1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "riscv-lower"
45 
46 STATISTIC(NumTailCalls, "Number of tail calls");
47 
48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49                                          const RISCVSubtarget &STI)
50     : TargetLowering(TM), Subtarget(STI) {
51 
52   if (Subtarget.isRV32E())
53     report_fatal_error("Codegen not yet implemented for RV32E");
54 
55   RISCVABI::ABI ABI = Subtarget.getTargetABI();
56   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57 
58   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59       !Subtarget.hasStdExtF()) {
60     errs() << "Hard-float 'f' ABI can't be used for a target that "
61                 "doesn't support the F instruction set extension (ignoring "
62                           "target-abi)\n";
63     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65              !Subtarget.hasStdExtD()) {
66     errs() << "Hard-float 'd' ABI can't be used for a target that "
67               "doesn't support the D instruction set extension (ignoring "
68               "target-abi)\n";
69     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70   }
71 
72   switch (ABI) {
73   default:
74     report_fatal_error("Don't know how to lower this ABI");
75   case RISCVABI::ABI_ILP32:
76   case RISCVABI::ABI_ILP32F:
77   case RISCVABI::ABI_ILP32D:
78   case RISCVABI::ABI_LP64:
79   case RISCVABI::ABI_LP64F:
80   case RISCVABI::ABI_LP64D:
81     break;
82   }
83 
84   MVT XLenVT = Subtarget.getXLenVT();
85 
86   // Set up the register classes.
87   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88 
89   if (Subtarget.hasStdExtZfh())
90     addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91   if (Subtarget.hasStdExtF())
92     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93   if (Subtarget.hasStdExtD())
94     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95 
96   static const MVT::SimpleValueType BoolVecVTs[] = {
97       MVT::nxv1i1,  MVT::nxv2i1,  MVT::nxv4i1, MVT::nxv8i1,
98       MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99   static const MVT::SimpleValueType IntVecVTs[] = {
100       MVT::nxv1i8,  MVT::nxv2i8,   MVT::nxv4i8,   MVT::nxv8i8,  MVT::nxv16i8,
101       MVT::nxv32i8, MVT::nxv64i8,  MVT::nxv1i16,  MVT::nxv2i16, MVT::nxv4i16,
102       MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103       MVT::nxv4i32, MVT::nxv8i32,  MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104       MVT::nxv4i64, MVT::nxv8i64};
105   static const MVT::SimpleValueType F16VecVTs[] = {
106       MVT::nxv1f16, MVT::nxv2f16,  MVT::nxv4f16,
107       MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108   static const MVT::SimpleValueType F32VecVTs[] = {
109       MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110   static const MVT::SimpleValueType F64VecVTs[] = {
111       MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112 
113   if (Subtarget.hasVInstructions()) {
114     auto addRegClassForRVV = [this](MVT VT) {
115       unsigned Size = VT.getSizeInBits().getKnownMinValue();
116       assert(Size <= 512 && isPowerOf2_32(Size));
117       const TargetRegisterClass *RC;
118       if (Size <= 64)
119         RC = &RISCV::VRRegClass;
120       else if (Size == 128)
121         RC = &RISCV::VRM2RegClass;
122       else if (Size == 256)
123         RC = &RISCV::VRM4RegClass;
124       else
125         RC = &RISCV::VRM8RegClass;
126 
127       addRegisterClass(VT, RC);
128     };
129 
130     for (MVT VT : BoolVecVTs)
131       addRegClassForRVV(VT);
132     for (MVT VT : IntVecVTs) {
133       if (VT.getVectorElementType() == MVT::i64 &&
134           !Subtarget.hasVInstructionsI64())
135         continue;
136       addRegClassForRVV(VT);
137     }
138 
139     if (Subtarget.hasVInstructionsF16())
140       for (MVT VT : F16VecVTs)
141         addRegClassForRVV(VT);
142 
143     if (Subtarget.hasVInstructionsF32())
144       for (MVT VT : F32VecVTs)
145         addRegClassForRVV(VT);
146 
147     if (Subtarget.hasVInstructionsF64())
148       for (MVT VT : F64VecVTs)
149         addRegClassForRVV(VT);
150 
151     if (Subtarget.useRVVForFixedLengthVectors()) {
152       auto addRegClassForFixedVectors = [this](MVT VT) {
153         MVT ContainerVT = getContainerForFixedLengthVector(VT);
154         unsigned RCID = getRegClassIDForVecVT(ContainerVT);
155         const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
156         addRegisterClass(VT, TRI.getRegClass(RCID));
157       };
158       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
159         if (useRVVForFixedLengthVectorVT(VT))
160           addRegClassForFixedVectors(VT);
161 
162       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
163         if (useRVVForFixedLengthVectorVT(VT))
164           addRegClassForFixedVectors(VT);
165     }
166   }
167 
168   // Compute derived properties from the register classes.
169   computeRegisterProperties(STI.getRegisterInfo());
170 
171   setStackPointerRegisterToSaveRestore(RISCV::X2);
172 
173   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
174     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
175 
176   // TODO: add all necessary setOperationAction calls.
177   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
178 
179   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
180   setOperationAction(ISD::BR_CC, XLenVT, Expand);
181   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
182   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
183 
184   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
185   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
186 
187   setOperationAction(ISD::VASTART, MVT::Other, Custom);
188   setOperationAction(ISD::VAARG, MVT::Other, Expand);
189   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
190   setOperationAction(ISD::VAEND, MVT::Other, Expand);
191 
192   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193   if (!Subtarget.hasStdExtZbb()) {
194     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
195     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
196   }
197 
198   if (Subtarget.is64Bit()) {
199     setOperationAction(ISD::ADD, MVT::i32, Custom);
200     setOperationAction(ISD::SUB, MVT::i32, Custom);
201     setOperationAction(ISD::SHL, MVT::i32, Custom);
202     setOperationAction(ISD::SRA, MVT::i32, Custom);
203     setOperationAction(ISD::SRL, MVT::i32, Custom);
204 
205     setOperationAction(ISD::UADDO, MVT::i32, Custom);
206     setOperationAction(ISD::USUBO, MVT::i32, Custom);
207     setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
208     setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
209   } else {
210     setLibcallName(RTLIB::SHL_I128, nullptr);
211     setLibcallName(RTLIB::SRL_I128, nullptr);
212     setLibcallName(RTLIB::SRA_I128, nullptr);
213     setLibcallName(RTLIB::MUL_I128, nullptr);
214     setLibcallName(RTLIB::MULO_I64, nullptr);
215   }
216 
217   if (!Subtarget.hasStdExtM()) {
218     setOperationAction(ISD::MUL, XLenVT, Expand);
219     setOperationAction(ISD::MULHS, XLenVT, Expand);
220     setOperationAction(ISD::MULHU, XLenVT, Expand);
221     setOperationAction(ISD::SDIV, XLenVT, Expand);
222     setOperationAction(ISD::UDIV, XLenVT, Expand);
223     setOperationAction(ISD::SREM, XLenVT, Expand);
224     setOperationAction(ISD::UREM, XLenVT, Expand);
225   } else {
226     if (Subtarget.is64Bit()) {
227       setOperationAction(ISD::MUL, MVT::i32, Custom);
228       setOperationAction(ISD::MUL, MVT::i128, Custom);
229 
230       setOperationAction(ISD::SDIV, MVT::i8, Custom);
231       setOperationAction(ISD::UDIV, MVT::i8, Custom);
232       setOperationAction(ISD::UREM, MVT::i8, Custom);
233       setOperationAction(ISD::SDIV, MVT::i16, Custom);
234       setOperationAction(ISD::UDIV, MVT::i16, Custom);
235       setOperationAction(ISD::UREM, MVT::i16, Custom);
236       setOperationAction(ISD::SDIV, MVT::i32, Custom);
237       setOperationAction(ISD::UDIV, MVT::i32, Custom);
238       setOperationAction(ISD::UREM, MVT::i32, Custom);
239     } else {
240       setOperationAction(ISD::MUL, MVT::i64, Custom);
241     }
242   }
243 
244   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
245   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
246   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
247   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
248 
249   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
250   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
251   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
252 
253   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
254       Subtarget.hasStdExtZbkb()) {
255     if (Subtarget.is64Bit()) {
256       setOperationAction(ISD::ROTL, MVT::i32, Custom);
257       setOperationAction(ISD::ROTR, MVT::i32, Custom);
258     }
259   } else {
260     setOperationAction(ISD::ROTL, XLenVT, Expand);
261     setOperationAction(ISD::ROTR, XLenVT, Expand);
262   }
263 
264   if (Subtarget.hasStdExtZbp()) {
265     // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
266     // more combining.
267     setOperationAction(ISD::BITREVERSE, XLenVT,   Custom);
268     setOperationAction(ISD::BSWAP,      XLenVT,   Custom);
269     setOperationAction(ISD::BITREVERSE, MVT::i8,  Custom);
270     // BSWAP i8 doesn't exist.
271     setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
272     setOperationAction(ISD::BSWAP,      MVT::i16, Custom);
273 
274     if (Subtarget.is64Bit()) {
275       setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
276       setOperationAction(ISD::BSWAP,      MVT::i32, Custom);
277     }
278   } else {
279     // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
280     // pattern match it directly in isel.
281     setOperationAction(ISD::BSWAP, XLenVT,
282                        (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
283                            ? Legal
284                            : Expand);
285     // Zbkb can use rev8+brev8 to implement bitreverse.
286     setOperationAction(ISD::BITREVERSE, XLenVT,
287                        Subtarget.hasStdExtZbkb() ? Custom : Expand);
288   }
289 
290   if (Subtarget.hasStdExtZbb()) {
291     setOperationAction(ISD::SMIN, XLenVT, Legal);
292     setOperationAction(ISD::SMAX, XLenVT, Legal);
293     setOperationAction(ISD::UMIN, XLenVT, Legal);
294     setOperationAction(ISD::UMAX, XLenVT, Legal);
295 
296     if (Subtarget.is64Bit()) {
297       setOperationAction(ISD::CTTZ, MVT::i32, Custom);
298       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
299       setOperationAction(ISD::CTLZ, MVT::i32, Custom);
300       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
301     }
302   } else {
303     setOperationAction(ISD::CTTZ, XLenVT, Expand);
304     setOperationAction(ISD::CTLZ, XLenVT, Expand);
305     setOperationAction(ISD::CTPOP, XLenVT, Expand);
306 
307     if (Subtarget.is64Bit())
308       setOperationAction(ISD::ABS, MVT::i32, Custom);
309   }
310 
311   if (Subtarget.hasStdExtZbt()) {
312     setOperationAction(ISD::FSHL, XLenVT, Custom);
313     setOperationAction(ISD::FSHR, XLenVT, Custom);
314     setOperationAction(ISD::SELECT, XLenVT, Legal);
315 
316     if (Subtarget.is64Bit()) {
317       setOperationAction(ISD::FSHL, MVT::i32, Custom);
318       setOperationAction(ISD::FSHR, MVT::i32, Custom);
319     }
320   } else {
321     setOperationAction(ISD::SELECT, XLenVT, Custom);
322   }
323 
324   static constexpr ISD::NodeType FPLegalNodeTypes[] = {
325       ISD::FMINNUM,        ISD::FMAXNUM,       ISD::LRINT,
326       ISD::LLRINT,         ISD::LROUND,        ISD::LLROUND,
327       ISD::STRICT_LRINT,   ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
328       ISD::STRICT_LLROUND, ISD::STRICT_FMA,    ISD::STRICT_FADD,
329       ISD::STRICT_FSUB,    ISD::STRICT_FMUL,   ISD::STRICT_FDIV,
330       ISD::STRICT_FSQRT,   ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
331 
332   static const ISD::CondCode FPCCToExpand[] = {
333       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
334       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
335       ISD::SETGE,  ISD::SETNE,  ISD::SETO,   ISD::SETUO};
336 
337   static const ISD::NodeType FPOpToExpand[] = {
338       ISD::FSIN, ISD::FCOS,       ISD::FSINCOS,   ISD::FPOW,
339       ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
340 
341   if (Subtarget.hasStdExtZfh())
342     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
343 
344   if (Subtarget.hasStdExtZfh()) {
345     for (auto NT : FPLegalNodeTypes)
346       setOperationAction(NT, MVT::f16, Legal);
347     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
348     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
349     for (auto CC : FPCCToExpand)
350       setCondCodeAction(CC, MVT::f16, Expand);
351     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
352     setOperationAction(ISD::SELECT, MVT::f16, Custom);
353     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
354 
355     setOperationAction(ISD::FREM,       MVT::f16, Promote);
356     setOperationAction(ISD::FCEIL,      MVT::f16, Promote);
357     setOperationAction(ISD::FFLOOR,     MVT::f16, Promote);
358     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
359     setOperationAction(ISD::FRINT,      MVT::f16, Promote);
360     setOperationAction(ISD::FROUND,     MVT::f16, Promote);
361     setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote);
362     setOperationAction(ISD::FTRUNC,     MVT::f16, Promote);
363     setOperationAction(ISD::FPOW,       MVT::f16, Promote);
364     setOperationAction(ISD::FPOWI,      MVT::f16, Promote);
365     setOperationAction(ISD::FCOS,       MVT::f16, Promote);
366     setOperationAction(ISD::FSIN,       MVT::f16, Promote);
367     setOperationAction(ISD::FSINCOS,    MVT::f16, Promote);
368     setOperationAction(ISD::FEXP,       MVT::f16, Promote);
369     setOperationAction(ISD::FEXP2,      MVT::f16, Promote);
370     setOperationAction(ISD::FLOG,       MVT::f16, Promote);
371     setOperationAction(ISD::FLOG2,      MVT::f16, Promote);
372     setOperationAction(ISD::FLOG10,     MVT::f16, Promote);
373 
374     // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
375     // complete support for all operations in LegalizeDAG.
