1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/DiagnosticPrinter.h" 31 #include "llvm/IR/IntrinsicsRISCV.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } else { 203 setLibcallName(RTLIB::MUL_I128, nullptr); 204 setLibcallName(RTLIB::MULO_I64, nullptr); 205 } 206 207 if (!Subtarget.hasStdExtM()) { 208 setOperationAction(ISD::MUL, XLenVT, Expand); 209 setOperationAction(ISD::MULHS, XLenVT, Expand); 210 setOperationAction(ISD::MULHU, XLenVT, Expand); 211 setOperationAction(ISD::SDIV, XLenVT, Expand); 212 setOperationAction(ISD::UDIV, XLenVT, Expand); 213 setOperationAction(ISD::SREM, XLenVT, Expand); 214 setOperationAction(ISD::UREM, XLenVT, Expand); 215 } else { 216 if (Subtarget.is64Bit()) { 217 setOperationAction(ISD::MUL, MVT::i32, Custom); 218 setOperationAction(ISD::MUL, MVT::i128, Custom); 219 220 setOperationAction(ISD::SDIV, MVT::i8, Custom); 221 setOperationAction(ISD::UDIV, MVT::i8, Custom); 222 setOperationAction(ISD::UREM, MVT::i8, Custom); 223 setOperationAction(ISD::SDIV, MVT::i16, Custom); 224 setOperationAction(ISD::UDIV, MVT::i16, Custom); 225 setOperationAction(ISD::UREM, MVT::i16, Custom); 226 setOperationAction(ISD::SDIV, MVT::i32, Custom); 227 setOperationAction(ISD::UDIV, MVT::i32, Custom); 228 setOperationAction(ISD::UREM, MVT::i32, Custom); 229 } else { 230 setOperationAction(ISD::MUL, MVT::i64, Custom); 231 } 232 } 233 234 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 235 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 236 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 237 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 238 239 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 240 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 241 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 242 243 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 244 if (Subtarget.is64Bit()) { 245 setOperationAction(ISD::ROTL, MVT::i32, Custom); 246 setOperationAction(ISD::ROTR, MVT::i32, Custom); 247 } 248 } else { 249 setOperationAction(ISD::ROTL, XLenVT, Expand); 250 setOperationAction(ISD::ROTR, XLenVT, Expand); 251 } 252 253 if (Subtarget.hasStdExtZbp()) { 254 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 255 // more combining. 256 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 257 setOperationAction(ISD::BSWAP, XLenVT, Custom); 258 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 259 // BSWAP i8 doesn't exist. 260 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 261 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 262 263 if (Subtarget.is64Bit()) { 264 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 265 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 266 } 267 } else { 268 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 269 // pattern match it directly in isel. 270 setOperationAction(ISD::BSWAP, XLenVT, 271 Subtarget.hasStdExtZbb() ? Legal : Expand); 272 } 273 274 if (Subtarget.hasStdExtZbb()) { 275 setOperationAction(ISD::SMIN, XLenVT, Legal); 276 setOperationAction(ISD::SMAX, XLenVT, Legal); 277 setOperationAction(ISD::UMIN, XLenVT, Legal); 278 setOperationAction(ISD::UMAX, XLenVT, Legal); 279 280 if (Subtarget.is64Bit()) { 281 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 282 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 283 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 284 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 285 } 286 } else { 287 setOperationAction(ISD::CTTZ, XLenVT, Expand); 288 setOperationAction(ISD::CTLZ, XLenVT, Expand); 289 setOperationAction(ISD::CTPOP, XLenVT, Expand); 290 } 291 292 if (Subtarget.hasStdExtZbt()) { 293 setOperationAction(ISD::FSHL, XLenVT, Custom); 294 setOperationAction(ISD::FSHR, XLenVT, Custom); 295 setOperationAction(ISD::SELECT, XLenVT, Legal); 296 297 if (Subtarget.is64Bit()) { 298 setOperationAction(ISD::FSHL, MVT::i32, Custom); 299 setOperationAction(ISD::FSHR, MVT::i32, Custom); 300 } 301 } else { 302 setOperationAction(ISD::SELECT, XLenVT, Custom); 303 } 304 305 ISD::CondCode FPCCToExpand[] = { 306 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 307 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 308 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 309 310 ISD::NodeType FPOpToExpand[] = { 311 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 312 ISD::FP_TO_FP16}; 313 314 if (Subtarget.hasStdExtZfh()) 315 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 316 317 if (Subtarget.hasStdExtZfh()) { 318 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 319 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 320 setOperationAction(ISD::LRINT, MVT::f16, Legal); 321 setOperationAction(ISD::LLRINT, MVT::f16, Legal); 322 setOperationAction(ISD::LROUND, MVT::f16, Legal); 323 setOperationAction(ISD::LLROUND, MVT::f16, Legal); 324 for (auto CC : FPCCToExpand) 325 setCondCodeAction(CC, MVT::f16, Expand); 326 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 327 setOperationAction(ISD::SELECT, MVT::f16, Custom); 328 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 329 for (auto Op : FPOpToExpand) 330 setOperationAction(Op, MVT::f16, Expand); 331 } 332 333 if (Subtarget.hasStdExtF()) { 334 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 335 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 336 setOperationAction(ISD::LRINT, MVT::f32, Legal); 337 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 338 setOperationAction(ISD::LROUND, MVT::f32, Legal); 339 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 340 for (auto CC : FPCCToExpand) 341 setCondCodeAction(CC, MVT::f32, Expand); 342 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 343 setOperationAction(ISD::SELECT, MVT::f32, Custom); 344 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 345 for (auto Op : FPOpToExpand) 346 setOperationAction(Op, MVT::f32, Expand); 347 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 348 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 349 } 350 351 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 352 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 353 354 if (Subtarget.hasStdExtD()) { 355 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 356 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 357 setOperationAction(ISD::LRINT, MVT::f64, Legal); 358 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 359 setOperationAction(ISD::LROUND, MVT::f64, Legal); 360 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 361 for (auto CC : FPCCToExpand) 362 setCondCodeAction(CC, MVT::f64, Expand); 363 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 364 setOperationAction(ISD::SELECT, MVT::f64, Custom); 365 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 366 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 367 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 368 for (auto Op : FPOpToExpand) 369 setOperationAction(Op, MVT::f64, Expand); 370 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 371 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 372 } 373 374 if (Subtarget.is64Bit()) { 375 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 376 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 377 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 378 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 379 } 380 381 if (Subtarget.hasStdExtF()) { 382 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 383 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 384 385 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 386 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 387 } 388 389 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 390 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 391 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 392 setOperationAction(ISD::JumpTable, XLenVT, Custom); 393 394 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 395 396 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 397 // Unfortunately this can't be determined just from the ISA naming string. 398 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 399 Subtarget.is64Bit() ? Legal : Custom); 400 401 setOperationAction(ISD::TRAP, MVT::Other, Legal); 402 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 403 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 404 if (Subtarget.is64Bit()) 405 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 406 407 if (Subtarget.hasStdExtA()) { 408 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 409 setMinCmpXchgSizeInBits(32); 410 } else { 411 setMaxAtomicSizeInBitsSupported(0); 412 } 413 414 setBooleanContents(ZeroOrOneBooleanContent); 415 416 if (Subtarget.hasStdExtV()) { 417 setBooleanVectorContents(ZeroOrOneBooleanContent); 418 419 setOperationAction(ISD::VSCALE, XLenVT, Custom); 420 421 // RVV intrinsics may have illegal operands. 422 // We also need to custom legalize vmv.x.s. 423 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 424 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 425 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 426 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 427 if (Subtarget.is64Bit()) { 428 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 429 } else { 430 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 431 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 432 } 433 434 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 435 436 static unsigned IntegerVPOps[] = { 437 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 438 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 439 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 440 441 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB, 442 ISD::VP_FMUL, ISD::VP_FDIV}; 443 444 if (!Subtarget.is64Bit()) { 445 // We must custom-lower certain vXi64 operations on RV32 due to the vector 446 // element type being illegal. 447 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 448 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 449 450 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 451 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 452 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 453 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 454 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 455 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 456 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 457 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 458 } 459 460 for (MVT VT : BoolVecVTs) { 461 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 462 463 // Mask VTs are custom-expanded into a series of standard nodes 464 setOperationAction(ISD::TRUNCATE, VT, Custom); 465 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 466 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 467 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 468 469 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 470 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 471 472 setOperationAction(ISD::SELECT, VT, Custom); 473 setOperationAction(ISD::SELECT_CC, VT, Expand); 474 setOperationAction(ISD::VSELECT, VT, Expand); 475 476 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 477 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 478 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 479 480 // RVV has native int->float & float->int conversions where the 481 // element type sizes are within one power-of-two of each other. Any 482 // wider distances between type sizes have to be lowered as sequences 483 // which progressively narrow the gap in stages. 484 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 485 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 486 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 487 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 488 489 // Expand all extending loads to types larger than this, and truncating 490 // stores from types larger than this. 491 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 492 setTruncStoreAction(OtherVT, VT, Expand); 493 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 494 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 495 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 496 } 497 } 498 499 for (MVT VT : IntVecVTs) { 500 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 501 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 502 503 setOperationAction(ISD::SMIN, VT, Legal); 504 setOperationAction(ISD::SMAX, VT, Legal); 505 setOperationAction(ISD::UMIN, VT, Legal); 506 setOperationAction(ISD::UMAX, VT, Legal); 507 508 setOperationAction(ISD::ROTL, VT, Expand); 509 setOperationAction(ISD::ROTR, VT, Expand); 510 511 // Custom-lower extensions and truncations from/to mask types. 512 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 513 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 514 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 515 516 // RVV has native int->float & float->int conversions where the 517 // element type sizes are within one power-of-two of each other. Any 518 // wider distances between type sizes have to be lowered as sequences 519 // which progressively narrow the gap in stages. 520 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 521 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 522 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 523 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 524 525 setOperationAction(ISD::SADDSAT, VT, Legal); 526 setOperationAction(ISD::UADDSAT, VT, Legal); 527 setOperationAction(ISD::SSUBSAT, VT, Legal); 528 setOperationAction(ISD::USUBSAT, VT, Legal); 529 530 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 531 // nodes which truncate by one power of two at a time. 532 setOperationAction(ISD::TRUNCATE, VT, Custom); 533 534 // Custom-lower insert/extract operations to simplify patterns. 535 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 537 538 // Custom-lower reduction operations to set up the corresponding custom 539 // nodes' operands. 540 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 541 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 542 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 543 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 544 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 545 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 546 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 547 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 548 549 for (unsigned VPOpc : IntegerVPOps) 550 setOperationAction(VPOpc, VT, Custom); 551 552 setOperationAction(ISD::LOAD, VT, Custom); 553 setOperationAction(ISD::STORE, VT, Custom); 554 555 setOperationAction(ISD::MLOAD, VT, Custom); 556 setOperationAction(ISD::MSTORE, VT, Custom); 557 setOperationAction(ISD::MGATHER, VT, Custom); 558 setOperationAction(ISD::MSCATTER, VT, Custom); 559 560 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 561 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 562 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 563 564 setOperationAction(ISD::SELECT, VT, Custom); 565 setOperationAction(ISD::SELECT_CC, VT, Expand); 566 567 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 568 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 569 570 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 571 setTruncStoreAction(VT, OtherVT, Expand); 572 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 573 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 574 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 575 } 576 } 577 578 // Expand various CCs to best match the RVV ISA, which natively supports UNE 579 // but no other unordered comparisons, and supports all ordered comparisons 580 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 581 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 582 // and we pattern-match those back to the "original", swapping operands once 583 // more. This way we catch both operations and both "vf" and "fv" forms with 584 // fewer patterns. 585 ISD::CondCode VFPCCToExpand[] = { 586 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 587 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 588 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 589 }; 590 591 // Sets common operation actions on RVV floating-point vector types. 592 const auto SetCommonVFPActions = [&](MVT VT) { 593 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 594 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 595 // sizes are within one power-of-two of each other. Therefore conversions 596 // between vXf16 and vXf64 must be lowered as sequences which convert via 597 // vXf32. 598 setOperationAction(ISD::FP_ROUND, VT, Custom); 599 setOperationAction(ISD::FP_EXTEND, VT, Custom); 600 // Custom-lower insert/extract operations to simplify patterns. 601 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 602 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 603 // Expand various condition codes (explained above). 604 for (auto CC : VFPCCToExpand) 605 setCondCodeAction(CC, VT, Expand); 606 607 setOperationAction(ISD::FMINNUM, VT, Legal); 608 setOperationAction(ISD::FMAXNUM, VT, Legal); 609 610 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 611 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 612 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 613 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 614 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 615 616 setOperationAction(ISD::LOAD, VT, Custom); 617 setOperationAction(ISD::STORE, VT, Custom); 618 619 setOperationAction(ISD::MLOAD, VT, Custom); 620 setOperationAction(ISD::MSTORE, VT, Custom); 621 setOperationAction(ISD::MGATHER, VT, Custom); 622 setOperationAction(ISD::MSCATTER, VT, Custom); 623 624 setOperationAction(ISD::SELECT, VT, Custom); 625 setOperationAction(ISD::SELECT_CC, VT, Expand); 626 627 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 628 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 629 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 630 631 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 632 633 for (unsigned VPOpc : FloatingPointVPOps) 634 setOperationAction(VPOpc, VT, Custom); 635 }; 636 637 // Sets common extload/truncstore actions on RVV floating-point vector 638 // types. 639 const auto SetCommonVFPExtLoadTruncStoreActions = 640 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 641 for (auto SmallVT : SmallerVTs) { 642 setTruncStoreAction(VT, SmallVT, Expand); 643 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 644 } 645 }; 646 647 if (Subtarget.hasStdExtZfh()) 648 for (MVT VT : F16VecVTs) 649 SetCommonVFPActions(VT); 650 651 for (MVT VT : F32VecVTs) { 652 if (Subtarget.hasStdExtF()) 653 SetCommonVFPActions(VT); 654 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 655 } 656 657 for (MVT VT : F64VecVTs) { 658 if (Subtarget.hasStdExtD()) 659 SetCommonVFPActions(VT); 660 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 661 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 662 } 663 664 if (Subtarget.useRVVForFixedLengthVectors()) { 665 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 666 if (!useRVVForFixedLengthVectorVT(VT)) 667 continue; 668 669 // By default everything must be expanded. 670 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 671 setOperationAction(Op, VT, Expand); 672 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 673 setTruncStoreAction(VT, OtherVT, Expand); 674 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 675 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 676 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 677 } 678 679 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 680 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 681 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 682 683 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 684 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 685 686 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 687 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 688 689 setOperationAction(ISD::LOAD, VT, Custom); 690 setOperationAction(ISD::STORE, VT, Custom); 691 692 setOperationAction(ISD::SETCC, VT, Custom); 693 694 setOperationAction(ISD::SELECT, VT, Custom); 695 696 setOperationAction(ISD::TRUNCATE, VT, Custom); 697 698 setOperationAction(ISD::BITCAST, VT, Custom); 699 700 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 701 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 702 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 703 704 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 705 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 706 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 707 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 708 709 // Operations below are different for between masks and other vectors. 710 if (VT.getVectorElementType() == MVT::i1) { 711 setOperationAction(ISD::AND, VT, Custom); 712 setOperationAction(ISD::OR, VT, Custom); 713 setOperationAction(ISD::XOR, VT, Custom); 714 continue; 715 } 716 717 // Use SPLAT_VECTOR to prevent type legalization from destroying the 718 // splats when type legalizing i64 scalar on RV32. 719 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 720 // improvements first. 721 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 722 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 723 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 724 } 725 726 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 727 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 728 729 setOperationAction(ISD::MLOAD, VT, Custom); 730 setOperationAction(ISD::MSTORE, VT, Custom); 731 setOperationAction(ISD::MGATHER, VT, Custom); 732 setOperationAction(ISD::MSCATTER, VT, Custom); 733 setOperationAction(ISD::ADD, VT, Custom); 734 setOperationAction(ISD::MUL, VT, Custom); 735 setOperationAction(ISD::SUB, VT, Custom); 736 setOperationAction(ISD::AND, VT, Custom); 737 setOperationAction(ISD::OR, VT, Custom); 738 setOperationAction(ISD::XOR, VT, Custom); 739 setOperationAction(ISD::SDIV, VT, Custom); 740 setOperationAction(ISD::SREM, VT, Custom); 741 setOperationAction(ISD::UDIV, VT, Custom); 742 setOperationAction(ISD::UREM, VT, Custom); 743 setOperationAction(ISD::SHL, VT, Custom); 744 setOperationAction(ISD::SRA, VT, Custom); 745 setOperationAction(ISD::SRL, VT, Custom); 746 747 setOperationAction(ISD::SMIN, VT, Custom); 748 setOperationAction(ISD::SMAX, VT, Custom); 749 setOperationAction(ISD::UMIN, VT, Custom); 750 setOperationAction(ISD::UMAX, VT, Custom); 751 setOperationAction(ISD::ABS, VT, Custom); 752 753 setOperationAction(ISD::MULHS, VT, Custom); 754 setOperationAction(ISD::MULHU, VT, Custom); 755 756 setOperationAction(ISD::SADDSAT, VT, Custom); 757 setOperationAction(ISD::UADDSAT, VT, Custom); 758 setOperationAction(ISD::SSUBSAT, VT, Custom); 759 setOperationAction(ISD::USUBSAT, VT, Custom); 760 761 setOperationAction(ISD::VSELECT, VT, Custom); 762 setOperationAction(ISD::SELECT_CC, VT, Expand); 763 764 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 765 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 766 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 767 768 // Custom-lower reduction operations to set up the corresponding custom 769 // nodes' operands. 770 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 771 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 772 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 773 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 774 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 775 776 for (unsigned VPOpc : IntegerVPOps) 777 setOperationAction(VPOpc, VT, Custom); 778 } 779 780 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 781 if (!useRVVForFixedLengthVectorVT(VT)) 782 continue; 783 784 // By default everything must be expanded. 785 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 786 setOperationAction(Op, VT, Expand); 787 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 788 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 789 setTruncStoreAction(VT, OtherVT, Expand); 790 } 791 792 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 793 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 794 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 795 796 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 797 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 798 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 799 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 800 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 801 802 setOperationAction(ISD::LOAD, VT, Custom); 803 setOperationAction(ISD::STORE, VT, Custom); 804 setOperationAction(ISD::MLOAD, VT, Custom); 805 setOperationAction(ISD::MSTORE, VT, Custom); 806 setOperationAction(ISD::MGATHER, VT, Custom); 807 setOperationAction(ISD::MSCATTER, VT, Custom); 808 setOperationAction(ISD::FADD, VT, Custom); 809 setOperationAction(ISD::FSUB, VT, Custom); 810 setOperationAction(ISD::FMUL, VT, Custom); 811 setOperationAction(ISD::FDIV, VT, Custom); 812 setOperationAction(ISD::FNEG, VT, Custom); 813 setOperationAction(ISD::FABS, VT, Custom); 814 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 815 setOperationAction(ISD::FSQRT, VT, Custom); 816 setOperationAction(ISD::FMA, VT, Custom); 817 setOperationAction(ISD::FMINNUM, VT, Custom); 818 setOperationAction(ISD::FMAXNUM, VT, Custom); 819 820 setOperationAction(ISD::FP_ROUND, VT, Custom); 821 setOperationAction(ISD::FP_EXTEND, VT, Custom); 822 823 for (auto CC : VFPCCToExpand) 824 setCondCodeAction(CC, VT, Expand); 825 826 setOperationAction(ISD::VSELECT, VT, Custom); 827 setOperationAction(ISD::SELECT, VT, Custom); 828 setOperationAction(ISD::SELECT_CC, VT, Expand); 829 830 setOperationAction(ISD::BITCAST, VT, Custom); 831 832 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 833 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 834 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 835 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 836 837 for (unsigned VPOpc : FloatingPointVPOps) 838 setOperationAction(VPOpc, VT, Custom); 839 } 840 841 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 842 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 843 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 844 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 845 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 846 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 847 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 848 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 849 } 850 } 851 852 // Function alignments. 853 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 854 setMinFunctionAlignment(FunctionAlignment); 855 setPrefFunctionAlignment(FunctionAlignment); 856 857 setMinimumJumpTableEntries(5); 858 859 // Jumps are expensive, compared to logic 860 setJumpIsExpensive(); 861 862 // We can use any register for comparisons 863 setHasMultipleConditionRegisters(); 864 865 setTargetDAGCombine(ISD::ADD); 866 setTargetDAGCombine(ISD::SUB); 867 setTargetDAGCombine(ISD::AND); 868 setTargetDAGCombine(ISD::OR); 869 setTargetDAGCombine(ISD::XOR); 870 setTargetDAGCombine(ISD::ANY_EXTEND); 871 setTargetDAGCombine(ISD::ZERO_EXTEND); 872 if (Subtarget.hasStdExtV()) { 873 setTargetDAGCombine(ISD::FCOPYSIGN); 874 setTargetDAGCombine(ISD::MGATHER); 875 setTargetDAGCombine(ISD::MSCATTER); 876 setTargetDAGCombine(ISD::SRA); 877 setTargetDAGCombine(ISD::SRL); 878 setTargetDAGCombine(ISD::SHL); 879 } 880 } 881 882 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 883 LLVMContext &Context, 884 EVT VT) const { 885 if (!VT.isVector()) 886 return getPointerTy(DL); 887 if (Subtarget.hasStdExtV() && 888 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 889 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 890 return VT.changeVectorElementTypeToInteger(); 891 } 892 893 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 894 return Subtarget.getXLenVT(); 895 } 896 897 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 898 const CallInst &I, 899 MachineFunction &MF, 900 unsigned Intrinsic) const { 901 switch (Intrinsic) { 902 default: 903 return false; 904 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 905 case Intrinsic::riscv_masked_atomicrmw_add_i32: 906 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 907 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 908 case Intrinsic::riscv_masked_atomicrmw_max_i32: 909 case Intrinsic::riscv_masked_atomicrmw_min_i32: 910 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 911 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 912 case Intrinsic::riscv_masked_cmpxchg_i32: { 913 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 914 Info.opc = ISD::INTRINSIC_W_CHAIN; 915 Info.memVT = MVT::getVT(PtrTy->getElementType()); 916 Info.ptrVal = I.getArgOperand(0); 917 Info.offset = 0; 918 Info.align = Align(4); 919 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 920 MachineMemOperand::MOVolatile; 921 return true; 922 } 923 } 924 } 925 926 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 927 const AddrMode &AM, Type *Ty, 928 unsigned AS, 929 Instruction *I) const { 930 // No global is ever allowed as a base. 931 if (AM.BaseGV) 932 return false; 933 934 // Require a 12-bit signed offset. 935 if (!isInt<12>(AM.BaseOffs)) 936 return false; 937 938 switch (AM.Scale) { 939 case 0: // "r+i" or just "i", depending on HasBaseReg. 940 break; 941 case 1: 942 if (!AM.HasBaseReg) // allow "r+i". 943 break; 944 return false; // disallow "r+r" or "r+r+i". 945 default: 946 return false; 947 } 948 949 return true; 950 } 951 952 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 953 return isInt<12>(Imm); 954 } 955 956 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 957 return isInt<12>(Imm); 958 } 959 960 // On RV32, 64-bit integers are split into their high and low parts and held 961 // in two different registers, so the trunc is free since the low register can 962 // just be used. 963 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 964 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 965 return false; 966 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 967 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 968 return (SrcBits == 64 && DestBits == 32); 969 } 970 971 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 972 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 973 !SrcVT.isInteger() || !DstVT.isInteger()) 974 return false; 975 unsigned SrcBits = SrcVT.getSizeInBits(); 976 unsigned DestBits = DstVT.getSizeInBits(); 977 return (SrcBits == 64 && DestBits == 32); 978 } 979 980 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 981 // Zexts are free if they can be combined with a load. 982 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 983 EVT MemVT = LD->getMemoryVT(); 984 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 985 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 986 (LD->getExtensionType() == ISD::NON_EXTLOAD || 987 LD->getExtensionType() == ISD::ZEXTLOAD)) 988 return true; 989 } 990 991 return TargetLowering::isZExtFree(Val, VT2); 992 } 993 994 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 995 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 996 } 997 998 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 999 return Subtarget.hasStdExtZbb(); 1000 } 1001 1002 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1003 return Subtarget.hasStdExtZbb(); 1004 } 1005 1006 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1007 bool ForCodeSize) const { 1008 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1009 return false; 1010 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1011 return false; 1012 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1013 return false; 1014 if (Imm.isNegZero()) 1015 return false; 1016 return Imm.isZero(); 1017 } 1018 1019 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1020 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1021 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1022 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1023 } 1024 1025 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1026 CallingConv::ID CC, 1027 EVT VT) const { 1028 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1029 // end up using a GPR but that will be decided based on ABI. 1030 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1031 return MVT::f32; 1032 1033 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1034 } 1035 1036 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1037 CallingConv::ID CC, 1038 EVT VT) const { 1039 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 1040 // end up using a GPR but that will be decided based on ABI. 1041 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1042 return 1; 1043 1044 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1045 } 1046 1047 // Changes the condition code and swaps operands if necessary, so the SetCC 1048 // operation matches one of the comparisons supported directly by branches 1049 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1050 // with 1/-1. 1051 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1052 ISD::CondCode &CC, SelectionDAG &DAG) { 1053 // Convert X > -1 to X >= 0. 1054 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1055 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1056 CC = ISD::SETGE; 1057 return; 1058 } 1059 // Convert X < 1 to 0 >= X. 1060 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1061 RHS = LHS; 1062 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1063 CC = ISD::SETGE; 1064 return; 1065 } 1066 1067 switch (CC) { 1068 default: 1069 break; 1070 case ISD::SETGT: 1071 case ISD::SETLE: 1072 case ISD::SETUGT: 1073 case ISD::SETULE: 1074 CC = ISD::getSetCCSwappedOperands(CC); 1075 std::swap(LHS, RHS); 1076 break; 1077 } 1078 } 1079 1080 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1081 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1082 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1083 if (VT.getVectorElementType() == MVT::i1) 1084 KnownSize *= 8; 1085 1086 switch (KnownSize) { 1087 default: 1088 llvm_unreachable("Invalid LMUL."); 1089 case 8: 1090 return RISCVII::VLMUL::LMUL_F8; 1091 case 16: 1092 return RISCVII::VLMUL::LMUL_F4; 1093 case 32: 1094 return RISCVII::VLMUL::LMUL_F2; 1095 case 64: 1096 return RISCVII::VLMUL::LMUL_1; 1097 case 128: 1098 return RISCVII::VLMUL::LMUL_2; 1099 case 256: 1100 return RISCVII::VLMUL::LMUL_4; 1101 case 512: 1102 return RISCVII::VLMUL::LMUL_8; 1103 } 1104 } 1105 1106 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1107 switch (LMul) { 1108 default: 1109 llvm_unreachable("Invalid LMUL."); 1110 case RISCVII::VLMUL::LMUL_F8: 1111 case RISCVII::VLMUL::LMUL_F4: 1112 case RISCVII::VLMUL::LMUL_F2: 1113 case RISCVII::VLMUL::LMUL_1: 1114 return RISCV::VRRegClassID; 1115 case RISCVII::VLMUL::LMUL_2: 1116 return RISCV::VRM2RegClassID; 1117 case RISCVII::VLMUL::LMUL_4: 1118 return RISCV::VRM4RegClassID; 1119 case RISCVII::VLMUL::LMUL_8: 1120 return RISCV::VRM8RegClassID; 1121 } 1122 } 1123 1124 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1125 RISCVII::VLMUL LMUL = getLMUL(VT); 1126 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1127 LMUL == RISCVII::VLMUL::LMUL_F4 || 1128 LMUL == RISCVII::VLMUL::LMUL_F2 || 1129 LMUL == RISCVII::VLMUL::LMUL_1) { 1130 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1131 "Unexpected subreg numbering"); 1132 return RISCV::sub_vrm1_0 + Index; 1133 } 1134 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1135 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1136 "Unexpected subreg numbering"); 1137 return RISCV::sub_vrm2_0 + Index; 1138 } 1139 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1140 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1141 "Unexpected subreg numbering"); 1142 return RISCV::sub_vrm4_0 + Index; 1143 } 1144 llvm_unreachable("Invalid vector type."); 1145 } 1146 1147 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1148 if (VT.getVectorElementType() == MVT::i1) 1149 return RISCV::VRRegClassID; 1150 return getRegClassIDForLMUL(getLMUL(VT)); 1151 } 1152 1153 // Attempt to decompose a subvector insert/extract between VecVT and 1154 // SubVecVT via subregister indices. Returns the subregister index that 1155 // can perform the subvector insert/extract with the given element index, as 1156 // well as the index corresponding to any leftover subvectors that must be 1157 // further inserted/extracted within the register class for SubVecVT. 1158 std::pair<unsigned, unsigned> 1159 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1160 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1161 const RISCVRegisterInfo *TRI) { 1162 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1163 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1164 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1165 "Register classes not ordered"); 1166 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1167 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1168 // Try to compose a subregister index that takes us from the incoming 1169 // LMUL>1 register class down to the outgoing one. At each step we half 1170 // the LMUL: 1171 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1172 // Note that this is not guaranteed to find a subregister index, such as 1173 // when we are extracting from one VR type to another. 1174 unsigned SubRegIdx = RISCV::NoSubRegister; 1175 for (const unsigned RCID : 1176 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1177 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1178 VecVT = VecVT.getHalfNumVectorElementsVT(); 1179 bool IsHi = 1180 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1181 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1182 getSubregIndexByMVT(VecVT, IsHi)); 1183 if (IsHi) 1184 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1185 } 1186 return {SubRegIdx, InsertExtractIdx}; 1187 } 1188 1189 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1190 // stores for those types. 1191 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1192 return !Subtarget.useRVVForFixedLengthVectors() || 1193 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1194 } 1195 1196 static bool useRVVForFixedLengthVectorVT(MVT VT, 1197 const RISCVSubtarget &Subtarget) { 1198 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1199 if (!Subtarget.useRVVForFixedLengthVectors()) 1200 return false; 1201 1202 // We only support a set of vector types with a consistent maximum fixed size 1203 // across all supported vector element types to avoid legalization issues. 1204 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1205 // fixed-length vector type we support is 1024 bytes. 1206 if (VT.getFixedSizeInBits() > 1024 * 8) 1207 return false; 1208 1209 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1210 1211 MVT EltVT = VT.getVectorElementType(); 1212 1213 // Don't use RVV for vectors we cannot scalarize if required. 1214 switch (EltVT.SimpleTy) { 1215 // i1 is supported but has different rules. 1216 default: 1217 return false; 1218 case MVT::i1: 1219 // Masks can only use a single register. 1220 if (VT.getVectorNumElements() > MinVLen) 1221 return false; 1222 MinVLen /= 8; 1223 break; 1224 case MVT::i8: 1225 case MVT::i16: 1226 case MVT::i32: 1227 case MVT::i64: 1228 break; 1229 case MVT::f16: 1230 if (!Subtarget.hasStdExtZfh()) 1231 return false; 1232 break; 1233 case MVT::f32: 1234 if (!Subtarget.hasStdExtF()) 1235 return false; 1236 break; 1237 case MVT::f64: 1238 if (!Subtarget.hasStdExtD()) 1239 return false; 1240 break; 1241 } 1242 1243 // Reject elements larger than ELEN. 1244 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1245 return false; 1246 1247 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1248 // Don't use RVV for types that don't fit. 1249 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1250 return false; 1251 1252 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1253 // the base fixed length RVV support in place. 1254 if (!VT.isPow2VectorType()) 1255 return false; 1256 1257 return true; 1258 } 1259 1260 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1261 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1262 } 1263 1264 // Return the largest legal scalable vector type that matches VT's element type. 1265 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1266 const RISCVSubtarget &Subtarget) { 1267 // This may be called before legal types are setup. 1268 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1269 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1270 "Expected legal fixed length vector!"); 1271 1272 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1273 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1274 1275 MVT EltVT = VT.getVectorElementType(); 1276 switch (EltVT.SimpleTy) { 1277 default: 1278 llvm_unreachable("unexpected element type for RVV container"); 1279 case MVT::i1: 1280 case MVT::i8: 1281 case MVT::i16: 1282 case MVT::i32: 1283 case MVT::i64: 1284 case MVT::f16: 1285 case MVT::f32: 1286 case MVT::f64: { 1287 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1288 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1289 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1290 unsigned NumElts = 1291 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1292 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1293 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1294 return MVT::getScalableVectorVT(EltVT, NumElts); 1295 } 1296 } 1297 } 1298 1299 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1300 const RISCVSubtarget &Subtarget) { 1301 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1302 Subtarget); 1303 } 1304 1305 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1306 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1307 } 1308 1309 // Grow V to consume an entire RVV register. 