 7468 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7469 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 7470 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 7471 .addFrameIndex(FI) 7472 .addImm(0) 7473 .addMemOperand(MMOLo); 7474 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 7475 .addFrameIndex(FI) 7476 .addImm(4) 7477 .addMemOperand(MMOHi); 7478 MI.eraseFromParent(); // The pseudo instruction is gone now. 7479 return BB; 7480 } 7481 7482 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 7483 MachineBasicBlock *BB) { 7484 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 7485 "Unexpected instruction"); 7486 7487 MachineFunction &MF = *BB->getParent(); 7488 DebugLoc DL = MI.getDebugLoc(); 7489 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 7490 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 7491 Register DstReg = MI.getOperand(0).getReg(); 7492 Register LoReg = MI.getOperand(1).getReg(); 7493 Register HiReg = MI.getOperand(2).getReg(); 7494 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 7495 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 7496 7497 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 7498 MachineMemOperand *MMOLo = 7499 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 7500 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 7501 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 7502 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7503 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 7504 .addFrameIndex(FI) 7505 .addImm(0) 7506 .addMemOperand(MMOLo); 7507 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 7508 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 7509 .addFrameIndex(FI) 7510 .addImm(4) 7511 .addMemOperand(MMOHi); 7512 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 7513 MI.eraseFromParent(); // The pseudo instruction is gone now. 7514 return BB; 7515 } 7516 7517 static bool isSelectPseudo(MachineInstr &MI) { 7518 switch (MI.getOpcode()) { 7519 default: 7520 return false; 7521 case RISCV::Select_GPR_Using_CC_GPR: 7522 case RISCV::Select_FPR16_Using_CC_GPR: 7523 case RISCV::Select_FPR32_Using_CC_GPR: 7524 case RISCV::Select_FPR64_Using_CC_GPR: 7525 return true; 7526 } 7527 } 7528 7529 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 7530 MachineBasicBlock *BB, 7531 const RISCVSubtarget &Subtarget) { 7532 // To "insert" Select_* instructions, we actually have to insert the triangle 7533 // control-flow pattern. The incoming instructions know the destination vreg 7534 // to set, the condition code register to branch on, the true/false values to 7535 // select between, and the condcode to use to select the appropriate branch. 7536 // 7537 // We produce the following control flow: 7538 // HeadMBB 7539 // | \ 7540 // | IfFalseMBB 7541 // | / 7542 // TailMBB 7543 // 7544 // When we find a sequence of selects we attempt to optimize their emission 7545 // by sharing the control flow. Currently we only handle cases where we have 7546 // multiple selects with the exact same condition (same LHS, RHS and CC). 7547 // The selects may be interleaved with other instructions if the other 7548 // instructions meet some requirements we deem safe: 7549 // - They are debug instructions. Otherwise, 7550 // - They do not have side-effects, do not access memory and their inputs do 7551 // not depend on the results of the select pseudo-instructions. 7552 // The TrueV/FalseV operands of the selects cannot depend on the result of 7553 // previous selects in the sequence. 7554 // These conditions could be further relaxed. See the X86 target for a 7555 // related approach and more information. 7556 Register LHS = MI.getOperand(1).getReg(); 7557 Register RHS = MI.getOperand(2).getReg(); 7558 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 7559 7560 SmallVector<MachineInstr *, 4> SelectDebugValues; 7561 SmallSet<Register, 4> SelectDests; 7562 SelectDests.insert(MI.getOperand(0).getReg()); 7563 7564 MachineInstr *LastSelectPseudo = &MI; 7565 7566 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 7567 SequenceMBBI != E; ++SequenceMBBI) { 7568 if (SequenceMBBI->isDebugInstr()) 7569 continue; 7570 else if (isSelectPseudo(*SequenceMBBI)) { 7571 if (SequenceMBBI->getOperand(1).getReg() != LHS || 7572 SequenceMBBI->getOperand(2).getReg() != RHS || 7573 SequenceMBBI->getOperand(3).getImm() != CC || 7574 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 7575 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 7576 break; 7577 LastSelectPseudo = &*SequenceMBBI; 7578 SequenceMBBI->collectDebugValues(SelectDebugValues); 7579 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 7580 } else { 7581 if (SequenceMBBI->hasUnmodeledSideEffects() || 7582 SequenceMBBI->mayLoadOrStore()) 7583 break; 7584 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 7585 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 7586 })) 7587 break; 7588 } 7589 } 7590 7591 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 7592 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7593 DebugLoc DL = MI.getDebugLoc(); 7594 MachineFunction::iterator I = ++BB->getIterator(); 7595 7596 MachineBasicBlock *HeadMBB = BB; 7597 MachineFunction *F = BB->getParent(); 7598 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 7599 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 7600 7601 F->insert(I, IfFalseMBB); 7602 F->insert(I, TailMBB); 7603 7604 // Transfer debug instructions associated with the selects to TailMBB. 7605 for (MachineInstr *DebugInstr : SelectDebugValues) { 7606 TailMBB->push_back(DebugInstr->removeFromParent()); 7607 } 7608 7609 // Move all instructions after the sequence to TailMBB. 7610 TailMBB->splice(TailMBB->end(), HeadMBB, 7611 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7612 // Update machine-CFG edges by transferring all successors of the current 7613 // block to the new block which will contain the Phi nodes for the selects. 7614 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7615 // Set the successors for HeadMBB. 7616 HeadMBB->addSuccessor(IfFalseMBB); 7617 HeadMBB->addSuccessor(TailMBB); 7618 7619 // Insert appropriate branch. 7620 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7621 .addReg(LHS) 7622 .addReg(RHS) 7623 .addMBB(TailMBB); 7624 7625 // IfFalseMBB just falls through to TailMBB. 7626 IfFalseMBB->addSuccessor(TailMBB); 7627 7628 // Create PHIs for all of the select pseudo-instructions. 7629 auto SelectMBBI = MI.getIterator(); 7630 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7631 auto InsertionPoint = TailMBB->begin(); 7632 while (SelectMBBI != SelectEnd) { 7633 auto Next = std::next(SelectMBBI); 7634 if (isSelectPseudo(*SelectMBBI)) { 7635 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7636 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7637 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7638 .addReg(SelectMBBI->getOperand(4).getReg()) 7639 .addMBB(HeadMBB) 7640 .addReg(SelectMBBI->getOperand(5).getReg()) 7641 .addMBB(IfFalseMBB); 7642 SelectMBBI->eraseFromParent(); 7643 } 7644 SelectMBBI = Next; 7645 } 7646 7647 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7648 return TailMBB; 7649 } 7650 7651 MachineBasicBlock * 7652 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7653 MachineBasicBlock *BB) const { 7654 switch (MI.getOpcode()) { 7655 default: 7656 llvm_unreachable("Unexpected instr type to insert"); 7657 case RISCV::ReadCycleWide: 7658 assert(!Subtarget.is64Bit() && 7659 "ReadCycleWrite is only to be used on riscv32"); 7660 return emitReadCycleWidePseudo(MI, BB); 7661 case RISCV::Select_GPR_Using_CC_GPR: 7662 case RISCV::Select_FPR16_Using_CC_GPR: 7663 case RISCV::Select_FPR32_Using_CC_GPR: 7664 case RISCV::Select_FPR64_Using_CC_GPR: 7665 return emitSelectPseudo(MI, BB, Subtarget); 7666 case RISCV::BuildPairF64Pseudo: 7667 return emitBuildPairF64Pseudo(MI, BB); 7668 case RISCV::SplitF64Pseudo: 7669 return emitSplitF64Pseudo(MI, BB); 7670 } 7671 } 7672 7673 // Calling Convention Implementation. 7674 // The expectations for frontend ABI lowering vary from target to target. 7675 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7676 // details, but this is a longer term goal. For now, we simply try to keep the 7677 // role of the frontend as simple and well-defined as possible. The rules can 7678 // be summarised as: 7679 // * Never split up large scalar arguments. We handle them here. 7680 // * If a hardfloat calling convention is being used, and the struct may be 7681 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7682 // available, then pass as two separate arguments. If either the GPRs or FPRs 7683 // are exhausted, then pass according to the rule below. 7684 // * If a struct could never be passed in registers or directly in a stack 7685 // slot (as it is larger than 2*XLEN and the floating point rules don't 7686 // apply), then pass it using a pointer with the byval attribute. 7687 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7688 // word-sized array or a 2*XLEN scalar (depending on alignment). 7689 // * The frontend can determine whether a struct is returned by reference or 7690 // not based on its size and fields. If it will be returned by reference, the 7691 // frontend must modify the prototype so a pointer with the sret annotation is 7692 // passed as the first argument. This is not necessary for large scalar 7693 // returns. 7694 // * Struct return values and varargs should be coerced to structs containing 7695 // register-size fields in the same situations they would be for fixed 7696 // arguments. 7697 7698 static const MCPhysReg ArgGPRs[] = { 7699 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7700 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7701 }; 7702 static const MCPhysReg ArgFPR16s[] = { 7703 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7704 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7705 }; 7706 static const MCPhysReg ArgFPR32s[] = { 7707 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7708 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7709 }; 7710 static const MCPhysReg ArgFPR64s[] = { 7711 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7712 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7713 }; 7714 // This is an interim calling convention and it may be changed in the future. 7715 static const MCPhysReg ArgVRs[] = { 7716 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7717 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7718 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7719 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7720 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7721 RISCV::V20M2, RISCV::V22M2}; 7722 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7723 RISCV::V20M4}; 7724 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7725 7726 // Pass a 2*XLEN argument that has been split into two XLEN values through 7727 // registers or the stack as necessary. 