376 
377     // We need to custom promote this.
378     if (Subtarget.is64Bit())
379       setOperationAction(ISD::FPOWI, MVT::i32, Custom);
380   }
381 
382   if (Subtarget.hasStdExtF()) {
383     for (auto NT : FPLegalNodeTypes)
384       setOperationAction(NT, MVT::f32, Legal);
385     for (auto CC : FPCCToExpand)
386       setCondCodeAction(CC, MVT::f32, Expand);
387     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
388     setOperationAction(ISD::SELECT, MVT::f32, Custom);
389     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
390     for (auto Op : FPOpToExpand)
391       setOperationAction(Op, MVT::f32, Expand);
392     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
393     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
394   }
395 
396   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
397     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
398 
399   if (Subtarget.hasStdExtD()) {
400     for (auto NT : FPLegalNodeTypes)
401       setOperationAction(NT, MVT::f64, Legal);
402     setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
403     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
404     for (auto CC : FPCCToExpand)
405       setCondCodeAction(CC, MVT::f64, Expand);
406     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f64, Custom);
408     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
410     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
411     for (auto Op : FPOpToExpand)
412       setOperationAction(Op, MVT::f64, Expand);
413     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
414     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
415   }
416 
417   if (Subtarget.is64Bit()) {
418     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
419     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
420     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
422   }
423 
424   if (Subtarget.hasStdExtF()) {
425     setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom);
426     setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom);
427 
428     setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal);
430     setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal);
431     setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal);
432 
433     setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
434     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
435   }
436 
437   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
438   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
439   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
440   setOperationAction(ISD::JumpTable, XLenVT, Custom);
441 
442   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
443 
444   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
445   // Unfortunately this can't be determined just from the ISA naming string.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
447                      Subtarget.is64Bit() ? Legal : Custom);
448 
449   setOperationAction(ISD::TRAP, MVT::Other, Legal);
450   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452   if (Subtarget.is64Bit())
453     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
454 
455   if (Subtarget.hasStdExtA()) {
456     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
457     setMinCmpXchgSizeInBits(32);
458   } else {
459     setMaxAtomicSizeInBitsSupported(0);
460   }
461 
462   setBooleanContents(ZeroOrOneBooleanContent);
463 
464   if (Subtarget.hasVInstructions()) {
465     setBooleanVectorContents(ZeroOrOneBooleanContent);
466 
467     setOperationAction(ISD::VSCALE, XLenVT, Custom);
468 
469     // RVV intrinsics may have illegal operands.
470     // We also need to custom legalize vmv.x.s.
471     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
472     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
473     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
474     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
475     if (Subtarget.is64Bit()) {
476       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
477     } else {
478       setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
479       setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
480     }
481 
482     setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
483     setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
484 
485     static const unsigned IntegerVPOps[] = {
486         ISD::VP_ADD,         ISD::VP_SUB,         ISD::VP_MUL,
487         ISD::VP_SDIV,        ISD::VP_UDIV,        ISD::VP_SREM,
488         ISD::VP_UREM,        ISD::VP_AND,         ISD::VP_OR,
489         ISD::VP_XOR,         ISD::VP_ASHR,        ISD::VP_LSHR,
490         ISD::VP_SHL,         ISD::VP_REDUCE_ADD,  ISD::VP_REDUCE_AND,
491         ISD::VP_REDUCE_OR,   ISD::VP_REDUCE_XOR,  ISD::VP_REDUCE_SMAX,
492         ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
493         ISD::VP_MERGE,       ISD::VP_SELECT};
494 
495     static const unsigned FloatingPointVPOps[] = {
496         ISD::VP_FADD,        ISD::VP_FSUB,        ISD::VP_FMUL,
497         ISD::VP_FDIV,        ISD::VP_FNEG,        ISD::VP_FMA,
498         ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN,
499         ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,       ISD::VP_SELECT};
500 
501     if (!Subtarget.is64Bit()) {
502       // We must custom-lower certain vXi64 operations on RV32 due to the vector
503       // element type being illegal.
504       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
505       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
506 
507       setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
508       setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
509       setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
510       setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
511       setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
512       setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
513       setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
514       setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
515 
516       setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom);
517       setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom);
518       setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom);
519       setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom);
520       setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom);
521       setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom);
522       setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom);
523       setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom);
524     }
525 
526     for (MVT VT : BoolVecVTs) {
527       setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
528 
529       // Mask VTs are custom-expanded into a series of standard nodes
530       setOperationAction(ISD::TRUNCATE, VT, Custom);
531       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
532       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
533       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
534 
535       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
536       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
537 
538       setOperationAction(ISD::SELECT, VT, Custom);
539       setOperationAction(ISD::SELECT_CC, VT, Expand);
540       setOperationAction(ISD::VSELECT, VT, Expand);
541       setOperationAction(ISD::VP_MERGE, VT, Expand);
542       setOperationAction(ISD::VP_SELECT, VT, Expand);
543 
544       setOperationAction(ISD::VP_AND, VT, Custom);
545       setOperationAction(ISD::VP_OR, VT, Custom);
546       setOperationAction(ISD::VP_XOR, VT, Custom);
547 
548       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
549       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
550       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
551 
552       setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
553       setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
554       setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
555 
556       // RVV has native int->float & float->int conversions where the
557       // element type sizes are within one power-of-two of each other. Any
558       // wider distances between type sizes have to be lowered as sequences
559       // which progressively narrow the gap in stages.
560       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
561       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
562       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
563       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
564 
565       // Expand all extending loads to types larger than this, and truncating
566       // stores from types larger than this.
567       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
568         setTruncStoreAction(OtherVT, VT, Expand);
569         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
570         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
571         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
572       }
573     }
574 
575     for (MVT VT : IntVecVTs) {
576       if (VT.getVectorElementType() == MVT::i64 &&
577           !Subtarget.hasVInstructionsI64())
578         continue;
579 
580       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
581       setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
582 
583       // Vectors implement MULHS/MULHU.
584       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
585       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
586 
587       // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
588       if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) {
589         setOperationAction(ISD::MULHU, VT, Expand);
590         setOperationAction(ISD::MULHS, VT, Expand);
591       }
592 
593       setOperationAction(ISD::SMIN, VT, Legal);
594       setOperationAction(ISD::SMAX, VT, Legal);
595       setOperationAction(ISD::UMIN, VT, Legal);
596       setOperationAction(ISD::UMAX, VT, Legal);
597 
598       setOperationAction(ISD::ROTL, VT, Expand);
599       setOperationAction(ISD::ROTR, VT, Expand);
600 
601       setOperationAction(ISD::CTTZ, VT, Expand);
602       setOperationAction(ISD::CTLZ, VT, Expand);
603       setOperationAction(ISD::CTPOP, VT, Expand);
604 
605       setOperationAction(ISD::BSWAP, VT, Expand);
606 
607       // Custom-lower extensions and truncations from/to mask types.
608       setOperationAction(ISD::ANY_EXTEND, VT, Custom);
609       setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
610       setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
611 
612       // RVV has native int->float & float->int conversions where the
613       // element type sizes are within one power-of-two of each other. Any
614       // wider distances between type sizes have to be lowered as sequences
615       // which progressively narrow the gap in stages.
616       setOperationAction(ISD::SINT_TO_FP, VT, Custom);
617       setOperationAction(ISD::UINT_TO_FP, VT, Custom);
618       setOperationAction(ISD::FP_TO_SINT, VT, Custom);
619       setOperationAction(ISD::FP_TO_UINT, VT, Custom);
620 
621       setOperationAction(ISD::SADDSAT, VT, Legal);
622       setOperationAction(ISD::UADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::USUBSAT, VT, Legal);
625 
626       // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
627       // nodes which truncate by one power of two at a time.
628       setOperationAction(ISD::TRUNCATE, VT, Custom);
629 
630       // Custom-lower insert/extract operations to simplify patterns.
631       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
632       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
633 
634       // Custom-lower reduction operations to set up the corresponding custom
635       // nodes' operands.
636       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
637       setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
638       setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
639       setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
640       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
641       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
642       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
643       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
644 
645       for (unsigned VPOpc : IntegerVPOps)
646         setOperationAction(VPOpc, VT, Custom);
647 
648       setOperationAction(ISD::LOAD, VT, Custom);
649       setOperationAction(ISD::STORE, VT, Custom);
650 
651       setOperationAction(ISD::MLOAD, VT, Custom);
652       setOperationAction(ISD::MSTORE, VT, Custom);
653       setOperationAction(ISD::MGATHER, VT, Custom);
654       setOperationAction(ISD::MSCATTER, VT, Custom);
655 
656       setOperationAction(ISD::VP_LOAD, VT, Custom);
657       setOperationAction(ISD::VP_STORE, VT, Custom);
658       setOperationAction(ISD::VP_GATHER, VT, Custom);
659       setOperationAction(ISD::VP_SCATTER, VT, Custom);
660 
661       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
662       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
663       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
664 
665       setOperationAction(ISD::SELECT, VT, Custom);
666       setOperationAction(ISD::SELECT_CC, VT, Expand);
667 
668       setOperationAction(ISD::STEP_VECTOR, VT, Custom);
669       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
670 
671       for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
672         setTruncStoreAction(VT, OtherVT, Expand);
673         setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
674         setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
675         setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
676       }
677 
678       // Splice
679       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
680 
681       // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
682       // type that can represent the value exactly.
683       if (VT.getVectorElementType() != MVT::i64) {
684         MVT FloatEltVT =
685             VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
686         EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
687         if (isTypeLegal(FloatVT)) {
688           setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
689           setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
690         }
691       }
692     }
693 
694     // Expand various CCs to best match the RVV ISA, which natively supports UNE
695     // but no other unordered comparisons, and supports all ordered comparisons
696     // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
697     // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
698     // and we pattern-match those back to the "original", swapping operands once
699     // more. This way we catch both operations and both "vf" and "fv" forms with
700     // fewer patterns.
701     static const ISD::CondCode VFPCCToExpand[] = {
702         ISD::SETO,   ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
703         ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
704         ISD::SETGT,  ISD::SETOGT, ISD::SETGE,  ISD::SETOGE,
705     };
706 
707     // Sets common operation actions on RVV floating-point vector types.
