1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "riscv-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
47 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
48                                          const RISCVSubtarget &STI)
49     : TargetLowering(TM), Subtarget(STI) {
50 
51   if (Subtarget.isRV32E())
52     report_fatal_error("Codegen not yet implemented for RV32E");
53 
54   RISCVABI::ABI ABI = Subtarget.getTargetABI();
55   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
56 
57   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
58       !Subtarget.hasStdExtF()) {
59     errs() << "Hard-float 'f' ABI can't be used for a target that "
60                 "doesn't support the F instruction set extension (ignoring "
61                           "target-abi)\n";
62     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
63   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
64              !Subtarget.hasStdExtD()) {
65     errs() << "Hard-float 'd' ABI can't be used for a target that "
66               "doesn't support the D instruction set extension (ignoring "
67               "target-abi)\n";
68     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
69   }
70 
71   switch (ABI) {
72   default:
73     report_fatal_error("Don't know how to lower this ABI");
74   case RISCVABI::ABI_ILP32:
75   case RISCVABI::ABI_ILP32F:
76   case RISCVABI::ABI_ILP32D:
77   case RISCVABI::ABI_LP64:
78   case RISCVABI::ABI_LP64F:
79   case RISCVABI::ABI_LP64D:
80     break;
81   }
82 
83   MVT XLenVT = Subtarget.getXLenVT();
84 
85   // Set up the register classes.
86   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
87 
88   if (Subtarget.hasStdExtZfh())
89     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
90   if (Subtarget.hasStdExtF())
91     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
92   if (Subtarget.hasStdExtD())
93     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
94 
95   static const MVT::SimpleValueType BoolVecVTs[] = {
96       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
97       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
98   static const MVT::SimpleValueType IntVecVTs[] = {
99       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
100       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
101       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
102       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
103       MVT::nxv4i64, MVT::nxv8i64};
104   static const MVT::SimpleValueType F16VecVTs[] = {
105       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
106       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
107   static const MVT::SimpleValueType F32VecVTs[] = {
108       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
109   static const MVT::SimpleValueType F64VecVTs[] = {
110       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
111 
112   if (Subtarget.hasVInstructions()) {
113     auto addRegClassForRVV = [this](MVT VT) {
114       unsigned Size = VT.getSizeInBits().getKnownMinValue();
115       assert(Size <= 512 && isPowerOf2_32(Size));
116       const TargetRegisterClass *RC;
117       if (Size <= 64)
118         RC = &RISCV::VRRegClass;
119       else if (Size == 128)
120         RC = &RISCV::VRM2RegClass;
121       else if (Size == 256)
122         RC = &RISCV::VRM4RegClass;
123       else
124         RC = &RISCV::VRM8RegClass;
125 
126       addRegisterClass(VT, RC);
127     };
128 
129     for (MVT VT : BoolVecVTs)
130       addRegClassForRVV(VT);
131     for (MVT VT : IntVecVTs) {
132       if (VT.getVectorElementType() == MVT::i64 &&
133           !Subtarget.hasVInstructionsI64())
134         continue;
135       addRegClassForRVV(VT);
136     }
137 
138     if (Subtarget.hasVInstructionsF16())
139       for (MVT VT : F16VecVTs)
140         addRegClassForRVV(VT);
141 
142     if (Subtarget.hasVInstructionsF32())
143       for (MVT VT : F32VecVTs)
144         addRegClassForRVV(VT);
145 
146     if (Subtarget.hasVInstructionsF64())
147       for (MVT VT : F64VecVTs)
148         addRegClassForRVV(VT);
149 
150     if (Subtarget.useRVVForFixedLengthVectors()) {
151       auto addRegClassForFixedVectors = [this](MVT VT) {
152         MVT ContainerVT = getContainerForFixedLengthVector(VT);
153         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
154         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
155         addRegisterClass(VT, TRI.getRegClass(RCID));
156       };
157       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
158         if (useRVVForFixedLengthVectorVT(VT))
159           addRegClassForFixedVectors(VT);
160 
161       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
162         if (useRVVForFixedLengthVectorVT(VT))
163           addRegClassForFixedVectors(VT);
164     }
165   }
166 
167   // Compute derived properties from the register classes.
168   computeRegisterProperties(STI.getRegisterInfo());
169 
170   setStackPointerRegisterToSaveRestore(RISCV::X2);
171 
172   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
173     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
174 
175   // TODO: add all necessary setOperationAction calls.
176   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
177 
178   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
179   setOperationAction(ISD::BR_CC, XLenVT, Expand);
180   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
181   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
182 
183   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
184   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
185 
186   setOperationAction(ISD::VASTART, MVT::Other, Custom);
187   setOperationAction(ISD::VAARG, MVT::Other, Expand);
188   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
189   setOperationAction(ISD::VAEND, MVT::Other, Expand);
190 
191   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
192   if (!Subtarget.hasStdExtZbb()) {
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
195   }
196 
197   if (Subtarget.is64Bit()) {
198     setOperationAction(ISD::ADD, MVT::i32, Custom);
199     setOperationAction(ISD::SUB, MVT::i32, Custom);
200     setOperationAction(ISD::SHL, MVT::i32, Custom);
201     setOperationAction(ISD::SRA, MVT::i32, Custom);
202     setOperationAction(ISD::SRL, MVT::i32, Custom);
203 
204     setOperationAction(ISD::UADDO, MVT::i32, Custom);
205     setOperationAction(ISD::USUBO, MVT::i32, Custom);
206     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
207     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
208   } else {
209     setLibcallName(RTLIB::SHL_I128, nullptr);
210     setLibcallName(RTLIB::SRL_I128, nullptr);
211     setLibcallName(RTLIB::SRA_I128, nullptr);
212     setLibcallName(RTLIB::MUL_I128, nullptr);
213     setLibcallName(RTLIB::MULO_I64, nullptr);
214   }
215 
216   if (!Subtarget.hasStdExtM()) {
217     setOperationAction(ISD::MUL, XLenVT, Expand);
218     setOperationAction(ISD::MULHS, XLenVT, Expand);
219     setOperationAction(ISD::MULHU, XLenVT, Expand);
220     setOperationAction(ISD::SDIV, XLenVT, Expand);
221     setOperationAction(ISD::UDIV, XLenVT, Expand);
222     setOperationAction(ISD::SREM, XLenVT, Expand);
223     setOperationAction(ISD::UREM, XLenVT, Expand);
224   } else {
225     if (Subtarget.is64Bit()) {
226       setOperationAction(ISD::MUL, MVT::i32, Custom);
227       setOperationAction(ISD::MUL, MVT::i128, Custom);
228 
229       setOperationAction(ISD::SDIV, MVT::i8, Custom);
230       setOperationAction(ISD::UDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UREM, MVT::i8, Custom);
232       setOperationAction(ISD::SDIV, MVT::i16, Custom);
233       setOperationAction(ISD::UDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UREM, MVT::i16, Custom);
235       setOperationAction(ISD::SDIV, MVT::i32, Custom);
236       setOperationAction(ISD::UDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UREM, MVT::i32, Custom);
238     } else {
239       setOperationAction(ISD::MUL, MVT::i64, Custom);
240     }
241   }
242 
243   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
244   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
246   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
247 
248   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
249   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
251 
252   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
253     if (Subtarget.is64Bit()) {
254       setOperationAction(ISD::ROTL, MVT::i32, Custom);
255       setOperationAction(ISD::ROTR, MVT::i32, Custom);
256     }
257   } else {
258     setOperationAction(ISD::ROTL, XLenVT, Expand);
259     setOperationAction(ISD::ROTR, XLenVT, Expand);
260   }
261 
262   if (Subtarget.hasStdExtZbp()) {
263     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
264     // more combining.
265     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
266     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
267     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
268     // BSWAP i8 doesn't exist.
269     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
270     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
271 
272     if (Subtarget.is64Bit()) {
273       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
274       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
275     }
276   } else {
277     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
278     // pattern match it directly in isel.
279     setOperationAction(ISD::BSWAP, XLenVT,
280                        Subtarget.hasStdExtZbb() ? Legal : Expand);
281   }
282 
283   if (Subtarget.hasStdExtZbb()) {
284     setOperationAction(ISD::SMIN, XLenVT, Legal);
285     setOperationAction(ISD::SMAX, XLenVT, Legal);
286     setOperationAction(ISD::UMIN, XLenVT, Legal);
287     setOperationAction(ISD::UMAX, XLenVT, Legal);
288 
289     if (Subtarget.is64Bit()) {
290       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
291       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
292       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
293       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
294     }
295   } else {
296     setOperationAction(ISD::CTTZ, XLenVT, Expand);
297     setOperationAction(ISD::CTLZ, XLenVT, Expand);
298     setOperationAction(ISD::CTPOP, XLenVT, Expand);
299   }
300 
301   if (Subtarget.hasStdExtZbt()) {
302     setOperationAction(ISD::FSHL, XLenVT, Custom);
303     setOperationAction(ISD::FSHR, XLenVT, Custom);
304     setOperationAction(ISD::SELECT, XLenVT, Legal);
305 
306     if (Subtarget.is64Bit()) {
307       setOperationAction(ISD::FSHL, MVT::i32, Custom);
308       setOperationAction(ISD::FSHR, MVT::i32, Custom);
309     }
310   } else {
311     setOperationAction(ISD::SELECT, XLenVT, Custom);
312   }
313 
314   static const ISD::CondCode FPCCToExpand[] = {
315       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
316       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
317       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
318 
319   static const ISD::NodeType FPOpToExpand[] = {
320       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
321       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
322 
323   if (Subtarget.hasStdExtZfh())
324     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
325 
326   if (Subtarget.hasStdExtZfh()) {
327     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
328     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
329     setOperationAction(ISD::LRINT, MVT::f16, Legal);
330     setOperationAction(ISD::LLRINT, MVT::f16, Legal);
331     setOperationAction(ISD::LROUND, MVT::f16, Legal);
332     setOperationAction(ISD::LLROUND, MVT::f16, Legal);
333     setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal);
334     setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal);
335     setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal);
336     setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal);
337     setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal);
338     setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal);
339     setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal);
340     setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal);
341     setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal);
342     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
343     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
344     setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal);
345     for (auto CC : FPCCToExpand)
346       setCondCodeAction(CC, MVT::f16, Expand);
347     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
348     setOperationAction(ISD::SELECT, MVT::f16, Custom);
349     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
350 
351     setOperationAction(ISD::FREM,       MVT::f16, Promote);
352     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
353     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
354     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
355     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
356     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
357     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
358     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
359     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
360     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
361     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
362     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
363     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
364     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
365     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
366     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
367     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
368     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
369 
370     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
371     // complete support for all operations in LegalizeDAG.
372 
373     // We need to custom promote this.
374     if (Subtarget.is64Bit())
375       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
376   }
377 
378   if (Subtarget.hasStdExtF()) {
379     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
380     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
381     setOperationAction(ISD::LRINT, MVT::f32, Legal);
382     setOperationAction(ISD::LLRINT, MVT::f32, Legal);
383     setOperationAction(ISD::LROUND, MVT::f32, Legal);
384     setOperationAction(ISD::LLROUND, MVT::f32, Legal);
385     setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal);
386     setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal);
387     setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal);
388     setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal);
389     setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
390     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
391     setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
392     setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
393     setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
394     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
395     for (auto CC : FPCCToExpand)
396       setCondCodeAction(CC, MVT::f32, Expand);
397     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
398     setOperationAction(ISD::SELECT, MVT::f32, Custom);
399     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
400     for (auto Op : FPOpToExpand)
401       setOperationAction(Op, MVT::f32, Expand);
402     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
403     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
404   }
405 
406   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
407     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
408 
409   if (Subtarget.hasStdExtD()) {
410     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
411     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
412     setOperationAction(ISD::LRINT, MVT::f64, Legal);
413     setOperationAction(ISD::LLRINT, MVT::f64, Legal);
414     setOperationAction(ISD::LROUND, MVT::f64, Legal);
415     setOperationAction(ISD::LLROUND, MVT::f64, Legal);
416     setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal);
417     setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal);
418     setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal);
419     setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal);
420     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
421     setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
422     setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
423     setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
424     setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
425     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
426     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
427     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
428     for (auto CC : FPCCToExpand)
429       setCondCodeAction(CC, MVT::f64, Expand);
430     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
431     setOperationAction(ISD::SELECT, MVT::f64, Custom);
432     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
433     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
434     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
435     for (auto Op : FPOpToExpand)
436       setOperationAction(Op, MVT::f64, Expand);
437     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
438     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
439   }
440 
441   if (Subtarget.is64Bit()) {
442     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
443     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
444     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
445     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
446   }
447 
448   if (Subtarget.hasStdExtF()) {
449     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
450     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
451 
452     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
453     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
454     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
455     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
456 
457     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
458     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
459   }
460 
461   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
462   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
463   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
464   setOperationAction(ISD::JumpTable, XLenVT, Custom);
465 
466   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
467 
468   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
469   // Unfortunately this can't be determined just from the ISA naming string.
470   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
471                      Subtarget.is64Bit() ? Legal : Custom);
472 
473   setOperationAction(ISD::TRAP, MVT::Other, Legal);
474   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
475   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
476   if (Subtarget.is64Bit())
477     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
478 
479   if (Subtarget.hasStdExtA()) {
480     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
481     setMinCmpXchgSizeInBits(32);
482   } else {
483     setMaxAtomicSizeInBitsSupported(0);
484   }
485 
486   setBooleanContents(ZeroOrOneBooleanContent);
487 
488   if (Subtarget.hasVInstructions()) {
489     setBooleanVectorContents(ZeroOrOneBooleanContent);
490 
491     setOperationAction(ISD::VSCALE, XLenVT, Custom);
492 
493     // RVV intrinsics may have illegal operands.
494     // We also need to custom legalize vmv.x.s.
495     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
496     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
497     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
498     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
499     if (Subtarget.is64Bit()) {
500       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
501     } else {
502       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
503       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
504     }
505 
506     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
507     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
508 
509     static const unsigned IntegerVPOps[] = {
510         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
511         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
512         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
513         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
514         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
515         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
516         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
517         ISD::VP_SELECT};
518 
519     static const unsigned FloatingPointVPOps[] = {
520         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
521         ISD::VP_FDIV,        ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
522         ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SELECT};
523 
524     if (!Subtarget.is64Bit()) {
525       // We must custom-lower certain vXi64 operations on RV32 due to the vector
526       // element type being illegal.
527       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
528       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
529 
530       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
531       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
532       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
533       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
534       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
535       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
536       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
537       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
538 
539       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
540       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
541       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
542       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
543       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
544       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
545       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
546       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
547     }
548 
549     for (MVT VT : BoolVecVTs) {
550       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
551 
552       // Mask VTs are custom-expanded into a series of standard nodes
553       setOperationAction(ISD::TRUNCATE, VT, Custom);
554       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
555       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
556       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
557 
558       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
559       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
560 
561       setOperationAction(ISD::SELECT, VT, Custom);
562       setOperationAction(ISD::SELECT_CC, VT, Expand);
563       setOperationAction(ISD::VSELECT, VT, Expand);
564 
565       setOperationAction(ISD::VP_AND, VT, Custom);
566       setOperationAction(ISD::VP_OR, VT, Custom);
567       setOperationAction(ISD::VP_XOR, VT, Custom);
568 
569       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
570       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
571       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
572 
573       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
574       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
575       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
576 
577       // RVV has native int->float & float->int conversions where the
578       // element type sizes are within one power-of-two of each other. Any
579       // wider distances between type sizes have to be lowered as sequences
580       // which progressively narrow the gap in stages.
581       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
582       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
583       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
584       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
585 
586       // Expand all extending loads to types larger than this, and truncating
587       // stores from types larger than this.
588       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
589         setTruncStoreAction(OtherVT, VT, Expand);
590         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
591         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
592         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
593       }
594     }
595 
596     for (MVT VT : IntVecVTs) {
597       if (VT.getVectorElementType() == MVT::i64 &&
598           !Subtarget.hasVInstructionsI64())
599         continue;
600 
601       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
602       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
603 
604       // Vectors implement MULHS/MULHU.
605       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
606       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
607 
608       setOperationAction(ISD::SMIN, VT, Legal);
609       setOperationAction(ISD::SMAX, VT, Legal);
610       setOperationAction(ISD::UMIN, VT, Legal);
611       setOperationAction(ISD::UMAX, VT, Legal);
612 
613       setOperationAction(ISD::ROTL, VT, Expand);
614       setOperationAction(ISD::ROTR, VT, Expand);
615 
616       setOperationAction(ISD::CTTZ, VT, Expand);
617       setOperationAction(ISD::CTLZ, VT, Expand);
618       setOperationAction(ISD::CTPOP, VT, Expand);
619 
620       setOperationAction(ISD::BSWAP, VT, Expand);
621 
622       // Custom-lower extensions and truncations from/to mask types.
623       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
624       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
625       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
626 
627       // RVV has native int->float & float->int conversions where the
628       // element type sizes are within one power-of-two of each other. Any
629       // wider distances between type sizes have to be lowered as sequences
630       // which progressively narrow the gap in stages.
631       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
632       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
633       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
634       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
635 
636       setOperationAction(ISD::SADDSAT, VT, Legal);
637       setOperationAction(ISD::UADDSAT, VT, Legal);
638       setOperationAction(ISD::SSUBSAT, VT, Legal);
639       setOperationAction(ISD::USUBSAT, VT, Legal);
640 
641       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
642       // nodes which truncate by one power of two at a time.
643       setOperationAction(ISD::TRUNCATE, VT, Custom);
644 
645       // Custom-lower insert/extract operations to simplify patterns.
646       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
647       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
648 
649       // Custom-lower reduction operations to set up the corresponding custom
650       // nodes' operands.
651       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
652       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
653       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
654       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
655       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
656       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
657       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
658       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
659 
660       for (unsigned VPOpc : IntegerVPOps)
661         setOperationAction(VPOpc, VT, Custom);
662 
663       setOperationAction(ISD::LOAD, VT, Custom);
664       setOperationAction(ISD::STORE, VT, Custom);
665 
666       setOperationAction(ISD::MLOAD, VT, Custom);
667       setOperationAction(ISD::MSTORE, VT, Custom);
668       setOperationAction(ISD::MGATHER, VT, Custom);
669       setOperationAction(ISD::MSCATTER, VT, Custom);
670 
671       setOperationAction(ISD::VP_LOAD, VT, Custom);
672       setOperationAction(ISD::VP_STORE, VT, Custom);
673       setOperationAction(ISD::VP_GATHER, VT, Custom);
674       setOperationAction(ISD::VP_SCATTER, VT, Custom);
675 
676       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
677       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
678       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
679 
680       setOperationAction(ISD::SELECT, VT, Custom);
681       setOperationAction(ISD::SELECT_CC, VT, Expand);
682 
683       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
684       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
685 
686       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
687         setTruncStoreAction(VT, OtherVT, Expand);
688         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
689         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
690         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
691       }
692 
693       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
694       // type that can represent the value exactly.
695       if (VT.getVectorElementType() != MVT::i64) {
696         MVT FloatEltVT =
697             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
698         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
699         if (isTypeLegal(FloatVT)) {
700           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
701           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
702         }
703       }
704     }
705 
706     // Expand various CCs to best match the RVV ISA, which natively supports UNE
707     // but no other unordered comparisons, and supports all ordered comparisons
708     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
709     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
710     // and we pattern-match those back to the "original", swapping operands once
711     // more. This way we catch both operations and both "vf" and "fv" forms with
712     // fewer patterns.
713     static const ISD::CondCode VFPCCToExpand[] = {
714         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
715         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
716         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
717     };
718 
719     // Sets common operation actions on RVV floating-point vector types.
720     const auto SetCommonVFPActions = [&](MVT VT) {
721       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
722       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
723       // sizes are within one power-of-two of each other. Therefore conversions
724       // between vXf16 and vXf64 must be lowered as sequences which convert via
725       // vXf32.
726       setOperationAction(ISD::FP_ROUND, VT, Custom);
727       setOperationAction(ISD::FP_EXTEND, VT, Custom);
728       // Custom-lower insert/extract operations to simplify patterns.
729       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
730       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
731       // Expand various condition codes (explained above).
732       for (auto CC : VFPCCToExpand)
733         setCondCodeAction(CC, VT, Expand);
734 
735       setOperationAction(ISD::FMINNUM, VT, Legal);
736       setOperationAction(ISD::FMAXNUM, VT, Legal);
737 
738       setOperationAction(ISD::FTRUNC, VT, Custom);
739       setOperationAction(ISD::FCEIL, VT, Custom);
740       setOperationAction(ISD::FFLOOR, VT, Custom);
741 
742       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
743       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
744       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
745       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
746 
747       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
748 
749       setOperationAction(ISD::LOAD, VT, Custom);
750       setOperationAction(ISD::STORE, VT, Custom);
751 
752       setOperationAction(ISD::MLOAD, VT, Custom);
753       setOperationAction(ISD::MSTORE, VT, Custom);
754       setOperationAction(ISD::MGATHER, VT, Custom);
755       setOperationAction(ISD::MSCATTER, VT, Custom);
756 
757       setOperationAction(ISD::VP_LOAD, VT, Custom);
758       setOperationAction(ISD::VP_STORE, VT, Custom);
759       setOperationAction(ISD::VP_GATHER, VT, Custom);
760       setOperationAction(ISD::VP_SCATTER, VT, Custom);
761 
762       setOperationAction(ISD::SELECT, VT, Custom);
763       setOperationAction(ISD::SELECT_CC, VT, Expand);
764 
765       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
766       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
767       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
768 
769       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
770 
771       for (unsigned VPOpc : FloatingPointVPOps)
772         setOperationAction(VPOpc, VT, Custom);
773     };
774 
775     // Sets common extload/truncstore actions on RVV floating-point vector
776     // types.
777     const auto SetCommonVFPExtLoadTruncStoreActions =
778         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
779           for (auto SmallVT : SmallerVTs) {
780             setTruncStoreAction(VT, SmallVT, Expand);
781             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
782           }
783         };
784 
785     if (Subtarget.hasVInstructionsF16())
786       for (MVT VT : F16VecVTs)
787         SetCommonVFPActions(VT);
788 
789     for (MVT VT : F32VecVTs) {
790       if (Subtarget.hasVInstructionsF32())
791         SetCommonVFPActions(VT);
792       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
793     }
794 
795     for (MVT VT : F64VecVTs) {
796       if (Subtarget.hasVInstructionsF64())
797         SetCommonVFPActions(VT);
798       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
799       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
800     }
801 
802     if (Subtarget.useRVVForFixedLengthVectors()) {
803       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
804         if (!useRVVForFixedLengthVectorVT(VT))
805           continue;
806 
807         // By default everything must be expanded.
808         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
809           setOperationAction(Op, VT, Expand);
810         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
811           setTruncStoreAction(VT, OtherVT, Expand);
812           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
813           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
814           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
815         }
816 
817         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
818         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
819         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
820 
821         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
822         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
823 
824         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
825         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
826 
827         setOperationAction(ISD::LOAD, VT, Custom);
828         setOperationAction(ISD::STORE, VT, Custom);
829 
830         setOperationAction(ISD::SETCC, VT, Custom);
831 
832         setOperationAction(ISD::SELECT, VT, Custom);
833 
834         setOperationAction(ISD::TRUNCATE, VT, Custom);
835 
836         setOperationAction(ISD::BITCAST, VT, Custom);
837 
838         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
839         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
840         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
841 
842         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
843         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
844         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
845 
846         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
847         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
848         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
849         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
850 
851         // Operations below are different for between masks and other vectors.
852         if (VT.getVectorElementType() == MVT::i1) {
853           setOperationAction(ISD::VP_AND, VT, Custom);
854           setOperationAction(ISD::VP_OR, VT, Custom);
855           setOperationAction(ISD::VP_XOR, VT, Custom);
856           setOperationAction(ISD::AND, VT, Custom);
857           setOperationAction(ISD::OR, VT, Custom);
858           setOperationAction(ISD::XOR, VT, Custom);
859           continue;
860         }
861 
862         // Use SPLAT_VECTOR to prevent type legalization from destroying the
863         // splats when type legalizing i64 scalar on RV32.
864         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
865         // improvements first.
866         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
867           setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
868           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
869         }
870 
871         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
872         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
873 
874         setOperationAction(ISD::MLOAD, VT, Custom);
875         setOperationAction(ISD::MSTORE, VT, Custom);
876         setOperationAction(ISD::MGATHER, VT, Custom);
877         setOperationAction(ISD::MSCATTER, VT, Custom);
878 
879         setOperationAction(ISD::VP_LOAD, VT, Custom);
880         setOperationAction(ISD::VP_STORE, VT, Custom);
881         setOperationAction(ISD::VP_GATHER, VT, Custom);
882         setOperationAction(ISD::VP_SCATTER, VT, Custom);
883 
884         setOperationAction(ISD::ADD, VT, Custom);
885         setOperationAction(ISD::MUL, VT, Custom);
886         setOperationAction(ISD::SUB, VT, Custom);
887         setOperationAction(ISD::AND, VT, Custom);
888         setOperationAction(ISD::OR, VT, Custom);
889         setOperationAction(ISD::XOR, VT, Custom);
890         setOperationAction(ISD::SDIV, VT, Custom);
891         setOperationAction(ISD::SREM, VT, Custom);
892         setOperationAction(ISD::UDIV, VT, Custom);
893         setOperationAction(ISD::UREM, VT, Custom);
894         setOperationAction(ISD::SHL, VT, Custom);
895         setOperationAction(ISD::SRA, VT, Custom);
896         setOperationAction(ISD::SRL, VT, Custom);
897 
898         setOperationAction(ISD::SMIN, VT, Custom);
899         setOperationAction(ISD::SMAX, VT, Custom);
900         setOperationAction(ISD::UMIN, VT, Custom);
901         setOperationAction(ISD::UMAX, VT, Custom);
902         setOperationAction(ISD::ABS,  VT, Custom);
903 
904         setOperationAction(ISD::MULHS, VT, Custom);
905         setOperationAction(ISD::MULHU, VT, Custom);
906 
907         setOperationAction(ISD::SADDSAT, VT, Custom);
908         setOperationAction(ISD::UADDSAT, VT, Custom);
909         setOperationAction(ISD::SSUBSAT, VT, Custom);
910         setOperationAction(ISD::USUBSAT, VT, Custom);
911 
912         setOperationAction(ISD::VSELECT, VT, Custom);
913         setOperationAction(ISD::SELECT_CC, VT, Expand);
914 
915         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
916         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
917         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
918 
919         // Custom-lower reduction operations to set up the corresponding custom
920         // nodes' operands.
921         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
922         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
923         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
924         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
925         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
926 
927         for (unsigned VPOpc : IntegerVPOps)
928           setOperationAction(VPOpc, VT, Custom);
929 
930         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
931         // type that can represent the value exactly.
932         if (VT.getVectorElementType() != MVT::i64) {
933           MVT FloatEltVT =
934               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
935           EVT FloatVT =
936               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
937           if (isTypeLegal(FloatVT)) {
938             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
939             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
940           }
941         }
942       }
943 
944       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
945         if (!useRVVForFixedLengthVectorVT(VT))
946           continue;
947 
948         // By default everything must be expanded.
949         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
950           setOperationAction(Op, VT, Expand);
951         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
952           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
953           setTruncStoreAction(VT, OtherVT, Expand);
954         }
955 
956         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
957         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
958         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
959 
960         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
961         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
962         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
963         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
964         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
965 
966         setOperationAction(ISD::LOAD, VT, Custom);
967         setOperationAction(ISD::STORE, VT, Custom);
968         setOperationAction(ISD::MLOAD, VT, Custom);
969         setOperationAction(ISD::MSTORE, VT, Custom);
970         setOperationAction(ISD::MGATHER, VT, Custom);
971         setOperationAction(ISD::MSCATTER, VT, Custom);
972 
973         setOperationAction(ISD::VP_LOAD, VT, Custom);
974         setOperationAction(ISD::VP_STORE, VT, Custom);
975         setOperationAction(ISD::VP_GATHER, VT, Custom);
976         setOperationAction(ISD::VP_SCATTER, VT, Custom);
977 
978         setOperationAction(ISD::FADD, VT, Custom);
979         setOperationAction(ISD::FSUB, VT, Custom);
980         setOperationAction(ISD::FMUL, VT, Custom);
981         setOperationAction(ISD::FDIV, VT, Custom);
982         setOperationAction(ISD::FNEG, VT, Custom);
983         setOperationAction(ISD::FABS, VT, Custom);
984         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
985         setOperationAction(ISD::FSQRT, VT, Custom);
986         setOperationAction(ISD::FMA, VT, Custom);
987         setOperationAction(ISD::FMINNUM, VT, Custom);
988         setOperationAction(ISD::FMAXNUM, VT, Custom);
989 
990         setOperationAction(ISD::FP_ROUND, VT, Custom);
991         setOperationAction(ISD::FP_EXTEND, VT, Custom);
992 
993         setOperationAction(ISD::FTRUNC, VT, Custom);
994         setOperationAction(ISD::FCEIL, VT, Custom);
995         setOperationAction(ISD::FFLOOR, VT, Custom);
996 
997         for (auto CC : VFPCCToExpand)
998           setCondCodeAction(CC, VT, Expand);
999 
1000         setOperationAction(ISD::VSELECT, VT, Custom);
1001         setOperationAction(ISD::SELECT, VT, Custom);
1002         setOperationAction(ISD::SELECT_CC, VT, Expand);
1003 
1004         setOperationAction(ISD::BITCAST, VT, Custom);
1005 
1006         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1007         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1008         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1009         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1010 
1011         for (unsigned VPOpc : FloatingPointVPOps)
1012           setOperationAction(VPOpc, VT, Custom);
1013       }
1014 
1015       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1016       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1017       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1018       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1019       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1020       setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1021       setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1022       setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1023     }
1024   }
1025 
1026   // Function alignments.
1027   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1028   setMinFunctionAlignment(FunctionAlignment);
1029   setPrefFunctionAlignment(FunctionAlignment);
1030 
1031   setMinimumJumpTableEntries(5);
1032 
1033   // Jumps are expensive, compared to logic
1034   setJumpIsExpensive();
1035 
1036   setTargetDAGCombine(ISD::ADD);
1037   setTargetDAGCombine(ISD::SUB);
1038   setTargetDAGCombine(ISD::AND);
1039   setTargetDAGCombine(ISD::OR);
1040   setTargetDAGCombine(ISD::XOR);
1041   setTargetDAGCombine(ISD::ANY_EXTEND);
1042   setTargetDAGCombine(ISD::ZERO_EXTEND);
1043   if (Subtarget.hasVInstructions()) {
1044     setTargetDAGCombine(ISD::FCOPYSIGN);
1045     setTargetDAGCombine(ISD::MGATHER);
1046     setTargetDAGCombine(ISD::MSCATTER);
1047     setTargetDAGCombine(ISD::VP_GATHER);
1048     setTargetDAGCombine(ISD::VP_SCATTER);
1049     setTargetDAGCombine(ISD::SRA);
1050     setTargetDAGCombine(ISD::SRL);
1051     setTargetDAGCombine(ISD::SHL);
1052     setTargetDAGCombine(ISD::STORE);
1053   }
1054 }
1055 
1056 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1057                                             LLVMContext &Context,
1058                                             EVT VT) const {
1059   if (!VT.isVector())
1060     return getPointerTy(DL);
1061   if (Subtarget.hasVInstructions() &&
1062       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1063     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1064   return VT.changeVectorElementTypeToInteger();
1065 }
1066 
1067 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1068   return Subtarget.getXLenVT();
1069 }
1070 
1071 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1072                                              const CallInst &I,
1073                                              MachineFunction &MF,
1074                                              unsigned Intrinsic) const {
1075   auto &DL = I.getModule()->getDataLayout();
1076   switch (Intrinsic) {
1077   default:
1078     return false;
1079   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1080   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1081   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1082   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1083   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1084   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1085   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1086   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1087   case Intrinsic::riscv_masked_cmpxchg_i32: {
1088     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
1089     Info.opc = ISD::INTRINSIC_W_CHAIN;
1090     Info.memVT = MVT::getVT(PtrTy->getElementType());
1091     Info.ptrVal = I.getArgOperand(0);
1092     Info.offset = 0;
1093     Info.align = Align(4);
1094     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1095                  MachineMemOperand::MOVolatile;
1096     return true;
1097   }
1098   case Intrinsic::riscv_masked_strided_load:
1099     Info.opc = ISD::INTRINSIC_W_CHAIN;
1100     Info.ptrVal = I.getArgOperand(1);
1101     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1102     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1103     Info.size = MemoryLocation::UnknownSize;
1104     Info.flags |= MachineMemOperand::MOLoad;
1105     return true;
1106   case Intrinsic::riscv_masked_strided_store:
1107     Info.opc = ISD::INTRINSIC_VOID;
1108     Info.ptrVal = I.getArgOperand(1);
1109     Info.memVT =
1110         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1111     Info.align = Align(
1112         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1113         8);
1114     Info.size = MemoryLocation::UnknownSize;
1115     Info.flags |= MachineMemOperand::MOStore;
1116     return true;
1117   }
1118 }
1119 
1120 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1121                                                 const AddrMode &AM, Type *Ty,
1122                                                 unsigned AS,
1123                                                 Instruction *I) const {
1124   // No global is ever allowed as a base.
1125   if (AM.BaseGV)
1126     return false;
1127 
1128   // Require a 12-bit signed offset.
1129   if (!isInt<12>(AM.BaseOffs))
1130     return false;
1131 
1132   switch (AM.Scale) {
1133   case 0: // "r+i" or just "i", depending on HasBaseReg.
1134     break;
1135   case 1:
1136     if (!AM.HasBaseReg) // allow "r+i".
1137       break;
1138     return false; // disallow "r+r" or "r+r+i".
1139   default:
1140     return false;
1141   }
1142 
1143   return true;
1144 }
1145 
1146 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1147   return isInt<12>(Imm);
1148 }
1149 
1150 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1151   return isInt<12>(Imm);
1152 }
1153 
1154 // On RV32, 64-bit integers are split into their high and low parts and held
1155 // in two different registers, so the trunc is free since the low register can
1156 // just be used.
1157 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1158   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1159     return false;
1160   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1161   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1162   return (SrcBits == 64 && DestBits == 32);
1163 }
1164 
1165 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1166   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1167       !SrcVT.isInteger() || !DstVT.isInteger())
1168     return false;
1169   unsigned SrcBits = SrcVT.getSizeInBits();
1170   unsigned DestBits = DstVT.getSizeInBits();
1171   return (SrcBits == 64 && DestBits == 32);
1172 }
1173 
1174 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1175   // Zexts are free if they can be combined with a load.
1176   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1177     EVT MemVT = LD->getMemoryVT();
1178     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
1179          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
1180         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1181          LD->getExtensionType() == ISD::ZEXTLOAD))
1182       return true;
1183   }
1184 
1185   return TargetLowering::isZExtFree(Val, VT2);
1186 }
1187 
1188 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1189   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1190 }
1191 
1192 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1193   return Subtarget.hasStdExtZbb();
1194 }
1195 
1196 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1197   return Subtarget.hasStdExtZbb();
1198 }
1199 
1200 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1201   EVT VT = Y.getValueType();
1202 
1203   // FIXME: Support vectors once we have tests.
1204   if (VT.isVector())
1205     return false;
1206 
1207   return Subtarget.hasStdExtZbb() && !isa<ConstantSDNode>(Y);
1208 }
1209 
1210 /// Check if sinking \p I's operands to I's basic block is profitable, because
1211 /// the operands can be folded into a target instruction, e.g.
1212 /// splats of scalars can fold into vector instructions.
1213 bool RISCVTargetLowering::shouldSinkOperands(
1214     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1215   using namespace llvm::PatternMatch;
1216 
1217   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1218     return false;
1219 
1220   auto IsSinker = [&](Instruction *I, int Operand) {
1221     switch (I->getOpcode()) {
1222     case Instruction::Add:
1223     case Instruction::Sub:
1224     case Instruction::Mul:
1225     case Instruction::And:
1226     case Instruction::Or:
1227     case Instruction::Xor:
1228     case Instruction::FAdd:
1229     case Instruction::FSub:
1230     case Instruction::FMul:
1231     case Instruction::FDiv:
1232     case Instruction::ICmp:
1233     case Instruction::FCmp:
1234       return true;
1235     case Instruction::Shl:
1236     case Instruction::LShr:
1237     case Instruction::AShr:
1238     case Instruction::UDiv:
1239     case Instruction::SDiv:
1240     case Instruction::URem:
1241     case Instruction::SRem:
1242       return Operand == 1;
1243     case Instruction::Call:
1244       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1245         switch (II->getIntrinsicID()) {
1246         case Intrinsic::fma:
1247           return Operand == 0 || Operand == 1;
1248         default:
1249           return false;
1250         }
1251       }
1252       return false;
1253     default:
1254       return false;
1255     }
1256   };
1257 
1258   for (auto OpIdx : enumerate(I->operands())) {
1259     if (!IsSinker(I, OpIdx.index()))
1260       continue;
1261 
1262     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1263     // Make sure we are not already sinking this operand
1264     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1265       continue;
1266 
1267     // We are looking for a splat that can be sunk.
1268     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1269                              m_Undef(), m_ZeroMask())))
1270       continue;
1271 
1272     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1273     // and vector registers
1274     for (Use &U : Op->uses()) {
1275       Instruction *Insn = cast<Instruction>(U.getUser());
1276       if (!IsSinker(Insn, U.getOperandNo()))
1277         return false;
1278     }
1279 
1280     Ops.push_back(&Op->getOperandUse(0));
1281     Ops.push_back(&OpIdx.value());
1282   }
1283   return true;
1284 }
1285 
1286 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1287                                        bool ForCodeSize) const {
1288   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1289   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1290     return false;
1291   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1292     return false;
1293   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1294     return false;
1295   if (Imm.isNegZero())
1296     return false;
1297   return Imm.isZero();
1298 }
1299 
1300 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1301   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1302          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1303          (VT == MVT::f64 && Subtarget.hasStdExtD());
1304 }
1305 
1306 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1307                                                       CallingConv::ID CC,
1308                                                       EVT VT) const {
1309   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1310   // We might still end up using a GPR but that will be decided based on ABI.
1311   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1312   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1313     return MVT::f32;
1314 
1315   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1316 }
1317 
1318 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1319                                                            CallingConv::ID CC,
1320                                                            EVT VT) const {
1321   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1322   // We might still end up using a GPR but that will be decided based on ABI.
1323   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1324   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1325     return 1;
1326 
1327   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1328 }
1329 
1330 // Changes the condition code and swaps operands if necessary, so the SetCC
1331 // operation matches one of the comparisons supported directly by branches
1332 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1333 // with 1/-1.
1334 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1335                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1336   // Convert X > -1 to X >= 0.
1337   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1338     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1339     CC = ISD::SETGE;
1340     return;
1341   }
1342   // Convert X < 1 to 0 >= X.
1343   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1344     RHS = LHS;
1345     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1346     CC = ISD::SETGE;
1347     return;
1348   }
1349 
1350   switch (CC) {
1351   default:
1352     break;
1353   case ISD::SETGT:
1354   case ISD::SETLE:
1355   case ISD::SETUGT:
1356   case ISD::SETULE:
1357     CC = ISD::getSetCCSwappedOperands(CC);
1358     std::swap(LHS, RHS);
1359     break;
1360   }
1361 }
1362 
1363 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1364   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1365   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1366   if (VT.getVectorElementType() == MVT::i1)
1367     KnownSize *= 8;
1368 
1369   switch (KnownSize) {
1370   default:
1371     llvm_unreachable("Invalid LMUL.");
1372   case 8:
1373     return RISCVII::VLMUL::LMUL_F8;
1374   case 16:
1375     return RISCVII::VLMUL::LMUL_F4;
1376   case 32:
1377     return RISCVII::VLMUL::LMUL_F2;
1378   case 64:
1379     return RISCVII::VLMUL::LMUL_1;
1380   case 128:
1381     return RISCVII::VLMUL::LMUL_2;
1382   case 256:
1383     return RISCVII::VLMUL::LMUL_4;
1384   case 512:
1385     return RISCVII::VLMUL::LMUL_8;
1386   }
1387 }
1388 
1389 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1390   switch (LMul) {
1391   default:
1392     llvm_unreachable("Invalid LMUL.");
1393   case RISCVII::VLMUL::LMUL_F8:
1394   case RISCVII::VLMUL::LMUL_F4:
1395   case RISCVII::VLMUL::LMUL_F2:
1396   case RISCVII::VLMUL::LMUL_1:
1397     return RISCV::VRRegClassID;
1398   case RISCVII::VLMUL::LMUL_2:
1399     return RISCV::VRM2RegClassID;
1400   case RISCVII::VLMUL::LMUL_4:
1401     return RISCV::VRM4RegClassID;
1402   case RISCVII::VLMUL::LMUL_8:
1403     return RISCV::VRM8RegClassID;
1404   }
1405 }
1406 
1407 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1408   RISCVII::VLMUL LMUL = getLMUL(VT);
1409   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1410       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1411       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1412       LMUL == RISCVII::VLMUL::LMUL_1) {
1413     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1414                   "Unexpected subreg numbering");
1415     return RISCV::sub_vrm1_0 + Index;
1416   }
1417   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1418     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1419                   "Unexpected subreg numbering");
1420     return RISCV::sub_vrm2_0 + Index;
1421   }
1422   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1423     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1424                   "Unexpected subreg numbering");
1425     return RISCV::sub_vrm4_0 + Index;
1426   }
1427   llvm_unreachable("Invalid vector type.");
1428 }
1429 
1430 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1431   if (VT.getVectorElementType() == MVT::i1)
1432     return RISCV::VRRegClassID;
1433   return getRegClassIDForLMUL(getLMUL(VT));
1434 }
1435 
1436 // Attempt to decompose a subvector insert/extract between VecVT and
1437 // SubVecVT via subregister indices. Returns the subregister index that
1438 // can perform the subvector insert/extract with the given element index, as
1439 // well as the index corresponding to any leftover subvectors that must be
1440 // further inserted/extracted within the register class for SubVecVT.