1310 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1311 const RISCVSubtarget &Subtarget) { 1312 assert(VT.isScalableVector() && 1313 "Expected to convert into a scalable vector!"); 1314 assert(V.getValueType().isFixedLengthVector() && 1315 "Expected a fixed length vector operand!"); 1316 SDLoc DL(V); 1317 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1318 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1319 } 1320 1321 // Shrink V so it's just big enough to maintain a VT's worth of data. 1322 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1323 const RISCVSubtarget &Subtarget) { 1324 assert(VT.isFixedLengthVector() && 1325 "Expected to convert into a fixed length vector!"); 1326 assert(V.getValueType().isScalableVector() && 1327 "Expected a scalable vector operand!"); 1328 SDLoc DL(V); 1329 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1330 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1331 } 1332 1333 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1334 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1335 // the vector type that it is contained in. 1336 static std::pair<SDValue, SDValue> 1337 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1338 const RISCVSubtarget &Subtarget) { 1339 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1340 MVT XLenVT = Subtarget.getXLenVT(); 1341 SDValue VL = VecVT.isFixedLengthVector() 1342 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1343 : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 1344 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1345 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1346 return {Mask, VL}; 1347 } 1348 1349 // As above but assuming the given type is a scalable vector type. 1350 static std::pair<SDValue, SDValue> 1351 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1352 const RISCVSubtarget &Subtarget) { 1353 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1354 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1355 } 1356 1357 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1358 // of either is (currently) supported. This can get us into an infinite loop 1359 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1360 // as a ..., etc. 1361 // Until either (or both) of these can reliably lower any node, reporting that 1362 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1363 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1364 // which is not desirable. 1365 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1366 EVT VT, unsigned DefinedValues) const { 1367 return false; 1368 } 1369 1370 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1371 // Only splats are currently supported. 1372 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1373 return true; 1374 1375 return false; 1376 } 1377 1378 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) { 1379 // RISCV FP-to-int conversions saturate to the destination register size, but 1380 // don't produce 0 for nan. We can use a conversion instruction and fix the 1381 // nan case with a compare and a select. 1382 SDValue Src = Op.getOperand(0); 1383 1384 EVT DstVT = Op.getValueType(); 1385 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1386 1387 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1388 unsigned Opc; 1389 if (SatVT == DstVT) 1390 Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ; 1391 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1392 Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 1393 else 1394 return SDValue(); 1395 // FIXME: Support other SatVTs by clamping before or after the conversion. 1396 1397 SDLoc DL(Op); 1398 SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src); 1399 1400 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1401 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1402 } 1403 1404 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1405 const RISCVSubtarget &Subtarget) { 1406 MVT VT = Op.getSimpleValueType(); 1407 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1408 1409 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1410 1411 SDLoc DL(Op); 1412 SDValue Mask, VL; 1413 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1414 1415 unsigned Opc = 1416 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1417 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1418 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1419 } 1420 1421 struct VIDSequence { 1422 int64_t StepNumerator; 1423 unsigned StepDenominator; 1424 int64_t Addend; 1425 }; 1426 1427 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1428 // to the (non-zero) step S and start value X. This can be then lowered as the 1429 // RVV sequence (VID * S) + X, for example. 1430 // The step S is represented as an integer numerator divided by a positive 1431 // denominator. Note that the implementation currently only identifies 1432 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1433 // cannot detect 2/3, for example. 1434 // Note that this method will also match potentially unappealing index 1435 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1436 // determine whether this is worth generating code for. 1437 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1438 unsigned NumElts = Op.getNumOperands(); 1439 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1440 if (!Op.getValueType().isInteger()) 1441 return None; 1442 1443 Optional<unsigned> SeqStepDenom; 1444 Optional<int64_t> SeqStepNum, SeqAddend; 1445 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1446 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1447 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1448 // Assume undef elements match the sequence; we just have to be careful 1449 // when interpolating across them. 1450 if (Op.getOperand(Idx).isUndef()) 1451 continue; 1452 // The BUILD_VECTOR must be all constants. 1453 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1454 return None; 1455 1456 uint64_t Val = Op.getConstantOperandVal(Idx) & 1457 maskTrailingOnes<uint64_t>(EltSizeInBits); 1458 1459 if (PrevElt) { 1460 // Calculate the step since the last non-undef element, and ensure 1461 // it's consistent across the entire sequence. 1462 unsigned IdxDiff = Idx - PrevElt->second; 1463 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1464 1465 // A zero-value value difference means that we're somewhere in the middle 1466 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1467 // step change before evaluating the sequence. 1468 if (ValDiff != 0) { 1469 int64_t Remainder = ValDiff % IdxDiff; 1470 // Normalize the step if it's greater than 1. 1471 if (Remainder != ValDiff) { 1472 // The difference must cleanly divide the element span. 1473 if (Remainder != 0) 1474 return None; 1475 ValDiff /= IdxDiff; 1476 IdxDiff = 1; 1477 } 1478 1479 if (!SeqStepNum) 1480 SeqStepNum = ValDiff; 1481 else if (ValDiff != SeqStepNum) 1482 return None; 1483 1484 if (!SeqStepDenom) 1485 SeqStepDenom = IdxDiff; 1486 else if (IdxDiff != *SeqStepDenom) 1487 return None; 1488 } 1489 } 1490 1491 // Record and/or check any addend. 1492 if (SeqStepNum && SeqStepDenom) { 1493 uint64_t ExpectedVal = 1494 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1495 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1496 if (!SeqAddend) 1497 SeqAddend = Addend; 1498 else if (SeqAddend != Addend) 1499 return None; 1500 } 1501 1502 // Record this non-undef element for later. 1503 if (!PrevElt || PrevElt->first != Val) 1504 PrevElt = std::make_pair(Val, Idx); 1505 } 1506 // We need to have logged both a step and an addend for this to count as 1507 // a legal index sequence. 1508 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1509 return None; 1510 1511 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1512 } 1513 1514 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1515 const RISCVSubtarget &Subtarget) { 1516 MVT VT = Op.getSimpleValueType(); 1517 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1518 1519 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1520 1521 SDLoc DL(Op); 1522 SDValue Mask, VL; 1523 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1524 1525 MVT XLenVT = Subtarget.getXLenVT(); 1526 unsigned NumElts = Op.getNumOperands(); 1527 1528 if (VT.getVectorElementType() == MVT::i1) { 1529 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1530 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1531 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1532 } 1533 1534 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1535 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1536 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1537 } 1538 1539 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1540 // scalar integer chunks whose bit-width depends on the number of mask 1541 // bits and XLEN. 1542 // First, determine the most appropriate scalar integer type to use. This 1543 // is at most XLenVT, but may be shrunk to a smaller vector element type 1544 // according to the size of the final vector - use i8 chunks rather than 1545 // XLenVT if we're producing a v8i1. This results in more consistent 1546 // codegen across RV32 and RV64. 1547 unsigned NumViaIntegerBits = 1548 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1549 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1550 // If we have to use more than one INSERT_VECTOR_ELT then this 1551 // optimization is likely to increase code size; avoid peforming it in 1552 // such a case. We can use a load from a constant pool in this case. 1553 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1554 return SDValue(); 1555 // Now we can create our integer vector type. Note that it may be larger 1556 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1557 MVT IntegerViaVecVT = 1558 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1559 divideCeil(NumElts, NumViaIntegerBits)); 1560 1561 uint64_t Bits = 0; 1562 unsigned BitPos = 0, IntegerEltIdx = 0; 1563 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1564 1565 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1566 // Once we accumulate enough bits to fill our scalar type, insert into 1567 // our vector and clear our accumulated data. 1568 if (I != 0 && I % NumViaIntegerBits == 0) { 1569 if (NumViaIntegerBits <= 32) 1570 Bits = SignExtend64(Bits, 32); 1571 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1572 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1573 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1574 Bits = 0; 1575 BitPos = 0; 1576 IntegerEltIdx++; 1577 } 1578 SDValue V = Op.getOperand(I); 1579 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1580 Bits |= ((uint64_t)BitValue << BitPos); 1581 } 1582 1583 // Insert the (remaining) scalar value into position in our integer 1584 // vector type. 1585 if (NumViaIntegerBits <= 32) 1586 Bits = SignExtend64(Bits, 32); 1587 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1588 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1589 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1590 1591 if (NumElts < NumViaIntegerBits) { 1592 // If we're producing a smaller vector than our minimum legal integer 1593 // type, bitcast to the equivalent (known-legal) mask type, and extract 1594 // our final mask. 1595 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1596 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1597 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1598 DAG.getConstant(0, DL, XLenVT)); 1599 } else { 1600 // Else we must have produced an integer type with the same size as the 1601 // mask type; bitcast for the final result. 1602 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1603 Vec = DAG.getBitcast(VT, Vec); 1604 } 1605 1606 return Vec; 1607 } 1608 1609 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1610 // vector type, we have a legal equivalently-sized i8 type, so we can use 1611 // that. 1612 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1613 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1614 1615 SDValue WideVec; 1616 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1617 // For a splat, perform a scalar truncate before creating the wider 1618 // vector. 1619 assert(Splat.getValueType() == XLenVT && 1620 "Unexpected type for i1 splat value"); 1621 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1622 DAG.getConstant(1, DL, XLenVT)); 1623 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1624 } else { 1625 SmallVector<SDValue, 8> Ops(Op->op_values()); 1626 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1627 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1628 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1629 } 1630 1631 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1632 } 1633 1634 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1635 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1636 : RISCVISD::VMV_V_X_VL; 1637 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1638 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1639 } 1640 1641 // Try and match index sequences, which we can lower to the vid instruction 1642 // with optional modifications. An all-undef vector is matched by 1643 // getSplatValue, above. 1644 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 1645 int64_t StepNumerator = SimpleVID->StepNumerator; 1646 unsigned StepDenominator = SimpleVID->StepDenominator; 1647 int64_t Addend = SimpleVID->Addend; 1648 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 1649 // threshold since it's the immediate value many RVV instructions accept. 1650 if (isInt<5>(StepNumerator) && isPowerOf2_32(StepDenominator) && 1651 isInt<5>(Addend)) { 1652 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1653 // Convert right out of the scalable type so we can use standard ISD 1654 // nodes for the rest of the computation. If we used scalable types with 1655 // these, we'd lose the fixed-length vector info and generate worse 1656 // vsetvli code. 1657 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 1658 assert(StepNumerator != 0 && "Invalid step"); 1659 bool Negate = false; 1660 if (StepNumerator != 1) { 1661 int64_t SplatStepVal = StepNumerator; 1662 unsigned Opcode = ISD::MUL; 1663 if (isPowerOf2_64(std::abs(StepNumerator))) { 1664 Negate = StepNumerator < 0; 1665 Opcode = ISD::SHL; 1666 SplatStepVal = Log2_64(std::abs(StepNumerator)); 1667 } 1668 SDValue SplatStep = DAG.getSplatVector( 1669 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 1670 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep); 1671 } 1672 if (StepDenominator != 1) { 1673 SDValue SplatStep = DAG.getSplatVector( 1674 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 1675 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 1676 } 1677 if (Addend != 0 || Negate) { 1678 SDValue SplatAddend = 1679 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 1680 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 1681 } 1682 return VID; 1683 } 1684 } 1685 1686 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1687 // when re-interpreted as a vector with a larger element type. For example, 1688 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1689 // could be instead splat as 1690 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1691 // TODO: This optimization could also work on non-constant splats, but it 1692 // would require bit-manipulation instructions to construct the splat value. 1693 SmallVector<SDValue> Sequence; 1694 unsigned EltBitSize = VT.getScalarSizeInBits(); 1695 const auto *BV = cast<BuildVectorSDNode>(Op); 1696 if (VT.isInteger() && EltBitSize < 64 && 1697 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1698 BV->getRepeatedSequence(Sequence) && 1699 (Sequence.size() * EltBitSize) <= 64) { 1700 unsigned SeqLen = Sequence.size(); 1701 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1702 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1703 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1704 ViaIntVT == MVT::i64) && 1705 "Unexpected sequence type"); 1706 1707 unsigned EltIdx = 0; 1708 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1709 uint64_t SplatValue = 0; 1710 // Construct the amalgamated value which can be splatted as this larger 1711 // vector type. 1712 for (const auto &SeqV : Sequence) { 1713 if (!SeqV.isUndef()) 1714 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1715 << (EltIdx * EltBitSize)); 1716 EltIdx++; 1717 } 1718 1719 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1720 // achieve better constant materializion. 1721 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1722 SplatValue = SignExtend64(SplatValue, 32); 1723 1724 // Since we can't introduce illegal i64 types at this stage, we can only 1725 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1726 // way we can use RVV instructions to splat. 1727 assert((ViaIntVT.bitsLE(XLenVT) || 1728 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1729 "Unexpected bitcast sequence"); 1730 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1731 SDValue ViaVL = 1732 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1733 MVT ViaContainerVT = 1734 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1735 SDValue Splat = 1736 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1737 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1738 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1739 return DAG.getBitcast(VT, Splat); 1740 } 1741 } 1742 1743 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1744 // which constitute a large proportion of the elements. In such cases we can 1745 // splat a vector with the dominant element and make up the shortfall with 1746 // INSERT_VECTOR_ELTs. 1747 // Note that this includes vectors of 2 elements by association. The 1748 // upper-most element is the "dominant" one, allowing us to use a splat to 1749 // "insert" the upper element, and an insert of the lower element at position 1750 // 0, which improves codegen. 1751 SDValue DominantValue; 1752 unsigned MostCommonCount = 0; 1753 DenseMap<SDValue, unsigned> ValueCounts; 1754 unsigned NumUndefElts = 1755 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1756 1757 // Track the number of scalar loads we know we'd be inserting, estimated as 1758 // any non-zero floating-point constant. Other kinds of element are either 1759 // already in registers or are materialized on demand. The threshold at which 1760 // a vector load is more desirable than several scalar materializion and 1761 // vector-insertion instructions is not known. 1762 unsigned NumScalarLoads = 0; 1763 1764 for (SDValue V : Op->op_values()) { 1765 if (V.isUndef()) 1766 continue; 1767 1768 ValueCounts.insert(std::make_pair(V, 0)); 1769 unsigned &Count = ValueCounts[V]; 1770 1771 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 1772 NumScalarLoads += !CFP->isExactlyValue(+0.0); 1773 1774 // Is this value dominant? In case of a tie, prefer the highest element as 1775 // it's cheaper to insert near the beginning of a vector than it is at the 1776 // end. 1777 if (++Count >= MostCommonCount) { 1778 DominantValue = V; 1779 MostCommonCount = Count; 1780 } 1781 } 1782 1783 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1784 unsigned NumDefElts = NumElts - NumUndefElts; 1785 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1786 1787 // Don't perform this optimization when optimizing for size, since 1788 // materializing elements and inserting them tends to cause code bloat. 1789 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 1790 ((MostCommonCount > DominantValueCountThreshold) || 1791 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1792 // Start by splatting the most common element. 1793 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1794 1795 DenseSet<SDValue> Processed{DominantValue}; 1796 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1797 for (const auto &OpIdx : enumerate(Op->ops())) { 1798 const SDValue &V = OpIdx.value(); 1799 if (V.isUndef() || !Processed.insert(V).second) 1800 continue; 1801 if (ValueCounts[V] == 1) { 1802 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1803 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1804 } else { 1805 // Blend in all instances of this value using a VSELECT, using a 1806 // mask where each bit signals whether that element is the one 1807 // we're after. 1808 SmallVector<SDValue> Ops; 1809 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1810 return DAG.getConstant(V == V1, DL, XLenVT); 1811 }); 1812 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1813 DAG.getBuildVector(SelMaskTy, DL, Ops), 1814 DAG.getSplatBuildVector(VT, DL, V), Vec); 1815 } 1816 } 1817 1818 return Vec; 1819 } 1820 1821 return SDValue(); 1822 } 1823 1824 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1825 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1826 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1827 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1828 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1829 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1830 // node in order to try and match RVV vector/scalar instructions. 1831 if ((LoC >> 31) == HiC) 1832 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1833 } 1834 1835 // Fall back to a stack store and stride x0 vector load. 1836 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); 1837 } 1838 1839 // Called by type legalization to handle splat of i64 on RV32. 1840 // FIXME: We can optimize this when the type has sign or zero bits in one 1841 // of the halves. 1842 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1843 SDValue VL, SelectionDAG &DAG) { 1844 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1845 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1846 DAG.getConstant(0, DL, MVT::i32)); 1847 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1848 DAG.getConstant(1, DL, MVT::i32)); 1849 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1850 } 1851 1852 // This function lowers a splat of a scalar operand Splat with the vector 1853 // length VL. It ensures the final sequence is type legal, which is useful when 1854 // lowering a splat after type legalization. 1855 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1856 SelectionDAG &DAG, 1857 const RISCVSubtarget &Subtarget) { 1858 if (VT.isFloatingPoint()) 1859 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1860 1861 MVT XLenVT = Subtarget.getXLenVT(); 1862 1863 // Simplest case is that the operand needs to be promoted to XLenVT. 1864 if (Scalar.getValueType().bitsLE(XLenVT)) { 1865 // If the operand is a constant, sign extend to increase our chances 1866 // of being able to use a .vi instruction. ANY_EXTEND would become a 1867 // a zero extend and the simm5 check in isel would fail. 1868 // FIXME: Should we ignore the upper bits in isel instead? 1869 unsigned ExtOpc = 1870 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1871 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1872 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1873 } 1874 1875 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1876 "Unexpected scalar for splat lowering!"); 1877 1878 // Otherwise use the more complicated splatting algorithm. 1879 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1880 } 1881 1882 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1883 const RISCVSubtarget &Subtarget) { 1884 SDValue V1 = Op.getOperand(0); 1885 SDValue V2 = Op.getOperand(1); 1886 SDLoc DL(Op); 1887 MVT XLenVT = Subtarget.getXLenVT(); 1888 MVT VT = Op.getSimpleValueType(); 1889 unsigned NumElts = VT.getVectorNumElements(); 1890 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1891 1892 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1893 1894 SDValue TrueMask, VL; 1895 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1896 1897 if (SVN->isSplat()) { 1898 const int Lane = SVN->getSplatIndex(); 1899 if (Lane >= 0) { 1900 MVT SVT = VT.getVectorElementType(); 1901 1902 // Turn splatted vector load into a strided load with an X0 stride. 1903 SDValue V = V1; 1904 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1905 // with undef. 1906 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1907 int Offset = Lane; 1908 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1909 int OpElements = 1910 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1911 V = V.getOperand(Offset / OpElements); 1912 Offset %= OpElements; 1913 } 1914 1915 // We need to ensure the load isn't atomic or volatile. 1916 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1917 auto *Ld = cast<LoadSDNode>(V); 1918 Offset *= SVT.getStoreSize(); 1919 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1920 TypeSize::Fixed(Offset), DL); 1921 1922 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1923 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1924 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1925 SDValue IntID = 1926 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1927 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1928 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1929 SDValue NewLoad = DAG.getMemIntrinsicNode( 1930 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1931 DAG.getMachineFunction().getMachineMemOperand( 1932 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1933 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1934 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1935 } 1936 1937 // Otherwise use a scalar load and splat. This will give the best 1938 // opportunity to fold a splat into the operation. ISel can turn it into 1939 // the x0 strided load if we aren't able to fold away the select. 1940 if (SVT.isFloatingPoint()) 1941 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1942 Ld->getPointerInfo().getWithOffset(Offset), 1943 Ld->getOriginalAlign(), 1944 Ld->getMemOperand()->getFlags()); 1945 else 1946 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1947 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1948 Ld->getOriginalAlign(), 1949 Ld->getMemOperand()->getFlags()); 1950 DAG.makeEquivalentMemoryOrdering(Ld, V); 1951 1952 unsigned Opc = 1953 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1954 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1955 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1956 } 1957 1958 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1959 assert(Lane < (int)NumElts && "Unexpected lane!"); 1960 SDValue Gather = 1961 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1962 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1963 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1964 } 1965 } 1966 1967 // Detect shuffles which can be re-expressed as vector selects; these are 1968 // shuffles in which each element in the destination is taken from an element 1969 // at the corresponding index in either source vectors. 1970 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1971 int MaskIndex = MaskIdx.value(); 1972 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1973 }); 1974 1975 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1976 1977 SmallVector<SDValue> MaskVals; 1978 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1979 // merged with a second vrgather. 1980 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1981 1982 // By default we preserve the original operand order, and use a mask to 1983 // select LHS as true and RHS as false. However, since RVV vector selects may 1984 // feature splats but only on the LHS, we may choose to invert our mask and 1985 // instead select between RHS and LHS. 1986 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1987 bool InvertMask = IsSelect == SwapOps; 1988 1989 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 1990 // half. 1991 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 1992 1993 // Now construct the mask that will be used by the vselect or blended 1994 // vrgather operation. For vrgathers, construct the appropriate indices into 1995 // each vector. 1996 for (int MaskIndex : SVN->getMask()) { 1997 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1998 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1999 if (!IsSelect) { 2000 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2001 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2002 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2003 : DAG.getUNDEF(XLenVT)); 2004 GatherIndicesRHS.push_back( 2005 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2006 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2007 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2008 ++LHSIndexCounts[MaskIndex]; 2009 if (!IsLHSOrUndefIndex) 2010 ++RHSIndexCounts[MaskIndex - NumElts]; 2011 } 2012 } 2013 2014 if (SwapOps) { 2015 std::swap(V1, V2); 2016 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2017 } 2018 2019 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2020 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2021 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2022 2023 if (IsSelect) 2024 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2025 2026 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2027 // On such a large vector we're unable to use i8 as the index type. 2028 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2029 // may involve vector splitting if we're already at LMUL=8, or our 2030 // user-supplied maximum fixed-length LMUL. 2031 return SDValue(); 2032 } 2033 2034 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2035 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2036 MVT IndexVT = VT.changeTypeToInteger(); 2037 // Since we can't introduce illegal index types at this stage, use i16 and 2038 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2039 // than XLenVT. 2040 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2041 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2042 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2043 } 2044 2045 MVT IndexContainerVT = 2046 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2047 2048 SDValue Gather; 2049 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2050 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2051 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2052 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 2053 } else { 2054 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2055 // If only one index is used, we can use a "splat" vrgather. 2056 // TODO: We can splat the most-common index and fix-up any stragglers, if 2057 // that's beneficial. 2058 if (LHSIndexCounts.size() == 1) { 2059 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2060 Gather = 2061 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2062 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2063 } else { 2064 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2065 LHSIndices = 2066 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2067 2068 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2069 TrueMask, VL); 2070 } 2071 } 2072 2073 // If a second vector operand is used by this shuffle, blend it in with an 2074 // additional vrgather. 2075 if (!V2.isUndef()) { 2076 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2077 // If only one index is used, we can use a "splat" vrgather. 2078 // TODO: We can splat the most-common index and fix-up any stragglers, if 2079 // that's beneficial. 2080 if (RHSIndexCounts.size() == 1) { 2081 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2082 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2083 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2084 } else { 2085 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2086 RHSIndices = 2087 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2088 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2089 VL); 2090 } 2091 2092 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2093 SelectMask = 2094 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2095 2096 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2097 Gather, VL); 2098 } 2099 2100 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2101 } 2102 2103 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2104 SDLoc DL, SelectionDAG &DAG, 2105 const RISCVSubtarget &Subtarget) { 2106 if (VT.isScalableVector()) 2107 return DAG.getFPExtendOrRound(Op, DL, VT); 2108 assert(VT.isFixedLengthVector() && 2109 "Unexpected value type for RVV FP extend/round lowering"); 2110 SDValue Mask, VL; 2111 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2112 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2113 ? RISCVISD::FP_EXTEND_VL 2114 : RISCVISD::FP_ROUND_VL; 2115 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2116 } 2117 2118 // While RVV has alignment restrictions, we should always be able to load as a 2119 // legal equivalently-sized byte-typed vector instead. This method is 2120 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2121 // the load is already correctly-aligned, it returns SDValue(). 2122 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2123 SelectionDAG &DAG) const { 2124 auto *Load = cast<LoadSDNode>(Op); 2125 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2126 2127 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2128 Load->getMemoryVT(), 2129 *Load->getMemOperand())) 2130 return SDValue(); 2131 2132 SDLoc DL(Op); 2133 MVT VT = Op.getSimpleValueType(); 2134 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2135 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2136 "Unexpected unaligned RVV load type"); 2137 MVT NewVT = 2138 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2139 assert(NewVT.isValid() && 2140 "Expecting equally-sized RVV vector types to be legal"); 2141 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2142 Load->getPointerInfo(), Load->getOriginalAlign(), 2143 Load->getMemOperand()->getFlags()); 2144 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2145 } 2146 2147 // While RVV has alignment restrictions, we should always be able to store as a 2148 // legal equivalently-sized byte-typed vector instead. This method is 2149 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 2150 // returns SDValue() if the store is already correctly aligned. 2151 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 2152 SelectionDAG &DAG) const { 2153 auto *Store = cast<StoreSDNode>(Op); 2154 assert(Store && Store->getValue().getValueType().isVector() && 2155 "Expected vector store"); 2156 2157 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2158 Store->getMemoryVT(), 2159 *Store->getMemOperand())) 2160 return SDValue(); 2161 2162 SDLoc DL(Op); 2163 SDValue StoredVal = Store->getValue(); 2164 MVT VT = StoredVal.getSimpleValueType(); 2165 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2166 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2167 "Unexpected unaligned RVV store type"); 2168 MVT NewVT = 2169 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2170 assert(NewVT.isValid() && 2171 "Expecting equally-sized RVV vector types to be legal"); 2172 StoredVal = DAG.getBitcast(NewVT, StoredVal); 2173 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 2174 Store->getPointerInfo(), Store->getOriginalAlign(), 2175 Store->getMemOperand()->getFlags()); 2176 } 2177 2178 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 2179 SelectionDAG &DAG) const { 2180 switch (Op.getOpcode()) { 2181 default: 2182 report_fatal_error("unimplemented operand"); 2183 case ISD::GlobalAddress: 2184 return lowerGlobalAddress(Op, DAG); 2185 case ISD::BlockAddress: 2186 return lowerBlockAddress(Op, DAG); 2187 case ISD::ConstantPool: 2188 return lowerConstantPool(Op, DAG); 2189 case ISD::JumpTable: 2190 return lowerJumpTable(Op, DAG); 2191 case ISD::GlobalTLSAddress: 2192 return lowerGlobalTLSAddress(Op, DAG); 2193 case ISD::SELECT: 2194 return lowerSELECT(Op, DAG); 2195 case ISD::BRCOND: 2196 return lowerBRCOND(Op, DAG); 2197 case ISD::VASTART: 2198 return lowerVASTART(Op, DAG); 2199 case ISD::FRAMEADDR: 2200 return lowerFRAMEADDR(Op, DAG); 2201 case ISD::RETURNADDR: 2202 return lowerRETURNADDR(Op, DAG); 2203 case ISD::SHL_PARTS: 2204 return lowerShiftLeftParts(Op, DAG); 2205 case ISD::SRA_PARTS: 2206 return lowerShiftRightParts(Op, DAG, true); 2207 case ISD::SRL_PARTS: 2208 return lowerShiftRightParts(Op, DAG, false); 2209 case ISD::BITCAST: { 2210 SDLoc DL(Op); 2211 EVT VT = Op.getValueType(); 2212 SDValue Op0 = Op.getOperand(0); 2213 EVT Op0VT = Op0.getValueType(); 2214 MVT XLenVT = Subtarget.getXLenVT(); 2215 if (VT.isFixedLengthVector()) { 2216 // We can handle fixed length vector bitcasts with a simple replacement 2217 // in isel. 2218 if (Op0VT.isFixedLengthVector()) 2219 return Op; 2220 // When bitcasting from scalar to fixed-length vector, insert the scalar 2221 // into a one-element vector of the result type, and perform a vector 2222 // bitcast. 2223 if (!Op0VT.isVector()) { 2224 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 2225 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 2226 DAG.getUNDEF(BVT), Op0, 2227 DAG.getConstant(0, DL, XLenVT))); 2228 } 2229 return SDValue(); 2230 } 2231 // Custom-legalize bitcasts from fixed-length vector types to scalar types 2232 // thus: bitcast the vector to a one-element vector type whose element type 2233 // is the same as the result type, and extract the first element. 2234 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 2235 LLVMContext &Context = *DAG.getContext(); 2236 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 2237 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 2238 DAG.getConstant(0, DL, XLenVT)); 2239 } 2240 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 2241 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 2242 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 2243 return FPConv; 2244 } 2245 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 2246 Subtarget.hasStdExtF()) { 2247 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 2248 SDValue FPConv = 2249 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 2250 return FPConv; 2251 } 2252 return SDValue(); 2253 } 2254 case ISD::INTRINSIC_WO_CHAIN: 2255 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2256 case ISD::INTRINSIC_W_CHAIN: 2257 return LowerINTRINSIC_W_CHAIN(Op, DAG); 2258 case ISD::BSWAP: 2259 case ISD::BITREVERSE: { 2260 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 2261 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 2262 MVT VT = Op.getSimpleValueType(); 2263 SDLoc DL(Op); 2264 // Start with the maximum immediate value which is the bitwidth - 1. 2265 unsigned Imm = VT.getSizeInBits() - 1; 2266 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2267 if (Op.getOpcode() == ISD::BSWAP) 2268 Imm &= ~0x7U; 2269 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2270 DAG.getConstant(Imm, DL, VT)); 2271 } 2272 case ISD::FSHL: 2273 case ISD::FSHR: { 2274 MVT VT = Op.getSimpleValueType(); 2275 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2276 SDLoc DL(Op); 2277 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2278 return Op; 2279 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2280 // use log(XLen) bits. Mask the shift amount accordingly. 2281 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2282 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2283 DAG.getConstant(ShAmtWidth, DL, VT)); 2284 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2285 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2286 } 2287 case ISD::TRUNCATE: { 2288 SDLoc DL(Op); 2289 MVT VT = Op.getSimpleValueType(); 2290 // Only custom-lower vector truncates 2291 if (!VT.isVector()) 2292 return Op; 2293 2294 // Truncates to mask types are handled differently 2295 if (VT.getVectorElementType() == MVT::i1) 2296 return lowerVectorMaskTrunc(Op, DAG); 2297 2298 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2299 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2300 // truncate by one power of two at a time. 2301 MVT DstEltVT = VT.getVectorElementType(); 2302 2303 SDValue Src = Op.getOperand(0); 2304 MVT SrcVT = Src.getSimpleValueType(); 2305 MVT SrcEltVT = SrcVT.getVectorElementType(); 2306 2307 assert(DstEltVT.bitsLT(SrcEltVT) && 2308 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2309 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2310 "Unexpected vector truncate lowering"); 2311 2312 MVT ContainerVT = SrcVT; 2313 if (SrcVT.isFixedLengthVector()) { 2314 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2315 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2316 } 2317 2318 SDValue Result = Src; 2319 SDValue Mask, VL; 2320 std::tie(Mask, VL) = 2321 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2322 LLVMContext &Context = *DAG.getContext(); 2323 const ElementCount Count = ContainerVT.getVectorElementCount(); 2324 do { 2325 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2326 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2327 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2328 Mask, VL); 2329 } while (SrcEltVT != DstEltVT); 2330 2331 if (SrcVT.isFixedLengthVector()) 2332 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2333 2334 return Result; 2335 } 2336 case ISD::ANY_EXTEND: 2337 case ISD::ZERO_EXTEND: 2338 if (Op.getOperand(0).getValueType().isVector() && 2339 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2340 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2341 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2342 case ISD::SIGN_EXTEND: 2343 if (Op.getOperand(0).getValueType().isVector() && 2344 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2345 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2346 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2347 case ISD::SPLAT_VECTOR_PARTS: 2348 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2349 case ISD::INSERT_VECTOR_ELT: 2350 return lowerINSERT_VECTOR_ELT(Op, DAG); 2351 case ISD::EXTRACT_VECTOR_ELT: 2352 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2353 case ISD::VSCALE: { 2354 MVT VT = Op.getSimpleValueType(); 2355 SDLoc DL(Op); 2356 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2357 // We define our scalable vector types for lmul=1 to use a 64 bit known 2358 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2359 // vscale as VLENB / 8. 2360 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2361 if (isa<ConstantSDNode>(Op.getOperand(0))) { 2362 // We assume VLENB is a multiple of 8. We manually choose the best shift 2363 // here because SimplifyDemandedBits isn't always able to simplify it. 2364 uint64_t Val = Op.getConstantOperandVal(0); 2365 if (isPowerOf2_64(Val)) { 2366 uint64_t Log2 = Log2_64(Val); 2367 if (Log2 < 3) 2368 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 2369 DAG.getConstant(3 - Log2, DL, VT)); 2370 if (Log2 > 3) 2371 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 2372 DAG.getConstant(Log2 - 3, DL, VT)); 2373 return VLENB; 2374 } 2375 // If the multiplier is a multiple of 8, scale it down to avoid needing 2376 // to shift the VLENB value. 2377 if ((Val % 8) == 0) 2378 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 2379 DAG.getConstant(Val / 8, DL, VT)); 2380 } 2381 2382 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2383 DAG.getConstant(3, DL, VT)); 2384 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2385 } 2386 case ISD::FP_EXTEND: { 2387 // RVV can only do fp_extend to types double the size as the source. We 2388 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2389 // via f32. 2390 SDLoc DL(Op); 2391 MVT VT = Op.getSimpleValueType(); 2392 SDValue Src = Op.getOperand(0); 2393 MVT SrcVT = Src.getSimpleValueType(); 2394 2395 // Prepare any fixed-length vector operands. 2396 MVT ContainerVT = VT; 2397 if (SrcVT.isFixedLengthVector()) { 2398 ContainerVT = getContainerForFixedLengthVector(VT); 2399 MVT SrcContainerVT = 2400 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2401 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2402 } 2403 2404 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2405 SrcVT.getVectorElementType() != MVT::f16) { 2406 // For scalable vectors, we only need to close the gap between 2407 // vXf16->vXf64. 