7728 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7729 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7730 MVT ValVT2, MVT LocVT2, 7731 ISD::ArgFlagsTy ArgFlags2) { 7732 unsigned XLenInBytes = XLen / 8; 7733 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7734 // At least one half can be passed via register. 7735 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7736 VA1.getLocVT(), CCValAssign::Full)); 7737 } else { 7738 // Both halves must be passed on the stack, with proper alignment. 7739 Align StackAlign = 7740 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7741 State.addLoc( 7742 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7743 State.AllocateStack(XLenInBytes, StackAlign), 7744 VA1.getLocVT(), CCValAssign::Full)); 7745 State.addLoc(CCValAssign::getMem( 7746 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7747 LocVT2, CCValAssign::Full)); 7748 return false; 7749 } 7750 7751 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7752 // The second half can also be passed via register. 7753 State.addLoc( 7754 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7755 } else { 7756 // The second half is passed via the stack, without additional alignment. 7757 State.addLoc(CCValAssign::getMem( 7758 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7759 LocVT2, CCValAssign::Full)); 7760 } 7761 7762 return false; 7763 } 7764 7765 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7766 Optional<unsigned> FirstMaskArgument, 7767 CCState &State, const RISCVTargetLowering &TLI) { 7768 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7769 if (RC == &RISCV::VRRegClass) { 7770 // Assign the first mask argument to V0. 7771 // This is an interim calling convention and it may be changed in the 7772 // future. 7773 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7774 return State.AllocateReg(RISCV::V0); 7775 return State.AllocateReg(ArgVRs); 7776 } 7777 if (RC == &RISCV::VRM2RegClass) 7778 return State.AllocateReg(ArgVRM2s); 7779 if (RC == &RISCV::VRM4RegClass) 7780 return State.AllocateReg(ArgVRM4s); 7781 if (RC == &RISCV::VRM8RegClass) 7782 return State.AllocateReg(ArgVRM8s); 7783 llvm_unreachable("Unhandled register class for ValueType"); 7784 } 7785 7786 // Implements the RISC-V calling convention. Returns true upon failure. 7787 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7788 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7789 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7790 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7791 Optional<unsigned> FirstMaskArgument) { 7792 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7793 assert(XLen == 32 || XLen == 64); 7794 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7795 7796 // Any return value split in to more than two values can't be returned 7797 // directly. Vectors are returned via the available vector registers. 7798 if (!LocVT.isVector() && IsRet && ValNo > 1) 7799 return true; 7800 7801 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7802 // variadic argument, or if no F16/F32 argument registers are available. 7803 bool UseGPRForF16_F32 = true; 7804 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7805 // variadic argument, or if no F64 argument registers are available. 7806 bool UseGPRForF64 = true; 7807 7808 switch (ABI) { 7809 default: 7810 llvm_unreachable("Unexpected ABI"); 7811 case RISCVABI::ABI_ILP32: 7812 case RISCVABI::ABI_LP64: 7813 break; 7814 case RISCVABI::ABI_ILP32F: 7815 case RISCVABI::ABI_LP64F: 7816 UseGPRForF16_F32 = !IsFixed; 7817 break; 7818 case RISCVABI::ABI_ILP32D: 7819 case RISCVABI::ABI_LP64D: 7820 UseGPRForF16_F32 = !IsFixed; 7821 UseGPRForF64 = !IsFixed; 7822 break; 7823 } 7824 7825 // FPR16, FPR32, and FPR64 alias each other. 7826 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7827 UseGPRForF16_F32 = true; 7828 UseGPRForF64 = true; 7829 } 7830 7831 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7832 // similar local variables rather than directly checking against the target 7833 // ABI. 7834 7835 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7836 LocVT = XLenVT; 7837 LocInfo = CCValAssign::BCvt; 7838 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7839 LocVT = MVT::i64; 7840 LocInfo = CCValAssign::BCvt; 7841 } 7842 7843 // If this is a variadic argument, the RISC-V calling convention requires 7844 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7845 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7846 // be used regardless of whether the original argument was split during 7847 // legalisation or not. The argument will not be passed by registers if the 7848 // original type is larger than 2*XLEN, so the register alignment rule does 7849 // not apply. 7850 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7851 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7852 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7853 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7854 // Skip 'odd' register if necessary. 7855 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7856 State.AllocateReg(ArgGPRs); 7857 } 7858 7859 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7860 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7861 State.getPendingArgFlags(); 7862 7863 assert(PendingLocs.size() == PendingArgFlags.size() && 7864 "PendingLocs and PendingArgFlags out of sync"); 7865 7866 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7867 // registers are exhausted. 7868 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7869 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7870 "Can't lower f64 if it is split"); 7871 // Depending on available argument GPRS, f64 may be passed in a pair of 7872 // GPRs, split between a GPR and the stack, or passed completely on the 7873 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7874 // cases. 7875 Register Reg = State.AllocateReg(ArgGPRs); 7876 LocVT = MVT::i32; 7877 if (!Reg) { 7878 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7879 State.addLoc( 7880 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7881 return false; 7882 } 7883 if (!State.AllocateReg(ArgGPRs)) 7884 State.AllocateStack(4, Align(4)); 7885 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7886 return false; 7887 } 7888 7889 // Fixed-length vectors are located in the corresponding scalable-vector 7890 // container types. 7891 if (ValVT.isFixedLengthVector()) 7892 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7893 7894 // Split arguments might be passed indirectly, so keep track of the pending 7895 // values. Split vectors are passed via a mix of registers and indirectly, so 7896 // treat them as we would any other argument. 7897 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7898 LocVT = XLenVT; 7899 LocInfo = CCValAssign::Indirect; 7900 PendingLocs.push_back( 7901 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7902 PendingArgFlags.push_back(ArgFlags); 7903 if (!ArgFlags.isSplitEnd()) { 7904 return false; 7905 } 7906 } 7907 7908 // If the split argument only had two elements, it should be passed directly 7909 // in registers or on the stack. 7910 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7911 PendingLocs.size() <= 2) { 7912 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7913 // Apply the normal calling convention rules to the first half of the 7914 // split argument. 7915 CCValAssign VA = PendingLocs[0]; 7916 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7917 PendingLocs.clear(); 7918 PendingArgFlags.clear(); 7919 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7920 ArgFlags); 7921 } 7922 7923 // Allocate to a register if possible, or else a stack slot. 7924 Register Reg; 7925 unsigned StoreSizeBytes = XLen / 8; 7926 Align StackAlign = Align(XLen / 8); 7927 7928 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7929 Reg = State.AllocateReg(ArgFPR16s); 7930 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7931 Reg = State.AllocateReg(ArgFPR32s); 7932 else if (ValVT == MVT::f64 && !UseGPRForF64) 7933 Reg = State.AllocateReg(ArgFPR64s); 7934 else if (ValVT.isVector()) { 7935 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7936 if (!Reg) { 7937 // For return values, the vector must be passed fully via registers or 7938 // via the stack. 7939 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7940 // but we're using all of them. 7941 if (IsRet) 7942 return true; 7943 // Try using a GPR to pass the address 7944 if ((Reg = State.AllocateReg(ArgGPRs))) { 7945 LocVT = XLenVT; 7946 LocInfo = CCValAssign::Indirect; 7947 } else if (ValVT.isScalableVector()) { 7948 report_fatal_error("Unable to pass scalable vector types on the stack"); 7949 } else { 7950 // Pass fixed-length vectors on the stack. 7951 LocVT = ValVT; 7952 StoreSizeBytes = ValVT.getStoreSize(); 7953 // Align vectors to their element sizes, being careful for vXi1 7954 // vectors. 7955 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7956 } 7957 } 7958 } else { 7959 Reg = State.AllocateReg(ArgGPRs); 7960 } 7961 7962 unsigned StackOffset = 7963 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7964 7965 // If we reach this point and PendingLocs is non-empty, we must be at the 7966 // end of a split argument that must be passed indirectly. 7967 if (!PendingLocs.empty()) { 7968 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7969 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7970 7971 for (auto &It : PendingLocs) { 7972 if (Reg) 7973 It.convertToReg(Reg); 7974 else 7975 It.convertToMem(StackOffset); 7976 State.addLoc(It); 7977 } 7978 PendingLocs.clear(); 7979 PendingArgFlags.clear(); 7980 return false; 7981 } 7982 7983 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7984 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7985 "Expected an XLenVT or vector types at this stage"); 7986 7987 if (Reg) { 7988 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7989 return false; 7990 } 7991 7992 // When a floating-point value is passed on the stack, no bit-conversion is 7993 // needed. 