1441 std::pair<unsigned, unsigned>
1442 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1443     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1444     const RISCVRegisterInfo *TRI) {
1445   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1446                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1447                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1448                 "Register classes not ordered");
1449   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1450   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1451   // Try to compose a subregister index that takes us from the incoming
1452   // LMUL>1 register class down to the outgoing one. At each step we half
1453   // the LMUL:
1454   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1455   // Note that this is not guaranteed to find a subregister index, such as
1456   // when we are extracting from one VR type to another.
1457   unsigned SubRegIdx = RISCV::NoSubRegister;
1458   for (const unsigned RCID :
1459        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1460     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1461       VecVT = VecVT.getHalfNumVectorElementsVT();
1462       bool IsHi =
1463           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1464       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1465                                             getSubregIndexByMVT(VecVT, IsHi));
1466       if (IsHi)
1467         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1468     }
1469   return {SubRegIdx, InsertExtractIdx};
1470 }
1471 
1472 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1473 // stores for those types.
1474 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1475   return !Subtarget.useRVVForFixedLengthVectors() ||
1476          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1477 }
1478 
1479 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1480   if (ScalarTy->isPointerTy())
1481     return true;
1482 
1483   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1484       ScalarTy->isIntegerTy(32))
1485     return true;
1486 
1487   if (ScalarTy->isIntegerTy(64))
1488     return Subtarget.hasVInstructionsI64();
1489 
1490   if (ScalarTy->isHalfTy())
1491     return Subtarget.hasVInstructionsF16();
1492   if (ScalarTy->isFloatTy())
1493     return Subtarget.hasVInstructionsF32();
1494   if (ScalarTy->isDoubleTy())
1495     return Subtarget.hasVInstructionsF64();
1496 
1497   return false;
1498 }
1499 
1500 static bool useRVVForFixedLengthVectorVT(MVT VT,
1501                                          const RISCVSubtarget &Subtarget) {
1502   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1503   if (!Subtarget.useRVVForFixedLengthVectors())
1504     return false;
1505 
1506   // We only support a set of vector types with a consistent maximum fixed size
1507   // across all supported vector element types to avoid legalization issues.
1508   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1509   // fixed-length vector type we support is 1024 bytes.
1510   if (VT.getFixedSizeInBits() > 1024 * 8)
1511     return false;
1512 
1513   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1514 
1515   MVT EltVT = VT.getVectorElementType();
1516 
1517   // Don't use RVV for vectors we cannot scalarize if required.
1518   switch (EltVT.SimpleTy) {
1519   // i1 is supported but has different rules.
1520   default:
1521     return false;
1522   case MVT::i1:
1523     // Masks can only use a single register.
1524     if (VT.getVectorNumElements() > MinVLen)
1525       return false;
1526     MinVLen /= 8;
1527     break;
1528   case MVT::i8:
1529   case MVT::i16:
1530   case MVT::i32:
1531     break;
1532   case MVT::i64:
1533     if (!Subtarget.hasVInstructionsI64())
1534       return false;
1535     break;
1536   case MVT::f16:
1537     if (!Subtarget.hasVInstructionsF16())
1538       return false;
1539     break;
1540   case MVT::f32:
1541     if (!Subtarget.hasVInstructionsF32())
1542       return false;
1543     break;
1544   case MVT::f64:
1545     if (!Subtarget.hasVInstructionsF64())
1546       return false;
1547     break;
1548   }
1549 
1550   // Reject elements larger than ELEN.
1551   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1552     return false;
1553 
1554   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1555   // Don't use RVV for types that don't fit.
1556   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1557     return false;
1558 
1559   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1560   // the base fixed length RVV support in place.
1561   if (!VT.isPow2VectorType())
1562     return false;
1563 
1564   return true;
1565 }
1566 
1567 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1568   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1569 }
1570 
1571 // Return the largest legal scalable vector type that matches VT's element type.
1572 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1573                                             const RISCVSubtarget &Subtarget) {
1574   // This may be called before legal types are setup.
1575   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1576           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1577          "Expected legal fixed length vector!");
1578 
1579   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1580   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1581 
1582   MVT EltVT = VT.getVectorElementType();
1583   switch (EltVT.SimpleTy) {
1584   default:
1585     llvm_unreachable("unexpected element type for RVV container");
1586   case MVT::i1:
1587   case MVT::i8:
1588   case MVT::i16:
1589   case MVT::i32:
1590   case MVT::i64:
1591   case MVT::f16:
1592   case MVT::f32:
1593   case MVT::f64: {
1594     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1595     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1596     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1597     unsigned NumElts =
1598         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1599     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1600     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1601     return MVT::getScalableVectorVT(EltVT, NumElts);
1602   }
1603   }
1604 }
1605 
1606 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1607                                             const RISCVSubtarget &Subtarget) {
1608   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1609                                           Subtarget);
1610 }
1611 
1612 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1613   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1614 }
1615 
1616 // Grow V to consume an entire RVV register.
1617 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1618                                        const RISCVSubtarget &Subtarget) {
1619   assert(VT.isScalableVector() &&
1620          "Expected to convert into a scalable vector!");
1621   assert(V.getValueType().isFixedLengthVector() &&
1622          "Expected a fixed length vector operand!");
1623   SDLoc DL(V);
1624   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1625   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1626 }
1627 
1628 // Shrink V so it's just big enough to maintain a VT's worth of data.
1629 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1630                                          const RISCVSubtarget &Subtarget) {
1631   assert(VT.isFixedLengthVector() &&
1632          "Expected to convert into a fixed length vector!");
1633   assert(V.getValueType().isScalableVector() &&
1634          "Expected a scalable vector operand!");
1635   SDLoc DL(V);
1636   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1637   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1638 }
1639 
1640 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1641 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1642 // the vector type that it is contained in.
1643 static std::pair<SDValue, SDValue>
1644 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1645                 const RISCVSubtarget &Subtarget) {
1646   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1647   MVT XLenVT = Subtarget.getXLenVT();
1648   SDValue VL = VecVT.isFixedLengthVector()
1649                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1650                    : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT);
1651   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1652   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1653   return {Mask, VL};
1654 }
1655 
1656 // As above but assuming the given type is a scalable vector type.
1657 static std::pair<SDValue, SDValue>
1658 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1659                         const RISCVSubtarget &Subtarget) {
1660   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1661   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1662 }
1663 
1664 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1665 // of either is (currently) supported. This can get us into an infinite loop
1666 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1667 // as a ..., etc.
1668 // Until either (or both) of these can reliably lower any node, reporting that
1669 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1670 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1671 // which is not desirable.
1672 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1673     EVT VT, unsigned DefinedValues) const {
1674   return false;
1675 }
1676 
1677 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1678   // Only splats are currently supported.
1679   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1680     return true;
1681 
1682   return false;
1683 }
1684 
1685 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) {
1686   // RISCV FP-to-int conversions saturate to the destination register size, but
1687   // don't produce 0 for nan. We can use a conversion instruction and fix the
1688   // nan case with a compare and a select.
1689   SDValue Src = Op.getOperand(0);
1690 
1691   EVT DstVT = Op.getValueType();
1692   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1693 
1694   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1695   unsigned Opc;
1696   if (SatVT == DstVT)
1697     Opc = IsSigned ? RISCVISD::FCVT_X_RTZ : RISCVISD::FCVT_XU_RTZ;
1698   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1699     Opc = IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
1700   else
1701     return SDValue();
1702   // FIXME: Support other SatVTs by clamping before or after the conversion.
1703 
1704   SDLoc DL(Op);
1705   SDValue FpToInt = DAG.getNode(Opc, DL, DstVT, Src);
1706 
1707   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1708   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1709 }
1710 
1711 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1712 // and back. Taking care to avoid converting values that are nan or already
1713 // correct.
1714 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1715 // have FRM dependencies modeled yet.
1716 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1717   MVT VT = Op.getSimpleValueType();
1718   assert(VT.isVector() && "Unexpected type");
1719 
1720   SDLoc DL(Op);
1721 
1722   // Freeze the source since we are increasing the number of uses.
1723   SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0));
1724 
1725   // Truncate to integer and convert back to FP.
1726   MVT IntVT = VT.changeVectorElementTypeToInteger();
1727   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1728   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1729 
1730   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1731 
1732   if (Op.getOpcode() == ISD::FCEIL) {
1733     // If the truncated value is the greater than or equal to the original
1734     // value, we've computed the ceil. Otherwise, we went the wrong way and
1735     // need to increase by 1.
1736     // FIXME: This should use a masked operation. Handle here or in isel?
1737     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1738                                  DAG.getConstantFP(1.0, DL, VT));
1739     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1740     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1741   } else if (Op.getOpcode() == ISD::FFLOOR) {
1742     // If the truncated value is the less than or equal to the original value,
1743     // we've computed the floor. Otherwise, we went the wrong way and need to
1744     // decrease by 1.
1745     // FIXME: This should use a masked operation. Handle here or in isel?
1746     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1747                                  DAG.getConstantFP(1.0, DL, VT));
1748     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1749     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1750   }
1751 
1752   // Restore the original sign so that -0.0 is preserved.
1753   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1754 
1755   // Determine the largest integer that can be represented exactly. This and
1756   // values larger than it don't have any fractional bits so don't need to
1757   // be converted.
1758   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1759   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1760   APFloat MaxVal = APFloat(FltSem);
1761   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1762                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1763   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1764 
1765   // If abs(Src) was larger than MaxVal or nan, keep it.
1766   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1767   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1768   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1769 }
1770 
1771 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1772                                  const RISCVSubtarget &Subtarget) {
1773   MVT VT = Op.getSimpleValueType();
1774   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1775 
1776   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1777 
1778   SDLoc DL(Op);
1779   SDValue Mask, VL;
1780   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1781 
1782   unsigned Opc =
1783       VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1784   SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1785   return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1786 }
1787 
1788 struct VIDSequence {
1789   int64_t StepNumerator;
1790   unsigned StepDenominator;
1791   int64_t Addend;
1792 };
1793 
1794 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1795 // to the (non-zero) step S and start value X. This can be then lowered as the
1796 // RVV sequence (VID * S) + X, for example.
1797 // The step S is represented as an integer numerator divided by a positive
1798 // denominator. Note that the implementation currently only identifies
1799 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1800 // cannot detect 2/3, for example.
1801 // Note that this method will also match potentially unappealing index
1802 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1803 // determine whether this is worth generating code for.
1804 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1805   unsigned NumElts = Op.getNumOperands();
1806   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1807   if (!Op.getValueType().isInteger())
1808     return None;
1809 
1810   Optional<unsigned> SeqStepDenom;
1811   Optional<int64_t> SeqStepNum, SeqAddend;
1812   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1813   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1814   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1815     // Assume undef elements match the sequence; we just have to be careful
1816     // when interpolating across them.
1817     if (Op.getOperand(Idx).isUndef())
1818       continue;
1819     // The BUILD_VECTOR must be all constants.
1820     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1821       return None;
1822 
1823     uint64_t Val = Op.getConstantOperandVal(Idx) &
1824                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1825 
1826     if (PrevElt) {
1827       // Calculate the step since the last non-undef element, and ensure
1828       // it's consistent across the entire sequence.
1829       unsigned IdxDiff = Idx - PrevElt->second;
1830       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1831 
1832       // A zero-value value difference means that we're somewhere in the middle
1833       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1834       // step change before evaluating the sequence.
1835       if (ValDiff != 0) {
1836         int64_t Remainder = ValDiff % IdxDiff;
1837         // Normalize the step if it's greater than 1.
1838         if (Remainder != ValDiff) {
1839           // The difference must cleanly divide the element span.
1840           if (Remainder != 0)
1841             return None;
1842           ValDiff /= IdxDiff;
1843           IdxDiff = 1;
1844         }
1845 
1846         if (!SeqStepNum)
1847           SeqStepNum = ValDiff;
1848         else if (ValDiff != SeqStepNum)
1849           return None;
1850 
1851         if (!SeqStepDenom)
1852           SeqStepDenom = IdxDiff;
1853         else if (IdxDiff != *SeqStepDenom)
1854           return None;
1855       }
1856     }
1857 
1858     // Record and/or check any addend.
1859     if (SeqStepNum && SeqStepDenom) {
1860       uint64_t ExpectedVal =
1861           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1862       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1863       if (!SeqAddend)
1864         SeqAddend = Addend;
1865       else if (SeqAddend != Addend)
1866         return None;
1867     }
1868 
1869     // Record this non-undef element for later.
1870     if (!PrevElt || PrevElt->first != Val)
1871       PrevElt = std::make_pair(Val, Idx);
1872   }
1873   // We need to have logged both a step and an addend for this to count as
1874   // a legal index sequence.
1875   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1876     return None;
1877 
1878   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1879 }
1880 
1881 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1882                                  const RISCVSubtarget &Subtarget) {
1883   MVT VT = Op.getSimpleValueType();
1884   assert(VT.isFixedLengthVector() && "Unexpected vector!");
1885 
1886   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1887 
1888   SDLoc DL(Op);
1889   SDValue Mask, VL;
1890   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1891 
1892   MVT XLenVT = Subtarget.getXLenVT();
1893   unsigned NumElts = Op.getNumOperands();
1894 
1895   if (VT.getVectorElementType() == MVT::i1) {
1896     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1897       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1898       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1899     }
1900 
1901     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1902       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1903       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1904     }
1905 
1906     // Lower constant mask BUILD_VECTORs via an integer vector type, in
1907     // scalar integer chunks whose bit-width depends on the number of mask
1908     // bits and XLEN.
1909     // First, determine the most appropriate scalar integer type to use. This
1910     // is at most XLenVT, but may be shrunk to a smaller vector element type
1911     // according to the size of the final vector - use i8 chunks rather than
1912     // XLenVT if we're producing a v8i1. This results in more consistent
1913     // codegen across RV32 and RV64.
1914     unsigned NumViaIntegerBits =
1915         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1916     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1917       // If we have to use more than one INSERT_VECTOR_ELT then this
1918       // optimization is likely to increase code size; avoid peforming it in
1919       // such a case. We can use a load from a constant pool in this case.
1920       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1921         return SDValue();
1922       // Now we can create our integer vector type. Note that it may be larger
1923       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1924       MVT IntegerViaVecVT =
1925           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1926                            divideCeil(NumElts, NumViaIntegerBits));
1927 
1928       uint64_t Bits = 0;
1929       unsigned BitPos = 0, IntegerEltIdx = 0;
1930       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1931 
1932       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1933         // Once we accumulate enough bits to fill our scalar type, insert into
1934         // our vector and clear our accumulated data.
1935         if (I != 0 && I % NumViaIntegerBits == 0) {
1936           if (NumViaIntegerBits <= 32)
1937             Bits = SignExtend64(Bits, 32);
1938           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1939           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1940                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1941           Bits = 0;
1942           BitPos = 0;
1943           IntegerEltIdx++;
1944         }
1945         SDValue V = Op.getOperand(I);
1946         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1947         Bits |= ((uint64_t)BitValue << BitPos);
1948       }
1949 
1950       // Insert the (remaining) scalar value into position in our integer
1951       // vector type.
1952       if (NumViaIntegerBits <= 32)
1953         Bits = SignExtend64(Bits, 32);
1954       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1955       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1956                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1957 
1958       if (NumElts < NumViaIntegerBits) {
1959         // If we're producing a smaller vector than our minimum legal integer
1960         // type, bitcast to the equivalent (known-legal) mask type, and extract
1961         // our final mask.
1962         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1963         Vec = DAG.getBitcast(MVT::v8i1, Vec);
1964         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1965                           DAG.getConstant(0, DL, XLenVT));
1966       } else {
1967         // Else we must have produced an integer type with the same size as the
1968         // mask type; bitcast for the final result.
1969         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1970         Vec = DAG.getBitcast(VT, Vec);
1971       }
1972 
1973       return Vec;
1974     }
1975 
1976     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1977     // vector type, we have a legal equivalently-sized i8 type, so we can use
1978     // that.
1979     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1980     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1981 
1982     SDValue WideVec;
1983     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1984       // For a splat, perform a scalar truncate before creating the wider
1985       // vector.
1986       assert(Splat.getValueType() == XLenVT &&
1987              "Unexpected type for i1 splat value");
1988       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1989                           DAG.getConstant(1, DL, XLenVT));
1990       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1991     } else {
1992       SmallVector<SDValue, 8> Ops(Op->op_values());
1993       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1994       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1995       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1996     }
1997 
1998     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1999   }
2000 
2001   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2002     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2003                                         : RISCVISD::VMV_V_X_VL;
2004     Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
2005     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2006   }
2007 
2008   // Try and match index sequences, which we can lower to the vid instruction
2009   // with optional modifications. An all-undef vector is matched by
2010   // getSplatValue, above.
2011   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2012     int64_t StepNumerator = SimpleVID->StepNumerator;
2013     unsigned StepDenominator = SimpleVID->StepDenominator;
2014     int64_t Addend = SimpleVID->Addend;
2015 
2016     assert(StepNumerator != 0 && "Invalid step");
2017     bool Negate = false;
2018     int64_t SplatStepVal = StepNumerator;
2019     unsigned StepOpcode = ISD::MUL;
2020     if (StepNumerator != 1) {
2021       if (isPowerOf2_64(std::abs(StepNumerator))) {
2022         Negate = StepNumerator < 0;
2023         StepOpcode = ISD::SHL;
2024         SplatStepVal = Log2_64(std::abs(StepNumerator));
2025       }
2026     }
2027 
2028     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2029     // threshold since it's the immediate value many RVV instructions accept.
2030     // There is no vmul.vi instruction so ensure multiply constant can fit in
2031     // a single addi instruction.
2032     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2033          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2034         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2035       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2036       // Convert right out of the scalable type so we can use standard ISD
2037       // nodes for the rest of the computation. If we used scalable types with
2038       // these, we'd lose the fixed-length vector info and generate worse
2039       // vsetvli code.
2040       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2041       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2042           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2043         SDValue SplatStep = DAG.getSplatVector(
2044             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2045         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2046       }
2047       if (StepDenominator != 1) {
2048         SDValue SplatStep = DAG.getSplatVector(
2049             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2050         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2051       }
2052       if (Addend != 0 || Negate) {
2053         SDValue SplatAddend =
2054             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2055         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2056       }
2057       return VID;
2058     }
2059   }
2060 
2061   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2062   // when re-interpreted as a vector with a larger element type. For example,
2063   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2064   // could be instead splat as
2065   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2066   // TODO: This optimization could also work on non-constant splats, but it
2067   // would require bit-manipulation instructions to construct the splat value.
2068   SmallVector<SDValue> Sequence;
2069   unsigned EltBitSize = VT.getScalarSizeInBits();
2070   const auto *BV = cast<BuildVectorSDNode>(Op);
2071   if (VT.isInteger() && EltBitSize < 64 &&
2072       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2073       BV->getRepeatedSequence(Sequence) &&
2074       (Sequence.size() * EltBitSize) <= 64) {
2075     unsigned SeqLen = Sequence.size();
2076     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2077     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2078     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2079             ViaIntVT == MVT::i64) &&
2080            "Unexpected sequence type");
2081 
2082     unsigned EltIdx = 0;
2083     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2084     uint64_t SplatValue = 0;
2085     // Construct the amalgamated value which can be splatted as this larger
2086     // vector type.
2087     for (const auto &SeqV : Sequence) {
2088       if (!SeqV.isUndef())
2089         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2090                        << (EltIdx * EltBitSize));
2091       EltIdx++;
2092     }
2093 
2094     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2095     // achieve better constant materializion.
2096     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2097       SplatValue = SignExtend64(SplatValue, 32);
2098 
2099     // Since we can't introduce illegal i64 types at this stage, we can only
2100     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2101     // way we can use RVV instructions to splat.
2102     assert((ViaIntVT.bitsLE(XLenVT) ||
2103             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2104            "Unexpected bitcast sequence");
2105     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2106       SDValue ViaVL =
2107           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2108       MVT ViaContainerVT =
2109           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2110       SDValue Splat =
2111           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2112                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2113       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2114       return DAG.getBitcast(VT, Splat);
2115     }
2116   }
2117 
2118   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2119   // which constitute a large proportion of the elements. In such cases we can
2120   // splat a vector with the dominant element and make up the shortfall with
2121   // INSERT_VECTOR_ELTs.
2122   // Note that this includes vectors of 2 elements by association. The
2123   // upper-most element is the "dominant" one, allowing us to use a splat to
2124   // "insert" the upper element, and an insert of the lower element at position
2125   // 0, which improves codegen.
2126   SDValue DominantValue;
2127   unsigned MostCommonCount = 0;
2128   DenseMap<SDValue, unsigned> ValueCounts;
2129   unsigned NumUndefElts =
2130       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2131 
2132   // Track the number of scalar loads we know we'd be inserting, estimated as
2133   // any non-zero floating-point constant. Other kinds of element are either
2134   // already in registers or are materialized on demand. The threshold at which
2135   // a vector load is more desirable than several scalar materializion and
2136   // vector-insertion instructions is not known.
2137   unsigned NumScalarLoads = 0;
2138 
2139   for (SDValue V : Op->op_values()) {
2140     if (V.isUndef())
2141       continue;
2142 
2143     ValueCounts.insert(std::make_pair(V, 0));
2144     unsigned &Count = ValueCounts[V];
2145 
2146     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2147       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2148 
2149     // Is this value dominant? In case of a tie, prefer the highest element as
2150     // it's cheaper to insert near the beginning of a vector than it is at the
2151     // end.
2152     if (++Count >= MostCommonCount) {
2153       DominantValue = V;
2154       MostCommonCount = Count;
2155     }
2156   }
2157 
2158   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2159   unsigned NumDefElts = NumElts - NumUndefElts;
2160   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2161 
2162   // Don't perform this optimization when optimizing for size, since
2163   // materializing elements and inserting them tends to cause code bloat.
2164   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2165       ((MostCommonCount > DominantValueCountThreshold) ||
2166        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2167     // Start by splatting the most common element.
2168     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2169 
2170     DenseSet<SDValue> Processed{DominantValue};
2171     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2172     for (const auto &OpIdx : enumerate(Op->ops())) {
2173       const SDValue &V = OpIdx.value();
2174       if (V.isUndef() || !Processed.insert(V).second)
2175         continue;
2176       if (ValueCounts[V] == 1) {
2177         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2178                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2179       } else {
2180         // Blend in all instances of this value using a VSELECT, using a
2181         // mask where each bit signals whether that element is the one
2182         // we're after.
2183         SmallVector<SDValue> Ops;
2184         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2185           return DAG.getConstant(V == V1, DL, XLenVT);
2186         });
2187         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2188                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2189                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2190       }
2191     }
2192 
2193     return Vec;
2194   }
2195 
2196   return SDValue();
2197 }
2198 
2199 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
2200                                    SDValue Hi, SDValue VL, SelectionDAG &DAG) {
2201   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2202     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2203     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2204     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2205     // node in order to try and match RVV vector/scalar instructions.
2206     if ((LoC >> 31) == HiC)
2207       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
2208   }
2209 
2210   // Fall back to a stack store and stride x0 vector load.
2211   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
2212 }
2213 
2214 // Called by type legalization to handle splat of i64 on RV32.
2215 // FIXME: We can optimize this when the type has sign or zero bits in one
2216 // of the halves.
2217 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
2218                                    SDValue VL, SelectionDAG &DAG) {
2219   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2220   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2221                            DAG.getConstant(0, DL, MVT::i32));
2222   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2223                            DAG.getConstant(1, DL, MVT::i32));
2224   return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
2225 }
2226 
2227 // This function lowers a splat of a scalar operand Splat with the vector
2228 // length VL. It ensures the final sequence is type legal, which is useful when
2229 // lowering a splat after type legalization.
2230 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
2231                                 SelectionDAG &DAG,
2232                                 const RISCVSubtarget &Subtarget) {
2233   if (VT.isFloatingPoint())
2234     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
2235 
2236   MVT XLenVT = Subtarget.getXLenVT();
2237 
2238   // Simplest case is that the operand needs to be promoted to XLenVT.
2239   if (Scalar.getValueType().bitsLE(XLenVT)) {
2240     // If the operand is a constant, sign extend to increase our chances
2241     // of being able to use a .vi instruction. ANY_EXTEND would become a
2242     // a zero extend and the simm5 check in isel would fail.
2243     // FIXME: Should we ignore the upper bits in isel instead?
2244     unsigned ExtOpc =
2245         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2246     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2247     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
2248   }
2249 
2250   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2251          "Unexpected scalar for splat lowering!");
2252 
2253   // Otherwise use the more complicated splatting algorithm.
2254   return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
2255 }
2256 
2257 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2258                                    const RISCVSubtarget &Subtarget) {
2259   SDValue V1 = Op.getOperand(0);
2260   SDValue V2 = Op.getOperand(1);
2261   SDLoc DL(Op);
2262   MVT XLenVT = Subtarget.getXLenVT();
2263   MVT VT = Op.getSimpleValueType();
2264   unsigned NumElts = VT.getVectorNumElements();
2265   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2266 
2267   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2268 
2269   SDValue TrueMask, VL;
2270   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2271 
2272   if (SVN->isSplat()) {
2273     const int Lane = SVN->getSplatIndex();
2274     if (Lane >= 0) {
2275       MVT SVT = VT.getVectorElementType();
2276 
2277       // Turn splatted vector load into a strided load with an X0 stride.
2278       SDValue V = V1;
2279       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2280       // with undef.
2281       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2282       int Offset = Lane;
2283       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2284         int OpElements =
2285             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2286         V = V.getOperand(Offset / OpElements);
2287         Offset %= OpElements;
2288       }
2289 
2290       // We need to ensure the load isn't atomic or volatile.
2291       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2292         auto *Ld = cast<LoadSDNode>(V);
2293         Offset *= SVT.getStoreSize();
2294         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2295                                                    TypeSize::Fixed(Offset), DL);
2296 
2297         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2298         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2299           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2300           SDValue IntID =
2301               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2302           SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
2303                            DAG.getRegister(RISCV::X0, XLenVT), VL};
2304           SDValue NewLoad = DAG.getMemIntrinsicNode(
2305               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2306               DAG.getMachineFunction().getMachineMemOperand(
2307                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2308           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2309           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2310         }
2311 
2312         // Otherwise use a scalar load and splat. This will give the best
2313         // opportunity to fold a splat into the operation. ISel can turn it into
2314         // the x0 strided load if we aren't able to fold away the select.
2315         if (SVT.isFloatingPoint())
2316           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2317                           Ld->getPointerInfo().getWithOffset(Offset),
2318                           Ld->getOriginalAlign(),
2319                           Ld->getMemOperand()->getFlags());
2320         else
2321           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2322                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2323                              Ld->getOriginalAlign(),
2324                              Ld->getMemOperand()->getFlags());
2325         DAG.makeEquivalentMemoryOrdering(Ld, V);
2326 
2327         unsigned Opc =
2328             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2329         SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
2330         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2331       }
2332 
2333       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2334       assert(Lane < (int)NumElts && "Unexpected lane!");
2335       SDValue Gather =
2336           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2337                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2338       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2339     }
2340   }
2341 
2342   // Detect shuffles which can be re-expressed as vector selects; these are
2343   // shuffles in which each element in the destination is taken from an element
2344   // at the corresponding index in either source vectors.
2345   bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
2346     int MaskIndex = MaskIdx.value();
2347     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2348   });
2349 
2350   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2351 
2352   SmallVector<SDValue> MaskVals;
2353   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2354   // merged with a second vrgather.
2355   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2356 
2357   // By default we preserve the original operand order, and use a mask to
2358   // select LHS as true and RHS as false. However, since RVV vector selects may
2359   // feature splats but only on the LHS, we may choose to invert our mask and
2360   // instead select between RHS and LHS.
2361   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2362   bool InvertMask = IsSelect == SwapOps;
2363 
2364   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2365   // half.
2366   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2367 
2368   // Now construct the mask that will be used by the vselect or blended
2369   // vrgather operation. For vrgathers, construct the appropriate indices into
2370   // each vector.
2371   for (int MaskIndex : SVN->getMask()) {
2372     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2373     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2374     if (!IsSelect) {
2375       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2376       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2377                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2378                                      : DAG.getUNDEF(XLenVT));
2379       GatherIndicesRHS.push_back(
2380           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2381                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2382       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2383         ++LHSIndexCounts[MaskIndex];
2384       if (!IsLHSOrUndefIndex)
2385         ++RHSIndexCounts[MaskIndex - NumElts];
2386     }
2387   }
2388 
2389   if (SwapOps) {
2390     std::swap(V1, V2);
2391     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2392   }
2393 
2394   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2395   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2396   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2397 
2398   if (IsSelect)
2399     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2400 
2401   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2402     // On such a large vector we're unable to use i8 as the index type.
2403     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2404     // may involve vector splitting if we're already at LMUL=8, or our
2405     // user-supplied maximum fixed-length LMUL.
2406     return SDValue();
2407   }
2408 
2409   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2410   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2411   MVT IndexVT = VT.changeTypeToInteger();
2412   // Since we can't introduce illegal index types at this stage, use i16 and
2413   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2414   // than XLenVT.
2415   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2416     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2417     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2418   }
2419 
2420   MVT IndexContainerVT =
2421       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2422 
2423   SDValue Gather;
2424   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2425   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2426   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2427     Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
2428   } else {
2429     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2430     // If only one index is used, we can use a "splat" vrgather.
2431     // TODO: We can splat the most-common index and fix-up any stragglers, if
2432     // that's beneficial.
2433     if (LHSIndexCounts.size() == 1) {
2434       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2435       Gather =
2436           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2437                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2438     } else {
2439       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2440       LHSIndices =
2441           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2442 
2443       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2444                            TrueMask, VL);
2445     }
2446   }
2447 
2448   // If a second vector operand is used by this shuffle, blend it in with an
2449   // additional vrgather.
2450   if (!V2.isUndef()) {
2451     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2452     // If only one index is used, we can use a "splat" vrgather.
2453     // TODO: We can splat the most-common index and fix-up any stragglers, if
2454     // that's beneficial.
2455     if (RHSIndexCounts.size() == 1) {
2456       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2457       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2458                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2459     } else {
2460       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2461       RHSIndices =
2462           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2463       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2464                        VL);
2465     }
2466 
2467     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2468     SelectMask =
2469         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2470 
2471     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2472                          Gather, VL);
2473   }
2474 
2475   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2476 }
2477 
2478 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2479                                      SDLoc DL, SelectionDAG &DAG,
2480                                      const RISCVSubtarget &Subtarget) {
2481   if (VT.isScalableVector())
2482     return DAG.getFPExtendOrRound(Op, DL, VT);
2483   assert(VT.isFixedLengthVector() &&
2484          "Unexpected value type for RVV FP extend/round lowering");
2485   SDValue Mask, VL;
2486   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2487   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2488                         ? RISCVISD::FP_EXTEND_VL
2489                         : RISCVISD::FP_ROUND_VL;
2490   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2491 }
2492 
2493 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2494 // the exponent.
2495 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2496   MVT VT = Op.getSimpleValueType();
2497   unsigned EltSize = VT.getScalarSizeInBits();
2498   SDValue Src = Op.getOperand(0);
2499   SDLoc DL(Op);
2500 
2501   // We need a FP type that can represent the value.
2502   // TODO: Use f16 for i8 when possible?
2503   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2504   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2505 
2506   // Legal types should have been checked in the RISCVTargetLowering
2507   // constructor.
2508   // TODO: Splitting may make sense in some cases.
2509   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2510          "Expected legal float type!");
2511 
2512   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2513   // The trailing zero count is equal to log2 of this single bit value.
2514   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2515     SDValue Neg =
2516         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2517     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2518   }
2519 
2520   // We have a legal FP type, convert to it.
2521   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2522   // Bitcast to integer and shift the exponent to the LSB.
2523   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2524   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2525   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2526   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2527                               DAG.getConstant(ShiftAmt, DL, IntVT));
2528   // Truncate back to original type to allow vnsrl.
2529   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2530   // The exponent contains log2 of the value in biased form.
2531   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2532 
2533   // For trailing zeros, we just need to subtract the bias.
2534   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2535     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2536                        DAG.getConstant(ExponentBias, DL, VT));
2537 
2538   // For leading zeros, we need to remove the bias and convert from log2 to
2539   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2540   unsigned Adjust = ExponentBias + (EltSize - 1);
2541   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2542 }
2543 
2544 // While RVV has alignment restrictions, we should always be able to load as a
2545 // legal equivalently-sized byte-typed vector instead. This method is
2546 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2547 // the load is already correctly-aligned, it returns SDValue().
2548 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2549                                                     SelectionDAG &DAG) const {
2550   auto *Load = cast<LoadSDNode>(Op);
2551   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2552 
2553   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2554                                      Load->getMemoryVT(),
2555                                      *Load->getMemOperand()))
2556     return SDValue();
2557 
2558   SDLoc DL(Op);
2559   MVT VT = Op.getSimpleValueType();
2560   unsigned EltSizeBits = VT.getScalarSizeInBits();
2561   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2562          "Unexpected unaligned RVV load type");
2563   MVT NewVT =
2564       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2565   assert(NewVT.isValid() &&
2566          "Expecting equally-sized RVV vector types to be legal");
2567   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2568                           Load->getPointerInfo(), Load->getOriginalAlign(),
2569                           Load->getMemOperand()->getFlags());
2570   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2571 }
2572 
2573 // While RVV has alignment restrictions, we should always be able to store as a
2574 // legal equivalently-sized byte-typed vector instead. This method is
2575 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2576 // returns SDValue() if the store is already correctly aligned.
2577 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2578                                                      SelectionDAG &DAG) const {
2579   auto *Store = cast<StoreSDNode>(Op);
2580   assert(Store && Store->getValue().getValueType().isVector() &&
2581          "Expected vector store");
2582 
2583   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2584                                      Store->getMemoryVT(),
2585                                      *Store->getMemOperand()))
2586     return SDValue();
2587 
2588   SDLoc DL(Op);
2589   SDValue StoredVal = Store->getValue();
2590   MVT VT = StoredVal.getSimpleValueType();
2591   unsigned EltSizeBits = VT.getScalarSizeInBits();
2592   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2593          "Unexpected unaligned RVV store type");
2594   MVT NewVT =
2595       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2596   assert(NewVT.isValid() &&
2597          "Expecting equally-sized RVV vector types to be legal");
2598   StoredVal = DAG.getBitcast(NewVT, StoredVal);
2599   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2600                       Store->getPointerInfo(), Store->getOriginalAlign(),
2601                       Store->getMemOperand()->getFlags());
2602 }
2603 
2604 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2605                                             SelectionDAG &DAG) const {
2606   switch (Op.getOpcode()) {
2607   default:
2608     report_fatal_error("unimplemented operand");
2609   case ISD::GlobalAddress:
2610     return lowerGlobalAddress(Op, DAG);
2611   case ISD::BlockAddress:
2612     return lowerBlockAddress(Op, DAG);
2613   case ISD::ConstantPool:
2614     return lowerConstantPool(Op, DAG);
2615   case ISD::JumpTable:
2616     return lowerJumpTable(Op, DAG);
2617   case ISD::GlobalTLSAddress:
2618     return lowerGlobalTLSAddress(Op, DAG);
2619   case ISD::SELECT:
2620     return lowerSELECT(Op, DAG);
2621   case ISD::BRCOND:
2622     return lowerBRCOND(Op, DAG);
2623   case ISD::VASTART:
2624     return lowerVASTART(Op, DAG);
2625   case ISD::FRAMEADDR:
2626     return lowerFRAMEADDR(Op, DAG);
2627   case ISD::RETURNADDR:
2628     return lowerRETURNADDR(Op, DAG);
2629   case ISD::SHL_PARTS:
2630     return lowerShiftLeftParts(Op, DAG);
2631   case ISD::SRA_PARTS:
2632     return lowerShiftRightParts(Op, DAG, true);
2633   case ISD::SRL_PARTS:
2634     return lowerShiftRightParts(Op, DAG, false);
2635   case ISD::BITCAST: {
2636     SDLoc DL(Op);
2637     EVT VT = Op.getValueType();
2638     SDValue Op0 = Op.getOperand(0);
2639     EVT Op0VT = Op0.getValueType();
2640     MVT XLenVT = Subtarget.getXLenVT();
2641     if (VT.isFixedLengthVector()) {
2642       // We can handle fixed length vector bitcasts with a simple replacement
2643       // in isel.
2644       if (Op0VT.isFixedLengthVector())
2645         return Op;
2646       // When bitcasting from scalar to fixed-length vector, insert the scalar
2647       // into a one-element vector of the result type, and perform a vector
2648       // bitcast.
2649       if (!Op0VT.isVector()) {
2650         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2651         if (!isTypeLegal(BVT))
2652           return SDValue();
2653         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2654                                               DAG.getUNDEF(BVT), Op0,
2655                                               DAG.getConstant(0, DL, XLenVT)));
2656       }
2657       return SDValue();
2658     }
2659     // Custom-legalize bitcasts from fixed-length vector types to scalar types
2660     // thus: bitcast the vector to a one-element vector type whose element type
2661     // is the same as the result type, and extract the first element.
2662     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2663       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
2664       if (!isTypeLegal(BVT))
2665         return SDValue();
2666       SDValue BVec = DAG.getBitcast(BVT, Op0);
2667       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2668                          DAG.getConstant(0, DL, XLenVT));
2669     }
2670     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2671       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2672       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2673       return FPConv;
2674     }
2675     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2676         Subtarget.hasStdExtF()) {
2677       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2678       SDValue FPConv =
2679           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2680       return FPConv;
2681     }
2682     return SDValue();
2683   }
2684   case ISD::INTRINSIC_WO_CHAIN:
2685     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2686   case ISD::INTRINSIC_W_CHAIN:
2687     return LowerINTRINSIC_W_CHAIN(Op, DAG);
2688   case ISD::INTRINSIC_VOID:
2689     return LowerINTRINSIC_VOID(Op, DAG);
2690   case ISD::BSWAP:
2691   case ISD::BITREVERSE: {
2692     // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2693     assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2694     MVT VT = Op.getSimpleValueType();
2695     SDLoc DL(Op);
2696     // Start with the maximum immediate value which is the bitwidth - 1.
2697     unsigned Imm = VT.getSizeInBits() - 1;
2698     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2699     if (Op.getOpcode() == ISD::BSWAP)
2700       Imm &= ~0x7U;
2701     return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2702                        DAG.getConstant(Imm, DL, VT));
2703   }
2704   case ISD::FSHL:
2705   case ISD::FSHR: {
2706     MVT VT = Op.getSimpleValueType();
2707     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2708     SDLoc DL(Op);
2709     if (Op.getOperand(2).getOpcode() == ISD::Constant)
2710       return Op;
2711     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2712     // use log(XLen) bits. Mask the shift amount accordingly.
2713     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2714     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2715                                 DAG.getConstant(ShAmtWidth, DL, VT));
2716     unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2717     return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2718   }
2719   case ISD::TRUNCATE: {
2720     SDLoc DL(Op);
2721     MVT VT = Op.getSimpleValueType();
2722     // Only custom-lower vector truncates
2723     if (!VT.isVector())
2724       return Op;
2725 
2726     // Truncates to mask types are handled differently
2727     if (VT.getVectorElementType() == MVT::i1)
2728       return lowerVectorMaskTrunc(Op, DAG);
2729 
2730     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2731     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2732     // truncate by one power of two at a time.