708     const auto SetCommonVFPActions = [&](MVT VT) {
709       setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
710       // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
711       // sizes are within one power-of-two of each other. Therefore conversions
712       // between vXf16 and vXf64 must be lowered as sequences which convert via
713       // vXf32.
714       setOperationAction(ISD::FP_ROUND, VT, Custom);
715       setOperationAction(ISD::FP_EXTEND, VT, Custom);
716       // Custom-lower insert/extract operations to simplify patterns.
717       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
718       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
719       // Expand various condition codes (explained above).
720       for (auto CC : VFPCCToExpand)
721         setCondCodeAction(CC, VT, Expand);
722 
723       setOperationAction(ISD::FMINNUM, VT, Legal);
724       setOperationAction(ISD::FMAXNUM, VT, Legal);
725 
726       setOperationAction(ISD::FTRUNC, VT, Custom);
727       setOperationAction(ISD::FCEIL, VT, Custom);
728       setOperationAction(ISD::FFLOOR, VT, Custom);
729       setOperationAction(ISD::FROUND, VT, Custom);
730 
731       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
732       setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
733       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
734       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
735 
736       setOperationAction(ISD::FCOPYSIGN, VT, Legal);
737 
738       setOperationAction(ISD::LOAD, VT, Custom);
739       setOperationAction(ISD::STORE, VT, Custom);
740 
741       setOperationAction(ISD::MLOAD, VT, Custom);
742       setOperationAction(ISD::MSTORE, VT, Custom);
743       setOperationAction(ISD::MGATHER, VT, Custom);
744       setOperationAction(ISD::MSCATTER, VT, Custom);
745 
746       setOperationAction(ISD::VP_LOAD, VT, Custom);
747       setOperationAction(ISD::VP_STORE, VT, Custom);
748       setOperationAction(ISD::VP_GATHER, VT, Custom);
749       setOperationAction(ISD::VP_SCATTER, VT, Custom);
750 
751       setOperationAction(ISD::SELECT, VT, Custom);
752       setOperationAction(ISD::SELECT_CC, VT, Expand);
753 
754       setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
755       setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
756       setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
757 
758       setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
759       setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
760 
761       for (unsigned VPOpc : FloatingPointVPOps)
762         setOperationAction(VPOpc, VT, Custom);
763     };
764 
765     // Sets common extload/truncstore actions on RVV floating-point vector
766     // types.
767     const auto SetCommonVFPExtLoadTruncStoreActions =
768         [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
769           for (auto SmallVT : SmallerVTs) {
770             setTruncStoreAction(VT, SmallVT, Expand);
771             setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
772           }
773         };
774 
775     if (Subtarget.hasVInstructionsF16())
776       for (MVT VT : F16VecVTs)
777         SetCommonVFPActions(VT);
778 
779     for (MVT VT : F32VecVTs) {
780       if (Subtarget.hasVInstructionsF32())
781         SetCommonVFPActions(VT);
782       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
783     }
784 
785     for (MVT VT : F64VecVTs) {
786       if (Subtarget.hasVInstructionsF64())
787         SetCommonVFPActions(VT);
788       SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
789       SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
790     }
791 
792     if (Subtarget.useRVVForFixedLengthVectors()) {
793       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
794         if (!useRVVForFixedLengthVectorVT(VT))
795           continue;
796 
797         // By default everything must be expanded.
798         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
799           setOperationAction(Op, VT, Expand);
800         for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
801           setTruncStoreAction(VT, OtherVT, Expand);
802           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
803           setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
804           setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
805         }
806 
807         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
808         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
809         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
810 
811         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
812         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
813 
814         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
815         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
816 
817         setOperationAction(ISD::LOAD, VT, Custom);
818         setOperationAction(ISD::STORE, VT, Custom);
819 
820         setOperationAction(ISD::SETCC, VT, Custom);
821 
822         setOperationAction(ISD::SELECT, VT, Custom);
823 
824         setOperationAction(ISD::TRUNCATE, VT, Custom);
825 
826         setOperationAction(ISD::BITCAST, VT, Custom);
827 
828         setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
829         setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
830         setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
831 
832         setOperationAction(ISD::VP_REDUCE_AND, VT, Custom);
833         setOperationAction(ISD::VP_REDUCE_OR, VT, Custom);
834         setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom);
835 
836         setOperationAction(ISD::SINT_TO_FP, VT, Custom);
837         setOperationAction(ISD::UINT_TO_FP, VT, Custom);
838         setOperationAction(ISD::FP_TO_SINT, VT, Custom);
839         setOperationAction(ISD::FP_TO_UINT, VT, Custom);
840 
841         // Operations below are different for between masks and other vectors.
842         if (VT.getVectorElementType() == MVT::i1) {
843           setOperationAction(ISD::VP_AND, VT, Custom);
844           setOperationAction(ISD::VP_OR, VT, Custom);
845           setOperationAction(ISD::VP_XOR, VT, Custom);
846           setOperationAction(ISD::AND, VT, Custom);
847           setOperationAction(ISD::OR, VT, Custom);
848           setOperationAction(ISD::XOR, VT, Custom);
849           continue;
850         }
851 
852         // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
853         // it before type legalization for i64 vectors on RV32. It will then be
854         // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
855         // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
856         // improvements first.
857         if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
858           setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
859           setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
860         }
861 
862         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
863         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
864 
865         setOperationAction(ISD::MLOAD, VT, Custom);
866         setOperationAction(ISD::MSTORE, VT, Custom);
867         setOperationAction(ISD::MGATHER, VT, Custom);
868         setOperationAction(ISD::MSCATTER, VT, Custom);
869 
870         setOperationAction(ISD::VP_LOAD, VT, Custom);
871         setOperationAction(ISD::VP_STORE, VT, Custom);
872         setOperationAction(ISD::VP_GATHER, VT, Custom);
873         setOperationAction(ISD::VP_SCATTER, VT, Custom);
874 
875         setOperationAction(ISD::ADD, VT, Custom);
876         setOperationAction(ISD::MUL, VT, Custom);
877         setOperationAction(ISD::SUB, VT, Custom);
878         setOperationAction(ISD::AND, VT, Custom);
879         setOperationAction(ISD::OR, VT, Custom);
880         setOperationAction(ISD::XOR, VT, Custom);
881         setOperationAction(ISD::SDIV, VT, Custom);
882         setOperationAction(ISD::SREM, VT, Custom);
883         setOperationAction(ISD::UDIV, VT, Custom);
884         setOperationAction(ISD::UREM, VT, Custom);
885         setOperationAction(ISD::SHL, VT, Custom);
886         setOperationAction(ISD::SRA, VT, Custom);
887         setOperationAction(ISD::SRL, VT, Custom);
888 
889         setOperationAction(ISD::SMIN, VT, Custom);
890         setOperationAction(ISD::SMAX, VT, Custom);
891         setOperationAction(ISD::UMIN, VT, Custom);
892         setOperationAction(ISD::UMAX, VT, Custom);
893         setOperationAction(ISD::ABS,  VT, Custom);
894 
895         // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
896         if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) {
897           setOperationAction(ISD::MULHS, VT, Custom);
898           setOperationAction(ISD::MULHU, VT, Custom);
899         }
900 
901         setOperationAction(ISD::SADDSAT, VT, Custom);
902         setOperationAction(ISD::UADDSAT, VT, Custom);
903         setOperationAction(ISD::SSUBSAT, VT, Custom);
904         setOperationAction(ISD::USUBSAT, VT, Custom);
905 
906         setOperationAction(ISD::VSELECT, VT, Custom);
907         setOperationAction(ISD::SELECT_CC, VT, Expand);
908 
909         setOperationAction(ISD::ANY_EXTEND, VT, Custom);
910         setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
911         setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
912 
913         // Custom-lower reduction operations to set up the corresponding custom
914         // nodes' operands.
915         setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
916         setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
917         setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
918         setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
919         setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
920 
921         for (unsigned VPOpc : IntegerVPOps)
922           setOperationAction(VPOpc, VT, Custom);
923 
924         // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
925         // type that can represent the value exactly.
926         if (VT.getVectorElementType() != MVT::i64) {
927           MVT FloatEltVT =
928               VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
929           EVT FloatVT =
930               MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
931           if (isTypeLegal(FloatVT)) {
932             setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
933             setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
934           }
935         }
936       }
937 
938       for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
939         if (!useRVVForFixedLengthVectorVT(VT))
940           continue;
941 
942         // By default everything must be expanded.
943         for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
944           setOperationAction(Op, VT, Expand);
945         for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
946           setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
947           setTruncStoreAction(VT, OtherVT, Expand);
948         }
949 
950         // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
951         setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
952         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
953 
954         setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
955         setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
956         setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
957         setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
958         setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
959 
960         setOperationAction(ISD::LOAD, VT, Custom);
961         setOperationAction(ISD::STORE, VT, Custom);
962         setOperationAction(ISD::MLOAD, VT, Custom);
963         setOperationAction(ISD::MSTORE, VT, Custom);
964         setOperationAction(ISD::MGATHER, VT, Custom);
965         setOperationAction(ISD::MSCATTER, VT, Custom);
966 
967         setOperationAction(ISD::VP_LOAD, VT, Custom);
968         setOperationAction(ISD::VP_STORE, VT, Custom);
969         setOperationAction(ISD::VP_GATHER, VT, Custom);
970         setOperationAction(ISD::VP_SCATTER, VT, Custom);
971 
972         setOperationAction(ISD::FADD, VT, Custom);
973         setOperationAction(ISD::FSUB, VT, Custom);
974         setOperationAction(ISD::FMUL, VT, Custom);
975         setOperationAction(ISD::FDIV, VT, Custom);
976         setOperationAction(ISD::FNEG, VT, Custom);
977         setOperationAction(ISD::FABS, VT, Custom);
978         setOperationAction(ISD::FCOPYSIGN, VT, Custom);
979         setOperationAction(ISD::FSQRT, VT, Custom);
980         setOperationAction(ISD::FMA, VT, Custom);
981         setOperationAction(ISD::FMINNUM, VT, Custom);
982         setOperationAction(ISD::FMAXNUM, VT, Custom);
983 
984         setOperationAction(ISD::FP_ROUND, VT, Custom);
985         setOperationAction(ISD::FP_EXTEND, VT, Custom);
986 
987         setOperationAction(ISD::FTRUNC, VT, Custom);
988         setOperationAction(ISD::FCEIL, VT, Custom);
989         setOperationAction(ISD::FFLOOR, VT, Custom);
990         setOperationAction(ISD::FROUND, VT, Custom);
991 
992         for (auto CC : VFPCCToExpand)
993           setCondCodeAction(CC, VT, Expand);
994 
995         setOperationAction(ISD::VSELECT, VT, Custom);
996         setOperationAction(ISD::SELECT, VT, Custom);
997         setOperationAction(ISD::SELECT_CC, VT, Expand);
998 
999         setOperationAction(ISD::BITCAST, VT, Custom);
1000 
1001         setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
1002         setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
1003         setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
1004         setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
1005 
1006         for (unsigned VPOpc : FloatingPointVPOps)
1007           setOperationAction(VPOpc, VT, Custom);
1008       }
1009 
1010       // Custom-legalize bitcasts from fixed-length vectors to scalar types.
1011       setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1012       setOperationAction(ISD::BITCAST, MVT::i16, Custom);
1013       setOperationAction(ISD::BITCAST, MVT::i32, Custom);
1014       setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1015       if (Subtarget.hasStdExtZfh())
1016         setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1017       if (Subtarget.hasStdExtF())
1018         setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1019       if (Subtarget.hasStdExtD())
1020         setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1021     }
1022   }
1023 
1024   // Function alignments.