2408 if (!VT.isFixedLengthVector()) 2409 return Op; 2410 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2411 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2412 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2413 } 2414 2415 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2416 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2417 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2418 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2419 2420 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2421 DL, DAG, Subtarget); 2422 if (VT.isFixedLengthVector()) 2423 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2424 return Extend; 2425 } 2426 case ISD::FP_ROUND: { 2427 // RVV can only do fp_round to types half the size as the source. We 2428 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2429 // conversion instruction. 2430 SDLoc DL(Op); 2431 MVT VT = Op.getSimpleValueType(); 2432 SDValue Src = Op.getOperand(0); 2433 MVT SrcVT = Src.getSimpleValueType(); 2434 2435 // Prepare any fixed-length vector operands. 2436 MVT ContainerVT = VT; 2437 if (VT.isFixedLengthVector()) { 2438 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2439 ContainerVT = 2440 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2441 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2442 } 2443 2444 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2445 SrcVT.getVectorElementType() != MVT::f64) { 2446 // For scalable vectors, we only need to close the gap between 2447 // vXf64<->vXf16. 2448 if (!VT.isFixedLengthVector()) 2449 return Op; 2450 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2451 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2452 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2453 } 2454 2455 SDValue Mask, VL; 2456 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2457 2458 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2459 SDValue IntermediateRound = 2460 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2461 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2462 DL, DAG, Subtarget); 2463 2464 if (VT.isFixedLengthVector()) 2465 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2466 return Round; 2467 } 2468 case ISD::FP_TO_SINT: 2469 case ISD::FP_TO_UINT: 2470 case ISD::SINT_TO_FP: 2471 case ISD::UINT_TO_FP: { 2472 // RVV can only do fp<->int conversions to types half/double the size as 2473 // the source. We custom-lower any conversions that do two hops into 2474 // sequences. 2475 MVT VT = Op.getSimpleValueType(); 2476 if (!VT.isVector()) 2477 return Op; 2478 SDLoc DL(Op); 2479 SDValue Src = Op.getOperand(0); 2480 MVT EltVT = VT.getVectorElementType(); 2481 MVT SrcVT = Src.getSimpleValueType(); 2482 MVT SrcEltVT = SrcVT.getVectorElementType(); 2483 unsigned EltSize = EltVT.getSizeInBits(); 2484 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2485 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2486 "Unexpected vector element types"); 2487 2488 bool IsInt2FP = SrcEltVT.isInteger(); 2489 // Widening conversions 2490 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2491 if (IsInt2FP) { 2492 // Do a regular integer sign/zero extension then convert to float. 2493 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2494 VT.getVectorElementCount()); 2495 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2496 ? ISD::ZERO_EXTEND 2497 : ISD::SIGN_EXTEND; 2498 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2499 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2500 } 2501 // FP2Int 2502 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2503 // Do one doubling fp_extend then complete the operation by converting 2504 // to int. 2505 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2506 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2507 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2508 } 2509 2510 // Narrowing conversions 2511 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2512 if (IsInt2FP) { 2513 // One narrowing int_to_fp, then an fp_round. 2514 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2515 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2516 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2517 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2518 } 2519 // FP2Int 2520 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2521 // representable by the integer, the result is poison. 2522 MVT IVecVT = 2523 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2524 VT.getVectorElementCount()); 2525 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2526 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2527 } 2528 2529 // Scalable vectors can exit here. Patterns will handle equally-sized 2530 // conversions halving/doubling ones. 2531 if (!VT.isFixedLengthVector()) 2532 return Op; 2533 2534 // For fixed-length vectors we lower to a custom "VL" node. 2535 unsigned RVVOpc = 0; 2536 switch (Op.getOpcode()) { 2537 default: 2538 llvm_unreachable("Impossible opcode"); 2539 case ISD::FP_TO_SINT: 2540 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2541 break; 2542 case ISD::FP_TO_UINT: 2543 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2544 break; 2545 case ISD::SINT_TO_FP: 2546 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2547 break; 2548 case ISD::UINT_TO_FP: 2549 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2550 break; 2551 } 2552 2553 MVT ContainerVT, SrcContainerVT; 2554 // Derive the reference container type from the larger vector type. 2555 if (SrcEltSize > EltSize) { 2556 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2557 ContainerVT = 2558 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2559 } else { 2560 ContainerVT = getContainerForFixedLengthVector(VT); 2561 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2562 } 2563 2564 SDValue Mask, VL; 2565 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2566 2567 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2568 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2569 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2570 } 2571 case ISD::FP_TO_SINT_SAT: 2572 case ISD::FP_TO_UINT_SAT: 2573 return lowerFP_TO_INT_SAT(Op, DAG); 2574 case ISD::VECREDUCE_ADD: 2575 case ISD::VECREDUCE_UMAX: 2576 case ISD::VECREDUCE_SMAX: 2577 case ISD::VECREDUCE_UMIN: 2578 case ISD::VECREDUCE_SMIN: 2579 return lowerVECREDUCE(Op, DAG); 2580 case ISD::VECREDUCE_AND: 2581 case ISD::VECREDUCE_OR: 2582 case ISD::VECREDUCE_XOR: 2583 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2584 return lowerVectorMaskVECREDUCE(Op, DAG); 2585 return lowerVECREDUCE(Op, DAG); 2586 case ISD::VECREDUCE_FADD: 2587 case ISD::VECREDUCE_SEQ_FADD: 2588 case ISD::VECREDUCE_FMIN: 2589 case ISD::VECREDUCE_FMAX: 2590 return lowerFPVECREDUCE(Op, DAG); 2591 case ISD::INSERT_SUBVECTOR: 2592 return lowerINSERT_SUBVECTOR(Op, DAG); 2593 case ISD::EXTRACT_SUBVECTOR: 2594 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2595 case ISD::STEP_VECTOR: 2596 return lowerSTEP_VECTOR(Op, DAG); 2597 case ISD::VECTOR_REVERSE: 2598 return lowerVECTOR_REVERSE(Op, DAG); 2599 case ISD::BUILD_VECTOR: 2600 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2601 case ISD::SPLAT_VECTOR: 2602 if (Op.getValueType().getVectorElementType() == MVT::i1) 2603 return lowerVectorMaskSplat(Op, DAG); 2604 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2605 case ISD::VECTOR_SHUFFLE: 2606 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2607 case ISD::CONCAT_VECTORS: { 2608 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2609 // better than going through the stack, as the default expansion does. 2610 SDLoc DL(Op); 2611 MVT VT = Op.getSimpleValueType(); 2612 unsigned NumOpElts = 2613 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2614 SDValue Vec = DAG.getUNDEF(VT); 2615 for (const auto &OpIdx : enumerate(Op->ops())) 2616 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2617 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2618 return Vec; 2619 } 2620 case ISD::LOAD: 2621 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 2622 return V; 2623 if (Op.getValueType().isFixedLengthVector()) 2624 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2625 return Op; 2626 case ISD::STORE: 2627 if (auto V = expandUnalignedRVVStore(Op, DAG)) 2628 return V; 2629 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 2630 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2631 return Op; 2632 case ISD::MLOAD: 2633 return lowerMLOAD(Op, DAG); 2634 case ISD::MSTORE: 2635 return lowerMSTORE(Op, DAG); 2636 case ISD::SETCC: 2637 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2638 case ISD::ADD: 2639 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2640 case ISD::SUB: 2641 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2642 case ISD::MUL: 2643 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2644 case ISD::MULHS: 2645 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2646 case ISD::MULHU: 2647 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2648 case ISD::AND: 2649 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2650 RISCVISD::AND_VL); 2651 case ISD::OR: 2652 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2653 RISCVISD::OR_VL); 2654 case ISD::XOR: 2655 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2656 RISCVISD::XOR_VL); 2657 case ISD::SDIV: 2658 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2659 case ISD::SREM: 2660 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2661 case ISD::UDIV: 2662 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2663 case ISD::UREM: 2664 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2665 case ISD::SHL: 2666 case ISD::SRA: 2667 case ISD::SRL: 2668 if (Op.getSimpleValueType().isFixedLengthVector()) 2669 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 2670 // This can be called for an i32 shift amount that needs to be promoted. 2671 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 2672 "Unexpected custom legalisation"); 2673 return SDValue(); 2674 case ISD::SADDSAT: 2675 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 2676 case ISD::UADDSAT: 2677 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 2678 case ISD::SSUBSAT: 2679 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 2680 case ISD::USUBSAT: 2681 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 2682 case ISD::FADD: 2683 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2684 case ISD::FSUB: 2685 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2686 case ISD::FMUL: 2687 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2688 case ISD::FDIV: 2689 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2690 case ISD::FNEG: 2691 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2692 case ISD::FABS: 2693 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2694 case ISD::FSQRT: 2695 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2696 case ISD::FMA: 2697 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2698 case ISD::SMIN: 2699 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2700 case ISD::SMAX: 2701 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2702 case ISD::UMIN: 2703 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2704 case ISD::UMAX: 2705 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2706 case ISD::FMINNUM: 2707 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2708 case ISD::FMAXNUM: 2709 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2710 case ISD::ABS: 2711 return lowerABS(Op, DAG); 2712 case ISD::VSELECT: 2713 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2714 case ISD::FCOPYSIGN: 2715 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2716 case ISD::MGATHER: 2717 return lowerMGATHER(Op, DAG); 2718 case ISD::MSCATTER: 2719 return lowerMSCATTER(Op, DAG); 2720 case ISD::FLT_ROUNDS_: 2721 return lowerGET_ROUNDING(Op, DAG); 2722 case ISD::SET_ROUNDING: 2723 return lowerSET_ROUNDING(Op, DAG); 2724 case ISD::VP_ADD: 2725 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2726 case ISD::VP_SUB: 2727 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2728 case ISD::VP_MUL: 2729 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2730 case ISD::VP_SDIV: 2731 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2732 case ISD::VP_UDIV: 2733 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2734 case ISD::VP_SREM: 2735 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2736 case ISD::VP_UREM: 2737 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2738 case ISD::VP_AND: 2739 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2740 case ISD::VP_OR: 2741 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2742 case ISD::VP_XOR: 2743 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2744 case ISD::VP_ASHR: 2745 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2746 case ISD::VP_LSHR: 2747 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2748 case ISD::VP_SHL: 2749 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2750 case ISD::VP_FADD: 2751 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 2752 case ISD::VP_FSUB: 2753 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 2754 case ISD::VP_FMUL: 2755 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 2756 case ISD::VP_FDIV: 2757 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 2758 } 2759 } 2760 2761 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2762 SelectionDAG &DAG, unsigned Flags) { 2763 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2764 } 2765 2766 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2767 SelectionDAG &DAG, unsigned Flags) { 2768 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2769 Flags); 2770 } 2771 2772 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2773 SelectionDAG &DAG, unsigned Flags) { 2774 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2775 N->getOffset(), Flags); 2776 } 2777 2778 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2779 SelectionDAG &DAG, unsigned Flags) { 2780 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2781 } 2782 2783 template <class NodeTy> 2784 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2785 bool IsLocal) const { 2786 SDLoc DL(N); 2787 EVT Ty = getPointerTy(DAG.getDataLayout()); 2788 2789 if (isPositionIndependent()) { 2790 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2791 if (IsLocal) 2792 // Use PC-relative addressing to access the symbol. This generates the 2793 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2794 // %pcrel_lo(auipc)). 2795 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2796 2797 // Use PC-relative addressing to access the GOT for this symbol, then load 2798 // the address from the GOT. This generates the pattern (PseudoLA sym), 2799 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2800 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2801 } 2802 2803 switch (getTargetMachine().getCodeModel()) { 2804 default: 2805 report_fatal_error("Unsupported code model for lowering"); 2806 case CodeModel::Small: { 2807 // Generate a sequence for accessing addresses within the first 2 GiB of 2808 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2809 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2810 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2811 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2812 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2813 } 2814 case CodeModel::Medium: { 2815 // Generate a sequence for accessing addresses within any 2GiB range within 2816 // the address space. This generates the pattern (PseudoLLA sym), which 2817 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2818 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2819 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2820 } 2821 } 2822 } 2823 2824 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2825 SelectionDAG &DAG) const { 2826 SDLoc DL(Op); 2827 EVT Ty = Op.getValueType(); 2828 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2829 int64_t Offset = N->getOffset(); 2830 MVT XLenVT = Subtarget.getXLenVT(); 2831 2832 const GlobalValue *GV = N->getGlobal(); 2833 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2834 SDValue Addr = getAddr(N, DAG, IsLocal); 2835 2836 // In order to maximise the opportunity for common subexpression elimination, 2837 // emit a separate ADD node for the global address offset instead of folding 2838 // it in the global address node. Later peephole optimisations may choose to 2839 // fold it back in when profitable. 2840 if (Offset != 0) 2841 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2842 DAG.getConstant(Offset, DL, XLenVT)); 2843 return Addr; 2844 } 2845 2846 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2847 SelectionDAG &DAG) const { 2848 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2849 2850 return getAddr(N, DAG); 2851 } 2852 2853 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2854 SelectionDAG &DAG) const { 2855 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2856 2857 return getAddr(N, DAG); 2858 } 2859 2860 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2861 SelectionDAG &DAG) const { 2862 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2863 2864 return getAddr(N, DAG); 2865 } 2866 2867 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2868 SelectionDAG &DAG, 2869 bool UseGOT) const { 2870 SDLoc DL(N); 2871 EVT Ty = getPointerTy(DAG.getDataLayout()); 2872 const GlobalValue *GV = N->getGlobal(); 2873 MVT XLenVT = Subtarget.getXLenVT(); 2874 2875 if (UseGOT) { 2876 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2877 // load the address from the GOT and add the thread pointer. This generates 2878 // the pattern (PseudoLA_TLS_IE sym), which expands to 2879 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2880 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2881 SDValue Load = 2882 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2883 2884 // Add the thread pointer. 2885 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2886 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2887 } 2888 2889 // Generate a sequence for accessing the address relative to the thread 2890 // pointer, with the appropriate adjustment for the thread pointer offset. 2891 // This generates the pattern 2892 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2893 SDValue AddrHi = 2894 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2895 SDValue AddrAdd = 2896 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2897 SDValue AddrLo = 2898 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2899 2900 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2901 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2902 SDValue MNAdd = SDValue( 2903 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2904 0); 2905 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2906 } 2907 2908 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2909 SelectionDAG &DAG) const { 2910 SDLoc DL(N); 2911 EVT Ty = getPointerTy(DAG.getDataLayout()); 2912 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2913 const GlobalValue *GV = N->getGlobal(); 2914 2915 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2916 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2917 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2918 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2919 SDValue Load = 2920 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2921 2922 // Prepare argument list to generate call. 2923 ArgListTy Args; 2924 ArgListEntry Entry; 2925 Entry.Node = Load; 2926 Entry.Ty = CallTy; 2927 Args.push_back(Entry); 2928 2929 // Setup call to __tls_get_addr. 2930 TargetLowering::CallLoweringInfo CLI(DAG); 2931 CLI.setDebugLoc(DL) 2932 .setChain(DAG.getEntryNode()) 2933 .setLibCallee(CallingConv::C, CallTy, 2934 DAG.getExternalSymbol("__tls_get_addr", Ty), 2935 std::move(Args)); 2936 2937 return LowerCallTo(CLI).first; 2938 } 2939 2940 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2941 SelectionDAG &DAG) const { 2942 SDLoc DL(Op); 2943 EVT Ty = Op.getValueType(); 2944 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2945 int64_t Offset = N->getOffset(); 2946 MVT XLenVT = Subtarget.getXLenVT(); 2947 2948 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2949 2950 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2951 CallingConv::GHC) 2952 report_fatal_error("In GHC calling convention TLS is not supported"); 2953 2954 SDValue Addr; 2955 switch (Model) { 2956 case TLSModel::LocalExec: 2957 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2958 break; 2959 case TLSModel::InitialExec: 2960 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2961 break; 2962 case TLSModel::LocalDynamic: 2963 case TLSModel::GeneralDynamic: 2964 Addr = getDynamicTLSAddr(N, DAG); 2965 break; 2966 } 2967 2968 // In order to maximise the opportunity for common subexpression elimination, 2969 // emit a separate ADD node for the global address offset instead of folding 2970 // it in the global address node. Later peephole optimisations may choose to 2971 // fold it back in when profitable. 2972 if (Offset != 0) 2973 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2974 DAG.getConstant(Offset, DL, XLenVT)); 2975 return Addr; 2976 } 2977 2978 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2979 SDValue CondV = Op.getOperand(0); 2980 SDValue TrueV = Op.getOperand(1); 2981 SDValue FalseV = Op.getOperand(2); 2982 SDLoc DL(Op); 2983 MVT VT = Op.getSimpleValueType(); 2984 MVT XLenVT = Subtarget.getXLenVT(); 2985 2986 // Lower vector SELECTs to VSELECTs by splatting the condition. 2987 if (VT.isVector()) { 2988 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 2989 SDValue CondSplat = VT.isScalableVector() 2990 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 2991 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 2992 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 2993 } 2994 2995 // If the result type is XLenVT and CondV is the output of a SETCC node 2996 // which also operated on XLenVT inputs, then merge the SETCC node into the 2997 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2998 // compare+branch instructions. i.e.: 2999 // (select (setcc lhs, rhs, cc), truev, falsev) 3000 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3001 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3002 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3003 SDValue LHS = CondV.getOperand(0); 3004 SDValue RHS = CondV.getOperand(1); 3005 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3006 ISD::CondCode CCVal = CC->get(); 3007 3008 // Special case for a select of 2 constants that have a diffence of 1. 3009 // Normally this is done by DAGCombine, but if the select is introduced by 3010 // type legalization or op legalization, we miss it. Restricting to SETLT 3011 // case for now because that is what signed saturating add/sub need. 3012 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3013 // but we would probably want to swap the true/false values if the condition 3014 // is SETGE/SETLE to avoid an XORI. 3015 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3016 CCVal == ISD::SETLT) { 3017 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3018 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3019 if (TrueVal - 1 == FalseVal) 3020 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3021 if (TrueVal + 1 == FalseVal) 3022 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3023 } 3024 3025 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3026 3027 SDValue TargetCC = DAG.getCondCode(CCVal); 3028 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3029 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3030 } 3031 3032 // Otherwise: 3033 // (select condv, truev, falsev) 3034 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3035 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3036 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3037 3038 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3039 3040 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3041 } 3042 3043 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3044 SDValue CondV = Op.getOperand(1); 3045 SDLoc DL(Op); 3046 MVT XLenVT = Subtarget.getXLenVT(); 3047 3048 if (CondV.getOpcode() == ISD::SETCC && 3049 CondV.getOperand(0).getValueType() == XLenVT) { 3050 SDValue LHS = CondV.getOperand(0); 3051 SDValue RHS = CondV.getOperand(1); 3052 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3053 3054 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3055 3056 SDValue TargetCC = DAG.getCondCode(CCVal); 3057 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3058 LHS, RHS, TargetCC, Op.getOperand(2)); 3059 } 3060 3061 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3062 CondV, DAG.getConstant(0, DL, XLenVT), 3063 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 3064 } 3065 3066 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3067 MachineFunction &MF = DAG.getMachineFunction(); 3068 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 3069 3070 SDLoc DL(Op); 3071 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3072 getPointerTy(MF.getDataLayout())); 3073 3074 // vastart just stores the address of the VarArgsFrameIndex slot into the 3075 // memory location argument. 3076 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3077 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 3078 MachinePointerInfo(SV)); 3079 } 3080 3081 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 3082 SelectionDAG &DAG) const { 3083 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3084 MachineFunction &MF = DAG.getMachineFunction(); 3085 MachineFrameInfo &MFI = MF.getFrameInfo(); 3086 MFI.setFrameAddressIsTaken(true); 3087 Register FrameReg = RI.getFrameRegister(MF); 3088 int XLenInBytes = Subtarget.getXLen() / 8; 3089 3090 EVT VT = Op.getValueType(); 3091 SDLoc DL(Op); 3092 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 3093 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3094 while (Depth--) { 3095 int Offset = -(XLenInBytes * 2); 3096 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 3097 DAG.getIntPtrConstant(Offset, DL)); 3098 FrameAddr = 3099 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3100 } 3101 return FrameAddr; 3102 } 3103 3104 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 3105 SelectionDAG &DAG) const { 3106 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 3107 MachineFunction &MF = DAG.getMachineFunction(); 3108 MachineFrameInfo &MFI = MF.getFrameInfo(); 3109 MFI.setReturnAddressIsTaken(true); 3110 MVT XLenVT = Subtarget.getXLenVT(); 3111 int XLenInBytes = Subtarget.getXLen() / 8; 3112 3113 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3114 return SDValue(); 3115 3116 EVT VT = Op.getValueType(); 3117 SDLoc DL(Op); 3118 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3119 if (Depth) { 3120 int Off = -XLenInBytes; 3121 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3122 SDValue Offset = DAG.getConstant(Off, DL, VT); 3123 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 3124 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 3125 MachinePointerInfo()); 3126 } 3127 3128 // Return the value of the return address register, marking it an implicit 3129 // live-in. 3130 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 3131 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 3132 } 3133 3134 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 3135 SelectionDAG &DAG) const { 3136 SDLoc DL(Op); 3137 SDValue Lo = Op.getOperand(0); 3138 SDValue Hi = Op.getOperand(1); 3139 SDValue Shamt = Op.getOperand(2); 3140 EVT VT = Lo.getValueType(); 3141 3142 // if Shamt-XLEN < 0: // Shamt < XLEN 3143 // Lo = Lo << Shamt 3144 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 3145 // else: 3146 // Lo = 0 3147 // Hi = Lo << (Shamt-XLEN) 3148 3149 SDValue Zero = DAG.getConstant(0, DL, VT); 3150 SDValue One = DAG.getConstant(1, DL, VT); 3151 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3152 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3153 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3154 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3155 3156 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3157 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3158 SDValue ShiftRightLo = 3159 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 3160 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3161 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3162 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 3163 3164 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3165 3166 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3167 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3168 3169 SDValue Parts[2] = {Lo, Hi}; 3170 return DAG.getMergeValues(Parts, DL); 3171 } 3172 3173 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3174 bool IsSRA) const { 3175 SDLoc DL(Op); 3176 SDValue Lo = Op.getOperand(0); 3177 SDValue Hi = Op.getOperand(1); 3178 SDValue Shamt = Op.getOperand(2); 3179 EVT VT = Lo.getValueType(); 3180 3181 // SRA expansion: 3182 // if Shamt-XLEN < 0: // Shamt < XLEN 3183 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3184 // Hi = Hi >>s Shamt 3185 // else: 3186 // Lo = Hi >>s (Shamt-XLEN); 3187 // Hi = Hi >>s (XLEN-1) 3188 // 3189 // SRL expansion: 3190 // if Shamt-XLEN < 0: // Shamt < XLEN 3191 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 3192 // Hi = Hi >>u Shamt 3193 // else: 3194 // Lo = Hi >>u (Shamt-XLEN); 3195 // Hi = 0; 3196 3197 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3198 3199 SDValue Zero = DAG.getConstant(0, DL, VT); 3200 SDValue One = DAG.getConstant(1, DL, VT); 3201 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 3202 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 3203 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 3204 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 3205 3206 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3207 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3208 SDValue ShiftLeftHi = 3209 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 3210 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3211 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3212 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 3213 SDValue HiFalse = 3214 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 3215 3216 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 3217 3218 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3219 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3220 3221 SDValue Parts[2] = {Lo, Hi}; 3222 return DAG.getMergeValues(Parts, DL); 3223 } 3224 3225 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 3226 // legal equivalently-sized i8 type, so we can use that as a go-between. 3227 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 3228 SelectionDAG &DAG) const { 3229 SDLoc DL(Op); 3230 MVT VT = Op.getSimpleValueType(); 3231 SDValue SplatVal = Op.getOperand(0); 3232 // All-zeros or all-ones splats are handled specially. 3233 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 3234 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3235 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 3236 } 3237 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 3238 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 3239 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 3240 } 3241 MVT XLenVT = Subtarget.getXLenVT(); 3242 assert(SplatVal.getValueType() == XLenVT && 3243 "Unexpected type for i1 splat value"); 3244 MVT InterVT = VT.changeVectorElementType(MVT::i8); 3245 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 3246 DAG.getConstant(1, DL, XLenVT)); 3247 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 3248 SDValue Zero = DAG.getConstant(0, DL, InterVT); 3249 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 3250 } 3251 3252 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 3253 // illegal (currently only vXi64 RV32). 3254 // FIXME: We could also catch non-constant sign-extended i32 values and lower 3255 // them to SPLAT_VECTOR_I64 3256 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 3257 SelectionDAG &DAG) const { 3258 SDLoc DL(Op); 3259 MVT VecVT = Op.getSimpleValueType(); 3260 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 3261 "Unexpected SPLAT_VECTOR_PARTS lowering"); 3262 3263 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 3264 SDValue Lo = Op.getOperand(0); 3265 SDValue Hi = Op.getOperand(1); 3266 3267 if (VecVT.isFixedLengthVector()) { 3268 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3269 SDLoc DL(Op); 3270 SDValue Mask, VL; 3271 std::tie(Mask, VL) = 3272 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3273 3274 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 3275 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 3276 } 3277 3278 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 3279 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 3280 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 3281 // If Hi constant is all the same sign bit as Lo, lower this as a custom 3282 // node in order to try and match RVV vector/scalar instructions. 3283 if ((LoC >> 31) == HiC) 3284 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3285 } 3286 3287 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 3288 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 3289 isa<ConstantSDNode>(Hi.getOperand(1)) && 3290 Hi.getConstantOperandVal(1) == 31) 3291 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 3292 3293 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 3294 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, 3295 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); 3296 } 3297 3298 // Custom-lower extensions from mask vectors by using a vselect either with 1 3299 // for zero/any-extension or -1 for sign-extension: 3300 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 3301 // Note that any-extension is lowered identically to zero-extension. 3302 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 3303 int64_t ExtTrueVal) const { 3304 SDLoc DL(Op); 3305 MVT VecVT = Op.getSimpleValueType(); 3306 SDValue Src = Op.getOperand(0); 3307 // Only custom-lower extensions from mask types 3308 assert(Src.getValueType().isVector() && 3309 Src.getValueType().getVectorElementType() == MVT::i1); 3310 3311 MVT XLenVT = Subtarget.getXLenVT(); 3312 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 3313 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 3314 3315 if (VecVT.isScalableVector()) { 3316 // Be careful not to introduce illegal scalar types at this stage, and be 3317 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 3318 // illegal and must be expanded. Since we know that the constants are 3319 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 3320 bool IsRV32E64 = 3321 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 3322 3323 if (!IsRV32E64) { 3324 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 3325 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 3326 } else { 3327 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3328 SplatTrueVal = 3329 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3330 } 3331 3332 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3333 } 3334 3335 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3336 MVT I1ContainerVT = 3337 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3338 3339 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3340 3341 SDValue Mask, VL; 3342 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3343 3344 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3345 SplatTrueVal = 3346 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3347 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3348 SplatTrueVal, SplatZero, VL); 3349 3350 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3351 } 3352 3353 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3354 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3355 MVT ExtVT = Op.getSimpleValueType(); 3356 // Only custom-lower extensions from fixed-length vector types. 3357 if (!ExtVT.isFixedLengthVector()) 3358 return Op; 3359 MVT VT = Op.getOperand(0).getSimpleValueType(); 3360 // Grab the canonical container type for the extended type. Infer the smaller 3361 // type from that to ensure the same number of vector elements, as we know 3362 // the LMUL will be sufficient to hold the smaller type. 3363 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3364 // Get the extended container type manually to ensure the same number of 3365 // vector elements between source and dest. 3366 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3367 ContainerExtVT.getVectorElementCount()); 3368 3369 SDValue Op1 = 3370 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3371 3372 SDLoc DL(Op); 3373 SDValue Mask, VL; 3374 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3375 3376 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3377 3378 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3379 } 3380 3381 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3382 // setcc operation: 3383 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3384 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3385 SelectionDAG &DAG) const { 3386 SDLoc DL(Op); 3387 EVT MaskVT = Op.getValueType(); 3388 // Only expect to custom-lower truncations to mask types 3389 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3390 "Unexpected type for vector mask lowering"); 3391 SDValue Src = Op.getOperand(0); 3392 MVT VecVT = Src.getSimpleValueType(); 3393 3394 // If this is a fixed vector, we need to convert it to a scalable vector. 3395 MVT ContainerVT = VecVT; 3396 if (VecVT.isFixedLengthVector()) { 3397 ContainerVT = getContainerForFixedLengthVector(VecVT); 3398 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3399 } 3400 3401 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3402 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3403 3404 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3405 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3406 3407 if (VecVT.isScalableVector()) { 3408 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3409 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3410 } 3411 3412 SDValue Mask, VL; 3413 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3414 3415 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3416 SDValue Trunc = 3417 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3418 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3419 DAG.getCondCode(ISD::SETNE), Mask, VL); 3420 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3421 } 3422 3423 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3424 // first position of a vector, and that vector is slid up to the insert index. 3425 // By limiting the active vector length to index+1 and merging with the 3426 // original vector (with an undisturbed tail policy for elements >= VL), we 3427 // achieve the desired result of leaving all elements untouched except the one 3428 // at VL-1, which is replaced with the desired value. 3429 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3430 SelectionDAG &DAG) const { 3431 SDLoc DL(Op); 3432 MVT VecVT = Op.getSimpleValueType(); 3433 SDValue Vec = Op.getOperand(0); 3434 SDValue Val = Op.getOperand(1); 3435 SDValue Idx = Op.getOperand(2); 3436 3437 if (VecVT.getVectorElementType() == MVT::i1) { 3438 // FIXME: For now we just promote to an i8 vector and insert into that, 3439 // but this is probably not optimal. 3440 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3441 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3442 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3443 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3444 } 3445 3446 MVT ContainerVT = VecVT; 3447 // If the operand is a fixed-length vector, convert to a scalable one. 3448 if (VecVT.isFixedLengthVector()) { 3449 ContainerVT = getContainerForFixedLengthVector(VecVT); 3450 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3451 } 3452 3453 MVT XLenVT = Subtarget.getXLenVT(); 3454 3455 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3456 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3457 // Even i64-element vectors on RV32 can be lowered without scalar 3458 // legalization if the most-significant 32 bits of the value are not affected 3459 // by the sign-extension of the lower 32 bits. 3460 // TODO: We could also catch sign extensions of a 32-bit value. 3461 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3462 const auto *CVal = cast<ConstantSDNode>(Val); 3463 if (isInt<32>(CVal->getSExtValue())) { 3464 IsLegalInsert = true; 3465 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3466 } 3467 } 3468 3469 SDValue Mask, VL; 3470 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3471 3472 SDValue ValInVec; 3473 3474 if (IsLegalInsert) { 3475 unsigned Opc = 3476 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3477 if (isNullConstant(Idx)) { 3478 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3479 if (!VecVT.isFixedLengthVector()) 3480 return Vec; 3481 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3482 } 3483 ValInVec = 3484 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3485 } else { 3486 // On RV32, i64-element vectors must be specially handled to place the 3487 // value at element 0, by using two vslide1up instructions in sequence on 3488 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3489 // this. 3490 SDValue One = DAG.getConstant(1, DL, XLenVT); 3491 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3492 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3493 MVT I32ContainerVT = 3494 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3495 SDValue I32Mask = 3496 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3497 // Limit the active VL to two. 3498 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3499 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3500 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3501 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3502 InsertI64VL); 3503 // First slide in the hi value, then the lo in underneath it. 3504 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3505 ValHi, I32Mask, InsertI64VL); 3506 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3507 ValLo, I32Mask, InsertI64VL); 3508 // Bitcast back to the right container type. 3509 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3510 } 3511 3512 // Now that the value is in a vector, slide it into position. 3513 SDValue InsertVL = 3514 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3515 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3516 ValInVec, Idx, Mask, InsertVL); 3517 if (!VecVT.isFixedLengthVector()) 3518 return Slideup; 3519 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3520 } 3521 3522 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3523 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3524 // types this is done using VMV_X_S to allow us to glean information about the 3525 // sign bits of the result. 