2733     MVT DstEltVT = VT.getVectorElementType();
2734 
2735     SDValue Src = Op.getOperand(0);
2736     MVT SrcVT = Src.getSimpleValueType();
2737     MVT SrcEltVT = SrcVT.getVectorElementType();
2738 
2739     assert(DstEltVT.bitsLT(SrcEltVT) &&
2740            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2741            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2742            "Unexpected vector truncate lowering");
2743 
2744     MVT ContainerVT = SrcVT;
2745     if (SrcVT.isFixedLengthVector()) {
2746       ContainerVT = getContainerForFixedLengthVector(SrcVT);
2747       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2748     }
2749 
2750     SDValue Result = Src;
2751     SDValue Mask, VL;
2752     std::tie(Mask, VL) =
2753         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2754     LLVMContext &Context = *DAG.getContext();
2755     const ElementCount Count = ContainerVT.getVectorElementCount();
2756     do {
2757       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2758       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2759       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2760                            Mask, VL);
2761     } while (SrcEltVT != DstEltVT);
2762 
2763     if (SrcVT.isFixedLengthVector())
2764       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2765 
2766     return Result;
2767   }
2768   case ISD::ANY_EXTEND:
2769   case ISD::ZERO_EXTEND:
2770     if (Op.getOperand(0).getValueType().isVector() &&
2771         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2772       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2773     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2774   case ISD::SIGN_EXTEND:
2775     if (Op.getOperand(0).getValueType().isVector() &&
2776         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2777       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2778     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2779   case ISD::SPLAT_VECTOR_PARTS:
2780     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2781   case ISD::INSERT_VECTOR_ELT:
2782     return lowerINSERT_VECTOR_ELT(Op, DAG);
2783   case ISD::EXTRACT_VECTOR_ELT:
2784     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2785   case ISD::VSCALE: {
2786     MVT VT = Op.getSimpleValueType();
2787     SDLoc DL(Op);
2788     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2789     // We define our scalable vector types for lmul=1 to use a 64 bit known
2790     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2791     // vscale as VLENB / 8.
2792     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
2793     if (isa<ConstantSDNode>(Op.getOperand(0))) {
2794       // We assume VLENB is a multiple of 8. We manually choose the best shift
2795       // here because SimplifyDemandedBits isn't always able to simplify it.
2796       uint64_t Val = Op.getConstantOperandVal(0);
2797       if (isPowerOf2_64(Val)) {
2798         uint64_t Log2 = Log2_64(Val);
2799         if (Log2 < 3)
2800           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2801                              DAG.getConstant(3 - Log2, DL, VT));
2802         if (Log2 > 3)
2803           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2804                              DAG.getConstant(Log2 - 3, DL, VT));
2805         return VLENB;
2806       }
2807       // If the multiplier is a multiple of 8, scale it down to avoid needing
2808       // to shift the VLENB value.
2809       if ((Val % 8) == 0)
2810         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2811                            DAG.getConstant(Val / 8, DL, VT));
2812     }
2813 
2814     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2815                                  DAG.getConstant(3, DL, VT));
2816     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2817   }
2818   case ISD::FPOWI: {
2819     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
2820     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
2821     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
2822         Op.getOperand(1).getValueType() == MVT::i32) {
2823       SDLoc DL(Op);
2824       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
2825       SDValue Powi =
2826           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
2827       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
2828                          DAG.getIntPtrConstant(0, DL));
2829     }
2830     return SDValue();
2831   }
2832   case ISD::FP_EXTEND: {
2833     // RVV can only do fp_extend to types double the size as the source. We
2834     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2835     // via f32.
2836     SDLoc DL(Op);
2837     MVT VT = Op.getSimpleValueType();
2838     SDValue Src = Op.getOperand(0);
2839     MVT SrcVT = Src.getSimpleValueType();
2840 
2841     // Prepare any fixed-length vector operands.
2842     MVT ContainerVT = VT;
2843     if (SrcVT.isFixedLengthVector()) {
2844       ContainerVT = getContainerForFixedLengthVector(VT);
2845       MVT SrcContainerVT =
2846           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2847       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2848     }
2849 
2850     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2851         SrcVT.getVectorElementType() != MVT::f16) {
2852       // For scalable vectors, we only need to close the gap between
2853       // vXf16->vXf64.
2854       if (!VT.isFixedLengthVector())
2855         return Op;
2856       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2857       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2858       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2859     }
2860 
2861     MVT InterVT = VT.changeVectorElementType(MVT::f32);
2862     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2863     SDValue IntermediateExtend = getRVVFPExtendOrRound(
2864         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2865 
2866     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2867                                            DL, DAG, Subtarget);
2868     if (VT.isFixedLengthVector())
2869       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2870     return Extend;
2871   }
2872   case ISD::FP_ROUND: {
2873     // RVV can only do fp_round to types half the size as the source. We
2874     // custom-lower f64->f16 rounds via RVV's round-to-odd float
2875     // conversion instruction.
2876     SDLoc DL(Op);
2877     MVT VT = Op.getSimpleValueType();
2878     SDValue Src = Op.getOperand(0);
2879     MVT SrcVT = Src.getSimpleValueType();
2880 
2881     // Prepare any fixed-length vector operands.
2882     MVT ContainerVT = VT;
2883     if (VT.isFixedLengthVector()) {
2884       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2885       ContainerVT =
2886           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2887       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2888     }
2889 
2890     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2891         SrcVT.getVectorElementType() != MVT::f64) {
2892       // For scalable vectors, we only need to close the gap between
2893       // vXf64<->vXf16.
2894       if (!VT.isFixedLengthVector())
2895         return Op;
2896       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2897       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2898       return convertFromScalableVector(VT, Src, DAG, Subtarget);
2899     }
2900 
2901     SDValue Mask, VL;
2902     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2903 
2904     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2905     SDValue IntermediateRound =
2906         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2907     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2908                                           DL, DAG, Subtarget);
2909 
2910     if (VT.isFixedLengthVector())
2911       return convertFromScalableVector(VT, Round, DAG, Subtarget);
2912     return Round;
2913   }
2914   case ISD::FP_TO_SINT:
2915   case ISD::FP_TO_UINT:
2916   case ISD::SINT_TO_FP:
2917   case ISD::UINT_TO_FP: {
2918     // RVV can only do fp<->int conversions to types half/double the size as
2919     // the source. We custom-lower any conversions that do two hops into
2920     // sequences.
2921     MVT VT = Op.getSimpleValueType();
2922     if (!VT.isVector())
2923       return Op;
2924     SDLoc DL(Op);
2925     SDValue Src = Op.getOperand(0);
2926     MVT EltVT = VT.getVectorElementType();
2927     MVT SrcVT = Src.getSimpleValueType();
2928     MVT SrcEltVT = SrcVT.getVectorElementType();
2929     unsigned EltSize = EltVT.getSizeInBits();
2930     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2931     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2932            "Unexpected vector element types");
2933 
2934     bool IsInt2FP = SrcEltVT.isInteger();
2935     // Widening conversions
2936     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2937       if (IsInt2FP) {
2938         // Do a regular integer sign/zero extension then convert to float.
2939         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2940                                       VT.getVectorElementCount());
2941         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2942                                  ? ISD::ZERO_EXTEND
2943                                  : ISD::SIGN_EXTEND;
2944         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2945         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2946       }
2947       // FP2Int
2948       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2949       // Do one doubling fp_extend then complete the operation by converting
2950       // to int.
2951       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2952       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2953       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2954     }
2955 
2956     // Narrowing conversions
2957     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2958       if (IsInt2FP) {
2959         // One narrowing int_to_fp, then an fp_round.
2960         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2961         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2962         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2963         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2964       }
2965       // FP2Int
2966       // One narrowing fp_to_int, then truncate the integer. If the float isn't
2967       // representable by the integer, the result is poison.
2968       MVT IVecVT =
2969           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2970                            VT.getVectorElementCount());
2971       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2972       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2973     }
2974 
2975     // Scalable vectors can exit here. Patterns will handle equally-sized
2976     // conversions halving/doubling ones.
2977     if (!VT.isFixedLengthVector())
2978       return Op;
2979 
2980     // For fixed-length vectors we lower to a custom "VL" node.
2981     unsigned RVVOpc = 0;
2982     switch (Op.getOpcode()) {
2983     default:
2984       llvm_unreachable("Impossible opcode");
2985     case ISD::FP_TO_SINT:
2986       RVVOpc = RISCVISD::FP_TO_SINT_VL;
2987       break;
2988     case ISD::FP_TO_UINT:
2989       RVVOpc = RISCVISD::FP_TO_UINT_VL;
2990       break;
2991     case ISD::SINT_TO_FP:
2992       RVVOpc = RISCVISD::SINT_TO_FP_VL;
2993       break;
2994     case ISD::UINT_TO_FP:
2995       RVVOpc = RISCVISD::UINT_TO_FP_VL;
2996       break;
2997     }
2998 
2999     MVT ContainerVT, SrcContainerVT;
3000     // Derive the reference container type from the larger vector type.
3001     if (SrcEltSize > EltSize) {
3002       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3003       ContainerVT =
3004           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3005     } else {
3006       ContainerVT = getContainerForFixedLengthVector(VT);
3007       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3008     }
3009 
3010     SDValue Mask, VL;
3011     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3012 
3013     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3014     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3015     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3016   }
3017   case ISD::FP_TO_SINT_SAT:
3018   case ISD::FP_TO_UINT_SAT:
3019     return lowerFP_TO_INT_SAT(Op, DAG);
3020   case ISD::FTRUNC:
3021   case ISD::FCEIL:
3022   case ISD::FFLOOR:
3023     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3024   case ISD::VECREDUCE_ADD:
3025   case ISD::VECREDUCE_UMAX:
3026   case ISD::VECREDUCE_SMAX:
3027   case ISD::VECREDUCE_UMIN:
3028   case ISD::VECREDUCE_SMIN:
3029     return lowerVECREDUCE(Op, DAG);
3030   case ISD::VECREDUCE_AND:
3031   case ISD::VECREDUCE_OR:
3032   case ISD::VECREDUCE_XOR:
3033     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3034       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3035     return lowerVECREDUCE(Op, DAG);
3036   case ISD::VECREDUCE_FADD:
3037   case ISD::VECREDUCE_SEQ_FADD:
3038   case ISD::VECREDUCE_FMIN:
3039   case ISD::VECREDUCE_FMAX:
3040     return lowerFPVECREDUCE(Op, DAG);
3041   case ISD::VP_REDUCE_ADD:
3042   case ISD::VP_REDUCE_UMAX:
3043   case ISD::VP_REDUCE_SMAX:
3044   case ISD::VP_REDUCE_UMIN:
3045   case ISD::VP_REDUCE_SMIN:
3046   case ISD::VP_REDUCE_FADD:
3047   case ISD::VP_REDUCE_SEQ_FADD:
3048   case ISD::VP_REDUCE_FMIN:
3049   case ISD::VP_REDUCE_FMAX:
3050     return lowerVPREDUCE(Op, DAG);
3051   case ISD::VP_REDUCE_AND:
3052   case ISD::VP_REDUCE_OR:
3053   case ISD::VP_REDUCE_XOR:
3054     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3055       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3056     return lowerVPREDUCE(Op, DAG);
3057   case ISD::INSERT_SUBVECTOR:
3058     return lowerINSERT_SUBVECTOR(Op, DAG);
3059   case ISD::EXTRACT_SUBVECTOR:
3060     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3061   case ISD::STEP_VECTOR:
3062     return lowerSTEP_VECTOR(Op, DAG);
3063   case ISD::VECTOR_REVERSE:
3064     return lowerVECTOR_REVERSE(Op, DAG);
3065   case ISD::BUILD_VECTOR:
3066     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3067   case ISD::SPLAT_VECTOR:
3068     if (Op.getValueType().getVectorElementType() == MVT::i1)
3069       return lowerVectorMaskSplat(Op, DAG);
3070     return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
3071   case ISD::VECTOR_SHUFFLE:
3072     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3073   case ISD::CONCAT_VECTORS: {
3074     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3075     // better than going through the stack, as the default expansion does.
3076     SDLoc DL(Op);
3077     MVT VT = Op.getSimpleValueType();
3078     unsigned NumOpElts =
3079         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3080     SDValue Vec = DAG.getUNDEF(VT);
3081     for (const auto &OpIdx : enumerate(Op->ops()))
3082       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
3083                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3084     return Vec;
3085   }
3086   case ISD::LOAD:
3087     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3088       return V;
3089     if (Op.getValueType().isFixedLengthVector())
3090       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3091     return Op;
3092   case ISD::STORE:
3093     if (auto V = expandUnalignedRVVStore(Op, DAG))
3094       return V;
3095     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3096       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3097     return Op;
3098   case ISD::MLOAD:
3099   case ISD::VP_LOAD:
3100     return lowerMaskedLoad(Op, DAG);
3101   case ISD::MSTORE:
3102   case ISD::VP_STORE:
3103     return lowerMaskedStore(Op, DAG);
3104   case ISD::SETCC:
3105     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3106   case ISD::ADD:
3107     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3108   case ISD::SUB:
3109     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3110   case ISD::MUL:
3111     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3112   case ISD::MULHS:
3113     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3114   case ISD::MULHU:
3115     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3116   case ISD::AND:
3117     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3118                                               RISCVISD::AND_VL);
3119   case ISD::OR:
3120     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3121                                               RISCVISD::OR_VL);
3122   case ISD::XOR:
3123     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3124                                               RISCVISD::XOR_VL);
3125   case ISD::SDIV:
3126     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3127   case ISD::SREM:
3128     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3129   case ISD::UDIV:
3130     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3131   case ISD::UREM:
3132     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3133   case ISD::SHL:
3134   case ISD::SRA:
3135   case ISD::SRL:
3136     if (Op.getSimpleValueType().isFixedLengthVector())
3137       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3138     // This can be called for an i32 shift amount that needs to be promoted.
3139     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3140            "Unexpected custom legalisation");
3141     return SDValue();
3142   case ISD::SADDSAT:
3143     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3144   case ISD::UADDSAT:
3145     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3146   case ISD::SSUBSAT:
3147     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3148   case ISD::USUBSAT:
3149     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3150   case ISD::FADD:
3151     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3152   case ISD::FSUB:
3153     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3154   case ISD::FMUL:
3155     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3156   case ISD::FDIV:
3157     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3158   case ISD::FNEG:
3159     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3160   case ISD::FABS:
3161     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3162   case ISD::FSQRT:
3163     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3164   case ISD::FMA:
3165     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3166   case ISD::SMIN:
3167     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3168   case ISD::SMAX:
3169     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3170   case ISD::UMIN:
3171     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3172   case ISD::UMAX:
3173     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3174   case ISD::FMINNUM:
3175     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3176   case ISD::FMAXNUM:
3177     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3178   case ISD::ABS:
3179     return lowerABS(Op, DAG);
3180   case ISD::CTLZ_ZERO_UNDEF:
3181   case ISD::CTTZ_ZERO_UNDEF:
3182     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3183   case ISD::VSELECT:
3184     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3185   case ISD::FCOPYSIGN:
3186     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3187   case ISD::MGATHER:
3188   case ISD::VP_GATHER:
3189     return lowerMaskedGather(Op, DAG);
3190   case ISD::MSCATTER:
3191   case ISD::VP_SCATTER:
3192     return lowerMaskedScatter(Op, DAG);
3193   case ISD::FLT_ROUNDS_:
3194     return lowerGET_ROUNDING(Op, DAG);
3195   case ISD::SET_ROUNDING:
3196     return lowerSET_ROUNDING(Op, DAG);
3197   case ISD::VP_SELECT:
3198     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3199   case ISD::VP_ADD:
3200     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3201   case ISD::VP_SUB:
3202     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3203   case ISD::VP_MUL:
3204     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3205   case ISD::VP_SDIV:
3206     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3207   case ISD::VP_UDIV:
3208     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3209   case ISD::VP_SREM:
3210     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3211   case ISD::VP_UREM:
3212     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3213   case ISD::VP_AND:
3214     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3215   case ISD::VP_OR:
3216     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3217   case ISD::VP_XOR:
3218     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3219   case ISD::VP_ASHR:
3220     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3221   case ISD::VP_LSHR:
3222     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3223   case ISD::VP_SHL:
3224     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3225   case ISD::VP_FADD:
3226     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3227   case ISD::VP_FSUB:
3228     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3229   case ISD::VP_FMUL:
3230     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3231   case ISD::VP_FDIV:
3232     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3233   }
3234 }
3235 
3236 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3237                              SelectionDAG &DAG, unsigned Flags) {
3238   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3239 }
3240 
3241 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3242                              SelectionDAG &DAG, unsigned Flags) {
3243   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3244                                    Flags);
3245 }
3246 
3247 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3248                              SelectionDAG &DAG, unsigned Flags) {
3249   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3250                                    N->getOffset(), Flags);
3251 }
3252 
3253 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3254                              SelectionDAG &DAG, unsigned Flags) {
3255   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3256 }
3257 
3258 template <class NodeTy>
3259 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3260                                      bool IsLocal) const {
3261   SDLoc DL(N);
3262   EVT Ty = getPointerTy(DAG.getDataLayout());
3263 
3264   if (isPositionIndependent()) {
3265     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3266     if (IsLocal)
3267       // Use PC-relative addressing to access the symbol. This generates the
3268       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3269       // %pcrel_lo(auipc)).
3270       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3271 
3272     // Use PC-relative addressing to access the GOT for this symbol, then load
3273     // the address from the GOT. This generates the pattern (PseudoLA sym),
3274     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3275     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3276   }
3277 
3278   switch (getTargetMachine().getCodeModel()) {
3279   default:
3280     report_fatal_error("Unsupported code model for lowering");
3281   case CodeModel::Small: {
3282     // Generate a sequence for accessing addresses within the first 2 GiB of
3283     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3284     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3285     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3286     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3287     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3288   }
3289   case CodeModel::Medium: {
3290     // Generate a sequence for accessing addresses within any 2GiB range within
3291     // the address space. This generates the pattern (PseudoLLA sym), which
3292     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3293     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3294     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3295   }
3296   }
3297 }
3298 
3299 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3300                                                 SelectionDAG &DAG) const {
3301   SDLoc DL(Op);
3302   EVT Ty = Op.getValueType();
3303   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3304   int64_t Offset = N->getOffset();
3305   MVT XLenVT = Subtarget.getXLenVT();
3306 
3307   const GlobalValue *GV = N->getGlobal();
3308   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3309   SDValue Addr = getAddr(N, DAG, IsLocal);
3310 
3311   // In order to maximise the opportunity for common subexpression elimination,
3312   // emit a separate ADD node for the global address offset instead of folding
3313   // it in the global address node. Later peephole optimisations may choose to
3314   // fold it back in when profitable.
3315   if (Offset != 0)
3316     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3317                        DAG.getConstant(Offset, DL, XLenVT));
3318   return Addr;
3319 }
3320 
3321 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3322                                                SelectionDAG &DAG) const {
3323   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3324 
3325   return getAddr(N, DAG);
3326 }
3327 
3328 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3329                                                SelectionDAG &DAG) const {
3330   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3331 
3332   return getAddr(N, DAG);
3333 }
3334 
3335 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3336                                             SelectionDAG &DAG) const {
3337   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3338 
3339   return getAddr(N, DAG);
3340 }
3341 
3342 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3343                                               SelectionDAG &DAG,
3344                                               bool UseGOT) const {
3345   SDLoc DL(N);
3346   EVT Ty = getPointerTy(DAG.getDataLayout());
3347   const GlobalValue *GV = N->getGlobal();
3348   MVT XLenVT = Subtarget.getXLenVT();
3349 
3350   if (UseGOT) {
3351     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3352     // load the address from the GOT and add the thread pointer. This generates
3353     // the pattern (PseudoLA_TLS_IE sym), which expands to
3354     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3355     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3356     SDValue Load =
3357         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3358 
3359     // Add the thread pointer.
3360     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3361     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3362   }
3363 
3364   // Generate a sequence for accessing the address relative to the thread
3365   // pointer, with the appropriate adjustment for the thread pointer offset.
3366   // This generates the pattern
3367   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3368   SDValue AddrHi =
3369       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3370   SDValue AddrAdd =
3371       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3372   SDValue AddrLo =
3373       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3374 
3375   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3376   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3377   SDValue MNAdd = SDValue(
3378       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3379       0);
3380   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3381 }
3382 
3383 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3384                                                SelectionDAG &DAG) const {
3385   SDLoc DL(N);
3386   EVT Ty = getPointerTy(DAG.getDataLayout());
3387   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3388   const GlobalValue *GV = N->getGlobal();
3389 
3390   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3391   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3392   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3393   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3394   SDValue Load =
3395       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3396 
3397   // Prepare argument list to generate call.
3398   ArgListTy Args;
3399   ArgListEntry Entry;
3400   Entry.Node = Load;
3401   Entry.Ty = CallTy;
3402   Args.push_back(Entry);
3403 
3404   // Setup call to __tls_get_addr.
3405   TargetLowering::CallLoweringInfo CLI(DAG);
3406   CLI.setDebugLoc(DL)
3407       .setChain(DAG.getEntryNode())
3408       .setLibCallee(CallingConv::C, CallTy,
3409                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3410                     std::move(Args));
3411 
3412   return LowerCallTo(CLI).first;
3413 }
3414 
3415 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3416                                                    SelectionDAG &DAG) const {
3417   SDLoc DL(Op);
3418   EVT Ty = Op.getValueType();
3419   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3420   int64_t Offset = N->getOffset();
3421   MVT XLenVT = Subtarget.getXLenVT();
3422 
3423   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3424 
3425   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3426       CallingConv::GHC)
3427     report_fatal_error("In GHC calling convention TLS is not supported");
3428 
3429   SDValue Addr;
3430   switch (Model) {
3431   case TLSModel::LocalExec:
3432     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3433     break;
3434   case TLSModel::InitialExec:
3435     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3436     break;
3437   case TLSModel::LocalDynamic:
3438   case TLSModel::GeneralDynamic:
3439     Addr = getDynamicTLSAddr(N, DAG);
3440     break;
3441   }
3442 
3443   // In order to maximise the opportunity for common subexpression elimination,
3444   // emit a separate ADD node for the global address offset instead of folding
3445   // it in the global address node. Later peephole optimisations may choose to
3446   // fold it back in when profitable.
3447   if (Offset != 0)
3448     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3449                        DAG.getConstant(Offset, DL, XLenVT));
3450   return Addr;
3451 }
3452 
3453 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3454   SDValue CondV = Op.getOperand(0);
3455   SDValue TrueV = Op.getOperand(1);
3456   SDValue FalseV = Op.getOperand(2);
3457   SDLoc DL(Op);
3458   MVT VT = Op.getSimpleValueType();
3459   MVT XLenVT = Subtarget.getXLenVT();
3460 
3461   // Lower vector SELECTs to VSELECTs by splatting the condition.
3462   if (VT.isVector()) {
3463     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3464     SDValue CondSplat = VT.isScalableVector()
3465                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3466                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3467     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3468   }
3469 
3470   // If the result type is XLenVT and CondV is the output of a SETCC node
3471   // which also operated on XLenVT inputs, then merge the SETCC node into the
3472   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3473   // compare+branch instructions. i.e.:
3474   // (select (setcc lhs, rhs, cc), truev, falsev)
3475   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3476   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3477       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3478     SDValue LHS = CondV.getOperand(0);
3479     SDValue RHS = CondV.getOperand(1);
3480     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3481     ISD::CondCode CCVal = CC->get();
3482 
3483     // Special case for a select of 2 constants that have a diffence of 1.
3484     // Normally this is done by DAGCombine, but if the select is introduced by
3485     // type legalization or op legalization, we miss it. Restricting to SETLT
3486     // case for now because that is what signed saturating add/sub need.
3487     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3488     // but we would probably want to swap the true/false values if the condition
3489     // is SETGE/SETLE to avoid an XORI.
3490     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3491         CCVal == ISD::SETLT) {
3492       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3493       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3494       if (TrueVal - 1 == FalseVal)
3495         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3496       if (TrueVal + 1 == FalseVal)
3497         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3498     }
3499 
3500     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3501 
3502     SDValue TargetCC = DAG.getCondCode(CCVal);
3503     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3504     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3505   }
3506 
3507   // Otherwise:
3508   // (select condv, truev, falsev)
3509   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3510   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3511   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3512 
3513   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3514 
3515   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3516 }
3517 
3518 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3519   SDValue CondV = Op.getOperand(1);
3520   SDLoc DL(Op);
3521   MVT XLenVT = Subtarget.getXLenVT();
3522 
3523   if (CondV.getOpcode() == ISD::SETCC &&
3524       CondV.getOperand(0).getValueType() == XLenVT) {
3525     SDValue LHS = CondV.getOperand(0);
3526     SDValue RHS = CondV.getOperand(1);
3527     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3528 
3529     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3530 
3531     SDValue TargetCC = DAG.getCondCode(CCVal);
3532     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3533                        LHS, RHS, TargetCC, Op.getOperand(2));
3534   }
3535 
3536   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3537                      CondV, DAG.getConstant(0, DL, XLenVT),
3538                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3539 }
3540 
3541 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3542   MachineFunction &MF = DAG.getMachineFunction();
3543   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3544 
3545   SDLoc DL(Op);
3546   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3547                                  getPointerTy(MF.getDataLayout()));
3548 
3549   // vastart just stores the address of the VarArgsFrameIndex slot into the
3550   // memory location argument.
3551   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3552   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3553                       MachinePointerInfo(SV));
3554 }
3555 
3556 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3557                                             SelectionDAG &DAG) const {
3558   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3559   MachineFunction &MF = DAG.getMachineFunction();
3560   MachineFrameInfo &MFI = MF.getFrameInfo();
3561   MFI.setFrameAddressIsTaken(true);
3562   Register FrameReg = RI.getFrameRegister(MF);
3563   int XLenInBytes = Subtarget.getXLen() / 8;
3564 
3565   EVT VT = Op.getValueType();
3566   SDLoc DL(Op);
3567   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3568   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3569   while (Depth--) {
3570     int Offset = -(XLenInBytes * 2);
3571     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3572                               DAG.getIntPtrConstant(Offset, DL));
3573     FrameAddr =
3574         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3575   }
3576   return FrameAddr;
3577 }
3578 
3579 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3580                                              SelectionDAG &DAG) const {
3581   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3582   MachineFunction &MF = DAG.getMachineFunction();
3583   MachineFrameInfo &MFI = MF.getFrameInfo();
3584   MFI.setReturnAddressIsTaken(true);
3585   MVT XLenVT = Subtarget.getXLenVT();
3586   int XLenInBytes = Subtarget.getXLen() / 8;
3587 
3588   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3589     return SDValue();
3590 
3591   EVT VT = Op.getValueType();
3592   SDLoc DL(Op);
3593   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3594   if (Depth) {
3595     int Off = -XLenInBytes;
3596     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3597     SDValue Offset = DAG.getConstant(Off, DL, VT);
3598     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3599                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3600                        MachinePointerInfo());
3601   }
3602 
3603   // Return the value of the return address register, marking it an implicit
3604   // live-in.
3605   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3606   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3607 }
3608 
3609 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3610                                                  SelectionDAG &DAG) const {
3611   SDLoc DL(Op);
3612   SDValue Lo = Op.getOperand(0);
3613   SDValue Hi = Op.getOperand(1);
3614   SDValue Shamt = Op.getOperand(2);
3615   EVT VT = Lo.getValueType();
3616 
3617   // if Shamt-XLEN < 0: // Shamt < XLEN
3618   //   Lo = Lo << Shamt
3619   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3620   // else:
3621   //   Lo = 0
3622   //   Hi = Lo << (Shamt-XLEN)
3623 
3624   SDValue Zero = DAG.getConstant(0, DL, VT);
3625   SDValue One = DAG.getConstant(1, DL, VT);
3626   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3627   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3628   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3629   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3630 
3631   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3632   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3633   SDValue ShiftRightLo =
3634       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3635   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3636   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3637   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3638 
3639   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3640 
3641   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3642   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3643 
3644   SDValue Parts[2] = {Lo, Hi};
3645   return DAG.getMergeValues(Parts, DL);
3646 }
3647 
3648 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3649                                                   bool IsSRA) const {
3650   SDLoc DL(Op);
3651   SDValue Lo = Op.getOperand(0);
3652   SDValue Hi = Op.getOperand(1);
3653   SDValue Shamt = Op.getOperand(2);
3654   EVT VT = Lo.getValueType();
3655 
3656   // SRA expansion:
3657   //   if Shamt-XLEN < 0: // Shamt < XLEN
3658   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3659   //     Hi = Hi >>s Shamt
3660   //   else:
3661   //     Lo = Hi >>s (Shamt-XLEN);
3662   //     Hi = Hi >>s (XLEN-1)
3663   //
3664   // SRL expansion:
3665   //   if Shamt-XLEN < 0: // Shamt < XLEN
3666   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3667   //     Hi = Hi >>u Shamt
3668   //   else:
3669   //     Lo = Hi >>u (Shamt-XLEN);
3670   //     Hi = 0;
3671 
3672   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3673 
3674   SDValue Zero = DAG.getConstant(0, DL, VT);
3675   SDValue One = DAG.getConstant(1, DL, VT);
3676   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3677   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3678   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3679   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3680 
3681   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3682   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3683   SDValue ShiftLeftHi =
3684       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3685   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3686   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3687   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3688   SDValue HiFalse =
3689       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3690 
3691   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3692 
3693   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3694   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3695 
3696   SDValue Parts[2] = {Lo, Hi};
3697   return DAG.getMergeValues(Parts, DL);
3698 }
3699 
3700 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3701 // legal equivalently-sized i8 type, so we can use that as a go-between.
3702 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3703                                                   SelectionDAG &DAG) const {
3704   SDLoc DL(Op);
3705   MVT VT = Op.getSimpleValueType();
3706   SDValue SplatVal = Op.getOperand(0);
3707   // All-zeros or all-ones splats are handled specially.
3708   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3709     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3710     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3711   }
3712   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3713     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3714     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3715   }
3716   MVT XLenVT = Subtarget.getXLenVT();
3717   assert(SplatVal.getValueType() == XLenVT &&
3718          "Unexpected type for i1 splat value");
3719   MVT InterVT = VT.changeVectorElementType(MVT::i8);
3720   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3721                          DAG.getConstant(1, DL, XLenVT));
3722   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3723   SDValue Zero = DAG.getConstant(0, DL, InterVT);
3724   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3725 }
3726 
3727 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3728 // illegal (currently only vXi64 RV32).
3729 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3730 // them to SPLAT_VECTOR_I64
3731 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3732                                                      SelectionDAG &DAG) const {
3733   SDLoc DL(Op);
3734   MVT VecVT = Op.getSimpleValueType();
3735   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3736          "Unexpected SPLAT_VECTOR_PARTS lowering");
3737 
3738   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3739   SDValue Lo = Op.getOperand(0);
3740   SDValue Hi = Op.getOperand(1);
3741 
3742   if (VecVT.isFixedLengthVector()) {
3743     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3744     SDLoc DL(Op);
3745     SDValue Mask, VL;
3746     std::tie(Mask, VL) =
3747         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3748 
3749     SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3750     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3751   }
3752 
3753   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3754     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3755     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3756     // If Hi constant is all the same sign bit as Lo, lower this as a custom
3757     // node in order to try and match RVV vector/scalar instructions.
3758     if ((LoC >> 31) == HiC)
3759       return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3760   }
3761 
3762   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3763   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3764       isa<ConstantSDNode>(Hi.getOperand(1)) &&
3765       Hi.getConstantOperandVal(1) == 31)
3766     return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3767 
3768   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3769   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3770                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64));
3771 }
3772 
3773 // Custom-lower extensions from mask vectors by using a vselect either with 1
3774 // for zero/any-extension or -1 for sign-extension:
3775 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3776 // Note that any-extension is lowered identically to zero-extension.
3777 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3778                                                 int64_t ExtTrueVal) const {
3779   SDLoc DL(Op);
3780   MVT VecVT = Op.getSimpleValueType();
3781   SDValue Src = Op.getOperand(0);
3782   // Only custom-lower extensions from mask types
3783   assert(Src.getValueType().isVector() &&
3784          Src.getValueType().getVectorElementType() == MVT::i1);
3785 
3786   MVT XLenVT = Subtarget.getXLenVT();
3787   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3788   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3789 
3790   if (VecVT.isScalableVector()) {
3791     // Be careful not to introduce illegal scalar types at this stage, and be
3792     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3793     // illegal and must be expanded. Since we know that the constants are
3794     // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3795     bool IsRV32E64 =
3796         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3797 
3798     if (!IsRV32E64) {
3799       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3800       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3801     } else {
3802       SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3803       SplatTrueVal =
3804           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3805     }
3806 
3807     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3808   }
3809 
3810   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3811   MVT I1ContainerVT =
3812       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3813 
3814   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3815 
3816   SDValue Mask, VL;
3817   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3818 
3819   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3820   SplatTrueVal =
3821       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3822   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3823                                SplatTrueVal, SplatZero, VL);
3824 
3825   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3826 }
3827 
3828 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3829     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3830   MVT ExtVT = Op.getSimpleValueType();
3831   // Only custom-lower extensions from fixed-length vector types.
3832   if (!ExtVT.isFixedLengthVector())
3833     return Op;
3834   MVT VT = Op.getOperand(0).getSimpleValueType();
3835   // Grab the canonical container type for the extended type. Infer the smaller
3836   // type from that to ensure the same number of vector elements, as we know
3837   // the LMUL will be sufficient to hold the smaller type.
3838   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3839   // Get the extended container type manually to ensure the same number of
3840   // vector elements between source and dest.
3841   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3842                                      ContainerExtVT.getVectorElementCount());
3843 
3844   SDValue Op1 =
3845       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3846 
3847   SDLoc DL(Op);
3848   SDValue Mask, VL;
3849   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3850 
3851   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3852 
3853   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3854 }
3855 
3856 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3857 // setcc operation:
3858 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
3859 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3860                                                   SelectionDAG &DAG) const {
3861   SDLoc DL(Op);
3862   EVT MaskVT = Op.getValueType();
3863   // Only expect to custom-lower truncations to mask types
3864   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3865          "Unexpected type for vector mask lowering");
3866   SDValue Src = Op.getOperand(0);
3867   MVT VecVT = Src.getSimpleValueType();
3868 
3869   // If this is a fixed vector, we need to convert it to a scalable vector.
3870   MVT ContainerVT = VecVT;
3871   if (VecVT.isFixedLengthVector()) {
3872     ContainerVT = getContainerForFixedLengthVector(VecVT);
3873     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3874   }
3875 
3876   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3877   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3878 
3879   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3880   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3881 
3882   if (VecVT.isScalableVector()) {
3883     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3884     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3885   }
3886 
3887   SDValue Mask, VL;
3888   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3889 
3890   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3891   SDValue Trunc =
3892       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3893   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3894                       DAG.getCondCode(ISD::SETNE), Mask, VL);
3895   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3896 }
3897 
3898 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3899 // first position of a vector, and that vector is slid up to the insert index.
3900 // By limiting the active vector length to index+1 and merging with the
3901 // original vector (with an undisturbed tail policy for elements >= VL), we
3902 // achieve the desired result of leaving all elements untouched except the one
3903 // at VL-1, which is replaced with the desired value.
3904 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3905                                                     SelectionDAG &DAG) const {
3906   SDLoc DL(Op);
3907   MVT VecVT = Op.getSimpleValueType();
3908   SDValue Vec = Op.getOperand(0);
3909   SDValue Val = Op.getOperand(1);
3910   SDValue Idx = Op.getOperand(2);
3911 
3912   if (VecVT.getVectorElementType() == MVT::i1) {
3913     // FIXME: For now we just promote to an i8 vector and insert into that,
3914     // but this is probably not optimal.
3915     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3916     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3917     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3918     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3919   }
3920 
3921   MVT ContainerVT = VecVT;
3922   // If the operand is a fixed-length vector, convert to a scalable one.
3923   if (VecVT.isFixedLengthVector()) {
3924     ContainerVT = getContainerForFixedLengthVector(VecVT);
3925     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3926   }
3927 
3928   MVT XLenVT = Subtarget.getXLenVT();
3929 
3930   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3931   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3932   // Even i64-element vectors on RV32 can be lowered without scalar
3933   // legalization if the most-significant 32 bits of the value are not affected
3934   // by the sign-extension of the lower 32 bits.
3935   // TODO: We could also catch sign extensions of a 32-bit value.
3936   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3937     const auto *CVal = cast<ConstantSDNode>(Val);
3938     if (isInt<32>(CVal->getSExtValue())) {
3939       IsLegalInsert = true;
3940       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3941     }
3942   }
3943 
3944   SDValue Mask, VL;
3945   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3946 
3947   SDValue ValInVec;
3948 
3949   if (IsLegalInsert) {
3950     unsigned Opc =
3951         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3952     if (isNullConstant(Idx)) {
3953       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3954       if (!VecVT.isFixedLengthVector())
3955         return Vec;
3956       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3957     }
3958     ValInVec =
3959         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3960   } else {
3961     // On RV32, i64-element vectors must be specially handled to place the
3962     // value at element 0, by using two vslide1up instructions in sequence on
3963     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3964     // this.
3965     SDValue One = DAG.getConstant(1, DL, XLenVT);
3966     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3967     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3968     MVT I32ContainerVT =
3969         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3970     SDValue I32Mask =
3971         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3972     // Limit the active VL to two.
3973     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3974     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3975     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3976     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3977                            InsertI64VL);
3978     // First slide in the hi value, then the lo in underneath it.
3979     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3980                            ValHi, I32Mask, InsertI64VL);
3981     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3982                            ValLo, I32Mask, InsertI64VL);
3983     // Bitcast back to the right container type.
3984     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3985   }
3986 
3987   // Now that the value is in a vector, slide it into position.
3988   SDValue InsertVL =
3989       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3990   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3991                                 ValInVec, Idx, Mask, InsertVL);
3992   if (!VecVT.isFixedLengthVector())
3993     return Slideup;
3994   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3995 }
3996 
3997 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3998 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3999 // types this is done using VMV_X_S to allow us to glean information about the
4000 // sign bits of the result.
4001 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4002                                                      SelectionDAG &DAG) const {
4003   SDLoc DL(Op);
4004   SDValue Idx = Op.getOperand(1);
4005   SDValue Vec = Op.getOperand(0);
4006   EVT EltVT = Op.getValueType();
4007   MVT VecVT = Vec.getSimpleValueType();
4008   MVT XLenVT = Subtarget.getXLenVT();
4009 
4010   if (VecVT.getVectorElementType() == MVT::i1) {
4011     // FIXME: For now we just promote to an i8 vector and extract from that,
4012     // but this is probably not optimal.
4013     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4014     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4015     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4016   }
4017 
4018   // If this is a fixed vector, we need to convert it to a scalable vector.
4019   MVT ContainerVT = VecVT;
4020   if (VecVT.isFixedLengthVector()) {
4021     ContainerVT = getContainerForFixedLengthVector(VecVT);
4022     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4023   }
4024 
4025   // If the index is 0, the vector is already in the right position.
4026   if (!isNullConstant(Idx)) {
4027     // Use a VL of 1 to avoid processing more elements than we need.
4028     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4029     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4030     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4031     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4032                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4033   }
4034 
4035   if (!EltVT.isInteger()) {
4036     // Floating-point extracts are handled in TableGen.
4037     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4038                        DAG.getConstant(0, DL, XLenVT));
4039   }
4040 
4041   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4042   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4043 }
4044 
4045 // Some RVV intrinsics may claim that they want an integer operand to be
4046 // promoted or expanded.
4047 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
4048                                           const RISCVSubtarget &Subtarget) {
4049   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4050           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4051          "Unexpected opcode");
4052 
4053   if (!Subtarget.hasVInstructions())
4054     return SDValue();
4055 
4056   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4057   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4058   SDLoc DL(Op);
4059 
4060   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4061       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4062   if (!II || !II->SplatOperand)
4063     return SDValue();
4064 
4065   unsigned SplatOp = II->SplatOperand + HasChain;
4066   assert(SplatOp < Op.getNumOperands());
4067 
4068   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4069   SDValue &ScalarOp = Operands[SplatOp];
4070   MVT OpVT = ScalarOp.getSimpleValueType();
4071   MVT XLenVT = Subtarget.getXLenVT();
4072 
4073   // If this isn't a scalar, or its type is XLenVT we're done.
4074   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4075     return SDValue();
4076 
4077   // Simplest case is that the operand needs to be promoted to XLenVT.