1025   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
1026   setMinFunctionAlignment(FunctionAlignment);
1027   setPrefFunctionAlignment(FunctionAlignment);
1028 
1029   setMinimumJumpTableEntries(5);
1030 
1031   // Jumps are expensive, compared to logic
1032   setJumpIsExpensive();
1033 
1034   setTargetDAGCombine(ISD::ADD);
1035   setTargetDAGCombine(ISD::SUB);
1036   setTargetDAGCombine(ISD::AND);
1037   setTargetDAGCombine(ISD::OR);
1038   setTargetDAGCombine(ISD::XOR);
1039   if (Subtarget.hasStdExtZbp()) {
1040     setTargetDAGCombine(ISD::ROTL);
1041     setTargetDAGCombine(ISD::ROTR);
1042   }
1043   if (Subtarget.hasStdExtZbkb())
1044     setTargetDAGCombine(ISD::BITREVERSE);
1045   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1046   if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
1047     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1048   if (Subtarget.hasStdExtF()) {
1049     setTargetDAGCombine(ISD::ZERO_EXTEND);
1050     setTargetDAGCombine(ISD::FP_TO_SINT);
1051     setTargetDAGCombine(ISD::FP_TO_UINT);
1052     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
1053     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
1054   }
1055   if (Subtarget.hasVInstructions()) {
1056     setTargetDAGCombine(ISD::FCOPYSIGN);
1057     setTargetDAGCombine(ISD::MGATHER);
1058     setTargetDAGCombine(ISD::MSCATTER);
1059     setTargetDAGCombine(ISD::VP_GATHER);
1060     setTargetDAGCombine(ISD::VP_SCATTER);
1061     setTargetDAGCombine(ISD::SRA);
1062     setTargetDAGCombine(ISD::SRL);
1063     setTargetDAGCombine(ISD::SHL);
1064     setTargetDAGCombine(ISD::STORE);
1065     setTargetDAGCombine(ISD::SPLAT_VECTOR);
1066   }
1067 
1068   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1069   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1070 }
1071 
1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1073                                             LLVMContext &Context,
1074                                             EVT VT) const {
1075   if (!VT.isVector())
1076     return getPointerTy(DL);
1077   if (Subtarget.hasVInstructions() &&
1078       (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1079     return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1080   return VT.changeVectorElementTypeToInteger();
1081 }
1082 
1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1084   return Subtarget.getXLenVT();
1085 }
1086 
1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1088                                              const CallInst &I,
1089                                              MachineFunction &MF,
1090                                              unsigned Intrinsic) const {
1091   auto &DL = I.getModule()->getDataLayout();
1092   switch (Intrinsic) {
1093   default:
1094     return false;
1095   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1096   case Intrinsic::riscv_masked_atomicrmw_add_i32:
1097   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1098   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1099   case Intrinsic::riscv_masked_atomicrmw_max_i32:
1100   case Intrinsic::riscv_masked_atomicrmw_min_i32:
1101   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1102   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1103   case Intrinsic::riscv_masked_cmpxchg_i32:
1104     Info.opc = ISD::INTRINSIC_W_CHAIN;
1105     Info.memVT = MVT::i32;
1106     Info.ptrVal = I.getArgOperand(0);
1107     Info.offset = 0;
1108     Info.align = Align(4);
1109     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1110                  MachineMemOperand::MOVolatile;
1111     return true;
1112   case Intrinsic::riscv_masked_strided_load:
1113     Info.opc = ISD::INTRINSIC_W_CHAIN;
1114     Info.ptrVal = I.getArgOperand(1);
1115     Info.memVT = getValueType(DL, I.getType()->getScalarType());
1116     Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1117     Info.size = MemoryLocation::UnknownSize;
1118     Info.flags |= MachineMemOperand::MOLoad;
1119     return true;
1120   case Intrinsic::riscv_masked_strided_store:
1121     Info.opc = ISD::INTRINSIC_VOID;
1122     Info.ptrVal = I.getArgOperand(1);
1123     Info.memVT =
1124         getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1125     Info.align = Align(
1126         DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1127         8);
1128     Info.size = MemoryLocation::UnknownSize;
1129     Info.flags |= MachineMemOperand::MOStore;
1130     return true;
1131   case Intrinsic::riscv_seg2_load:
1132   case Intrinsic::riscv_seg3_load:
1133   case Intrinsic::riscv_seg4_load:
1134   case Intrinsic::riscv_seg5_load:
1135   case Intrinsic::riscv_seg6_load:
1136   case Intrinsic::riscv_seg7_load:
1137   case Intrinsic::riscv_seg8_load:
1138     Info.opc = ISD::INTRINSIC_W_CHAIN;
1139     Info.ptrVal = I.getArgOperand(0);
1140     Info.memVT =
1141         getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1142     Info.align =
1143         Align(DL.getTypeSizeInBits(
1144                   I.getType()->getStructElementType(0)->getScalarType()) /
1145               8);
1146     Info.size = MemoryLocation::UnknownSize;
1147     Info.flags |= MachineMemOperand::MOLoad;
1148     return true;
1149   }
1150 }
1151 
1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1153                                                 const AddrMode &AM, Type *Ty,
1154                                                 unsigned AS,
1155                                                 Instruction *I) const {
1156   // No global is ever allowed as a base.
1157   if (AM.BaseGV)
1158     return false;
1159 
1160   // Require a 12-bit signed offset.
1161   if (!isInt<12>(AM.BaseOffs))
1162     return false;
1163 
1164   switch (AM.Scale) {
1165   case 0: // "r+i" or just "i", depending on HasBaseReg.
1166     break;
1167   case 1:
1168     if (!AM.HasBaseReg) // allow "r+i".
1169       break;
1170     return false; // disallow "r+r" or "r+r+i".
1171   default:
1172     return false;
1173   }
1174 
1175   return true;
1176 }
1177 
1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1179   return isInt<12>(Imm);
1180 }
1181 
1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1183   return isInt<12>(Imm);
1184 }
1185 
1186 // On RV32, 64-bit integers are split into their high and low parts and held
1187 // in two different registers, so the trunc is free since the low register can
1188 // just be used.
1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1190   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1191     return false;
1192   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1193   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1194   return (SrcBits == 64 && DestBits == 32);
1195 }
1196 
1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1198   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1199       !SrcVT.isInteger() || !DstVT.isInteger())
1200     return false;
1201   unsigned SrcBits = SrcVT.getSizeInBits();
1202   unsigned DestBits = DstVT.getSizeInBits();
1203   return (SrcBits == 64 && DestBits == 32);
1204 }
1205 
1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1207   // Zexts are free if they can be combined with a load.
1208   // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1209   // poorly with type legalization of compares preferring sext.
1210   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1211     EVT MemVT = LD->getMemoryVT();
1212     if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1213         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1214          LD->getExtensionType() == ISD::ZEXTLOAD))
1215       return true;
1216   }
1217 
1218   return TargetLowering::isZExtFree(Val, VT2);
1219 }
1220 
1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1222   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1223 }
1224 
1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1226   return Subtarget.hasStdExtZbb();
1227 }
1228 
1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1230   return Subtarget.hasStdExtZbb();
1231 }
1232 
1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1234   EVT VT = Y.getValueType();
1235 
1236   // FIXME: Support vectors once we have tests.
1237   if (VT.isVector())
1238     return false;
1239 
1240   return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1241           Subtarget.hasStdExtZbkb()) &&
1242          !isa<ConstantSDNode>(Y);
1243 }
1244 
1245 /// Check if sinking \p I's operands to I's basic block is profitable, because
1246 /// the operands can be folded into a target instruction, e.g.
1247 /// splats of scalars can fold into vector instructions.
1248 bool RISCVTargetLowering::shouldSinkOperands(
1249     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1250   using namespace llvm::PatternMatch;
1251 
1252   if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1253     return false;
1254 
1255   auto IsSinker = [&](Instruction *I, int Operand) {
1256     switch (I->getOpcode()) {
1257     case Instruction::Add:
1258     case Instruction::Sub:
1259     case Instruction::Mul:
1260     case Instruction::And:
1261     case Instruction::Or:
1262     case Instruction::Xor:
1263     case Instruction::FAdd:
1264     case Instruction::FSub:
1265     case Instruction::FMul:
1266     case Instruction::FDiv:
1267     case Instruction::ICmp:
1268     case Instruction::FCmp:
1269       return true;
1270     case Instruction::Shl:
1271     case Instruction::LShr:
1272     case Instruction::AShr:
1273     case Instruction::UDiv:
1274     case Instruction::SDiv:
1275     case Instruction::URem:
1276     case Instruction::SRem:
1277       return Operand == 1;
1278     case Instruction::Call:
1279       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1280         switch (II->getIntrinsicID()) {
1281         case Intrinsic::fma:
1282         case Intrinsic::vp_fma:
1283           return Operand == 0 || Operand == 1;
1284         // FIXME: Our patterns can only match vx/vf instructions when the splat
1285         // it on the RHS, because TableGen doesn't recognize our VP operations
1286         // as commutative.
1287         case Intrinsic::vp_add:
1288         case Intrinsic::vp_mul:
1289         case Intrinsic::vp_and:
1290         case Intrinsic::vp_or:
1291         case Intrinsic::vp_xor:
1292         case Intrinsic::vp_fadd:
1293         case Intrinsic::vp_fmul:
1294         case Intrinsic::vp_shl:
1295         case Intrinsic::vp_lshr:
1296         case Intrinsic::vp_ashr:
1297         case Intrinsic::vp_udiv:
1298         case Intrinsic::vp_sdiv:
1299         case Intrinsic::vp_urem:
1300         case Intrinsic::vp_srem:
1301           return Operand == 1;
1302         // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1303         // explicit patterns for both LHS and RHS (as 'vr' versions).
1304         case Intrinsic::vp_sub:
1305         case Intrinsic::vp_fsub:
1306         case Intrinsic::vp_fdiv:
1307           return Operand == 0 || Operand == 1;
1308         default:
1309           return false;
1310         }
1311       }
1312       return false;
1313     default:
1314       return false;
1315     }
1316   };
1317 
1318   for (auto OpIdx : enumerate(I->operands())) {
1319     if (!IsSinker(I, OpIdx.index()))
1320       continue;
1321 
1322     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1323     // Make sure we are not already sinking this operand
1324     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1325       continue;
1326 
1327     // We are looking for a splat that can be sunk.
1328     if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1329                              m_Undef(), m_ZeroMask())))
1330       continue;
1331 
1332     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1333     // and vector registers
1334     for (Use &U : Op->uses()) {
1335       Instruction *Insn = cast<Instruction>(U.getUser());
1336       if (!IsSinker(Insn, U.getOperandNo()))
1337         return false;
1338     }
1339 
1340     Ops.push_back(&Op->getOperandUse(0));
1341     Ops.push_back(&OpIdx.value());
1342   }
1343   return true;
1344 }
1345 
1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1347                                        bool ForCodeSize) const {
1348   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1349   if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1350     return false;
1351   if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1352     return false;
1353   if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1354     return false;
1355   return Imm.isZero();
1356 }
1357 
1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1359   return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1360          (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1361          (VT == MVT::f64 && Subtarget.hasStdExtD());
1362 }
1363 
1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1365                                                       CallingConv::ID CC,
1366                                                       EVT VT) const {
1367   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1368   // We might still end up using a GPR but that will be decided based on ABI.
1369   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1370   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1371     return MVT::f32;
1372 
1373   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1374 }
1375 
1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1377                                                            CallingConv::ID CC,
1378                                                            EVT VT) const {
1379   // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1380   // We might still end up using a GPR but that will be decided based on ABI.
1381   // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1382   if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1383     return 1;
1384 
1385   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1386 }
1387 
1388 // Changes the condition code and swaps operands if necessary, so the SetCC
1389 // operation matches one of the comparisons supported directly by branches
1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1391 // with 1/-1.
1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1393                                     ISD::CondCode &CC, SelectionDAG &DAG) {
1394   // Convert X > -1 to X >= 0.
1395   if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1396     RHS = DAG.getConstant(0, DL, RHS.getValueType());
1397     CC = ISD::SETGE;
1398     return;
1399   }
1400   // Convert X < 1 to 0 >= X.