3526 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3527 SelectionDAG &DAG) const { 3528 SDLoc DL(Op); 3529 SDValue Idx = Op.getOperand(1); 3530 SDValue Vec = Op.getOperand(0); 3531 EVT EltVT = Op.getValueType(); 3532 MVT VecVT = Vec.getSimpleValueType(); 3533 MVT XLenVT = Subtarget.getXLenVT(); 3534 3535 if (VecVT.getVectorElementType() == MVT::i1) { 3536 // FIXME: For now we just promote to an i8 vector and extract from that, 3537 // but this is probably not optimal. 3538 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3539 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3540 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3541 } 3542 3543 // If this is a fixed vector, we need to convert it to a scalable vector. 3544 MVT ContainerVT = VecVT; 3545 if (VecVT.isFixedLengthVector()) { 3546 ContainerVT = getContainerForFixedLengthVector(VecVT); 3547 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3548 } 3549 3550 // If the index is 0, the vector is already in the right position. 3551 if (!isNullConstant(Idx)) { 3552 // Use a VL of 1 to avoid processing more elements than we need. 3553 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3554 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3555 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3556 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3557 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3558 } 3559 3560 if (!EltVT.isInteger()) { 3561 // Floating-point extracts are handled in TableGen. 3562 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3563 DAG.getConstant(0, DL, XLenVT)); 3564 } 3565 3566 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3567 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3568 } 3569 3570 // Some RVV intrinsics may claim that they want an integer operand to be 3571 // promoted or expanded. 3572 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3573 const RISCVSubtarget &Subtarget) { 3574 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3575 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3576 "Unexpected opcode"); 3577 3578 if (!Subtarget.hasStdExtV()) 3579 return SDValue(); 3580 3581 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3582 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3583 SDLoc DL(Op); 3584 3585 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3586 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3587 if (!II || !II->SplatOperand) 3588 return SDValue(); 3589 3590 unsigned SplatOp = II->SplatOperand + HasChain; 3591 assert(SplatOp < Op.getNumOperands()); 3592 3593 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3594 SDValue &ScalarOp = Operands[SplatOp]; 3595 MVT OpVT = ScalarOp.getSimpleValueType(); 3596 MVT XLenVT = Subtarget.getXLenVT(); 3597 3598 // If this isn't a scalar, or its type is XLenVT we're done. 3599 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3600 return SDValue(); 3601 3602 // Simplest case is that the operand needs to be promoted to XLenVT. 3603 if (OpVT.bitsLT(XLenVT)) { 3604 // If the operand is a constant, sign extend to increase our chances 3605 // of being able to use a .vi instruction. ANY_EXTEND would become a 3606 // a zero extend and the simm5 check in isel would fail. 3607 // FIXME: Should we ignore the upper bits in isel instead? 3608 unsigned ExtOpc = 3609 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3610 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3611 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3612 } 3613 3614 // Use the previous operand to get the vXi64 VT. The result might be a mask 3615 // VT for compares. Using the previous operand assumes that the previous 3616 // operand will never have a smaller element size than a scalar operand and 3617 // that a widening operation never uses SEW=64. 3618 // NOTE: If this fails the below assert, we can probably just find the 3619 // element count from any operand or result and use it to construct the VT. 3620 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3621 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3622 3623 // The more complex case is when the scalar is larger than XLenVT. 3624 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3625 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3626 3627 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3628 // on the instruction to sign-extend since SEW>XLEN. 3629 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3630 if (isInt<32>(CVal->getSExtValue())) { 3631 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3632 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3633 } 3634 } 3635 3636 // We need to convert the scalar to a splat vector. 3637 // FIXME: Can we implicitly truncate the scalar if it is known to 3638 // be sign extended? 3639 // VL should be the last operand. 3640 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3641 assert(VL.getValueType() == XLenVT); 3642 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3643 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3644 } 3645 3646 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3647 SelectionDAG &DAG) const { 3648 unsigned IntNo = Op.getConstantOperandVal(0); 3649 SDLoc DL(Op); 3650 MVT XLenVT = Subtarget.getXLenVT(); 3651 3652 switch (IntNo) { 3653 default: 3654 break; // Don't custom lower most intrinsics. 3655 case Intrinsic::thread_pointer: { 3656 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3657 return DAG.getRegister(RISCV::X4, PtrVT); 3658 } 3659 case Intrinsic::riscv_orc_b: 3660 // Lower to the GORCI encoding for orc.b. 3661 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3662 DAG.getConstant(7, DL, XLenVT)); 3663 case Intrinsic::riscv_grev: 3664 case Intrinsic::riscv_gorc: { 3665 unsigned Opc = 3666 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3667 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3668 } 3669 case Intrinsic::riscv_shfl: 3670 case Intrinsic::riscv_unshfl: { 3671 unsigned Opc = 3672 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3673 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3674 } 3675 case Intrinsic::riscv_bcompress: 3676 case Intrinsic::riscv_bdecompress: { 3677 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3678 : RISCVISD::BDECOMPRESS; 3679 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3680 } 3681 case Intrinsic::riscv_vmv_x_s: 3682 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3683 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3684 Op.getOperand(1)); 3685 case Intrinsic::riscv_vmv_v_x: 3686 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3687 Op.getSimpleValueType(), DL, DAG, Subtarget); 3688 case Intrinsic::riscv_vfmv_v_f: 3689 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3690 Op.getOperand(1), Op.getOperand(2)); 3691 case Intrinsic::riscv_vmv_s_x: { 3692 SDValue Scalar = Op.getOperand(2); 3693 3694 if (Scalar.getValueType().bitsLE(XLenVT)) { 3695 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3696 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3697 Op.getOperand(1), Scalar, Op.getOperand(3)); 3698 } 3699 3700 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3701 3702 // This is an i64 value that lives in two scalar registers. We have to 3703 // insert this in a convoluted way. First we build vXi64 splat containing 3704 // the/ two values that we assemble using some bit math. Next we'll use 3705 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3706 // to merge element 0 from our splat into the source vector. 3707 // FIXME: This is probably not the best way to do this, but it is 3708 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3709 // point. 3710 // sw lo, (a0) 3711 // sw hi, 4(a0) 3712 // vlse vX, (a0) 3713 // 3714 // vid.v vVid 3715 // vmseq.vx mMask, vVid, 0 3716 // vmerge.vvm vDest, vSrc, vVal, mMask 3717 MVT VT = Op.getSimpleValueType(); 3718 SDValue Vec = Op.getOperand(1); 3719 SDValue VL = Op.getOperand(3); 3720 3721 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3722 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3723 DAG.getConstant(0, DL, MVT::i32), VL); 3724 3725 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3726 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3727 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3728 SDValue SelectCond = 3729 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3730 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3731 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3732 Vec, VL); 3733 } 3734 case Intrinsic::riscv_vslide1up: 3735 case Intrinsic::riscv_vslide1down: 3736 case Intrinsic::riscv_vslide1up_mask: 3737 case Intrinsic::riscv_vslide1down_mask: { 3738 // We need to special case these when the scalar is larger than XLen. 3739 unsigned NumOps = Op.getNumOperands(); 3740 bool IsMasked = NumOps == 6; 3741 unsigned OpOffset = IsMasked ? 1 : 0; 3742 SDValue Scalar = Op.getOperand(2 + OpOffset); 3743 if (Scalar.getValueType().bitsLE(XLenVT)) 3744 break; 3745 3746 // Splatting a sign extended constant is fine. 3747 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3748 if (isInt<32>(CVal->getSExtValue())) 3749 break; 3750 3751 MVT VT = Op.getSimpleValueType(); 3752 assert(VT.getVectorElementType() == MVT::i64 && 3753 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3754 3755 // Convert the vector source to the equivalent nxvXi32 vector. 3756 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3757 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3758 3759 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3760 DAG.getConstant(0, DL, XLenVT)); 3761 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3762 DAG.getConstant(1, DL, XLenVT)); 3763 3764 // Double the VL since we halved SEW. 3765 SDValue VL = Op.getOperand(NumOps - 1); 3766 SDValue I32VL = 3767 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3768 3769 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3770 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3771 3772 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3773 // instructions. 3774 if (IntNo == Intrinsic::riscv_vslide1up || 3775 IntNo == Intrinsic::riscv_vslide1up_mask) { 3776 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3777 I32Mask, I32VL); 3778 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3779 I32Mask, I32VL); 3780 } else { 3781 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3782 I32Mask, I32VL); 3783 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3784 I32Mask, I32VL); 3785 } 3786 3787 // Convert back to nxvXi64. 3788 Vec = DAG.getBitcast(VT, Vec); 3789 3790 if (!IsMasked) 3791 return Vec; 3792 3793 // Apply mask after the operation. 3794 SDValue Mask = Op.getOperand(NumOps - 2); 3795 SDValue MaskedOff = Op.getOperand(1); 3796 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3797 } 3798 } 3799 3800 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3801 } 3802 3803 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3804 SelectionDAG &DAG) const { 3805 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3806 } 3807 3808 static MVT getLMUL1VT(MVT VT) { 3809 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3810 "Unexpected vector MVT"); 3811 return MVT::getScalableVectorVT( 3812 VT.getVectorElementType(), 3813 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3814 } 3815 3816 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3817 switch (ISDOpcode) { 3818 default: 3819 llvm_unreachable("Unhandled reduction"); 3820 case ISD::VECREDUCE_ADD: 3821 return RISCVISD::VECREDUCE_ADD_VL; 3822 case ISD::VECREDUCE_UMAX: 3823 return RISCVISD::VECREDUCE_UMAX_VL; 3824 case ISD::VECREDUCE_SMAX: 3825 return RISCVISD::VECREDUCE_SMAX_VL; 3826 case ISD::VECREDUCE_UMIN: 3827 return RISCVISD::VECREDUCE_UMIN_VL; 3828 case ISD::VECREDUCE_SMIN: 3829 return RISCVISD::VECREDUCE_SMIN_VL; 3830 case ISD::VECREDUCE_AND: 3831 return RISCVISD::VECREDUCE_AND_VL; 3832 case ISD::VECREDUCE_OR: 3833 return RISCVISD::VECREDUCE_OR_VL; 3834 case ISD::VECREDUCE_XOR: 3835 return RISCVISD::VECREDUCE_XOR_VL; 3836 } 3837 } 3838 3839 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3840 SelectionDAG &DAG) const { 3841 SDLoc DL(Op); 3842 SDValue Vec = Op.getOperand(0); 3843 MVT VecVT = Vec.getSimpleValueType(); 3844 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3845 Op.getOpcode() == ISD::VECREDUCE_OR || 3846 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3847 "Unexpected reduction lowering"); 3848 3849 MVT XLenVT = Subtarget.getXLenVT(); 3850 assert(Op.getValueType() == XLenVT && 3851 "Expected reduction output to be legalized to XLenVT"); 3852 3853 MVT ContainerVT = VecVT; 3854 if (VecVT.isFixedLengthVector()) { 3855 ContainerVT = getContainerForFixedLengthVector(VecVT); 3856 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3857 } 3858 3859 SDValue Mask, VL; 3860 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3861 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3862 3863 switch (Op.getOpcode()) { 3864 default: 3865 llvm_unreachable("Unhandled reduction"); 3866 case ISD::VECREDUCE_AND: 3867 // vpopc ~x == 0 3868 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3869 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3870 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3871 case ISD::VECREDUCE_OR: 3872 // vpopc x != 0 3873 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3874 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3875 case ISD::VECREDUCE_XOR: { 3876 // ((vpopc x) & 1) != 0 3877 SDValue One = DAG.getConstant(1, DL, XLenVT); 3878 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3879 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3880 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3881 } 3882 } 3883 } 3884 3885 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3886 SelectionDAG &DAG) const { 3887 SDLoc DL(Op); 3888 SDValue Vec = Op.getOperand(0); 3889 EVT VecEVT = Vec.getValueType(); 3890 3891 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3892 3893 // Due to ordering in legalize types we may have a vector type that needs to 3894 // be split. Do that manually so we can get down to a legal type. 3895 while (getTypeAction(*DAG.getContext(), VecEVT) == 3896 TargetLowering::TypeSplitVector) { 3897 SDValue Lo, Hi; 3898 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3899 VecEVT = Lo.getValueType(); 3900 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3901 } 3902 3903 // TODO: The type may need to be widened rather than split. Or widened before 3904 // it can be split. 3905 if (!isTypeLegal(VecEVT)) 3906 return SDValue(); 3907 3908 MVT VecVT = VecEVT.getSimpleVT(); 3909 MVT VecEltVT = VecVT.getVectorElementType(); 3910 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3911 3912 MVT ContainerVT = VecVT; 3913 if (VecVT.isFixedLengthVector()) { 3914 ContainerVT = getContainerForFixedLengthVector(VecVT); 3915 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3916 } 3917 3918 MVT M1VT = getLMUL1VT(ContainerVT); 3919 3920 SDValue Mask, VL; 3921 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3922 3923 // FIXME: This is a VLMAX splat which might be too large and can prevent 3924 // vsetvli removal. 3925 SDValue NeutralElem = 3926 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3927 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3928 SDValue Reduction = 3929 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3930 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3931 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3932 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3933 } 3934 3935 // Given a reduction op, this function returns the matching reduction opcode, 3936 // the vector SDValue and the scalar SDValue required to lower this to a 3937 // RISCVISD node. 3938 static std::tuple<unsigned, SDValue, SDValue> 3939 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3940 SDLoc DL(Op); 3941 auto Flags = Op->getFlags(); 3942 unsigned Opcode = Op.getOpcode(); 3943 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3944 switch (Opcode) { 3945 default: 3946 llvm_unreachable("Unhandled reduction"); 3947 case ISD::VECREDUCE_FADD: 3948 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3949 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3950 case ISD::VECREDUCE_SEQ_FADD: 3951 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3952 Op.getOperand(0)); 3953 case ISD::VECREDUCE_FMIN: 3954 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3955 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3956 case ISD::VECREDUCE_FMAX: 3957 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3958 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3959 } 3960 } 3961 3962 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3963 SelectionDAG &DAG) const { 3964 SDLoc DL(Op); 3965 MVT VecEltVT = Op.getSimpleValueType(); 3966 3967 unsigned RVVOpcode; 3968 SDValue VectorVal, ScalarVal; 3969 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3970 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3971 MVT VecVT = VectorVal.getSimpleValueType(); 3972 3973 MVT ContainerVT = VecVT; 3974 if (VecVT.isFixedLengthVector()) { 3975 ContainerVT = getContainerForFixedLengthVector(VecVT); 3976 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3977 } 3978 3979 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3980 3981 SDValue Mask, VL; 3982 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3983 3984 // FIXME: This is a VLMAX splat which might be too large and can prevent 3985 // vsetvli removal. 3986 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3987 SDValue Reduction = 3988 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3989 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3990 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3991 } 3992 3993 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3994 SelectionDAG &DAG) const { 3995 SDValue Vec = Op.getOperand(0); 3996 SDValue SubVec = Op.getOperand(1); 3997 MVT VecVT = Vec.getSimpleValueType(); 3998 MVT SubVecVT = SubVec.getSimpleValueType(); 3999 4000 SDLoc DL(Op); 4001 MVT XLenVT = Subtarget.getXLenVT(); 4002 unsigned OrigIdx = Op.getConstantOperandVal(2); 4003 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4004 4005 // We don't have the ability to slide mask vectors up indexed by their i1 4006 // elements; the smallest we can do is i8. Often we are able to bitcast to 4007 // equivalent i8 vectors. Note that when inserting a fixed-length vector 4008 // into a scalable one, we might not necessarily have enough scalable 4009 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 4010 if (SubVecVT.getVectorElementType() == MVT::i1 && 4011 (OrigIdx != 0 || !Vec.isUndef())) { 4012 if (VecVT.getVectorMinNumElements() >= 8 && 4013 SubVecVT.getVectorMinNumElements() >= 8) { 4014 assert(OrigIdx % 8 == 0 && "Invalid index"); 4015 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4016 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4017 "Unexpected mask vector lowering"); 4018 OrigIdx /= 8; 4019 SubVecVT = 4020 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4021 SubVecVT.isScalableVector()); 4022 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4023 VecVT.isScalableVector()); 4024 Vec = DAG.getBitcast(VecVT, Vec); 4025 SubVec = DAG.getBitcast(SubVecVT, SubVec); 4026 } else { 4027 // We can't slide this mask vector up indexed by its i1 elements. 4028 // This poses a problem when we wish to insert a scalable vector which 4029 // can't be re-expressed as a larger type. Just choose the slow path and 4030 // extend to a larger type, then truncate back down. 4031 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4032 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4033 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4034 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 4035 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 4036 Op.getOperand(2)); 4037 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 4038 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 4039 } 4040 } 4041 4042 // If the subvector vector is a fixed-length type, we cannot use subregister 4043 // manipulation to simplify the codegen; we don't know which register of a 4044 // LMUL group contains the specific subvector as we only know the minimum 4045 // register size. Therefore we must slide the vector group up the full 4046 // amount. 4047 if (SubVecVT.isFixedLengthVector()) { 4048 if (OrigIdx == 0 && Vec.isUndef()) 4049 return Op; 4050 MVT ContainerVT = VecVT; 4051 if (VecVT.isFixedLengthVector()) { 4052 ContainerVT = getContainerForFixedLengthVector(VecVT); 4053 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4054 } 4055 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 4056 DAG.getUNDEF(ContainerVT), SubVec, 4057 DAG.getConstant(0, DL, XLenVT)); 4058 SDValue Mask = 4059 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4060 // Set the vector length to only the number of elements we care about. Note 4061 // that for slideup this includes the offset. 4062 SDValue VL = 4063 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 4064 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4065 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4066 SubVec, SlideupAmt, Mask, VL); 4067 if (VecVT.isFixedLengthVector()) 4068 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4069 return DAG.getBitcast(Op.getValueType(), Slideup); 4070 } 4071 4072 unsigned SubRegIdx, RemIdx; 4073 std::tie(SubRegIdx, RemIdx) = 4074 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4075 VecVT, SubVecVT, OrigIdx, TRI); 4076 4077 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 4078 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 4079 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 4080 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 4081 4082 // 1. If the Idx has been completely eliminated and this subvector's size is 4083 // a vector register or a multiple thereof, or the surrounding elements are 4084 // undef, then this is a subvector insert which naturally aligns to a vector 4085 // register. These can easily be handled using subregister manipulation. 4086 // 2. If the subvector is smaller than a vector register, then the insertion 4087 // must preserve the undisturbed elements of the register. We do this by 4088 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 4089 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 4090 // subvector within the vector register, and an INSERT_SUBVECTOR of that 4091 // LMUL=1 type back into the larger vector (resolving to another subregister 4092 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 4093 // to avoid allocating a large register group to hold our subvector. 4094 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 4095 return Op; 4096 4097 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 4098 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 4099 // (in our case undisturbed). This means we can set up a subvector insertion 4100 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 4101 // size of the subvector. 4102 MVT InterSubVT = VecVT; 4103 SDValue AlignedExtract = Vec; 4104 unsigned AlignedIdx = OrigIdx - RemIdx; 4105 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4106 InterSubVT = getLMUL1VT(VecVT); 4107 // Extract a subvector equal to the nearest full vector register type. This 4108 // should resolve to a EXTRACT_SUBREG instruction. 4109 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4110 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4111 } 4112 4113 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4114 // For scalable vectors this must be further multiplied by vscale. 4115 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 4116 4117 SDValue Mask, VL; 4118 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4119 4120 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 4121 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 4122 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 4123 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 4124 4125 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 4126 DAG.getUNDEF(InterSubVT), SubVec, 4127 DAG.getConstant(0, DL, XLenVT)); 4128 4129 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 4130 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 4131 4132 // If required, insert this subvector back into the correct vector register. 4133 // This should resolve to an INSERT_SUBREG instruction. 4134 if (VecVT.bitsGT(InterSubVT)) 4135 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 4136 DAG.getConstant(AlignedIdx, DL, XLenVT)); 4137 4138 // We might have bitcast from a mask type: cast back to the original type if 4139 // required. 4140 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 4141 } 4142 4143 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 4144 SelectionDAG &DAG) const { 4145 SDValue Vec = Op.getOperand(0); 4146 MVT SubVecVT = Op.getSimpleValueType(); 4147 MVT VecVT = Vec.getSimpleValueType(); 4148 4149 SDLoc DL(Op); 4150 MVT XLenVT = Subtarget.getXLenVT(); 4151 unsigned OrigIdx = Op.getConstantOperandVal(1); 4152 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4153 4154 // We don't have the ability to slide mask vectors down indexed by their i1 4155 // elements; the smallest we can do is i8. Often we are able to bitcast to 4156 // equivalent i8 vectors. Note that when extracting a fixed-length vector 4157 // from a scalable one, we might not necessarily have enough scalable 4158 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 4159 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 4160 if (VecVT.getVectorMinNumElements() >= 8 && 4161 SubVecVT.getVectorMinNumElements() >= 8) { 4162 assert(OrigIdx % 8 == 0 && "Invalid index"); 4163 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 4164 SubVecVT.getVectorMinNumElements() % 8 == 0 && 4165 "Unexpected mask vector lowering"); 4166 OrigIdx /= 8; 4167 SubVecVT = 4168 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 4169 SubVecVT.isScalableVector()); 4170 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 4171 VecVT.isScalableVector()); 4172 Vec = DAG.getBitcast(VecVT, Vec); 4173 } else { 4174 // We can't slide this mask vector down, indexed by its i1 elements. 4175 // This poses a problem when we wish to extract a scalable vector which 4176 // can't be re-expressed as a larger type. Just choose the slow path and 4177 // extend to a larger type, then truncate back down. 4178 // TODO: We could probably improve this when extracting certain fixed 4179 // from fixed, where we can extract as i8 and shift the correct element 4180 // right to reach the desired subvector? 4181 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 4182 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 4183 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 4184 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 4185 Op.getOperand(1)); 4186 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 4187 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 4188 } 4189 } 4190 4191 // If the subvector vector is a fixed-length type, we cannot use subregister 4192 // manipulation to simplify the codegen; we don't know which register of a 4193 // LMUL group contains the specific subvector as we only know the minimum 4194 // register size. Therefore we must slide the vector group down the full 4195 // amount. 4196 if (SubVecVT.isFixedLengthVector()) { 4197 // With an index of 0 this is a cast-like subvector, which can be performed 4198 // with subregister operations. 4199 if (OrigIdx == 0) 4200 return Op; 4201 MVT ContainerVT = VecVT; 4202 if (VecVT.isFixedLengthVector()) { 4203 ContainerVT = getContainerForFixedLengthVector(VecVT); 4204 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4205 } 4206 SDValue Mask = 4207 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 4208 // Set the vector length to only the number of elements we care about. This 4209 // avoids sliding down elements we're going to discard straight away. 4210 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 4211 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 4212 SDValue Slidedown = 4213 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4214 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 4215 // Now we can use a cast-like subvector extract to get the result. 4216 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4217 DAG.getConstant(0, DL, XLenVT)); 4218 return DAG.getBitcast(Op.getValueType(), Slidedown); 4219 } 4220 4221 unsigned SubRegIdx, RemIdx; 4222 std::tie(SubRegIdx, RemIdx) = 4223 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 4224 VecVT, SubVecVT, OrigIdx, TRI); 4225 4226 // If the Idx has been completely eliminated then this is a subvector extract 4227 // which naturally aligns to a vector register. These can easily be handled 4228 // using subregister manipulation. 4229 if (RemIdx == 0) 4230 return Op; 4231 4232 // Else we must shift our vector register directly to extract the subvector. 4233 // Do this using VSLIDEDOWN. 4234 4235 // If the vector type is an LMUL-group type, extract a subvector equal to the 4236 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 4237 // instruction. 4238 MVT InterSubVT = VecVT; 4239 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 4240 InterSubVT = getLMUL1VT(VecVT); 4241 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 4242 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 4243 } 4244 4245 // Slide this vector register down by the desired number of elements in order 4246 // to place the desired subvector starting at element 0. 4247 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 4248 // For scalable vectors this must be further multiplied by vscale. 4249 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 4250 4251 SDValue Mask, VL; 4252 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 4253 SDValue Slidedown = 4254 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 4255 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 4256 4257 // Now the vector is in the right position, extract our final subvector. This 4258 // should resolve to a COPY. 4259 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 4260 DAG.getConstant(0, DL, XLenVT)); 4261 4262 // We might have bitcast from a mask type: cast back to the original type if 4263 // required. 4264 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 4265 } 4266 4267 // Lower step_vector to the vid instruction. Any non-identity step value must 4268 // be accounted for my manual expansion. 4269 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 4270 SelectionDAG &DAG) const { 4271 SDLoc DL(Op); 4272 MVT VT = Op.getSimpleValueType(); 4273 MVT XLenVT = Subtarget.getXLenVT(); 4274 SDValue Mask, VL; 4275 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 4276 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4277 uint64_t StepValImm = Op.getConstantOperandVal(0); 4278 if (StepValImm != 1) { 4279 if (isPowerOf2_64(StepValImm)) { 4280 SDValue StepVal = 4281 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 4282 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 4283 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 4284 } else { 4285 SDValue StepVal = lowerScalarSplat( 4286 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, 4287 DL, DAG, Subtarget); 4288 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 4289 } 4290 } 4291 return StepVec; 4292 } 4293 4294 // Implement vector_reverse using vrgather.vv with indices determined by 4295 // subtracting the id of each element from (VLMAX-1). This will convert 4296 // the indices like so: 4297 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 4298 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 4299 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 4300 SelectionDAG &DAG) const { 4301 SDLoc DL(Op); 4302 MVT VecVT = Op.getSimpleValueType(); 4303 unsigned EltSize = VecVT.getScalarSizeInBits(); 4304 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 4305 4306 unsigned MaxVLMAX = 0; 4307 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 4308 if (VectorBitsMax != 0) 4309 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 4310 4311 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 4312 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 4313 4314 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 4315 // to use vrgatherei16.vv. 4316 // TODO: It's also possible to use vrgatherei16.vv for other types to 4317 // decrease register width for the index calculation. 4318 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 4319 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 4320 // Reverse each half, then reassemble them in reverse order. 4321 // NOTE: It's also possible that after splitting that VLMAX no longer 4322 // requires vrgatherei16.vv. 4323 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 4324 SDValue Lo, Hi; 4325 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 4326 EVT LoVT, HiVT; 4327 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4328 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4329 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4330 // Reassemble the low and high pieces reversed. 4331 // FIXME: This is a CONCAT_VECTORS. 4332 SDValue Res = 4333 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4334 DAG.getIntPtrConstant(0, DL)); 4335 return DAG.getNode( 4336 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4337 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4338 } 4339 4340 // Just promote the int type to i16 which will double the LMUL. 4341 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4342 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4343 } 4344 4345 MVT XLenVT = Subtarget.getXLenVT(); 4346 SDValue Mask, VL; 4347 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4348 4349 // Calculate VLMAX-1 for the desired SEW. 4350 unsigned MinElts = VecVT.getVectorMinNumElements(); 4351 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4352 DAG.getConstant(MinElts, DL, XLenVT)); 4353 SDValue VLMinus1 = 4354 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4355 4356 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4357 bool IsRV32E64 = 4358 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4359 SDValue SplatVL; 4360 if (!IsRV32E64) 4361 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4362 else 4363 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4364 4365 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4366 SDValue Indices = 4367 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4368 4369 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4370 } 4371 4372 SDValue 4373 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4374 SelectionDAG &DAG) const { 4375 SDLoc DL(Op); 4376 auto *Load = cast<LoadSDNode>(Op); 4377 4378 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4379 Load->getMemoryVT(), 4380 *Load->getMemOperand()) && 4381 "Expecting a correctly-aligned load"); 4382 4383 MVT VT = Op.getSimpleValueType(); 4384 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4385 4386 SDValue VL = 4387 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4388 4389 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4390 SDValue NewLoad = DAG.getMemIntrinsicNode( 4391 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4392 Load->getMemoryVT(), Load->getMemOperand()); 4393 4394 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4395 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4396 } 4397 4398 SDValue 4399 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4400 SelectionDAG &DAG) const { 4401 SDLoc DL(Op); 4402 auto *Store = cast<StoreSDNode>(Op); 4403 4404 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 4405 Store->getMemoryVT(), 4406 *Store->getMemOperand()) && 4407 "Expecting a correctly-aligned store"); 4408 4409 SDValue StoreVal = Store->getValue(); 4410 MVT VT = StoreVal.getSimpleValueType(); 4411 4412 // If the size less than a byte, we need to pad with zeros to make a byte. 4413 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4414 VT = MVT::v8i1; 4415 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4416 DAG.getConstant(0, DL, VT), StoreVal, 4417 DAG.getIntPtrConstant(0, DL)); 4418 } 4419 4420 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4421 4422 SDValue VL = 4423 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4424 4425 SDValue NewValue = 4426 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4427 return DAG.getMemIntrinsicNode( 4428 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4429 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4430 Store->getMemoryVT(), Store->getMemOperand()); 4431 } 4432 4433 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4434 auto *Load = cast<MaskedLoadSDNode>(Op); 4435 4436 SDLoc DL(Op); 4437 MVT VT = Op.getSimpleValueType(); 4438 MVT XLenVT = Subtarget.getXLenVT(); 4439 4440 SDValue Mask = Load->getMask(); 4441 SDValue PassThru = Load->getPassThru(); 4442 SDValue VL; 4443 4444 MVT ContainerVT = VT; 4445 if (VT.isFixedLengthVector()) { 4446 ContainerVT = getContainerForFixedLengthVector(VT); 4447 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4448 4449 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4450 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4451 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4452 } else 4453 VL = DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 4454 4455 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4456 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4457 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4458 Load->getBasePtr(), Mask, VL}; 4459 SDValue Result = 4460 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4461 Load->getMemoryVT(), Load->getMemOperand()); 4462 SDValue Chain = Result.getValue(1); 4463 4464 if (VT.isFixedLengthVector()) 4465 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4466 4467 return DAG.getMergeValues({Result, Chain}, DL); 4468 } 4469 4470 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4471 auto *Store = cast<MaskedStoreSDNode>(Op); 4472 4473 SDLoc DL(Op); 4474 SDValue Val = Store->getValue(); 4475 SDValue Mask = Store->getMask(); 4476 MVT VT = Val.getSimpleValueType(); 4477 MVT XLenVT = Subtarget.getXLenVT(); 4478 SDValue VL; 4479 4480 MVT ContainerVT = VT; 4481 if (VT.isFixedLengthVector()) { 4482 ContainerVT = getContainerForFixedLengthVector(VT); 4483 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4484 4485 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4486 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4487 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4488 } else 4489 VL = DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 4490 4491 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4492 return DAG.getMemIntrinsicNode( 4493 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4494 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4495 Store->getMemoryVT(), Store->getMemOperand()); 4496 } 4497 4498 SDValue 4499 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4500 SelectionDAG &DAG) const { 4501 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4502 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4503 4504 MVT VT = Op.getSimpleValueType(); 4505 4506 SDValue Op1 = 4507 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4508 SDValue Op2 = 4509 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4510 4511 SDLoc DL(Op); 4512 SDValue VL = 4513 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4514 4515 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4516 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4517 4518 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4519 Op.getOperand(2), Mask, VL); 4520 4521 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4522 } 4523 4524 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4525 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4526 MVT VT = Op.getSimpleValueType(); 4527 4528 if (VT.getVectorElementType() == MVT::i1) 4529 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4530 4531 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4532 } 4533 4534 SDValue 4535 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 4536 SelectionDAG &DAG) const { 4537 unsigned Opc; 4538 switch (Op.getOpcode()) { 4539 default: llvm_unreachable("Unexpected opcode!"); 4540 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 4541 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 4542 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 4543 } 4544 4545 return lowerToScalableOp(Op, DAG, Opc); 4546 } 4547 4548 // Lower vector ABS to smax(X, sub(0, X)). 4549 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4550 SDLoc DL(Op); 4551 MVT VT = Op.getSimpleValueType(); 4552 SDValue X = Op.getOperand(0); 4553 4554 assert(VT.isFixedLengthVector() && "Unexpected type"); 4555 4556 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4557 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4558 4559 SDValue Mask, VL; 4560 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4561 4562 SDValue SplatZero = 4563 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4564 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4565 SDValue NegX = 4566 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4567 SDValue Max = 4568 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4569 4570 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4571 } 4572 4573 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4574 SDValue Op, SelectionDAG &DAG) const { 4575 SDLoc DL(Op); 4576 MVT VT = Op.getSimpleValueType(); 4577 SDValue Mag = Op.getOperand(0); 4578 SDValue Sign = Op.getOperand(1); 4579 assert(Mag.getValueType() == Sign.getValueType() && 4580 "Can only handle COPYSIGN with matching types."); 4581 4582 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4583 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4584 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4585 4586 SDValue Mask, VL; 4587 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4588 4589 SDValue CopySign = 4590 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4591 4592 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4593 } 4594 4595 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4596 SDValue Op, SelectionDAG &DAG) const { 4597 MVT VT = Op.getSimpleValueType(); 4598 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4599 4600 MVT I1ContainerVT = 4601 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4602 4603 SDValue CC = 4604 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4605 SDValue Op1 = 4606 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4607 SDValue Op2 = 4608 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4609 4610 SDLoc DL(Op); 4611 SDValue Mask, VL; 4612 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4613 4614 SDValue Select = 4615 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4616 4617 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4618 } 4619 4620 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4621 unsigned NewOpc, 4622 bool HasMask) const { 4623 MVT VT = Op.getSimpleValueType(); 4624 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4625 4626 // Create list of operands by converting existing ones to scalable types. 