4078   if (OpVT.bitsLT(XLenVT)) {
4079     // If the operand is a constant, sign extend to increase our chances
4080     // of being able to use a .vi instruction. ANY_EXTEND would become a
4081     // a zero extend and the simm5 check in isel would fail.
4082     // FIXME: Should we ignore the upper bits in isel instead?
4083     unsigned ExtOpc =
4084         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4085     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4086     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4087   }
4088 
4089   // Use the previous operand to get the vXi64 VT. The result might be a mask
4090   // VT for compares. Using the previous operand assumes that the previous
4091   // operand will never have a smaller element size than a scalar operand and
4092   // that a widening operation never uses SEW=64.
4093   // NOTE: If this fails the below assert, we can probably just find the
4094   // element count from any operand or result and use it to construct the VT.
4095   assert(II->SplatOperand > 1 && "Unexpected splat operand!");
4096   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4097 
4098   // The more complex case is when the scalar is larger than XLenVT.
4099   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4100          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4101 
4102   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4103   // on the instruction to sign-extend since SEW>XLEN.
4104   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4105     if (isInt<32>(CVal->getSExtValue())) {
4106       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4107       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4108     }
4109   }
4110 
4111   // We need to convert the scalar to a splat vector.
4112   // FIXME: Can we implicitly truncate the scalar if it is known to
4113   // be sign extended?
4114   // VL should be the last operand.
4115   SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
4116   assert(VL.getValueType() == XLenVT);
4117   ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
4118   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4119 }
4120 
4121 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4122                                                      SelectionDAG &DAG) const {
4123   unsigned IntNo = Op.getConstantOperandVal(0);
4124   SDLoc DL(Op);
4125   MVT XLenVT = Subtarget.getXLenVT();
4126 
4127   switch (IntNo) {
4128   default:
4129     break; // Don't custom lower most intrinsics.
4130   case Intrinsic::thread_pointer: {
4131     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4132     return DAG.getRegister(RISCV::X4, PtrVT);
4133   }
4134   case Intrinsic::riscv_orc_b:
4135     // Lower to the GORCI encoding for orc.b.
4136     return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
4137                        DAG.getConstant(7, DL, XLenVT));
4138   case Intrinsic::riscv_grev:
4139   case Intrinsic::riscv_gorc: {
4140     unsigned Opc =
4141         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4142     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4143   }
4144   case Intrinsic::riscv_shfl:
4145   case Intrinsic::riscv_unshfl: {
4146     unsigned Opc =
4147         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4148     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4149   }
4150   case Intrinsic::riscv_bcompress:
4151   case Intrinsic::riscv_bdecompress: {
4152     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4153                                                        : RISCVISD::BDECOMPRESS;
4154     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4155   }
4156   case Intrinsic::riscv_vmv_x_s:
4157     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4158     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4159                        Op.getOperand(1));
4160   case Intrinsic::riscv_vmv_v_x:
4161     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4162                             Op.getSimpleValueType(), DL, DAG, Subtarget);
4163   case Intrinsic::riscv_vfmv_v_f:
4164     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4165                        Op.getOperand(1), Op.getOperand(2));
4166   case Intrinsic::riscv_vmv_s_x: {
4167     SDValue Scalar = Op.getOperand(2);
4168 
4169     if (Scalar.getValueType().bitsLE(XLenVT)) {
4170       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4171       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4172                          Op.getOperand(1), Scalar, Op.getOperand(3));
4173     }
4174 
4175     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4176 
4177     // This is an i64 value that lives in two scalar registers. We have to
4178     // insert this in a convoluted way. First we build vXi64 splat containing
4179     // the/ two values that we assemble using some bit math. Next we'll use
4180     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4181     // to merge element 0 from our splat into the source vector.
4182     // FIXME: This is probably not the best way to do this, but it is
4183     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4184     // point.
4185     //   sw lo, (a0)
4186     //   sw hi, 4(a0)
4187     //   vlse vX, (a0)
4188     //
4189     //   vid.v      vVid
4190     //   vmseq.vx   mMask, vVid, 0
4191     //   vmerge.vvm vDest, vSrc, vVal, mMask
4192     MVT VT = Op.getSimpleValueType();
4193     SDValue Vec = Op.getOperand(1);
4194     SDValue VL = Op.getOperand(3);
4195 
4196     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
4197     SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4198                                       DAG.getConstant(0, DL, MVT::i32), VL);
4199 
4200     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4201     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4202     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4203     SDValue SelectCond =
4204         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4205                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4206     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4207                        Vec, VL);
4208   }
4209   case Intrinsic::riscv_vslide1up:
4210   case Intrinsic::riscv_vslide1down:
4211   case Intrinsic::riscv_vslide1up_mask:
4212   case Intrinsic::riscv_vslide1down_mask: {
4213     // We need to special case these when the scalar is larger than XLen.
4214     unsigned NumOps = Op.getNumOperands();
4215     bool IsMasked = NumOps == 7;
4216     unsigned OpOffset = IsMasked ? 1 : 0;
4217     SDValue Scalar = Op.getOperand(2 + OpOffset);
4218     if (Scalar.getValueType().bitsLE(XLenVT))
4219       break;
4220 
4221     // Splatting a sign extended constant is fine.
4222     if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
4223       if (isInt<32>(CVal->getSExtValue()))
4224         break;
4225 
4226     MVT VT = Op.getSimpleValueType();
4227     assert(VT.getVectorElementType() == MVT::i64 &&
4228            Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
4229 
4230     // Convert the vector source to the equivalent nxvXi32 vector.
4231     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4232     SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
4233 
4234     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4235                                    DAG.getConstant(0, DL, XLenVT));
4236     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
4237                                    DAG.getConstant(1, DL, XLenVT));
4238 
4239     // Double the VL since we halved SEW.
4240     SDValue VL = Op.getOperand(NumOps - (1 + OpOffset));
4241     SDValue I32VL =
4242         DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4243 
4244     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4245     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
4246 
4247     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4248     // instructions.
4249     if (IntNo == Intrinsic::riscv_vslide1up ||
4250         IntNo == Intrinsic::riscv_vslide1up_mask) {
4251       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
4252                         I32Mask, I32VL);
4253       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
4254                         I32Mask, I32VL);
4255     } else {
4256       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
4257                         I32Mask, I32VL);
4258       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
4259                         I32Mask, I32VL);
4260     }
4261 
4262     // Convert back to nxvXi64.
4263     Vec = DAG.getBitcast(VT, Vec);
4264 
4265     if (!IsMasked)
4266       return Vec;
4267 
4268     // Apply mask after the operation.
4269     SDValue Mask = Op.getOperand(NumOps - 3);
4270     SDValue MaskedOff = Op.getOperand(1);
4271     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
4272   }
4273   }
4274 
4275   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4276 }
4277 
4278 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4279                                                     SelectionDAG &DAG) const {
4280   unsigned IntNo = Op.getConstantOperandVal(1);
4281   switch (IntNo) {
4282   default:
4283     break;
4284   case Intrinsic::riscv_masked_strided_load: {
4285     SDLoc DL(Op);
4286     MVT XLenVT = Subtarget.getXLenVT();
4287 
4288     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4289     // the selection of the masked intrinsics doesn't do this for us.
4290     SDValue Mask = Op.getOperand(5);
4291     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4292 
4293     MVT VT = Op->getSimpleValueType(0);
4294     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4295 
4296     SDValue PassThru = Op.getOperand(2);
4297     if (!IsUnmasked) {
4298       MVT MaskVT =
4299           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4300       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4301       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4302     }
4303 
4304     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4305 
4306     SDValue IntID = DAG.getTargetConstant(
4307         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4308         XLenVT);
4309 
4310     auto *Load = cast<MemIntrinsicSDNode>(Op);
4311     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4312     if (!IsUnmasked)
4313       Ops.push_back(PassThru);
4314     Ops.push_back(Op.getOperand(3)); // Ptr
4315     Ops.push_back(Op.getOperand(4)); // Stride
4316     if (!IsUnmasked)
4317       Ops.push_back(Mask);
4318     Ops.push_back(VL);
4319     if (!IsUnmasked) {
4320       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4321       Ops.push_back(Policy);
4322     }
4323 
4324     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4325     SDValue Result =
4326         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4327                                 Load->getMemoryVT(), Load->getMemOperand());
4328     SDValue Chain = Result.getValue(1);
4329     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4330     return DAG.getMergeValues({Result, Chain}, DL);
4331   }
4332   }
4333 
4334   return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
4335 }
4336 
4337 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4338                                                  SelectionDAG &DAG) const {
4339   unsigned IntNo = Op.getConstantOperandVal(1);
4340   switch (IntNo) {
4341   default:
4342     break;
4343   case Intrinsic::riscv_masked_strided_store: {
4344     SDLoc DL(Op);
4345     MVT XLenVT = Subtarget.getXLenVT();
4346 
4347     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4348     // the selection of the masked intrinsics doesn't do this for us.
4349     SDValue Mask = Op.getOperand(5);
4350     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4351 
4352     SDValue Val = Op.getOperand(2);
4353     MVT VT = Val.getSimpleValueType();
4354     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4355 
4356     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4357     if (!IsUnmasked) {
4358       MVT MaskVT =
4359           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4360       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4361     }
4362 
4363     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4364 
4365     SDValue IntID = DAG.getTargetConstant(
4366         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
4367         XLenVT);
4368 
4369     auto *Store = cast<MemIntrinsicSDNode>(Op);
4370     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
4371     Ops.push_back(Val);
4372     Ops.push_back(Op.getOperand(3)); // Ptr
4373     Ops.push_back(Op.getOperand(4)); // Stride
4374     if (!IsUnmasked)
4375       Ops.push_back(Mask);
4376     Ops.push_back(VL);
4377 
4378     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
4379                                    Ops, Store->getMemoryVT(),
4380                                    Store->getMemOperand());
4381   }
4382   }
4383 
4384   return SDValue();
4385 }
4386 
4387 static MVT getLMUL1VT(MVT VT) {
4388   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
4389          "Unexpected vector MVT");
4390   return MVT::getScalableVectorVT(
4391       VT.getVectorElementType(),
4392       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
4393 }
4394 
4395 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
4396   switch (ISDOpcode) {
4397   default:
4398     llvm_unreachable("Unhandled reduction");
4399   case ISD::VECREDUCE_ADD:
4400     return RISCVISD::VECREDUCE_ADD_VL;
4401   case ISD::VECREDUCE_UMAX:
4402     return RISCVISD::VECREDUCE_UMAX_VL;
4403   case ISD::VECREDUCE_SMAX:
4404     return RISCVISD::VECREDUCE_SMAX_VL;
4405   case ISD::VECREDUCE_UMIN:
4406     return RISCVISD::VECREDUCE_UMIN_VL;
4407   case ISD::VECREDUCE_SMIN:
4408     return RISCVISD::VECREDUCE_SMIN_VL;
4409   case ISD::VECREDUCE_AND:
4410     return RISCVISD::VECREDUCE_AND_VL;
4411   case ISD::VECREDUCE_OR:
4412     return RISCVISD::VECREDUCE_OR_VL;
4413   case ISD::VECREDUCE_XOR:
4414     return RISCVISD::VECREDUCE_XOR_VL;
4415   }
4416 }
4417 
4418 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
4419                                                          SelectionDAG &DAG,
4420                                                          bool IsVP) const {
4421   SDLoc DL(Op);
4422   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
4423   MVT VecVT = Vec.getSimpleValueType();
4424   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
4425           Op.getOpcode() == ISD::VECREDUCE_OR ||
4426           Op.getOpcode() == ISD::VECREDUCE_XOR ||
4427           Op.getOpcode() == ISD::VP_REDUCE_AND ||
4428           Op.getOpcode() == ISD::VP_REDUCE_OR ||
4429           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
4430          "Unexpected reduction lowering");
4431 
4432   MVT XLenVT = Subtarget.getXLenVT();
4433   assert(Op.getValueType() == XLenVT &&
4434          "Expected reduction output to be legalized to XLenVT");
4435 
4436   MVT ContainerVT = VecVT;
4437   if (VecVT.isFixedLengthVector()) {
4438     ContainerVT = getContainerForFixedLengthVector(VecVT);
4439     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4440   }
4441 
4442   SDValue Mask, VL;
4443   if (IsVP) {
4444     Mask = Op.getOperand(2);
4445     VL = Op.getOperand(3);
4446   } else {
4447     std::tie(Mask, VL) =
4448         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4449   }
4450 
4451   unsigned BaseOpc;
4452   ISD::CondCode CC;
4453   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4454 
4455   switch (Op.getOpcode()) {
4456   default:
4457     llvm_unreachable("Unhandled reduction");
4458   case ISD::VECREDUCE_AND:
4459   case ISD::VP_REDUCE_AND: {
4460     // vcpop ~x == 0
4461     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
4462     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
4463     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4464     CC = ISD::SETEQ;
4465     BaseOpc = ISD::AND;
4466     break;
4467   }
4468   case ISD::VECREDUCE_OR:
4469   case ISD::VP_REDUCE_OR:
4470     // vcpop x != 0
4471     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4472     CC = ISD::SETNE;
4473     BaseOpc = ISD::OR;
4474     break;
4475   case ISD::VECREDUCE_XOR:
4476   case ISD::VP_REDUCE_XOR: {
4477     // ((vcpop x) & 1) != 0
4478     SDValue One = DAG.getConstant(1, DL, XLenVT);
4479     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
4480     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
4481     CC = ISD::SETNE;
4482     BaseOpc = ISD::XOR;
4483     break;
4484   }
4485   }
4486 
4487   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
4488 
4489   if (!IsVP)
4490     return SetCC;
4491 
4492   // Now include the start value in the operation.
4493   // Note that we must return the start value when no elements are operated
4494   // upon. The vcpop instructions we've emitted in each case above will return
4495   // 0 for an inactive vector, and so we've already received the neutral value:
4496   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
4497   // can simply include the start value.
4498   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
4499 }
4500 
4501 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
4502                                             SelectionDAG &DAG) const {
4503   SDLoc DL(Op);
4504   SDValue Vec = Op.getOperand(0);
4505   EVT VecEVT = Vec.getValueType();
4506 
4507   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
4508 
4509   // Due to ordering in legalize types we may have a vector type that needs to
4510   // be split. Do that manually so we can get down to a legal type.
4511   while (getTypeAction(*DAG.getContext(), VecEVT) ==
4512          TargetLowering::TypeSplitVector) {
4513     SDValue Lo, Hi;
4514     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
4515     VecEVT = Lo.getValueType();
4516     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
4517   }
4518 
4519   // TODO: The type may need to be widened rather than split. Or widened before
4520   // it can be split.
4521   if (!isTypeLegal(VecEVT))
4522     return SDValue();
4523 
4524   MVT VecVT = VecEVT.getSimpleVT();
4525   MVT VecEltVT = VecVT.getVectorElementType();
4526   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
4527 
4528   MVT ContainerVT = VecVT;
4529   if (VecVT.isFixedLengthVector()) {
4530     ContainerVT = getContainerForFixedLengthVector(VecVT);
4531     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4532   }
4533 
4534   MVT M1VT = getLMUL1VT(ContainerVT);
4535   MVT XLenVT = Subtarget.getXLenVT();
4536 
4537   SDValue Mask, VL;
4538   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4539 
4540   SDValue NeutralElem =
4541       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
4542   SDValue IdentitySplat = lowerScalarSplat(
4543       NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4544   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
4545                                   IdentitySplat, Mask, VL);
4546   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4547                              DAG.getConstant(0, DL, XLenVT));
4548   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4549 }
4550 
4551 // Given a reduction op, this function returns the matching reduction opcode,
4552 // the vector SDValue and the scalar SDValue required to lower this to a
4553 // RISCVISD node.
4554 static std::tuple<unsigned, SDValue, SDValue>
4555 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
4556   SDLoc DL(Op);
4557   auto Flags = Op->getFlags();
4558   unsigned Opcode = Op.getOpcode();
4559   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
4560   switch (Opcode) {
4561   default:
4562     llvm_unreachable("Unhandled reduction");
4563   case ISD::VECREDUCE_FADD: {
4564     // Use positive zero if we can. It is cheaper to materialize.
4565     SDValue Zero =
4566         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
4567     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
4568   }
4569   case ISD::VECREDUCE_SEQ_FADD:
4570     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
4571                            Op.getOperand(0));
4572   case ISD::VECREDUCE_FMIN:
4573     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
4574                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4575   case ISD::VECREDUCE_FMAX:
4576     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
4577                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
4578   }
4579 }
4580 
4581 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
4582                                               SelectionDAG &DAG) const {
4583   SDLoc DL(Op);
4584   MVT VecEltVT = Op.getSimpleValueType();
4585 
4586   unsigned RVVOpcode;
4587   SDValue VectorVal, ScalarVal;
4588   std::tie(RVVOpcode, VectorVal, ScalarVal) =
4589       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
4590   MVT VecVT = VectorVal.getSimpleValueType();
4591 
4592   MVT ContainerVT = VecVT;
4593   if (VecVT.isFixedLengthVector()) {
4594     ContainerVT = getContainerForFixedLengthVector(VecVT);
4595     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
4596   }
4597 
4598   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
4599   MVT XLenVT = Subtarget.getXLenVT();
4600 
4601   SDValue Mask, VL;
4602   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4603 
4604   SDValue ScalarSplat = lowerScalarSplat(
4605       ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget);
4606   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
4607                                   VectorVal, ScalarSplat, Mask, VL);
4608   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
4609                      DAG.getConstant(0, DL, XLenVT));
4610 }
4611 
4612 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
4613   switch (ISDOpcode) {
4614   default:
4615     llvm_unreachable("Unhandled reduction");
4616   case ISD::VP_REDUCE_ADD:
4617     return RISCVISD::VECREDUCE_ADD_VL;
4618   case ISD::VP_REDUCE_UMAX:
4619     return RISCVISD::VECREDUCE_UMAX_VL;
4620   case ISD::VP_REDUCE_SMAX:
4621     return RISCVISD::VECREDUCE_SMAX_VL;
4622   case ISD::VP_REDUCE_UMIN:
4623     return RISCVISD::VECREDUCE_UMIN_VL;
4624   case ISD::VP_REDUCE_SMIN:
4625     return RISCVISD::VECREDUCE_SMIN_VL;
4626   case ISD::VP_REDUCE_AND:
4627     return RISCVISD::VECREDUCE_AND_VL;
4628   case ISD::VP_REDUCE_OR:
4629     return RISCVISD::VECREDUCE_OR_VL;
4630   case ISD::VP_REDUCE_XOR:
4631     return RISCVISD::VECREDUCE_XOR_VL;
4632   case ISD::VP_REDUCE_FADD:
4633     return RISCVISD::VECREDUCE_FADD_VL;
4634   case ISD::VP_REDUCE_SEQ_FADD:
4635     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
4636   case ISD::VP_REDUCE_FMAX:
4637     return RISCVISD::VECREDUCE_FMAX_VL;
4638   case ISD::VP_REDUCE_FMIN:
4639     return RISCVISD::VECREDUCE_FMIN_VL;
4640   }
4641 }
4642 
4643 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
4644                                            SelectionDAG &DAG) const {
4645   SDLoc DL(Op);
4646   SDValue Vec = Op.getOperand(1);
4647   EVT VecEVT = Vec.getValueType();
4648 
4649   // TODO: The type may need to be widened rather than split. Or widened before
4650   // it can be split.
4651   if (!isTypeLegal(VecEVT))
4652     return SDValue();
4653 
4654   MVT VecVT = VecEVT.getSimpleVT();
4655   MVT VecEltVT = VecVT.getVectorElementType();
4656   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
4657 
4658   MVT ContainerVT = VecVT;
4659   if (VecVT.isFixedLengthVector()) {
4660     ContainerVT = getContainerForFixedLengthVector(VecVT);
4661     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4662   }
4663 
4664   SDValue VL = Op.getOperand(3);
4665   SDValue Mask = Op.getOperand(2);
4666 
4667   MVT M1VT = getLMUL1VT(ContainerVT);
4668   MVT XLenVT = Subtarget.getXLenVT();
4669   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
4670 
4671   SDValue StartSplat =
4672       lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT,
4673                        DL, DAG, Subtarget);
4674   SDValue Reduction =
4675       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
4676   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
4677                              DAG.getConstant(0, DL, XLenVT));
4678   if (!VecVT.isInteger())
4679     return Elt0;
4680   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
4681 }
4682 
4683 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4684                                                    SelectionDAG &DAG) const {
4685   SDValue Vec = Op.getOperand(0);
4686   SDValue SubVec = Op.getOperand(1);
4687   MVT VecVT = Vec.getSimpleValueType();
4688   MVT SubVecVT = SubVec.getSimpleValueType();
4689 
4690   SDLoc DL(Op);
4691   MVT XLenVT = Subtarget.getXLenVT();
4692   unsigned OrigIdx = Op.getConstantOperandVal(2);
4693   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4694 
4695   // We don't have the ability to slide mask vectors up indexed by their i1
4696   // elements; the smallest we can do is i8. Often we are able to bitcast to
4697   // equivalent i8 vectors. Note that when inserting a fixed-length vector
4698   // into a scalable one, we might not necessarily have enough scalable
4699   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
4700   if (SubVecVT.getVectorElementType() == MVT::i1 &&
4701       (OrigIdx != 0 || !Vec.isUndef())) {
4702     if (VecVT.getVectorMinNumElements() >= 8 &&
4703         SubVecVT.getVectorMinNumElements() >= 8) {
4704       assert(OrigIdx % 8 == 0 && "Invalid index");
4705       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4706              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4707              "Unexpected mask vector lowering");
4708       OrigIdx /= 8;
4709       SubVecVT =
4710           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4711                            SubVecVT.isScalableVector());
4712       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4713                                VecVT.isScalableVector());
4714       Vec = DAG.getBitcast(VecVT, Vec);
4715       SubVec = DAG.getBitcast(SubVecVT, SubVec);
4716     } else {
4717       // We can't slide this mask vector up indexed by its i1 elements.
4718       // This poses a problem when we wish to insert a scalable vector which
4719       // can't be re-expressed as a larger type. Just choose the slow path and
4720       // extend to a larger type, then truncate back down.
4721       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4722       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4723       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4724       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
4725       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
4726                         Op.getOperand(2));
4727       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
4728       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
4729     }
4730   }
4731 
4732   // If the subvector vector is a fixed-length type, we cannot use subregister
4733   // manipulation to simplify the codegen; we don't know which register of a
4734   // LMUL group contains the specific subvector as we only know the minimum
4735   // register size. Therefore we must slide the vector group up the full
4736   // amount.
4737   if (SubVecVT.isFixedLengthVector()) {
4738     if (OrigIdx == 0 && Vec.isUndef())
4739       return Op;
4740     MVT ContainerVT = VecVT;
4741     if (VecVT.isFixedLengthVector()) {
4742       ContainerVT = getContainerForFixedLengthVector(VecVT);
4743       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4744     }
4745     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
4746                          DAG.getUNDEF(ContainerVT), SubVec,
4747                          DAG.getConstant(0, DL, XLenVT));
4748     SDValue Mask =
4749         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4750     // Set the vector length to only the number of elements we care about. Note
4751     // that for slideup this includes the offset.
4752     SDValue VL =
4753         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
4754     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4755     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4756                                   SubVec, SlideupAmt, Mask, VL);
4757     if (VecVT.isFixedLengthVector())
4758       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4759     return DAG.getBitcast(Op.getValueType(), Slideup);
4760   }
4761 
4762   unsigned SubRegIdx, RemIdx;
4763   std::tie(SubRegIdx, RemIdx) =
4764       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4765           VecVT, SubVecVT, OrigIdx, TRI);
4766 
4767   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
4768   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
4769                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
4770                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
4771 
4772   // 1. If the Idx has been completely eliminated and this subvector's size is
4773   // a vector register or a multiple thereof, or the surrounding elements are
4774   // undef, then this is a subvector insert which naturally aligns to a vector
4775   // register. These can easily be handled using subregister manipulation.
4776   // 2. If the subvector is smaller than a vector register, then the insertion
4777   // must preserve the undisturbed elements of the register. We do this by
4778   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
4779   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
4780   // subvector within the vector register, and an INSERT_SUBVECTOR of that
4781   // LMUL=1 type back into the larger vector (resolving to another subregister
4782   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4783   // to avoid allocating a large register group to hold our subvector.
4784   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4785     return Op;
4786 
4787   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4788   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4789   // (in our case undisturbed). This means we can set up a subvector insertion
4790   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4791   // size of the subvector.
4792   MVT InterSubVT = VecVT;
4793   SDValue AlignedExtract = Vec;
4794   unsigned AlignedIdx = OrigIdx - RemIdx;
4795   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4796     InterSubVT = getLMUL1VT(VecVT);
4797     // Extract a subvector equal to the nearest full vector register type. This
4798     // should resolve to a EXTRACT_SUBREG instruction.
4799     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4800                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
4801   }
4802 
4803   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4804   // For scalable vectors this must be further multiplied by vscale.
4805   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4806 
4807   SDValue Mask, VL;
4808   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4809 
4810   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4811   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4812   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4813   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4814 
4815   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4816                        DAG.getUNDEF(InterSubVT), SubVec,
4817                        DAG.getConstant(0, DL, XLenVT));
4818 
4819   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4820                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4821 
4822   // If required, insert this subvector back into the correct vector register.
4823   // This should resolve to an INSERT_SUBREG instruction.
4824   if (VecVT.bitsGT(InterSubVT))
4825     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4826                           DAG.getConstant(AlignedIdx, DL, XLenVT));
4827 
4828   // We might have bitcast from a mask type: cast back to the original type if
4829   // required.
4830   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4831 }
4832 
4833 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4834                                                     SelectionDAG &DAG) const {
4835   SDValue Vec = Op.getOperand(0);
4836   MVT SubVecVT = Op.getSimpleValueType();
4837   MVT VecVT = Vec.getSimpleValueType();
4838 
4839   SDLoc DL(Op);
4840   MVT XLenVT = Subtarget.getXLenVT();
4841   unsigned OrigIdx = Op.getConstantOperandVal(1);
4842   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4843 
4844   // We don't have the ability to slide mask vectors down indexed by their i1
4845   // elements; the smallest we can do is i8. Often we are able to bitcast to
4846   // equivalent i8 vectors. Note that when extracting a fixed-length vector
4847   // from a scalable one, we might not necessarily have enough scalable
4848   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4849   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4850     if (VecVT.getVectorMinNumElements() >= 8 &&
4851         SubVecVT.getVectorMinNumElements() >= 8) {
4852       assert(OrigIdx % 8 == 0 && "Invalid index");
4853       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4854              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4855              "Unexpected mask vector lowering");
4856       OrigIdx /= 8;
4857       SubVecVT =
4858           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4859                            SubVecVT.isScalableVector());
4860       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4861                                VecVT.isScalableVector());
4862       Vec = DAG.getBitcast(VecVT, Vec);
4863     } else {
4864       // We can't slide this mask vector down, indexed by its i1 elements.
4865       // This poses a problem when we wish to extract a scalable vector which
4866       // can't be re-expressed as a larger type. Just choose the slow path and
4867       // extend to a larger type, then truncate back down.
4868       // TODO: We could probably improve this when extracting certain fixed
4869       // from fixed, where we can extract as i8 and shift the correct element
4870       // right to reach the desired subvector?
4871       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4872       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4873       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4874       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4875                         Op.getOperand(1));
4876       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4877       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4878     }
4879   }
4880 
4881   // If the subvector vector is a fixed-length type, we cannot use subregister
4882   // manipulation to simplify the codegen; we don't know which register of a
4883   // LMUL group contains the specific subvector as we only know the minimum
4884   // register size. Therefore we must slide the vector group down the full
4885   // amount.
4886   if (SubVecVT.isFixedLengthVector()) {
4887     // With an index of 0 this is a cast-like subvector, which can be performed
4888     // with subregister operations.
4889     if (OrigIdx == 0)
4890       return Op;
4891     MVT ContainerVT = VecVT;
4892     if (VecVT.isFixedLengthVector()) {
4893       ContainerVT = getContainerForFixedLengthVector(VecVT);
4894       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4895     }
4896     SDValue Mask =
4897         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4898     // Set the vector length to only the number of elements we care about. This
4899     // avoids sliding down elements we're going to discard straight away.
4900     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4901     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4902     SDValue Slidedown =
4903         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4904                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4905     // Now we can use a cast-like subvector extract to get the result.
4906     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4907                             DAG.getConstant(0, DL, XLenVT));
4908     return DAG.getBitcast(Op.getValueType(), Slidedown);
4909   }
4910 
4911   unsigned SubRegIdx, RemIdx;
4912   std::tie(SubRegIdx, RemIdx) =
4913       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4914           VecVT, SubVecVT, OrigIdx, TRI);
4915 
4916   // If the Idx has been completely eliminated then this is a subvector extract
4917   // which naturally aligns to a vector register. These can easily be handled
4918   // using subregister manipulation.
4919   if (RemIdx == 0)
4920     return Op;
4921 
4922   // Else we must shift our vector register directly to extract the subvector.
4923   // Do this using VSLIDEDOWN.
4924 
4925   // If the vector type is an LMUL-group type, extract a subvector equal to the
4926   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4927   // instruction.
4928   MVT InterSubVT = VecVT;
4929   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4930     InterSubVT = getLMUL1VT(VecVT);
4931     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4932                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4933   }
4934 
4935   // Slide this vector register down by the desired number of elements in order
4936   // to place the desired subvector starting at element 0.
4937   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4938   // For scalable vectors this must be further multiplied by vscale.
4939   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4940 
4941   SDValue Mask, VL;
4942   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4943   SDValue Slidedown =
4944       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4945                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4946 
4947   // Now the vector is in the right position, extract our final subvector. This
4948   // should resolve to a COPY.
4949   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4950                           DAG.getConstant(0, DL, XLenVT));
4951 
4952   // We might have bitcast from a mask type: cast back to the original type if
4953   // required.
4954   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4955 }
4956 
4957 // Lower step_vector to the vid instruction. Any non-identity step value must
4958 // be accounted for my manual expansion.
4959 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4960                                               SelectionDAG &DAG) const {
4961   SDLoc DL(Op);
4962   MVT VT = Op.getSimpleValueType();
4963   MVT XLenVT = Subtarget.getXLenVT();
4964   SDValue Mask, VL;
4965   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4966   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4967   uint64_t StepValImm = Op.getConstantOperandVal(0);
4968   if (StepValImm != 1) {
4969     if (isPowerOf2_64(StepValImm)) {
4970       SDValue StepVal =
4971           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4972                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4973       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4974     } else {
4975       SDValue StepVal = lowerScalarSplat(
4976           DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4977           DL, DAG, Subtarget);
4978       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4979     }
4980   }
4981   return StepVec;
4982 }
4983 
4984 // Implement vector_reverse using vrgather.vv with indices determined by
4985 // subtracting the id of each element from (VLMAX-1). This will convert
4986 // the indices like so:
4987 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4988 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
4989 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4990                                                  SelectionDAG &DAG) const {
4991   SDLoc DL(Op);
4992   MVT VecVT = Op.getSimpleValueType();
4993   unsigned EltSize = VecVT.getScalarSizeInBits();
4994   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4995 
4996   unsigned MaxVLMAX = 0;
4997   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4998   if (VectorBitsMax != 0)
4999     MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
5000 
5001   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5002   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5003 
5004   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5005   // to use vrgatherei16.vv.
5006   // TODO: It's also possible to use vrgatherei16.vv for other types to
5007   // decrease register width for the index calculation.
5008   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5009     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5010     // Reverse each half, then reassemble them in reverse order.
5011     // NOTE: It's also possible that after splitting that VLMAX no longer
5012     // requires vrgatherei16.vv.
5013     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5014       SDValue Lo, Hi;
5015       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5016       EVT LoVT, HiVT;
5017       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5018       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5019       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5020       // Reassemble the low and high pieces reversed.
5021       // FIXME: This is a CONCAT_VECTORS.
5022       SDValue Res =
5023           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5024                       DAG.getIntPtrConstant(0, DL));
5025       return DAG.getNode(
5026           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5027           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5028     }
5029 
5030     // Just promote the int type to i16 which will double the LMUL.
5031     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5032     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5033   }
5034 
5035   MVT XLenVT = Subtarget.getXLenVT();
5036   SDValue Mask, VL;
5037   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5038 
5039   // Calculate VLMAX-1 for the desired SEW.
5040   unsigned MinElts = VecVT.getVectorMinNumElements();
5041   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5042                               DAG.getConstant(MinElts, DL, XLenVT));
5043   SDValue VLMinus1 =
5044       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5045 
5046   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5047   bool IsRV32E64 =
5048       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5049   SDValue SplatVL;
5050   if (!IsRV32E64)
5051     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5052   else
5053     SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
5054 
5055   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5056   SDValue Indices =
5057       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5058 
5059   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5060 }
5061 
5062 SDValue
5063 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5064                                                      SelectionDAG &DAG) const {
5065   SDLoc DL(Op);
5066   auto *Load = cast<LoadSDNode>(Op);
5067 
5068   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5069                                         Load->getMemoryVT(),
5070                                         *Load->getMemOperand()) &&
5071          "Expecting a correctly-aligned load");
5072 
5073   MVT VT = Op.getSimpleValueType();
5074   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5075 
5076   SDValue VL =
5077       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5078 
5079   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5080   SDValue NewLoad = DAG.getMemIntrinsicNode(
5081       RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
5082       Load->getMemoryVT(), Load->getMemOperand());
5083 
5084   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5085   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5086 }
5087 
5088 SDValue
5089 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5090                                                       SelectionDAG &DAG) const {
5091   SDLoc DL(Op);
5092   auto *Store = cast<StoreSDNode>(Op);
5093 
5094   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5095                                         Store->getMemoryVT(),
5096                                         *Store->getMemOperand()) &&
5097          "Expecting a correctly-aligned store");
5098 
5099   SDValue StoreVal = Store->getValue();
5100   MVT VT = StoreVal.getSimpleValueType();
5101 
5102   // If the size less than a byte, we need to pad with zeros to make a byte.
5103   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5104     VT = MVT::v8i1;
5105     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5106                            DAG.getConstant(0, DL, VT), StoreVal,
5107                            DAG.getIntPtrConstant(0, DL));
5108   }
5109 
5110   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5111 
5112   SDValue VL =
5113       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5114 
5115   SDValue NewValue =
5116       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5117   return DAG.getMemIntrinsicNode(
5118       RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
5119       {Store->getChain(), NewValue, Store->getBasePtr(), VL},
5120       Store->getMemoryVT(), Store->getMemOperand());
5121 }
5122 
5123 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5124                                              SelectionDAG &DAG) const {
5125   SDLoc DL(Op);
5126   MVT VT = Op.getSimpleValueType();
5127 
5128   const auto *MemSD = cast<MemSDNode>(Op);
5129   EVT MemVT = MemSD->getMemoryVT();
5130   MachineMemOperand *MMO = MemSD->getMemOperand();
5131   SDValue Chain = MemSD->getChain();
5132   SDValue BasePtr = MemSD->getBasePtr();
5133 
5134   SDValue Mask, PassThru, VL;
5135   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5136     Mask = VPLoad->getMask();
5137     PassThru = DAG.getUNDEF(VT);
5138     VL = VPLoad->getVectorLength();
5139   } else {
5140     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5141     Mask = MLoad->getMask();
5142     PassThru = MLoad->getPassThru();
5143   }
5144 
5145   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5146 
5147   MVT XLenVT = Subtarget.getXLenVT();
5148 
5149   MVT ContainerVT = VT;
5150   if (VT.isFixedLengthVector()) {
5151     ContainerVT = getContainerForFixedLengthVector(VT);
5152     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5153     if (!IsUnmasked) {
5154       MVT MaskVT =
5155           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5156       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5157     }
5158   }
5159 
5160   if (!VL)
5161     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5162 
5163   unsigned IntID =
5164       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5165   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5166   if (!IsUnmasked)
5167     Ops.push_back(PassThru);
5168   Ops.push_back(BasePtr);
5169   if (!IsUnmasked)
5170     Ops.push_back(Mask);
5171   Ops.push_back(VL);
5172   if (!IsUnmasked)
5173     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5174 
5175   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5176 
5177   SDValue Result =
5178       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5179   Chain = Result.getValue(1);
5180 
5181   if (VT.isFixedLengthVector())
5182     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5183 
5184   return DAG.getMergeValues({Result, Chain}, DL);
5185 }
5186 
5187 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5188                                               SelectionDAG &DAG) const {
5189   SDLoc DL(Op);
5190 
5191   const auto *MemSD = cast<MemSDNode>(Op);
5192   EVT MemVT = MemSD->getMemoryVT();
5193   MachineMemOperand *MMO = MemSD->getMemOperand();
5194   SDValue Chain = MemSD->getChain();
5195   SDValue BasePtr = MemSD->getBasePtr();
5196   SDValue Val, Mask, VL;
5197 
5198   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5199     Val = VPStore->getValue();
5200     Mask = VPStore->getMask();
5201     VL = VPStore->getVectorLength();
5202   } else {
5203     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5204     Val = MStore->getValue();
5205     Mask = MStore->getMask();
5206   }
5207 
5208   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5209 
5210   MVT VT = Val.getSimpleValueType();
5211   MVT XLenVT = Subtarget.getXLenVT();
5212 
5213   MVT ContainerVT = VT;
5214   if (VT.isFixedLengthVector()) {
5215     ContainerVT = getContainerForFixedLengthVector(VT);
5216 
5217     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5218     if (!IsUnmasked) {
5219       MVT MaskVT =
5220           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5221       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5222     }
5223   }
5224 
5225   if (!VL)
5226     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5227 
5228   unsigned IntID =
5229       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5230   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5231   Ops.push_back(Val);
5232   Ops.push_back(BasePtr);
5233   if (!IsUnmasked)
5234     Ops.push_back(Mask);
5235   Ops.push_back(VL);
5236 
5237   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5238                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5239 }
5240 
5241 SDValue
5242 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5243                                                       SelectionDAG &DAG) const {
5244   MVT InVT = Op.getOperand(0).getSimpleValueType();
5245   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5246 
5247   MVT VT = Op.getSimpleValueType();
5248 
5249   SDValue Op1 =
5250       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5251   SDValue Op2 =
5252       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5253 
5254   SDLoc DL(Op);
5255   SDValue VL =
5256       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5257 
5258   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5259   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5260 
5261   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5262                             Op.getOperand(2), Mask, VL);
5263 
5264   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5265 }
5266 
5267 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5268     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5269   MVT VT = Op.getSimpleValueType();
5270 
5271   if (VT.getVectorElementType() == MVT::i1)
5272     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5273 
5274   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5275 }
5276 
5277 SDValue
5278 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5279                                                       SelectionDAG &DAG) const {
5280   unsigned Opc;
5281   switch (Op.getOpcode()) {
5282   default: llvm_unreachable("Unexpected opcode!");
5283   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5284   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5285   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5286   }
5287 
5288   return lowerToScalableOp(Op, DAG, Opc);
5289 }
5290 
5291 // Lower vector ABS to smax(X, sub(0, X)).
5292 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5293   SDLoc DL(Op);
5294   MVT VT = Op.getSimpleValueType();
5295   SDValue X = Op.getOperand(0);
5296 
5297   assert(VT.isFixedLengthVector() && "Unexpected type");
5298 
5299   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5300   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5301 
5302   SDValue Mask, VL;
5303   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5304 
5305   SDValue SplatZero =
5306       DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5307                   DAG.getConstant(0, DL, Subtarget.getXLenVT()));
5308   SDValue NegX =
5309       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
5310   SDValue Max =
5311       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
5312 
5313   return convertFromScalableVector(VT, Max, DAG, Subtarget);
5314 }
5315 
5316 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
5317     SDValue Op, SelectionDAG &DAG) const {
5318   SDLoc DL(Op);
5319   MVT VT = Op.getSimpleValueType();
5320   SDValue Mag = Op.getOperand(0);
5321   SDValue Sign = Op.getOperand(1);
5322   assert(Mag.getValueType() == Sign.getValueType() &&
5323          "Can only handle COPYSIGN with matching types.");
5324 
5325   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5326   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
5327   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
5328 
5329   SDValue Mask, VL;
5330   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5331 
5332   SDValue CopySign =
5333       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
5334 
5335   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
5336 }
5337 
5338 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
5339     SDValue Op, SelectionDAG &DAG) const {
5340   MVT VT = Op.getSimpleValueType();
5341   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5342 
5343   MVT I1ContainerVT =
5344       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5345 
5346   SDValue CC =
5347       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
5348   SDValue Op1 =
5349       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5350   SDValue Op2 =
5351       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
5352 
5353   SDLoc DL(Op);
5354   SDValue Mask, VL;
5355   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5356 
5357   SDValue Select =
5358       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
5359 
5360   return convertFromScalableVector(VT, Select, DAG, Subtarget);
5361 }
5362 
5363 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
5364                                                unsigned NewOpc,
5365                                                bool HasMask) const {
5366   MVT VT = Op.getSimpleValueType();
5367   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5368 
5369   // Create list of operands by converting existing ones to scalable types.