1401   if (CC == ISD::SETLT && isOneConstant(RHS)) {
1402     RHS = LHS;
1403     LHS = DAG.getConstant(0, DL, RHS.getValueType());
1404     CC = ISD::SETGE;
1405     return;
1406   }
1407 
1408   switch (CC) {
1409   default:
1410     break;
1411   case ISD::SETGT:
1412   case ISD::SETLE:
1413   case ISD::SETUGT:
1414   case ISD::SETULE:
1415     CC = ISD::getSetCCSwappedOperands(CC);
1416     std::swap(LHS, RHS);
1417     break;
1418   }
1419 }
1420 
1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1422   assert(VT.isScalableVector() && "Expecting a scalable vector type");
1423   unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1424   if (VT.getVectorElementType() == MVT::i1)
1425     KnownSize *= 8;
1426 
1427   switch (KnownSize) {
1428   default:
1429     llvm_unreachable("Invalid LMUL.");
1430   case 8:
1431     return RISCVII::VLMUL::LMUL_F8;
1432   case 16:
1433     return RISCVII::VLMUL::LMUL_F4;
1434   case 32:
1435     return RISCVII::VLMUL::LMUL_F2;
1436   case 64:
1437     return RISCVII::VLMUL::LMUL_1;
1438   case 128:
1439     return RISCVII::VLMUL::LMUL_2;
1440   case 256:
1441     return RISCVII::VLMUL::LMUL_4;
1442   case 512:
1443     return RISCVII::VLMUL::LMUL_8;
1444   }
1445 }
1446 
1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1448   switch (LMul) {
1449   default:
1450     llvm_unreachable("Invalid LMUL.");
1451   case RISCVII::VLMUL::LMUL_F8:
1452   case RISCVII::VLMUL::LMUL_F4:
1453   case RISCVII::VLMUL::LMUL_F2:
1454   case RISCVII::VLMUL::LMUL_1:
1455     return RISCV::VRRegClassID;
1456   case RISCVII::VLMUL::LMUL_2:
1457     return RISCV::VRM2RegClassID;
1458   case RISCVII::VLMUL::LMUL_4:
1459     return RISCV::VRM4RegClassID;
1460   case RISCVII::VLMUL::LMUL_8:
1461     return RISCV::VRM8RegClassID;
1462   }
1463 }
1464 
1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1466   RISCVII::VLMUL LMUL = getLMUL(VT);
1467   if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1468       LMUL == RISCVII::VLMUL::LMUL_F4 ||
1469       LMUL == RISCVII::VLMUL::LMUL_F2 ||
1470       LMUL == RISCVII::VLMUL::LMUL_1) {
1471     static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1472                   "Unexpected subreg numbering");
1473     return RISCV::sub_vrm1_0 + Index;
1474   }
1475   if (LMUL == RISCVII::VLMUL::LMUL_2) {
1476     static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1477                   "Unexpected subreg numbering");
1478     return RISCV::sub_vrm2_0 + Index;
1479   }
1480   if (LMUL == RISCVII::VLMUL::LMUL_4) {
1481     static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1482                   "Unexpected subreg numbering");
1483     return RISCV::sub_vrm4_0 + Index;
1484   }
1485   llvm_unreachable("Invalid vector type.");
1486 }
1487 
1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1489   if (VT.getVectorElementType() == MVT::i1)
1490     return RISCV::VRRegClassID;
1491   return getRegClassIDForLMUL(getLMUL(VT));
1492 }
1493 
1494 // Attempt to decompose a subvector insert/extract between VecVT and
1495 // SubVecVT via subregister indices. Returns the subregister index that
1496 // can perform the subvector insert/extract with the given element index, as
1497 // well as the index corresponding to any leftover subvectors that must be
1498 // further inserted/extracted within the register class for SubVecVT.
1499 std::pair<unsigned, unsigned>
1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1501     MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1502     const RISCVRegisterInfo *TRI) {
1503   static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1504                  RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1505                  RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1506                 "Register classes not ordered");
1507   unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1508   unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1509   // Try to compose a subregister index that takes us from the incoming
1510   // LMUL>1 register class down to the outgoing one. At each step we half
1511   // the LMUL:
1512   //   nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1513   // Note that this is not guaranteed to find a subregister index, such as
1514   // when we are extracting from one VR type to another.
1515   unsigned SubRegIdx = RISCV::NoSubRegister;
1516   for (const unsigned RCID :
1517        {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1518     if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1519       VecVT = VecVT.getHalfNumVectorElementsVT();
1520       bool IsHi =
1521           InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1522       SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1523                                             getSubregIndexByMVT(VecVT, IsHi));
1524       if (IsHi)
1525         InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1526     }
1527   return {SubRegIdx, InsertExtractIdx};
1528 }
1529 
1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1531 // stores for those types.
1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1533   return !Subtarget.useRVVForFixedLengthVectors() ||
1534          (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1535 }
1536 
1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1538   if (ScalarTy->isPointerTy())
1539     return true;
1540 
1541   if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1542       ScalarTy->isIntegerTy(32))
1543     return true;
1544 
1545   if (ScalarTy->isIntegerTy(64))
1546     return Subtarget.hasVInstructionsI64();
1547 
1548   if (ScalarTy->isHalfTy())
1549     return Subtarget.hasVInstructionsF16();
1550   if (ScalarTy->isFloatTy())
1551     return Subtarget.hasVInstructionsF32();
1552   if (ScalarTy->isDoubleTy())
1553     return Subtarget.hasVInstructionsF64();
1554 
1555   return false;
1556 }
1557 
1558 static SDValue getVLOperand(SDValue Op) {
1559   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1560           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1561          "Unexpected opcode");
1562   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1563   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1564   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1565       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1566   if (!II)
1567     return SDValue();
1568   return Op.getOperand(II->VLOperand + 1 + HasChain);
1569 }
1570 
1571 static bool useRVVForFixedLengthVectorVT(MVT VT,
1572                                          const RISCVSubtarget &Subtarget) {
1573   assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1574   if (!Subtarget.useRVVForFixedLengthVectors())
1575     return false;
1576 
1577   // We only support a set of vector types with a consistent maximum fixed size
1578   // across all supported vector element types to avoid legalization issues.
1579   // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1580   // fixed-length vector type we support is 1024 bytes.
1581   if (VT.getFixedSizeInBits() > 1024 * 8)
1582     return false;
1583 
1584   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1585 
1586   MVT EltVT = VT.getVectorElementType();
1587 
1588   // Don't use RVV for vectors we cannot scalarize if required.
1589   switch (EltVT.SimpleTy) {
1590   // i1 is supported but has different rules.
1591   default:
1592     return false;
1593   case MVT::i1:
1594     // Masks can only use a single register.
1595     if (VT.getVectorNumElements() > MinVLen)
1596       return false;
1597     MinVLen /= 8;
1598     break;
1599   case MVT::i8:
1600   case MVT::i16:
1601   case MVT::i32:
1602     break;
1603   case MVT::i64:
1604     if (!Subtarget.hasVInstructionsI64())
1605       return false;
1606     break;
1607   case MVT::f16:
1608     if (!Subtarget.hasVInstructionsF16())
1609       return false;
1610     break;
1611   case MVT::f32:
1612     if (!Subtarget.hasVInstructionsF32())
1613       return false;
1614     break;
1615   case MVT::f64:
1616     if (!Subtarget.hasVInstructionsF64())
1617       return false;
1618     break;
1619   }
1620 
1621   // Reject elements larger than ELEN.
1622   if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors())
1623     return false;
1624 
1625   unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1626   // Don't use RVV for types that don't fit.
1627   if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1628     return false;
1629 
1630   // TODO: Perhaps an artificial restriction, but worth having whilst getting
1631   // the base fixed length RVV support in place.
1632   if (!VT.isPow2VectorType())
1633     return false;
1634 
1635   return true;
1636 }
1637 
1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1639   return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1640 }
1641 
1642 // Return the largest legal scalable vector type that matches VT's element type.
1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1644                                             const RISCVSubtarget &Subtarget) {
1645   // This may be called before legal types are setup.
1646   assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1647           useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1648          "Expected legal fixed length vector!");
1649 
1650   unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1651   unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors();
1652 
1653   MVT EltVT = VT.getVectorElementType();
1654   switch (EltVT.SimpleTy) {
1655   default:
1656     llvm_unreachable("unexpected element type for RVV container");
1657   case MVT::i1:
1658   case MVT::i8:
1659   case MVT::i16:
1660   case MVT::i32:
1661   case MVT::i64:
1662   case MVT::f16:
1663   case MVT::f32:
1664   case MVT::f64: {
1665     // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1666     // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1667     // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1668     unsigned NumElts =
1669         (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1670     NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1671     assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1672     return MVT::getScalableVectorVT(EltVT, NumElts);
1673   }
1674   }
1675 }
1676 
1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1678                                             const RISCVSubtarget &Subtarget) {
1679   return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1680                                           Subtarget);
1681 }
1682 
1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1684   return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1685 }
1686 
1687 // Grow V to consume an entire RVV register.
1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1689                                        const RISCVSubtarget &Subtarget) {
1690   assert(VT.isScalableVector() &&
1691          "Expected to convert into a scalable vector!");
1692   assert(V.getValueType().isFixedLengthVector() &&
1693          "Expected a fixed length vector operand!");
1694   SDLoc DL(V);
1695   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1696   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1697 }
1698 
1699 // Shrink V so it's just big enough to maintain a VT's worth of data.
1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1701                                          const RISCVSubtarget &Subtarget) {
1702   assert(VT.isFixedLengthVector() &&
1703          "Expected to convert into a fixed length vector!");
1704   assert(V.getValueType().isScalableVector() &&
1705          "Expected a scalable vector operand!");
1706   SDLoc DL(V);
1707   SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1708   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1709 }
1710 
1711 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1713 // the vector type that it is contained in.
1714 static std::pair<SDValue, SDValue>
1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1716                 const RISCVSubtarget &Subtarget) {
1717   assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1718   MVT XLenVT = Subtarget.getXLenVT();
1719   SDValue VL = VecVT.isFixedLengthVector()
1720                    ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1721                    : DAG.getRegister(RISCV::X0, XLenVT);
1722   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1723   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1724   return {Mask, VL};
1725 }
1726 
1727 // As above but assuming the given type is a scalable vector type.
1728 static std::pair<SDValue, SDValue>
1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1730                         const RISCVSubtarget &Subtarget) {
1731   assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1732   return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1733 }
1734 
1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1736 // of either is (currently) supported. This can get us into an infinite loop
1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1738 // as a ..., etc.
1739 // Until either (or both) of these can reliably lower any node, reporting that
1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1742 // which is not desirable.
1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1744     EVT VT, unsigned DefinedValues) const {
1745   return false;
1746 }
1747 
1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1749                                   const RISCVSubtarget &Subtarget) {
1750   // RISCV FP-to-int conversions saturate to the destination register size, but
1751   // don't produce 0 for nan. We can use a conversion instruction and fix the
1752   // nan case with a compare and a select.
1753   SDValue Src = Op.getOperand(0);
1754 
1755   EVT DstVT = Op.getValueType();
1756   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757 
1758   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1759   unsigned Opc;
1760   if (SatVT == DstVT)
1761     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1762   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1763     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1764   else
1765     return SDValue();
1766   // FIXME: Support other SatVTs by clamping before or after the conversion.
1767 
1768   SDLoc DL(Op);
1769   SDValue FpToInt = DAG.getNode(
1770       Opc, DL, DstVT, Src,
1771       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1772 
1773   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1774   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1775 }
1776 
1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1778 // and back. Taking care to avoid converting values that are nan or already
1779 // correct.
1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1781 // have FRM dependencies modeled yet.
1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1783   MVT VT = Op.getSimpleValueType();
1784   assert(VT.isVector() && "Unexpected type");
1785 
1786   SDLoc DL(Op);
1787 
1788   // Freeze the source since we are increasing the number of uses.
1789   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1790 
1791   // Truncate to integer and convert back to FP.