7994 if (ValVT.isFloatingPoint()) { 7995 LocVT = ValVT; 7996 LocInfo = CCValAssign::Full; 7997 } 7998 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7999 return false; 8000 } 8001 8002 template <typename ArgTy> 8003 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 8004 for (const auto &ArgIdx : enumerate(Args)) { 8005 MVT ArgVT = ArgIdx.value().VT; 8006 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 8007 return ArgIdx.index(); 8008 } 8009 return None; 8010 } 8011 8012 void RISCVTargetLowering::analyzeInputArgs( 8013 MachineFunction &MF, CCState &CCInfo, 8014 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 8015 RISCVCCAssignFn Fn) const { 8016 unsigned NumArgs = Ins.size(); 8017 FunctionType *FType = MF.getFunction().getFunctionType(); 8018 8019 Optional<unsigned> FirstMaskArgument; 8020 if (Subtarget.hasStdExtV()) 8021 FirstMaskArgument = preAssignMask(Ins); 8022 8023 for (unsigned i = 0; i != NumArgs; ++i) { 8024 MVT ArgVT = Ins[i].VT; 8025 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 8026 8027 Type *ArgTy = nullptr; 8028 if (IsRet) 8029 ArgTy = FType->getReturnType(); 8030 else if (Ins[i].isOrigArg()) 8031 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 8032 8033 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8034 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8035 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 8036 FirstMaskArgument)) { 8037 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 8038 << EVT(ArgVT).getEVTString() << '\n'); 8039 llvm_unreachable(nullptr); 8040 } 8041 } 8042 } 8043 8044 void RISCVTargetLowering::analyzeOutputArgs( 8045 MachineFunction &MF, CCState &CCInfo, 8046 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 8047 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 8048 unsigned NumArgs = Outs.size(); 8049 8050 Optional<unsigned> FirstMaskArgument; 8051 if (Subtarget.hasStdExtV()) 8052 FirstMaskArgument = preAssignMask(Outs); 8053 8054 for (unsigned i = 0; i != NumArgs; i++) { 8055 MVT ArgVT = Outs[i].VT; 8056 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8057 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 8058 8059 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8060 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 8061 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 8062 FirstMaskArgument)) { 8063 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 8064 << EVT(ArgVT).getEVTString() << "\n"); 8065 llvm_unreachable(nullptr); 8066 } 8067 } 8068 } 8069 8070 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 8071 // values. 8072 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 8073 const CCValAssign &VA, const SDLoc &DL, 8074 const RISCVSubtarget &Subtarget) { 8075 switch (VA.getLocInfo()) { 8076 default: 8077 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8078 case CCValAssign::Full: 8079 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 8080 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 8081 break; 8082 case CCValAssign::BCvt: 8083 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8084 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 8085 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8086 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 8087 else 8088 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 8089 break; 8090 } 8091 return Val; 8092 } 8093 8094 // The caller is responsible for loading the full value if the argument is 8095 // passed with CCValAssign::Indirect. 8096 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 8097 const CCValAssign &VA, const SDLoc &DL, 8098 const RISCVTargetLowering &TLI) { 8099 MachineFunction &MF = DAG.getMachineFunction(); 8100 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8101 EVT LocVT = VA.getLocVT(); 8102 SDValue Val; 8103 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 8104 Register VReg = RegInfo.createVirtualRegister(RC); 8105 RegInfo.addLiveIn(VA.getLocReg(), VReg); 8106 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 8107 8108 if (VA.getLocInfo() == CCValAssign::Indirect) 8109 return Val; 8110 8111 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 8112 } 8113 8114 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 8115 const CCValAssign &VA, const SDLoc &DL, 8116 const RISCVSubtarget &Subtarget) { 8117 EVT LocVT = VA.getLocVT(); 8118 8119 switch (VA.getLocInfo()) { 8120 default: 8121 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8122 case CCValAssign::Full: 8123 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 8124 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 8125 break; 8126 case CCValAssign::BCvt: 8127 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 8128 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 8129 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 8130 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 8131 else 8132 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 8133 break; 8134 } 8135 return Val; 8136 } 8137 8138 // The caller is responsible for loading the full value if the argument is 8139 // passed with CCValAssign::Indirect. 8140 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 8141 const CCValAssign &VA, const SDLoc &DL) { 8142 MachineFunction &MF = DAG.getMachineFunction(); 8143 MachineFrameInfo &MFI = MF.getFrameInfo(); 8144 EVT LocVT = VA.getLocVT(); 8145 EVT ValVT = VA.getValVT(); 8146 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 8147 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 8148 /*Immutable=*/true); 8149 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 8150 SDValue Val; 8151 8152 ISD::LoadExtType ExtType; 8153 switch (VA.getLocInfo()) { 8154 default: 8155 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 8156 case CCValAssign::Full: 8157 case CCValAssign::Indirect: 8158 case CCValAssign::BCvt: 8159 ExtType = ISD::NON_EXTLOAD; 8160 break; 8161 } 8162 Val = DAG.getExtLoad( 8163 ExtType, DL, LocVT, Chain, FIN, 8164 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 8165 return Val; 8166 } 8167 8168 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 8169 const CCValAssign &VA, const SDLoc &DL) { 8170 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 8171 "Unexpected VA"); 8172 MachineFunction &MF = DAG.getMachineFunction(); 8173 MachineFrameInfo &MFI = MF.getFrameInfo(); 8174 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8175 8176 if (VA.isMemLoc()) { 8177 // f64 is passed on the stack. 8178 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 8179 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8180 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 8181 MachinePointerInfo::getFixedStack(MF, FI)); 8182 } 8183 8184 assert(VA.isRegLoc() && "Expected register VA assignment"); 8185 8186 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8187 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 8188 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 8189 SDValue Hi; 8190 if (VA.getLocReg() == RISCV::X17) { 8191 // Second half of f64 is passed on the stack. 8192 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 8193 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 8194 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 8195 MachinePointerInfo::getFixedStack(MF, FI)); 8196 } else { 8197 // Second half of f64 is passed in another GPR. 8198 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 8199 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 8200 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 8201 } 8202 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 8203 } 8204 8205 // FastCC has less than 1% performance improvement for some particular 8206 // benchmark. But theoretically, it may has benenfit for some cases. 8207 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 8208 unsigned ValNo, MVT ValVT, MVT LocVT, 8209 CCValAssign::LocInfo LocInfo, 8210 ISD::ArgFlagsTy ArgFlags, CCState &State, 8211 bool IsFixed, bool IsRet, Type *OrigTy, 8212 const RISCVTargetLowering &TLI, 8213 Optional<unsigned> FirstMaskArgument) { 8214 8215 // X5 and X6 might be used for save-restore libcall. 8216 static const MCPhysReg GPRList[] = { 8217 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 8218 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 8219 RISCV::X29, RISCV::X30, RISCV::X31}; 8220 8221 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8222 if (unsigned Reg = State.AllocateReg(GPRList)) { 8223 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8224 return false; 8225 } 8226 } 8227 8228 if (LocVT == MVT::f16) { 8229 static const MCPhysReg FPR16List[] = { 8230 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 8231 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 8232 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 8233 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 8234 if (unsigned Reg = State.AllocateReg(FPR16List)) { 8235 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8236 return false; 8237 } 8238 } 8239 8240 if (LocVT == MVT::f32) { 8241 static const MCPhysReg FPR32List[] = { 8242 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 8243 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 8244 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 8245 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 8246 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8247 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8248 return false; 8249 } 8250 } 8251 8252 if (LocVT == MVT::f64) { 8253 static const MCPhysReg FPR64List[] = { 8254 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 8255 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 8256 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 8257 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 8258 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8259 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8260 return false; 8261 } 8262 } 8263 8264 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 8265 unsigned Offset4 = State.AllocateStack(4, Align(4)); 8266 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 8267 return false; 8268 } 8269 8270 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 8271 unsigned Offset5 = State.AllocateStack(8, Align(8)); 8272 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 8273 return false; 8274 } 8275 8276 if (LocVT.isVector()) { 8277 if (unsigned Reg = 8278 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 8279 // Fixed-length vectors are located in the corresponding scalable-vector 8280 // container types. 8281 if (ValVT.isFixedLengthVector()) 8282 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 8283 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8284 } else { 8285 // Try and pass the address via a "fast" GPR. 8286 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 8287 LocInfo = CCValAssign::Indirect; 8288 LocVT = TLI.getSubtarget().getXLenVT(); 8289 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 8290 } else if (ValVT.isFixedLengthVector()) { 8291 auto StackAlign = 8292 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 8293 unsigned StackOffset = 8294 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 8295 State.addLoc( 8296 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 8297 } else { 8298 // Can't pass scalable vectors on the stack. 8299 return true; 8300 } 8301 } 8302 8303 return false; 8304 } 8305 8306 return true; // CC didn't match. 