5370   SmallVector<SDValue, 6> Ops;
5371   for (const SDValue &V : Op->op_values()) {
5372     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5373 
5374     // Pass through non-vector operands.
5375     if (!V.getValueType().isVector()) {
5376       Ops.push_back(V);
5377       continue;
5378     }
5379 
5380     // "cast" fixed length vector to a scalable vector.
5381     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
5382            "Only fixed length vectors are supported!");
5383     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5384   }
5385 
5386   SDLoc DL(Op);
5387   SDValue Mask, VL;
5388   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5389   if (HasMask)
5390     Ops.push_back(Mask);
5391   Ops.push_back(VL);
5392 
5393   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
5394   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
5395 }
5396 
5397 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
5398 // * Operands of each node are assumed to be in the same order.
5399 // * The EVL operand is promoted from i32 to i64 on RV64.
5400 // * Fixed-length vectors are converted to their scalable-vector container
5401 //   types.
5402 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
5403                                        unsigned RISCVISDOpc) const {
5404   SDLoc DL(Op);
5405   MVT VT = Op.getSimpleValueType();
5406   SmallVector<SDValue, 4> Ops;
5407 
5408   for (const auto &OpIdx : enumerate(Op->ops())) {
5409     SDValue V = OpIdx.value();
5410     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
5411     // Pass through operands which aren't fixed-length vectors.
5412     if (!V.getValueType().isFixedLengthVector()) {
5413       Ops.push_back(V);
5414       continue;
5415     }
5416     // "cast" fixed length vector to a scalable vector.
5417     MVT OpVT = V.getSimpleValueType();
5418     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
5419     assert(useRVVForFixedLengthVectorVT(OpVT) &&
5420            "Only fixed length vectors are supported!");
5421     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
5422   }
5423 
5424   if (!VT.isFixedLengthVector())
5425     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
5426 
5427   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5428 
5429   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
5430 
5431   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
5432 }
5433 
5434 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
5435                                             unsigned MaskOpc,
5436                                             unsigned VecOpc) const {
5437   MVT VT = Op.getSimpleValueType();
5438   if (VT.getVectorElementType() != MVT::i1)
5439     return lowerVPOp(Op, DAG, VecOpc);
5440 
5441   // It is safe to drop mask parameter as masked-off elements are undef.
5442   SDValue Op1 = Op->getOperand(0);
5443   SDValue Op2 = Op->getOperand(1);
5444   SDValue VL = Op->getOperand(3);
5445 
5446   MVT ContainerVT = VT;
5447   const bool IsFixed = VT.isFixedLengthVector();
5448   if (IsFixed) {
5449     ContainerVT = getContainerForFixedLengthVector(VT);
5450     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
5451     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
5452   }
5453 
5454   SDLoc DL(Op);
5455   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
5456   if (!IsFixed)
5457     return Val;
5458   return convertFromScalableVector(VT, Val, DAG, Subtarget);
5459 }
5460 
5461 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
5462 // matched to a RVV indexed load. The RVV indexed load instructions only
5463 // support the "unsigned unscaled" addressing mode; indices are implicitly
5464 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5465 // signed or scaled indexing is extended to the XLEN value type and scaled
5466 // accordingly.
5467 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
5468                                                SelectionDAG &DAG) const {
5469   SDLoc DL(Op);
5470   MVT VT = Op.getSimpleValueType();
5471 
5472   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5473   EVT MemVT = MemSD->getMemoryVT();
5474   MachineMemOperand *MMO = MemSD->getMemOperand();
5475   SDValue Chain = MemSD->getChain();
5476   SDValue BasePtr = MemSD->getBasePtr();
5477 
5478   ISD::LoadExtType LoadExtType;
5479   SDValue Index, Mask, PassThru, VL;
5480 
5481   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
5482     Index = VPGN->getIndex();
5483     Mask = VPGN->getMask();
5484     PassThru = DAG.getUNDEF(VT);
5485     VL = VPGN->getVectorLength();
5486     // VP doesn't support extending loads.
5487     LoadExtType = ISD::NON_EXTLOAD;
5488   } else {
5489     // Else it must be a MGATHER.
5490     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
5491     Index = MGN->getIndex();
5492     Mask = MGN->getMask();
5493     PassThru = MGN->getPassThru();
5494     LoadExtType = MGN->getExtensionType();
5495   }
5496 
5497   MVT IndexVT = Index.getSimpleValueType();
5498   MVT XLenVT = Subtarget.getXLenVT();
5499 
5500   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5501          "Unexpected VTs!");
5502   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5503   // Targets have to explicitly opt-in for extending vector loads.
5504   assert(LoadExtType == ISD::NON_EXTLOAD &&
5505          "Unexpected extending MGATHER/VP_GATHER");
5506   (void)LoadExtType;
5507 
5508   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5509   // the selection of the masked intrinsics doesn't do this for us.
5510   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5511 
5512   MVT ContainerVT = VT;
5513   if (VT.isFixedLengthVector()) {
5514     // We need to use the larger of the result and index type to determine the
5515     // scalable type to use so we don't increase LMUL for any operand/result.
5516     if (VT.bitsGE(IndexVT)) {
5517       ContainerVT = getContainerForFixedLengthVector(VT);
5518       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5519                                  ContainerVT.getVectorElementCount());
5520     } else {
5521       IndexVT = getContainerForFixedLengthVector(IndexVT);
5522       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
5523                                      IndexVT.getVectorElementCount());
5524     }
5525 
5526     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5527 
5528     if (!IsUnmasked) {
5529       MVT MaskVT =
5530           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5531       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5532       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5533     }
5534   }
5535 
5536   if (!VL)
5537     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5538 
5539   unsigned IntID =
5540       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
5541   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5542   if (!IsUnmasked)
5543     Ops.push_back(PassThru);
5544   Ops.push_back(BasePtr);
5545   Ops.push_back(Index);
5546   if (!IsUnmasked)
5547     Ops.push_back(Mask);
5548   Ops.push_back(VL);
5549   if (!IsUnmasked)
5550     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5551 
5552   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5553   SDValue Result =
5554       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5555   Chain = Result.getValue(1);
5556 
5557   if (VT.isFixedLengthVector())
5558     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5559 
5560   return DAG.getMergeValues({Result, Chain}, DL);
5561 }
5562 
5563 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
5564 // matched to a RVV indexed store. The RVV indexed store instructions only
5565 // support the "unsigned unscaled" addressing mode; indices are implicitly
5566 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
5567 // signed or scaled indexing is extended to the XLEN value type and scaled
5568 // accordingly.
5569 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
5570                                                 SelectionDAG &DAG) const {
5571   SDLoc DL(Op);
5572   const auto *MemSD = cast<MemSDNode>(Op.getNode());
5573   EVT MemVT = MemSD->getMemoryVT();
5574   MachineMemOperand *MMO = MemSD->getMemOperand();
5575   SDValue Chain = MemSD->getChain();
5576   SDValue BasePtr = MemSD->getBasePtr();
5577 
5578   bool IsTruncatingStore = false;
5579   SDValue Index, Mask, Val, VL;
5580 
5581   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
5582     Index = VPSN->getIndex();
5583     Mask = VPSN->getMask();
5584     Val = VPSN->getValue();
5585     VL = VPSN->getVectorLength();
5586     // VP doesn't support truncating stores.
5587     IsTruncatingStore = false;
5588   } else {
5589     // Else it must be a MSCATTER.
5590     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
5591     Index = MSN->getIndex();
5592     Mask = MSN->getMask();
5593     Val = MSN->getValue();
5594     IsTruncatingStore = MSN->isTruncatingStore();
5595   }
5596 
5597   MVT VT = Val.getSimpleValueType();
5598   MVT IndexVT = Index.getSimpleValueType();
5599   MVT XLenVT = Subtarget.getXLenVT();
5600 
5601   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
5602          "Unexpected VTs!");
5603   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
5604   // Targets have to explicitly opt-in for extending vector loads and
5605   // truncating vector stores.
5606   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
5607   (void)IsTruncatingStore;
5608 
5609   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5610   // the selection of the masked intrinsics doesn't do this for us.
5611   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5612 
5613   MVT ContainerVT = VT;
5614   if (VT.isFixedLengthVector()) {
5615     // We need to use the larger of the value and index type to determine the
5616     // scalable type to use so we don't increase LMUL for any operand/result.
5617     if (VT.bitsGE(IndexVT)) {
5618       ContainerVT = getContainerForFixedLengthVector(VT);
5619       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
5620                                  ContainerVT.getVectorElementCount());
5621     } else {
5622       IndexVT = getContainerForFixedLengthVector(IndexVT);
5623       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
5624                                      IndexVT.getVectorElementCount());
5625     }
5626 
5627     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
5628     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5629 
5630     if (!IsUnmasked) {
5631       MVT MaskVT =
5632           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5633       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5634     }
5635   }
5636 
5637   if (!VL)
5638     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5639 
5640   unsigned IntID =
5641       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
5642   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5643   Ops.push_back(Val);
5644   Ops.push_back(BasePtr);
5645   Ops.push_back(Index);
5646   if (!IsUnmasked)
5647     Ops.push_back(Mask);
5648   Ops.push_back(VL);
5649 
5650   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5651                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5652 }
5653 
5654 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
5655                                                SelectionDAG &DAG) const {
5656   const MVT XLenVT = Subtarget.getXLenVT();
5657   SDLoc DL(Op);
5658   SDValue Chain = Op->getOperand(0);
5659   SDValue SysRegNo = DAG.getTargetConstant(
5660       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5661   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
5662   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
5663 
5664   // Encoding used for rounding mode in RISCV differs from that used in
5665   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
5666   // table, which consists of a sequence of 4-bit fields, each representing
5667   // corresponding FLT_ROUNDS mode.
5668   static const int Table =
5669       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
5670       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
5671       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
5672       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
5673       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
5674 
5675   SDValue Shift =
5676       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
5677   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5678                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5679   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5680                                DAG.getConstant(7, DL, XLenVT));
5681 
5682   return DAG.getMergeValues({Masked, Chain}, DL);
5683 }
5684 
5685 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
5686                                                SelectionDAG &DAG) const {
5687   const MVT XLenVT = Subtarget.getXLenVT();
5688   SDLoc DL(Op);
5689   SDValue Chain = Op->getOperand(0);
5690   SDValue RMValue = Op->getOperand(1);
5691   SDValue SysRegNo = DAG.getTargetConstant(
5692       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
5693 
5694   // Encoding used for rounding mode in RISCV differs from that used in
5695   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
5696   // a table, which consists of a sequence of 4-bit fields, each representing
5697   // corresponding RISCV mode.
5698   static const unsigned Table =
5699       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
5700       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
5701       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
5702       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
5703       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
5704 
5705   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
5706                               DAG.getConstant(2, DL, XLenVT));
5707   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
5708                                 DAG.getConstant(Table, DL, XLenVT), Shift);
5709   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
5710                         DAG.getConstant(0x7, DL, XLenVT));
5711   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
5712                      RMValue);
5713 }
5714 
5715 // Returns the opcode of the target-specific SDNode that implements the 32-bit
5716 // form of the given Opcode.
5717 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
5718   switch (Opcode) {
5719   default:
5720     llvm_unreachable("Unexpected opcode");
5721   case ISD::SHL:
5722     return RISCVISD::SLLW;
5723   case ISD::SRA:
5724     return RISCVISD::SRAW;
5725   case ISD::SRL:
5726     return RISCVISD::SRLW;
5727   case ISD::SDIV:
5728     return RISCVISD::DIVW;
5729   case ISD::UDIV:
5730     return RISCVISD::DIVUW;
5731   case ISD::UREM:
5732     return RISCVISD::REMUW;
5733   case ISD::ROTL:
5734     return RISCVISD::ROLW;
5735   case ISD::ROTR:
5736     return RISCVISD::RORW;
5737   case RISCVISD::GREV:
5738     return RISCVISD::GREVW;
5739   case RISCVISD::GORC:
5740     return RISCVISD::GORCW;
5741   }
5742 }
5743 
5744 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
5745 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
5746 // otherwise be promoted to i64, making it difficult to select the
5747 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
5748 // type i8/i16/i32 is lost.
5749 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
5750                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
5751   SDLoc DL(N);
5752   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5753   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
5754   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
5755   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5756   // ReplaceNodeResults requires we maintain the same type for the return value.
5757   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
5758 }
5759 
5760 // Converts the given 32-bit operation to a i64 operation with signed extension
5761 // semantic to reduce the signed extension instructions.
5762 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
5763   SDLoc DL(N);
5764   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5765   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5766   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
5767   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5768                                DAG.getValueType(MVT::i32));
5769   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
5770 }
5771 
5772 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
5773                                              SmallVectorImpl<SDValue> &Results,
5774                                              SelectionDAG &DAG) const {
5775   SDLoc DL(N);
5776   switch (N->getOpcode()) {
5777   default:
5778     llvm_unreachable("Don't know how to custom type legalize this operation!");
5779   case ISD::STRICT_FP_TO_SINT:
5780   case ISD::STRICT_FP_TO_UINT:
5781   case ISD::FP_TO_SINT:
5782   case ISD::FP_TO_UINT: {
5783     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5784            "Unexpected custom legalisation");
5785     bool IsStrict = N->isStrictFPOpcode();
5786     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
5787                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
5788     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
5789     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
5790         TargetLowering::TypeSoftenFloat) {
5791       if (!isTypeLegal(Op0.getValueType()))
5792         return;
5793       if (IsStrict) {
5794         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RTZ_RV64
5795                                 : RISCVISD::STRICT_FCVT_WU_RTZ_RV64;
5796         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
5797         SDValue Res = DAG.getNode(Opc, DL, VTs, N->getOperand(0), Op0);
5798         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5799         Results.push_back(Res.getValue(1));
5800         return;
5801       }
5802       unsigned Opc =
5803           IsSigned ? RISCVISD::FCVT_W_RTZ_RV64 : RISCVISD::FCVT_WU_RTZ_RV64;
5804       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
5805       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5806       return;
5807     }
5808     // If the FP type needs to be softened, emit a library call using the 'si'
5809     // version. If we left it to default legalization we'd end up with 'di'. If
5810     // the FP type doesn't need to be softened just let generic type
5811     // legalization promote the result type.
5812     RTLIB::Libcall LC;
5813     if (IsSigned)
5814       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
5815     else
5816       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
5817     MakeLibCallOptions CallOptions;
5818     EVT OpVT = Op0.getValueType();
5819     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
5820     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
5821     SDValue Result;
5822     std::tie(Result, Chain) =
5823         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
5824     Results.push_back(Result);
5825     if (IsStrict)
5826       Results.push_back(Chain);
5827     break;
5828   }
5829   case ISD::READCYCLECOUNTER: {
5830     assert(!Subtarget.is64Bit() &&
5831            "READCYCLECOUNTER only has custom type legalization on riscv32");
5832 
5833     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5834     SDValue RCW =
5835         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
5836 
5837     Results.push_back(
5838         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
5839     Results.push_back(RCW.getValue(2));
5840     break;
5841   }
5842   case ISD::MUL: {
5843     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
5844     unsigned XLen = Subtarget.getXLen();
5845     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
5846     if (Size > XLen) {
5847       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
5848       SDValue LHS = N->getOperand(0);
5849       SDValue RHS = N->getOperand(1);
5850       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
5851 
5852       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
5853       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
5854       // We need exactly one side to be unsigned.
5855       if (LHSIsU == RHSIsU)
5856         return;
5857 
5858       auto MakeMULPair = [&](SDValue S, SDValue U) {
5859         MVT XLenVT = Subtarget.getXLenVT();
5860         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
5861         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
5862         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
5863         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
5864         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
5865       };
5866 
5867       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
5868       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
5869 
5870       // The other operand should be signed, but still prefer MULH when
5871       // possible.
5872       if (RHSIsU && LHSIsS && !RHSIsS)
5873         Results.push_back(MakeMULPair(LHS, RHS));
5874       else if (LHSIsU && RHSIsS && !LHSIsS)
5875         Results.push_back(MakeMULPair(RHS, LHS));
5876 
5877       return;
5878     }
5879     LLVM_FALLTHROUGH;
5880   }
5881   case ISD::ADD:
5882   case ISD::SUB:
5883     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5884            "Unexpected custom legalisation");
5885     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
5886     break;
5887   case ISD::SHL:
5888   case ISD::SRA:
5889   case ISD::SRL:
5890     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5891            "Unexpected custom legalisation");
5892     if (N->getOperand(1).getOpcode() != ISD::Constant) {
5893       Results.push_back(customLegalizeToWOp(N, DAG));
5894       break;
5895     }
5896 
5897     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
5898     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
5899     // shift amount.
5900     if (N->getOpcode() == ISD::SHL) {
5901       SDLoc DL(N);
5902       SDValue NewOp0 =
5903           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5904       SDValue NewOp1 =
5905           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
5906       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
5907       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
5908                                    DAG.getValueType(MVT::i32));
5909       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5910     }
5911 
5912     break;
5913   case ISD::ROTL:
5914   case ISD::ROTR:
5915     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5916            "Unexpected custom legalisation");
5917     Results.push_back(customLegalizeToWOp(N, DAG));
5918     break;
5919   case ISD::CTTZ:
5920   case ISD::CTTZ_ZERO_UNDEF:
5921   case ISD::CTLZ:
5922   case ISD::CTLZ_ZERO_UNDEF: {
5923     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5924            "Unexpected custom legalisation");
5925 
5926     SDValue NewOp0 =
5927         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5928     bool IsCTZ =
5929         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5930     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5931     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5932     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5933     return;
5934   }
5935   case ISD::SDIV:
5936   case ISD::UDIV:
5937   case ISD::UREM: {
5938     MVT VT = N->getSimpleValueType(0);
5939     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5940            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5941            "Unexpected custom legalisation");
5942     // Don't promote division/remainder by constant since we should expand those
5943     // to multiply by magic constant.
5944     // FIXME: What if the expansion is disabled for minsize.
5945     if (N->getOperand(1).getOpcode() == ISD::Constant)
5946       return;
5947 
5948     // If the input is i32, use ANY_EXTEND since the W instructions don't read
5949     // the upper 32 bits. For other types we need to sign or zero extend
5950     // based on the opcode.
5951     unsigned ExtOpc = ISD::ANY_EXTEND;
5952     if (VT != MVT::i32)
5953       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5954                                            : ISD::ZERO_EXTEND;
5955 
5956     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5957     break;
5958   }
5959   case ISD::UADDO:
5960   case ISD::USUBO: {
5961     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5962            "Unexpected custom legalisation");
5963     bool IsAdd = N->getOpcode() == ISD::UADDO;
5964     // Create an ADDW or SUBW.
5965     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5966     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5967     SDValue Res =
5968         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5969     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5970                       DAG.getValueType(MVT::i32));
5971 
5972     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5973     // Since the inputs are sign extended from i32, this is equivalent to
5974     // comparing the lower 32 bits.
5975     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5976     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5977                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
5978 
5979     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5980     Results.push_back(Overflow);
5981     return;
5982   }
5983   case ISD::UADDSAT:
5984   case ISD::USUBSAT: {
5985     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5986            "Unexpected custom legalisation");
5987     if (Subtarget.hasStdExtZbb()) {
5988       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5989       // sign extend allows overflow of the lower 32 bits to be detected on
5990       // the promoted size.
5991       SDValue LHS =
5992           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5993       SDValue RHS =
5994           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5995       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5996       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5997       return;
5998     }
5999 
6000     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6001     // promotion for UADDO/USUBO.
6002     Results.push_back(expandAddSubSat(N, DAG));
6003     return;
6004   }
6005   case ISD::BITCAST: {
6006     EVT VT = N->getValueType(0);
6007     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6008     SDValue Op0 = N->getOperand(0);
6009     EVT Op0VT = Op0.getValueType();
6010     MVT XLenVT = Subtarget.getXLenVT();
6011     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6012       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6013       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6014     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6015                Subtarget.hasStdExtF()) {
6016       SDValue FPConv =
6017           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6018       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6019     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6020                isTypeLegal(Op0VT)) {
6021       // Custom-legalize bitcasts from fixed-length vector types to illegal
6022       // scalar types in order to improve codegen. Bitcast the vector to a
6023       // one-element vector type whose element type is the same as the result
6024       // type, and extract the first element.
6025       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6026       if (isTypeLegal(BVT)) {
6027         SDValue BVec = DAG.getBitcast(BVT, Op0);
6028         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6029                                       DAG.getConstant(0, DL, XLenVT)));
6030       }
6031     }
6032     break;
6033   }
6034   case RISCVISD::GREV:
6035   case RISCVISD::GORC: {
6036     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6037            "Unexpected custom legalisation");
6038     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6039     // This is similar to customLegalizeToWOp, except that we pass the second
6040     // operand (a TargetConstant) straight through: it is already of type
6041     // XLenVT.
6042     RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6043     SDValue NewOp0 =
6044         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6045     SDValue NewOp1 =
6046         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6047     SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6048     // ReplaceNodeResults requires we maintain the same type for the return
6049     // value.
6050     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6051     break;
6052   }
6053   case RISCVISD::SHFL: {
6054     // There is no SHFLIW instruction, but we can just promote the operation.
6055     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6056            "Unexpected custom legalisation");
6057     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6058     SDValue NewOp0 =
6059         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6060     SDValue NewOp1 =
6061         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6062     SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
6063     // ReplaceNodeResults requires we maintain the same type for the return
6064     // value.
6065     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6066     break;
6067   }
6068   case ISD::BSWAP:
6069   case ISD::BITREVERSE: {
6070     MVT VT = N->getSimpleValueType(0);
6071     MVT XLenVT = Subtarget.getXLenVT();
6072     assert((VT == MVT::i8 || VT == MVT::i16 ||
6073             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6074            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6075     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6076     unsigned Imm = VT.getSizeInBits() - 1;
6077     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6078     if (N->getOpcode() == ISD::BSWAP)
6079       Imm &= ~0x7U;
6080     unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
6081     SDValue GREVI =
6082         DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
6083     // ReplaceNodeResults requires we maintain the same type for the return
6084     // value.
6085     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6086     break;
6087   }
6088   case ISD::FSHL:
6089   case ISD::FSHR: {
6090     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6091            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6092     SDValue NewOp0 =
6093         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6094     SDValue NewOp1 =
6095         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6096     SDValue NewOp2 =
6097         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6098     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6099     // Mask the shift amount to 5 bits.
6100     NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6101                          DAG.getConstant(0x1f, DL, MVT::i64));
6102     unsigned Opc =
6103         N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
6104     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
6105     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6106     break;
6107   }
6108   case ISD::EXTRACT_VECTOR_ELT: {
6109     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6110     // type is illegal (currently only vXi64 RV32).
6111     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6112     // transferred to the destination register. We issue two of these from the
6113     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6114     // first element.
6115     SDValue Vec = N->getOperand(0);
6116     SDValue Idx = N->getOperand(1);
6117 
6118     // The vector type hasn't been legalized yet so we can't issue target
6119     // specific nodes if it needs legalization.
6120     // FIXME: We would manually legalize if it's important.
6121     if (!isTypeLegal(Vec.getValueType()))
6122       return;
6123 
6124     MVT VecVT = Vec.getSimpleValueType();
6125 
6126     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6127            VecVT.getVectorElementType() == MVT::i64 &&
6128            "Unexpected EXTRACT_VECTOR_ELT legalization");
6129 
6130     // If this is a fixed vector, we need to convert it to a scalable vector.
6131     MVT ContainerVT = VecVT;
6132     if (VecVT.isFixedLengthVector()) {
6133       ContainerVT = getContainerForFixedLengthVector(VecVT);
6134       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6135     }
6136 
6137     MVT XLenVT = Subtarget.getXLenVT();
6138 
6139     // Use a VL of 1 to avoid processing more elements than we need.
6140     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6141     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6142     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6143 
6144     // Unless the index is known to be 0, we must slide the vector down to get
6145     // the desired element into index 0.
6146     if (!isNullConstant(Idx)) {
6147       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6148                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6149     }
6150 
6151     // Extract the lower XLEN bits of the correct vector element.
6152     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6153 
6154     // To extract the upper XLEN bits of the vector element, shift the first
6155     // element right by 32 bits and re-extract the lower XLEN bits.
6156     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6157                                      DAG.getConstant(32, DL, XLenVT), VL);
6158     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6159                                  ThirtyTwoV, Mask, VL);
6160 
6161     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6162 
6163     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6164     break;
6165   }
6166   case ISD::INTRINSIC_WO_CHAIN: {
6167     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6168     switch (IntNo) {
6169     default:
6170       llvm_unreachable(
6171           "Don't know how to custom type legalize this intrinsic!");
6172     case Intrinsic::riscv_orc_b: {
6173       // Lower to the GORCI encoding for orc.b with the operand extended.
6174       SDValue NewOp =
6175           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6176       // If Zbp is enabled, use GORCIW which will sign extend the result.
6177       unsigned Opc =
6178           Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
6179       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
6180                                 DAG.getConstant(7, DL, MVT::i64));
6181       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6182       return;
6183     }
6184     case Intrinsic::riscv_grev:
6185     case Intrinsic::riscv_gorc: {
6186       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6187              "Unexpected custom legalisation");
6188       SDValue NewOp1 =
6189           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6190       SDValue NewOp2 =
6191           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6192       unsigned Opc =
6193           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6194       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6195       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6196       break;
6197     }
6198     case Intrinsic::riscv_shfl:
6199     case Intrinsic::riscv_unshfl: {
6200       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6201              "Unexpected custom legalisation");
6202       SDValue NewOp1 =
6203           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6204       SDValue NewOp2 =
6205           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6206       unsigned Opc =
6207           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6208       if (isa<ConstantSDNode>(N->getOperand(2))) {
6209         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6210                              DAG.getConstant(0xf, DL, MVT::i64));
6211         Opc =
6212             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
6213       }
6214       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6215       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6216       break;
6217     }
6218     case Intrinsic::riscv_bcompress:
6219     case Intrinsic::riscv_bdecompress: {
6220       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6221              "Unexpected custom legalisation");
6222       SDValue NewOp1 =
6223           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6224       SDValue NewOp2 =
6225           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6226       unsigned Opc = IntNo == Intrinsic::riscv_bcompress
6227                          ? RISCVISD::BCOMPRESSW
6228                          : RISCVISD::BDECOMPRESSW;
6229       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6230       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6231       break;
6232     }
6233     case Intrinsic::riscv_vmv_x_s: {
6234       EVT VT = N->getValueType(0);
6235       MVT XLenVT = Subtarget.getXLenVT();
6236       if (VT.bitsLT(XLenVT)) {
6237         // Simple case just extract using vmv.x.s and truncate.
6238         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
6239                                       Subtarget.getXLenVT(), N->getOperand(1));
6240         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
6241         return;
6242       }
6243 
6244       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
6245              "Unexpected custom legalization");
6246 
6247       // We need to do the move in two steps.
6248       SDValue Vec = N->getOperand(1);
6249       MVT VecVT = Vec.getSimpleValueType();
6250 
6251       // First extract the lower XLEN bits of the element.
6252       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6253 
6254       // To extract the upper XLEN bits of the vector element, shift the first
6255       // element right by 32 bits and re-extract the lower XLEN bits.
6256       SDValue VL = DAG.getConstant(1, DL, XLenVT);
6257       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
6258       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6259       SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
6260                                        DAG.getConstant(32, DL, XLenVT), VL);
6261       SDValue LShr32 =
6262           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
6263       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6264 
6265       Results.push_back(
6266           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6267       break;
6268     }
6269     }
6270     break;
6271   }
6272   case ISD::VECREDUCE_ADD:
6273   case ISD::VECREDUCE_AND:
6274   case ISD::VECREDUCE_OR:
6275   case ISD::VECREDUCE_XOR:
6276   case ISD::VECREDUCE_SMAX:
6277   case ISD::VECREDUCE_UMAX:
6278   case ISD::VECREDUCE_SMIN:
6279   case ISD::VECREDUCE_UMIN:
6280     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
6281       Results.push_back(V);
6282     break;
6283   case ISD::VP_REDUCE_ADD:
6284   case ISD::VP_REDUCE_AND:
6285   case ISD::VP_REDUCE_OR:
6286   case ISD::VP_REDUCE_XOR:
6287   case ISD::VP_REDUCE_SMAX:
6288   case ISD::VP_REDUCE_UMAX:
6289   case ISD::VP_REDUCE_SMIN:
6290   case ISD::VP_REDUCE_UMIN:
6291     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
6292       Results.push_back(V);
6293     break;
6294   case ISD::FLT_ROUNDS_: {
6295     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
6296     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
6297     Results.push_back(Res.getValue(0));
6298     Results.push_back(Res.getValue(1));
6299     break;
6300   }
6301   }
6302 }
6303 
6304 // A structure to hold one of the bit-manipulation patterns below. Together, a
6305 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
6306 //   (or (and (shl x, 1), 0xAAAAAAAA),
6307 //       (and (srl x, 1), 0x55555555))
6308 struct RISCVBitmanipPat {
6309   SDValue Op;
6310   unsigned ShAmt;
6311   bool IsSHL;
6312 
6313   bool formsPairWith(const RISCVBitmanipPat &Other) const {
6314     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
6315   }
6316 };
6317 
6318 // Matches patterns of the form
6319 //   (and (shl x, C2), (C1 << C2))
6320 //   (and (srl x, C2), C1)
6321 //   (shl (and x, C1), C2)
6322 //   (srl (and x, (C1 << C2)), C2)
6323 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
6324 // The expected masks for each shift amount are specified in BitmanipMasks where
6325 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
6326 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
6327 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
6328 // XLen is 64.
6329 static Optional<RISCVBitmanipPat>
6330 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
6331   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
6332          "Unexpected number of masks");
6333   Optional<uint64_t> Mask;
6334   // Optionally consume a mask around the shift operation.
6335   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
6336     Mask = Op.getConstantOperandVal(1);
6337     Op = Op.getOperand(0);
6338   }
6339   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
6340     return None;
6341   bool IsSHL = Op.getOpcode() == ISD::SHL;
6342 
6343   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6344     return None;
6345   uint64_t ShAmt = Op.getConstantOperandVal(1);
6346 
6347   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6348   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
6349     return None;
6350   // If we don't have enough masks for 64 bit, then we must be trying to
6351   // match SHFL so we're only allowed to shift 1/4 of the width.
6352   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
6353     return None;
6354 
6355   SDValue Src = Op.getOperand(0);
6356 
6357   // The expected mask is shifted left when the AND is found around SHL
6358   // patterns.
6359   //   ((x >> 1) & 0x55555555)
6360   //   ((x << 1) & 0xAAAAAAAA)
6361   bool SHLExpMask = IsSHL;
6362 
6363   if (!Mask) {
6364     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
6365     // the mask is all ones: consume that now.
6366     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
6367       Mask = Src.getConstantOperandVal(1);
6368       Src = Src.getOperand(0);
6369       // The expected mask is now in fact shifted left for SRL, so reverse the
6370       // decision.
6371       //   ((x & 0xAAAAAAAA) >> 1)
6372       //   ((x & 0x55555555) << 1)
6373       SHLExpMask = !SHLExpMask;
6374     } else {
6375       // Use a default shifted mask of all-ones if there's no AND, truncated
6376       // down to the expected width. This simplifies the logic later on.
6377       Mask = maskTrailingOnes<uint64_t>(Width);
6378       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
6379     }
6380   }
6381 
6382   unsigned MaskIdx = Log2_32(ShAmt);
6383   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6384 
6385   if (SHLExpMask)
6386     ExpMask <<= ShAmt;
6387 
6388   if (Mask != ExpMask)
6389     return None;
6390 
6391   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
6392 }
6393 
6394 // Matches any of the following bit-manipulation patterns:
6395 //   (and (shl x, 1), (0x55555555 << 1))
6396 //   (and (srl x, 1), 0x55555555)
6397 //   (shl (and x, 0x55555555), 1)
6398 //   (srl (and x, (0x55555555 << 1)), 1)
6399 // where the shift amount and mask may vary thus:
6400 //   [1]  = 0x55555555 / 0xAAAAAAAA
6401 //   [2]  = 0x33333333 / 0xCCCCCCCC
6402 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
6403 //   [8]  = 0x00FF00FF / 0xFF00FF00
6404 //   [16] = 0x0000FFFF / 0xFFFFFFFF
6405 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
6406 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
6407   // These are the unshifted masks which we use to match bit-manipulation
6408   // patterns. They may be shifted left in certain circumstances.
6409   static const uint64_t BitmanipMasks[] = {
6410       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
6411       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
6412 
6413   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6414 }
6415 
6416 // Match the following pattern as a GREVI(W) operation
6417 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
6418 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
6419                                const RISCVSubtarget &Subtarget) {
6420   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6421   EVT VT = Op.getValueType();
6422 
6423   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6424     auto LHS = matchGREVIPat(Op.getOperand(0));
6425     auto RHS = matchGREVIPat(Op.getOperand(1));
6426     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
6427       SDLoc DL(Op);
6428       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
6429                          DAG.getConstant(LHS->ShAmt, DL, VT));
6430     }
6431   }
6432   return SDValue();
6433 }
6434 
6435 // Matches any the following pattern as a GORCI(W) operation
6436 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
6437 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
6438 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
6439 // Note that with the variant of 3.,
6440 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
6441 // the inner pattern will first be matched as GREVI and then the outer
6442 // pattern will be matched to GORC via the first rule above.
6443 // 4.  (or (rotl/rotr x, bitwidth/2), x)
6444 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
6445                                const RISCVSubtarget &Subtarget) {
6446   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6447   EVT VT = Op.getValueType();
6448 
6449   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
6450     SDLoc DL(Op);
6451     SDValue Op0 = Op.getOperand(0);
6452     SDValue Op1 = Op.getOperand(1);
6453 
6454     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
6455       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
6456           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
6457           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
6458         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
6459       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
6460       if ((Reverse.getOpcode() == ISD::ROTL ||
6461            Reverse.getOpcode() == ISD::ROTR) &&
6462           Reverse.getOperand(0) == X &&
6463           isa<ConstantSDNode>(Reverse.getOperand(1))) {
6464         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
6465         if (RotAmt == (VT.getSizeInBits() / 2))
6466           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
6467                              DAG.getConstant(RotAmt, DL, VT));
6468       }
6469       return SDValue();
6470     };
6471 
6472     // Check for either commutable permutation of (or (GREVI x, shamt), x)
6473     if (SDValue V = MatchOROfReverse(Op0, Op1))
6474       return V;
6475     if (SDValue V = MatchOROfReverse(Op1, Op0))
6476       return V;
6477 
6478     // OR is commutable so canonicalize its OR operand to the left
6479     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
6480       std::swap(Op0, Op1);
6481     if (Op0.getOpcode() != ISD::OR)
6482       return SDValue();
6483     SDValue OrOp0 = Op0.getOperand(0);
6484     SDValue OrOp1 = Op0.getOperand(1);
6485     auto LHS = matchGREVIPat(OrOp0);
6486     // OR is commutable so swap the operands and try again: x might have been
6487     // on the left
6488     if (!LHS) {
6489       std::swap(OrOp0, OrOp1);
6490       LHS = matchGREVIPat(OrOp0);
6491     }
6492     auto RHS = matchGREVIPat(Op1);
6493     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
6494       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
6495                          DAG.getConstant(LHS->ShAmt, DL, VT));
6496     }
6497   }
6498   return SDValue();
6499 }
6500 
6501 // Matches any of the following bit-manipulation patterns:
6502 //   (and (shl x, 1), (0x22222222 << 1))
6503 //   (and (srl x, 1), 0x22222222)
6504 //   (shl (and x, 0x22222222), 1)
6505 //   (srl (and x, (0x22222222 << 1)), 1)
6506 // where the shift amount and mask may vary thus:
6507 //   [1]  = 0x22222222 / 0x44444444
6508 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
6509 //   [4]  = 0x00F000F0 / 0x0F000F00
6510 //   [8]  = 0x0000FF00 / 0x00FF0000
6511 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
6512 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
6513   // These are the unshifted masks which we use to match bit-manipulation
6514   // patterns. They may be shifted left in certain circumstances.
6515   static const uint64_t BitmanipMasks[] = {
6516       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
6517       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
6518 
6519   return matchRISCVBitmanipPat(Op, BitmanipMasks);
6520 }
6521 
6522 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
6523 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
6524                                const RISCVSubtarget &Subtarget) {
6525   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
6526   EVT VT = Op.getValueType();
6527 
6528   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
6529     return SDValue();
6530 
6531   SDValue Op0 = Op.getOperand(0);
6532   SDValue Op1 = Op.getOperand(1);
6533 
6534   // Or is commutable so canonicalize the second OR to the LHS.
6535   if (Op0.getOpcode() != ISD::OR)
6536     std::swap(Op0, Op1);
6537   if (Op0.getOpcode() != ISD::OR)
6538     return SDValue();
6539 
6540   // We found an inner OR, so our operands are the operands of the inner OR
6541   // and the other operand of the outer OR.
6542   SDValue A = Op0.getOperand(0);
6543   SDValue B = Op0.getOperand(1);
6544   SDValue C = Op1;
6545 
6546   auto Match1 = matchSHFLPat(A);
6547   auto Match2 = matchSHFLPat(B);
6548 
6549   // If neither matched, we failed.
6550   if (!Match1 && !Match2)
6551     return SDValue();
6552 
6553   // We had at least one match. if one failed, try the remaining C operand.
6554   if (!Match1) {
6555     std::swap(A, C);
6556     Match1 = matchSHFLPat(A);
6557     if (!Match1)
6558       return SDValue();
6559   } else if (!Match2) {
6560     std::swap(B, C);
6561     Match2 = matchSHFLPat(B);
6562     if (!Match2)
6563       return SDValue();
6564   }
6565   assert(Match1 && Match2);
6566 
6567   // Make sure our matches pair up.
6568   if (!Match1->formsPairWith(*Match2))
6569     return SDValue();
6570 
6571   // All the remains is to make sure C is an AND with the same input, that masks
6572   // out the bits that are being shuffled.
6573   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
6574       C.getOperand(0) != Match1->Op)
6575     return SDValue();
6576 
6577   uint64_t Mask = C.getConstantOperandVal(1);
6578 
6579   static const uint64_t BitmanipMasks[] = {
6580       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
6581       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
6582   };
6583 
6584   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
6585   unsigned MaskIdx = Log2_32(Match1->ShAmt);
6586   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
6587 
6588   if (Mask != ExpMask)
6589     return SDValue();
6590 
6591   SDLoc DL(Op);
6592   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
6593                      DAG.getConstant(Match1->ShAmt, DL, VT));
6594 }
6595 
6596 // Optimize (add (shl x, c0), (shl y, c1)) ->
6597 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
6598 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
6599                                   const RISCVSubtarget &Subtarget) {
6600   // Perform this optimization only in the zba extension.
6601   if (!Subtarget.hasStdExtZba())
6602     return SDValue();
6603 
6604   // Skip for vector types and larger types.
6605   EVT VT = N->getValueType(0);
6606   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6607     return SDValue();
6608 
6609   // The two operand nodes must be SHL and have no other use.
6610   SDValue N0 = N->getOperand(0);
6611   SDValue N1 = N->getOperand(1);
6612   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
6613       !N0->hasOneUse() || !N1->hasOneUse())
6614     return SDValue();
6615 
6616   // Check c0 and c1.
6617   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6618   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
6619   if (!N0C || !N1C)
6620     return SDValue();
6621   int64_t C0 = N0C->getSExtValue();
6622   int64_t C1 = N1C->getSExtValue();
6623   if (C0 <= 0 || C1 <= 0)
6624     return SDValue();
6625 
6626   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
6627   int64_t Bits = std::min(C0, C1);
6628   int64_t Diff = std::abs(C0 - C1);
6629   if (Diff != 1 && Diff != 2 && Diff != 3)
6630     return SDValue();
6631 
6632   // Build nodes.
6633   SDLoc DL(N);
6634   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
6635   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
6636   SDValue NA0 =
6637       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
6638   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
6639   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
6640 }
6641 
6642 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
6643 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
6644 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
6645 // not undo itself, but they are redundant.