1792   MVT IntVT = VT.changeVectorElementTypeToInteger();
1793   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1794   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1795 
1796   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1797 
1798   if (Op.getOpcode() == ISD::FCEIL) {
1799     // If the truncated value is the greater than or equal to the original
1800     // value, we've computed the ceil. Otherwise, we went the wrong way and
1801     // need to increase by 1.
1802     // FIXME: This should use a masked operation. Handle here or in isel?
1803     SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1804                                  DAG.getConstantFP(1.0, DL, VT));
1805     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1806     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1807   } else if (Op.getOpcode() == ISD::FFLOOR) {
1808     // If the truncated value is the less than or equal to the original value,
1809     // we've computed the floor. Otherwise, we went the wrong way and need to
1810     // decrease by 1.
1811     // FIXME: This should use a masked operation. Handle here or in isel?
1812     SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1813                                  DAG.getConstantFP(1.0, DL, VT));
1814     SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1815     Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1816   }
1817 
1818   // Restore the original sign so that -0.0 is preserved.
1819   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1820 
1821   // Determine the largest integer that can be represented exactly. This and
1822   // values larger than it don't have any fractional bits so don't need to
1823   // be converted.
1824   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1825   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1826   APFloat MaxVal = APFloat(FltSem);
1827   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1828                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1829   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1830 
1831   // If abs(Src) was larger than MaxVal or nan, keep it.
1832   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1833   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1834   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1835 }
1836 
1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1838 // This mode isn't supported in vector hardware on RISCV. But as long as we
1839 // aren't compiling with trapping math, we can emulate this with
1840 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1842 // dependencies modeled yet.
1843 // FIXME: Use masked operations to avoid final merge.
1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1845   MVT VT = Op.getSimpleValueType();
1846   assert(VT.isVector() && "Unexpected type");
1847 
1848   SDLoc DL(Op);
1849 
1850   // Freeze the source since we are increasing the number of uses.
1851   SDValue Src = DAG.getFreeze(Op.getOperand(0));
1852 
1853   // We do the conversion on the absolute value and fix the sign at the end.
1854   SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1855 
1856   const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1857   bool Ignored;
1858   APFloat Point5Pred = APFloat(0.5f);
1859   Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1860   Point5Pred.next(/*nextDown*/ true);
1861 
1862   // Add the adjustment.
1863   SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1864                                DAG.getConstantFP(Point5Pred, DL, VT));
1865 
1866   // Truncate to integer and convert back to fp.
1867   MVT IntVT = VT.changeVectorElementTypeToInteger();
1868   SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1869   Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1870 
1871   // Restore the original sign.
1872   Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1873 
1874   // Determine the largest integer that can be represented exactly. This and
1875   // values larger than it don't have any fractional bits so don't need to
1876   // be converted.
1877   unsigned Precision = APFloat::semanticsPrecision(FltSem);
1878   APFloat MaxVal = APFloat(FltSem);
1879   MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1880                           /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1881   SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1882 
1883   // If abs(Src) was larger than MaxVal or nan, keep it.
1884   MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1885   SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1886   return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1887 }
1888 
1889 struct VIDSequence {
1890   int64_t StepNumerator;
1891   unsigned StepDenominator;
1892   int64_t Addend;
1893 };
1894 
1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1896 // to the (non-zero) step S and start value X. This can be then lowered as the
1897 // RVV sequence (VID * S) + X, for example.
1898 // The step S is represented as an integer numerator divided by a positive
1899 // denominator. Note that the implementation currently only identifies
1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1901 // cannot detect 2/3, for example.
1902 // Note that this method will also match potentially unappealing index
1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1904 // determine whether this is worth generating code for.
1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1906   unsigned NumElts = Op.getNumOperands();
1907   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1908   if (!Op.getValueType().isInteger())
1909     return None;
1910 
1911   Optional<unsigned> SeqStepDenom;
1912   Optional<int64_t> SeqStepNum, SeqAddend;
1913   Optional<std::pair<uint64_t, unsigned>> PrevElt;
1914   unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1915   for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1916     // Assume undef elements match the sequence; we just have to be careful
1917     // when interpolating across them.
1918     if (Op.getOperand(Idx).isUndef())
1919       continue;
1920     // The BUILD_VECTOR must be all constants.
1921     if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1922       return None;
1923 
1924     uint64_t Val = Op.getConstantOperandVal(Idx) &
1925                    maskTrailingOnes<uint64_t>(EltSizeInBits);
1926 
1927     if (PrevElt) {
1928       // Calculate the step since the last non-undef element, and ensure
1929       // it's consistent across the entire sequence.
1930       unsigned IdxDiff = Idx - PrevElt->second;
1931       int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1932 
1933       // A zero-value value difference means that we're somewhere in the middle
1934       // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1935       // step change before evaluating the sequence.
1936       if (ValDiff != 0) {
1937         int64_t Remainder = ValDiff % IdxDiff;
1938         // Normalize the step if it's greater than 1.
1939         if (Remainder != ValDiff) {
1940           // The difference must cleanly divide the element span.
1941           if (Remainder != 0)
1942             return None;
1943           ValDiff /= IdxDiff;
1944           IdxDiff = 1;
1945         }
1946 
1947         if (!SeqStepNum)
1948           SeqStepNum = ValDiff;
1949         else if (ValDiff != SeqStepNum)
1950           return None;
1951 
1952         if (!SeqStepDenom)
1953           SeqStepDenom = IdxDiff;
1954         else if (IdxDiff != *SeqStepDenom)
1955           return None;
1956       }
1957     }
1958 
1959     // Record and/or check any addend.
1960     if (SeqStepNum && SeqStepDenom) {
1961       uint64_t ExpectedVal =
1962           (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
1963       int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
1964       if (!SeqAddend)
1965         SeqAddend = Addend;
1966       else if (SeqAddend != Addend)
1967         return None;
1968     }
1969 
1970     // Record this non-undef element for later.
1971     if (!PrevElt || PrevElt->first != Val)
1972       PrevElt = std::make_pair(Val, Idx);
1973   }
1974   // We need to have logged both a step and an addend for this to count as
1975   // a legal index sequence.
1976   if (!SeqStepNum || !SeqStepDenom || !SeqAddend)
1977     return None;
1978 
1979   return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
1980 }
1981 
1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
1983 // and lower it as a VRGATHER_VX_VL from the source vector.
1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
1985                                   SelectionDAG &DAG,
1986                                   const RISCVSubtarget &Subtarget) {
1987   if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1988     return SDValue();
1989   SDValue Vec = SplatVal.getOperand(0);
1990   // Only perform this optimization on vectors of the same size for simplicity.
1991   if (Vec.getValueType() != VT)
1992     return SDValue();
1993   SDValue Idx = SplatVal.getOperand(1);
1994   // The index must be a legal type.
1995   if (Idx.getValueType() != Subtarget.getXLenVT())
1996     return SDValue();
1997 
1998   MVT ContainerVT = VT;
1999   if (VT.isFixedLengthVector()) {
2000     ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2001     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2002   }
2003 
2004   SDValue Mask, VL;
2005   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2006 
2007   SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2008                                Idx, Mask, VL);
2009 
2010   if (!VT.isFixedLengthVector())
2011     return Gather;
2012 
2013   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2014 }
2015 
2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2017                                  const RISCVSubtarget &Subtarget) {
2018   MVT VT = Op.getSimpleValueType();
2019   assert(VT.isFixedLengthVector() && "Unexpected vector!");
2020 
2021   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2022 
2023   SDLoc DL(Op);
2024   SDValue Mask, VL;
2025   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2026 
2027   MVT XLenVT = Subtarget.getXLenVT();
2028   unsigned NumElts = Op.getNumOperands();
2029 
2030   if (VT.getVectorElementType() == MVT::i1) {
2031     if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2032       SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2033       return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2034     }
2035 
2036     if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2037       SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2038       return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2039     }
2040 
2041     // Lower constant mask BUILD_VECTORs via an integer vector type, in
2042     // scalar integer chunks whose bit-width depends on the number of mask
2043     // bits and XLEN.
2044     // First, determine the most appropriate scalar integer type to use. This
2045     // is at most XLenVT, but may be shrunk to a smaller vector element type
2046     // according to the size of the final vector - use i8 chunks rather than
2047     // XLenVT if we're producing a v8i1. This results in more consistent
2048     // codegen across RV32 and RV64.
2049     unsigned NumViaIntegerBits =
2050         std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2051     NumViaIntegerBits = std::min(NumViaIntegerBits,
2052                                  Subtarget.getMaxELENForFixedLengthVectors());
2053     if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2054       // If we have to use more than one INSERT_VECTOR_ELT then this
2055       // optimization is likely to increase code size; avoid peforming it in
2056       // such a case. We can use a load from a constant pool in this case.
2057       if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2058         return SDValue();
2059       // Now we can create our integer vector type. Note that it may be larger
2060       // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2061       MVT IntegerViaVecVT =
2062           MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2063                            divideCeil(NumElts, NumViaIntegerBits));
2064 
2065       uint64_t Bits = 0;
2066       unsigned BitPos = 0, IntegerEltIdx = 0;
2067       SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2068 
2069       for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2070         // Once we accumulate enough bits to fill our scalar type, insert into
2071         // our vector and clear our accumulated data.
2072         if (I != 0 && I % NumViaIntegerBits == 0) {
2073           if (NumViaIntegerBits <= 32)
2074             Bits = SignExtend64(Bits, 32);
2075           SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2076           Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2077                             Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2078           Bits = 0;
2079           BitPos = 0;
2080           IntegerEltIdx++;
2081         }
2082         SDValue V = Op.getOperand(I);
2083         bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2084         Bits |= ((uint64_t)BitValue << BitPos);
2085       }
2086 
2087       // Insert the (remaining) scalar value into position in our integer
2088       // vector type.
2089       if (NumViaIntegerBits <= 32)
2090         Bits = SignExtend64(Bits, 32);
2091       SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2092       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2093                         DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2094 
2095       if (NumElts < NumViaIntegerBits) {
2096         // If we're producing a smaller vector than our minimum legal integer
2097         // type, bitcast to the equivalent (known-legal) mask type, and extract
2098         // our final mask.
2099         assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2100         Vec = DAG.getBitcast(MVT::v8i1, Vec);
2101         Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2102                           DAG.getConstant(0, DL, XLenVT));
2103       } else {
2104         // Else we must have produced an integer type with the same size as the
2105         // mask type; bitcast for the final result.
2106         assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2107         Vec = DAG.getBitcast(VT, Vec);
2108       }
2109 
2110       return Vec;
2111     }
2112 
2113     // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2114     // vector type, we have a legal equivalently-sized i8 type, so we can use
2115     // that.
2116     MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2117     SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2118 
2119     SDValue WideVec;
2120     if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2121       // For a splat, perform a scalar truncate before creating the wider
2122       // vector.
2123       assert(Splat.getValueType() == XLenVT &&
2124              "Unexpected type for i1 splat value");
2125       Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2126                           DAG.getConstant(1, DL, XLenVT));
2127       WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2128     } else {
2129       SmallVector<SDValue, 8> Ops(Op->op_values());
2130       WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2131       SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2132       WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2133     }
2134 
2135     return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2136   }
2137 
2138   if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2139     if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2140       return Gather;
2141     unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2142                                         : RISCVISD::VMV_V_X_VL;
2143     Splat =
2144         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2145     return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2146   }
2147 
2148   // Try and match index sequences, which we can lower to the vid instruction
2149   // with optional modifications. An all-undef vector is matched by
2150   // getSplatValue, above.
2151   if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2152     int64_t StepNumerator = SimpleVID->StepNumerator;
2153     unsigned StepDenominator = SimpleVID->StepDenominator;
2154     int64_t Addend = SimpleVID->Addend;
2155 
2156     assert(StepNumerator != 0 && "Invalid step");
2157     bool Negate = false;
2158     int64_t SplatStepVal = StepNumerator;
2159     unsigned StepOpcode = ISD::MUL;
2160     if (StepNumerator != 1) {
2161       if (isPowerOf2_64(std::abs(StepNumerator))) {
2162         Negate = StepNumerator < 0;
2163         StepOpcode = ISD::SHL;
2164         SplatStepVal = Log2_64(std::abs(StepNumerator));
2165       }
2166     }
2167 
2168     // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2169     // threshold since it's the immediate value many RVV instructions accept.