8307 } 8308 8309 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 8310 CCValAssign::LocInfo LocInfo, 8311 ISD::ArgFlagsTy ArgFlags, CCState &State) { 8312 8313 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 8314 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 8315 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 8316 static const MCPhysReg GPRList[] = { 8317 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 8318 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 8319 if (unsigned Reg = State.AllocateReg(GPRList)) { 8320 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8321 return false; 8322 } 8323 } 8324 8325 if (LocVT == MVT::f32) { 8326 // Pass in STG registers: F1, ..., F6 8327 // fs0 ... fs5 8328 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 8329 RISCV::F18_F, RISCV::F19_F, 8330 RISCV::F20_F, RISCV::F21_F}; 8331 if (unsigned Reg = State.AllocateReg(FPR32List)) { 8332 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8333 return false; 8334 } 8335 } 8336 8337 if (LocVT == MVT::f64) { 8338 // Pass in STG registers: D1, ..., D6 8339 // fs6 ... fs11 8340 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 8341 RISCV::F24_D, RISCV::F25_D, 8342 RISCV::F26_D, RISCV::F27_D}; 8343 if (unsigned Reg = State.AllocateReg(FPR64List)) { 8344 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 8345 return false; 8346 } 8347 } 8348 8349 report_fatal_error("No registers left in GHC calling convention"); 8350 return true; 8351 } 8352 8353 // Transform physical registers into virtual registers. 8354 SDValue RISCVTargetLowering::LowerFormalArguments( 8355 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 8356 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 8357 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 8358 8359 MachineFunction &MF = DAG.getMachineFunction(); 8360 8361 switch (CallConv) { 8362 default: 8363 report_fatal_error("Unsupported calling convention"); 8364 case CallingConv::C: 8365 case CallingConv::Fast: 8366 break; 8367 case CallingConv::GHC: 8368 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 8369 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 8370 report_fatal_error( 8371 "GHC calling convention requires the F and D instruction set extensions"); 8372 } 8373 8374 const Function &Func = MF.getFunction(); 8375 if (Func.hasFnAttribute("interrupt")) { 8376 if (!Func.arg_empty()) 8377 report_fatal_error( 8378 "Functions with the interrupt attribute cannot have arguments!"); 8379 8380 StringRef Kind = 8381 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8382 8383 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 8384 report_fatal_error( 8385 "Function interrupt attribute argument not supported!"); 8386 } 8387 8388 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8389 MVT XLenVT = Subtarget.getXLenVT(); 8390 unsigned XLenInBytes = Subtarget.getXLen() / 8; 8391 // Used with vargs to acumulate store chains. 8392 std::vector<SDValue> OutChains; 8393 8394 // Assign locations to all of the incoming arguments. 8395 SmallVector<CCValAssign, 16> ArgLocs; 8396 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8397 8398 if (CallConv == CallingConv::GHC) 8399 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 8400 else 8401 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 8402 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8403 : CC_RISCV); 8404 8405 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 8406 CCValAssign &VA = ArgLocs[i]; 8407 SDValue ArgValue; 8408 // Passing f64 on RV32D with a soft float ABI must be handled as a special 8409 // case. 8410 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 8411 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 8412 else if (VA.isRegLoc()) 8413 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 8414 else 8415 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 8416 8417 if (VA.getLocInfo() == CCValAssign::Indirect) { 8418 // If the original argument was split and passed by reference (e.g. i128 8419 // on RV32), we need to load all parts of it here (using the same 8420 // address). Vectors may be partly split to registers and partly to the 8421 // stack, in which case the base address is partly offset and subsequent 8422 // stores are relative to that. 8423 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 8424 MachinePointerInfo())); 8425 unsigned ArgIndex = Ins[i].OrigArgIndex; 8426 unsigned ArgPartOffset = Ins[i].PartOffset; 8427 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8428 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 8429 CCValAssign &PartVA = ArgLocs[i + 1]; 8430 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 8431 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8432 if (PartVA.getValVT().isScalableVector()) 8433 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8434 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 8435 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 8436 MachinePointerInfo())); 8437 ++i; 8438 } 8439 continue; 8440 } 8441 InVals.push_back(ArgValue); 8442 } 8443 8444 if (IsVarArg) { 8445 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 8446 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 8447 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 8448 MachineFrameInfo &MFI = MF.getFrameInfo(); 8449 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8450 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 8451 8452 // Offset of the first variable argument from stack pointer, and size of 8453 // the vararg save area. For now, the varargs save area is either zero or 8454 // large enough to hold a0-a7. 8455 int VaArgOffset, VarArgsSaveSize; 8456 8457 // If all registers are allocated, then all varargs must be passed on the 8458 // stack and we don't need to save any argregs. 8459 if (ArgRegs.size() == Idx) { 8460 VaArgOffset = CCInfo.getNextStackOffset(); 8461 VarArgsSaveSize = 0; 8462 } else { 8463 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 8464 VaArgOffset = -VarArgsSaveSize; 8465 } 8466 8467 // Record the frame index of the first variable argument 8468 // which is a value necessary to VASTART. 8469 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8470 RVFI->setVarArgsFrameIndex(FI); 8471 8472 // If saving an odd number of registers then create an extra stack slot to 8473 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 8474 // offsets to even-numbered registered remain 2*XLEN-aligned. 8475 if (Idx % 2) { 8476 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 8477 VarArgsSaveSize += XLenInBytes; 8478 } 8479 8480 // Copy the integer registers that may have been used for passing varargs 8481 // to the vararg save area. 8482 for (unsigned I = Idx; I < ArgRegs.size(); 8483 ++I, VaArgOffset += XLenInBytes) { 8484 const Register Reg = RegInfo.createVirtualRegister(RC); 8485 RegInfo.addLiveIn(ArgRegs[I], Reg); 8486 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 8487 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 8488 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8489 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 8490 MachinePointerInfo::getFixedStack(MF, FI)); 8491 cast<StoreSDNode>(Store.getNode()) 8492 ->getMemOperand() 8493 ->setValue((Value *)nullptr); 8494 OutChains.push_back(Store); 8495 } 8496 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 8497 } 8498 8499 // All stores are grouped in one node to allow the matching between 8500 // the size of Ins and InVals. This only happens for vararg functions. 8501 if (!OutChains.empty()) { 8502 OutChains.push_back(Chain); 8503 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 8504 } 8505 8506 return Chain; 8507 } 8508 8509 /// isEligibleForTailCallOptimization - Check whether the call is eligible 8510 /// for tail call optimization. 8511 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 8512 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 8513 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 8514 const SmallVector<CCValAssign, 16> &ArgLocs) const { 8515 8516 auto &Callee = CLI.Callee; 8517 auto CalleeCC = CLI.CallConv; 8518 auto &Outs = CLI.Outs; 8519 auto &Caller = MF.getFunction(); 8520 auto CallerCC = Caller.getCallingConv(); 8521 8522 // Exception-handling functions need a special set of instructions to 8523 // indicate a return to the hardware. Tail-calling another function would 8524 // probably break this. 8525 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 8526 // should be expanded as new function attributes are introduced. 8527 if (Caller.hasFnAttribute("interrupt")) 8528 return false; 8529 8530 // Do not tail call opt if the stack is used to pass parameters. 8531 if (CCInfo.getNextStackOffset() != 0) 8532 return false; 8533 8534 // Do not tail call opt if any parameters need to be passed indirectly. 8535 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 8536 // passed indirectly. So the address of the value will be passed in a 8537 // register, or if not available, then the address is put on the stack. In 8538 // order to pass indirectly, space on the stack often needs to be allocated 8539 // in order to store the value. In this case the CCInfo.getNextStackOffset() 8540 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 8541 // are passed CCValAssign::Indirect. 8542 for (auto &VA : ArgLocs) 8543 if (VA.getLocInfo() == CCValAssign::Indirect) 8544 return false; 8545 8546 // Do not tail call opt if either caller or callee uses struct return 8547 // semantics. 8548 auto IsCallerStructRet = Caller.hasStructRetAttr(); 8549 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 8550 if (IsCallerStructRet || IsCalleeStructRet) 8551 return false; 8552 8553 // Externally-defined functions with weak linkage should not be 8554 // tail-called. The behaviour of branch instructions in this situation (as 8555 // used for tail calls) is implementation-defined, so we cannot rely on the 8556 // linker replacing the tail call with a return. 8557 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 8558 const GlobalValue *GV = G->getGlobal(); 8559 if (GV->hasExternalWeakLinkage()) 8560 return false; 8561 } 8562 8563 // The callee has to preserve all registers the caller needs to preserve. 8564 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8565 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 8566 if (CalleeCC != CallerCC) { 8567 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 8568 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 8569 return false; 8570 } 8571 8572 // Byval parameters hand the function a pointer directly into the stack area 8573 // we want to reuse during a tail call. Working around this *is* possible 8574 // but less efficient and uglier in LowerCall. 8575 for (auto &Arg : Outs) 8576 if (Arg.Flags.isByVal()) 8577 return false; 8578 8579 return true; 8580 } 8581 8582 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 8583 return DAG.getDataLayout().getPrefTypeAlign( 8584 VT.getTypeForEVT(*DAG.getContext())); 8585 } 8586 8587 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 8588 // and output parameter nodes. 8589 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 8590 SmallVectorImpl<SDValue> &InVals) const { 8591 SelectionDAG &DAG = CLI.DAG; 8592 SDLoc &DL = CLI.DL; 8593 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 8594 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 8595 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 8596 SDValue Chain = CLI.Chain; 8597 SDValue Callee = CLI.Callee; 8598 bool &IsTailCall = CLI.IsTailCall; 8599 CallingConv::ID CallConv = CLI.CallConv; 8600 bool IsVarArg = CLI.IsVarArg; 8601 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8602 MVT XLenVT = Subtarget.getXLenVT(); 8603 8604 MachineFunction &MF = DAG.getMachineFunction(); 8605 8606 // Analyze the operands of the call, assigning locations to each operand. 