6646 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
6647   SDValue Src = N->getOperand(0);
6648 
6649   if (Src.getOpcode() != N->getOpcode())
6650     return SDValue();
6651 
6652   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
6653       !isa<ConstantSDNode>(Src.getOperand(1)))
6654     return SDValue();
6655 
6656   unsigned ShAmt1 = N->getConstantOperandVal(1);
6657   unsigned ShAmt2 = Src.getConstantOperandVal(1);
6658   Src = Src.getOperand(0);
6659 
6660   unsigned CombinedShAmt;
6661   if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
6662     CombinedShAmt = ShAmt1 | ShAmt2;
6663   else
6664     CombinedShAmt = ShAmt1 ^ ShAmt2;
6665 
6666   if (CombinedShAmt == 0)
6667     return Src;
6668 
6669   SDLoc DL(N);
6670   return DAG.getNode(
6671       N->getOpcode(), DL, N->getValueType(0), Src,
6672       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
6673 }
6674 
6675 // Combine a constant select operand into its use:
6676 //
6677 // (and (select cond, -1, c), x)
6678 //   -> (select cond, x, (and x, c))  [AllOnes=1]
6679 // (or  (select cond, 0, c), x)
6680 //   -> (select cond, x, (or x, c))  [AllOnes=0]
6681 // (xor (select cond, 0, c), x)
6682 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
6683 // (add (select cond, 0, c), x)
6684 //   -> (select cond, x, (add x, c))  [AllOnes=0]
6685 // (sub x, (select cond, 0, c))
6686 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
6687 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6688                                    SelectionDAG &DAG, bool AllOnes) {
6689   EVT VT = N->getValueType(0);
6690 
6691   // Skip vectors.
6692   if (VT.isVector())
6693     return SDValue();
6694 
6695   if ((Slct.getOpcode() != ISD::SELECT &&
6696        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
6697       !Slct.hasOneUse())
6698     return SDValue();
6699 
6700   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
6701     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
6702   };
6703 
6704   bool SwapSelectOps;
6705   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
6706   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
6707   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
6708   SDValue NonConstantVal;
6709   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
6710     SwapSelectOps = false;
6711     NonConstantVal = FalseVal;
6712   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
6713     SwapSelectOps = true;
6714     NonConstantVal = TrueVal;
6715   } else
6716     return SDValue();
6717 
6718   // Slct is now know to be the desired identity constant when CC is true.
6719   TrueVal = OtherOp;
6720   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
6721   // Unless SwapSelectOps says the condition should be false.
6722   if (SwapSelectOps)
6723     std::swap(TrueVal, FalseVal);
6724 
6725   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
6726     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
6727                        {Slct.getOperand(0), Slct.getOperand(1),
6728                         Slct.getOperand(2), TrueVal, FalseVal});
6729 
6730   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
6731                      {Slct.getOperand(0), TrueVal, FalseVal});
6732 }
6733 
6734 // Attempt combineSelectAndUse on each operand of a commutative operator N.
6735 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
6736                                               bool AllOnes) {
6737   SDValue N0 = N->getOperand(0);
6738   SDValue N1 = N->getOperand(1);
6739   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
6740     return Result;
6741   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
6742     return Result;
6743   return SDValue();
6744 }
6745 
6746 // Transform (add (mul x, c0), c1) ->
6747 //           (add (mul (add x, c1/c0), c0), c1%c0).
6748 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
6749 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
6750 // to an infinite loop in DAGCombine if transformed.
6751 // Or transform (add (mul x, c0), c1) ->
6752 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
6753 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
6754 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
6755 // lead to an infinite loop in DAGCombine if transformed.
6756 // Or transform (add (mul x, c0), c1) ->
6757 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
6758 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
6759 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
6760 // lead to an infinite loop in DAGCombine if transformed.
6761 // Or transform (add (mul x, c0), c1) ->
6762 //              (mul (add x, c1/c0), c0).
6763 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
6764 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
6765                                      const RISCVSubtarget &Subtarget) {
6766   // Skip for vector types and larger types.
6767   EVT VT = N->getValueType(0);
6768   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
6769     return SDValue();
6770   // The first operand node must be a MUL and has no other use.
6771   SDValue N0 = N->getOperand(0);
6772   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
6773     return SDValue();
6774   // Check if c0 and c1 match above conditions.
6775   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6776   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6777   if (!N0C || !N1C)
6778     return SDValue();
6779   int64_t C0 = N0C->getSExtValue();
6780   int64_t C1 = N1C->getSExtValue();
6781   int64_t CA, CB;
6782   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
6783     return SDValue();
6784   // Search for proper CA (non-zero) and CB that both are simm12.
6785   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
6786       !isInt<12>(C0 * (C1 / C0))) {
6787     CA = C1 / C0;
6788     CB = C1 % C0;
6789   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
6790              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
6791     CA = C1 / C0 + 1;
6792     CB = C1 % C0 - C0;
6793   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
6794              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
6795     CA = C1 / C0 - 1;
6796     CB = C1 % C0 + C0;
6797   } else
6798     return SDValue();
6799   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
6800   SDLoc DL(N);
6801   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
6802                              DAG.getConstant(CA, DL, VT));
6803   SDValue New1 =
6804       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
6805   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
6806 }
6807 
6808 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
6809                                  const RISCVSubtarget &Subtarget) {
6810   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
6811     return V;
6812   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
6813     return V;
6814   // fold (add (select lhs, rhs, cc, 0, y), x) ->
6815   //      (select lhs, rhs, cc, x, (add x, y))
6816   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6817 }
6818 
6819 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
6820   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
6821   //      (select lhs, rhs, cc, x, (sub x, y))
6822   SDValue N0 = N->getOperand(0);
6823   SDValue N1 = N->getOperand(1);
6824   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
6825 }
6826 
6827 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
6828   // fold (and (select lhs, rhs, cc, -1, y), x) ->
6829   //      (select lhs, rhs, cc, x, (and x, y))
6830   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
6831 }
6832 
6833 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
6834                                 const RISCVSubtarget &Subtarget) {
6835   if (Subtarget.hasStdExtZbp()) {
6836     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
6837       return GREV;
6838     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
6839       return GORC;
6840     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
6841       return SHFL;
6842   }
6843 
6844   // fold (or (select cond, 0, y), x) ->
6845   //      (select cond, x, (or x, y))
6846   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6847 }
6848 
6849 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
6850   // fold (xor (select cond, 0, y), x) ->
6851   //      (select cond, x, (xor x, y))
6852   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
6853 }
6854 
6855 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
6856 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
6857 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
6858 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
6859 // ADDW/SUBW/MULW.
6860 static SDValue performANY_EXTENDCombine(SDNode *N,
6861                                         TargetLowering::DAGCombinerInfo &DCI,
6862                                         const RISCVSubtarget &Subtarget) {
6863   if (!Subtarget.is64Bit())
6864     return SDValue();
6865 
6866   SelectionDAG &DAG = DCI.DAG;
6867 
6868   SDValue Src = N->getOperand(0);
6869   EVT VT = N->getValueType(0);
6870   if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
6871     return SDValue();
6872 
6873   // The opcode must be one that can implicitly sign_extend.
6874   // FIXME: Additional opcodes.
6875   switch (Src.getOpcode()) {
6876   default:
6877     return SDValue();
6878   case ISD::MUL:
6879     if (!Subtarget.hasStdExtM())
6880       return SDValue();
6881     LLVM_FALLTHROUGH;
6882   case ISD::ADD:
6883   case ISD::SUB:
6884     break;
6885   }
6886 
6887   // Only handle cases where the result is used by a CopyToReg. That likely
6888   // means the value is a liveout of the basic block. This helps prevent
6889   // infinite combine loops like PR51206.
6890   if (none_of(N->uses(),
6891               [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
6892     return SDValue();
6893 
6894   SmallVector<SDNode *, 4> SetCCs;
6895   for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
6896                             UE = Src.getNode()->use_end();
6897        UI != UE; ++UI) {
6898     SDNode *User = *UI;
6899     if (User == N)
6900       continue;
6901     if (UI.getUse().getResNo() != Src.getResNo())
6902       continue;
6903     // All i32 setccs are legalized by sign extending operands.
6904     if (User->getOpcode() == ISD::SETCC) {
6905       SetCCs.push_back(User);
6906       continue;
6907     }
6908     // We don't know if we can extend this user.
6909     break;
6910   }
6911 
6912   // If we don't have any SetCCs, this isn't worthwhile.
6913   if (SetCCs.empty())
6914     return SDValue();
6915 
6916   SDLoc DL(N);
6917   SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
6918   DCI.CombineTo(N, SExt);
6919 
6920   // Promote all the setccs.
6921   for (SDNode *SetCC : SetCCs) {
6922     SmallVector<SDValue, 4> Ops;
6923 
6924     for (unsigned j = 0; j != 2; ++j) {
6925       SDValue SOp = SetCC->getOperand(j);
6926       if (SOp == Src)
6927         Ops.push_back(SExt);
6928       else
6929         Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
6930     }
6931 
6932     Ops.push_back(SetCC->getOperand(2));
6933     DCI.CombineTo(SetCC,
6934                   DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
6935   }
6936   return SDValue(N, 0);
6937 }
6938 
6939 // Try to form VWMUL or VWMULU.
6940 // FIXME: Support VWMULSU.
6941 static SDValue combineMUL_VLToVWMUL(SDNode *N, SDValue Op0, SDValue Op1,
6942                                     SelectionDAG &DAG) {
6943   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
6944   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6945   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6946   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
6947     return SDValue();
6948 
6949   SDValue Mask = N->getOperand(2);
6950   SDValue VL = N->getOperand(3);
6951 
6952   // Make sure the mask and VL match.
6953   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
6954     return SDValue();
6955 
6956   MVT VT = N->getSimpleValueType(0);
6957 
6958   // Determine the narrow size for a widening multiply.
6959   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
6960   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
6961                                   VT.getVectorElementCount());
6962 
6963   SDLoc DL(N);
6964 
6965   // See if the other operand is the same opcode.
6966   if (Op0.getOpcode() == Op1.getOpcode()) {
6967     if (!Op1.hasOneUse())
6968       return SDValue();
6969 
6970     // Make sure the mask and VL match.
6971     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
6972       return SDValue();
6973 
6974     Op1 = Op1.getOperand(0);
6975   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
6976     // The operand is a splat of a scalar.
6977 
6978     // The VL must be the same.
6979     if (Op1.getOperand(1) != VL)
6980       return SDValue();
6981 
6982     // Get the scalar value.
6983     Op1 = Op1.getOperand(0);
6984 
6985     // See if have enough sign bits or zero bits in the scalar to use a
6986     // widening multiply by splatting to smaller element size.
6987     unsigned EltBits = VT.getScalarSizeInBits();
6988     unsigned ScalarBits = Op1.getValueSizeInBits();
6989     // Make sure we're getting all element bits from the scalar register.
6990     // FIXME: Support implicit sign extension of vmv.v.x?
6991     if (ScalarBits < EltBits)
6992       return SDValue();
6993 
6994     if (IsSignExt) {
6995       if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize))
6996         return SDValue();
6997     } else {
6998       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
6999       if (!DAG.MaskedValueIsZero(Op1, Mask))
7000         return SDValue();
7001     }
7002 
7003     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL);
7004   } else
7005     return SDValue();
7006 
7007   Op0 = Op0.getOperand(0);
7008 
7009   // Re-introduce narrower extends if needed.
7010   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7011   if (Op0.getValueType() != NarrowVT)
7012     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7013   if (Op1.getValueType() != NarrowVT)
7014     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7015 
7016   unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7017   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7018 }
7019 
7020 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
7021                                                DAGCombinerInfo &DCI) const {
7022   SelectionDAG &DAG = DCI.DAG;
7023 
7024   // Helper to call SimplifyDemandedBits on an operand of N where only some low
7025   // bits are demanded. N will be added to the Worklist if it was not deleted.
7026   // Caller should return SDValue(N, 0) if this returns true.
7027   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
7028     SDValue Op = N->getOperand(OpNo);
7029     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
7030     if (!SimplifyDemandedBits(Op, Mask, DCI))
7031       return false;
7032 
7033     if (N->getOpcode() != ISD::DELETED_NODE)
7034       DCI.AddToWorklist(N);
7035     return true;
7036   };
7037 
7038   switch (N->getOpcode()) {
7039   default:
7040     break;
7041   case RISCVISD::SplitF64: {
7042     SDValue Op0 = N->getOperand(0);
7043     // If the input to SplitF64 is just BuildPairF64 then the operation is
7044     // redundant. Instead, use BuildPairF64's operands directly.
7045     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
7046       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
7047 
7048     SDLoc DL(N);
7049 
7050     // It's cheaper to materialise two 32-bit integers than to load a double
7051     // from the constant pool and transfer it to integer registers through the
7052     // stack.
7053     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
7054       APInt V = C->getValueAPF().bitcastToAPInt();
7055       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
7056       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
7057       return DCI.CombineTo(N, Lo, Hi);
7058     }
7059 
7060     // This is a target-specific version of a DAGCombine performed in
7061     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7062     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7063     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7064     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7065         !Op0.getNode()->hasOneUse())
7066       break;
7067     SDValue NewSplitF64 =
7068         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
7069                     Op0.getOperand(0));
7070     SDValue Lo = NewSplitF64.getValue(0);
7071     SDValue Hi = NewSplitF64.getValue(1);
7072     APInt SignBit = APInt::getSignMask(32);
7073     if (Op0.getOpcode() == ISD::FNEG) {
7074       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
7075                                   DAG.getConstant(SignBit, DL, MVT::i32));
7076       return DCI.CombineTo(N, Lo, NewHi);
7077     }
7078     assert(Op0.getOpcode() == ISD::FABS);
7079     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
7080                                 DAG.getConstant(~SignBit, DL, MVT::i32));
7081     return DCI.CombineTo(N, Lo, NewHi);
7082   }
7083   case RISCVISD::SLLW:
7084   case RISCVISD::SRAW:
7085   case RISCVISD::SRLW:
7086   case RISCVISD::ROLW:
7087   case RISCVISD::RORW: {
7088     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7089     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7090         SimplifyDemandedLowBitsHelper(1, 5))
7091       return SDValue(N, 0);
7092     break;
7093   }
7094   case RISCVISD::CLZW:
7095   case RISCVISD::CTZW: {
7096     // Only the lower 32 bits of the first operand are read
7097     if (SimplifyDemandedLowBitsHelper(0, 32))
7098       return SDValue(N, 0);
7099     break;
7100   }
7101   case RISCVISD::FSL:
7102   case RISCVISD::FSR: {
7103     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
7104     unsigned BitWidth = N->getOperand(2).getValueSizeInBits();
7105     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7106     if (SimplifyDemandedLowBitsHelper(2, Log2_32(BitWidth) + 1))
7107       return SDValue(N, 0);
7108     break;
7109   }
7110   case RISCVISD::FSLW:
7111   case RISCVISD::FSRW: {
7112     // Only the lower 32 bits of Values and lower 6 bits of shift amount are
7113     // read.
7114     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7115         SimplifyDemandedLowBitsHelper(1, 32) ||
7116         SimplifyDemandedLowBitsHelper(2, 6))
7117       return SDValue(N, 0);
7118     break;
7119   }
7120   case RISCVISD::GREV:
7121   case RISCVISD::GORC: {
7122     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
7123     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7124     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7125     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
7126       return SDValue(N, 0);
7127 
7128     return combineGREVI_GORCI(N, DAG);
7129   }
7130   case RISCVISD::GREVW:
7131   case RISCVISD::GORCW: {
7132     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
7133     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7134         SimplifyDemandedLowBitsHelper(1, 5))
7135       return SDValue(N, 0);
7136 
7137     return combineGREVI_GORCI(N, DAG);
7138   }
7139   case RISCVISD::SHFL:
7140   case RISCVISD::UNSHFL: {
7141     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
7142     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
7143     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
7144     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
7145       return SDValue(N, 0);
7146 
7147     break;
7148   }
7149   case RISCVISD::SHFLW:
7150   case RISCVISD::UNSHFLW: {
7151     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
7152     SDValue LHS = N->getOperand(0);
7153     SDValue RHS = N->getOperand(1);
7154     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
7155     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
7156     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7157         SimplifyDemandedLowBitsHelper(1, 4))
7158       return SDValue(N, 0);
7159 
7160     break;
7161   }
7162   case RISCVISD::BCOMPRESSW:
7163   case RISCVISD::BDECOMPRESSW: {
7164     // Only the lower 32 bits of LHS and RHS are read.
7165     if (SimplifyDemandedLowBitsHelper(0, 32) ||
7166         SimplifyDemandedLowBitsHelper(1, 32))
7167       return SDValue(N, 0);
7168 
7169     break;
7170   }
7171   case RISCVISD::FMV_X_ANYEXTH:
7172   case RISCVISD::FMV_X_ANYEXTW_RV64: {
7173     SDLoc DL(N);
7174     SDValue Op0 = N->getOperand(0);
7175     MVT VT = N->getSimpleValueType(0);
7176     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
7177     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
7178     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
7179     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
7180          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
7181         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7182          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
7183       assert(Op0.getOperand(0).getValueType() == VT &&
7184              "Unexpected value type!");
7185       return Op0.getOperand(0);
7186     }
7187 
7188     // This is a target-specific version of a DAGCombine performed in
7189     // DAGCombiner::visitBITCAST. It performs the equivalent of:
7190     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7191     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7192     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
7193         !Op0.getNode()->hasOneUse())
7194       break;
7195     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
7196     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
7197     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
7198     if (Op0.getOpcode() == ISD::FNEG)
7199       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
7200                          DAG.getConstant(SignBit, DL, VT));
7201 
7202     assert(Op0.getOpcode() == ISD::FABS);
7203     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
7204                        DAG.getConstant(~SignBit, DL, VT));
7205   }
7206   case ISD::ADD:
7207     return performADDCombine(N, DAG, Subtarget);
7208   case ISD::SUB:
7209     return performSUBCombine(N, DAG);
7210   case ISD::AND:
7211     return performANDCombine(N, DAG);
7212   case ISD::OR:
7213     return performORCombine(N, DAG, Subtarget);
7214   case ISD::XOR:
7215     return performXORCombine(N, DAG);
7216   case ISD::ANY_EXTEND:
7217     return performANY_EXTENDCombine(N, DCI, Subtarget);
7218   case ISD::ZERO_EXTEND:
7219     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
7220     // type legalization. This is safe because fp_to_uint produces poison if
7221     // it overflows.
7222     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
7223       SDValue Src = N->getOperand(0);
7224       if (Src.getOpcode() == ISD::FP_TO_UINT &&
7225           isTypeLegal(Src.getOperand(0).getValueType()))
7226         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
7227                            Src.getOperand(0));
7228       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
7229           isTypeLegal(Src.getOperand(1).getValueType())) {
7230         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
7231         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
7232                                   Src.getOperand(0), Src.getOperand(1));
7233         DCI.CombineTo(N, Res);
7234         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
7235         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
7236         return SDValue(N, 0); // Return N so it doesn't get rechecked.
7237       }
7238     }
7239     return SDValue();
7240   case RISCVISD::SELECT_CC: {
7241     // Transform
7242     SDValue LHS = N->getOperand(0);
7243     SDValue RHS = N->getOperand(1);
7244     SDValue TrueV = N->getOperand(3);
7245     SDValue FalseV = N->getOperand(4);
7246 
7247     // If the True and False values are the same, we don't need a select_cc.
7248     if (TrueV == FalseV)
7249       return TrueV;
7250 
7251     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
7252     if (!ISD::isIntEqualitySetCC(CCVal))
7253       break;
7254 
7255     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
7256     //      (select_cc X, Y, lt, trueV, falseV)
7257     // Sometimes the setcc is introduced after select_cc has been formed.
7258     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7259         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7260       // If we're looking for eq 0 instead of ne 0, we need to invert the
7261       // condition.
7262       bool Invert = CCVal == ISD::SETEQ;
7263       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7264       if (Invert)
7265         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7266 
7267       SDLoc DL(N);
7268       RHS = LHS.getOperand(1);
7269       LHS = LHS.getOperand(0);
7270       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7271 
7272       SDValue TargetCC = DAG.getCondCode(CCVal);
7273       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7274                          {LHS, RHS, TargetCC, TrueV, FalseV});
7275     }
7276 
7277     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
7278     //      (select_cc X, Y, eq/ne, trueV, falseV)
7279     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7280       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
7281                          {LHS.getOperand(0), LHS.getOperand(1),
7282                           N->getOperand(2), TrueV, FalseV});
7283     // (select_cc X, 1, setne, trueV, falseV) ->
7284     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
7285     // This can occur when legalizing some floating point comparisons.
7286     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7287     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7288       SDLoc DL(N);
7289       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7290       SDValue TargetCC = DAG.getCondCode(CCVal);
7291       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7292       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
7293                          {LHS, RHS, TargetCC, TrueV, FalseV});
7294     }
7295 
7296     break;
7297   }
7298   case RISCVISD::BR_CC: {
7299     SDValue LHS = N->getOperand(1);
7300     SDValue RHS = N->getOperand(2);
7301     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
7302     if (!ISD::isIntEqualitySetCC(CCVal))
7303       break;
7304 
7305     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
7306     //      (br_cc X, Y, lt, dest)
7307     // Sometimes the setcc is introduced after br_cc has been formed.
7308     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
7309         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
7310       // If we're looking for eq 0 instead of ne 0, we need to invert the
7311       // condition.
7312       bool Invert = CCVal == ISD::SETEQ;
7313       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
7314       if (Invert)
7315         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7316 
7317       SDLoc DL(N);
7318       RHS = LHS.getOperand(1);
7319       LHS = LHS.getOperand(0);
7320       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7321 
7322       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7323                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
7324                          N->getOperand(4));
7325     }
7326 
7327     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
7328     //      (br_cc X, Y, eq/ne, trueV, falseV)
7329     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
7330       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
7331                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
7332                          N->getOperand(3), N->getOperand(4));
7333 
7334     // (br_cc X, 1, setne, br_cc) ->
7335     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
7336     // This can occur when legalizing some floating point comparisons.
7337     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
7338     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
7339       SDLoc DL(N);
7340       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
7341       SDValue TargetCC = DAG.getCondCode(CCVal);
7342       RHS = DAG.getConstant(0, DL, LHS.getValueType());
7343       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
7344                          N->getOperand(0), LHS, RHS, TargetCC,
7345                          N->getOperand(4));
7346     }
7347     break;
7348   }
7349   case ISD::FCOPYSIGN: {
7350     EVT VT = N->getValueType(0);
7351     if (!VT.isVector())
7352       break;
7353     // There is a form of VFSGNJ which injects the negated sign of its second
7354     // operand. Try and bubble any FNEG up after the extend/round to produce
7355     // this optimized pattern. Avoid modifying cases where FP_ROUND and
7356     // TRUNC=1.
7357     SDValue In2 = N->getOperand(1);
7358     // Avoid cases where the extend/round has multiple uses, as duplicating
7359     // those is typically more expensive than removing a fneg.
7360     if (!In2.hasOneUse())
7361       break;
7362     if (In2.getOpcode() != ISD::FP_EXTEND &&
7363         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
7364       break;
7365     In2 = In2.getOperand(0);
7366     if (In2.getOpcode() != ISD::FNEG)
7367       break;
7368     SDLoc DL(N);
7369     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
7370     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
7371                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
7372   }
7373   case ISD::MGATHER:
7374   case ISD::MSCATTER:
7375   case ISD::VP_GATHER:
7376   case ISD::VP_SCATTER: {
7377     if (!DCI.isBeforeLegalize())
7378       break;
7379     SDValue Index, ScaleOp;
7380     bool IsIndexScaled = false;
7381     bool IsIndexSigned = false;
7382     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
7383       Index = VPGSN->getIndex();
7384       ScaleOp = VPGSN->getScale();
7385       IsIndexScaled = VPGSN->isIndexScaled();
7386       IsIndexSigned = VPGSN->isIndexSigned();
7387     } else {
7388       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
7389       Index = MGSN->getIndex();
7390       ScaleOp = MGSN->getScale();
7391       IsIndexScaled = MGSN->isIndexScaled();
7392       IsIndexSigned = MGSN->isIndexSigned();
7393     }
7394     EVT IndexVT = Index.getValueType();
7395     MVT XLenVT = Subtarget.getXLenVT();
7396     // RISCV indexed loads only support the "unsigned unscaled" addressing
7397     // mode, so anything else must be manually legalized.
7398     bool NeedsIdxLegalization =
7399         IsIndexScaled ||
7400         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
7401     if (!NeedsIdxLegalization)
7402       break;
7403 
7404     SDLoc DL(N);
7405 
7406     // Any index legalization should first promote to XLenVT, so we don't lose
7407     // bits when scaling. This may create an illegal index type so we let
7408     // LLVM's legalization take care of the splitting.
7409     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
7410     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
7411       IndexVT = IndexVT.changeVectorElementType(XLenVT);
7412       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
7413                           DL, IndexVT, Index);
7414     }
7415 
7416     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
7417     if (IsIndexScaled && Scale != 1) {
7418       // Manually scale the indices by the element size.
7419       // TODO: Sanitize the scale operand here?
7420       // TODO: For VP nodes, should we use VP_SHL here?
7421       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
7422       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
7423       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
7424     }
7425 
7426     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
7427     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
7428       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
7429                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
7430                               VPGN->getScale(), VPGN->getMask(),
7431                               VPGN->getVectorLength()},
7432                              VPGN->getMemOperand(), NewIndexTy);
7433     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
7434       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
7435                               {VPSN->getChain(), VPSN->getValue(),
7436                                VPSN->getBasePtr(), Index, VPSN->getScale(),
7437                                VPSN->getMask(), VPSN->getVectorLength()},
7438                               VPSN->getMemOperand(), NewIndexTy);
7439     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
7440       return DAG.getMaskedGather(
7441           N->getVTList(), MGN->getMemoryVT(), DL,
7442           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
7443            MGN->getBasePtr(), Index, MGN->getScale()},
7444           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
7445     const auto *MSN = cast<MaskedScatterSDNode>(N);
7446     return DAG.getMaskedScatter(
7447         N->getVTList(), MSN->getMemoryVT(), DL,
7448         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
7449          Index, MSN->getScale()},
7450         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
7451   }
7452   case RISCVISD::SRA_VL:
7453   case RISCVISD::SRL_VL:
7454   case RISCVISD::SHL_VL: {
7455     SDValue ShAmt = N->getOperand(1);
7456     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7457       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7458       SDLoc DL(N);
7459       SDValue VL = N->getOperand(3);
7460       EVT VT = N->getValueType(0);
7461       ShAmt =
7462           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
7463       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
7464                          N->getOperand(2), N->getOperand(3));
7465     }
7466     break;
7467   }
7468   case ISD::SRA:
7469   case ISD::SRL:
7470   case ISD::SHL: {
7471     SDValue ShAmt = N->getOperand(1);
7472     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
7473       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
7474       SDLoc DL(N);
7475       EVT VT = N->getValueType(0);
7476       ShAmt =
7477           DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
7478       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
7479     }
7480     break;
7481   }
7482   case RISCVISD::MUL_VL: {
7483     SDValue Op0 = N->getOperand(0);
7484     SDValue Op1 = N->getOperand(1);
7485     if (SDValue V = combineMUL_VLToVWMUL(N, Op0, Op1, DAG))
7486       return V;
7487     if (SDValue V = combineMUL_VLToVWMUL(N, Op1, Op0, DAG))
7488       return V;
7489     return SDValue();
7490   }
7491   case ISD::STORE: {
7492     auto *Store = cast<StoreSDNode>(N);
7493     SDValue Val = Store->getValue();
7494     // Combine store of vmv.x.s to vse with VL of 1.
7495     // FIXME: Support FP.
7496     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
7497       SDValue Src = Val.getOperand(0);
7498       EVT VecVT = Src.getValueType();
7499       EVT MemVT = Store->getMemoryVT();
7500       // The memory VT and the element type must match.
7501       if (VecVT.getVectorElementType() == MemVT) {
7502         SDLoc DL(N);
7503         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7504         return DAG.getStoreVP(Store->getChain(), DL, Src, Store->getBasePtr(),
7505                               DAG.getConstant(1, DL, MaskVT),
7506                               DAG.getConstant(1, DL, Subtarget.getXLenVT()),
7507                               Store->getPointerInfo(),
7508                               Store->getOriginalAlign(),
7509                               Store->getMemOperand()->getFlags());
7510       }
7511     }
7512 
7513     break;
7514   }
7515   }
7516 
7517   return SDValue();
7518 }
7519 
7520 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
7521     const SDNode *N, CombineLevel Level) const {
7522   // The following folds are only desirable if `(OP _, c1 << c2)` can be
7523   // materialised in fewer instructions than `(OP _, c1)`:
7524   //
7525   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7526   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7527   SDValue N0 = N->getOperand(0);
7528   EVT Ty = N0.getValueType();
7529   if (Ty.isScalarInteger() &&
7530       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
7531     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7532     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
7533     if (C1 && C2) {
7534       const APInt &C1Int = C1->getAPIntValue();
7535       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
7536 
7537       // We can materialise `c1 << c2` into an add immediate, so it's "free",
7538       // and the combine should happen, to potentially allow further combines
7539       // later.
7540       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
7541           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
7542         return true;
7543 
7544       // We can materialise `c1` in an add immediate, so it's "free", and the
7545       // combine should be prevented.
7546       if (C1Int.getMinSignedBits() <= 64 &&
7547           isLegalAddImmediate(C1Int.getSExtValue()))
7548         return false;
7549 
7550       // Neither constant will fit into an immediate, so find materialisation
7551       // costs.
7552       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
7553                                               Subtarget.getFeatureBits(),
7554                                               /*CompressionCost*/true);
7555       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
7556           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
7557           /*CompressionCost*/true);
7558 
7559       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
7560       // combine should be prevented.
7561       if (C1Cost < ShiftedC1Cost)
7562         return false;
7563     }
7564   }
7565   return true;
7566 }
7567 
7568 bool RISCVTargetLowering::targetShrinkDemandedConstant(
7569     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7570     TargetLoweringOpt &TLO) const {
7571   // Delay this optimization as late as possible.
7572   if (!TLO.LegalOps)
7573     return false;
7574 
7575   EVT VT = Op.getValueType();
7576   if (VT.isVector())
7577     return false;
7578 
7579   // Only handle AND for now.
7580   if (Op.getOpcode() != ISD::AND)
7581     return false;
7582 
7583   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7584   if (!C)
7585     return false;
7586 
7587   const APInt &Mask = C->getAPIntValue();
7588 
7589   // Clear all non-demanded bits initially.
7590   APInt ShrunkMask = Mask & DemandedBits;
7591 
7592   // Try to make a smaller immediate by setting undemanded bits.
7593 
7594   APInt ExpandedMask = Mask | ~DemandedBits;
7595 
7596   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
7597     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
7598   };
7599   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
7600     if (NewMask == Mask)
7601       return true;
7602     SDLoc DL(Op);
7603     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
7604     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
7605     return TLO.CombineTo(Op, NewOp);
7606   };
7607 
7608   // If the shrunk mask fits in sign extended 12 bits, let the target
7609   // independent code apply it.
7610   if (ShrunkMask.isSignedIntN(12))
7611     return false;
7612 
7613   // Preserve (and X, 0xffff) when zext.h is supported.
7614   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
7615     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
7616     if (IsLegalMask(NewMask))
7617       return UseMask(NewMask);
7618   }
7619 
7620   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
7621   if (VT == MVT::i64) {
7622     APInt NewMask = APInt(64, 0xffffffff);
7623     if (IsLegalMask(NewMask))
7624       return UseMask(NewMask);
7625   }
7626 
7627   // For the remaining optimizations, we need to be able to make a negative
7628   // number through a combination of mask and undemanded bits.
7629   if (!ExpandedMask.isNegative())
7630     return false;
7631 
7632   // What is the fewest number of bits we need to represent the negative number.
7633   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
7634 
7635   // Try to make a 12 bit negative immediate. If that fails try to make a 32
7636   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
7637   APInt NewMask = ShrunkMask;
7638   if (MinSignedBits <= 12)
7639     NewMask.setBitsFrom(11);
7640   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
7641     NewMask.setBitsFrom(31);
7642   else
7643     return false;
7644 
7645   // Check that our new mask is a subset of the demanded mask.
7646   assert(IsLegalMask(NewMask));
7647   return UseMask(NewMask);
7648 }
7649 
7650 static void computeGREV(APInt &Src, unsigned ShAmt) {
7651   ShAmt &= Src.getBitWidth() - 1;
7652   uint64_t x = Src.getZExtValue();
7653   if (ShAmt & 1)
7654     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
7655   if (ShAmt & 2)
7656     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
7657   if (ShAmt & 4)
7658     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
7659   if (ShAmt & 8)
7660     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
7661   if (ShAmt & 16)
7662     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
7663   if (ShAmt & 32)
7664     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
7665   Src = x;
7666 }
7667 
7668 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7669                                                         KnownBits &Known,
7670                                                         const APInt &DemandedElts,
7671                                                         const SelectionDAG &DAG,
7672                                                         unsigned Depth) const {
7673   unsigned BitWidth = Known.getBitWidth();
7674   unsigned Opc = Op.getOpcode();
7675   assert((Opc >= ISD::BUILTIN_OP_END ||
7676           Opc == ISD::INTRINSIC_WO_CHAIN ||
7677           Opc == ISD::INTRINSIC_W_CHAIN ||
7678           Opc == ISD::INTRINSIC_VOID) &&
7679          "Should use MaskedValueIsZero if you don't know whether Op"
7680          " is a target node!");
7681 
7682   Known.resetAll();
7683   switch (Opc) {
7684   default: break;
7685   case RISCVISD::SELECT_CC: {
7686     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
7687     // If we don't know any bits, early out.
7688     if (Known.isUnknown())
7689       break;
7690     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
7691 
7692     // Only known if known in both the LHS and RHS.
7693     Known = KnownBits::commonBits(Known, Known2);
7694     break;
7695   }
7696   case RISCVISD::REMUW: {
7697     KnownBits Known2;
7698     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7699     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7700     // We only care about the lower 32 bits.
7701     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
7702     // Restore the original width by sign extending.
7703     Known = Known.sext(BitWidth);
7704     break;
7705   }
7706   case RISCVISD::DIVUW: {
7707     KnownBits Known2;
7708     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
7709     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
7710     // We only care about the lower 32 bits.
7711     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
7712     // Restore the original width by sign extending.
7713     Known = Known.sext(BitWidth);
7714     break;
7715   }
7716   case RISCVISD::CTZW: {
7717     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7718     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
7719     unsigned LowBits = Log2_32(PossibleTZ) + 1;
7720     Known.Zero.setBitsFrom(LowBits);
7721     break;
7722   }
7723   case RISCVISD::CLZW: {
7724     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7725     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
7726     unsigned LowBits = Log2_32(PossibleLZ) + 1;
7727     Known.Zero.setBitsFrom(LowBits);
7728     break;
7729   }
7730   case RISCVISD::GREV:
7731   case RISCVISD::GREVW: {
7732     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7733       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
7734       if (Opc == RISCVISD::GREVW)
7735         Known = Known.trunc(32);
7736       unsigned ShAmt = C->getZExtValue();
7737       computeGREV(Known.Zero, ShAmt);
7738       computeGREV(Known.One, ShAmt);
7739       if (Opc == RISCVISD::GREVW)
7740         Known = Known.sext(BitWidth);
7741     }
7742     break;
7743   }
7744   case RISCVISD::READ_VLENB:
7745     // We assume VLENB is at least 16 bytes.
7746     Known.Zero.setLowBits(4);
7747     // We assume VLENB is no more than 65536 / 8 bytes.
7748     Known.Zero.setBitsFrom(14);
7749     break;
7750   case ISD::INTRINSIC_W_CHAIN: {
7751     unsigned IntNo = Op.getConstantOperandVal(1);
7752     switch (IntNo) {
7753     default:
7754       // We can't do anything for most intrinsics.
7755       break;
7756     case Intrinsic::riscv_vsetvli:
7757     case Intrinsic::riscv_vsetvlimax:
7758       // Assume that VL output is positive and would fit in an int32_t.
7759       // TODO: VLEN might be capped at 16 bits in a future V spec update.
7760       if (BitWidth >= 32)
7761         Known.Zero.setBitsFrom(31);
7762       break;
7763     }
7764     break;
7765   }
7766   }
7767 }
7768 
7769 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
7770     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7771     unsigned Depth) const {
7772   switch (Op.getOpcode()) {
7773   default:
7774     break;
7775   case RISCVISD::SELECT_CC: {
7776     unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
7777     if (Tmp == 1) return 1;  // Early out.
7778     unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
7779     return std::min(Tmp, Tmp2);
7780   }
7781   case RISCVISD::SLLW:
7782   case RISCVISD::SRAW:
7783   case RISCVISD::SRLW:
7784   case RISCVISD::DIVW:
7785   case RISCVISD::DIVUW:
7786   case RISCVISD::REMUW:
7787   case RISCVISD::ROLW:
7788   case RISCVISD::RORW:
7789   case RISCVISD::GREVW:
7790   case RISCVISD::GORCW:
7791   case RISCVISD::FSLW:
7792   case RISCVISD::FSRW:
7793   case RISCVISD::SHFLW:
7794   case RISCVISD::UNSHFLW:
7795   case RISCVISD::BCOMPRESSW:
7796   case RISCVISD::BDECOMPRESSW:
7797   case RISCVISD::FCVT_W_RTZ_RV64:
7798   case RISCVISD::FCVT_WU_RTZ_RV64:
7799   case RISCVISD::STRICT_FCVT_W_RTZ_RV64:
7800   case RISCVISD::STRICT_FCVT_WU_RTZ_RV64:
7801     // TODO: As the result is sign-extended, this is conservatively correct. A
7802     // more precise answer could be calculated for SRAW depending on known
7803     // bits in the shift amount.
7804     return 33;
7805   case RISCVISD::SHFL:
7806   case RISCVISD::UNSHFL: {
7807     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
7808     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
7809     // will stay within the upper 32 bits. If there were more than 32 sign bits
7810     // before there will be at least 33 sign bits after.
7811     if (Op.getValueType() == MVT::i64 &&
7812         isa<ConstantSDNode>(Op.getOperand(1)) &&
7813         (Op.getConstantOperandVal(1) & 0x10) == 0) {
7814       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
7815       if (Tmp > 32)
7816         return 33;
7817     }
7818     break;
7819   }
7820   case RISCVISD::VMV_X_S:
7821     // The number of sign bits of the scalar result is computed by obtaining the
7822     // element type of the input vector operand, subtracting its width from the
7823     // XLEN, and then adding one (sign bit within the element type). If the
7824     // element type is wider than XLen, the least-significant XLEN bits are
7825     // taken.
7826     if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
7827       return 1;
7828     return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
7829   }
7830 
7831   return 1;
7832 }
7833 
7834 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
7835                                                   MachineBasicBlock *BB) {
7836   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
7837 
7838   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
7839   // Should the count have wrapped while it was being read, we need to try
7840   // again.
7841   // ...
7842   // read:
7843   // rdcycleh x3 # load high word of cycle
7844   // rdcycle  x2 # load low word of cycle
7845   // rdcycleh x4 # load high word of cycle
7846   // bne x3, x4, read # check if high word reads match, otherwise try again
7847   // ...
7848 
7849   MachineFunction &MF = *BB->getParent();
7850   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7851   MachineFunction::iterator It = ++BB->getIterator();
7852 
7853   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7854   MF.insert(It, LoopMBB);
7855 
7856   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
7857   MF.insert(It, DoneMBB);
7858 
7859   // Transfer the remainder of BB and its successor edges to DoneMBB.