2170     // There is no vmul.vi instruction so ensure multiply constant can fit in
2171     // a single addi instruction.
2172     if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2173          (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2174         isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) {
2175       SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2176       // Convert right out of the scalable type so we can use standard ISD
2177       // nodes for the rest of the computation. If we used scalable types with
2178       // these, we'd lose the fixed-length vector info and generate worse
2179       // vsetvli code.
2180       VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2181       if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2182           (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2183         SDValue SplatStep = DAG.getSplatVector(
2184             VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2185         VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2186       }
2187       if (StepDenominator != 1) {
2188         SDValue SplatStep = DAG.getSplatVector(
2189             VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2190         VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2191       }
2192       if (Addend != 0 || Negate) {
2193         SDValue SplatAddend =
2194             DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2195         VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2196       }
2197       return VID;
2198     }
2199   }
2200 
2201   // Attempt to detect "hidden" splats, which only reveal themselves as splats
2202   // when re-interpreted as a vector with a larger element type. For example,
2203   //   v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2204   // could be instead splat as
2205   //   v2i32 = build_vector i32 0x00010000, i32 0x00010000
2206   // TODO: This optimization could also work on non-constant splats, but it
2207   // would require bit-manipulation instructions to construct the splat value.
2208   SmallVector<SDValue> Sequence;
2209   unsigned EltBitSize = VT.getScalarSizeInBits();
2210   const auto *BV = cast<BuildVectorSDNode>(Op);
2211   if (VT.isInteger() && EltBitSize < 64 &&
2212       ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2213       BV->getRepeatedSequence(Sequence) &&
2214       (Sequence.size() * EltBitSize) <= 64) {
2215     unsigned SeqLen = Sequence.size();
2216     MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2217     MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2218     assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2219             ViaIntVT == MVT::i64) &&
2220            "Unexpected sequence type");
2221 
2222     unsigned EltIdx = 0;
2223     uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2224     uint64_t SplatValue = 0;
2225     // Construct the amalgamated value which can be splatted as this larger
2226     // vector type.
2227     for (const auto &SeqV : Sequence) {
2228       if (!SeqV.isUndef())
2229         SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2230                        << (EltIdx * EltBitSize));
2231       EltIdx++;
2232     }
2233 
2234     // On RV64, sign-extend from 32 to 64 bits where possible in order to
2235     // achieve better constant materializion.
2236     if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2237       SplatValue = SignExtend64(SplatValue, 32);
2238 
2239     // Since we can't introduce illegal i64 types at this stage, we can only
2240     // perform an i64 splat on RV32 if it is its own sign-extended value. That
2241     // way we can use RVV instructions to splat.
2242     assert((ViaIntVT.bitsLE(XLenVT) ||
2243             (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2244            "Unexpected bitcast sequence");
2245     if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2246       SDValue ViaVL =
2247           DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2248       MVT ViaContainerVT =
2249           getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2250       SDValue Splat =
2251           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2252                       DAG.getUNDEF(ViaContainerVT),
2253                       DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2254       Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2255       return DAG.getBitcast(VT, Splat);
2256     }
2257   }
2258 
2259   // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2260   // which constitute a large proportion of the elements. In such cases we can
2261   // splat a vector with the dominant element and make up the shortfall with
2262   // INSERT_VECTOR_ELTs.
2263   // Note that this includes vectors of 2 elements by association. The
2264   // upper-most element is the "dominant" one, allowing us to use a splat to
2265   // "insert" the upper element, and an insert of the lower element at position
2266   // 0, which improves codegen.
2267   SDValue DominantValue;
2268   unsigned MostCommonCount = 0;
2269   DenseMap<SDValue, unsigned> ValueCounts;
2270   unsigned NumUndefElts =
2271       count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2272 
2273   // Track the number of scalar loads we know we'd be inserting, estimated as
2274   // any non-zero floating-point constant. Other kinds of element are either
2275   // already in registers or are materialized on demand. The threshold at which
2276   // a vector load is more desirable than several scalar materializion and
2277   // vector-insertion instructions is not known.
2278   unsigned NumScalarLoads = 0;
2279 
2280   for (SDValue V : Op->op_values()) {
2281     if (V.isUndef())
2282       continue;
2283 
2284     ValueCounts.insert(std::make_pair(V, 0));
2285     unsigned &Count = ValueCounts[V];
2286 
2287     if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2288       NumScalarLoads += !CFP->isExactlyValue(+0.0);
2289 
2290     // Is this value dominant? In case of a tie, prefer the highest element as
2291     // it's cheaper to insert near the beginning of a vector than it is at the
2292     // end.
2293     if (++Count >= MostCommonCount) {
2294       DominantValue = V;
2295       MostCommonCount = Count;
2296     }
2297   }
2298 
2299   assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2300   unsigned NumDefElts = NumElts - NumUndefElts;
2301   unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2302 
2303   // Don't perform this optimization when optimizing for size, since
2304   // materializing elements and inserting them tends to cause code bloat.
2305   if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2306       ((MostCommonCount > DominantValueCountThreshold) ||
2307        (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2308     // Start by splatting the most common element.
2309     SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2310 
2311     DenseSet<SDValue> Processed{DominantValue};
2312     MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2313     for (const auto &OpIdx : enumerate(Op->ops())) {
2314       const SDValue &V = OpIdx.value();
2315       if (V.isUndef() || !Processed.insert(V).second)
2316         continue;
2317       if (ValueCounts[V] == 1) {
2318         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2319                           DAG.getConstant(OpIdx.index(), DL, XLenVT));
2320       } else {
2321         // Blend in all instances of this value using a VSELECT, using a
2322         // mask where each bit signals whether that element is the one
2323         // we're after.
2324         SmallVector<SDValue> Ops;
2325         transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2326           return DAG.getConstant(V == V1, DL, XLenVT);
2327         });
2328         Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2329                           DAG.getBuildVector(SelMaskTy, DL, Ops),
2330                           DAG.getSplatBuildVector(VT, DL, V), Vec);
2331       }
2332     }
2333 
2334     return Vec;
2335   }
2336 
2337   return SDValue();
2338 }
2339 
2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2341                                    SDValue Lo, SDValue Hi, SDValue VL,
2342                                    SelectionDAG &DAG) {
2343   bool HasPassthru = Passthru && !Passthru.isUndef();
2344   if (!HasPassthru && !Passthru)
2345     Passthru = DAG.getUNDEF(VT);
2346   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2347     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2348     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2349     // If Hi constant is all the same sign bit as Lo, lower this as a custom
2350     // node in order to try and match RVV vector/scalar instructions.
2351     if ((LoC >> 31) == HiC)
2352       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2353 
2354     // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2355     // vmv.v.x whose EEW = 32 to lower it.
2356     auto *Const = dyn_cast<ConstantSDNode>(VL);
2357     if (LoC == HiC && Const && Const->isAllOnesValue()) {
2358       MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2359       // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2360       // access the subtarget here now.
2361       auto InterVec = DAG.getNode(
2362           RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2363                                   DAG.getRegister(RISCV::X0, MVT::i32));
2364       return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2365     }
2366   }
2367 
2368   // Fall back to a stack store and stride x0 vector load.
2369   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2370                      Hi, VL);
2371 }
2372 
2373 // Called by type legalization to handle splat of i64 on RV32.
2374 // FIXME: We can optimize this when the type has sign or zero bits in one
2375 // of the halves.
2376 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2377                                    SDValue Scalar, SDValue VL,
2378                                    SelectionDAG &DAG) {
2379   assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2380   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2381                            DAG.getConstant(0, DL, MVT::i32));
2382   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2383                            DAG.getConstant(1, DL, MVT::i32));
2384   return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2385 }
2386 
2387 // This function lowers a splat of a scalar operand Splat with the vector
2388 // length VL. It ensures the final sequence is type legal, which is useful when
2389 // lowering a splat after type legalization.
2390 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2391                                 MVT VT, SDLoc DL, SelectionDAG &DAG,
2392                                 const RISCVSubtarget &Subtarget) {
2393   bool HasPassthru = Passthru && !Passthru.isUndef();
2394   if (!HasPassthru && !Passthru)
2395     Passthru = DAG.getUNDEF(VT);
2396   if (VT.isFloatingPoint()) {
2397     // If VL is 1, we could use vfmv.s.f.
2398     if (isOneConstant(VL))
2399       return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2400     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2401   }
2402 
2403   MVT XLenVT = Subtarget.getXLenVT();
2404 
2405   // Simplest case is that the operand needs to be promoted to XLenVT.
2406   if (Scalar.getValueType().bitsLE(XLenVT)) {
2407     // If the operand is a constant, sign extend to increase our chances
2408     // of being able to use a .vi instruction. ANY_EXTEND would become a
2409     // a zero extend and the simm5 check in isel would fail.
2410     // FIXME: Should we ignore the upper bits in isel instead?
2411     unsigned ExtOpc =
2412         isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2413     Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2414     ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2415     // If VL is 1 and the scalar value won't benefit from immediate, we could
2416     // use vmv.s.x.
2417     if (isOneConstant(VL) &&
2418         (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2419       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2420     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2421   }
2422 
2423   assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2424          "Unexpected scalar for splat lowering!");
2425 
2426   if (isOneConstant(VL) && isNullConstant(Scalar))
2427     return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2428                        DAG.getConstant(0, DL, XLenVT), VL);
2429 
2430   // Otherwise use the more complicated splatting algorithm.
2431   return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2432 }
2433 
2434 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2435                                 const RISCVSubtarget &Subtarget) {
2436   // We need to be able to widen elements to the next larger integer type.
2437   if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors())
2438     return false;
2439 
2440   int Size = Mask.size();
2441   assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2442 
2443   int Srcs[] = {-1, -1};
2444   for (int i = 0; i != Size; ++i) {
2445     // Ignore undef elements.
2446     if (Mask[i] < 0)
2447       continue;
2448 
2449     // Is this an even or odd element.
2450     int Pol = i % 2;
2451 
2452     // Ensure we consistently use the same source for this element polarity.
2453     int Src = Mask[i] / Size;
2454     if (Srcs[Pol] < 0)
2455       Srcs[Pol] = Src;
2456     if (Srcs[Pol] != Src)
2457       return false;
2458 
2459     // Make sure the element within the source is appropriate for this element
2460     // in the destination.
2461     int Elt = Mask[i] % Size;
2462     if (Elt != i / 2)
2463       return false;
2464   }
2465 
2466   // We need to find a source for each polarity and they can't be the same.
2467   if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2468     return false;
2469 
2470   // Swap the sources if the second source was in the even polarity.
2471   SwapSources = Srcs[0] > Srcs[1];
2472 
2473   return true;
2474 }
2475 
2476 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2477 /// and then extract the original number of elements from the rotated result.
2478 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2479 /// returned rotation amount is for a rotate right, where elements move from
2480 /// higher elements to lower elements. \p LoSrc indicates the first source
2481 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2482 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2483 /// 0 or 1 if a rotation is found.
2484 ///
2485 /// NOTE: We talk about rotate to the right which matches how bit shift and
2486 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2487 /// and the table below write vectors with the lowest elements on the left.
2488 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2489   int Size = Mask.size();
2490 
2491   // We need to detect various ways of spelling a rotation:
2492   //   [11, 12, 13, 14, 15,  0,  1,  2]
2493   //   [-1, 12, 13, 14, -1, -1,  1, -1]
2494   //   [-1, -1, -1, -1, -1, -1,  1,  2]
2495   //   [ 3,  4,  5,  6,  7,  8,  9, 10]
2496   //   [-1,  4,  5,  6, -1, -1,  9, -1]
2497   //   [-1,  4,  5,  6, -1, -1, -1, -1]
2498   int Rotation = 0;
2499   LoSrc = -1;
2500   HiSrc = -1;
2501   for (int i = 0; i != Size; ++i) {
2502     int M = Mask[i];
2503     if (M < 0)
2504       continue;
2505 
2506     // Determine where a rotate vector would have started.