8607 SmallVector<CCValAssign, 16> ArgLocs; 8608 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8609 8610 if (CallConv == CallingConv::GHC) 8611 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8612 else 8613 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8614 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8615 : CC_RISCV); 8616 8617 // Check if it's really possible to do a tail call. 8618 if (IsTailCall) 8619 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8620 8621 if (IsTailCall) 8622 ++NumTailCalls; 8623 else if (CLI.CB && CLI.CB->isMustTailCall()) 8624 report_fatal_error("failed to perform tail call elimination on a call " 8625 "site marked musttail"); 8626 8627 // Get a count of how many bytes are to be pushed on the stack. 8628 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8629 8630 // Create local copies for byval args 8631 SmallVector<SDValue, 8> ByValArgs; 8632 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8633 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8634 if (!Flags.isByVal()) 8635 continue; 8636 8637 SDValue Arg = OutVals[i]; 8638 unsigned Size = Flags.getByValSize(); 8639 Align Alignment = Flags.getNonZeroByValAlign(); 8640 8641 int FI = 8642 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8643 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8644 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8645 8646 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8647 /*IsVolatile=*/false, 8648 /*AlwaysInline=*/false, IsTailCall, 8649 MachinePointerInfo(), MachinePointerInfo()); 8650 ByValArgs.push_back(FIPtr); 8651 } 8652 8653 if (!IsTailCall) 8654 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8655 8656 // Copy argument values to their designated locations. 8657 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8658 SmallVector<SDValue, 8> MemOpChains; 8659 SDValue StackPtr; 8660 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8661 CCValAssign &VA = ArgLocs[i]; 8662 SDValue ArgValue = OutVals[i]; 8663 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8664 8665 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8666 bool IsF64OnRV32DSoftABI = 8667 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8668 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8669 SDValue SplitF64 = DAG.getNode( 8670 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8671 SDValue Lo = SplitF64.getValue(0); 8672 SDValue Hi = SplitF64.getValue(1); 8673 8674 Register RegLo = VA.getLocReg(); 8675 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8676 8677 if (RegLo == RISCV::X17) { 8678 // Second half of f64 is passed on the stack. 8679 // Work out the address of the stack slot. 8680 if (!StackPtr.getNode()) 8681 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8682 // Emit the store. 8683 MemOpChains.push_back( 8684 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8685 } else { 8686 // Second half of f64 is passed in another GPR. 8687 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8688 Register RegHigh = RegLo + 1; 8689 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8690 } 8691 continue; 8692 } 8693 8694 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8695 // as any other MemLoc. 8696 8697 // Promote the value if needed. 8698 // For now, only handle fully promoted and indirect arguments. 8699 if (VA.getLocInfo() == CCValAssign::Indirect) { 8700 // Store the argument in a stack slot and pass its address. 8701 Align StackAlign = 8702 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8703 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8704 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8705 // If the original argument was split (e.g. i128), we need 8706 // to store the required parts of it here (and pass just one address). 8707 // Vectors may be partly split to registers and partly to the stack, in 8708 // which case the base address is partly offset and subsequent stores are 8709 // relative to that. 8710 unsigned ArgIndex = Outs[i].OrigArgIndex; 8711 unsigned ArgPartOffset = Outs[i].PartOffset; 8712 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8713 // Calculate the total size to store. We don't have access to what we're 8714 // actually storing other than performing the loop and collecting the 8715 // info. 8716 SmallVector<std::pair<SDValue, SDValue>> Parts; 8717 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8718 SDValue PartValue = OutVals[i + 1]; 8719 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8720 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8721 EVT PartVT = PartValue.getValueType(); 8722 if (PartVT.isScalableVector()) 8723 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8724 StoredSize += PartVT.getStoreSize(); 8725 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8726 Parts.push_back(std::make_pair(PartValue, Offset)); 8727 ++i; 8728 } 8729 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8730 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8731 MemOpChains.push_back( 8732 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8733 MachinePointerInfo::getFixedStack(MF, FI))); 8734 for (const auto &Part : Parts) { 8735 SDValue PartValue = Part.first; 8736 SDValue PartOffset = Part.second; 8737 SDValue Address = 8738 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8739 MemOpChains.push_back( 8740 DAG.getStore(Chain, DL, PartValue, Address, 8741 MachinePointerInfo::getFixedStack(MF, FI))); 8742 } 8743 ArgValue = SpillSlot; 8744 } else { 8745 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8746 } 8747 8748 // Use local copy if it is a byval arg. 8749 if (Flags.isByVal()) 8750 ArgValue = ByValArgs[j++]; 8751 8752 if (VA.isRegLoc()) { 8753 // Queue up the argument copies and emit them at the end. 8754 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8755 } else { 8756 assert(VA.isMemLoc() && "Argument not register or memory"); 8757 assert(!IsTailCall && "Tail call not allowed if stack is used " 8758 "for passing parameters"); 8759 8760 // Work out the address of the stack slot. 8761 if (!StackPtr.getNode()) 8762 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8763 SDValue Address = 8764 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8765 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8766 8767 // Emit the store. 8768 MemOpChains.push_back( 8769 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8770 } 8771 } 8772 8773 // Join the stores, which are independent of one another. 8774 if (!MemOpChains.empty()) 8775 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8776 8777 SDValue Glue; 8778 8779 // Build a sequence of copy-to-reg nodes, chained and glued together. 8780 for (auto &Reg : RegsToPass) { 8781 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8782 Glue = Chain.getValue(1); 8783 } 8784 8785 // Validate that none of the argument registers have been marked as 8786 // reserved, if so report an error. Do the same for the return address if this 8787 // is not a tailcall. 8788 validateCCReservedRegs(RegsToPass, MF); 8789 if (!IsTailCall && 8790 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8791 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8792 MF.getFunction(), 8793 "Return address register required, but has been reserved."}); 8794 8795 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8796 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8797 // split it and then direct call can be matched by PseudoCALL. 8798 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8799 const GlobalValue *GV = S->getGlobal(); 8800 8801 unsigned OpFlags = RISCVII::MO_CALL; 8802 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8803 OpFlags = RISCVII::MO_PLT; 8804 8805 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8806 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8807 unsigned OpFlags = RISCVII::MO_CALL; 8808 8809 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8810 nullptr)) 8811 OpFlags = RISCVII::MO_PLT; 8812 8813 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8814 } 8815 8816 // The first call operand is the chain and the second is the target address. 8817 SmallVector<SDValue, 8> Ops; 8818 Ops.push_back(Chain); 8819 Ops.push_back(Callee); 8820 8821 // Add argument registers to the end of the list so that they are 8822 // known live into the call. 8823 for (auto &Reg : RegsToPass) 8824 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8825 8826 if (!IsTailCall) { 8827 // Add a register mask operand representing the call-preserved registers. 8828 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8829 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8830 assert(Mask && "Missing call preserved mask for calling convention"); 8831 Ops.push_back(DAG.getRegisterMask(Mask)); 8832 } 8833 8834 // Glue the call to the argument copies, if any. 8835 if (Glue.getNode()) 8836 Ops.push_back(Glue); 8837 8838 // Emit the call. 8839 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8840 8841 if (IsTailCall) { 8842 MF.getFrameInfo().setHasTailCall(); 8843 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8844 } 8845 8846 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8847 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8848 Glue = Chain.getValue(1); 8849 8850 // Mark the end of the call, which is glued to the call itself. 8851 Chain = DAG.getCALLSEQ_END(Chain, 8852 DAG.getConstant(NumBytes, DL, PtrVT, true), 8853 DAG.getConstant(0, DL, PtrVT, true), 8854 Glue, DL); 8855 Glue = Chain.getValue(1); 8856 8857 // Assign locations to each value returned by this call. 8858 SmallVector<CCValAssign, 16> RVLocs; 8859 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8860 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8861 8862 // Copy all of the result registers out of their specified physreg. 8863 for (auto &VA : RVLocs) { 8864 // Copy the value out 8865 SDValue RetValue = 8866 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8867 // Glue the RetValue to the end of the call sequence 8868 Chain = RetValue.getValue(1); 8869 Glue = RetValue.getValue(2); 8870 8871 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8872 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8873 SDValue RetValue2 = 8874 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8875 Chain = RetValue2.getValue(1); 8876 Glue = RetValue2.getValue(2); 8877 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8878 RetValue2); 8879 } 8880 8881 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8882 8883 InVals.push_back(RetValue); 8884 } 8885 8886 return Chain; 8887 } 8888 8889 bool RISCVTargetLowering::CanLowerReturn( 8890 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8891 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8892 SmallVector<CCValAssign, 16> RVLocs; 8893 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8894 8895 Optional<unsigned> FirstMaskArgument; 8896 if (Subtarget.hasStdExtV()) 8897 FirstMaskArgument = preAssignMask(Outs); 8898 8899 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8900 MVT VT = Outs[i].VT; 8901 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8902 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8903 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8904 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8905 *this, FirstMaskArgument)) 8906 return false; 8907 } 8908 return true; 8909 } 8910 8911 SDValue 8912 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8913 bool IsVarArg, 8914 const SmallVectorImpl<ISD::OutputArg> &Outs, 8915 const SmallVectorImpl<SDValue> &OutVals, 8916 const SDLoc &DL, SelectionDAG &DAG) const { 8917 const MachineFunction &MF = DAG.getMachineFunction(); 8918 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8919 8920 // Stores the assignment of the return value to a location. 