7860   DoneMBB->splice(DoneMBB->begin(), BB,
7861                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7862   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
7863 
7864   BB->addSuccessor(LoopMBB);
7865 
7866   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7867   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7868   Register LoReg = MI.getOperand(0).getReg();
7869   Register HiReg = MI.getOperand(1).getReg();
7870   DebugLoc DL = MI.getDebugLoc();
7871 
7872   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7873   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
7874       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7875       .addReg(RISCV::X0);
7876   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
7877       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
7878       .addReg(RISCV::X0);
7879   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
7880       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
7881       .addReg(RISCV::X0);
7882 
7883   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
7884       .addReg(HiReg)
7885       .addReg(ReadAgainReg)
7886       .addMBB(LoopMBB);
7887 
7888   LoopMBB->addSuccessor(LoopMBB);
7889   LoopMBB->addSuccessor(DoneMBB);
7890 
7891   MI.eraseFromParent();
7892 
7893   return DoneMBB;
7894 }
7895 
7896 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
7897                                              MachineBasicBlock *BB) {
7898   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
7899 
7900   MachineFunction &MF = *BB->getParent();
7901   DebugLoc DL = MI.getDebugLoc();
7902   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7903   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7904   Register LoReg = MI.getOperand(0).getReg();
7905   Register HiReg = MI.getOperand(1).getReg();
7906   Register SrcReg = MI.getOperand(2).getReg();
7907   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
7908   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7909 
7910   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
7911                           RI);
7912   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7913   MachineMemOperand *MMOLo =
7914       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
7915   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7916       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
7917   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
7918       .addFrameIndex(FI)
7919       .addImm(0)
7920       .addMemOperand(MMOLo);
7921   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
7922       .addFrameIndex(FI)
7923       .addImm(4)
7924       .addMemOperand(MMOHi);
7925   MI.eraseFromParent(); // The pseudo instruction is gone now.
7926   return BB;
7927 }
7928 
7929 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
7930                                                  MachineBasicBlock *BB) {
7931   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
7932          "Unexpected instruction");
7933 
7934   MachineFunction &MF = *BB->getParent();
7935   DebugLoc DL = MI.getDebugLoc();
7936   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
7937   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
7938   Register DstReg = MI.getOperand(0).getReg();
7939   Register LoReg = MI.getOperand(1).getReg();
7940   Register HiReg = MI.getOperand(2).getReg();
7941   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
7942   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
7943 
7944   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
7945   MachineMemOperand *MMOLo =
7946       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
7947   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
7948       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
7949   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7950       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
7951       .addFrameIndex(FI)
7952       .addImm(0)
7953       .addMemOperand(MMOLo);
7954   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
7955       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
7956       .addFrameIndex(FI)
7957       .addImm(4)
7958       .addMemOperand(MMOHi);
7959   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
7960   MI.eraseFromParent(); // The pseudo instruction is gone now.
7961   return BB;
7962 }
7963 
7964 static bool isSelectPseudo(MachineInstr &MI) {
7965   switch (MI.getOpcode()) {
7966   default:
7967     return false;
7968   case RISCV::Select_GPR_Using_CC_GPR:
7969   case RISCV::Select_FPR16_Using_CC_GPR:
7970   case RISCV::Select_FPR32_Using_CC_GPR:
7971   case RISCV::Select_FPR64_Using_CC_GPR:
7972     return true;
7973   }
7974 }
7975 
7976 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
7977                                            MachineBasicBlock *BB,
7978                                            const RISCVSubtarget &Subtarget) {
7979   // To "insert" Select_* instructions, we actually have to insert the triangle
7980   // control-flow pattern.  The incoming instructions know the destination vreg
7981   // to set, the condition code register to branch on, the true/false values to
7982   // select between, and the condcode to use to select the appropriate branch.
7983   //
7984   // We produce the following control flow:
7985   //     HeadMBB
7986   //     |  \
7987   //     |  IfFalseMBB
7988   //     | /
7989   //    TailMBB
7990   //
7991   // When we find a sequence of selects we attempt to optimize their emission
7992   // by sharing the control flow. Currently we only handle cases where we have
7993   // multiple selects with the exact same condition (same LHS, RHS and CC).
7994   // The selects may be interleaved with other instructions if the other
7995   // instructions meet some requirements we deem safe:
7996   // - They are debug instructions. Otherwise,
7997   // - They do not have side-effects, do not access memory and their inputs do
7998   //   not depend on the results of the select pseudo-instructions.
7999   // The TrueV/FalseV operands of the selects cannot depend on the result of
8000   // previous selects in the sequence.
8001   // These conditions could be further relaxed. See the X86 target for a
8002   // related approach and more information.
8003   Register LHS = MI.getOperand(1).getReg();
8004   Register RHS = MI.getOperand(2).getReg();
8005   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
8006 
8007   SmallVector<MachineInstr *, 4> SelectDebugValues;
8008   SmallSet<Register, 4> SelectDests;
8009   SelectDests.insert(MI.getOperand(0).getReg());
8010 
8011   MachineInstr *LastSelectPseudo = &MI;
8012 
8013   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
8014        SequenceMBBI != E; ++SequenceMBBI) {
8015     if (SequenceMBBI->isDebugInstr())
8016       continue;
8017     else if (isSelectPseudo(*SequenceMBBI)) {
8018       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
8019           SequenceMBBI->getOperand(2).getReg() != RHS ||
8020           SequenceMBBI->getOperand(3).getImm() != CC ||
8021           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
8022           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
8023         break;
8024       LastSelectPseudo = &*SequenceMBBI;
8025       SequenceMBBI->collectDebugValues(SelectDebugValues);
8026       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
8027     } else {
8028       if (SequenceMBBI->hasUnmodeledSideEffects() ||
8029           SequenceMBBI->mayLoadOrStore())
8030         break;
8031       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
8032             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
8033           }))
8034         break;
8035     }
8036   }
8037 
8038   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
8039   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8040   DebugLoc DL = MI.getDebugLoc();
8041   MachineFunction::iterator I = ++BB->getIterator();
8042 
8043   MachineBasicBlock *HeadMBB = BB;
8044   MachineFunction *F = BB->getParent();
8045   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
8046   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
8047 
8048   F->insert(I, IfFalseMBB);
8049   F->insert(I, TailMBB);
8050 
8051   // Transfer debug instructions associated with the selects to TailMBB.
8052   for (MachineInstr *DebugInstr : SelectDebugValues) {
8053     TailMBB->push_back(DebugInstr->removeFromParent());
8054   }
8055 
8056   // Move all instructions after the sequence to TailMBB.
8057   TailMBB->splice(TailMBB->end(), HeadMBB,
8058                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
8059   // Update machine-CFG edges by transferring all successors of the current
8060   // block to the new block which will contain the Phi nodes for the selects.
8061   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
8062   // Set the successors for HeadMBB.
8063   HeadMBB->addSuccessor(IfFalseMBB);
8064   HeadMBB->addSuccessor(TailMBB);
8065 
8066   // Insert appropriate branch.
8067   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
8068     .addReg(LHS)
8069     .addReg(RHS)
8070     .addMBB(TailMBB);
8071 
8072   // IfFalseMBB just falls through to TailMBB.
8073   IfFalseMBB->addSuccessor(TailMBB);
8074 
8075   // Create PHIs for all of the select pseudo-instructions.
8076   auto SelectMBBI = MI.getIterator();
8077   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
8078   auto InsertionPoint = TailMBB->begin();
8079   while (SelectMBBI != SelectEnd) {
8080     auto Next = std::next(SelectMBBI);
8081     if (isSelectPseudo(*SelectMBBI)) {
8082       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
8083       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
8084               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
8085           .addReg(SelectMBBI->getOperand(4).getReg())
8086           .addMBB(HeadMBB)
8087           .addReg(SelectMBBI->getOperand(5).getReg())
8088           .addMBB(IfFalseMBB);
8089       SelectMBBI->eraseFromParent();
8090     }
8091     SelectMBBI = Next;
8092   }
8093 
8094   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8095   return TailMBB;
8096 }
8097 
8098 MachineBasicBlock *
8099 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8100                                                  MachineBasicBlock *BB) const {
8101   switch (MI.getOpcode()) {
8102   default:
8103     llvm_unreachable("Unexpected instr type to insert");
8104   case RISCV::ReadCycleWide:
8105     assert(!Subtarget.is64Bit() &&
8106            "ReadCycleWrite is only to be used on riscv32");
8107     return emitReadCycleWidePseudo(MI, BB);
8108   case RISCV::Select_GPR_Using_CC_GPR:
8109   case RISCV::Select_FPR16_Using_CC_GPR:
8110   case RISCV::Select_FPR32_Using_CC_GPR:
8111   case RISCV::Select_FPR64_Using_CC_GPR:
8112     return emitSelectPseudo(MI, BB, Subtarget);
8113   case RISCV::BuildPairF64Pseudo:
8114     return emitBuildPairF64Pseudo(MI, BB);
8115   case RISCV::SplitF64Pseudo:
8116     return emitSplitF64Pseudo(MI, BB);
8117   }
8118 }
8119 
8120 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8121                                                         SDNode *Node) const {
8122   // Add FRM dependency to any instructions with dynamic rounding mode.
8123   unsigned Opc = MI.getOpcode();
8124   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
8125   if (Idx < 0)
8126     return;
8127   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
8128     return;
8129   // If the instruction already reads FRM, don't add another read.
8130   if (MI.readsRegister(RISCV::FRM))
8131     return;
8132   MI.addOperand(
8133       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
8134 }
8135 
8136 // Calling Convention Implementation.
8137 // The expectations for frontend ABI lowering vary from target to target.
8138 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
8139 // details, but this is a longer term goal. For now, we simply try to keep the
8140 // role of the frontend as simple and well-defined as possible. The rules can
8141 // be summarised as:
8142 // * Never split up large scalar arguments. We handle them here.
8143 // * If a hardfloat calling convention is being used, and the struct may be
8144 // passed in a pair of registers (fp+fp, int+fp), and both registers are
8145 // available, then pass as two separate arguments. If either the GPRs or FPRs
8146 // are exhausted, then pass according to the rule below.
8147 // * If a struct could never be passed in registers or directly in a stack
8148 // slot (as it is larger than 2*XLEN and the floating point rules don't
8149 // apply), then pass it using a pointer with the byval attribute.
8150 // * If a struct is less than 2*XLEN, then coerce to either a two-element
8151 // word-sized array or a 2*XLEN scalar (depending on alignment).
8152 // * The frontend can determine whether a struct is returned by reference or
8153 // not based on its size and fields. If it will be returned by reference, the
8154 // frontend must modify the prototype so a pointer with the sret annotation is
8155 // passed as the first argument. This is not necessary for large scalar
8156 // returns.
8157 // * Struct return values and varargs should be coerced to structs containing
8158 // register-size fields in the same situations they would be for fixed
8159 // arguments.
8160 
8161 static const MCPhysReg ArgGPRs[] = {
8162   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
8163   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
8164 };
8165 static const MCPhysReg ArgFPR16s[] = {
8166   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
8167   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
8168 };
8169 static const MCPhysReg ArgFPR32s[] = {
8170   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
8171   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
8172 };
8173 static const MCPhysReg ArgFPR64s[] = {
8174   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
8175   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
8176 };
8177 // This is an interim calling convention and it may be changed in the future.
8178 static const MCPhysReg ArgVRs[] = {
8179     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
8180     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
8181     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
8182 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
8183                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
8184                                      RISCV::V20M2, RISCV::V22M2};
8185 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
8186                                      RISCV::V20M4};
8187 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
8188 
8189 // Pass a 2*XLEN argument that has been split into two XLEN values through
8190 // registers or the stack as necessary.
8191 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
8192                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
8193                                 MVT ValVT2, MVT LocVT2,
8194                                 ISD::ArgFlagsTy ArgFlags2) {
8195   unsigned XLenInBytes = XLen / 8;
8196   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8197     // At least one half can be passed via register.
8198     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
8199                                      VA1.getLocVT(), CCValAssign::Full));
8200   } else {
8201     // Both halves must be passed on the stack, with proper alignment.
8202     Align StackAlign =
8203         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
8204     State.addLoc(
8205         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
8206                             State.AllocateStack(XLenInBytes, StackAlign),
8207                             VA1.getLocVT(), CCValAssign::Full));
8208     State.addLoc(CCValAssign::getMem(
8209         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8210         LocVT2, CCValAssign::Full));
8211     return false;
8212   }
8213 
8214   if (Register Reg = State.AllocateReg(ArgGPRs)) {
8215     // The second half can also be passed via register.
8216     State.addLoc(
8217         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
8218   } else {
8219     // The second half is passed via the stack, without additional alignment.
8220     State.addLoc(CCValAssign::getMem(
8221         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
8222         LocVT2, CCValAssign::Full));
8223   }
8224 
8225   return false;
8226 }
8227 
8228 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
8229                                Optional<unsigned> FirstMaskArgument,
8230                                CCState &State, const RISCVTargetLowering &TLI) {
8231   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
8232   if (RC == &RISCV::VRRegClass) {
8233     // Assign the first mask argument to V0.
8234     // This is an interim calling convention and it may be changed in the
8235     // future.
8236     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
8237       return State.AllocateReg(RISCV::V0);
8238     return State.AllocateReg(ArgVRs);
8239   }
8240   if (RC == &RISCV::VRM2RegClass)
8241     return State.AllocateReg(ArgVRM2s);
8242   if (RC == &RISCV::VRM4RegClass)
8243     return State.AllocateReg(ArgVRM4s);
8244   if (RC == &RISCV::VRM8RegClass)
8245     return State.AllocateReg(ArgVRM8s);
8246   llvm_unreachable("Unhandled register class for ValueType");
8247 }
8248 
8249 // Implements the RISC-V calling convention. Returns true upon failure.
8250 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
8251                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
8252                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
8253                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
8254                      Optional<unsigned> FirstMaskArgument) {
8255   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
8256   assert(XLen == 32 || XLen == 64);
8257   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
8258 
8259   // Any return value split in to more than two values can't be returned
8260   // directly. Vectors are returned via the available vector registers.
8261   if (!LocVT.isVector() && IsRet && ValNo > 1)
8262     return true;
8263 
8264   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
8265   // variadic argument, or if no F16/F32 argument registers are available.
8266   bool UseGPRForF16_F32 = true;
8267   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
8268   // variadic argument, or if no F64 argument registers are available.
8269   bool UseGPRForF64 = true;
8270 
8271   switch (ABI) {
8272   default:
8273     llvm_unreachable("Unexpected ABI");
8274   case RISCVABI::ABI_ILP32:
8275   case RISCVABI::ABI_LP64:
8276     break;
8277   case RISCVABI::ABI_ILP32F:
8278   case RISCVABI::ABI_LP64F:
8279     UseGPRForF16_F32 = !IsFixed;
8280     break;
8281   case RISCVABI::ABI_ILP32D:
8282   case RISCVABI::ABI_LP64D:
8283     UseGPRForF16_F32 = !IsFixed;
8284     UseGPRForF64 = !IsFixed;
8285     break;
8286   }
8287 
8288   // FPR16, FPR32, and FPR64 alias each other.
8289   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
8290     UseGPRForF16_F32 = true;
8291     UseGPRForF64 = true;
8292   }
8293 
8294   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
8295   // similar local variables rather than directly checking against the target
8296   // ABI.
8297 
8298   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
8299     LocVT = XLenVT;
8300     LocInfo = CCValAssign::BCvt;
8301   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
8302     LocVT = MVT::i64;
8303     LocInfo = CCValAssign::BCvt;
8304   }
8305 
8306   // If this is a variadic argument, the RISC-V calling convention requires
8307   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
8308   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
8309   // be used regardless of whether the original argument was split during
8310   // legalisation or not. The argument will not be passed by registers if the
8311   // original type is larger than 2*XLEN, so the register alignment rule does
8312   // not apply.
8313   unsigned TwoXLenInBytes = (2 * XLen) / 8;
8314   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
8315       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
8316     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
8317     // Skip 'odd' register if necessary.
8318     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
8319       State.AllocateReg(ArgGPRs);
8320   }
8321 
8322   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
8323   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
8324       State.getPendingArgFlags();
8325 
8326   assert(PendingLocs.size() == PendingArgFlags.size() &&
8327          "PendingLocs and PendingArgFlags out of sync");
8328 
8329   // Handle passing f64 on RV32D with a soft float ABI or when floating point
8330   // registers are exhausted.
8331   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
8332     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
8333            "Can't lower f64 if it is split");
8334     // Depending on available argument GPRS, f64 may be passed in a pair of
8335     // GPRs, split between a GPR and the stack, or passed completely on the
8336     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
8337     // cases.
8338     Register Reg = State.AllocateReg(ArgGPRs);
8339     LocVT = MVT::i32;
8340     if (!Reg) {
8341       unsigned StackOffset = State.AllocateStack(8, Align(8));
8342       State.addLoc(
8343           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8344       return false;
8345     }
8346     if (!State.AllocateReg(ArgGPRs))
8347       State.AllocateStack(4, Align(4));
8348     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8349     return false;
8350   }
8351 
8352   // Fixed-length vectors are located in the corresponding scalable-vector
8353   // container types.
8354   if (ValVT.isFixedLengthVector())
8355     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8356 
8357   // Split arguments might be passed indirectly, so keep track of the pending
8358   // values. Split vectors are passed via a mix of registers and indirectly, so
8359   // treat them as we would any other argument.
8360   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
8361     LocVT = XLenVT;
8362     LocInfo = CCValAssign::Indirect;
8363     PendingLocs.push_back(
8364         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
8365     PendingArgFlags.push_back(ArgFlags);
8366     if (!ArgFlags.isSplitEnd()) {
8367       return false;
8368     }
8369   }
8370 
8371   // If the split argument only had two elements, it should be passed directly
8372   // in registers or on the stack.
8373   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
8374       PendingLocs.size() <= 2) {
8375     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
8376     // Apply the normal calling convention rules to the first half of the
8377     // split argument.
8378     CCValAssign VA = PendingLocs[0];
8379     ISD::ArgFlagsTy AF = PendingArgFlags[0];
8380     PendingLocs.clear();
8381     PendingArgFlags.clear();
8382     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
8383                                ArgFlags);
8384   }
8385 
8386   // Allocate to a register if possible, or else a stack slot.
8387   Register Reg;
8388   unsigned StoreSizeBytes = XLen / 8;
8389   Align StackAlign = Align(XLen / 8);
8390 
8391   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
8392     Reg = State.AllocateReg(ArgFPR16s);
8393   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
8394     Reg = State.AllocateReg(ArgFPR32s);
8395   else if (ValVT == MVT::f64 && !UseGPRForF64)
8396     Reg = State.AllocateReg(ArgFPR64s);
8397   else if (ValVT.isVector()) {
8398     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
8399     if (!Reg) {
8400       // For return values, the vector must be passed fully via registers or
8401       // via the stack.
8402       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
8403       // but we're using all of them.
8404       if (IsRet)
8405         return true;
8406       // Try using a GPR to pass the address
8407       if ((Reg = State.AllocateReg(ArgGPRs))) {
8408         LocVT = XLenVT;
8409         LocInfo = CCValAssign::Indirect;
8410       } else if (ValVT.isScalableVector()) {
8411         LocVT = XLenVT;
8412         LocInfo = CCValAssign::Indirect;
8413       } else {
8414         // Pass fixed-length vectors on the stack.
8415         LocVT = ValVT;
8416         StoreSizeBytes = ValVT.getStoreSize();
8417         // Align vectors to their element sizes, being careful for vXi1
8418         // vectors.
8419         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8420       }
8421     }
8422   } else {
8423     Reg = State.AllocateReg(ArgGPRs);
8424   }
8425 
8426   unsigned StackOffset =
8427       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
8428 
8429   // If we reach this point and PendingLocs is non-empty, we must be at the
8430   // end of a split argument that must be passed indirectly.
8431   if (!PendingLocs.empty()) {
8432     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
8433     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
8434 
8435     for (auto &It : PendingLocs) {
8436       if (Reg)
8437         It.convertToReg(Reg);
8438       else
8439         It.convertToMem(StackOffset);
8440       State.addLoc(It);
8441     }
8442     PendingLocs.clear();
8443     PendingArgFlags.clear();
8444     return false;
8445   }
8446 
8447   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
8448           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
8449          "Expected an XLenVT or vector types at this stage");
8450 
8451   if (Reg) {
8452     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8453     return false;
8454   }
8455 
8456   // When a floating-point value is passed on the stack, no bit-conversion is
8457   // needed.
8458   if (ValVT.isFloatingPoint()) {
8459     LocVT = ValVT;
8460     LocInfo = CCValAssign::Full;
8461   }
8462   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8463   return false;
8464 }
8465 
8466 template <typename ArgTy>
8467 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
8468   for (const auto &ArgIdx : enumerate(Args)) {
8469     MVT ArgVT = ArgIdx.value().VT;
8470     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
8471       return ArgIdx.index();
8472   }
8473   return None;
8474 }
8475 
8476 void RISCVTargetLowering::analyzeInputArgs(
8477     MachineFunction &MF, CCState &CCInfo,
8478     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
8479     RISCVCCAssignFn Fn) const {
8480   unsigned NumArgs = Ins.size();
8481   FunctionType *FType = MF.getFunction().getFunctionType();
8482 
8483   Optional<unsigned> FirstMaskArgument;
8484   if (Subtarget.hasVInstructions())
8485     FirstMaskArgument = preAssignMask(Ins);
8486 
8487   for (unsigned i = 0; i != NumArgs; ++i) {
8488     MVT ArgVT = Ins[i].VT;
8489     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
8490 
8491     Type *ArgTy = nullptr;
8492     if (IsRet)
8493       ArgTy = FType->getReturnType();
8494     else if (Ins[i].isOrigArg())
8495       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8496 
8497     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8498     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8499            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
8500            FirstMaskArgument)) {
8501       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
8502                         << EVT(ArgVT).getEVTString() << '\n');
8503       llvm_unreachable(nullptr);
8504     }
8505   }
8506 }
8507 
8508 void RISCVTargetLowering::analyzeOutputArgs(
8509     MachineFunction &MF, CCState &CCInfo,
8510     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
8511     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
8512   unsigned NumArgs = Outs.size();
8513 
8514   Optional<unsigned> FirstMaskArgument;
8515   if (Subtarget.hasVInstructions())
8516     FirstMaskArgument = preAssignMask(Outs);
8517 
8518   for (unsigned i = 0; i != NumArgs; i++) {
8519     MVT ArgVT = Outs[i].VT;
8520     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8521     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
8522 
8523     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8524     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
8525            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
8526            FirstMaskArgument)) {
8527       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
8528                         << EVT(ArgVT).getEVTString() << "\n");
8529       llvm_unreachable(nullptr);
8530     }
8531   }
8532 }
8533 
8534 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
8535 // values.
8536 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
8537                                    const CCValAssign &VA, const SDLoc &DL,
8538                                    const RISCVSubtarget &Subtarget) {
8539   switch (VA.getLocInfo()) {
8540   default:
8541     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8542   case CCValAssign::Full:
8543     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
8544       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
8545     break;
8546   case CCValAssign::BCvt:
8547     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8548       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
8549     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8550       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
8551     else
8552       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
8553     break;
8554   }
8555   return Val;
8556 }
8557 
8558 // The caller is responsible for loading the full value if the argument is
8559 // passed with CCValAssign::Indirect.
8560 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
8561                                 const CCValAssign &VA, const SDLoc &DL,
8562                                 const RISCVTargetLowering &TLI) {
8563   MachineFunction &MF = DAG.getMachineFunction();
8564   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8565   EVT LocVT = VA.getLocVT();
8566   SDValue Val;
8567   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
8568   Register VReg = RegInfo.createVirtualRegister(RC);
8569   RegInfo.addLiveIn(VA.getLocReg(), VReg);
8570   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
8571 
8572   if (VA.getLocInfo() == CCValAssign::Indirect)
8573     return Val;
8574 
8575   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
8576 }
8577 
8578 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
8579                                    const CCValAssign &VA, const SDLoc &DL,
8580                                    const RISCVSubtarget &Subtarget) {
8581   EVT LocVT = VA.getLocVT();
8582 
8583   switch (VA.getLocInfo()) {
8584   default:
8585     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8586   case CCValAssign::Full:
8587     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
8588       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
8589     break;
8590   case CCValAssign::BCvt:
8591     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
8592       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
8593     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
8594       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
8595     else
8596       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
8597     break;
8598   }
8599   return Val;
8600 }
8601 
8602 // The caller is responsible for loading the full value if the argument is
8603 // passed with CCValAssign::Indirect.
8604 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
8605                                 const CCValAssign &VA, const SDLoc &DL) {
8606   MachineFunction &MF = DAG.getMachineFunction();
8607   MachineFrameInfo &MFI = MF.getFrameInfo();
8608   EVT LocVT = VA.getLocVT();
8609   EVT ValVT = VA.getValVT();
8610   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
8611   if (ValVT.isScalableVector()) {
8612     // When the value is a scalable vector, we save the pointer which points to
8613     // the scalable vector value in the stack. The ValVT will be the pointer
8614     // type, instead of the scalable vector type.
8615     ValVT = LocVT;
8616   }
8617   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
8618                                  /*Immutable=*/true);
8619   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
8620   SDValue Val;
8621 
8622   ISD::LoadExtType ExtType;
8623   switch (VA.getLocInfo()) {
8624   default:
8625     llvm_unreachable("Unexpected CCValAssign::LocInfo");
8626   case CCValAssign::Full:
8627   case CCValAssign::Indirect:
8628   case CCValAssign::BCvt:
8629     ExtType = ISD::NON_EXTLOAD;
8630     break;
8631   }
8632   Val = DAG.getExtLoad(
8633       ExtType, DL, LocVT, Chain, FIN,
8634       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
8635   return Val;
8636 }
8637 
8638 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
8639                                        const CCValAssign &VA, const SDLoc &DL) {
8640   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
8641          "Unexpected VA");
8642   MachineFunction &MF = DAG.getMachineFunction();
8643   MachineFrameInfo &MFI = MF.getFrameInfo();
8644   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8645 
8646   if (VA.isMemLoc()) {
8647     // f64 is passed on the stack.
8648     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
8649     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8650     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
8651                        MachinePointerInfo::getFixedStack(MF, FI));
8652   }
8653 
8654   assert(VA.isRegLoc() && "Expected register VA assignment");
8655 
8656   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8657   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
8658   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
8659   SDValue Hi;
8660   if (VA.getLocReg() == RISCV::X17) {
8661     // Second half of f64 is passed on the stack.
8662     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
8663     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
8664     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
8665                      MachinePointerInfo::getFixedStack(MF, FI));
8666   } else {
8667     // Second half of f64 is passed in another GPR.
8668     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
8669     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
8670     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
8671   }
8672   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
8673 }
8674 
8675 // FastCC has less than 1% performance improvement for some particular
8676 // benchmark. But theoretically, it may has benenfit for some cases.
8677 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
8678                             unsigned ValNo, MVT ValVT, MVT LocVT,
8679                             CCValAssign::LocInfo LocInfo,
8680                             ISD::ArgFlagsTy ArgFlags, CCState &State,
8681                             bool IsFixed, bool IsRet, Type *OrigTy,
8682                             const RISCVTargetLowering &TLI,
8683                             Optional<unsigned> FirstMaskArgument) {
8684 
8685   // X5 and X6 might be used for save-restore libcall.
8686   static const MCPhysReg GPRList[] = {
8687       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
8688       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
8689       RISCV::X29, RISCV::X30, RISCV::X31};
8690 
8691   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8692     if (unsigned Reg = State.AllocateReg(GPRList)) {
8693       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8694       return false;
8695     }
8696   }
8697 
8698   if (LocVT == MVT::f16) {
8699     static const MCPhysReg FPR16List[] = {
8700         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
8701         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
8702         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
8703         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
8704     if (unsigned Reg = State.AllocateReg(FPR16List)) {
8705       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8706       return false;
8707     }
8708   }
8709 
8710   if (LocVT == MVT::f32) {
8711     static const MCPhysReg FPR32List[] = {
8712         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
8713         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
8714         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
8715         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
8716     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8717       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8718       return false;
8719     }
8720   }
8721 
8722   if (LocVT == MVT::f64) {
8723     static const MCPhysReg FPR64List[] = {
8724         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
8725         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
8726         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
8727         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
8728     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8729       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8730       return false;
8731     }
8732   }
8733 
8734   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
8735     unsigned Offset4 = State.AllocateStack(4, Align(4));
8736     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
8737     return false;
8738   }
8739 
8740   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
8741     unsigned Offset5 = State.AllocateStack(8, Align(8));
8742     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
8743     return false;
8744   }
8745 
8746   if (LocVT.isVector()) {
8747     if (unsigned Reg =
8748             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
8749       // Fixed-length vectors are located in the corresponding scalable-vector
8750       // container types.
8751       if (ValVT.isFixedLengthVector())
8752         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
8753       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8754     } else {
8755       // Try and pass the address via a "fast" GPR.
8756       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
8757         LocInfo = CCValAssign::Indirect;
8758         LocVT = TLI.getSubtarget().getXLenVT();
8759         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
8760       } else if (ValVT.isFixedLengthVector()) {
8761         auto StackAlign =
8762             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
8763         unsigned StackOffset =
8764             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
8765         State.addLoc(
8766             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
8767       } else {
8768         // Can't pass scalable vectors on the stack.
8769         return true;
8770       }
8771     }
8772 
8773     return false;
8774   }
8775 
8776   return true; // CC didn't match.
8777 }
8778 
8779 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
8780                          CCValAssign::LocInfo LocInfo,
8781                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
8782 
8783   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8784     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
8785     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
8786     static const MCPhysReg GPRList[] = {
8787         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
8788         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
8789     if (unsigned Reg = State.AllocateReg(GPRList)) {
8790       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8791       return false;
8792     }
8793   }
8794 
8795   if (LocVT == MVT::f32) {
8796     // Pass in STG registers: F1, ..., F6
8797     //                        fs0 ... fs5
8798     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
8799                                           RISCV::F18_F, RISCV::F19_F,
8800                                           RISCV::F20_F, RISCV::F21_F};
8801     if (unsigned Reg = State.AllocateReg(FPR32List)) {
8802       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8803       return false;
8804     }
8805   }
8806 
8807   if (LocVT == MVT::f64) {
8808     // Pass in STG registers: D1, ..., D6
8809     //                        fs6 ... fs11
8810     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
8811                                           RISCV::F24_D, RISCV::F25_D,
8812                                           RISCV::F26_D, RISCV::F27_D};
8813     if (unsigned Reg = State.AllocateReg(FPR64List)) {
8814       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
8815       return false;
8816     }
8817   }
8818 
8819   report_fatal_error("No registers left in GHC calling convention");
8820   return true;
8821 }
8822 
8823 // Transform physical registers into virtual registers.
8824 SDValue RISCVTargetLowering::LowerFormalArguments(
8825     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
8826     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
8827     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
8828 
8829   MachineFunction &MF = DAG.getMachineFunction();
8830 
8831   switch (CallConv) {
8832   default:
8833     report_fatal_error("Unsupported calling convention");
8834   case CallingConv::C:
8835   case CallingConv::Fast:
8836     break;
8837   case CallingConv::GHC:
8838     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
8839         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
8840       report_fatal_error(
8841         "GHC calling convention requires the F and D instruction set extensions");
8842   }
8843 
8844   const Function &Func = MF.getFunction();
8845   if (Func.hasFnAttribute("interrupt")) {
8846     if (!Func.arg_empty())
8847       report_fatal_error(
8848         "Functions with the interrupt attribute cannot have arguments!");
8849 
8850     StringRef Kind =
8851       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8852 
8853     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
8854       report_fatal_error(
8855         "Function interrupt attribute argument not supported!");
8856   }
8857 
8858   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8859   MVT XLenVT = Subtarget.getXLenVT();
8860   unsigned XLenInBytes = Subtarget.getXLen() / 8;
8861   // Used with vargs to acumulate store chains.
8862   std::vector<SDValue> OutChains;
8863 
8864   // Assign locations to all of the incoming arguments.
8865   SmallVector<CCValAssign, 16> ArgLocs;
8866   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
8867 
8868   if (CallConv == CallingConv::GHC)
8869     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
8870   else
8871     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
8872                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
8873                                                    : CC_RISCV);
8874 
8875   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
8876     CCValAssign &VA = ArgLocs[i];
8877     SDValue ArgValue;
8878     // Passing f64 on RV32D with a soft float ABI must be handled as a special
8879     // case.
8880     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
8881       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
8882     else if (VA.isRegLoc())
8883       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
8884     else
8885       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
8886 
8887     if (VA.getLocInfo() == CCValAssign::Indirect) {
8888       // If the original argument was split and passed by reference (e.g. i128
8889       // on RV32), we need to load all parts of it here (using the same
8890       // address). Vectors may be partly split to registers and partly to the
8891       // stack, in which case the base address is partly offset and subsequent
8892       // stores are relative to that.
8893       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
8894                                    MachinePointerInfo()));
8895       unsigned ArgIndex = Ins[i].OrigArgIndex;
8896       unsigned ArgPartOffset = Ins[i].PartOffset;
8897       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
8898       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
8899         CCValAssign &PartVA = ArgLocs[i + 1];
8900         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
8901         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8902         if (PartVA.getValVT().isScalableVector())
8903           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8904         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
8905         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
8906                                      MachinePointerInfo()));
8907         ++i;
8908       }
8909       continue;
8910     }
8911     InVals.push_back(ArgValue);
8912   }
8913 
8914   if (IsVarArg) {
8915     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
8916     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
8917     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
8918     MachineFrameInfo &MFI = MF.getFrameInfo();
8919     MachineRegisterInfo &RegInfo = MF.getRegInfo();
8920     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
8921 
8922     // Offset of the first variable argument from stack pointer, and size of
8923     // the vararg save area. For now, the varargs save area is either zero or
8924     // large enough to hold a0-a7.
8925     int VaArgOffset, VarArgsSaveSize;
8926 
8927     // If all registers are allocated, then all varargs must be passed on the
8928     // stack and we don't need to save any argregs.
8929     if (ArgRegs.size() == Idx) {
8930       VaArgOffset = CCInfo.getNextStackOffset();
8931       VarArgsSaveSize = 0;
8932     } else {
8933       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
8934       VaArgOffset = -VarArgsSaveSize;
8935     }
8936 
8937     // Record the frame index of the first variable argument
8938     // which is a value necessary to VASTART.
8939     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8940     RVFI->setVarArgsFrameIndex(FI);
8941 
8942     // If saving an odd number of registers then create an extra stack slot to
8943     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
8944     // offsets to even-numbered registered remain 2*XLEN-aligned.
8945     if (Idx % 2) {
8946       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
8947       VarArgsSaveSize += XLenInBytes;
8948     }
8949 
8950     // Copy the integer registers that may have been used for passing varargs
8951     // to the vararg save area.
8952     for (unsigned I = Idx; I < ArgRegs.size();
8953          ++I, VaArgOffset += XLenInBytes) {
8954       const Register Reg = RegInfo.createVirtualRegister(RC);
8955       RegInfo.addLiveIn(ArgRegs[I], Reg);
8956       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
8957       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
8958       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
8959       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
8960                                    MachinePointerInfo::getFixedStack(MF, FI));
8961       cast<StoreSDNode>(Store.getNode())
8962           ->getMemOperand()
8963           ->setValue((Value *)nullptr);
8964       OutChains.push_back(Store);
8965     }
8966     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
8967   }
8968 
8969   // All stores are grouped in one node to allow the matching between
8970   // the size of Ins and InVals. This only happens for vararg functions.
8971   if (!OutChains.empty()) {
8972     OutChains.push_back(Chain);
8973     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
8974   }
8975 
8976   return Chain;
8977 }
8978 
8979 /// isEligibleForTailCallOptimization - Check whether the call is eligible
8980 /// for tail call optimization.
8981 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
8982 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
8983     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
8984     const SmallVector<CCValAssign, 16> &ArgLocs) const {
8985 
8986   auto &Callee = CLI.Callee;
8987   auto CalleeCC = CLI.CallConv;
8988   auto &Outs = CLI.Outs;
8989   auto &Caller = MF.getFunction();
8990   auto CallerCC = Caller.getCallingConv();
8991 
8992   // Exception-handling functions need a special set of instructions to
8993   // indicate a return to the hardware. Tail-calling another function would
8994   // probably break this.
8995   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
8996   // should be expanded as new function attributes are introduced.
8997   if (Caller.hasFnAttribute("interrupt"))
8998     return false;
8999 
9000   // Do not tail call opt if the stack is used to pass parameters.
9001   if (CCInfo.getNextStackOffset() != 0)
9002     return false;
9003 
9004   // Do not tail call opt if any parameters need to be passed indirectly.
9005   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
9006   // passed indirectly. So the address of the value will be passed in a
9007   // register, or if not available, then the address is put on the stack. In
9008   // order to pass indirectly, space on the stack often needs to be allocated
9009   // in order to store the value. In this case the CCInfo.getNextStackOffset()
9010   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
9011   // are passed CCValAssign::Indirect.
9012   for (auto &VA : ArgLocs)
9013     if (VA.getLocInfo() == CCValAssign::Indirect)
9014       return false;
9015 
9016   // Do not tail call opt if either caller or callee uses struct return
9017   // semantics.
9018   auto IsCallerStructRet = Caller.hasStructRetAttr();
9019   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
9020   if (IsCallerStructRet || IsCalleeStructRet)
9021     return false;
9022 
9023   // Externally-defined functions with weak linkage should not be
9024   // tail-called. The behaviour of branch instructions in this situation (as
9025   // used for tail calls) is implementation-defined, so we cannot rely on the
9026   // linker replacing the tail call with a return.
9027   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
9028     const GlobalValue *GV = G->getGlobal();
9029     if (GV->hasExternalWeakLinkage())
9030       return false;
9031   }
9032 
9033   // The callee has to preserve all registers the caller needs to preserve.
9034   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
9035   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
9036   if (CalleeCC != CallerCC) {
9037     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
9038     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
9039       return false;
9040   }
9041 
9042   // Byval parameters hand the function a pointer directly into the stack area
9043   // we want to reuse during a tail call. Working around this *is* possible
9044   // but less efficient and uglier in LowerCall.
9045   for (auto &Arg : Outs)
9046     if (Arg.Flags.isByVal())
9047       return false;
9048 
9049   return true;
9050 }
9051 
9052 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
9053   return DAG.getDataLayout().getPrefTypeAlign(
9054       VT.getTypeForEVT(*DAG.getContext()));
9055 }
9056 
9057 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
9058 // and output parameter nodes.
9059 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
9060                                        SmallVectorImpl<SDValue> &InVals) const {
9061   SelectionDAG &DAG = CLI.DAG;
9062   SDLoc &DL = CLI.DL;
9063   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
9064   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
9065   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
9066   SDValue Chain = CLI.Chain;
9067   SDValue Callee = CLI.Callee;
9068   bool &IsTailCall = CLI.IsTailCall;
9069   CallingConv::ID CallConv = CLI.CallConv;
9070   bool IsVarArg = CLI.IsVarArg;
9071   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9072   MVT XLenVT = Subtarget.getXLenVT();
9073 
9074   MachineFunction &MF = DAG.getMachineFunction();
9075 
9076   // Analyze the operands of the call, assigning locations to each operand.
9077   SmallVector<CCValAssign, 16> ArgLocs;
9078   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
9079 
9080   if (CallConv == CallingConv::GHC)
9081     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
9082   else
9083     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
9084                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
9085                                                     : CC_RISCV);
9086 
9087   // Check if it's really possible to do a tail call.
9088   if (IsTailCall)
9089     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
9090 
9091   if (IsTailCall)
9092     ++NumTailCalls;
9093   else if (CLI.CB && CLI.CB->isMustTailCall())
9094     report_fatal_error("failed to perform tail call elimination on a call "
9095                        "site marked musttail");
9096 
9097   // Get a count of how many bytes are to be pushed on the stack.
9098   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
9099 
9100   // Create local copies for byval args
9101   SmallVector<SDValue, 8> ByValArgs;
9102   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9103     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9104     if (!Flags.isByVal())
9105       continue;
9106 
9107     SDValue Arg = OutVals[i];
9108     unsigned Size = Flags.getByValSize();
9109     Align Alignment = Flags.getNonZeroByValAlign();
9110 
9111     int FI =
9112         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
9113     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
9114     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
9115 
9116     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
9117                           /*IsVolatile=*/false,
9118                           /*AlwaysInline=*/false, IsTailCall,
9119                           MachinePointerInfo(), MachinePointerInfo());
9120     ByValArgs.push_back(FIPtr);
9121   }
9122 
9123   if (!IsTailCall)
9124     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
9125 
9126   // Copy argument values to their designated locations.
9127   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
9128   SmallVector<SDValue, 8> MemOpChains;
9129   SDValue StackPtr;
9130   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
9131     CCValAssign &VA = ArgLocs[i];
9132     SDValue ArgValue = OutVals[i];
9133     ISD::ArgFlagsTy Flags = Outs[i].Flags;
9134 
9135     // Handle passing f64 on RV32D with a soft float ABI as a special case.
9136     bool IsF64OnRV32DSoftABI =
9137         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
9138     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
9139       SDValue SplitF64 = DAG.getNode(
9140           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
9141       SDValue Lo = SplitF64.getValue(0);
9142       SDValue Hi = SplitF64.getValue(1);
9143 
9144       Register RegLo = VA.getLocReg();
9145       RegsToPass.push_back(std::make_pair(RegLo, Lo));
9146 
9147       if (RegLo == RISCV::X17) {
9148         // Second half of f64 is passed on the stack.
9149         // Work out the address of the stack slot.
9150         if (!StackPtr.getNode())
9151           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9152         // Emit the store.