4627 SmallVector<SDValue, 6> Ops; 4628 for (const SDValue &V : Op->op_values()) { 4629 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4630 4631 // Pass through non-vector operands. 4632 if (!V.getValueType().isVector()) { 4633 Ops.push_back(V); 4634 continue; 4635 } 4636 4637 // "cast" fixed length vector to a scalable vector. 4638 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4639 "Only fixed length vectors are supported!"); 4640 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4641 } 4642 4643 SDLoc DL(Op); 4644 SDValue Mask, VL; 4645 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4646 if (HasMask) 4647 Ops.push_back(Mask); 4648 Ops.push_back(VL); 4649 4650 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4651 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4652 } 4653 4654 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4655 // * Operands of each node are assumed to be in the same order. 4656 // * The EVL operand is promoted from i32 to i64 on RV64. 4657 // * Fixed-length vectors are converted to their scalable-vector container 4658 // types. 4659 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4660 unsigned RISCVISDOpc) const { 4661 SDLoc DL(Op); 4662 MVT VT = Op.getSimpleValueType(); 4663 SmallVector<SDValue, 4> Ops; 4664 4665 for (const auto &OpIdx : enumerate(Op->ops())) { 4666 SDValue V = OpIdx.value(); 4667 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4668 // Pass through operands which aren't fixed-length vectors. 4669 if (!V.getValueType().isFixedLengthVector()) { 4670 Ops.push_back(V); 4671 continue; 4672 } 4673 // "cast" fixed length vector to a scalable vector. 4674 MVT OpVT = V.getSimpleValueType(); 4675 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4676 assert(useRVVForFixedLengthVectorVT(OpVT) && 4677 "Only fixed length vectors are supported!"); 4678 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4679 } 4680 4681 if (!VT.isFixedLengthVector()) 4682 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4683 4684 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4685 4686 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4687 4688 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4689 } 4690 4691 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4692 // a RVV indexed load. The RVV indexed load instructions only support the 4693 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4694 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4695 // indexing is extended to the XLEN value type and scaled accordingly. 4696 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4697 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4698 SDLoc DL(Op); 4699 4700 SDValue Index = MGN->getIndex(); 4701 SDValue Mask = MGN->getMask(); 4702 SDValue PassThru = MGN->getPassThru(); 4703 4704 MVT VT = Op.getSimpleValueType(); 4705 MVT IndexVT = Index.getSimpleValueType(); 4706 MVT XLenVT = Subtarget.getXLenVT(); 4707 4708 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4709 "Unexpected VTs!"); 4710 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4711 "Unexpected pointer type"); 4712 // Targets have to explicitly opt-in for extending vector loads. 4713 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4714 "Unexpected extending MGATHER"); 4715 4716 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4717 // the selection of the masked intrinsics doesn't do this for us. 4718 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4719 4720 SDValue VL; 4721 MVT ContainerVT = VT; 4722 if (VT.isFixedLengthVector()) { 4723 // We need to use the larger of the result and index type to determine the 4724 // scalable type to use so we don't increase LMUL for any operand/result. 4725 if (VT.bitsGE(IndexVT)) { 4726 ContainerVT = getContainerForFixedLengthVector(VT); 4727 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4728 ContainerVT.getVectorElementCount()); 4729 } else { 4730 IndexVT = getContainerForFixedLengthVector(IndexVT); 4731 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4732 IndexVT.getVectorElementCount()); 4733 } 4734 4735 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4736 4737 if (!IsUnmasked) { 4738 MVT MaskVT = 4739 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4740 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4741 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4742 } 4743 4744 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4745 } else 4746 VL = DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 4747 4748 unsigned IntID = 4749 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 4750 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4751 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4752 if (!IsUnmasked) 4753 Ops.push_back(PassThru); 4754 Ops.push_back(MGN->getBasePtr()); 4755 Ops.push_back(Index); 4756 if (!IsUnmasked) 4757 Ops.push_back(Mask); 4758 Ops.push_back(VL); 4759 4760 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4761 SDValue Result = 4762 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4763 MGN->getMemoryVT(), MGN->getMemOperand()); 4764 SDValue Chain = Result.getValue(1); 4765 4766 if (VT.isFixedLengthVector()) 4767 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4768 4769 return DAG.getMergeValues({Result, Chain}, DL); 4770 } 4771 4772 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4773 // a RVV indexed store. The RVV indexed store instructions only support the 4774 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4775 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4776 // indexing is extended to the XLEN value type and scaled accordingly. 4777 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4778 SelectionDAG &DAG) const { 4779 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4780 SDLoc DL(Op); 4781 SDValue Index = MSN->getIndex(); 4782 SDValue Mask = MSN->getMask(); 4783 SDValue Val = MSN->getValue(); 4784 4785 MVT VT = Val.getSimpleValueType(); 4786 MVT IndexVT = Index.getSimpleValueType(); 4787 MVT XLenVT = Subtarget.getXLenVT(); 4788 4789 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4790 "Unexpected VTs!"); 4791 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4792 "Unexpected pointer type"); 4793 // Targets have to explicitly opt-in for extending vector loads and 4794 // truncating vector stores. 4795 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4796 4797 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4798 // the selection of the masked intrinsics doesn't do this for us. 4799 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4800 4801 SDValue VL; 4802 if (VT.isFixedLengthVector()) { 4803 // We need to use the larger of the value and index type to determine the 4804 // scalable type to use so we don't increase LMUL for any operand/result. 4805 MVT ContainerVT; 4806 if (VT.bitsGE(IndexVT)) { 4807 ContainerVT = getContainerForFixedLengthVector(VT); 4808 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4809 ContainerVT.getVectorElementCount()); 4810 } else { 4811 IndexVT = getContainerForFixedLengthVector(IndexVT); 4812 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4813 IndexVT.getVectorElementCount()); 4814 } 4815 4816 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4817 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4818 4819 if (!IsUnmasked) { 4820 MVT MaskVT = 4821 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4822 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4823 } 4824 4825 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4826 } else 4827 VL = DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); 4828 4829 unsigned IntID = 4830 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4831 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4832 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4833 Ops.push_back(Val); 4834 Ops.push_back(MSN->getBasePtr()); 4835 Ops.push_back(Index); 4836 if (!IsUnmasked) 4837 Ops.push_back(Mask); 4838 Ops.push_back(VL); 4839 4840 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4841 MSN->getMemoryVT(), MSN->getMemOperand()); 4842 } 4843 4844 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4845 SelectionDAG &DAG) const { 4846 const MVT XLenVT = Subtarget.getXLenVT(); 4847 SDLoc DL(Op); 4848 SDValue Chain = Op->getOperand(0); 4849 SDValue SysRegNo = DAG.getConstant( 4850 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4851 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4852 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4853 4854 // Encoding used for rounding mode in RISCV differs from that used in 4855 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4856 // table, which consists of a sequence of 4-bit fields, each representing 4857 // corresponding FLT_ROUNDS mode. 4858 static const int Table = 4859 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4860 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4861 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4862 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4863 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4864 4865 SDValue Shift = 4866 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4867 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4868 DAG.getConstant(Table, DL, XLenVT), Shift); 4869 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4870 DAG.getConstant(7, DL, XLenVT)); 4871 4872 return DAG.getMergeValues({Masked, Chain}, DL); 4873 } 4874 4875 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4876 SelectionDAG &DAG) const { 4877 const MVT XLenVT = Subtarget.getXLenVT(); 4878 SDLoc DL(Op); 4879 SDValue Chain = Op->getOperand(0); 4880 SDValue RMValue = Op->getOperand(1); 4881 SDValue SysRegNo = DAG.getConstant( 4882 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4883 4884 // Encoding used for rounding mode in RISCV differs from that used in 4885 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4886 // a table, which consists of a sequence of 4-bit fields, each representing 4887 // corresponding RISCV mode. 4888 static const unsigned Table = 4889 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4890 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4891 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4892 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4893 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4894 4895 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4896 DAG.getConstant(2, DL, XLenVT)); 4897 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4898 DAG.getConstant(Table, DL, XLenVT), Shift); 4899 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4900 DAG.getConstant(0x7, DL, XLenVT)); 4901 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4902 RMValue); 4903 } 4904 4905 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4906 // form of the given Opcode. 4907 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4908 switch (Opcode) { 4909 default: 4910 llvm_unreachable("Unexpected opcode"); 4911 case ISD::SHL: 4912 return RISCVISD::SLLW; 4913 case ISD::SRA: 4914 return RISCVISD::SRAW; 4915 case ISD::SRL: 4916 return RISCVISD::SRLW; 4917 case ISD::SDIV: 4918 return RISCVISD::DIVW; 4919 case ISD::UDIV: 4920 return RISCVISD::DIVUW; 4921 case ISD::UREM: 4922 return RISCVISD::REMUW; 4923 case ISD::ROTL: 4924 return RISCVISD::ROLW; 4925 case ISD::ROTR: 4926 return RISCVISD::RORW; 4927 case RISCVISD::GREV: 4928 return RISCVISD::GREVW; 4929 case RISCVISD::GORC: 4930 return RISCVISD::GORCW; 4931 } 4932 } 4933 4934 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 4935 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 4936 // otherwise be promoted to i64, making it difficult to select the 4937 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 4938 // type i8/i16/i32 is lost. 4939 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4940 unsigned ExtOpc = ISD::ANY_EXTEND) { 4941 SDLoc DL(N); 4942 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4943 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4944 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4945 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4946 // ReplaceNodeResults requires we maintain the same type for the return value. 4947 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4948 } 4949 4950 // Converts the given 32-bit operation to a i64 operation with signed extension 4951 // semantic to reduce the signed extension instructions. 4952 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4953 SDLoc DL(N); 4954 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4955 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4956 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4957 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4958 DAG.getValueType(MVT::i32)); 4959 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4960 } 4961 4962 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4963 SmallVectorImpl<SDValue> &Results, 4964 SelectionDAG &DAG) const { 4965 SDLoc DL(N); 4966 switch (N->getOpcode()) { 4967 default: 4968 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4969 case ISD::STRICT_FP_TO_SINT: 4970 case ISD::STRICT_FP_TO_UINT: 4971 case ISD::FP_TO_SINT: 4972 case ISD::FP_TO_UINT: { 4973 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4974 "Unexpected custom legalisation"); 4975 bool IsStrict = N->isStrictFPOpcode(); 4976 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 4977 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 4978 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4979 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4980 TargetLowering::TypeSoftenFloat) { 4981 // FIXME: Support strict FP. 4982 if (IsStrict) 4983 return; 4984 if (!isTypeLegal(Op0.getValueType())) 4985 return; 4986 unsigned Opc = 4987 IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64; 4988 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0); 4989 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4990 return; 4991 } 4992 // If the FP type needs to be softened, emit a library call using the 'si' 4993 // version. If we left it to default legalization we'd end up with 'di'. If 4994 // the FP type doesn't need to be softened just let generic type 4995 // legalization promote the result type. 4996 RTLIB::Libcall LC; 4997 if (IsSigned) 4998 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4999 else 5000 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 5001 MakeLibCallOptions CallOptions; 5002 EVT OpVT = Op0.getValueType(); 5003 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 5004 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 5005 SDValue Result; 5006 std::tie(Result, Chain) = 5007 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 5008 Results.push_back(Result); 5009 if (IsStrict) 5010 Results.push_back(Chain); 5011 break; 5012 } 5013 case ISD::READCYCLECOUNTER: { 5014 assert(!Subtarget.is64Bit() && 5015 "READCYCLECOUNTER only has custom type legalization on riscv32"); 5016 5017 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5018 SDValue RCW = 5019 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 5020 5021 Results.push_back( 5022 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 5023 Results.push_back(RCW.getValue(2)); 5024 break; 5025 } 5026 case ISD::MUL: { 5027 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 5028 unsigned XLen = Subtarget.getXLen(); 5029 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 5030 if (Size > XLen) { 5031 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 5032 SDValue LHS = N->getOperand(0); 5033 SDValue RHS = N->getOperand(1); 5034 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 5035 5036 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 5037 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 5038 // We need exactly one side to be unsigned. 5039 if (LHSIsU == RHSIsU) 5040 return; 5041 5042 auto MakeMULPair = [&](SDValue S, SDValue U) { 5043 MVT XLenVT = Subtarget.getXLenVT(); 5044 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 5045 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 5046 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 5047 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 5048 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 5049 }; 5050 5051 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 5052 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 5053 5054 // The other operand should be signed, but still prefer MULH when 5055 // possible. 5056 if (RHSIsU && LHSIsS && !RHSIsS) 5057 Results.push_back(MakeMULPair(LHS, RHS)); 5058 else if (LHSIsU && RHSIsS && !LHSIsS) 5059 Results.push_back(MakeMULPair(RHS, LHS)); 5060 5061 return; 5062 } 5063 LLVM_FALLTHROUGH; 5064 } 5065 case ISD::ADD: 5066 case ISD::SUB: 5067 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5068 "Unexpected custom legalisation"); 5069 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 5070 break; 5071 case ISD::SHL: 5072 case ISD::SRA: 5073 case ISD::SRL: 5074 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5075 "Unexpected custom legalisation"); 5076 if (N->getOperand(1).getOpcode() != ISD::Constant) { 5077 Results.push_back(customLegalizeToWOp(N, DAG)); 5078 break; 5079 } 5080 5081 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 5082 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 5083 // shift amount. 5084 if (N->getOpcode() == ISD::SHL) { 5085 SDLoc DL(N); 5086 SDValue NewOp0 = 5087 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5088 SDValue NewOp1 = 5089 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 5090 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 5091 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 5092 DAG.getValueType(MVT::i32)); 5093 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5094 } 5095 5096 break; 5097 case ISD::ROTL: 5098 case ISD::ROTR: 5099 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5100 "Unexpected custom legalisation"); 5101 Results.push_back(customLegalizeToWOp(N, DAG)); 5102 break; 5103 case ISD::CTTZ: 5104 case ISD::CTTZ_ZERO_UNDEF: 5105 case ISD::CTLZ: 5106 case ISD::CTLZ_ZERO_UNDEF: { 5107 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5108 "Unexpected custom legalisation"); 5109 5110 SDValue NewOp0 = 5111 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5112 bool IsCTZ = 5113 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 5114 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 5115 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 5116 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5117 return; 5118 } 5119 case ISD::SDIV: 5120 case ISD::UDIV: 5121 case ISD::UREM: { 5122 MVT VT = N->getSimpleValueType(0); 5123 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 5124 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 5125 "Unexpected custom legalisation"); 5126 // Don't promote division/remainder by constant since we should expand those 5127 // to multiply by magic constant. 5128 // FIXME: What if the expansion is disabled for minsize. 5129 if (N->getOperand(1).getOpcode() == ISD::Constant) 5130 return; 5131 5132 // If the input is i32, use ANY_EXTEND since the W instructions don't read 5133 // the upper 32 bits. For other types we need to sign or zero extend 5134 // based on the opcode. 5135 unsigned ExtOpc = ISD::ANY_EXTEND; 5136 if (VT != MVT::i32) 5137 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 5138 : ISD::ZERO_EXTEND; 5139 5140 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 5141 break; 5142 } 5143 case ISD::UADDO: 5144 case ISD::USUBO: { 5145 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5146 "Unexpected custom legalisation"); 5147 bool IsAdd = N->getOpcode() == ISD::UADDO; 5148 // Create an ADDW or SUBW. 5149 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5150 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5151 SDValue Res = 5152 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 5153 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 5154 DAG.getValueType(MVT::i32)); 5155 5156 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 5157 // Since the inputs are sign extended from i32, this is equivalent to 5158 // comparing the lower 32 bits. 5159 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5160 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 5161 IsAdd ? ISD::SETULT : ISD::SETUGT); 5162 5163 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5164 Results.push_back(Overflow); 5165 return; 5166 } 5167 case ISD::UADDSAT: 5168 case ISD::USUBSAT: { 5169 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5170 "Unexpected custom legalisation"); 5171 if (Subtarget.hasStdExtZbb()) { 5172 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 5173 // sign extend allows overflow of the lower 32 bits to be detected on 5174 // the promoted size. 5175 SDValue LHS = 5176 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 5177 SDValue RHS = 5178 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 5179 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 5180 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5181 return; 5182 } 5183 5184 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 5185 // promotion for UADDO/USUBO. 5186 Results.push_back(expandAddSubSat(N, DAG)); 5187 return; 5188 } 5189 case ISD::BITCAST: { 5190 EVT VT = N->getValueType(0); 5191 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 5192 SDValue Op0 = N->getOperand(0); 5193 EVT Op0VT = Op0.getValueType(); 5194 MVT XLenVT = Subtarget.getXLenVT(); 5195 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 5196 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 5197 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 5198 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 5199 Subtarget.hasStdExtF()) { 5200 SDValue FPConv = 5201 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 5202 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 5203 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 5204 isTypeLegal(Op0VT)) { 5205 // Custom-legalize bitcasts from fixed-length vector types to illegal 5206 // scalar types in order to improve codegen. Bitcast the vector to a 5207 // one-element vector type whose element type is the same as the result 5208 // type, and extract the first element. 5209 LLVMContext &Context = *DAG.getContext(); 5210 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 5211 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 5212 DAG.getConstant(0, DL, XLenVT))); 5213 } 5214 break; 5215 } 5216 case RISCVISD::GREV: 5217 case RISCVISD::GORC: { 5218 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5219 "Unexpected custom legalisation"); 5220 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5221 // This is similar to customLegalizeToWOp, except that we pass the second 5222 // operand (a TargetConstant) straight through: it is already of type 5223 // XLenVT. 5224 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 5225 SDValue NewOp0 = 5226 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5227 SDValue NewOp1 = 5228 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5229 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 5230 // ReplaceNodeResults requires we maintain the same type for the return 5231 // value. 5232 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5233 break; 5234 } 5235 case RISCVISD::SHFL: { 5236 // There is no SHFLIW instruction, but we can just promote the operation. 5237 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5238 "Unexpected custom legalisation"); 5239 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 5240 SDValue NewOp0 = 5241 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5242 SDValue NewOp1 = 5243 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5244 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 5245 // ReplaceNodeResults requires we maintain the same type for the return 5246 // value. 5247 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 5248 break; 5249 } 5250 case ISD::BSWAP: 5251 case ISD::BITREVERSE: { 5252 MVT VT = N->getSimpleValueType(0); 5253 MVT XLenVT = Subtarget.getXLenVT(); 5254 assert((VT == MVT::i8 || VT == MVT::i16 || 5255 (VT == MVT::i32 && Subtarget.is64Bit())) && 5256 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 5257 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 5258 unsigned Imm = VT.getSizeInBits() - 1; 5259 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 5260 if (N->getOpcode() == ISD::BSWAP) 5261 Imm &= ~0x7U; 5262 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; 5263 SDValue GREVI = 5264 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); 5265 // ReplaceNodeResults requires we maintain the same type for the return 5266 // value. 5267 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 5268 break; 5269 } 5270 case ISD::FSHL: 5271 case ISD::FSHR: { 5272 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5273 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 5274 SDValue NewOp0 = 5275 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 5276 SDValue NewOp1 = 5277 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5278 SDValue NewOp2 = 5279 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5280 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 5281 // Mask the shift amount to 5 bits. 5282 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5283 DAG.getConstant(0x1f, DL, MVT::i64)); 5284 unsigned Opc = 5285 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 5286 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 5287 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 5288 break; 5289 } 5290 case ISD::EXTRACT_VECTOR_ELT: { 5291 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 5292 // type is illegal (currently only vXi64 RV32). 5293 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 5294 // transferred to the destination register. We issue two of these from the 5295 // upper- and lower- halves of the SEW-bit vector element, slid down to the 5296 // first element. 5297 SDValue Vec = N->getOperand(0); 5298 SDValue Idx = N->getOperand(1); 5299 5300 // The vector type hasn't been legalized yet so we can't issue target 5301 // specific nodes if it needs legalization. 5302 // FIXME: We would manually legalize if it's important. 5303 if (!isTypeLegal(Vec.getValueType())) 5304 return; 5305 5306 MVT VecVT = Vec.getSimpleValueType(); 5307 5308 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 5309 VecVT.getVectorElementType() == MVT::i64 && 5310 "Unexpected EXTRACT_VECTOR_ELT legalization"); 5311 5312 // If this is a fixed vector, we need to convert it to a scalable vector. 5313 MVT ContainerVT = VecVT; 5314 if (VecVT.isFixedLengthVector()) { 5315 ContainerVT = getContainerForFixedLengthVector(VecVT); 5316 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5317 } 5318 5319 MVT XLenVT = Subtarget.getXLenVT(); 5320 5321 // Use a VL of 1 to avoid processing more elements than we need. 5322 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5323 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5324 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5325 5326 // Unless the index is known to be 0, we must slide the vector down to get 5327 // the desired element into index 0. 5328 if (!isNullConstant(Idx)) { 5329 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5330 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 5331 } 5332 5333 // Extract the lower XLEN bits of the correct vector element. 5334 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5335 5336 // To extract the upper XLEN bits of the vector element, shift the first 5337 // element right by 32 bits and re-extract the lower XLEN bits. 5338 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 5339 DAG.getConstant(32, DL, XLenVT), VL); 5340 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 5341 ThirtyTwoV, Mask, VL); 5342 5343 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5344 5345 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5346 break; 5347 } 5348 case ISD::INTRINSIC_WO_CHAIN: { 5349 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 5350 switch (IntNo) { 5351 default: 5352 llvm_unreachable( 5353 "Don't know how to custom type legalize this intrinsic!"); 5354 case Intrinsic::riscv_orc_b: { 5355 // Lower to the GORCI encoding for orc.b with the operand extended. 5356 SDValue NewOp = 5357 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5358 // If Zbp is enabled, use GORCIW which will sign extend the result. 5359 unsigned Opc = 5360 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 5361 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 5362 DAG.getConstant(7, DL, MVT::i64)); 5363 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5364 return; 5365 } 5366 case Intrinsic::riscv_grev: 5367 case Intrinsic::riscv_gorc: { 5368 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5369 "Unexpected custom legalisation"); 5370 SDValue NewOp1 = 5371 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5372 SDValue NewOp2 = 5373 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5374 unsigned Opc = 5375 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 5376 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5377 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5378 break; 5379 } 5380 case Intrinsic::riscv_shfl: 5381 case Intrinsic::riscv_unshfl: { 5382 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5383 "Unexpected custom legalisation"); 5384 SDValue NewOp1 = 5385 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5386 SDValue NewOp2 = 5387 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5388 unsigned Opc = 5389 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5390 if (isa<ConstantSDNode>(N->getOperand(2))) { 5391 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5392 DAG.getConstant(0xf, DL, MVT::i64)); 5393 Opc = 5394 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5395 } 5396 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5397 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5398 break; 5399 } 5400 case Intrinsic::riscv_bcompress: 5401 case Intrinsic::riscv_bdecompress: { 5402 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5403 "Unexpected custom legalisation"); 5404 SDValue NewOp1 = 5405 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5406 SDValue NewOp2 = 5407 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5408 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5409 ? RISCVISD::BCOMPRESSW 5410 : RISCVISD::BDECOMPRESSW; 5411 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5412 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5413 break; 5414 } 5415 case Intrinsic::riscv_vmv_x_s: { 5416 EVT VT = N->getValueType(0); 5417 MVT XLenVT = Subtarget.getXLenVT(); 5418 if (VT.bitsLT(XLenVT)) { 5419 // Simple case just extract using vmv.x.s and truncate. 5420 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5421 Subtarget.getXLenVT(), N->getOperand(1)); 5422 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5423 return; 5424 } 5425 5426 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5427 "Unexpected custom legalization"); 5428 5429 // We need to do the move in two steps. 5430 SDValue Vec = N->getOperand(1); 5431 MVT VecVT = Vec.getSimpleValueType(); 5432 5433 // First extract the lower XLEN bits of the element. 5434 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5435 5436 // To extract the upper XLEN bits of the vector element, shift the first 5437 // element right by 32 bits and re-extract the lower XLEN bits. 5438 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5439 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5440 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5441 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5442 DAG.getConstant(32, DL, XLenVT), VL); 5443 SDValue LShr32 = 5444 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5445 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5446 5447 Results.push_back( 5448 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5449 break; 5450 } 5451 } 5452 break; 5453 } 5454 case ISD::VECREDUCE_ADD: 5455 case ISD::VECREDUCE_AND: 5456 case ISD::VECREDUCE_OR: 5457 case ISD::VECREDUCE_XOR: 5458 case ISD::VECREDUCE_SMAX: 5459 case ISD::VECREDUCE_UMAX: 5460 case ISD::VECREDUCE_SMIN: 5461 case ISD::VECREDUCE_UMIN: 5462 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5463 Results.push_back(V); 5464 break; 5465 case ISD::FLT_ROUNDS_: { 5466 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5467 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5468 Results.push_back(Res.getValue(0)); 5469 Results.push_back(Res.getValue(1)); 5470 break; 5471 } 5472 } 5473 } 5474 5475 // A structure to hold one of the bit-manipulation patterns below. Together, a 5476 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5477 // (or (and (shl x, 1), 0xAAAAAAAA), 5478 // (and (srl x, 1), 0x55555555)) 5479 struct RISCVBitmanipPat { 5480 SDValue Op; 5481 unsigned ShAmt; 5482 bool IsSHL; 5483 5484 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5485 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5486 } 5487 }; 5488 5489 // Matches patterns of the form 5490 // (and (shl x, C2), (C1 << C2)) 5491 // (and (srl x, C2), C1) 5492 // (shl (and x, C1), C2) 5493 // (srl (and x, (C1 << C2)), C2) 5494 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5495 // The expected masks for each shift amount are specified in BitmanipMasks where 5496 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5497 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5498 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5499 // XLen is 64. 5500 static Optional<RISCVBitmanipPat> 5501 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5502 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5503 "Unexpected number of masks"); 5504 Optional<uint64_t> Mask; 5505 // Optionally consume a mask around the shift operation. 5506 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5507 Mask = Op.getConstantOperandVal(1); 5508 Op = Op.getOperand(0); 5509 } 5510 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5511 return None; 5512 bool IsSHL = Op.getOpcode() == ISD::SHL; 5513 5514 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5515 return None; 5516 uint64_t ShAmt = Op.getConstantOperandVal(1); 5517 5518 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5519 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 5520 return None; 5521 // If we don't have enough masks for 64 bit, then we must be trying to 5522 // match SHFL so we're only allowed to shift 1/4 of the width. 5523 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5524 return None; 5525 5526 SDValue Src = Op.getOperand(0); 5527 5528 // The expected mask is shifted left when the AND is found around SHL 5529 // patterns. 5530 // ((x >> 1) & 0x55555555) 5531 // ((x << 1) & 0xAAAAAAAA) 5532 bool SHLExpMask = IsSHL; 5533 5534 if (!Mask) { 5535 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5536 // the mask is all ones: consume that now. 5537 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5538 Mask = Src.getConstantOperandVal(1); 5539 Src = Src.getOperand(0); 5540 // The expected mask is now in fact shifted left for SRL, so reverse the 5541 // decision. 5542 // ((x & 0xAAAAAAAA) >> 1) 5543 // ((x & 0x55555555) << 1) 5544 SHLExpMask = !SHLExpMask; 5545 } else { 5546 // Use a default shifted mask of all-ones if there's no AND, truncated 5547 // down to the expected width. This simplifies the logic later on. 5548 Mask = maskTrailingOnes<uint64_t>(Width); 5549 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5550 } 5551 } 5552 5553 unsigned MaskIdx = Log2_32(ShAmt); 5554 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5555 5556 if (SHLExpMask) 5557 ExpMask <<= ShAmt; 5558 5559 if (Mask != ExpMask) 5560 return None; 5561 5562 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5563 } 5564 5565 // Matches any of the following bit-manipulation patterns: 5566 // (and (shl x, 1), (0x55555555 << 1)) 5567 // (and (srl x, 1), 0x55555555) 5568 // (shl (and x, 0x55555555), 1) 5569 // (srl (and x, (0x55555555 << 1)), 1) 5570 // where the shift amount and mask may vary thus: 5571 // [1] = 0x55555555 / 0xAAAAAAAA 5572 // [2] = 0x33333333 / 0xCCCCCCCC 5573 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5574 // [8] = 0x00FF00FF / 0xFF00FF00 5575 // [16] = 0x0000FFFF / 0xFFFFFFFF 5576 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5577 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5578 // These are the unshifted masks which we use to match bit-manipulation 5579 // patterns. They may be shifted left in certain circumstances. 5580 static const uint64_t BitmanipMasks[] = { 5581 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5582 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5583 5584 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5585 } 5586 5587 // Match the following pattern as a GREVI(W) operation 5588 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5589 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5590 const RISCVSubtarget &Subtarget) { 5591 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5592 EVT VT = Op.getValueType(); 5593 5594 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5595 auto LHS = matchGREVIPat(Op.getOperand(0)); 5596 auto RHS = matchGREVIPat(Op.getOperand(1)); 5597 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5598 SDLoc DL(Op); 5599 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5600 DAG.getConstant(LHS->ShAmt, DL, VT)); 5601 } 5602 } 5603 return SDValue(); 5604 } 5605 5606 // Matches any the following pattern as a GORCI(W) operation 5607 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5608 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5609 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5610 // Note that with the variant of 3., 5611 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5612 // the inner pattern will first be matched as GREVI and then the outer 5613 // pattern will be matched to GORC via the first rule above. 5614 // 4. (or (rotl/rotr x, bitwidth/2), x) 5615 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5616 const RISCVSubtarget &Subtarget) { 5617 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5618 EVT VT = Op.getValueType(); 5619 5620 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5621 SDLoc DL(Op); 5622 SDValue Op0 = Op.getOperand(0); 5623 SDValue Op1 = Op.getOperand(1); 5624 5625 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5626 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5627 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5628 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5629 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5630 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5631 if ((Reverse.getOpcode() == ISD::ROTL || 5632 Reverse.getOpcode() == ISD::ROTR) && 5633 Reverse.getOperand(0) == X && 5634 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5635 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5636 if (RotAmt == (VT.getSizeInBits() / 2)) 5637 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5638 DAG.getConstant(RotAmt, DL, VT)); 5639 } 5640 return SDValue(); 5641 }; 5642 5643 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5644 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5645 return V; 5646 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5647 return V; 5648 5649 // OR is commutable so canonicalize its OR operand to the left 5650 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5651 std::swap(Op0, Op1); 5652 if (Op0.getOpcode() != ISD::OR) 5653 return SDValue(); 5654 SDValue OrOp0 = Op0.getOperand(0); 5655 SDValue OrOp1 = Op0.getOperand(1); 5656 auto LHS = matchGREVIPat(OrOp0); 5657 // OR is commutable so swap the operands and try again: x might have been 5658 // on the left 5659 if (!LHS) { 5660 std::swap(OrOp0, OrOp1); 5661 LHS = matchGREVIPat(OrOp0); 5662 } 5663 auto RHS = matchGREVIPat(Op1); 5664 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5665 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5666 DAG.getConstant(LHS->ShAmt, DL, VT)); 5667 } 5668 } 5669 return SDValue(); 5670 } 5671 5672 // Matches any of the following bit-manipulation patterns: 5673 // (and (shl x, 1), (0x22222222 << 1)) 5674 // (and (srl x, 1), 0x22222222) 5675 // (shl (and x, 0x22222222), 1) 5676 // (srl (and x, (0x22222222 << 1)), 1) 5677 // where the shift amount and mask may vary thus: 5678 // [1] = 0x22222222 / 0x44444444 5679 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5680 // [4] = 0x00F000F0 / 0x0F000F00 5681 // [8] = 0x0000FF00 / 0x00FF0000 5682 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5683 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5684 // These are the unshifted masks which we use to match bit-manipulation 5685 // patterns. They may be shifted left in certain circumstances. 5686 static const uint64_t BitmanipMasks[] = { 5687 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5688 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5689 5690 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5691 } 5692 5693 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5694 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5695 const RISCVSubtarget &Subtarget) { 5696 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5697 EVT VT = Op.getValueType(); 5698 5699 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5700 return SDValue(); 5701 5702 SDValue Op0 = Op.getOperand(0); 5703 SDValue Op1 = Op.getOperand(1); 5704 5705 // Or is commutable so canonicalize the second OR to the LHS. 5706 if (Op0.getOpcode() != ISD::OR) 5707 std::swap(Op0, Op1); 5708 if (Op0.getOpcode() != ISD::OR) 5709 return SDValue(); 5710 5711 // We found an inner OR, so our operands are the operands of the inner OR 5712 // and the other operand of the outer OR. 5713 SDValue A = Op0.getOperand(0); 5714 SDValue B = Op0.getOperand(1); 5715 SDValue C = Op1; 5716 5717 auto Match1 = matchSHFLPat(A); 5718 auto Match2 = matchSHFLPat(B); 5719 5720 // If neither matched, we failed. 5721 if (!Match1 && !Match2) 5722 return SDValue(); 5723 5724 // We had at least one match. if one failed, try the remaining C operand. 