8921 SmallVector<CCValAssign, 16> RVLocs; 8922 8923 // Info about the registers and stack slot. 8924 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8925 *DAG.getContext()); 8926 8927 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8928 nullptr, CC_RISCV); 8929 8930 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8931 report_fatal_error("GHC functions return void only"); 8932 8933 SDValue Glue; 8934 SmallVector<SDValue, 4> RetOps(1, Chain); 8935 8936 // Copy the result values into the output registers. 8937 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8938 SDValue Val = OutVals[i]; 8939 CCValAssign &VA = RVLocs[i]; 8940 assert(VA.isRegLoc() && "Can only return in registers!"); 8941 8942 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8943 // Handle returning f64 on RV32D with a soft float ABI. 8944 assert(VA.isRegLoc() && "Expected return via registers"); 8945 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8946 DAG.getVTList(MVT::i32, MVT::i32), Val); 8947 SDValue Lo = SplitF64.getValue(0); 8948 SDValue Hi = SplitF64.getValue(1); 8949 Register RegLo = VA.getLocReg(); 8950 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8951 Register RegHi = RegLo + 1; 8952 8953 if (STI.isRegisterReservedByUser(RegLo) || 8954 STI.isRegisterReservedByUser(RegHi)) 8955 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8956 MF.getFunction(), 8957 "Return value register required, but has been reserved."}); 8958 8959 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8960 Glue = Chain.getValue(1); 8961 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8962 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8963 Glue = Chain.getValue(1); 8964 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8965 } else { 8966 // Handle a 'normal' return. 8967 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8968 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8969 8970 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8971 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8972 MF.getFunction(), 8973 "Return value register required, but has been reserved."}); 8974 8975 // Guarantee that all emitted copies are stuck together. 8976 Glue = Chain.getValue(1); 8977 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8978 } 8979 } 8980 8981 RetOps[0] = Chain; // Update chain. 8982 8983 // Add the glue node if we have it. 8984 if (Glue.getNode()) { 8985 RetOps.push_back(Glue); 8986 } 8987 8988 unsigned RetOpc = RISCVISD::RET_FLAG; 8989 // Interrupt service routines use different return instructions. 8990 const Function &Func = DAG.getMachineFunction().getFunction(); 8991 if (Func.hasFnAttribute("interrupt")) { 8992 if (!Func.getReturnType()->isVoidTy()) 8993 report_fatal_error( 8994 "Functions with the interrupt attribute must have void return type!"); 8995 8996 MachineFunction &MF = DAG.getMachineFunction(); 8997 StringRef Kind = 8998 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8999 9000 if (Kind == "user") 9001 RetOpc = RISCVISD::URET_FLAG; 9002 else if (Kind == "supervisor") 9003 RetOpc = RISCVISD::SRET_FLAG; 9004 else 9005 RetOpc = RISCVISD::MRET_FLAG; 9006 } 9007 9008 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 9009 } 9010 9011 void RISCVTargetLowering::validateCCReservedRegs( 9012 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 9013 MachineFunction &MF) const { 9014 const Function &F = MF.getFunction(); 9015 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 9016 9017 if (llvm::any_of(Regs, [&STI](auto Reg) { 9018 return STI.isRegisterReservedByUser(Reg.first); 9019 })) 9020 F.getContext().diagnose(DiagnosticInfoUnsupported{ 9021 F, "Argument register required, but has been reserved."}); 9022 } 9023 9024 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 9025 return CI->isTailCall(); 9026 } 9027 9028 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 9029 #define NODE_NAME_CASE(NODE) \ 9030 case RISCVISD::NODE: \ 9031 return "RISCVISD::" #NODE; 9032 // clang-format off 9033 switch ((RISCVISD::NodeType)Opcode) { 9034 case RISCVISD::FIRST_NUMBER: 9035 break; 9036 NODE_NAME_CASE(RET_FLAG) 9037 NODE_NAME_CASE(URET_FLAG) 9038 NODE_NAME_CASE(SRET_FLAG) 9039 NODE_NAME_CASE(MRET_FLAG) 9040 NODE_NAME_CASE(CALL) 9041 NODE_NAME_CASE(SELECT_CC) 9042 NODE_NAME_CASE(BR_CC) 9043 NODE_NAME_CASE(BuildPairF64) 9044 NODE_NAME_CASE(SplitF64) 9045 NODE_NAME_CASE(TAIL) 9046 NODE_NAME_CASE(MULHSU) 9047 NODE_NAME_CASE(SLLW) 9048 NODE_NAME_CASE(SRAW) 9049 NODE_NAME_CASE(SRLW) 9050 NODE_NAME_CASE(DIVW) 9051 NODE_NAME_CASE(DIVUW) 9052 NODE_NAME_CASE(REMUW) 9053 NODE_NAME_CASE(ROLW) 9054 NODE_NAME_CASE(RORW) 9055 NODE_NAME_CASE(CLZW) 9056 NODE_NAME_CASE(CTZW) 9057 NODE_NAME_CASE(FSLW) 9058 NODE_NAME_CASE(FSRW) 9059 NODE_NAME_CASE(FSL) 9060 NODE_NAME_CASE(FSR) 9061 NODE_NAME_CASE(FMV_H_X) 9062 NODE_NAME_CASE(FMV_X_ANYEXTH) 9063 NODE_NAME_CASE(FMV_W_X_RV64) 9064 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 9065 NODE_NAME_CASE(FCVT_X_RTZ) 9066 NODE_NAME_CASE(FCVT_XU_RTZ) 9067 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 9068 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 9069 NODE_NAME_CASE(READ_CYCLE_WIDE) 9070 NODE_NAME_CASE(GREV) 9071 NODE_NAME_CASE(GREVW) 9072 NODE_NAME_CASE(GORC) 9073 NODE_NAME_CASE(GORCW) 9074 NODE_NAME_CASE(SHFL) 9075 NODE_NAME_CASE(SHFLW) 9076 NODE_NAME_CASE(UNSHFL) 9077 NODE_NAME_CASE(UNSHFLW) 9078 NODE_NAME_CASE(BCOMPRESS) 9079 NODE_NAME_CASE(BCOMPRESSW) 9080 NODE_NAME_CASE(BDECOMPRESS) 9081 NODE_NAME_CASE(BDECOMPRESSW) 9082 NODE_NAME_CASE(VMV_V_X_VL) 9083 NODE_NAME_CASE(VFMV_V_F_VL) 9084 NODE_NAME_CASE(VMV_X_S) 9085 NODE_NAME_CASE(VMV_S_X_VL) 9086 NODE_NAME_CASE(VFMV_S_F_VL) 9087 NODE_NAME_CASE(SPLAT_VECTOR_I64) 9088 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 9089 NODE_NAME_CASE(READ_VLENB) 9090 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 9091 NODE_NAME_CASE(VSLIDEUP_VL) 9092 NODE_NAME_CASE(VSLIDE1UP_VL) 9093 NODE_NAME_CASE(VSLIDEDOWN_VL) 9094 NODE_NAME_CASE(VSLIDE1DOWN_VL) 9095 NODE_NAME_CASE(VID_VL) 9096 NODE_NAME_CASE(VFNCVT_ROD_VL) 9097 NODE_NAME_CASE(VECREDUCE_ADD_VL) 9098 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 9099 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 9100 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 9101 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 9102 NODE_NAME_CASE(VECREDUCE_AND_VL) 9103 NODE_NAME_CASE(VECREDUCE_OR_VL) 9104 NODE_NAME_CASE(VECREDUCE_XOR_VL) 9105 NODE_NAME_CASE(VECREDUCE_FADD_VL) 9106 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 9107 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 9108 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 9109 NODE_NAME_CASE(ADD_VL) 9110 NODE_NAME_CASE(AND_VL) 9111 NODE_NAME_CASE(MUL_VL) 9112 NODE_NAME_CASE(OR_VL) 9113 NODE_NAME_CASE(SDIV_VL) 9114 NODE_NAME_CASE(SHL_VL) 9115 NODE_NAME_CASE(SREM_VL) 9116 NODE_NAME_CASE(SRA_VL) 9117 NODE_NAME_CASE(SRL_VL) 9118 NODE_NAME_CASE(SUB_VL) 9119 NODE_NAME_CASE(UDIV_VL) 9120 NODE_NAME_CASE(UREM_VL) 9121 NODE_NAME_CASE(XOR_VL) 9122 NODE_NAME_CASE(SADDSAT_VL) 9123 NODE_NAME_CASE(UADDSAT_VL) 9124 NODE_NAME_CASE(SSUBSAT_VL) 9125 NODE_NAME_CASE(USUBSAT_VL) 9126 NODE_NAME_CASE(FADD_VL) 9127 NODE_NAME_CASE(FSUB_VL) 9128 NODE_NAME_CASE(FMUL_VL) 9129 NODE_NAME_CASE(FDIV_VL) 9130 NODE_NAME_CASE(FNEG_VL) 9131 NODE_NAME_CASE(FABS_VL) 9132 NODE_NAME_CASE(FSQRT_VL) 9133 NODE_NAME_CASE(FMA_VL) 9134 NODE_NAME_CASE(FCOPYSIGN_VL) 9135 NODE_NAME_CASE(SMIN_VL) 9136 NODE_NAME_CASE(SMAX_VL) 9137 NODE_NAME_CASE(UMIN_VL) 9138 NODE_NAME_CASE(UMAX_VL) 9139 NODE_NAME_CASE(FMINNUM_VL) 9140 NODE_NAME_CASE(FMAXNUM_VL) 9141 NODE_NAME_CASE(MULHS_VL) 9142 NODE_NAME_CASE(MULHU_VL) 9143 NODE_NAME_CASE(FP_TO_SINT_VL) 9144 NODE_NAME_CASE(FP_TO_UINT_VL) 9145 NODE_NAME_CASE(SINT_TO_FP_VL) 9146 NODE_NAME_CASE(UINT_TO_FP_VL) 9147 NODE_NAME_CASE(FP_EXTEND_VL) 9148 NODE_NAME_CASE(FP_ROUND_VL) 9149 NODE_NAME_CASE(VWMUL_VL) 9150 NODE_NAME_CASE(VWMULU_VL) 9151 NODE_NAME_CASE(SETCC_VL) 9152 NODE_NAME_CASE(VSELECT_VL) 9153 NODE_NAME_CASE(VMAND_VL) 9154 NODE_NAME_CASE(VMOR_VL) 9155 NODE_NAME_CASE(VMXOR_VL) 9156 NODE_NAME_CASE(VMCLR_VL) 9157 NODE_NAME_CASE(VMSET_VL) 9158 NODE_NAME_CASE(VRGATHER_VX_VL) 9159 NODE_NAME_CASE(VRGATHER_VV_VL) 9160 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 9161 NODE_NAME_CASE(VSEXT_VL) 9162 NODE_NAME_CASE(VZEXT_VL) 9163 NODE_NAME_CASE(VPOPC_VL) 9164 NODE_NAME_CASE(VLE_VL) 9165 NODE_NAME_CASE(VSE_VL) 9166 NODE_NAME_CASE(READ_CSR) 9167 NODE_NAME_CASE(WRITE_CSR) 9168 NODE_NAME_CASE(SWAP_CSR) 9169 } 9170 // clang-format on 9171 return nullptr; 9172 #undef NODE_NAME_CASE 9173 } 9174 9175 /// getConstraintType - Given a constraint letter, return the type of 9176 /// constraint it is for this target. 9177 RISCVTargetLowering::ConstraintType 9178 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 9179 if (Constraint.size() == 1) { 9180 switch (Constraint[0]) { 9181 default: 9182 break; 9183 case 'f': 9184 return C_RegisterClass; 9185 case 'I': 9186 case 'J': 9187 case 'K': 9188 return C_Immediate; 9189 case 'A': 9190 return C_Memory; 9191 case 'S': // A symbolic address 9192 return C_Other; 9193 } 9194 } else { 9195 if (Constraint == "vr" || Constraint == "vm") 9196 return C_RegisterClass; 9197 } 9198 return TargetLowering::getConstraintType(Constraint); 9199 } 9200 9201 std::pair<unsigned, const TargetRegisterClass *> 9202 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 9203 StringRef Constraint, 9204 MVT VT) const { 9205 // First, see if this is a constraint that directly corresponds to a 9206 // RISCV register class. 