9153         MemOpChains.push_back(
9154             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
9155       } else {
9156         // Second half of f64 is passed in another GPR.
9157         assert(RegLo < RISCV::X31 && "Invalid register pair");
9158         Register RegHigh = RegLo + 1;
9159         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
9160       }
9161       continue;
9162     }
9163 
9164     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
9165     // as any other MemLoc.
9166 
9167     // Promote the value if needed.
9168     // For now, only handle fully promoted and indirect arguments.
9169     if (VA.getLocInfo() == CCValAssign::Indirect) {
9170       // Store the argument in a stack slot and pass its address.
9171       Align StackAlign =
9172           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
9173                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
9174       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
9175       // If the original argument was split (e.g. i128), we need
9176       // to store the required parts of it here (and pass just one address).
9177       // Vectors may be partly split to registers and partly to the stack, in
9178       // which case the base address is partly offset and subsequent stores are
9179       // relative to that.
9180       unsigned ArgIndex = Outs[i].OrigArgIndex;
9181       unsigned ArgPartOffset = Outs[i].PartOffset;
9182       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
9183       // Calculate the total size to store. We don't have access to what we're
9184       // actually storing other than performing the loop and collecting the
9185       // info.
9186       SmallVector<std::pair<SDValue, SDValue>> Parts;
9187       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
9188         SDValue PartValue = OutVals[i + 1];
9189         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
9190         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
9191         EVT PartVT = PartValue.getValueType();
9192         if (PartVT.isScalableVector())
9193           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
9194         StoredSize += PartVT.getStoreSize();
9195         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
9196         Parts.push_back(std::make_pair(PartValue, Offset));
9197         ++i;
9198       }
9199       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
9200       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
9201       MemOpChains.push_back(
9202           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
9203                        MachinePointerInfo::getFixedStack(MF, FI)));
9204       for (const auto &Part : Parts) {
9205         SDValue PartValue = Part.first;
9206         SDValue PartOffset = Part.second;
9207         SDValue Address =
9208             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
9209         MemOpChains.push_back(
9210             DAG.getStore(Chain, DL, PartValue, Address,
9211                          MachinePointerInfo::getFixedStack(MF, FI)));
9212       }
9213       ArgValue = SpillSlot;
9214     } else {
9215       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
9216     }
9217 
9218     // Use local copy if it is a byval arg.
9219     if (Flags.isByVal())
9220       ArgValue = ByValArgs[j++];
9221 
9222     if (VA.isRegLoc()) {
9223       // Queue up the argument copies and emit them at the end.
9224       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
9225     } else {
9226       assert(VA.isMemLoc() && "Argument not register or memory");
9227       assert(!IsTailCall && "Tail call not allowed if stack is used "
9228                             "for passing parameters");
9229 
9230       // Work out the address of the stack slot.
9231       if (!StackPtr.getNode())
9232         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
9233       SDValue Address =
9234           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
9235                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
9236 
9237       // Emit the store.
9238       MemOpChains.push_back(
9239           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
9240     }
9241   }
9242 
9243   // Join the stores, which are independent of one another.
9244   if (!MemOpChains.empty())
9245     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
9246 
9247   SDValue Glue;
9248 
9249   // Build a sequence of copy-to-reg nodes, chained and glued together.
9250   for (auto &Reg : RegsToPass) {
9251     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
9252     Glue = Chain.getValue(1);
9253   }
9254 
9255   // Validate that none of the argument registers have been marked as
9256   // reserved, if so report an error. Do the same for the return address if this
9257   // is not a tailcall.
9258   validateCCReservedRegs(RegsToPass, MF);
9259   if (!IsTailCall &&
9260       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
9261     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9262         MF.getFunction(),
9263         "Return address register required, but has been reserved."});
9264 
9265   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
9266   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
9267   // split it and then direct call can be matched by PseudoCALL.
9268   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
9269     const GlobalValue *GV = S->getGlobal();
9270 
9271     unsigned OpFlags = RISCVII::MO_CALL;
9272     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
9273       OpFlags = RISCVII::MO_PLT;
9274 
9275     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
9276   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
9277     unsigned OpFlags = RISCVII::MO_CALL;
9278 
9279     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
9280                                                  nullptr))
9281       OpFlags = RISCVII::MO_PLT;
9282 
9283     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
9284   }
9285 
9286   // The first call operand is the chain and the second is the target address.
9287   SmallVector<SDValue, 8> Ops;
9288   Ops.push_back(Chain);
9289   Ops.push_back(Callee);
9290 
9291   // Add argument registers to the end of the list so that they are
9292   // known live into the call.
9293   for (auto &Reg : RegsToPass)
9294     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
9295 
9296   if (!IsTailCall) {
9297     // Add a register mask operand representing the call-preserved registers.
9298     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
9299     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
9300     assert(Mask && "Missing call preserved mask for calling convention");
9301     Ops.push_back(DAG.getRegisterMask(Mask));
9302   }
9303 
9304   // Glue the call to the argument copies, if any.
9305   if (Glue.getNode())
9306     Ops.push_back(Glue);
9307 
9308   // Emit the call.
9309   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9310 
9311   if (IsTailCall) {
9312     MF.getFrameInfo().setHasTailCall();
9313     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
9314   }
9315 
9316   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
9317   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
9318   Glue = Chain.getValue(1);
9319 
9320   // Mark the end of the call, which is glued to the call itself.
9321   Chain = DAG.getCALLSEQ_END(Chain,
9322                              DAG.getConstant(NumBytes, DL, PtrVT, true),
9323                              DAG.getConstant(0, DL, PtrVT, true),
9324                              Glue, DL);
9325   Glue = Chain.getValue(1);
9326 
9327   // Assign locations to each value returned by this call.
9328   SmallVector<CCValAssign, 16> RVLocs;
9329   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
9330   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
9331 
9332   // Copy all of the result registers out of their specified physreg.
9333   for (auto &VA : RVLocs) {
9334     // Copy the value out
9335     SDValue RetValue =
9336         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
9337     // Glue the RetValue to the end of the call sequence
9338     Chain = RetValue.getValue(1);
9339     Glue = RetValue.getValue(2);
9340 
9341     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9342       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
9343       SDValue RetValue2 =
9344           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
9345       Chain = RetValue2.getValue(1);
9346       Glue = RetValue2.getValue(2);
9347       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
9348                              RetValue2);
9349     }
9350 
9351     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
9352 
9353     InVals.push_back(RetValue);
9354   }
9355 
9356   return Chain;
9357 }
9358 
9359 bool RISCVTargetLowering::CanLowerReturn(
9360     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
9361     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
9362   SmallVector<CCValAssign, 16> RVLocs;
9363   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
9364 
9365   Optional<unsigned> FirstMaskArgument;
9366   if (Subtarget.hasVInstructions())
9367     FirstMaskArgument = preAssignMask(Outs);
9368 
9369   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
9370     MVT VT = Outs[i].VT;
9371     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9372     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9373     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
9374                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
9375                  *this, FirstMaskArgument))
9376       return false;
9377   }
9378   return true;
9379 }
9380 
9381 SDValue
9382 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
9383                                  bool IsVarArg,
9384                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
9385                                  const SmallVectorImpl<SDValue> &OutVals,
9386                                  const SDLoc &DL, SelectionDAG &DAG) const {
9387   const MachineFunction &MF = DAG.getMachineFunction();
9388   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9389 
9390   // Stores the assignment of the return value to a location.
9391   SmallVector<CCValAssign, 16> RVLocs;
9392 
9393   // Info about the registers and stack slot.
9394   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
9395                  *DAG.getContext());
9396 
9397   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
9398                     nullptr, CC_RISCV);
9399 
9400   if (CallConv == CallingConv::GHC && !RVLocs.empty())
9401     report_fatal_error("GHC functions return void only");
9402 
9403   SDValue Glue;
9404   SmallVector<SDValue, 4> RetOps(1, Chain);
9405 
9406   // Copy the result values into the output registers.
9407   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
9408     SDValue Val = OutVals[i];
9409     CCValAssign &VA = RVLocs[i];
9410     assert(VA.isRegLoc() && "Can only return in registers!");
9411 
9412     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
9413       // Handle returning f64 on RV32D with a soft float ABI.
9414       assert(VA.isRegLoc() && "Expected return via registers");
9415       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
9416                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
9417       SDValue Lo = SplitF64.getValue(0);
9418       SDValue Hi = SplitF64.getValue(1);
9419       Register RegLo = VA.getLocReg();
9420       assert(RegLo < RISCV::X31 && "Invalid register pair");
9421       Register RegHi = RegLo + 1;
9422 
9423       if (STI.isRegisterReservedByUser(RegLo) ||
9424           STI.isRegisterReservedByUser(RegHi))
9425         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9426             MF.getFunction(),
9427             "Return value register required, but has been reserved."});
9428 
9429       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
9430       Glue = Chain.getValue(1);
9431       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
9432       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
9433       Glue = Chain.getValue(1);
9434       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
9435     } else {
9436       // Handle a 'normal' return.
9437       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
9438       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
9439 
9440       if (STI.isRegisterReservedByUser(VA.getLocReg()))
9441         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
9442             MF.getFunction(),
9443             "Return value register required, but has been reserved."});
9444 
9445       // Guarantee that all emitted copies are stuck together.
9446       Glue = Chain.getValue(1);
9447       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
9448     }
9449   }
9450 
9451   RetOps[0] = Chain; // Update chain.
9452 
9453   // Add the glue node if we have it.
9454   if (Glue.getNode()) {
9455     RetOps.push_back(Glue);
9456   }
9457 
9458   unsigned RetOpc = RISCVISD::RET_FLAG;
9459   // Interrupt service routines use different return instructions.
9460   const Function &Func = DAG.getMachineFunction().getFunction();
9461   if (Func.hasFnAttribute("interrupt")) {
9462     if (!Func.getReturnType()->isVoidTy())
9463       report_fatal_error(
9464           "Functions with the interrupt attribute must have void return type!");
9465 
9466     MachineFunction &MF = DAG.getMachineFunction();
9467     StringRef Kind =
9468       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
9469 
9470     if (Kind == "user")
9471       RetOpc = RISCVISD::URET_FLAG;
9472     else if (Kind == "supervisor")
9473       RetOpc = RISCVISD::SRET_FLAG;
9474     else
9475       RetOpc = RISCVISD::MRET_FLAG;
9476   }
9477 
9478   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
9479 }
9480 
9481 void RISCVTargetLowering::validateCCReservedRegs(
9482     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
9483     MachineFunction &MF) const {
9484   const Function &F = MF.getFunction();
9485   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
9486 
9487   if (llvm::any_of(Regs, [&STI](auto Reg) {
9488         return STI.isRegisterReservedByUser(Reg.first);
9489       }))
9490     F.getContext().diagnose(DiagnosticInfoUnsupported{
9491         F, "Argument register required, but has been reserved."});
9492 }
9493 
9494 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
9495   return CI->isTailCall();
9496 }
9497 
9498 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
9499 #define NODE_NAME_CASE(NODE)                                                   \
9500   case RISCVISD::NODE:                                                         \
9501     return "RISCVISD::" #NODE;
9502   // clang-format off
9503   switch ((RISCVISD::NodeType)Opcode) {
9504   case RISCVISD::FIRST_NUMBER:
9505     break;
9506   NODE_NAME_CASE(RET_FLAG)
9507   NODE_NAME_CASE(URET_FLAG)
9508   NODE_NAME_CASE(SRET_FLAG)
9509   NODE_NAME_CASE(MRET_FLAG)
9510   NODE_NAME_CASE(CALL)
9511   NODE_NAME_CASE(SELECT_CC)
9512   NODE_NAME_CASE(BR_CC)
9513   NODE_NAME_CASE(BuildPairF64)
9514   NODE_NAME_CASE(SplitF64)
9515   NODE_NAME_CASE(TAIL)
9516   NODE_NAME_CASE(MULHSU)
9517   NODE_NAME_CASE(SLLW)
9518   NODE_NAME_CASE(SRAW)
9519   NODE_NAME_CASE(SRLW)
9520   NODE_NAME_CASE(DIVW)
9521   NODE_NAME_CASE(DIVUW)
9522   NODE_NAME_CASE(REMUW)
9523   NODE_NAME_CASE(ROLW)
9524   NODE_NAME_CASE(RORW)
9525   NODE_NAME_CASE(CLZW)
9526   NODE_NAME_CASE(CTZW)
9527   NODE_NAME_CASE(FSLW)
9528   NODE_NAME_CASE(FSRW)
9529   NODE_NAME_CASE(FSL)
9530   NODE_NAME_CASE(FSR)
9531   NODE_NAME_CASE(FMV_H_X)
9532   NODE_NAME_CASE(FMV_X_ANYEXTH)
9533   NODE_NAME_CASE(FMV_W_X_RV64)
9534   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
9535   NODE_NAME_CASE(FCVT_X_RTZ)
9536   NODE_NAME_CASE(FCVT_XU_RTZ)
9537   NODE_NAME_CASE(FCVT_W_RTZ_RV64)
9538   NODE_NAME_CASE(FCVT_WU_RTZ_RV64)
9539   NODE_NAME_CASE(STRICT_FCVT_W_RTZ_RV64)
9540   NODE_NAME_CASE(STRICT_FCVT_WU_RTZ_RV64)
9541   NODE_NAME_CASE(READ_CYCLE_WIDE)
9542   NODE_NAME_CASE(GREV)
9543   NODE_NAME_CASE(GREVW)
9544   NODE_NAME_CASE(GORC)
9545   NODE_NAME_CASE(GORCW)
9546   NODE_NAME_CASE(SHFL)
9547   NODE_NAME_CASE(SHFLW)
9548   NODE_NAME_CASE(UNSHFL)
9549   NODE_NAME_CASE(UNSHFLW)
9550   NODE_NAME_CASE(BCOMPRESS)
9551   NODE_NAME_CASE(BCOMPRESSW)
9552   NODE_NAME_CASE(BDECOMPRESS)
9553   NODE_NAME_CASE(BDECOMPRESSW)
9554   NODE_NAME_CASE(VMV_V_X_VL)
9555   NODE_NAME_CASE(VFMV_V_F_VL)
9556   NODE_NAME_CASE(VMV_X_S)
9557   NODE_NAME_CASE(VMV_S_X_VL)
9558   NODE_NAME_CASE(VFMV_S_F_VL)
9559   NODE_NAME_CASE(SPLAT_VECTOR_I64)
9560   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
9561   NODE_NAME_CASE(READ_VLENB)
9562   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
9563   NODE_NAME_CASE(VSLIDEUP_VL)
9564   NODE_NAME_CASE(VSLIDE1UP_VL)
9565   NODE_NAME_CASE(VSLIDEDOWN_VL)
9566   NODE_NAME_CASE(VSLIDE1DOWN_VL)
9567   NODE_NAME_CASE(VID_VL)
9568   NODE_NAME_CASE(VFNCVT_ROD_VL)
9569   NODE_NAME_CASE(VECREDUCE_ADD_VL)
9570   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
9571   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
9572   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
9573   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
9574   NODE_NAME_CASE(VECREDUCE_AND_VL)
9575   NODE_NAME_CASE(VECREDUCE_OR_VL)
9576   NODE_NAME_CASE(VECREDUCE_XOR_VL)
9577   NODE_NAME_CASE(VECREDUCE_FADD_VL)
9578   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
9579   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
9580   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
9581   NODE_NAME_CASE(ADD_VL)
9582   NODE_NAME_CASE(AND_VL)
9583   NODE_NAME_CASE(MUL_VL)
9584   NODE_NAME_CASE(OR_VL)
9585   NODE_NAME_CASE(SDIV_VL)
9586   NODE_NAME_CASE(SHL_VL)
9587   NODE_NAME_CASE(SREM_VL)
9588   NODE_NAME_CASE(SRA_VL)
9589   NODE_NAME_CASE(SRL_VL)
9590   NODE_NAME_CASE(SUB_VL)
9591   NODE_NAME_CASE(UDIV_VL)
9592   NODE_NAME_CASE(UREM_VL)
9593   NODE_NAME_CASE(XOR_VL)
9594   NODE_NAME_CASE(SADDSAT_VL)
9595   NODE_NAME_CASE(UADDSAT_VL)
9596   NODE_NAME_CASE(SSUBSAT_VL)
9597   NODE_NAME_CASE(USUBSAT_VL)
9598   NODE_NAME_CASE(FADD_VL)
9599   NODE_NAME_CASE(FSUB_VL)
9600   NODE_NAME_CASE(FMUL_VL)
9601   NODE_NAME_CASE(FDIV_VL)
9602   NODE_NAME_CASE(FNEG_VL)
9603   NODE_NAME_CASE(FABS_VL)
9604   NODE_NAME_CASE(FSQRT_VL)
9605   NODE_NAME_CASE(FMA_VL)
9606   NODE_NAME_CASE(FCOPYSIGN_VL)
9607   NODE_NAME_CASE(SMIN_VL)
9608   NODE_NAME_CASE(SMAX_VL)
9609   NODE_NAME_CASE(UMIN_VL)
9610   NODE_NAME_CASE(UMAX_VL)
9611   NODE_NAME_CASE(FMINNUM_VL)
9612   NODE_NAME_CASE(FMAXNUM_VL)
9613   NODE_NAME_CASE(MULHS_VL)
9614   NODE_NAME_CASE(MULHU_VL)
9615   NODE_NAME_CASE(FP_TO_SINT_VL)
9616   NODE_NAME_CASE(FP_TO_UINT_VL)
9617   NODE_NAME_CASE(SINT_TO_FP_VL)
9618   NODE_NAME_CASE(UINT_TO_FP_VL)
9619   NODE_NAME_CASE(FP_EXTEND_VL)
9620   NODE_NAME_CASE(FP_ROUND_VL)
9621   NODE_NAME_CASE(VWMUL_VL)
9622   NODE_NAME_CASE(VWMULU_VL)
9623   NODE_NAME_CASE(SETCC_VL)
9624   NODE_NAME_CASE(VSELECT_VL)
9625   NODE_NAME_CASE(VMAND_VL)
9626   NODE_NAME_CASE(VMOR_VL)
9627   NODE_NAME_CASE(VMXOR_VL)
9628   NODE_NAME_CASE(VMCLR_VL)
9629   NODE_NAME_CASE(VMSET_VL)
9630   NODE_NAME_CASE(VRGATHER_VX_VL)
9631   NODE_NAME_CASE(VRGATHER_VV_VL)
9632   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
9633   NODE_NAME_CASE(VSEXT_VL)
9634   NODE_NAME_CASE(VZEXT_VL)
9635   NODE_NAME_CASE(VCPOP_VL)
9636   NODE_NAME_CASE(VLE_VL)
9637   NODE_NAME_CASE(VSE_VL)
9638   NODE_NAME_CASE(READ_CSR)
9639   NODE_NAME_CASE(WRITE_CSR)
9640   NODE_NAME_CASE(SWAP_CSR)
9641   }
9642   // clang-format on
9643   return nullptr;
9644 #undef NODE_NAME_CASE
9645 }
9646 
9647 /// getConstraintType - Given a constraint letter, return the type of
9648 /// constraint it is for this target.
9649 RISCVTargetLowering::ConstraintType
9650 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
9651   if (Constraint.size() == 1) {
9652     switch (Constraint[0]) {
9653     default:
9654       break;
9655     case 'f':
9656       return C_RegisterClass;
9657     case 'I':
9658     case 'J':
9659     case 'K':
9660       return C_Immediate;
9661     case 'A':
9662       return C_Memory;
9663     case 'S': // A symbolic address
9664       return C_Other;
9665     }
9666   } else {
9667     if (Constraint == "vr" || Constraint == "vm")
9668       return C_RegisterClass;
9669   }
9670   return TargetLowering::getConstraintType(Constraint);
9671 }
9672 
9673 std::pair<unsigned, const TargetRegisterClass *>
9674 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9675                                                   StringRef Constraint,
9676                                                   MVT VT) const {
9677   // First, see if this is a constraint that directly corresponds to a
9678   // RISCV register class.
9679   if (Constraint.size() == 1) {
9680     switch (Constraint[0]) {
9681     case 'r':
9682       // TODO: Support fixed vectors up to XLen for P extension?
9683       if (VT.isVector())
9684         break;
9685       return std::make_pair(0U, &RISCV::GPRRegClass);
9686     case 'f':
9687       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
9688         return std::make_pair(0U, &RISCV::FPR16RegClass);
9689       if (Subtarget.hasStdExtF() && VT == MVT::f32)
9690         return std::make_pair(0U, &RISCV::FPR32RegClass);
9691       if (Subtarget.hasStdExtD() && VT == MVT::f64)
9692         return std::make_pair(0U, &RISCV::FPR64RegClass);
9693       break;
9694     default:
9695       break;
9696     }
9697   } else if (Constraint == "vr") {
9698     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
9699                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9700       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
9701         return std::make_pair(0U, RC);
9702     }
9703   } else if (Constraint == "vm") {
9704     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
9705       return std::make_pair(0U, &RISCV::VMV0RegClass);
9706   }
9707 
9708   // Clang will correctly decode the usage of register name aliases into their
9709   // official names. However, other frontends like `rustc` do not. This allows
9710   // users of these frontends to use the ABI names for registers in LLVM-style
9711   // register constraints.
9712   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
9713                                .Case("{zero}", RISCV::X0)
9714                                .Case("{ra}", RISCV::X1)
9715                                .Case("{sp}", RISCV::X2)
9716                                .Case("{gp}", RISCV::X3)
9717                                .Case("{tp}", RISCV::X4)
9718                                .Case("{t0}", RISCV::X5)
9719                                .Case("{t1}", RISCV::X6)
9720                                .Case("{t2}", RISCV::X7)
9721                                .Cases("{s0}", "{fp}", RISCV::X8)
9722                                .Case("{s1}", RISCV::X9)
9723                                .Case("{a0}", RISCV::X10)
9724                                .Case("{a1}", RISCV::X11)
9725                                .Case("{a2}", RISCV::X12)
9726                                .Case("{a3}", RISCV::X13)
9727                                .Case("{a4}", RISCV::X14)
9728                                .Case("{a5}", RISCV::X15)
9729                                .Case("{a6}", RISCV::X16)
9730                                .Case("{a7}", RISCV::X17)
9731                                .Case("{s2}", RISCV::X18)
9732                                .Case("{s3}", RISCV::X19)
9733                                .Case("{s4}", RISCV::X20)
9734                                .Case("{s5}", RISCV::X21)
9735                                .Case("{s6}", RISCV::X22)
9736                                .Case("{s7}", RISCV::X23)
9737                                .Case("{s8}", RISCV::X24)
9738                                .Case("{s9}", RISCV::X25)
9739                                .Case("{s10}", RISCV::X26)
9740                                .Case("{s11}", RISCV::X27)
9741                                .Case("{t3}", RISCV::X28)
9742                                .Case("{t4}", RISCV::X29)
9743                                .Case("{t5}", RISCV::X30)
9744                                .Case("{t6}", RISCV::X31)
9745                                .Default(RISCV::NoRegister);
9746   if (XRegFromAlias != RISCV::NoRegister)
9747     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
9748 
9749   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
9750   // TableGen record rather than the AsmName to choose registers for InlineAsm
9751   // constraints, plus we want to match those names to the widest floating point
9752   // register type available, manually select floating point registers here.
9753   //
9754   // The second case is the ABI name of the register, so that frontends can also
9755   // use the ABI names in register constraint lists.
9756   if (Subtarget.hasStdExtF()) {
9757     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
9758                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
9759                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
9760                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
9761                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
9762                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
9763                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
9764                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
9765                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
9766                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
9767                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
9768                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
9769                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
9770                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
9771                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
9772                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
9773                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
9774                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
9775                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
9776                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
9777                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
9778                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
9779                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
9780                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
9781                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
9782                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
9783                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
9784                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
9785                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
9786                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
9787                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
9788                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
9789                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
9790                         .Default(RISCV::NoRegister);
9791     if (FReg != RISCV::NoRegister) {
9792       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
9793       if (Subtarget.hasStdExtD()) {
9794         unsigned RegNo = FReg - RISCV::F0_F;
9795         unsigned DReg = RISCV::F0_D + RegNo;
9796         return std::make_pair(DReg, &RISCV::FPR64RegClass);
9797       }
9798       return std::make_pair(FReg, &RISCV::FPR32RegClass);
9799     }
9800   }
9801 
9802   if (Subtarget.hasVInstructions()) {
9803     Register VReg = StringSwitch<Register>(Constraint.lower())
9804                         .Case("{v0}", RISCV::V0)
9805                         .Case("{v1}", RISCV::V1)
9806                         .Case("{v2}", RISCV::V2)
9807                         .Case("{v3}", RISCV::V3)
9808                         .Case("{v4}", RISCV::V4)
9809                         .Case("{v5}", RISCV::V5)
9810                         .Case("{v6}", RISCV::V6)
9811                         .Case("{v7}", RISCV::V7)
9812                         .Case("{v8}", RISCV::V8)
9813                         .Case("{v9}", RISCV::V9)
9814                         .Case("{v10}", RISCV::V10)
9815                         .Case("{v11}", RISCV::V11)
9816                         .Case("{v12}", RISCV::V12)
9817                         .Case("{v13}", RISCV::V13)
9818                         .Case("{v14}", RISCV::V14)
9819                         .Case("{v15}", RISCV::V15)
9820                         .Case("{v16}", RISCV::V16)
9821                         .Case("{v17}", RISCV::V17)
9822                         .Case("{v18}", RISCV::V18)
9823                         .Case("{v19}", RISCV::V19)
9824                         .Case("{v20}", RISCV::V20)
9825                         .Case("{v21}", RISCV::V21)
9826                         .Case("{v22}", RISCV::V22)
9827                         .Case("{v23}", RISCV::V23)
9828                         .Case("{v24}", RISCV::V24)
9829                         .Case("{v25}", RISCV::V25)
9830                         .Case("{v26}", RISCV::V26)
9831                         .Case("{v27}", RISCV::V27)
9832                         .Case("{v28}", RISCV::V28)
9833                         .Case("{v29}", RISCV::V29)
9834                         .Case("{v30}", RISCV::V30)
9835                         .Case("{v31}", RISCV::V31)
9836                         .Default(RISCV::NoRegister);
9837     if (VReg != RISCV::NoRegister) {
9838       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
9839         return std::make_pair(VReg, &RISCV::VMRegClass);
9840       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
9841         return std::make_pair(VReg, &RISCV::VRRegClass);
9842       for (const auto *RC :
9843            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
9844         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
9845           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
9846           return std::make_pair(VReg, RC);
9847         }
9848       }
9849     }
9850   }
9851 
9852   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
9853 }
9854 
9855 unsigned
9856 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
9857   // Currently only support length 1 constraints.
9858   if (ConstraintCode.size() == 1) {
9859     switch (ConstraintCode[0]) {
9860     case 'A':
9861       return InlineAsm::Constraint_A;
9862     default:
9863       break;
9864     }
9865   }
9866 
9867   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9868 }
9869 
9870 void RISCVTargetLowering::LowerAsmOperandForConstraint(
9871     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
9872     SelectionDAG &DAG) const {
9873   // Currently only support length 1 constraints.
9874   if (Constraint.length() == 1) {
9875     switch (Constraint[0]) {
9876     case 'I':
9877       // Validate & create a 12-bit signed immediate operand.
9878       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9879         uint64_t CVal = C->getSExtValue();
9880         if (isInt<12>(CVal))
9881           Ops.push_back(
9882               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9883       }
9884       return;
9885     case 'J':
9886       // Validate & create an integer zero operand.
9887       if (auto *C = dyn_cast<ConstantSDNode>(Op))
9888         if (C->getZExtValue() == 0)
9889           Ops.push_back(
9890               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
9891       return;
9892     case 'K':
9893       // Validate & create a 5-bit unsigned immediate operand.
9894       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
9895         uint64_t CVal = C->getZExtValue();
9896         if (isUInt<5>(CVal))
9897           Ops.push_back(
9898               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
9899       }
9900       return;
9901     case 'S':
9902       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9903         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
9904                                                  GA->getValueType(0)));
9905       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
9906         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
9907                                                 BA->getValueType(0)));
9908       }
9909       return;
9910     default:
9911       break;
9912     }
9913   }
9914   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9915 }
9916 
9917 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
9918                                                    Instruction *Inst,
9919                                                    AtomicOrdering Ord) const {
9920   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
9921     return Builder.CreateFence(Ord);
9922   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
9923     return Builder.CreateFence(AtomicOrdering::Release);
9924   return nullptr;
9925 }
9926 
9927 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
9928                                                     Instruction *Inst,
9929                                                     AtomicOrdering Ord) const {
9930   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
9931     return Builder.CreateFence(AtomicOrdering::Acquire);
9932   return nullptr;
9933 }
9934 
9935 TargetLowering::AtomicExpansionKind
9936 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9937   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
9938   // point operations can't be used in an lr/sc sequence without breaking the
9939   // forward-progress guarantee.
9940   if (AI->isFloatingPointOperation())
9941     return AtomicExpansionKind::CmpXChg;
9942 
9943   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9944   if (Size == 8 || Size == 16)
9945     return AtomicExpansionKind::MaskedIntrinsic;
9946   return AtomicExpansionKind::None;
9947 }
9948 
9949 static Intrinsic::ID
9950 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
9951   if (XLen == 32) {
9952     switch (BinOp) {
9953     default:
9954       llvm_unreachable("Unexpected AtomicRMW BinOp");
9955     case AtomicRMWInst::Xchg:
9956       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
9957     case AtomicRMWInst::Add:
9958       return Intrinsic::riscv_masked_atomicrmw_add_i32;
9959     case AtomicRMWInst::Sub:
9960       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
9961     case AtomicRMWInst::Nand:
9962       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
9963     case AtomicRMWInst::Max:
9964       return Intrinsic::riscv_masked_atomicrmw_max_i32;
9965     case AtomicRMWInst::Min:
9966       return Intrinsic::riscv_masked_atomicrmw_min_i32;
9967     case AtomicRMWInst::UMax:
9968       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
9969     case AtomicRMWInst::UMin:
9970       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
9971     }
9972   }
9973 
9974   if (XLen == 64) {
9975     switch (BinOp) {
9976     default:
9977       llvm_unreachable("Unexpected AtomicRMW BinOp");
9978     case AtomicRMWInst::Xchg:
9979       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
9980     case AtomicRMWInst::Add:
9981       return Intrinsic::riscv_masked_atomicrmw_add_i64;
9982     case AtomicRMWInst::Sub:
9983       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
9984     case AtomicRMWInst::Nand:
9985       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
9986     case AtomicRMWInst::Max:
9987       return Intrinsic::riscv_masked_atomicrmw_max_i64;
9988     case AtomicRMWInst::Min:
9989       return Intrinsic::riscv_masked_atomicrmw_min_i64;
9990     case AtomicRMWInst::UMax:
9991       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
9992     case AtomicRMWInst::UMin:
9993       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
9994     }
9995   }
9996 
9997   llvm_unreachable("Unexpected XLen\n");
9998 }
9999 
10000 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
10001     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
10002     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
10003   unsigned XLen = Subtarget.getXLen();
10004   Value *Ordering =
10005       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
10006   Type *Tys[] = {AlignedAddr->getType()};
10007   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
10008       AI->getModule(),
10009       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
10010 
10011   if (XLen == 64) {
10012     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
10013     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10014     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
10015   }
10016 
10017   Value *Result;
10018 
10019   // Must pass the shift amount needed to sign extend the loaded value prior
10020   // to performing a signed comparison for min/max. ShiftAmt is the number of
10021   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
10022   // is the number of bits to left+right shift the value in order to
10023   // sign-extend.
10024   if (AI->getOperation() == AtomicRMWInst::Min ||
10025       AI->getOperation() == AtomicRMWInst::Max) {
10026     const DataLayout &DL = AI->getModule()->getDataLayout();
10027     unsigned ValWidth =
10028         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
10029     Value *SextShamt =
10030         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
10031     Result = Builder.CreateCall(LrwOpScwLoop,
10032                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
10033   } else {
10034     Result =
10035         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
10036   }
10037 
10038   if (XLen == 64)
10039     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10040   return Result;
10041 }
10042 
10043 TargetLowering::AtomicExpansionKind
10044 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
10045     AtomicCmpXchgInst *CI) const {
10046   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
10047   if (Size == 8 || Size == 16)
10048     return AtomicExpansionKind::MaskedIntrinsic;
10049   return AtomicExpansionKind::None;
10050 }
10051 
10052 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
10053     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
10054     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
10055   unsigned XLen = Subtarget.getXLen();
10056   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
10057   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
10058   if (XLen == 64) {
10059     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
10060     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
10061     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
10062     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
10063   }
10064   Type *Tys[] = {AlignedAddr->getType()};
10065   Function *MaskedCmpXchg =
10066       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
10067   Value *Result = Builder.CreateCall(
10068       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
10069   if (XLen == 64)
10070     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
10071   return Result;
10072 }
10073 
10074 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
10075   return false;
10076 }
10077 
10078 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
10079                                                EVT VT) const {
10080   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
10081     return false;
10082 
10083   switch (FPVT.getSimpleVT().SimpleTy) {
10084   case MVT::f16:
10085     return Subtarget.hasStdExtZfh();
10086   case MVT::f32:
10087     return Subtarget.hasStdExtF();
10088   case MVT::f64:
10089     return Subtarget.hasStdExtD();
10090   default:
10091     return false;
10092   }
10093 }
10094 
10095 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
10096                                                      EVT VT) const {
10097   VT = VT.getScalarType();
10098 
10099   if (!VT.isSimple())
10100     return false;
10101 
10102   switch (VT.getSimpleVT().SimpleTy) {
10103   case MVT::f16:
10104     return Subtarget.hasStdExtZfh();
10105   case MVT::f32:
10106     return Subtarget.hasStdExtF();
10107   case MVT::f64:
10108     return Subtarget.hasStdExtD();
10109   default:
10110     break;
10111   }
10112 
10113   return false;
10114 }
10115 
10116 Register RISCVTargetLowering::getExceptionPointerRegister(
10117     const Constant *PersonalityFn) const {
10118   return RISCV::X10;
10119 }
10120 
10121 Register RISCVTargetLowering::getExceptionSelectorRegister(
10122     const Constant *PersonalityFn) const {
10123   return RISCV::X11;
10124 }
10125 
10126 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
10127   // Return false to suppress the unnecessary extensions if the LibCall
10128   // arguments or return value is f32 type for LP64 ABI.
10129   RISCVABI::ABI ABI = Subtarget.getTargetABI();
10130   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
10131     return false;
10132 
10133   return true;
10134 }
10135 
10136 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
10137   if (Subtarget.is64Bit() && Type == MVT::i32)
10138     return true;
10139 
10140   return IsSigned;
10141 }
10142 
10143 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
10144                                                  SDValue C) const {
10145   // Check integral scalar types.
10146   if (VT.isScalarInteger()) {
10147     // Omit the optimization if the sub target has the M extension and the data
10148     // size exceeds XLen.
10149     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
10150       return false;
10151     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
10152       // Break the MUL to a SLLI and an ADD/SUB.
10153       const APInt &Imm = ConstNode->getAPIntValue();
10154       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
10155           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
10156         return true;
10157       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
10158       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
10159           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
10160            (Imm - 8).isPowerOf2()))
10161         return true;
10162       // Omit the following optimization if the sub target has the M extension
10163       // and the data size >= XLen.
10164       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
10165         return false;
10166       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
10167       // a pair of LUI/ADDI.
10168       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
10169         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
10170         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
10171             (1 - ImmS).isPowerOf2())
10172         return true;
10173       }
10174     }
10175   }
10176 
10177   return false;
10178 }
10179 
10180 bool RISCVTargetLowering::isMulAddWithConstProfitable(
10181     const SDValue &AddNode, const SDValue &ConstNode) const {
10182   // Let the DAGCombiner decide for vectors.
10183   EVT VT = AddNode.getValueType();
10184   if (VT.isVector())
10185     return true;
10186 
10187   // Let the DAGCombiner decide for larger types.
10188   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
10189     return true;
10190 
10191   // It is worse if c1 is simm12 while c1*c2 is not.
10192   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
10193   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
10194   const APInt &C1 = C1Node->getAPIntValue();
10195   const APInt &C2 = C2Node->getAPIntValue();
10196   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
10197     return false;
10198 
10199   // Default to true and let the DAGCombiner decide.
10200   return true;
10201 }
10202 
10203 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
10204     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
10205     bool *Fast) const {
10206   if (!VT.isVector())
10207     return false;
10208 
10209   EVT ElemVT = VT.getVectorElementType();
10210   if (Alignment >= ElemVT.getStoreSize()) {
10211     if (Fast)
10212       *Fast = true;
10213     return true;
10214   }
10215 
10216   return false;
10217 }
10218 
10219 bool RISCVTargetLowering::splitValueIntoRegisterParts(
10220     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
10221     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
10222   bool IsABIRegCopy = CC.hasValue();
10223   EVT ValueVT = Val.getValueType();
10224   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10225     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
10226     // and cast to f32.
10227     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
10228     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
10229     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
10230                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
10231     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
10232     Parts[0] = Val;
10233     return true;
10234   }
10235 
10236   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10237     LLVMContext &Context = *DAG.getContext();
10238     EVT ValueEltVT = ValueVT.getVectorElementType();
10239     EVT PartEltVT = PartVT.getVectorElementType();
10240     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10241     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10242     if (PartVTBitSize % ValueVTBitSize == 0) {
10243       assert(PartVTBitSize >= ValueVTBitSize);
10244       // If the element types are different, bitcast to the same element type of
10245       // PartVT first.
10246       // Give an example here, we want copy a <vscale x 1 x i8> value to
10247       // <vscale x 4 x i16>.
10248       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
10249       // subvector, then we can bitcast to <vscale x 4 x i16>.
10250       if (ValueEltVT != PartEltVT) {
10251         if (PartVTBitSize > ValueVTBitSize) {
10252           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10253           assert(Count != 0 && "The number of element should not be zero.");
10254           EVT SameEltTypeVT =
10255               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10256           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
10257                             DAG.getUNDEF(SameEltTypeVT), Val,
10258                             DAG.getVectorIdxConstant(0, DL));
10259         }
10260         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
10261       } else {
10262         Val =
10263             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
10264                         Val, DAG.getVectorIdxConstant(0, DL));
10265       }
10266       Parts[0] = Val;
10267       return true;
10268     }
10269   }
10270   return false;
10271 }
10272 
10273 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
10274     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
10275     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
10276   bool IsABIRegCopy = CC.hasValue();
10277   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
10278     SDValue Val = Parts[0];
10279 
10280     // Cast the f32 to i32, truncate to i16, and cast back to f16.
10281     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
10282     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
10283     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
10284     return Val;
10285   }
10286 
10287   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
10288     LLVMContext &Context = *DAG.getContext();
10289     SDValue Val = Parts[0];
10290     EVT ValueEltVT = ValueVT.getVectorElementType();
10291     EVT PartEltVT = PartVT.getVectorElementType();
10292     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
10293     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
10294     if (PartVTBitSize % ValueVTBitSize == 0) {
10295       assert(PartVTBitSize >= ValueVTBitSize);
10296       EVT SameEltTypeVT = ValueVT;
10297       // If the element types are different, convert it to the same element type
10298       // of PartVT.
10299       // Give an example here, we want copy a <vscale x 1 x i8> value from
10300       // <vscale x 4 x i16>.
10301       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
10302       // then we can extract <vscale x 1 x i8>.
10303       if (ValueEltVT != PartEltVT) {
10304         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
10305         assert(Count != 0 && "The number of element should not be zero.");
10306         SameEltTypeVT =
10307             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
10308         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
10309       }
10310       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
10311                         DAG.getVectorIdxConstant(0, DL));
10312       return Val;
10313     }
10314   }
10315   return SDValue();
10316 }
10317 
10318 #define GET_REGISTER_MATCHER
10319 #include "RISCVGenAsmMatcher.inc"
10320 
10321 Register
10322 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
10323                                        const MachineFunction &MF) const {
10324   Register Reg = MatchRegisterAltName(RegName);
10325   if (Reg == RISCV::NoRegister)
10326     Reg = MatchRegisterName(RegName);
10327   if (Reg == RISCV::NoRegister)
10328     report_fatal_error(
10329         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
10330   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
10331   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
10332     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
10333                              StringRef(RegName) + "\"."));
10334   return Reg;
10335 }
10336 
10337 namespace llvm {
10338 namespace RISCVVIntrinsicsTable {
10339 
10340 #define GET_RISCVVIntrinsicsTable_IMPL
10341 #include "RISCVGenSearchableTables.inc"
10342 
10343 } // namespace RISCVVIntrinsicsTable
10344 
10345 } // namespace llvm
10346