5725 if (!Match1) { 5726 std::swap(A, C); 5727 Match1 = matchSHFLPat(A); 5728 if (!Match1) 5729 return SDValue(); 5730 } else if (!Match2) { 5731 std::swap(B, C); 5732 Match2 = matchSHFLPat(B); 5733 if (!Match2) 5734 return SDValue(); 5735 } 5736 assert(Match1 && Match2); 5737 5738 // Make sure our matches pair up. 5739 if (!Match1->formsPairWith(*Match2)) 5740 return SDValue(); 5741 5742 // All the remains is to make sure C is an AND with the same input, that masks 5743 // out the bits that are being shuffled. 5744 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5745 C.getOperand(0) != Match1->Op) 5746 return SDValue(); 5747 5748 uint64_t Mask = C.getConstantOperandVal(1); 5749 5750 static const uint64_t BitmanipMasks[] = { 5751 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5752 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5753 }; 5754 5755 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5756 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5757 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5758 5759 if (Mask != ExpMask) 5760 return SDValue(); 5761 5762 SDLoc DL(Op); 5763 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5764 DAG.getConstant(Match1->ShAmt, DL, VT)); 5765 } 5766 5767 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5768 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5769 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5770 // not undo itself, but they are redundant. 5771 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5772 SDValue Src = N->getOperand(0); 5773 5774 if (Src.getOpcode() != N->getOpcode()) 5775 return SDValue(); 5776 5777 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5778 !isa<ConstantSDNode>(Src.getOperand(1))) 5779 return SDValue(); 5780 5781 unsigned ShAmt1 = N->getConstantOperandVal(1); 5782 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5783 Src = Src.getOperand(0); 5784 5785 unsigned CombinedShAmt; 5786 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5787 CombinedShAmt = ShAmt1 | ShAmt2; 5788 else 5789 CombinedShAmt = ShAmt1 ^ ShAmt2; 5790 5791 if (CombinedShAmt == 0) 5792 return Src; 5793 5794 SDLoc DL(N); 5795 return DAG.getNode( 5796 N->getOpcode(), DL, N->getValueType(0), Src, 5797 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5798 } 5799 5800 // Combine a constant select operand into its use: 5801 // 5802 // (and (select cond, -1, c), x) 5803 // -> (select cond, x, (and x, c)) [AllOnes=1] 5804 // (or (select cond, 0, c), x) 5805 // -> (select cond, x, (or x, c)) [AllOnes=0] 5806 // (xor (select cond, 0, c), x) 5807 // -> (select cond, x, (xor x, c)) [AllOnes=0] 5808 // (add (select cond, 0, c), x) 5809 // -> (select cond, x, (add x, c)) [AllOnes=0] 5810 // (sub x, (select cond, 0, c)) 5811 // -> (select cond, x, (sub x, c)) [AllOnes=0] 5812 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5813 SelectionDAG &DAG, bool AllOnes) { 5814 EVT VT = N->getValueType(0); 5815 5816 // Skip vectors. 5817 if (VT.isVector()) 5818 return SDValue(); 5819 5820 if ((Slct.getOpcode() != ISD::SELECT && 5821 Slct.getOpcode() != RISCVISD::SELECT_CC) || 5822 !Slct.hasOneUse()) 5823 return SDValue(); 5824 5825 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5826 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5827 }; 5828 5829 bool SwapSelectOps; 5830 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 5831 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 5832 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 5833 SDValue NonConstantVal; 5834 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5835 SwapSelectOps = false; 5836 NonConstantVal = FalseVal; 5837 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5838 SwapSelectOps = true; 5839 NonConstantVal = TrueVal; 5840 } else 5841 return SDValue(); 5842 5843 // Slct is now know to be the desired identity constant when CC is true. 5844 TrueVal = OtherOp; 5845 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5846 // Unless SwapSelectOps says the condition should be false. 5847 if (SwapSelectOps) 5848 std::swap(TrueVal, FalseVal); 5849 5850 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 5851 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5852 {Slct.getOperand(0), Slct.getOperand(1), 5853 Slct.getOperand(2), TrueVal, FalseVal}); 5854 5855 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 5856 {Slct.getOperand(0), TrueVal, FalseVal}); 5857 } 5858 5859 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5860 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5861 bool AllOnes) { 5862 SDValue N0 = N->getOperand(0); 5863 SDValue N1 = N->getOperand(1); 5864 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 5865 return Result; 5866 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 5867 return Result; 5868 return SDValue(); 5869 } 5870 5871 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG) { 5872 // fold (add (select lhs, rhs, cc, 0, y), x) -> 5873 // (select lhs, rhs, cc, x, (add x, y)) 5874 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 5875 } 5876 5877 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 5878 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 5879 // (select lhs, rhs, cc, x, (sub x, y)) 5880 SDValue N0 = N->getOperand(0); 5881 SDValue N1 = N->getOperand(1); 5882 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 5883 } 5884 5885 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 5886 // fold (and (select lhs, rhs, cc, -1, y), x) -> 5887 // (select lhs, rhs, cc, x, (and x, y)) 5888 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 5889 } 5890 5891 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 5892 const RISCVSubtarget &Subtarget) { 5893 if (Subtarget.hasStdExtZbp()) { 5894 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5895 return GREV; 5896 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5897 return GORC; 5898 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5899 return SHFL; 5900 } 5901 5902 // fold (or (select cond, 0, y), x) -> 5903 // (select cond, x, (or x, y)) 5904 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 5905 } 5906 5907 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 5908 // fold (xor (select cond, 0, y), x) -> 5909 // (select cond, x, (xor x, y)) 5910 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 5911 } 5912 5913 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND 5914 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free 5915 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be 5916 // removed during type legalization leaving an ADD/SUB/MUL use that won't use 5917 // ADDW/SUBW/MULW. 5918 static SDValue performANY_EXTENDCombine(SDNode *N, 5919 TargetLowering::DAGCombinerInfo &DCI, 5920 const RISCVSubtarget &Subtarget) { 5921 if (!Subtarget.is64Bit()) 5922 return SDValue(); 5923 5924 SelectionDAG &DAG = DCI.DAG; 5925 5926 SDValue Src = N->getOperand(0); 5927 EVT VT = N->getValueType(0); 5928 if (VT != MVT::i64 || Src.getValueType() != MVT::i32) 5929 return SDValue(); 5930 5931 // The opcode must be one that can implicitly sign_extend. 5932 // FIXME: Additional opcodes. 5933 switch (Src.getOpcode()) { 5934 default: 5935 return SDValue(); 5936 case ISD::MUL: 5937 if (!Subtarget.hasStdExtM()) 5938 return SDValue(); 5939 LLVM_FALLTHROUGH; 5940 case ISD::ADD: 5941 case ISD::SUB: 5942 break; 5943 } 5944 5945 // Only handle cases where the result is used by a CopyToReg. That likely 5946 // means the value is a liveout of the basic block. This helps prevent 5947 // infinite combine loops like PR51206. 5948 if (none_of(N->uses(), 5949 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) 5950 return SDValue(); 5951 5952 SmallVector<SDNode *, 4> SetCCs; 5953 for (SDNode::use_iterator UI = Src.getNode()->use_begin(), 5954 UE = Src.getNode()->use_end(); 5955 UI != UE; ++UI) { 5956 SDNode *User = *UI; 5957 if (User == N) 5958 continue; 5959 if (UI.getUse().getResNo() != Src.getResNo()) 5960 continue; 5961 // All i32 setccs are legalized by sign extending operands. 5962 if (User->getOpcode() == ISD::SETCC) { 5963 SetCCs.push_back(User); 5964 continue; 5965 } 5966 // We don't know if we can extend this user. 5967 break; 5968 } 5969 5970 // If we don't have any SetCCs, this isn't worthwhile. 5971 if (SetCCs.empty()) 5972 return SDValue(); 5973 5974 SDLoc DL(N); 5975 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); 5976 DCI.CombineTo(N, SExt); 5977 5978 // Promote all the setccs. 5979 for (SDNode *SetCC : SetCCs) { 5980 SmallVector<SDValue, 4> Ops; 5981 5982 for (unsigned j = 0; j != 2; ++j) { 5983 SDValue SOp = SetCC->getOperand(j); 5984 if (SOp == Src) 5985 Ops.push_back(SExt); 5986 else 5987 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); 5988 } 5989 5990 Ops.push_back(SetCC->getOperand(2)); 5991 DCI.CombineTo(SetCC, 5992 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5993 } 5994 return SDValue(N, 0); 5995 } 5996 5997 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5998 DAGCombinerInfo &DCI) const { 5999 SelectionDAG &DAG = DCI.DAG; 6000 6001 // Helper to call SimplifyDemandedBits on an operand of N where only some low 6002 // bits are demanded. N will be added to the Worklist if it was not deleted. 6003 // Caller should return SDValue(N, 0) if this returns true. 6004 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 6005 SDValue Op = N->getOperand(OpNo); 6006 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 6007 if (!SimplifyDemandedBits(Op, Mask, DCI)) 6008 return false; 6009 6010 if (N->getOpcode() != ISD::DELETED_NODE) 6011 DCI.AddToWorklist(N); 6012 return true; 6013 }; 6014 6015 switch (N->getOpcode()) { 6016 default: 6017 break; 6018 case RISCVISD::SplitF64: { 6019 SDValue Op0 = N->getOperand(0); 6020 // If the input to SplitF64 is just BuildPairF64 then the operation is 6021 // redundant. Instead, use BuildPairF64's operands directly. 6022 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 6023 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 6024 6025 SDLoc DL(N); 6026 6027 // It's cheaper to materialise two 32-bit integers than to load a double 6028 // from the constant pool and transfer it to integer registers through the 6029 // stack. 6030 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 6031 APInt V = C->getValueAPF().bitcastToAPInt(); 6032 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 6033 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 6034 return DCI.CombineTo(N, Lo, Hi); 6035 } 6036 6037 // This is a target-specific version of a DAGCombine performed in 6038 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6039 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6040 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6041 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6042 !Op0.getNode()->hasOneUse()) 6043 break; 6044 SDValue NewSplitF64 = 6045 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 6046 Op0.getOperand(0)); 6047 SDValue Lo = NewSplitF64.getValue(0); 6048 SDValue Hi = NewSplitF64.getValue(1); 6049 APInt SignBit = APInt::getSignMask(32); 6050 if (Op0.getOpcode() == ISD::FNEG) { 6051 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 6052 DAG.getConstant(SignBit, DL, MVT::i32)); 6053 return DCI.CombineTo(N, Lo, NewHi); 6054 } 6055 assert(Op0.getOpcode() == ISD::FABS); 6056 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 6057 DAG.getConstant(~SignBit, DL, MVT::i32)); 6058 return DCI.CombineTo(N, Lo, NewHi); 6059 } 6060 case RISCVISD::SLLW: 6061 case RISCVISD::SRAW: 6062 case RISCVISD::SRLW: 6063 case RISCVISD::ROLW: 6064 case RISCVISD::RORW: { 6065 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6066 if (SimplifyDemandedLowBitsHelper(0, 32) || 6067 SimplifyDemandedLowBitsHelper(1, 5)) 6068 return SDValue(N, 0); 6069 break; 6070 } 6071 case RISCVISD::CLZW: 6072 case RISCVISD::CTZW: { 6073 // Only the lower 32 bits of the first operand are read 6074 if (SimplifyDemandedLowBitsHelper(0, 32)) 6075 return SDValue(N, 0); 6076 break; 6077 } 6078 case RISCVISD::FSL: 6079 case RISCVISD::FSR: { 6080 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 6081 unsigned BitWidth = N->getOperand(2).getValueSizeInBits(); 6082 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6083 if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1)) 6084 return SDValue(N, 0); 6085 break; 6086 } 6087 case RISCVISD::FSLW: 6088 case RISCVISD::FSRW: { 6089 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 6090 // read. 6091 if (SimplifyDemandedLowBitsHelper(0, 32) || 6092 SimplifyDemandedLowBitsHelper(1, 32) || 6093 SimplifyDemandedLowBitsHelper(2, 6)) 6094 return SDValue(N, 0); 6095 break; 6096 } 6097 case RISCVISD::GREV: 6098 case RISCVISD::GORC: { 6099 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 6100 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6101 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6102 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 6103 return SDValue(N, 0); 6104 6105 return combineGREVI_GORCI(N, DCI.DAG); 6106 } 6107 case RISCVISD::GREVW: 6108 case RISCVISD::GORCW: { 6109 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 6110 if (SimplifyDemandedLowBitsHelper(0, 32) || 6111 SimplifyDemandedLowBitsHelper(1, 5)) 6112 return SDValue(N, 0); 6113 6114 return combineGREVI_GORCI(N, DCI.DAG); 6115 } 6116 case RISCVISD::SHFL: 6117 case RISCVISD::UNSHFL: { 6118 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 6119 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 6120 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 6121 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 6122 return SDValue(N, 0); 6123 6124 break; 6125 } 6126 case RISCVISD::SHFLW: 6127 case RISCVISD::UNSHFLW: { 6128 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 6129 SDValue LHS = N->getOperand(0); 6130 SDValue RHS = N->getOperand(1); 6131 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 6132 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 6133 if (SimplifyDemandedLowBitsHelper(0, 32) || 6134 SimplifyDemandedLowBitsHelper(1, 4)) 6135 return SDValue(N, 0); 6136 6137 break; 6138 } 6139 case RISCVISD::BCOMPRESSW: 6140 case RISCVISD::BDECOMPRESSW: { 6141 // Only the lower 32 bits of LHS and RHS are read. 6142 if (SimplifyDemandedLowBitsHelper(0, 32) || 6143 SimplifyDemandedLowBitsHelper(1, 32)) 6144 return SDValue(N, 0); 6145 6146 break; 6147 } 6148 case RISCVISD::FMV_X_ANYEXTH: 6149 case RISCVISD::FMV_X_ANYEXTW_RV64: { 6150 SDLoc DL(N); 6151 SDValue Op0 = N->getOperand(0); 6152 MVT VT = N->getSimpleValueType(0); 6153 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 6154 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 6155 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 6156 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 6157 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 6158 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 6159 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 6160 assert(Op0.getOperand(0).getValueType() == VT && 6161 "Unexpected value type!"); 6162 return Op0.getOperand(0); 6163 } 6164 6165 // This is a target-specific version of a DAGCombine performed in 6166 // DAGCombiner::visitBITCAST. It performs the equivalent of: 6167 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 6168 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 6169 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 6170 !Op0.getNode()->hasOneUse()) 6171 break; 6172 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 6173 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 6174 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 6175 if (Op0.getOpcode() == ISD::FNEG) 6176 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 6177 DAG.getConstant(SignBit, DL, VT)); 6178 6179 assert(Op0.getOpcode() == ISD::FABS); 6180 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 6181 DAG.getConstant(~SignBit, DL, VT)); 6182 } 6183 case ISD::ADD: 6184 return performADDCombine(N, DAG); 6185 case ISD::SUB: 6186 return performSUBCombine(N, DAG); 6187 case ISD::AND: 6188 return performANDCombine(N, DAG); 6189 case ISD::OR: 6190 return performORCombine(N, DAG, Subtarget); 6191 case ISD::XOR: 6192 return performXORCombine(N, DAG); 6193 case ISD::ANY_EXTEND: 6194 return performANY_EXTENDCombine(N, DCI, Subtarget); 6195 case ISD::ZERO_EXTEND: 6196 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 6197 // type legalization. This is safe because fp_to_uint produces poison if 6198 // it overflows. 6199 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() && 6200 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT && 6201 isTypeLegal(N->getOperand(0).getOperand(0).getValueType())) 6202 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 6203 N->getOperand(0).getOperand(0)); 6204 return SDValue(); 6205 case RISCVISD::SELECT_CC: { 6206 // Transform 6207 SDValue LHS = N->getOperand(0); 6208 SDValue RHS = N->getOperand(1); 6209 SDValue TrueV = N->getOperand(3); 6210 SDValue FalseV = N->getOperand(4); 6211 6212 // If the True and False values are the same, we don't need a select_cc. 6213 if (TrueV == FalseV) 6214 return TrueV; 6215 6216 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 6217 if (!ISD::isIntEqualitySetCC(CCVal)) 6218 break; 6219 6220 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 6221 // (select_cc X, Y, lt, trueV, falseV) 6222 // Sometimes the setcc is introduced after select_cc has been formed. 6223 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6224 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6225 // If we're looking for eq 0 instead of ne 0, we need to invert the 6226 // condition. 6227 bool Invert = CCVal == ISD::SETEQ; 6228 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6229 if (Invert) 6230 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6231 6232 SDLoc DL(N); 6233 RHS = LHS.getOperand(1); 6234 LHS = LHS.getOperand(0); 6235 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6236 6237 SDValue TargetCC = DAG.getCondCode(CCVal); 6238 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6239 {LHS, RHS, TargetCC, TrueV, FalseV}); 6240 } 6241 6242 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 6243 // (select_cc X, Y, eq/ne, trueV, falseV) 6244 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6245 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 6246 {LHS.getOperand(0), LHS.getOperand(1), 6247 N->getOperand(2), TrueV, FalseV}); 6248 // (select_cc X, 1, setne, trueV, falseV) -> 6249 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 6250 // This can occur when legalizing some floating point comparisons. 6251 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6252 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6253 SDLoc DL(N); 6254 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6255 SDValue TargetCC = DAG.getCondCode(CCVal); 6256 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6257 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 6258 {LHS, RHS, TargetCC, TrueV, FalseV}); 6259 } 6260 6261 break; 6262 } 6263 case RISCVISD::BR_CC: { 6264 SDValue LHS = N->getOperand(1); 6265 SDValue RHS = N->getOperand(2); 6266 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 6267 if (!ISD::isIntEqualitySetCC(CCVal)) 6268 break; 6269 6270 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 6271 // (br_cc X, Y, lt, dest) 6272 // Sometimes the setcc is introduced after br_cc has been formed. 6273 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 6274 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 6275 // If we're looking for eq 0 instead of ne 0, we need to invert the 6276 // condition. 6277 bool Invert = CCVal == ISD::SETEQ; 6278 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 6279 if (Invert) 6280 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6281 6282 SDLoc DL(N); 6283 RHS = LHS.getOperand(1); 6284 LHS = LHS.getOperand(0); 6285 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 6286 6287 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6288 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 6289 N->getOperand(4)); 6290 } 6291 6292 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 6293 // (br_cc X, Y, eq/ne, trueV, falseV) 6294 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 6295 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 6296 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 6297 N->getOperand(3), N->getOperand(4)); 6298 6299 // (br_cc X, 1, setne, br_cc) -> 6300 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 6301 // This can occur when legalizing some floating point comparisons. 6302 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 6303 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 6304 SDLoc DL(N); 6305 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 6306 SDValue TargetCC = DAG.getCondCode(CCVal); 6307 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 6308 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 6309 N->getOperand(0), LHS, RHS, TargetCC, 6310 N->getOperand(4)); 6311 } 6312 break; 6313 } 6314 case ISD::FCOPYSIGN: { 6315 EVT VT = N->getValueType(0); 6316 if (!VT.isVector()) 6317 break; 6318 // There is a form of VFSGNJ which injects the negated sign of its second 6319 // operand. Try and bubble any FNEG up after the extend/round to produce 6320 // this optimized pattern. Avoid modifying cases where FP_ROUND and 6321 // TRUNC=1. 6322 SDValue In2 = N->getOperand(1); 6323 // Avoid cases where the extend/round has multiple uses, as duplicating 6324 // those is typically more expensive than removing a fneg. 6325 if (!In2.hasOneUse()) 6326 break; 6327 if (In2.getOpcode() != ISD::FP_EXTEND && 6328 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 6329 break; 6330 In2 = In2.getOperand(0); 6331 if (In2.getOpcode() != ISD::FNEG) 6332 break; 6333 SDLoc DL(N); 6334 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 6335 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 6336 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 6337 } 6338 case ISD::MGATHER: 6339 case ISD::MSCATTER: { 6340 if (!DCI.isBeforeLegalize()) 6341 break; 6342 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 6343 SDValue Index = MGSN->getIndex(); 6344 EVT IndexVT = Index.getValueType(); 6345 MVT XLenVT = Subtarget.getXLenVT(); 6346 // RISCV indexed loads only support the "unsigned unscaled" addressing 6347 // mode, so anything else must be manually legalized. 6348 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 6349 (MGSN->isIndexSigned() && 6350 IndexVT.getVectorElementType().bitsLT(XLenVT)); 6351 if (!NeedsIdxLegalization) 6352 break; 6353 6354 SDLoc DL(N); 6355 6356 // Any index legalization should first promote to XLenVT, so we don't lose 6357 // bits when scaling. This may create an illegal index type so we let 6358 // LLVM's legalization take care of the splitting. 6359 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 6360 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6361 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 6362 : ISD::ZERO_EXTEND, 6363 DL, IndexVT, Index); 6364 } 6365 6366 unsigned Scale = N->getConstantOperandVal(5); 6367 if (MGSN->isIndexScaled() && Scale != 1) { 6368 // Manually scale the indices by the element size. 6369 // TODO: Sanitize the scale operand here? 6370 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 6371 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 6372 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 6373 } 6374 6375 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 6376 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 6377 return DAG.getMaskedGather( 6378 N->getVTList(), MGSN->getMemoryVT(), DL, 6379 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 6380 MGSN->getBasePtr(), Index, MGN->getScale()}, 6381 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 6382 } 6383 const auto *MSN = cast<MaskedScatterSDNode>(N); 6384 return DAG.getMaskedScatter( 6385 N->getVTList(), MGSN->getMemoryVT(), DL, 6386 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 6387 Index, MGSN->getScale()}, 6388 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 6389 } 6390 case RISCVISD::SRA_VL: 6391 case RISCVISD::SRL_VL: 6392 case RISCVISD::SHL_VL: { 6393 SDValue ShAmt = N->getOperand(1); 6394 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6395 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6396 SDLoc DL(N); 6397 SDValue VL = N->getOperand(3); 6398 EVT VT = N->getValueType(0); 6399 ShAmt = 6400 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); 6401 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 6402 N->getOperand(2), N->getOperand(3)); 6403 } 6404 break; 6405 } 6406 case ISD::SRA: 6407 case ISD::SRL: 6408 case ISD::SHL: { 6409 SDValue ShAmt = N->getOperand(1); 6410 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 6411 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 6412 SDLoc DL(N); 6413 EVT VT = N->getValueType(0); 6414 ShAmt = 6415 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); 6416 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 6417 } 6418 break; 6419 } 6420 case RISCVISD::MUL_VL: { 6421 // Try to form VWMUL or VWMULU. 6422 // FIXME: Look for splat of extended scalar as well. 6423 // FIXME: Support VWMULSU. 6424 SDValue Op0 = N->getOperand(0); 6425 SDValue Op1 = N->getOperand(1); 6426 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 6427 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 6428 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode()) 6429 return SDValue(); 6430 6431 // Make sure the extends have a single use. 6432 if (!Op0.hasOneUse() || !Op1.hasOneUse()) 6433 return SDValue(); 6434 6435 SDValue Mask = N->getOperand(2); 6436 SDValue VL = N->getOperand(3); 6437 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask || 6438 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL) 6439 return SDValue(); 6440 6441 Op0 = Op0.getOperand(0); 6442 Op1 = Op1.getOperand(0); 6443 6444 MVT VT = N->getSimpleValueType(0); 6445 MVT NarrowVT = 6446 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2), 6447 VT.getVectorElementCount()); 6448 6449 SDLoc DL(N); 6450 6451 // Re-introduce narrower extends if needed. 6452 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 6453 if (Op0.getValueType() != NarrowVT) 6454 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 6455 if (Op1.getValueType() != NarrowVT) 6456 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 6457 6458 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 6459 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 6460 } 6461 } 6462 6463 return SDValue(); 6464 } 6465 6466 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 6467 const SDNode *N, CombineLevel Level) const { 6468 // The following folds are only desirable if `(OP _, c1 << c2)` can be 6469 // materialised in fewer instructions than `(OP _, c1)`: 6470 // 6471 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 6472 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 6473 SDValue N0 = N->getOperand(0); 6474 EVT Ty = N0.getValueType(); 6475 if (Ty.isScalarInteger() && 6476 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 6477 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 6478 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6479 if (C1 && C2) { 6480 const APInt &C1Int = C1->getAPIntValue(); 6481 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 6482 6483 // We can materialise `c1 << c2` into an add immediate, so it's "free", 6484 // and the combine should happen, to potentially allow further combines 6485 // later. 6486 if (ShiftedC1Int.getMinSignedBits() <= 64 && 6487 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 6488 return true; 6489 6490 // We can materialise `c1` in an add immediate, so it's "free", and the 6491 // combine should be prevented. 6492 if (C1Int.getMinSignedBits() <= 64 && 6493 isLegalAddImmediate(C1Int.getSExtValue())) 6494 return false; 6495 6496 // Neither constant will fit into an immediate, so find materialisation 6497 // costs. 6498 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 6499 Subtarget.getFeatureBits(), 6500 /*CompressionCost*/true); 6501 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 6502 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 6503 /*CompressionCost*/true); 6504 6505 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 6506 // combine should be prevented. 6507 if (C1Cost < ShiftedC1Cost) 6508 return false; 6509 } 6510 } 6511 return true; 6512 } 6513 6514 bool RISCVTargetLowering::targetShrinkDemandedConstant( 6515 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 6516 TargetLoweringOpt &TLO) const { 6517 // Delay this optimization as late as possible. 6518 if (!TLO.LegalOps) 6519 return false; 6520 6521 EVT VT = Op.getValueType(); 6522 if (VT.isVector()) 6523 return false; 6524 6525 // Only handle AND for now. 6526 if (Op.getOpcode() != ISD::AND) 6527 return false; 6528 6529 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6530 if (!C) 6531 return false; 6532 6533 const APInt &Mask = C->getAPIntValue(); 6534 6535 // Clear all non-demanded bits initially. 6536 APInt ShrunkMask = Mask & DemandedBits; 6537 6538 // Try to make a smaller immediate by setting undemanded bits. 6539 6540 APInt ExpandedMask = Mask | ~DemandedBits; 6541 6542 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6543 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6544 }; 6545 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6546 if (NewMask == Mask) 6547 return true; 6548 SDLoc DL(Op); 6549 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6550 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6551 return TLO.CombineTo(Op, NewOp); 6552 }; 6553 6554 // If the shrunk mask fits in sign extended 12 bits, let the target 6555 // independent code apply it. 6556 if (ShrunkMask.isSignedIntN(12)) 6557 return false; 6558 6559 // Preserve (and X, 0xffff) when zext.h is supported. 6560 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6561 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6562 if (IsLegalMask(NewMask)) 6563 return UseMask(NewMask); 6564 } 6565 6566 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6567 if (VT == MVT::i64) { 6568 APInt NewMask = APInt(64, 0xffffffff); 6569 if (IsLegalMask(NewMask)) 6570 return UseMask(NewMask); 6571 } 6572 6573 // For the remaining optimizations, we need to be able to make a negative 6574 // number through a combination of mask and undemanded bits. 6575 if (!ExpandedMask.isNegative()) 6576 return false; 6577 6578 // What is the fewest number of bits we need to represent the negative number. 6579 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6580 6581 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6582 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6583 APInt NewMask = ShrunkMask; 6584 if (MinSignedBits <= 12) 6585 NewMask.setBitsFrom(11); 6586 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6587 NewMask.setBitsFrom(31); 6588 else 6589 return false; 6590 6591 // Sanity check that our new mask is a subset of the demanded mask. 6592 assert(IsLegalMask(NewMask)); 6593 return UseMask(NewMask); 6594 } 6595 6596 static void computeGREV(APInt &Src, unsigned ShAmt) { 6597 ShAmt &= Src.getBitWidth() - 1; 6598 uint64_t x = Src.getZExtValue(); 6599 if (ShAmt & 1) 6600 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 6601 if (ShAmt & 2) 6602 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 6603 if (ShAmt & 4) 6604 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 6605 if (ShAmt & 8) 6606 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 6607 if (ShAmt & 16) 6608 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 6609 if (ShAmt & 32) 6610 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 6611 Src = x; 6612 } 6613 6614 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6615 KnownBits &Known, 6616 const APInt &DemandedElts, 6617 const SelectionDAG &DAG, 6618 unsigned Depth) const { 6619 unsigned BitWidth = Known.getBitWidth(); 6620 unsigned Opc = Op.getOpcode(); 6621 assert((Opc >= ISD::BUILTIN_OP_END || 6622 Opc == ISD::INTRINSIC_WO_CHAIN || 6623 Opc == ISD::INTRINSIC_W_CHAIN || 6624 Opc == ISD::INTRINSIC_VOID) && 6625 "Should use MaskedValueIsZero if you don't know whether Op" 6626 " is a target node!"); 6627 6628 Known.resetAll(); 6629 switch (Opc) { 6630 default: break; 6631 case RISCVISD::SELECT_CC: { 6632 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6633 // If we don't know any bits, early out. 6634 if (Known.isUnknown()) 6635 break; 6636 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6637 6638 // Only known if known in both the LHS and RHS. 6639 Known = KnownBits::commonBits(Known, Known2); 6640 break; 6641 } 6642 case RISCVISD::REMUW: { 6643 KnownBits Known2; 6644 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6645 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6646 // We only care about the lower 32 bits. 6647 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6648 // Restore the original width by sign extending. 6649 Known = Known.sext(BitWidth); 6650 break; 6651 } 6652 case RISCVISD::DIVUW: { 6653 KnownBits Known2; 6654 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6655 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6656 // We only care about the lower 32 bits. 6657 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6658 // Restore the original width by sign extending. 6659 Known = Known.sext(BitWidth); 6660 break; 6661 } 6662 case RISCVISD::CTZW: { 6663 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6664 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6665 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6666 Known.Zero.setBitsFrom(LowBits); 6667 break; 6668 } 6669 case RISCVISD::CLZW: { 6670 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6671 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6672 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6673 Known.Zero.setBitsFrom(LowBits); 6674 break; 6675 } 6676 case RISCVISD::GREV: 6677 case RISCVISD::GREVW: { 6678 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6679 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6680 if (Opc == RISCVISD::GREVW) 6681 Known = Known.trunc(32); 6682 unsigned ShAmt = C->getZExtValue(); 6683 computeGREV(Known.Zero, ShAmt); 6684 computeGREV(Known.One, ShAmt); 6685 if (Opc == RISCVISD::GREVW) 6686 Known = Known.sext(BitWidth); 6687 } 6688 break; 6689 } 6690 case RISCVISD::READ_VLENB: 6691 // We assume VLENB is at least 16 bytes. 6692 Known.Zero.setLowBits(4); 6693 // We assume VLENB is no more than 65536 / 8 bytes. 6694 Known.Zero.setBitsFrom(14); 6695 break; 6696 case ISD::INTRINSIC_W_CHAIN: { 6697 unsigned IntNo = Op.getConstantOperandVal(1); 6698 switch (IntNo) { 6699 default: 6700 // We can't do anything for most intrinsics. 6701 break; 6702 case Intrinsic::riscv_vsetvli: 6703 case Intrinsic::riscv_vsetvlimax: 6704 // Assume that VL output is positive and would fit in an int32_t. 6705 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6706 if (BitWidth >= 32) 6707 Known.Zero.setBitsFrom(31); 6708 break; 6709 } 6710 break; 6711 } 6712 } 6713 } 6714 6715 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6716 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6717 unsigned Depth) const { 6718 switch (Op.getOpcode()) { 6719 default: 6720 break; 6721 case RISCVISD::SELECT_CC: { 6722 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 6723 if (Tmp == 1) return 1; // Early out. 6724 unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 6725 return std::min(Tmp, Tmp2); 6726 } 6727 case RISCVISD::SLLW: 6728 case RISCVISD::SRAW: 6729 case RISCVISD::SRLW: 6730 case RISCVISD::DIVW: 6731 case RISCVISD::DIVUW: 6732 case RISCVISD::REMUW: 6733 case RISCVISD::ROLW: 6734 case RISCVISD::RORW: 6735 case RISCVISD::GREVW: 6736 case RISCVISD::GORCW: 6737 case RISCVISD::FSLW: 6738 case RISCVISD::FSRW: 6739 case RISCVISD::SHFLW: 6740 case RISCVISD::UNSHFLW: 6741 case RISCVISD::BCOMPRESSW: 6742 case RISCVISD::BDECOMPRESSW: 6743 case RISCVISD::FCVT_W_RTZ_RV64: 6744 case RISCVISD::FCVT_WU_RTZ_RV64: 6745 // TODO: As the result is sign-extended, this is conservatively correct. A 6746 // more precise answer could be calculated for SRAW depending on known 6747 // bits in the shift amount. 6748 return 33; 6749 case RISCVISD::SHFL: 6750 case RISCVISD::UNSHFL: { 6751 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6752 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6753 // will stay within the upper 32 bits. If there were more than 32 sign bits 6754 // before there will be at least 33 sign bits after. 6755 if (Op.getValueType() == MVT::i64 && 6756 isa<ConstantSDNode>(Op.getOperand(1)) && 6757 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6758 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6759 if (Tmp > 32) 6760 return 33; 6761 } 6762 break; 6763 } 6764 case RISCVISD::VMV_X_S: 6765 // The number of sign bits of the scalar result is computed by obtaining the 6766 // element type of the input vector operand, subtracting its width from the 6767 // XLEN, and then adding one (sign bit within the element type). If the 6768 // element type is wider than XLen, the least-significant XLEN bits are 6769 // taken. 6770 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6771 return 1; 6772 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6773 } 6774 6775 return 1; 6776 } 6777 6778 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6779 MachineBasicBlock *BB) { 6780 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6781 6782 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6783 // Should the count have wrapped while it was being read, we need to try 6784 // again. 6785 // ... 6786 // read: 6787 // rdcycleh x3 # load high word of cycle 6788 // rdcycle x2 # load low word of cycle 6789 // rdcycleh x4 # load high word of cycle 6790 // bne x3, x4, read # check if high word reads match, otherwise try again 6791 // ... 6792 6793 MachineFunction &MF = *BB->getParent(); 6794 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6795 MachineFunction::iterator It = ++BB->getIterator(); 6796 6797 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6798 MF.insert(It, LoopMBB); 6799 6800 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6801 MF.insert(It, DoneMBB); 6802 6803 // Transfer the remainder of BB and its successor edges to DoneMBB. 6804 DoneMBB->splice(DoneMBB->begin(), BB, 6805 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6806 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6807 6808 BB->addSuccessor(LoopMBB); 6809 6810 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6811 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6812 Register LoReg = MI.getOperand(0).getReg(); 6813 Register HiReg = MI.getOperand(1).getReg(); 6814 DebugLoc DL = MI.getDebugLoc(); 6815 6816 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6817 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6818 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6819 .addReg(RISCV::X0); 6820 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6821 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6822 .addReg(RISCV::X0); 6823 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6824 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6825 .addReg(RISCV::X0); 6826 6827 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6828 .addReg(HiReg) 6829 .addReg(ReadAgainReg) 6830 .addMBB(LoopMBB); 6831 6832 LoopMBB->addSuccessor(LoopMBB); 6833 LoopMBB->addSuccessor(DoneMBB); 6834 6835 MI.eraseFromParent(); 6836 6837 return DoneMBB; 6838 } 6839 6840 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6841 MachineBasicBlock *BB) { 6842 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6843 6844 MachineFunction &MF = *BB->getParent(); 6845 DebugLoc DL = MI.getDebugLoc(); 6846 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6847 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6848 Register LoReg = MI.getOperand(0).getReg(); 6849 Register HiReg = MI.getOperand(1).getReg(); 6850 Register SrcReg = MI.getOperand(2).getReg(); 6851 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6852 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6853 6854 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6855 RI); 6856 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6857 MachineMemOperand *MMOLo = 6858 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6859 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6860 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6861 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6862 .addFrameIndex(FI) 6863 .addImm(0) 6864 .addMemOperand(MMOLo); 6865 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6866 .addFrameIndex(FI) 6867 .addImm(4) 6868 .addMemOperand(MMOHi); 6869 MI.eraseFromParent(); // The pseudo instruction is gone now. 6870 return BB; 6871 } 6872 6873 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6874 MachineBasicBlock *BB) { 6875 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6876 "Unexpected instruction"); 6877 6878 MachineFunction &MF = *BB->getParent(); 6879 DebugLoc DL = MI.getDebugLoc(); 6880 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6881 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6882 Register DstReg = MI.getOperand(0).getReg(); 6883 Register LoReg = MI.getOperand(1).getReg(); 6884 Register HiReg = MI.getOperand(2).getReg(); 6885 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6886 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6887 6888 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6889 MachineMemOperand *MMOLo = 6890 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6891 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6892 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6893 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6894 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6895 .addFrameIndex(FI) 6896 .addImm(0) 6897 .addMemOperand(MMOLo); 6898 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6899 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6900 .addFrameIndex(FI) 6901 .addImm(4) 6902 .addMemOperand(MMOHi); 6903 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6904 MI.eraseFromParent(); // The pseudo instruction is gone now. 6905 return BB; 6906 } 6907 6908 static bool isSelectPseudo(MachineInstr &MI) { 6909 switch (MI.getOpcode()) { 6910 default: 6911 return false; 6912 case RISCV::Select_GPR_Using_CC_GPR: 6913 case RISCV::Select_FPR16_Using_CC_GPR: 6914 case RISCV::Select_FPR32_Using_CC_GPR: 6915 case RISCV::Select_FPR64_Using_CC_GPR: 6916 return true; 6917 } 6918 } 6919 6920 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6921 MachineBasicBlock *BB, 6922 const RISCVSubtarget &Subtarget) { 6923 // To "insert" Select_* instructions, we actually have to insert the triangle 6924 // control-flow pattern. The incoming instructions know the destination vreg 6925 // to set, the condition code register to branch on, the true/false values to 6926 // select between, and the condcode to use to select the appropriate branch. 