9207 if (Constraint.size() == 1) { 9208 switch (Constraint[0]) { 9209 case 'r': 9210 return std::make_pair(0U, &RISCV::GPRRegClass); 9211 case 'f': 9212 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 9213 return std::make_pair(0U, &RISCV::FPR16RegClass); 9214 if (Subtarget.hasStdExtF() && VT == MVT::f32) 9215 return std::make_pair(0U, &RISCV::FPR32RegClass); 9216 if (Subtarget.hasStdExtD() && VT == MVT::f64) 9217 return std::make_pair(0U, &RISCV::FPR64RegClass); 9218 break; 9219 default: 9220 break; 9221 } 9222 } else { 9223 if (Constraint == "vr") { 9224 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 9225 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9226 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 9227 return std::make_pair(0U, RC); 9228 } 9229 } else if (Constraint == "vm") { 9230 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9231 return std::make_pair(0U, &RISCV::VMRegClass); 9232 } 9233 } 9234 9235 // Clang will correctly decode the usage of register name aliases into their 9236 // official names. However, other frontends like `rustc` do not. This allows 9237 // users of these frontends to use the ABI names for registers in LLVM-style 9238 // register constraints. 9239 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 9240 .Case("{zero}", RISCV::X0) 9241 .Case("{ra}", RISCV::X1) 9242 .Case("{sp}", RISCV::X2) 9243 .Case("{gp}", RISCV::X3) 9244 .Case("{tp}", RISCV::X4) 9245 .Case("{t0}", RISCV::X5) 9246 .Case("{t1}", RISCV::X6) 9247 .Case("{t2}", RISCV::X7) 9248 .Cases("{s0}", "{fp}", RISCV::X8) 9249 .Case("{s1}", RISCV::X9) 9250 .Case("{a0}", RISCV::X10) 9251 .Case("{a1}", RISCV::X11) 9252 .Case("{a2}", RISCV::X12) 9253 .Case("{a3}", RISCV::X13) 9254 .Case("{a4}", RISCV::X14) 9255 .Case("{a5}", RISCV::X15) 9256 .Case("{a6}", RISCV::X16) 9257 .Case("{a7}", RISCV::X17) 9258 .Case("{s2}", RISCV::X18) 9259 .Case("{s3}", RISCV::X19) 9260 .Case("{s4}", RISCV::X20) 9261 .Case("{s5}", RISCV::X21) 9262 .Case("{s6}", RISCV::X22) 9263 .Case("{s7}", RISCV::X23) 9264 .Case("{s8}", RISCV::X24) 9265 .Case("{s9}", RISCV::X25) 9266 .Case("{s10}", RISCV::X26) 9267 .Case("{s11}", RISCV::X27) 9268 .Case("{t3}", RISCV::X28) 9269 .Case("{t4}", RISCV::X29) 9270 .Case("{t5}", RISCV::X30) 9271 .Case("{t6}", RISCV::X31) 9272 .Default(RISCV::NoRegister); 9273 if (XRegFromAlias != RISCV::NoRegister) 9274 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 9275 9276 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 9277 // TableGen record rather than the AsmName to choose registers for InlineAsm 9278 // constraints, plus we want to match those names to the widest floating point 9279 // register type available, manually select floating point registers here. 9280 // 9281 // The second case is the ABI name of the register, so that frontends can also 9282 // use the ABI names in register constraint lists. 9283 if (Subtarget.hasStdExtF()) { 9284 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 9285 .Cases("{f0}", "{ft0}", RISCV::F0_F) 9286 .Cases("{f1}", "{ft1}", RISCV::F1_F) 9287 .Cases("{f2}", "{ft2}", RISCV::F2_F) 9288 .Cases("{f3}", "{ft3}", RISCV::F3_F) 9289 .Cases("{f4}", "{ft4}", RISCV::F4_F) 9290 .Cases("{f5}", "{ft5}", RISCV::F5_F) 9291 .Cases("{f6}", "{ft6}", RISCV::F6_F) 9292 .Cases("{f7}", "{ft7}", RISCV::F7_F) 9293 .Cases("{f8}", "{fs0}", RISCV::F8_F) 9294 .Cases("{f9}", "{fs1}", RISCV::F9_F) 9295 .Cases("{f10}", "{fa0}", RISCV::F10_F) 9296 .Cases("{f11}", "{fa1}", RISCV::F11_F) 9297 .Cases("{f12}", "{fa2}", RISCV::F12_F) 9298 .Cases("{f13}", "{fa3}", RISCV::F13_F) 9299 .Cases("{f14}", "{fa4}", RISCV::F14_F) 9300 .Cases("{f15}", "{fa5}", RISCV::F15_F) 9301 .Cases("{f16}", "{fa6}", RISCV::F16_F) 9302 .Cases("{f17}", "{fa7}", RISCV::F17_F) 9303 .Cases("{f18}", "{fs2}", RISCV::F18_F) 9304 .Cases("{f19}", "{fs3}", RISCV::F19_F) 9305 .Cases("{f20}", "{fs4}", RISCV::F20_F) 9306 .Cases("{f21}", "{fs5}", RISCV::F21_F) 9307 .Cases("{f22}", "{fs6}", RISCV::F22_F) 9308 .Cases("{f23}", "{fs7}", RISCV::F23_F) 9309 .Cases("{f24}", "{fs8}", RISCV::F24_F) 9310 .Cases("{f25}", "{fs9}", RISCV::F25_F) 9311 .Cases("{f26}", "{fs10}", RISCV::F26_F) 9312 .Cases("{f27}", "{fs11}", RISCV::F27_F) 9313 .Cases("{f28}", "{ft8}", RISCV::F28_F) 9314 .Cases("{f29}", "{ft9}", RISCV::F29_F) 9315 .Cases("{f30}", "{ft10}", RISCV::F30_F) 9316 .Cases("{f31}", "{ft11}", RISCV::F31_F) 9317 .Default(RISCV::NoRegister); 9318 if (FReg != RISCV::NoRegister) { 9319 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 9320 if (Subtarget.hasStdExtD()) { 9321 unsigned RegNo = FReg - RISCV::F0_F; 9322 unsigned DReg = RISCV::F0_D + RegNo; 9323 return std::make_pair(DReg, &RISCV::FPR64RegClass); 9324 } 9325 return std::make_pair(FReg, &RISCV::FPR32RegClass); 9326 } 9327 } 9328 9329 if (Subtarget.hasStdExtV()) { 9330 Register VReg = StringSwitch<Register>(Constraint.lower()) 9331 .Case("{v0}", RISCV::V0) 9332 .Case("{v1}", RISCV::V1) 9333 .Case("{v2}", RISCV::V2) 9334 .Case("{v3}", RISCV::V3) 9335 .Case("{v4}", RISCV::V4) 9336 .Case("{v5}", RISCV::V5) 9337 .Case("{v6}", RISCV::V6) 9338 .Case("{v7}", RISCV::V7) 9339 .Case("{v8}", RISCV::V8) 9340 .Case("{v9}", RISCV::V9) 9341 .Case("{v10}", RISCV::V10) 9342 .Case("{v11}", RISCV::V11) 9343 .Case("{v12}", RISCV::V12) 9344 .Case("{v13}", RISCV::V13) 9345 .Case("{v14}", RISCV::V14) 9346 .Case("{v15}", RISCV::V15) 9347 .Case("{v16}", RISCV::V16) 9348 .Case("{v17}", RISCV::V17) 9349 .Case("{v18}", RISCV::V18) 9350 .Case("{v19}", RISCV::V19) 9351 .Case("{v20}", RISCV::V20) 9352 .Case("{v21}", RISCV::V21) 9353 .Case("{v22}", RISCV::V22) 9354 .Case("{v23}", RISCV::V23) 9355 .Case("{v24}", RISCV::V24) 9356 .Case("{v25}", RISCV::V25) 9357 .Case("{v26}", RISCV::V26) 9358 .Case("{v27}", RISCV::V27) 9359 .Case("{v28}", RISCV::V28) 9360 .Case("{v29}", RISCV::V29) 9361 .Case("{v30}", RISCV::V30) 9362 .Case("{v31}", RISCV::V31) 9363 .Default(RISCV::NoRegister); 9364 if (VReg != RISCV::NoRegister) { 9365 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 9366 return std::make_pair(VReg, &RISCV::VMRegClass); 9367 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 9368 return std::make_pair(VReg, &RISCV::VRRegClass); 9369 for (const auto *RC : 9370 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 9371 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 9372 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 9373 return std::make_pair(VReg, RC); 9374 } 9375 } 9376 } 9377 } 9378 9379 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 9380 } 9381 9382 unsigned 9383 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 9384 // Currently only support length 1 constraints. 9385 if (ConstraintCode.size() == 1) { 9386 switch (ConstraintCode[0]) { 9387 case 'A': 9388 return InlineAsm::Constraint_A; 9389 default: 9390 break; 9391 } 9392 } 9393 9394 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 9395 } 9396 9397 void RISCVTargetLowering::LowerAsmOperandForConstraint( 9398 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 9399 SelectionDAG &DAG) const { 9400 // Currently only support length 1 constraints. 9401 if (Constraint.length() == 1) { 9402 switch (Constraint[0]) { 9403 case 'I': 9404 // Validate & create a 12-bit signed immediate operand. 9405 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9406 uint64_t CVal = C->getSExtValue(); 9407 if (isInt<12>(CVal)) 9408 Ops.push_back( 9409 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9410 } 9411 return; 9412 case 'J': 9413 // Validate & create an integer zero operand. 9414 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 9415 if (C->getZExtValue() == 0) 9416 Ops.push_back( 9417 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 9418 return; 9419 case 'K': 9420 // Validate & create a 5-bit unsigned immediate operand. 9421 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 9422 uint64_t CVal = C->getZExtValue(); 9423 if (isUInt<5>(CVal)) 9424 Ops.push_back( 9425 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 9426 } 9427 return; 9428 case 'S': 9429 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9430 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 9431 GA->getValueType(0))); 9432 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 9433 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 9434 BA->getValueType(0))); 9435 } 9436 return; 9437 default: 9438 break; 9439 } 9440 } 9441 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 9442 } 9443 9444 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 9445 Instruction *Inst, 9446 AtomicOrdering Ord) const { 9447 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 9448 return Builder.CreateFence(Ord); 9449 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 9450 return Builder.CreateFence(AtomicOrdering::Release); 9451 return nullptr; 9452 } 9453 9454 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 9455 Instruction *Inst, 9456 AtomicOrdering Ord) const { 9457 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 9458 return Builder.CreateFence(AtomicOrdering::Acquire); 9459 return nullptr; 9460 } 9461 9462 TargetLowering::AtomicExpansionKind 9463 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 9464 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 9465 // point operations can't be used in an lr/sc sequence without breaking the 9466 // forward-progress guarantee. 9467 if (AI->isFloatingPointOperation()) 9468 return AtomicExpansionKind::CmpXChg; 9469 9470 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 9471 if (Size == 8 || Size == 16) 9472 return AtomicExpansionKind::MaskedIntrinsic; 9473 return AtomicExpansionKind::None; 9474 } 9475 9476 static Intrinsic::ID 9477 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 9478 if (XLen == 32) { 9479 switch (BinOp) { 9480 default: 9481 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9482 case AtomicRMWInst::Xchg: 9483 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 9484 case AtomicRMWInst::Add: 9485 return Intrinsic::riscv_masked_atomicrmw_add_i32; 9486 case AtomicRMWInst::Sub: 9487 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 9488 case AtomicRMWInst::Nand: 9489 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 9490 case AtomicRMWInst::Max: 9491 return Intrinsic::riscv_masked_atomicrmw_max_i32; 9492 case AtomicRMWInst::Min: 9493 return Intrinsic::riscv_masked_atomicrmw_min_i32; 9494 case AtomicRMWInst::UMax: 9495 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 9496 case AtomicRMWInst::UMin: 9497 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 9498 } 9499 } 9500 9501 if (XLen == 64) { 9502 switch (BinOp) { 9503 default: 9504 llvm_unreachable("Unexpected AtomicRMW BinOp"); 9505 case AtomicRMWInst::Xchg: 9506 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 9507 case AtomicRMWInst::Add: 9508 return Intrinsic::riscv_masked_atomicrmw_add_i64; 9509 case AtomicRMWInst::Sub: 9510 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 9511 case AtomicRMWInst::Nand: 9512 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 9513 case AtomicRMWInst::Max: 9514 return Intrinsic::riscv_masked_atomicrmw_max_i64; 9515 case AtomicRMWInst::Min: 9516 return Intrinsic::riscv_masked_atomicrmw_min_i64; 9517 case AtomicRMWInst::UMax: 9518 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 9519 case AtomicRMWInst::UMin: 9520 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 9521 } 9522 } 9523 9524 llvm_unreachable("Unexpected XLen\n"); 9525 } 9526 9527 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 9528 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 9529 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 9530 unsigned XLen = Subtarget.getXLen(); 9531 Value *Ordering = 9532 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 9533 Type *Tys[] = {AlignedAddr->getType()}; 9534 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 9535 AI->getModule(), 9536 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 9537 9538 if (XLen == 64) { 9539 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 9540 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9541 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 9542 } 9543 9544 Value *Result; 9545 9546 // Must pass the shift amount needed to sign extend the loaded value prior 9547 // to performing a signed comparison for min/max. ShiftAmt is the number of 9548 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 9549 // is the number of bits to left+right shift the value in order to 9550 // sign-extend. 