6927 // 6928 // We produce the following control flow: 6929 // HeadMBB 6930 // | \ 6931 // | IfFalseMBB 6932 // | / 6933 // TailMBB 6934 // 6935 // When we find a sequence of selects we attempt to optimize their emission 6936 // by sharing the control flow. Currently we only handle cases where we have 6937 // multiple selects with the exact same condition (same LHS, RHS and CC). 6938 // The selects may be interleaved with other instructions if the other 6939 // instructions meet some requirements we deem safe: 6940 // - They are debug instructions. Otherwise, 6941 // - They do not have side-effects, do not access memory and their inputs do 6942 // not depend on the results of the select pseudo-instructions. 6943 // The TrueV/FalseV operands of the selects cannot depend on the result of 6944 // previous selects in the sequence. 6945 // These conditions could be further relaxed. See the X86 target for a 6946 // related approach and more information. 6947 Register LHS = MI.getOperand(1).getReg(); 6948 Register RHS = MI.getOperand(2).getReg(); 6949 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 6950 6951 SmallVector<MachineInstr *, 4> SelectDebugValues; 6952 SmallSet<Register, 4> SelectDests; 6953 SelectDests.insert(MI.getOperand(0).getReg()); 6954 6955 MachineInstr *LastSelectPseudo = &MI; 6956 6957 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6958 SequenceMBBI != E; ++SequenceMBBI) { 6959 if (SequenceMBBI->isDebugInstr()) 6960 continue; 6961 else if (isSelectPseudo(*SequenceMBBI)) { 6962 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6963 SequenceMBBI->getOperand(2).getReg() != RHS || 6964 SequenceMBBI->getOperand(3).getImm() != CC || 6965 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6966 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6967 break; 6968 LastSelectPseudo = &*SequenceMBBI; 6969 SequenceMBBI->collectDebugValues(SelectDebugValues); 6970 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6971 } else { 6972 if (SequenceMBBI->hasUnmodeledSideEffects() || 6973 SequenceMBBI->mayLoadOrStore()) 6974 break; 6975 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6976 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6977 })) 6978 break; 6979 } 6980 } 6981 6982 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 6983 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6984 DebugLoc DL = MI.getDebugLoc(); 6985 MachineFunction::iterator I = ++BB->getIterator(); 6986 6987 MachineBasicBlock *HeadMBB = BB; 6988 MachineFunction *F = BB->getParent(); 6989 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6990 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6991 6992 F->insert(I, IfFalseMBB); 6993 F->insert(I, TailMBB); 6994 6995 // Transfer debug instructions associated with the selects to TailMBB. 6996 for (MachineInstr *DebugInstr : SelectDebugValues) { 6997 TailMBB->push_back(DebugInstr->removeFromParent()); 6998 } 6999 7000 // Move all instructions after the sequence to TailMBB. 7001 TailMBB->splice(TailMBB->end(), HeadMBB, 7002 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 7003 // Update machine-CFG edges by transferring all successors of the current 7004 // block to the new block which will contain the Phi nodes for the selects. 7005 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 7006 // Set the successors for HeadMBB. 7007 HeadMBB->addSuccessor(IfFalseMBB); 7008 HeadMBB->addSuccessor(TailMBB); 7009 7010 // Insert appropriate branch. 7011 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 7012 .addReg(LHS) 7013 .addReg(RHS) 7014 .addMBB(TailMBB); 7015 7016 // IfFalseMBB just falls through to TailMBB. 7017 IfFalseMBB->addSuccessor(TailMBB); 7018 7019 // Create PHIs for all of the select pseudo-instructions. 7020 auto SelectMBBI = MI.getIterator(); 7021 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 7022 auto InsertionPoint = TailMBB->begin(); 7023 while (SelectMBBI != SelectEnd) { 7024 auto Next = std::next(SelectMBBI); 7025 if (isSelectPseudo(*SelectMBBI)) { 7026 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 7027 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 7028 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 7029 .addReg(SelectMBBI->getOperand(4).getReg()) 7030 .addMBB(HeadMBB) 7031 .addReg(SelectMBBI->getOperand(5).getReg()) 7032 .addMBB(IfFalseMBB); 7033 SelectMBBI->eraseFromParent(); 7034 } 7035 SelectMBBI = Next; 7036 } 7037 7038 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7039 return TailMBB; 7040 } 7041 7042 MachineBasicBlock * 7043 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 7044 MachineBasicBlock *BB) const { 7045 switch (MI.getOpcode()) { 7046 default: 7047 llvm_unreachable("Unexpected instr type to insert"); 7048 case RISCV::ReadCycleWide: 7049 assert(!Subtarget.is64Bit() && 7050 "ReadCycleWrite is only to be used on riscv32"); 7051 return emitReadCycleWidePseudo(MI, BB); 7052 case RISCV::Select_GPR_Using_CC_GPR: 7053 case RISCV::Select_FPR16_Using_CC_GPR: 7054 case RISCV::Select_FPR32_Using_CC_GPR: 7055 case RISCV::Select_FPR64_Using_CC_GPR: 7056 return emitSelectPseudo(MI, BB, Subtarget); 7057 case RISCV::BuildPairF64Pseudo: 7058 return emitBuildPairF64Pseudo(MI, BB); 7059 case RISCV::SplitF64Pseudo: 7060 return emitSplitF64Pseudo(MI, BB); 7061 } 7062 } 7063 7064 // Calling Convention Implementation. 7065 // The expectations for frontend ABI lowering vary from target to target. 7066 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 7067 // details, but this is a longer term goal. For now, we simply try to keep the 7068 // role of the frontend as simple and well-defined as possible. The rules can 7069 // be summarised as: 7070 // * Never split up large scalar arguments. We handle them here. 7071 // * If a hardfloat calling convention is being used, and the struct may be 7072 // passed in a pair of registers (fp+fp, int+fp), and both registers are 7073 // available, then pass as two separate arguments. If either the GPRs or FPRs 7074 // are exhausted, then pass according to the rule below. 7075 // * If a struct could never be passed in registers or directly in a stack 7076 // slot (as it is larger than 2*XLEN and the floating point rules don't 7077 // apply), then pass it using a pointer with the byval attribute. 7078 // * If a struct is less than 2*XLEN, then coerce to either a two-element 7079 // word-sized array or a 2*XLEN scalar (depending on alignment). 7080 // * The frontend can determine whether a struct is returned by reference or 7081 // not based on its size and fields. If it will be returned by reference, the 7082 // frontend must modify the prototype so a pointer with the sret annotation is 7083 // passed as the first argument. This is not necessary for large scalar 7084 // returns. 7085 // * Struct return values and varargs should be coerced to structs containing 7086 // register-size fields in the same situations they would be for fixed 7087 // arguments. 7088 7089 static const MCPhysReg ArgGPRs[] = { 7090 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 7091 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 7092 }; 7093 static const MCPhysReg ArgFPR16s[] = { 7094 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 7095 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 7096 }; 7097 static const MCPhysReg ArgFPR32s[] = { 7098 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 7099 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 7100 }; 7101 static const MCPhysReg ArgFPR64s[] = { 7102 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 7103 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 7104 }; 7105 // This is an interim calling convention and it may be changed in the future. 7106 static const MCPhysReg ArgVRs[] = { 7107 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 7108 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 7109 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 7110 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 7111 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 7112 RISCV::V20M2, RISCV::V22M2}; 7113 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 7114 RISCV::V20M4}; 7115 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 7116 7117 // Pass a 2*XLEN argument that has been split into two XLEN values through 7118 // registers or the stack as necessary. 7119 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 7120 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 7121 MVT ValVT2, MVT LocVT2, 7122 ISD::ArgFlagsTy ArgFlags2) { 7123 unsigned XLenInBytes = XLen / 8; 7124 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7125 // At least one half can be passed via register. 7126 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 7127 VA1.getLocVT(), CCValAssign::Full)); 7128 } else { 7129 // Both halves must be passed on the stack, with proper alignment. 7130 Align StackAlign = 7131 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 7132 State.addLoc( 7133 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 7134 State.AllocateStack(XLenInBytes, StackAlign), 7135 VA1.getLocVT(), CCValAssign::Full)); 7136 State.addLoc(CCValAssign::getMem( 7137 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7138 LocVT2, CCValAssign::Full)); 7139 return false; 7140 } 7141 7142 if (Register Reg = State.AllocateReg(ArgGPRs)) { 7143 // The second half can also be passed via register. 7144 State.addLoc( 7145 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 7146 } else { 7147 // The second half is passed via the stack, without additional alignment. 7148 State.addLoc(CCValAssign::getMem( 7149 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 7150 LocVT2, CCValAssign::Full)); 7151 } 7152 7153 return false; 7154 } 7155 7156 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 7157 Optional<unsigned> FirstMaskArgument, 7158 CCState &State, const RISCVTargetLowering &TLI) { 7159 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 7160 if (RC == &RISCV::VRRegClass) { 7161 // Assign the first mask argument to V0. 7162 // This is an interim calling convention and it may be changed in the 7163 // future. 7164 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 7165 return State.AllocateReg(RISCV::V0); 7166 return State.AllocateReg(ArgVRs); 7167 } 7168 if (RC == &RISCV::VRM2RegClass) 7169 return State.AllocateReg(ArgVRM2s); 7170 if (RC == &RISCV::VRM4RegClass) 7171 return State.AllocateReg(ArgVRM4s); 7172 if (RC == &RISCV::VRM8RegClass) 7173 return State.AllocateReg(ArgVRM8s); 7174 llvm_unreachable("Unhandled register class for ValueType"); 7175 } 7176 7177 // Implements the RISC-V calling convention. Returns true upon failure. 7178 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 7179 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 7180 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 7181 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 7182 Optional<unsigned> FirstMaskArgument) { 7183 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 7184 assert(XLen == 32 || XLen == 64); 7185 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 7186 7187 // Any return value split in to more than two values can't be returned 7188 // directly. Vectors are returned via the available vector registers. 7189 if (!LocVT.isVector() && IsRet && ValNo > 1) 7190 return true; 7191 7192 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 7193 // variadic argument, or if no F16/F32 argument registers are available. 7194 bool UseGPRForF16_F32 = true; 7195 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 7196 // variadic argument, or if no F64 argument registers are available. 7197 bool UseGPRForF64 = true; 7198 7199 switch (ABI) { 7200 default: 7201 llvm_unreachable("Unexpected ABI"); 7202 case RISCVABI::ABI_ILP32: 7203 case RISCVABI::ABI_LP64: 7204 break; 7205 case RISCVABI::ABI_ILP32F: 7206 case RISCVABI::ABI_LP64F: 7207 UseGPRForF16_F32 = !IsFixed; 7208 break; 7209 case RISCVABI::ABI_ILP32D: 7210 case RISCVABI::ABI_LP64D: 7211 UseGPRForF16_F32 = !IsFixed; 7212 UseGPRForF64 = !IsFixed; 7213 break; 7214 } 7215 7216 // FPR16, FPR32, and FPR64 alias each other. 7217 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 7218 UseGPRForF16_F32 = true; 7219 UseGPRForF64 = true; 7220 } 7221 7222 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 7223 // similar local variables rather than directly checking against the target 7224 // ABI. 7225 7226 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 7227 LocVT = XLenVT; 7228 LocInfo = CCValAssign::BCvt; 7229 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 7230 LocVT = MVT::i64; 7231 LocInfo = CCValAssign::BCvt; 7232 } 7233 7234 // If this is a variadic argument, the RISC-V calling convention requires 7235 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 7236 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 7237 // be used regardless of whether the original argument was split during 7238 // legalisation or not. The argument will not be passed by registers if the 7239 // original type is larger than 2*XLEN, so the register alignment rule does 7240 // not apply. 7241 unsigned TwoXLenInBytes = (2 * XLen) / 8; 7242 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 7243 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 7244 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 7245 // Skip 'odd' register if necessary. 7246 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 7247 State.AllocateReg(ArgGPRs); 7248 } 7249 7250 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 7251 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 7252 State.getPendingArgFlags(); 7253 7254 assert(PendingLocs.size() == PendingArgFlags.size() && 7255 "PendingLocs and PendingArgFlags out of sync"); 7256 7257 // Handle passing f64 on RV32D with a soft float ABI or when floating point 7258 // registers are exhausted. 7259 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 7260 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 7261 "Can't lower f64 if it is split"); 7262 // Depending on available argument GPRS, f64 may be passed in a pair of 7263 // GPRs, split between a GPR and the stack, or passed completely on the 7264 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 7265 // cases. 7266 Register Reg = State.AllocateReg(ArgGPRs); 7267 LocVT = MVT::i32; 7268 if (!Reg) { 7269 unsigned StackOffset = State.AllocateStack(8, Align(8)); 7270 State.addLoc( 7271 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7272 return false; 7273 } 7274 if (!State.AllocateReg(ArgGPRs)) 7275 State.AllocateStack(4, Align(4)); 7276 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7277 return false; 7278 } 7279 7280 // Fixed-length vectors are located in the corresponding scalable-vector 7281 // container types. 7282 if (ValVT.isFixedLengthVector()) 7283 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7284 7285 // Split arguments might be passed indirectly, so keep track of the pending 7286 // values. Split vectors are passed via a mix of registers and indirectly, so 7287 // treat them as we would any other argument. 7288 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 7289 LocVT = XLenVT; 7290 LocInfo = CCValAssign::Indirect; 7291 PendingLocs.push_back( 7292 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 7293 PendingArgFlags.push_back(ArgFlags); 7294 if (!ArgFlags.isSplitEnd()) { 7295 return false; 7296 } 7297 } 7298 7299 // If the split argument only had two elements, it should be passed directly 7300 // in registers or on the stack. 7301 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 7302 PendingLocs.size() <= 2) { 7303 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 7304 // Apply the normal calling convention rules to the first half of the 7305 // split argument. 7306 CCValAssign VA = PendingLocs[0]; 7307 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 7308 PendingLocs.clear(); 7309 PendingArgFlags.clear(); 7310 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 7311 ArgFlags); 7312 } 7313 7314 // Allocate to a register if possible, or else a stack slot. 7315 Register Reg; 7316 unsigned StoreSizeBytes = XLen / 8; 7317 Align StackAlign = Align(XLen / 8); 7318 7319 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 7320 Reg = State.AllocateReg(ArgFPR16s); 7321 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 7322 Reg = State.AllocateReg(ArgFPR32s); 7323 else if (ValVT == MVT::f64 && !UseGPRForF64) 7324 Reg = State.AllocateReg(ArgFPR64s); 7325 else if (ValVT.isVector()) { 7326 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 7327 if (!Reg) { 7328 // For return values, the vector must be passed fully via registers or 7329 // via the stack. 7330 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 7331 // but we're using all of them. 7332 if (IsRet) 7333 return true; 7334 // Try using a GPR to pass the address 7335 if ((Reg = State.AllocateReg(ArgGPRs))) { 7336 LocVT = XLenVT; 7337 LocInfo = CCValAssign::Indirect; 7338 } else if (ValVT.isScalableVector()) { 7339 report_fatal_error("Unable to pass scalable vector types on the stack"); 7340 } else { 7341 // Pass fixed-length vectors on the stack. 7342 LocVT = ValVT; 7343 StoreSizeBytes = ValVT.getStoreSize(); 7344 // Align vectors to their element sizes, being careful for vXi1 7345 // vectors. 7346 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7347 } 7348 } 7349 } else { 7350 Reg = State.AllocateReg(ArgGPRs); 7351 } 7352 7353 unsigned StackOffset = 7354 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 7355 7356 // If we reach this point and PendingLocs is non-empty, we must be at the 7357 // end of a split argument that must be passed indirectly. 7358 if (!PendingLocs.empty()) { 7359 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 7360 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 7361 7362 for (auto &It : PendingLocs) { 7363 if (Reg) 7364 It.convertToReg(Reg); 7365 else 7366 It.convertToMem(StackOffset); 7367 State.addLoc(It); 7368 } 7369 PendingLocs.clear(); 7370 PendingArgFlags.clear(); 7371 return false; 7372 } 7373 7374 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 7375 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 7376 "Expected an XLenVT or vector types at this stage"); 7377 7378 if (Reg) { 7379 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7380 return false; 7381 } 7382 7383 // When a floating-point value is passed on the stack, no bit-conversion is 7384 // needed. 7385 if (ValVT.isFloatingPoint()) { 7386 LocVT = ValVT; 7387 LocInfo = CCValAssign::Full; 7388 } 7389 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7390 return false; 7391 } 7392 7393 template <typename ArgTy> 7394 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 7395 for (const auto &ArgIdx : enumerate(Args)) { 7396 MVT ArgVT = ArgIdx.value().VT; 7397 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 7398 return ArgIdx.index(); 7399 } 7400 return None; 7401 } 7402 7403 void RISCVTargetLowering::analyzeInputArgs( 7404 MachineFunction &MF, CCState &CCInfo, 7405 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 7406 RISCVCCAssignFn Fn) const { 7407 unsigned NumArgs = Ins.size(); 7408 FunctionType *FType = MF.getFunction().getFunctionType(); 7409 7410 Optional<unsigned> FirstMaskArgument; 7411 if (Subtarget.hasStdExtV()) 7412 FirstMaskArgument = preAssignMask(Ins); 7413 7414 for (unsigned i = 0; i != NumArgs; ++i) { 7415 MVT ArgVT = Ins[i].VT; 7416 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 7417 7418 Type *ArgTy = nullptr; 7419 if (IsRet) 7420 ArgTy = FType->getReturnType(); 7421 else if (Ins[i].isOrigArg()) 7422 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 7423 7424 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7425 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7426 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 7427 FirstMaskArgument)) { 7428 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 7429 << EVT(ArgVT).getEVTString() << '\n'); 7430 llvm_unreachable(nullptr); 7431 } 7432 } 7433 } 7434 7435 void RISCVTargetLowering::analyzeOutputArgs( 7436 MachineFunction &MF, CCState &CCInfo, 7437 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 7438 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 7439 unsigned NumArgs = Outs.size(); 7440 7441 Optional<unsigned> FirstMaskArgument; 7442 if (Subtarget.hasStdExtV()) 7443 FirstMaskArgument = preAssignMask(Outs); 7444 7445 for (unsigned i = 0; i != NumArgs; i++) { 7446 MVT ArgVT = Outs[i].VT; 7447 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7448 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 7449 7450 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7451 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 7452 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 7453 FirstMaskArgument)) { 7454 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 7455 << EVT(ArgVT).getEVTString() << "\n"); 7456 llvm_unreachable(nullptr); 7457 } 7458 } 7459 } 7460 7461 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 7462 // values. 7463 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 7464 const CCValAssign &VA, const SDLoc &DL, 7465 const RISCVSubtarget &Subtarget) { 7466 switch (VA.getLocInfo()) { 7467 default: 7468 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7469 case CCValAssign::Full: 7470 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 7471 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 7472 break; 7473 case CCValAssign::BCvt: 7474 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7475 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 7476 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7477 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 7478 else 7479 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 7480 break; 7481 } 7482 return Val; 7483 } 7484 7485 // The caller is responsible for loading the full value if the argument is 7486 // passed with CCValAssign::Indirect. 7487 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 7488 const CCValAssign &VA, const SDLoc &DL, 7489 const RISCVTargetLowering &TLI) { 7490 MachineFunction &MF = DAG.getMachineFunction(); 7491 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7492 EVT LocVT = VA.getLocVT(); 7493 SDValue Val; 7494 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 7495 Register VReg = RegInfo.createVirtualRegister(RC); 7496 RegInfo.addLiveIn(VA.getLocReg(), VReg); 7497 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 7498 7499 if (VA.getLocInfo() == CCValAssign::Indirect) 7500 return Val; 7501 7502 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7503 } 7504 7505 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7506 const CCValAssign &VA, const SDLoc &DL, 7507 const RISCVSubtarget &Subtarget) { 7508 EVT LocVT = VA.getLocVT(); 7509 7510 switch (VA.getLocInfo()) { 7511 default: 7512 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7513 case CCValAssign::Full: 7514 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7515 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7516 break; 7517 case CCValAssign::BCvt: 7518 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7519 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7520 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7521 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7522 else 7523 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7524 break; 7525 } 7526 return Val; 7527 } 7528 7529 // The caller is responsible for loading the full value if the argument is 7530 // passed with CCValAssign::Indirect. 7531 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7532 const CCValAssign &VA, const SDLoc &DL) { 7533 MachineFunction &MF = DAG.getMachineFunction(); 7534 MachineFrameInfo &MFI = MF.getFrameInfo(); 7535 EVT LocVT = VA.getLocVT(); 7536 EVT ValVT = VA.getValVT(); 7537 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7538 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 7539 /*Immutable=*/true); 7540 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7541 SDValue Val; 7542 7543 ISD::LoadExtType ExtType; 7544 switch (VA.getLocInfo()) { 7545 default: 7546 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7547 case CCValAssign::Full: 7548 case CCValAssign::Indirect: 7549 case CCValAssign::BCvt: 7550 ExtType = ISD::NON_EXTLOAD; 7551 break; 7552 } 7553 Val = DAG.getExtLoad( 7554 ExtType, DL, LocVT, Chain, FIN, 7555 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7556 return Val; 7557 } 7558 7559 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7560 const CCValAssign &VA, const SDLoc &DL) { 7561 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7562 "Unexpected VA"); 7563 MachineFunction &MF = DAG.getMachineFunction(); 7564 MachineFrameInfo &MFI = MF.getFrameInfo(); 7565 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7566 7567 if (VA.isMemLoc()) { 7568 // f64 is passed on the stack. 7569 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7570 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7571 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7572 MachinePointerInfo::getFixedStack(MF, FI)); 7573 } 7574 7575 assert(VA.isRegLoc() && "Expected register VA assignment"); 7576 7577 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7578 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7579 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7580 SDValue Hi; 7581 if (VA.getLocReg() == RISCV::X17) { 7582 // Second half of f64 is passed on the stack. 7583 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7584 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7585 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7586 MachinePointerInfo::getFixedStack(MF, FI)); 7587 } else { 7588 // Second half of f64 is passed in another GPR. 7589 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7590 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7591 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7592 } 7593 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7594 } 7595 7596 // FastCC has less than 1% performance improvement for some particular 7597 // benchmark. But theoretically, it may has benenfit for some cases. 7598 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 7599 unsigned ValNo, MVT ValVT, MVT LocVT, 7600 CCValAssign::LocInfo LocInfo, 7601 ISD::ArgFlagsTy ArgFlags, CCState &State, 7602 bool IsFixed, bool IsRet, Type *OrigTy, 7603 const RISCVTargetLowering &TLI, 7604 Optional<unsigned> FirstMaskArgument) { 7605 7606 // X5 and X6 might be used for save-restore libcall. 7607 static const MCPhysReg GPRList[] = { 7608 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7609 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7610 RISCV::X29, RISCV::X30, RISCV::X31}; 7611 7612 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7613 if (unsigned Reg = State.AllocateReg(GPRList)) { 7614 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7615 return false; 7616 } 7617 } 7618 7619 if (LocVT == MVT::f16) { 7620 static const MCPhysReg FPR16List[] = { 7621 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7622 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7623 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7624 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7625 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7626 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7627 return false; 7628 } 7629 } 7630 7631 if (LocVT == MVT::f32) { 7632 static const MCPhysReg FPR32List[] = { 7633 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7634 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7635 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7636 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7637 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7638 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7639 return false; 7640 } 7641 } 7642 7643 if (LocVT == MVT::f64) { 7644 static const MCPhysReg FPR64List[] = { 7645 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7646 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7647 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7648 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7649 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7650 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7651 return false; 7652 } 7653 } 7654 7655 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7656 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7657 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7658 return false; 7659 } 7660 7661 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7662 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7663 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7664 return false; 7665 } 7666 7667 if (LocVT.isVector()) { 7668 if (unsigned Reg = 7669 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 7670 // Fixed-length vectors are located in the corresponding scalable-vector 7671 // container types. 7672 if (ValVT.isFixedLengthVector()) 7673 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 7674 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7675 } else { 7676 // Try and pass the address via a "fast" GPR. 7677 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 7678 LocInfo = CCValAssign::Indirect; 7679 LocVT = TLI.getSubtarget().getXLenVT(); 7680 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 7681 } else if (ValVT.isFixedLengthVector()) { 7682 auto StackAlign = 7683 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 7684 unsigned StackOffset = 7685 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 7686 State.addLoc( 7687 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 7688 } else { 7689 // Can't pass scalable vectors on the stack. 7690 return true; 7691 } 7692 } 7693 7694 return false; 7695 } 7696 7697 return true; // CC didn't match. 7698 } 7699 7700 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7701 CCValAssign::LocInfo LocInfo, 7702 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7703 7704 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7705 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7706 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7707 static const MCPhysReg GPRList[] = { 7708 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7709 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7710 if (unsigned Reg = State.AllocateReg(GPRList)) { 7711 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7712 return false; 7713 } 7714 } 7715 7716 if (LocVT == MVT::f32) { 7717 // Pass in STG registers: F1, ..., F6 7718 // fs0 ... fs5 7719 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7720 RISCV::F18_F, RISCV::F19_F, 7721 RISCV::F20_F, RISCV::F21_F}; 7722 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7723 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7724 return false; 7725 } 7726 } 7727 7728 if (LocVT == MVT::f64) { 7729 // Pass in STG registers: D1, ..., D6 7730 // fs6 ... fs11 7731 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7732 RISCV::F24_D, RISCV::F25_D, 7733 RISCV::F26_D, RISCV::F27_D}; 7734 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7735 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7736 return false; 7737 } 7738 } 7739 7740 report_fatal_error("No registers left in GHC calling convention"); 7741 return true; 7742 } 7743 7744 // Transform physical registers into virtual registers. 7745 SDValue RISCVTargetLowering::LowerFormalArguments( 7746 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7747 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7748 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7749 7750 MachineFunction &MF = DAG.getMachineFunction(); 7751 7752 switch (CallConv) { 7753 default: 7754 report_fatal_error("Unsupported calling convention"); 7755 case CallingConv::C: 7756 case CallingConv::Fast: 7757 break; 7758 case CallingConv::GHC: 7759 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7760 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7761 report_fatal_error( 7762 "GHC calling convention requires the F and D instruction set extensions"); 7763 } 7764 7765 const Function &Func = MF.getFunction(); 7766 if (Func.hasFnAttribute("interrupt")) { 7767 if (!Func.arg_empty()) 7768 report_fatal_error( 7769 "Functions with the interrupt attribute cannot have arguments!"); 7770 7771 StringRef Kind = 7772 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7773 7774 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7775 report_fatal_error( 7776 "Function interrupt attribute argument not supported!"); 7777 } 7778 7779 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7780 MVT XLenVT = Subtarget.getXLenVT(); 7781 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7782 // Used with vargs to acumulate store chains. 7783 std::vector<SDValue> OutChains; 7784 7785 // Assign locations to all of the incoming arguments. 7786 SmallVector<CCValAssign, 16> ArgLocs; 7787 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7788 7789 if (CallConv == CallingConv::GHC) 7790 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7791 else 7792 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 7793 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 7794 : CC_RISCV); 7795 7796 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7797 CCValAssign &VA = ArgLocs[i]; 7798 SDValue ArgValue; 7799 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7800 // case. 7801 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7802 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7803 else if (VA.isRegLoc()) 7804 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7805 else 7806 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7807 7808 if (VA.getLocInfo() == CCValAssign::Indirect) { 7809 // If the original argument was split and passed by reference (e.g. i128 7810 // on RV32), we need to load all parts of it here (using the same 7811 // address). Vectors may be partly split to registers and partly to the 7812 // stack, in which case the base address is partly offset and subsequent 7813 // stores are relative to that. 7814 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7815 MachinePointerInfo())); 7816 unsigned ArgIndex = Ins[i].OrigArgIndex; 7817 unsigned ArgPartOffset = Ins[i].PartOffset; 7818 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7819 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7820 CCValAssign &PartVA = ArgLocs[i + 1]; 7821 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7822 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 7823 if (PartVA.getValVT().isScalableVector()) 7824 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 7825 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 7826 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7827 MachinePointerInfo())); 7828 ++i; 7829 } 7830 continue; 7831 } 7832 InVals.push_back(ArgValue); 7833 } 7834 7835 if (IsVarArg) { 7836 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7837 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7838 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7839 MachineFrameInfo &MFI = MF.getFrameInfo(); 7840 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7841 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7842 7843 // Offset of the first variable argument from stack pointer, and size of 7844 // the vararg save area. For now, the varargs save area is either zero or 7845 // large enough to hold a0-a7. 7846 int VaArgOffset, VarArgsSaveSize; 7847 7848 // If all registers are allocated, then all varargs must be passed on the 7849 // stack and we don't need to save any argregs. 7850 if (ArgRegs.size() == Idx) { 7851 VaArgOffset = CCInfo.getNextStackOffset(); 7852 VarArgsSaveSize = 0; 7853 } else { 7854 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7855 VaArgOffset = -VarArgsSaveSize; 7856 } 7857 7858 // Record the frame index of the first variable argument 7859 // which is a value necessary to VASTART. 7860 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7861 RVFI->setVarArgsFrameIndex(FI); 7862 7863 // If saving an odd number of registers then create an extra stack slot to 7864 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7865 // offsets to even-numbered registered remain 2*XLEN-aligned. 7866 if (Idx % 2) { 7867 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7868 VarArgsSaveSize += XLenInBytes; 7869 } 7870 7871 // Copy the integer registers that may have been used for passing varargs 7872 // to the vararg save area. 7873 for (unsigned I = Idx; I < ArgRegs.size(); 7874 ++I, VaArgOffset += XLenInBytes) { 7875 const Register Reg = RegInfo.createVirtualRegister(RC); 7876 RegInfo.addLiveIn(ArgRegs[I], Reg); 7877 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7878 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7879 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7880 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7881 MachinePointerInfo::getFixedStack(MF, FI)); 7882 cast<StoreSDNode>(Store.getNode()) 7883 ->getMemOperand() 7884 ->setValue((Value *)nullptr); 7885 OutChains.push_back(Store); 7886 } 7887 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7888 } 7889 7890 // All stores are grouped in one node to allow the matching between 7891 // the size of Ins and InVals. This only happens for vararg functions. 7892 if (!OutChains.empty()) { 7893 OutChains.push_back(Chain); 7894 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7895 } 7896 7897 return Chain; 7898 } 7899 7900 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7901 /// for tail call optimization. 7902 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7903 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7904 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7905 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7906 7907 auto &Callee = CLI.Callee; 7908 auto CalleeCC = CLI.CallConv; 7909 auto &Outs = CLI.Outs; 7910 auto &Caller = MF.getFunction(); 7911 auto CallerCC = Caller.getCallingConv(); 7912 7913 // Exception-handling functions need a special set of instructions to 7914 // indicate a return to the hardware. Tail-calling another function would 7915 // probably break this. 7916 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7917 // should be expanded as new function attributes are introduced. 7918 if (Caller.hasFnAttribute("interrupt")) 7919 return false; 7920 7921 // Do not tail call opt if the stack is used to pass parameters. 7922 if (CCInfo.getNextStackOffset() != 0) 7923 return false; 7924 7925 // Do not tail call opt if any parameters need to be passed indirectly. 7926 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7927 // passed indirectly. So the address of the value will be passed in a 7928 // register, or if not available, then the address is put on the stack. In 7929 // order to pass indirectly, space on the stack often needs to be allocated 7930 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7931 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7932 // are passed CCValAssign::Indirect. 7933 for (auto &VA : ArgLocs) 7934 if (VA.getLocInfo() == CCValAssign::Indirect) 7935 return false; 7936 7937 // Do not tail call opt if either caller or callee uses struct return 7938 // semantics. 7939 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7940 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7941 if (IsCallerStructRet || IsCalleeStructRet) 7942 return false; 7943 7944 // Externally-defined functions with weak linkage should not be 7945 // tail-called. The behaviour of branch instructions in this situation (as 7946 // used for tail calls) is implementation-defined, so we cannot rely on the 7947 // linker replacing the tail call with a return. 7948 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7949 const GlobalValue *GV = G->getGlobal(); 7950 if (GV->hasExternalWeakLinkage()) 7951 return false; 7952 } 7953 7954 // The callee has to preserve all registers the caller needs to preserve. 7955 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7956 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7957 if (CalleeCC != CallerCC) { 7958 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7959 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7960 return false; 7961 } 7962 7963 // Byval parameters hand the function a pointer directly into the stack area 7964 // we want to reuse during a tail call. Working around this *is* possible 7965 // but less efficient and uglier in LowerCall. 7966 for (auto &Arg : Outs) 7967 if (Arg.Flags.isByVal()) 7968 return false; 7969 7970 return true; 7971 } 7972 7973 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7974 return DAG.getDataLayout().getPrefTypeAlign( 7975 VT.getTypeForEVT(*DAG.getContext())); 7976 } 7977 7978 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7979 // and output parameter nodes. 7980 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7981 SmallVectorImpl<SDValue> &InVals) const { 7982 SelectionDAG &DAG = CLI.DAG; 7983 SDLoc &DL = CLI.DL; 7984 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7985 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7986 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7987 SDValue Chain = CLI.Chain; 7988 SDValue Callee = CLI.Callee; 7989 bool &IsTailCall = CLI.IsTailCall; 7990 CallingConv::ID CallConv = CLI.CallConv; 7991 bool IsVarArg = CLI.IsVarArg; 7992 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7993 MVT XLenVT = Subtarget.getXLenVT(); 7994 7995 MachineFunction &MF = DAG.getMachineFunction(); 7996 7997 // Analyze the operands of the call, assigning locations to each operand. 7998 SmallVector<CCValAssign, 16> ArgLocs; 7999 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 8000 8001 if (CallConv == CallingConv::GHC) 8002 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 8003 else 8004 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 8005 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 8006 : CC_RISCV); 8007 8008 // Check if it's really possible to do a tail call. 8009 if (IsTailCall) 8010 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 8011 8012 if (IsTailCall) 8013 ++NumTailCalls; 8014 else if (CLI.CB && CLI.CB->isMustTailCall()) 8015 report_fatal_error("failed to perform tail call elimination on a call " 8016 "site marked musttail"); 8017 8018 // Get a count of how many bytes are to be pushed on the stack. 8019 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 8020 8021 // Create local copies for byval args 8022 SmallVector<SDValue, 8> ByValArgs; 8023 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8024 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8025 if (!Flags.isByVal()) 8026 continue; 8027 8028 SDValue Arg = OutVals[i]; 8029 unsigned Size = Flags.getByValSize(); 8030 Align Alignment = Flags.getNonZeroByValAlign(); 8031 8032 int FI = 8033 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 8034 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 8035 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 8036 8037 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 8038 /*IsVolatile=*/false, 8039 /*AlwaysInline=*/false, IsTailCall, 8040 MachinePointerInfo(), MachinePointerInfo()); 8041 ByValArgs.push_back(FIPtr); 8042 } 8043 8044 if (!IsTailCall) 8045 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 8046 8047 // Copy argument values to their designated locations. 8048 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 8049 SmallVector<SDValue, 8> MemOpChains; 8050 SDValue StackPtr; 8051 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 8052 CCValAssign &VA = ArgLocs[i]; 8053 SDValue ArgValue = OutVals[i]; 8054 ISD::ArgFlagsTy Flags = Outs[i].Flags; 8055 8056 // Handle passing f64 on RV32D with a soft float ABI as a special case. 8057 bool IsF64OnRV32DSoftABI = 8058 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 8059 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 8060 SDValue SplitF64 = DAG.getNode( 8061 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 8062 SDValue Lo = SplitF64.getValue(0); 8063 SDValue Hi = SplitF64.getValue(1); 8064 8065 Register RegLo = VA.getLocReg(); 8066 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 8067 8068 if (RegLo == RISCV::X17) { 8069 // Second half of f64 is passed on the stack. 8070 // Work out the address of the stack slot. 8071 if (!StackPtr.getNode()) 8072 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8073 // Emit the store. 8074 MemOpChains.push_back( 8075 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 8076 } else { 8077 // Second half of f64 is passed in another GPR. 8078 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8079 Register RegHigh = RegLo + 1; 8080 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 8081 } 8082 continue; 8083 } 8084 8085 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 8086 // as any other MemLoc. 8087 8088 // Promote the value if needed. 8089 // For now, only handle fully promoted and indirect arguments. 8090 if (VA.getLocInfo() == CCValAssign::Indirect) { 8091 // Store the argument in a stack slot and pass its address. 8092 Align StackAlign = 8093 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 8094 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 8095 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 8096 // If the original argument was split (e.g. i128), we need 8097 // to store the required parts of it here (and pass just one address). 8098 // Vectors may be partly split to registers and partly to the stack, in 8099 // which case the base address is partly offset and subsequent stores are 8100 // relative to that. 8101 unsigned ArgIndex = Outs[i].OrigArgIndex; 8102 unsigned ArgPartOffset = Outs[i].PartOffset; 8103 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 8104 // Calculate the total size to store. We don't have access to what we're 8105 // actually storing other than performing the loop and collecting the 8106 // info. 8107 SmallVector<std::pair<SDValue, SDValue>> Parts; 8108 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 8109 SDValue PartValue = OutVals[i + 1]; 8110 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 8111 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 8112 EVT PartVT = PartValue.getValueType(); 8113 if (PartVT.isScalableVector()) 8114 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 8115 StoredSize += PartVT.getStoreSize(); 8116 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 8117 Parts.push_back(std::make_pair(PartValue, Offset)); 8118 ++i; 8119 } 8120 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 8121 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 8122 MemOpChains.push_back( 8123 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 8124 MachinePointerInfo::getFixedStack(MF, FI))); 8125 for (const auto &Part : Parts) { 8126 SDValue PartValue = Part.first; 8127 SDValue PartOffset = Part.second; 8128 SDValue Address = 8129 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 8130 MemOpChains.push_back( 8131 DAG.getStore(Chain, DL, PartValue, Address, 8132 MachinePointerInfo::getFixedStack(MF, FI))); 8133 } 8134 ArgValue = SpillSlot; 8135 } else { 8136 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 8137 } 8138 8139 // Use local copy if it is a byval arg. 8140 if (Flags.isByVal()) 8141 ArgValue = ByValArgs[j++]; 8142 8143 if (VA.isRegLoc()) { 8144 // Queue up the argument copies and emit them at the end. 8145 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 8146 } else { 8147 assert(VA.isMemLoc() && "Argument not register or memory"); 8148 assert(!IsTailCall && "Tail call not allowed if stack is used " 8149 "for passing parameters"); 8150 8151 // Work out the address of the stack slot. 8152 if (!StackPtr.getNode()) 8153 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 8154 SDValue Address = 8155 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 8156 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 8157 8158 // Emit the store. 8159 MemOpChains.push_back( 8160 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 8161 } 8162 } 8163 8164 // Join the stores, which are independent of one another. 8165 if (!MemOpChains.empty()) 8166 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 8167 8168 SDValue Glue; 8169 8170 // Build a sequence of copy-to-reg nodes, chained and glued together. 8171 for (auto &Reg : RegsToPass) { 8172 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 8173 Glue = Chain.getValue(1); 8174 } 8175 8176 // Validate that none of the argument registers have been marked as 8177 // reserved, if so report an error. Do the same for the return address if this 8178 // is not a tailcall. 8179 validateCCReservedRegs(RegsToPass, MF); 8180 if (!IsTailCall && 8181 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 8182 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8183 MF.getFunction(), 8184 "Return address register required, but has been reserved."}); 8185 8186 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 8187 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 8188 // split it and then direct call can be matched by PseudoCALL. 8189 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 8190 const GlobalValue *GV = S->getGlobal(); 8191 8192 unsigned OpFlags = RISCVII::MO_CALL; 8193 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 8194 OpFlags = RISCVII::MO_PLT; 8195 8196 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 8197 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 8198 unsigned OpFlags = RISCVII::MO_CALL; 8199 8200 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 8201 nullptr)) 8202 OpFlags = RISCVII::MO_PLT; 8203 8204 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 8205 } 8206 8207 // The first call operand is the chain and the second is the target address. 8208 SmallVector<SDValue, 8> Ops; 8209 Ops.push_back(Chain); 8210 Ops.push_back(Callee); 8211 8212 // Add argument registers to the end of the list so that they are 8213 // known live into the call. 8214 for (auto &Reg : RegsToPass) 8215 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 8216 8217 if (!IsTailCall) { 8218 // Add a register mask operand representing the call-preserved registers. 8219 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8220 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 8221 assert(Mask && "Missing call preserved mask for calling convention"); 8222 Ops.push_back(DAG.getRegisterMask(Mask)); 8223 } 8224 8225 // Glue the call to the argument copies, if any. 8226 if (Glue.getNode()) 8227 Ops.push_back(Glue); 8228 8229 // Emit the call. 8230 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8231 8232 if (IsTailCall) { 8233 MF.getFrameInfo().setHasTailCall(); 8234 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 8235 } 8236 8237 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 8238 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 8239 Glue = Chain.getValue(1); 8240 8241 // Mark the end of the call, which is glued to the call itself. 8242 Chain = DAG.getCALLSEQ_END(Chain, 8243 DAG.getConstant(NumBytes, DL, PtrVT, true), 8244 DAG.getConstant(0, DL, PtrVT, true), 8245 Glue, DL); 8246 Glue = Chain.getValue(1); 8247 8248 // Assign locations to each value returned by this call. 8249 SmallVector<CCValAssign, 16> RVLocs; 8250 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 8251 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 8252 8253 // Copy all of the result registers out of their specified physreg. 8254 for (auto &VA : RVLocs) { 8255 // Copy the value out 8256 SDValue RetValue = 8257 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 8258 // Glue the RetValue to the end of the call sequence 8259 Chain = RetValue.getValue(1); 8260 Glue = RetValue.getValue(2); 8261 8262 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8263 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 8264 SDValue RetValue2 = 8265 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 8266 Chain = RetValue2.getValue(1); 8267 Glue = RetValue2.getValue(2); 8268 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 8269 RetValue2); 8270 } 8271 8272 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 8273 8274 InVals.push_back(RetValue); 8275 } 8276 8277 return Chain; 8278 } 8279 8280 bool RISCVTargetLowering::CanLowerReturn( 8281 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 8282 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 8283 SmallVector<CCValAssign, 16> RVLocs; 8284 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 8285 8286 Optional<unsigned> FirstMaskArgument; 8287 if (Subtarget.hasStdExtV()) 8288 FirstMaskArgument = preAssignMask(Outs); 8289 8290 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 8291 MVT VT = Outs[i].VT; 8292 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 8293 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 8294 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 8295 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 8296 *this, FirstMaskArgument)) 8297 return false; 8298 } 8299 return true; 8300 } 8301 8302 SDValue 8303 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 8304 bool IsVarArg, 8305 const SmallVectorImpl<ISD::OutputArg> &Outs, 8306 const SmallVectorImpl<SDValue> &OutVals, 8307 const SDLoc &DL, SelectionDAG &DAG) const { 8308 const MachineFunction &MF = DAG.getMachineFunction(); 8309 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8310 8311 // Stores the assignment of the return value to a location. 8312 SmallVector<CCValAssign, 16> RVLocs; 8313 8314 // Info about the registers and stack slot. 8315 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 8316 *DAG.getContext()); 8317 8318 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 8319 nullptr, CC_RISCV); 8320 8321 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 8322 report_fatal_error("GHC functions return void only"); 8323 8324 SDValue Glue; 8325 SmallVector<SDValue, 4> RetOps(1, Chain); 8326 8327 // Copy the result values into the output registers. 8328 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 8329 SDValue Val = OutVals[i]; 8330 CCValAssign &VA = RVLocs[i]; 8331 assert(VA.isRegLoc() && "Can only return in registers!"); 8332 8333 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 8334 // Handle returning f64 on RV32D with a soft float ABI. 8335 assert(VA.isRegLoc() && "Expected return via registers"); 8336 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 8337 DAG.getVTList(MVT::i32, MVT::i32), Val); 8338 SDValue Lo = SplitF64.getValue(0); 8339 SDValue Hi = SplitF64.getValue(1); 8340 Register RegLo = VA.getLocReg(); 8341 assert(RegLo < RISCV::X31 && "Invalid register pair"); 8342 Register RegHi = RegLo + 1; 8343 8344 if (STI.isRegisterReservedByUser(RegLo) || 8345 STI.isRegisterReservedByUser(RegHi)) 8346 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8347 MF.getFunction(), 8348 "Return value register required, but has been reserved."}); 8349 8350 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 8351 Glue = Chain.getValue(1); 8352 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 8353 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 8354 Glue = Chain.getValue(1); 8355 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 8356 } else { 8357 // Handle a 'normal' return. 8358 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 8359 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 8360 8361 if (STI.isRegisterReservedByUser(VA.getLocReg())) 8362 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 8363 MF.getFunction(), 8364 "Return value register required, but has been reserved."}); 8365 8366 // Guarantee that all emitted copies are stuck together. 8367 Glue = Chain.getValue(1); 8368 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 8369 } 8370 } 8371 8372 RetOps[0] = Chain; // Update chain. 8373 8374 // Add the glue node if we have it. 8375 if (Glue.getNode()) { 8376 RetOps.push_back(Glue); 8377 } 8378 8379 unsigned RetOpc = RISCVISD::RET_FLAG; 8380 // Interrupt service routines use different return instructions. 8381 const Function &Func = DAG.getMachineFunction().getFunction(); 8382 if (Func.hasFnAttribute("interrupt")) { 8383 if (!Func.getReturnType()->isVoidTy()) 8384 report_fatal_error( 8385 "Functions with the interrupt attribute must have void return type!"); 8386 8387 MachineFunction &MF = DAG.getMachineFunction(); 8388 StringRef Kind = 8389 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 8390 8391 if (Kind == "user") 8392 RetOpc = RISCVISD::URET_FLAG; 8393 else if (Kind == "supervisor") 8394 RetOpc = RISCVISD::SRET_FLAG; 8395 else 8396 RetOpc = RISCVISD::MRET_FLAG; 8397 } 8398 8399 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 8400 } 8401 8402 void RISCVTargetLowering::validateCCReservedRegs( 8403 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 8404 MachineFunction &MF) const { 8405 const Function &F = MF.getFunction(); 8406 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 8407 8408 if (llvm::any_of(Regs, [&STI](auto Reg) { 8409 return STI.isRegisterReservedByUser(Reg.first); 8410 })) 8411 F.getContext().diagnose(DiagnosticInfoUnsupported{ 8412 F, "Argument register required, but has been reserved."}); 8413 } 8414 8415 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 8416 return CI->isTailCall(); 8417 } 8418 8419 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 8420 #define NODE_NAME_CASE(NODE) \ 8421 case RISCVISD::NODE: \ 8422 return "RISCVISD::" #NODE; 8423 // clang-format off 8424 switch ((RISCVISD::NodeType)Opcode) { 8425 case RISCVISD::FIRST_NUMBER: 8426 break; 8427 NODE_NAME_CASE(RET_FLAG) 8428 NODE_NAME_CASE(URET_FLAG) 8429 NODE_NAME_CASE(SRET_FLAG) 8430 NODE_NAME_CASE(MRET_FLAG) 8431 NODE_NAME_CASE(CALL) 8432 NODE_NAME_CASE(SELECT_CC) 8433 NODE_NAME_CASE(BR_CC) 8434 NODE_NAME_CASE(BuildPairF64) 8435 NODE_NAME_CASE(SplitF64) 8436 NODE_NAME_CASE(TAIL) 8437 NODE_NAME_CASE(MULHSU) 8438 NODE_NAME_CASE(SLLW) 8439 NODE_NAME_CASE(SRAW) 8440 NODE_NAME_CASE(SRLW) 8441 NODE_NAME_CASE(DIVW) 8442 NODE_NAME_CASE(DIVUW) 8443 NODE_NAME_CASE(REMUW) 8444 NODE_NAME_CASE(ROLW) 8445 NODE_NAME_CASE(RORW) 8446 NODE_NAME_CASE(CLZW) 8447 NODE_NAME_CASE(CTZW) 8448 NODE_NAME_CASE(FSLW) 8449 NODE_NAME_CASE(FSRW) 8450 NODE_NAME_CASE(FSL) 8451 NODE_NAME_CASE(FSR) 8452 NODE_NAME_CASE(FMV_H_X) 8453 NODE_NAME_CASE(FMV_X_ANYEXTH) 8454 NODE_NAME_CASE(FMV_W_X_RV64) 8455 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 8456 NODE_NAME_CASE(FCVT_X_RTZ) 8457 NODE_NAME_CASE(FCVT_XU_RTZ) 8458 NODE_NAME_CASE(FCVT_W_RTZ_RV64) 8459 NODE_NAME_CASE(FCVT_WU_RTZ_RV64) 8460 NODE_NAME_CASE(READ_CYCLE_WIDE) 8461 NODE_NAME_CASE(GREV) 8462 NODE_NAME_CASE(GREVW) 8463 NODE_NAME_CASE(GORC) 8464 NODE_NAME_CASE(GORCW) 8465 NODE_NAME_CASE(SHFL) 8466 NODE_NAME_CASE(SHFLW) 8467 NODE_NAME_CASE(UNSHFL) 8468 NODE_NAME_CASE(UNSHFLW) 8469 NODE_NAME_CASE(BCOMPRESS) 8470 NODE_NAME_CASE(BCOMPRESSW) 8471 NODE_NAME_CASE(BDECOMPRESS) 8472 NODE_NAME_CASE(BDECOMPRESSW) 8473 NODE_NAME_CASE(VMV_V_X_VL) 8474 NODE_NAME_CASE(VFMV_V_F_VL) 8475 NODE_NAME_CASE(VMV_X_S) 8476 NODE_NAME_CASE(VMV_S_X_VL) 8477 NODE_NAME_CASE(VFMV_S_F_VL) 8478 NODE_NAME_CASE(SPLAT_VECTOR_I64) 8479 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 8480 NODE_NAME_CASE(READ_VLENB) 8481 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 8482 NODE_NAME_CASE(VSLIDEUP_VL) 8483 NODE_NAME_CASE(VSLIDE1UP_VL) 8484 NODE_NAME_CASE(VSLIDEDOWN_VL) 8485 NODE_NAME_CASE(VSLIDE1DOWN_VL) 8486 NODE_NAME_CASE(VID_VL) 8487 NODE_NAME_CASE(VFNCVT_ROD_VL) 8488 NODE_NAME_CASE(VECREDUCE_ADD_VL) 8489 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 8490 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 8491 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 8492 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 8493 NODE_NAME_CASE(VECREDUCE_AND_VL) 8494 NODE_NAME_CASE(VECREDUCE_OR_VL) 8495 NODE_NAME_CASE(VECREDUCE_XOR_VL) 8496 NODE_NAME_CASE(VECREDUCE_FADD_VL) 8497 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 8498 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 8499 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 8500 NODE_NAME_CASE(ADD_VL) 8501 NODE_NAME_CASE(AND_VL) 8502 NODE_NAME_CASE(MUL_VL) 8503 NODE_NAME_CASE(OR_VL) 8504 NODE_NAME_CASE(SDIV_VL) 8505 NODE_NAME_CASE(SHL_VL) 8506 NODE_NAME_CASE(SREM_VL) 8507 NODE_NAME_CASE(SRA_VL) 8508 NODE_NAME_CASE(SRL_VL) 8509 NODE_NAME_CASE(SUB_VL) 8510 NODE_NAME_CASE(UDIV_VL) 8511 NODE_NAME_CASE(UREM_VL) 8512 NODE_NAME_CASE(XOR_VL) 8513 NODE_NAME_CASE(SADDSAT_VL) 8514 NODE_NAME_CASE(UADDSAT_VL) 8515 NODE_NAME_CASE(SSUBSAT_VL) 8516 NODE_NAME_CASE(USUBSAT_VL) 8517 NODE_NAME_CASE(FADD_VL) 8518 NODE_NAME_CASE(FSUB_VL) 8519 NODE_NAME_CASE(FMUL_VL) 8520 NODE_NAME_CASE(FDIV_VL) 8521 NODE_NAME_CASE(FNEG_VL) 8522 NODE_NAME_CASE(FABS_VL) 8523 NODE_NAME_CASE(FSQRT_VL) 8524 NODE_NAME_CASE(FMA_VL) 8525 NODE_NAME_CASE(FCOPYSIGN_VL) 8526 NODE_NAME_CASE(SMIN_VL) 8527 NODE_NAME_CASE(SMAX_VL) 8528 NODE_NAME_CASE(UMIN_VL) 8529 NODE_NAME_CASE(UMAX_VL) 8530 NODE_NAME_CASE(FMINNUM_VL) 8531 NODE_NAME_CASE(FMAXNUM_VL) 8532 NODE_NAME_CASE(MULHS_VL) 8533 NODE_NAME_CASE(MULHU_VL) 8534 NODE_NAME_CASE(FP_TO_SINT_VL) 8535 NODE_NAME_CASE(FP_TO_UINT_VL) 8536 NODE_NAME_CASE(SINT_TO_FP_VL) 8537 NODE_NAME_CASE(UINT_TO_FP_VL) 8538 NODE_NAME_CASE(FP_EXTEND_VL) 8539 NODE_NAME_CASE(FP_ROUND_VL) 8540 NODE_NAME_CASE(VWMUL_VL) 8541 NODE_NAME_CASE(VWMULU_VL) 8542 NODE_NAME_CASE(SETCC_VL) 8543 NODE_NAME_CASE(VSELECT_VL) 8544 NODE_NAME_CASE(VMAND_VL) 8545 NODE_NAME_CASE(VMOR_VL) 8546 NODE_NAME_CASE(VMXOR_VL) 8547 NODE_NAME_CASE(VMCLR_VL) 8548 NODE_NAME_CASE(VMSET_VL) 8549 NODE_NAME_CASE(VRGATHER_VX_VL) 8550 NODE_NAME_CASE(VRGATHER_VV_VL) 8551 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8552 NODE_NAME_CASE(VSEXT_VL) 8553 NODE_NAME_CASE(VZEXT_VL) 8554 NODE_NAME_CASE(VPOPC_VL) 8555 NODE_NAME_CASE(VLE_VL) 8556 NODE_NAME_CASE(VSE_VL) 8557 NODE_NAME_CASE(READ_CSR) 8558 NODE_NAME_CASE(WRITE_CSR) 8559 NODE_NAME_CASE(SWAP_CSR) 8560 } 8561 // clang-format on 8562 return nullptr; 8563 #undef NODE_NAME_CASE 8564 } 8565 8566 /// getConstraintType - Given a constraint letter, return the type of 8567 /// constraint it is for this target. 8568 RISCVTargetLowering::ConstraintType 8569 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8570 if (Constraint.size() == 1) { 8571 switch (Constraint[0]) { 8572 default: 8573 break; 8574 case 'f': 8575 return C_RegisterClass; 8576 case 'I': 8577 case 'J': 8578 case 'K': 8579 return C_Immediate; 8580 case 'A': 8581 return C_Memory; 8582 case 'S': // A symbolic address 8583 return C_Other; 8584 } 8585 } else { 8586 if (Constraint == "vr" || Constraint == "vm") 8587 return C_RegisterClass; 8588 } 8589 return TargetLowering::getConstraintType(Constraint); 8590 } 8591 8592 std::pair<unsigned, const TargetRegisterClass *> 8593 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8594 StringRef Constraint, 8595 MVT VT) const { 8596 // First, see if this is a constraint that directly corresponds to a 8597 // RISCV register class. 8598 if (Constraint.size() == 1) { 8599 switch (Constraint[0]) { 8600 case 'r': 8601 return std::make_pair(0U, &RISCV::GPRRegClass); 8602 case 'f': 8603 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8604 return std::make_pair(0U, &RISCV::FPR16RegClass); 8605 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8606 return std::make_pair(0U, &RISCV::FPR32RegClass); 8607 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8608 return std::make_pair(0U, &RISCV::FPR64RegClass); 8609 break; 8610 default: 8611 break; 8612 } 8613 } else { 8614 if (Constraint == "vr") { 8615 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 8616 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8617 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8618 return std::make_pair(0U, RC); 8619 } 8620 } else if (Constraint == "vm") { 8621 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8622 return std::make_pair(0U, &RISCV::VMRegClass); 8623 } 8624 } 8625 8626 // Clang will correctly decode the usage of register name aliases into their 8627 // official names. However, other frontends like `rustc` do not. This allows 8628 // users of these frontends to use the ABI names for registers in LLVM-style 8629 // register constraints. 8630 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8631 .Case("{zero}", RISCV::X0) 8632 .Case("{ra}", RISCV::X1) 8633 .Case("{sp}", RISCV::X2) 8634 .Case("{gp}", RISCV::X3) 8635 .Case("{tp}", RISCV::X4) 8636 .Case("{t0}", RISCV::X5) 8637 .Case("{t1}", RISCV::X6) 8638 .Case("{t2}", RISCV::X7) 8639 .Cases("{s0}", "{fp}", RISCV::X8) 8640 .Case("{s1}", RISCV::X9) 8641 .Case("{a0}", RISCV::X10) 8642 .Case("{a1}", RISCV::X11) 8643 .Case("{a2}", RISCV::X12) 8644 .Case("{a3}", RISCV::X13) 8645 .Case("{a4}", RISCV::X14) 8646 .Case("{a5}", RISCV::X15) 8647 .Case("{a6}", RISCV::X16) 8648 .Case("{a7}", RISCV::X17) 8649 .Case("{s2}", RISCV::X18) 8650 .Case("{s3}", RISCV::X19) 8651 .Case("{s4}", RISCV::X20) 8652 .Case("{s5}", RISCV::X21) 8653 .Case("{s6}", RISCV::X22) 8654 .Case("{s7}", RISCV::X23) 8655 .Case("{s8}", RISCV::X24) 8656 .Case("{s9}", RISCV::X25) 8657 .Case("{s10}", RISCV::X26) 8658 .Case("{s11}", RISCV::X27) 8659 .Case("{t3}", RISCV::X28) 8660 .Case("{t4}", RISCV::X29) 8661 .Case("{t5}", RISCV::X30) 8662 .Case("{t6}", RISCV::X31) 8663 .Default(RISCV::NoRegister); 8664 if (XRegFromAlias != RISCV::NoRegister) 8665 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8666 8667 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8668 // TableGen record rather than the AsmName to choose registers for InlineAsm 8669 // constraints, plus we want to match those names to the widest floating point 8670 // register type available, manually select floating point registers here. 8671 // 8672 // The second case is the ABI name of the register, so that frontends can also 8673 // use the ABI names in register constraint lists. 8674 if (Subtarget.hasStdExtF()) { 8675 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8676 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8677 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8678 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8679 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8680 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8681 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8682 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8683 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8684 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8685 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8686 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8687 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8688 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8689 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8690 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8691 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8692 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8693 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8694 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8695 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8696 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8697 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8698 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8699 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8700 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8701 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8702 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8703 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8704 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8705 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8706 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8707 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8708 .Default(RISCV::NoRegister); 8709 if (FReg != RISCV::NoRegister) { 8710 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8711 if (Subtarget.hasStdExtD()) { 8712 unsigned RegNo = FReg - RISCV::F0_F; 8713 unsigned DReg = RISCV::F0_D + RegNo; 8714 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8715 } 8716 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8717 } 8718 } 8719 8720 if (Subtarget.hasStdExtV()) { 8721 Register VReg = StringSwitch<Register>(Constraint.lower()) 8722 .Case("{v0}", RISCV::V0) 8723 .Case("{v1}", RISCV::V1) 8724 .Case("{v2}", RISCV::V2) 8725 .Case("{v3}", RISCV::V3) 8726 .Case("{v4}", RISCV::V4) 8727 .Case("{v5}", RISCV::V5) 8728 .Case("{v6}", RISCV::V6) 8729 .Case("{v7}", RISCV::V7) 8730 .Case("{v8}", RISCV::V8) 8731 .Case("{v9}", RISCV::V9) 8732 .Case("{v10}", RISCV::V10) 8733 .Case("{v11}", RISCV::V11) 8734 .Case("{v12}", RISCV::V12) 8735 .Case("{v13}", RISCV::V13) 8736 .Case("{v14}", RISCV::V14) 8737 .Case("{v15}", RISCV::V15) 8738 .Case("{v16}", RISCV::V16) 8739 .Case("{v17}", RISCV::V17) 8740 .Case("{v18}", RISCV::V18) 8741 .Case("{v19}", RISCV::V19) 8742 .Case("{v20}", RISCV::V20) 8743 .Case("{v21}", RISCV::V21) 8744 .Case("{v22}", RISCV::V22) 8745 .Case("{v23}", RISCV::V23) 8746 .Case("{v24}", RISCV::V24) 8747 .Case("{v25}", RISCV::V25) 8748 .Case("{v26}", RISCV::V26) 8749 .Case("{v27}", RISCV::V27) 8750 .Case("{v28}", RISCV::V28) 8751 .Case("{v29}", RISCV::V29) 8752 .Case("{v30}", RISCV::V30) 8753 .Case("{v31}", RISCV::V31) 8754 .Default(RISCV::NoRegister); 8755 if (VReg != RISCV::NoRegister) { 8756 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8757 return std::make_pair(VReg, &RISCV::VMRegClass); 8758 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8759 return std::make_pair(VReg, &RISCV::VRRegClass); 8760 for (const auto *RC : 8761 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8762 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8763 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8764 return std::make_pair(VReg, RC); 8765 } 8766 } 8767 } 8768 } 8769 8770 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8771 } 8772 8773 unsigned 8774 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8775 // Currently only support length 1 constraints. 8776 if (ConstraintCode.size() == 1) { 8777 switch (ConstraintCode[0]) { 8778 case 'A': 8779 return InlineAsm::Constraint_A; 8780 default: 8781 break; 8782 } 8783 } 8784 8785 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8786 } 8787 8788 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8789 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8790 SelectionDAG &DAG) const { 8791 // Currently only support length 1 constraints. 8792 if (Constraint.length() == 1) { 8793 switch (Constraint[0]) { 8794 case 'I': 8795 // Validate & create a 12-bit signed immediate operand. 8796 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8797 uint64_t CVal = C->getSExtValue(); 8798 if (isInt<12>(CVal)) 8799 Ops.push_back( 8800 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8801 } 8802 return; 8803 case 'J': 8804 // Validate & create an integer zero operand. 8805 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8806 if (C->getZExtValue() == 0) 8807 Ops.push_back( 8808 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8809 return; 8810 case 'K': 8811 // Validate & create a 5-bit unsigned immediate operand. 8812 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8813 uint64_t CVal = C->getZExtValue(); 8814 if (isUInt<5>(CVal)) 8815 Ops.push_back( 8816 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8817 } 8818 return; 8819 case 'S': 8820 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8821 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 8822 GA->getValueType(0))); 8823 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 8824 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 8825 BA->getValueType(0))); 8826 } 8827 return; 8828 default: 8829 break; 8830 } 8831 } 8832 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8833 } 8834 8835 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 8836 Instruction *Inst, 8837 AtomicOrdering Ord) const { 8838 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8839 return Builder.CreateFence(Ord); 8840 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8841 return Builder.CreateFence(AtomicOrdering::Release); 8842 return nullptr; 8843 } 8844 8845 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 8846 Instruction *Inst, 8847 AtomicOrdering Ord) const { 8848 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8849 return Builder.CreateFence(AtomicOrdering::Acquire); 8850 return nullptr; 8851 } 8852 8853 TargetLowering::AtomicExpansionKind 8854 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8855 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8856 // point operations can't be used in an lr/sc sequence without breaking the 8857 // forward-progress guarantee. 8858 if (AI->isFloatingPointOperation()) 8859 return AtomicExpansionKind::CmpXChg; 8860 8861 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8862 if (Size == 8 || Size == 16) 8863 return AtomicExpansionKind::MaskedIntrinsic; 8864 return AtomicExpansionKind::None; 8865 } 8866 8867 static Intrinsic::ID 8868 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8869 if (XLen == 32) { 8870 switch (BinOp) { 8871 default: 8872 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8873 case AtomicRMWInst::Xchg: 8874 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8875 case AtomicRMWInst::Add: 8876 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8877 case AtomicRMWInst::Sub: 8878 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8879 case AtomicRMWInst::Nand: 8880 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8881 case AtomicRMWInst::Max: 8882 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8883 case AtomicRMWInst::Min: 8884 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8885 case AtomicRMWInst::UMax: 8886 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8887 case AtomicRMWInst::UMin: 8888 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8889 } 8890 } 8891 8892 if (XLen == 64) { 8893 switch (BinOp) { 8894 default: 8895 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8896 case AtomicRMWInst::Xchg: 8897 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8898 case AtomicRMWInst::Add: 8899 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8900 case AtomicRMWInst::Sub: 8901 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8902 case AtomicRMWInst::Nand: 8903 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8904 case AtomicRMWInst::Max: 8905 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8906 case AtomicRMWInst::Min: 8907 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8908 case AtomicRMWInst::UMax: 8909 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8910 case AtomicRMWInst::UMin: 8911 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8912 } 8913 } 8914 8915 llvm_unreachable("Unexpected XLen\n"); 8916 } 8917 8918 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8919 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8920 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8921 unsigned XLen = Subtarget.getXLen(); 8922 Value *Ordering = 8923 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8924 Type *Tys[] = {AlignedAddr->getType()}; 8925 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8926 AI->getModule(), 8927 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8928 8929 if (XLen == 64) { 8930 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8931 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8932 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8933 } 8934 8935 Value *Result; 8936 8937 // Must pass the shift amount needed to sign extend the loaded value prior 8938 // to performing a signed comparison for min/max. ShiftAmt is the number of 8939 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8940 // is the number of bits to left+right shift the value in order to 8941 // sign-extend. 8942 if (AI->getOperation() == AtomicRMWInst::Min || 8943 AI->getOperation() == AtomicRMWInst::Max) { 8944 const DataLayout &DL = AI->getModule()->getDataLayout(); 8945 unsigned ValWidth = 8946 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8947 Value *SextShamt = 8948 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8949 Result = Builder.CreateCall(LrwOpScwLoop, 8950 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8951 } else { 8952 Result = 8953 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8954 } 8955 8956 if (XLen == 64) 8957 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8958 return Result; 8959 } 8960 8961 TargetLowering::AtomicExpansionKind 8962 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8963 AtomicCmpXchgInst *CI) const { 8964 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8965 if (Size == 8 || Size == 16) 8966 return AtomicExpansionKind::MaskedIntrinsic; 8967 return AtomicExpansionKind::None; 8968 } 8969 8970 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8971 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8972 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8973 unsigned XLen = Subtarget.getXLen(); 8974 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8975 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8976 if (XLen == 64) { 8977 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8978 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8979 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8980 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8981 } 8982 Type *Tys[] = {AlignedAddr->getType()}; 8983 Function *MaskedCmpXchg = 8984 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8985 Value *Result = Builder.CreateCall( 8986 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8987 if (XLen == 64) 8988 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8989 return Result; 8990 } 8991 8992 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8993 return false; 8994 } 8995 8996 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8997 EVT VT) const { 8998 VT = VT.getScalarType(); 8999 9000 if (!VT.isSimple()) 9001 return false; 9002 9003 switch (VT.getSimpleVT().SimpleTy) { 9004 case MVT::f16: 9005 return Subtarget.hasStdExtZfh(); 9006 case MVT::f32: 9007 return Subtarget.hasStdExtF(); 9008 case MVT::f64: 9009 return Subtarget.hasStdExtD(); 9010 default: 9011 break; 9012 } 9013 9014 return false; 9015 } 9016 9017 Register RISCVTargetLowering::getExceptionPointerRegister( 9018 const Constant *PersonalityFn) const { 9019 return RISCV::X10; 9020 } 9021 9022 Register RISCVTargetLowering::getExceptionSelectorRegister( 9023 const Constant *PersonalityFn) const { 9024 return RISCV::X11; 9025 } 9026 9027 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 9028 // Return false to suppress the unnecessary extensions if the LibCall 9029 // arguments or return value is f32 type for LP64 ABI. 9030 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 9031 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 9032 return false; 9033 9034 return true; 9035 } 9036 9037 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 9038 if (Subtarget.is64Bit() && Type == MVT::i32) 9039 return true; 9040 9041 return IsSigned; 9042 } 9043 9044 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 9045 SDValue C) const { 9046 // Check integral scalar types. 9047 if (VT.isScalarInteger()) { 9048 // Omit the optimization if the sub target has the M extension and the data 9049 // size exceeds XLen. 9050 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 9051 return false; 9052 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 9053 // Break the MUL to a SLLI and an ADD/SUB. 9054 const APInt &Imm = ConstNode->getAPIntValue(); 9055 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 9056 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 9057 return true; 9058 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 9059 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 9060 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 9061 (Imm - 8).isPowerOf2())) 9062 return true; 9063 // Omit the following optimization if the sub target has the M extension 9064 // and the data size >= XLen. 9065 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 9066 return false; 9067 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 9068 // a pair of LUI/ADDI. 9069 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 9070 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 9071 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 9072 (1 - ImmS).isPowerOf2()) 9073 return true; 9074 } 9075 } 9076 } 9077 9078 return false; 9079 } 9080 9081 bool RISCVTargetLowering::isMulAddWithConstProfitable( 9082 const SDValue &AddNode, const SDValue &ConstNode) const { 9083 // Let the DAGCombiner decide for vectors. 9084 EVT VT = AddNode.getValueType(); 9085 if (VT.isVector()) 9086 return true; 9087 9088 // Let the DAGCombiner decide for larger types. 9089 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 9090 return true; 9091 9092 // It is worse if c1 is simm12 while c1*c2 is not. 9093 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 9094 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 9095 const APInt &C1 = C1Node->getAPIntValue(); 9096 const APInt &C2 = C2Node->getAPIntValue(); 9097 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 9098 return false; 9099 9100 // Default to true and let the DAGCombiner decide. 9101 return true; 9102 } 9103 9104 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 9105 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 9106 bool *Fast) const { 9107 if (!VT.isVector()) 9108 return false; 9109 9110 EVT ElemVT = VT.getVectorElementType(); 9111 if (Alignment >= ElemVT.getStoreSize()) { 9112 if (Fast) 9113 *Fast = true; 9114 return true; 9115 } 9116 9117 return false; 9118 } 9119 9120 bool RISCVTargetLowering::splitValueIntoRegisterParts( 9121 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 9122 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 9123 bool IsABIRegCopy = CC.hasValue(); 9124 EVT ValueVT = Val.getValueType(); 9125 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9126 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 9127 // and cast to f32. 9128 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 9129 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 9130 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 9131 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 9132 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 9133 Parts[0] = Val; 9134 return true; 9135 } 9136 9137 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9138 LLVMContext &Context = *DAG.getContext(); 9139 EVT ValueEltVT = ValueVT.getVectorElementType(); 9140 EVT PartEltVT = PartVT.getVectorElementType(); 9141 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9142 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9143 if (PartVTBitSize % ValueVTBitSize == 0) { 9144 // If the element types are different, bitcast to the same element type of 9145 // PartVT first. 9146 if (ValueEltVT != PartEltVT) { 9147 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9148 assert(Count != 0 && "The number of element should not be zero."); 9149 EVT SameEltTypeVT = 9150 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9151 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 9152 } 9153 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 9154 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9155 Parts[0] = Val; 9156 return true; 9157 } 9158 } 9159 return false; 9160 } 9161 9162 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 9163 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 9164 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 9165 bool IsABIRegCopy = CC.hasValue(); 9166 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 9167 SDValue Val = Parts[0]; 9168 9169 // Cast the f32 to i32, truncate to i16, and cast back to f16. 9170 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 9171 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 9172 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 9173 return Val; 9174 } 9175 9176 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 9177 LLVMContext &Context = *DAG.getContext(); 9178 SDValue Val = Parts[0]; 9179 EVT ValueEltVT = ValueVT.getVectorElementType(); 9180 EVT PartEltVT = PartVT.getVectorElementType(); 9181 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 9182 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 9183 if (PartVTBitSize % ValueVTBitSize == 0) { 9184 EVT SameEltTypeVT = ValueVT; 9185 // If the element types are different, convert it to the same element type 9186 // of PartVT. 9187 if (ValueEltVT != PartEltVT) { 9188 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 9189 assert(Count != 0 && "The number of element should not be zero."); 9190 SameEltTypeVT = 9191 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 9192 } 9193 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 9194 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 9195 if (ValueEltVT != PartEltVT) 9196 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 9197 return Val; 9198 } 9199 } 9200 return SDValue(); 9201 } 9202 9203 #define GET_REGISTER_MATCHER 9204 #include "RISCVGenAsmMatcher.inc" 9205 9206 Register 9207 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 9208 const MachineFunction &MF) const { 9209 Register Reg = MatchRegisterAltName(RegName); 9210 if (Reg == RISCV::NoRegister) 9211 Reg = MatchRegisterName(RegName); 9212 if (Reg == RISCV::NoRegister) 9213 report_fatal_error( 9214 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 9215 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 9216 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 9217 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 9218 StringRef(RegName) + "\".")); 9219 return Reg; 9220 } 9221 9222 namespace llvm { 9223 namespace RISCVVIntrinsicsTable { 9224 9225 #define GET_RISCVVIntrinsicsTable_IMPL 9226 #include "RISCVGenSearchableTables.inc" 9227 9228 } // namespace RISCVVIntrinsicsTable 9229 9230 } // namespace llvm 9231