9551 if (AI->getOperation() == AtomicRMWInst::Min || 9552 AI->getOperation() == AtomicRMWInst::Max) { 9553 const DataLayout &DL = AI->getModule()->getDataLayout(); 9554 unsigned ValWidth = 9555 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 9556 Value *SextShamt = 9557 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 9558 Result = Builder.CreateCall(LrwOpScwLoop, 9559 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 9560 } else { 9561 Result = 9562 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 9563 } 9564 9565 if (XLen == 64) 9566 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9567 return Result; 9568 } 9569 9570 TargetLowering::AtomicExpansionKind 9571 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 9572 AtomicCmpXchgInst *CI) const { 9573 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 9574 if (Size == 8 || Size == 16) 9575 return AtomicExpansionKind::MaskedIntrinsic; 9576 return AtomicExpansionKind::None; 9577 } 9578 9579 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 9580 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 9581 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 9582 unsigned XLen = Subtarget.getXLen(); 9583 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 9584 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 9585 if (XLen == 64) { 9586 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 9587 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 9588 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 9589 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 9590 } 9591 Type *Tys[] = {AlignedAddr->getType()}; 9592 Function *MaskedCmpXchg = 9593 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 9594 Value *Result = Builder.CreateCall( 9595 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 9596 if (XLen == 64) 9597 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 9598 return Result; 9599 } 9600 9601 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 9602 return false; 9603 } 9604 9605 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 9606 EVT VT) const { 9607 VT = VT.getScalarType(); 9608 9609 if (!VT.isSimple()) 9610 return false; 9611 9612 switch (VT.getSimpleVT().SimpleTy) { 9613 case MVT::f16: 9614 return Subtarget.hasStdExtZfh(); 9615 case MVT::f32: 9616 return Subtarget.hasStdExtF(); 9617 case MVT::f64: 9618 return Subtarget.hasStdExtD(); 9619 default: 9620 break; 9621 } 9622 9623 return false; 9624 } 9625 9626 Register RISCVTargetLowering::getExceptionPointerRegister( 9627 const Constant *PersonalityFn) const { 9628 return RISCV::X10; 9629 } 9630 9631 Register RISCVTargetLowering::getExceptionSelectorRegister( 9632 const Constant *PersonalityFn) const { 9633 return RISCV::X11; 9634 } 9635 9636 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9637 // Return false to suppress the unnecessary extensions if the LibCall 9638 // arguments or return value is f32 type for LP64 ABI. 9639 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9640 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9641 return false; 9642 9643 return true; 9644 } 9645 9646 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9647 if (Subtarget.is64Bit() && Type == MVT::i32) 9648 return true; 9649 9650 return IsSigned; 9651 } 9652 9653 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9654 SDValue C) const { 9655 // Check integral scalar types. 9656 if (VT.isScalarInteger()) { 9657 // Omit the optimization if the sub target has the M extension and the data 9658 // size exceeds XLen. 9659 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9660 return false; 9661 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9662 // Break the MUL to a SLLI and an ADD/SUB. 9663 const APInt &Imm = ConstNode->getAPIntValue(); 9664 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9665 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9666 return true; 9667 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9668 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9669 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9670 (Imm - 8).isPowerOf2())) 9671 return true; 9672 // Omit the following optimization if the sub target has the M extension 9673 // and the data size >= XLen. 9674 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9675 return false; 9676 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9677 // a pair of LUI/ADDI. 9678 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9679 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9680 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9681 (1 - ImmS).isPowerOf2()) 9682 return true; 9683 } 9684 } 9685 } 9686 9687 return false; 9688 } 9689 9690 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9691 const SDValue &AddNode, const SDValue &ConstNode) const { 9692 // Let the DAGCombiner decide for vectors. 9693 EVT VT = AddNode.getValueType(); 9694 if (VT.isVector()) 9695 return true; 9696 9697 // Let the DAGCombiner decide for larger types. 9698 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9699 return true; 9700 9701 // It is worse if c1 is simm12 while c1*c2 is not. 9702 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9703 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9704 const APInt &C1 = C1Node->getAPIntValue(); 9705 const APInt &C2 = C2Node->getAPIntValue(); 9706 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9707 return false; 9708 9709 // Default to true and let the DAGCombiner decide. 9710 return true; 9711 } 9712 9713 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9714 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9715 bool *Fast) const { 9716 if (!VT.isVector()) 9717 return false; 9718 9719 EVT ElemVT = VT.getVectorElementType(); 9720 if (Alignment >= ElemVT.getStoreSize()) { 9721 if (Fast) 9722 *Fast = true; 9723 return true; 9724 } 9725 9726 return false; 9727 } 9728 9729 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9730 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9731 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9732 bool IsABIRegCopy = CC.hasValue(); 9733 EVT ValueVT = Val.getValueType(); 9734 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9735 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9736 // and cast to f32. 9737 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9738 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9739 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9740 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9741 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9742 Parts[0] = Val; 9743 return true; 9744 } 9745 9746 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9747 LLVMContext &Context = *DAG.getContext(); 9748 EVT ValueEltVT = ValueVT.getVectorElementType(); 9749 EVT PartEltVT = PartVT.getVectorElementType(); 9750 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9751 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9752 if (PartVTBitSize % ValueVTBitSize == 0) { 9753 // If the element types are different, bitcast to the same element type of 9754 // PartVT first. 9755 if (ValueEltVT != PartEltVT) { 9756 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9757 assert(Count != 0 && "The number of element should not be zero."); 9758 EVT SameEltTypeVT = 9759 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9760 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9761 } 9762 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9763 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9764 Parts[0] = Val; 9765 return true; 9766 } 9767 } 9768 return false; 9769 } 9770 9771 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9772 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9773 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9774 bool IsABIRegCopy = CC.hasValue(); 9775 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9776 SDValue Val = Parts[0]; 9777 9778 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9779 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9780 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9781 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9782 return Val; 9783 } 9784 9785 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9786 LLVMContext &Context = *DAG.getContext(); 9787 SDValue Val = Parts[0]; 9788 EVT ValueEltVT = ValueVT.getVectorElementType(); 9789 EVT PartEltVT = PartVT.getVectorElementType(); 9790 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9791 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9792 if (PartVTBitSize % ValueVTBitSize == 0) { 9793 EVT SameEltTypeVT = ValueVT; 9794 // If the element types are different, convert it to the same element type 9795 // of PartVT. 9796 if (ValueEltVT != PartEltVT) { 9797 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9798 assert(Count != 0 && "The number of element should not be zero."); 9799 SameEltTypeVT = 9800 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9801 } 9802 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9803 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9804 if (ValueEltVT != PartEltVT) 9805 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9806 return Val; 9807 } 9808 } 9809 return SDValue(); 9810 } 9811 9812 #define GET_REGISTER_MATCHER 9813 #include "RISCVGenAsmMatcher.inc" 9814 9815 Register 9816 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9817 const MachineFunction &MF) const { 9818 Register Reg = MatchRegisterAltName(RegName); 9819 if (Reg == RISCV::NoRegister) 9820 Reg = MatchRegisterName(RegName); 9821 if (Reg == RISCV::NoRegister) 9822 report_fatal_error( 9823 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9824 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9825 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9826 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9827 StringRef(RegName) + "\".")); 9828 return Reg; 9829 } 9830 9831 namespace llvm { 9832 namespace RISCVVIntrinsicsTable { 9833 9834 #define GET_RISCVVIntrinsicsTable_IMPL 9835 #include "RISCVGenSearchableTables.inc" 9836 9837 } // namespace RISCVVIntrinsicsTable 9838 9839 } // namespace llvm 9840