2507     int StartIdx = i - (M % Size);
2508     // The identity rotation isn't interesting, stop.
2509     if (StartIdx == 0)
2510       return -1;
2511 
2512     // If we found the tail of a vector the rotation must be the missing
2513     // front. If we found the head of a vector, it must be how much of the
2514     // head.
2515     int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2516 
2517     if (Rotation == 0)
2518       Rotation = CandidateRotation;
2519     else if (Rotation != CandidateRotation)
2520       // The rotations don't match, so we can't match this mask.
2521       return -1;
2522 
2523     // Compute which value this mask is pointing at.
2524     int MaskSrc = M < Size ? 0 : 1;
2525 
2526     // Compute which of the two target values this index should be assigned to.
2527     // This reflects whether the high elements are remaining or the low elemnts
2528     // are remaining.
2529     int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2530 
2531     // Either set up this value if we've not encountered it before, or check
2532     // that it remains consistent.
2533     if (TargetSrc < 0)
2534       TargetSrc = MaskSrc;
2535     else if (TargetSrc != MaskSrc)
2536       // This may be a rotation, but it pulls from the inputs in some
2537       // unsupported interleaving.
2538       return -1;
2539   }
2540 
2541   // Check that we successfully analyzed the mask, and normalize the results.
2542   assert(Rotation != 0 && "Failed to locate a viable rotation!");
2543   assert((LoSrc >= 0 || HiSrc >= 0) &&
2544          "Failed to find a rotated input vector!");
2545 
2546   return Rotation;
2547 }
2548 
2549 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2550                                    const RISCVSubtarget &Subtarget) {
2551   SDValue V1 = Op.getOperand(0);
2552   SDValue V2 = Op.getOperand(1);
2553   SDLoc DL(Op);
2554   MVT XLenVT = Subtarget.getXLenVT();
2555   MVT VT = Op.getSimpleValueType();
2556   unsigned NumElts = VT.getVectorNumElements();
2557   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2558 
2559   MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2560 
2561   SDValue TrueMask, VL;
2562   std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2563 
2564   if (SVN->isSplat()) {
2565     const int Lane = SVN->getSplatIndex();
2566     if (Lane >= 0) {
2567       MVT SVT = VT.getVectorElementType();
2568 
2569       // Turn splatted vector load into a strided load with an X0 stride.
2570       SDValue V = V1;
2571       // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2572       // with undef.
2573       // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2574       int Offset = Lane;
2575       if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2576         int OpElements =
2577             V.getOperand(0).getSimpleValueType().getVectorNumElements();
2578         V = V.getOperand(Offset / OpElements);
2579         Offset %= OpElements;
2580       }
2581 
2582       // We need to ensure the load isn't atomic or volatile.
2583       if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2584         auto *Ld = cast<LoadSDNode>(V);
2585         Offset *= SVT.getStoreSize();
2586         SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2587                                                    TypeSize::Fixed(Offset), DL);
2588 
2589         // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2590         if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2591           SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2592           SDValue IntID =
2593               DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2594           SDValue Ops[] = {Ld->getChain(),
2595                            IntID,
2596                            DAG.getUNDEF(ContainerVT),
2597                            NewAddr,
2598                            DAG.getRegister(RISCV::X0, XLenVT),
2599                            VL};
2600           SDValue NewLoad = DAG.getMemIntrinsicNode(
2601               ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2602               DAG.getMachineFunction().getMachineMemOperand(
2603                   Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2604           DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2605           return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2606         }
2607 
2608         // Otherwise use a scalar load and splat. This will give the best
2609         // opportunity to fold a splat into the operation. ISel can turn it into
2610         // the x0 strided load if we aren't able to fold away the select.
2611         if (SVT.isFloatingPoint())
2612           V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2613                           Ld->getPointerInfo().getWithOffset(Offset),
2614                           Ld->getOriginalAlign(),
2615                           Ld->getMemOperand()->getFlags());
2616         else
2617           V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2618                              Ld->getPointerInfo().getWithOffset(Offset), SVT,
2619                              Ld->getOriginalAlign(),
2620                              Ld->getMemOperand()->getFlags());
2621         DAG.makeEquivalentMemoryOrdering(Ld, V);
2622 
2623         unsigned Opc =
2624             VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2625         SDValue Splat =
2626             DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2627         return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2628       }
2629 
2630       V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2631       assert(Lane < (int)NumElts && "Unexpected lane!");
2632       SDValue Gather =
2633           DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
2634                       DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
2635       return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2636     }
2637   }
2638 
2639   ArrayRef<int> Mask = SVN->getMask();
2640 
2641   // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2642   // be undef which can be handled with a single SLIDEDOWN/UP.
2643   int LoSrc, HiSrc;
2644   int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2645   if (Rotation > 0) {
2646     SDValue LoV, HiV;
2647     if (LoSrc >= 0) {
2648       LoV = LoSrc == 0 ? V1 : V2;
2649       LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2650     }
2651     if (HiSrc >= 0) {
2652       HiV = HiSrc == 0 ? V1 : V2;
2653       HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2654     }
2655 
2656     // We found a rotation. We need to slide HiV down by Rotation. Then we need
2657     // to slide LoV up by (NumElts - Rotation).
2658     unsigned InvRotate = NumElts - Rotation;
2659 
2660     SDValue Res = DAG.getUNDEF(ContainerVT);
2661     if (HiV) {
2662       // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2663       // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2664       // causes multiple vsetvlis in some test cases such as lowering
2665       // reduce.mul
2666       SDValue DownVL = VL;
2667       if (LoV)
2668         DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2669       Res =
2670           DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2671                       DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2672     }
2673     if (LoV)
2674       Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2675                         DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2676 
2677     return convertFromScalableVector(VT, Res, DAG, Subtarget);
2678   }
2679 
2680   // Detect an interleave shuffle and lower to
2681   // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2682   bool SwapSources;
2683   if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2684     // Swap sources if needed.
2685     if (SwapSources)
2686       std::swap(V1, V2);
2687 
2688     // Extract the lower half of the vectors.
2689     MVT HalfVT = VT.getHalfNumVectorElementsVT();
2690     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2691                      DAG.getConstant(0, DL, XLenVT));
2692     V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2693                      DAG.getConstant(0, DL, XLenVT));
2694 
2695     // Double the element width and halve the number of elements in an int type.
2696     unsigned EltBits = VT.getScalarSizeInBits();
2697     MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2698     MVT WideIntVT =
2699         MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2700     // Convert this to a scalable vector. We need to base this on the
2701     // destination size to ensure there's always a type with a smaller LMUL.
2702     MVT WideIntContainerVT =
2703         getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2704 
2705     // Convert sources to scalable vectors with the same element count as the
2706     // larger type.
2707     MVT HalfContainerVT = MVT::getVectorVT(
2708         VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2709     V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2710     V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2711 
2712     // Cast sources to integer.
2713     MVT IntEltVT = MVT::getIntegerVT(EltBits);
2714     MVT IntHalfVT =
2715         MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2716     V1 = DAG.getBitcast(IntHalfVT, V1);
2717     V2 = DAG.getBitcast(IntHalfVT, V2);
2718 
2719     // Freeze V2 since we use it twice and we need to be sure that the add and
2720     // multiply see the same value.
2721     V2 = DAG.getFreeze(V2);
2722 
2723     // Recreate TrueMask using the widened type's element count.
2724     MVT MaskVT =
2725         MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount());
2726     TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2727 
2728     // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2729     SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2730                               V2, TrueMask, VL);
2731     // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2732     SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2733                                      DAG.getUNDEF(IntHalfVT),
2734                                      DAG.getAllOnesConstant(DL, XLenVT));
2735     SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2736                                    V2, Multiplier, TrueMask, VL);
2737     // Add the new copies to our previous addition giving us 2^eltbits copies of
2738     // V2. This is equivalent to shifting V2 left by eltbits. This should
2739     // combine with the vwmulu.vv above to form vwmaccu.vv.
2740     Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2741                       TrueMask, VL);
2742     // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2743     // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2744     // vector VT.
2745     ContainerVT =
2746         MVT::getVectorVT(VT.getVectorElementType(),
2747                          WideIntContainerVT.getVectorElementCount() * 2);
2748     Add = DAG.getBitcast(ContainerVT, Add);
2749     return convertFromScalableVector(VT, Add, DAG, Subtarget);
2750   }
2751 
2752   // Detect shuffles which can be re-expressed as vector selects; these are
2753   // shuffles in which each element in the destination is taken from an element
2754   // at the corresponding index in either source vectors.
2755   bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2756     int MaskIndex = MaskIdx.value();
2757     return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2758   });
2759 
2760   assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2761 
2762   SmallVector<SDValue> MaskVals;
2763   // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2764   // merged with a second vrgather.
2765   SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2766 
2767   // By default we preserve the original operand order, and use a mask to
2768   // select LHS as true and RHS as false. However, since RVV vector selects may
2769   // feature splats but only on the LHS, we may choose to invert our mask and
2770   // instead select between RHS and LHS.
2771   bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2772   bool InvertMask = IsSelect == SwapOps;
2773 
2774   // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2775   // half.
2776   DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2777 
2778   // Now construct the mask that will be used by the vselect or blended
2779   // vrgather operation. For vrgathers, construct the appropriate indices into
2780   // each vector.
2781   for (int MaskIndex : Mask) {
2782     bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2783     MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2784     if (!IsSelect) {
2785       bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2786       GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2787                                      ? DAG.getConstant(MaskIndex, DL, XLenVT)
2788                                      : DAG.getUNDEF(XLenVT));
2789       GatherIndicesRHS.push_back(
2790           IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2791                             : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2792       if (IsLHSOrUndefIndex && MaskIndex >= 0)
2793         ++LHSIndexCounts[MaskIndex];
2794       if (!IsLHSOrUndefIndex)
2795         ++RHSIndexCounts[MaskIndex - NumElts];
2796     }
2797   }
2798 
2799   if (SwapOps) {
2800     std::swap(V1, V2);
2801     std::swap(GatherIndicesLHS, GatherIndicesRHS);
2802   }
2803 
2804   assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2805   MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2806   SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2807 
2808   if (IsSelect)
2809     return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2810 
2811   if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2812     // On such a large vector we're unable to use i8 as the index type.
2813     // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2814     // may involve vector splitting if we're already at LMUL=8, or our
2815     // user-supplied maximum fixed-length LMUL.
2816     return SDValue();
2817   }
2818 
2819   unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2820   unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2821   MVT IndexVT = VT.changeTypeToInteger();
2822   // Since we can't introduce illegal index types at this stage, use i16 and
2823   // vrgatherei16 if the corresponding index type for plain vrgather is greater
2824   // than XLenVT.
2825   if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2826     GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2827     IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2828   }
2829 
2830   MVT IndexContainerVT =
2831       ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2832 
2833   SDValue Gather;
2834   // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2835   // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2836   if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2837     Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2838                               Subtarget);
2839   } else {
2840     V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2841     // If only one index is used, we can use a "splat" vrgather.
2842     // TODO: We can splat the most-common index and fix-up any stragglers, if
2843     // that's beneficial.
2844     if (LHSIndexCounts.size() == 1) {
2845       int SplatIndex = LHSIndexCounts.begin()->getFirst();
2846       Gather =
2847           DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2848                       DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2849     } else {
2850       SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2851       LHSIndices =
2852           convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2853 
2854       Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2855                            TrueMask, VL);
2856     }
2857   }
2858 
2859   // If a second vector operand is used by this shuffle, blend it in with an
2860   // additional vrgather.
2861   if (!V2.isUndef()) {
2862     V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2863     // If only one index is used, we can use a "splat" vrgather.
2864     // TODO: We can splat the most-common index and fix-up any stragglers, if
2865     // that's beneficial.
2866     if (RHSIndexCounts.size() == 1) {
2867       int SplatIndex = RHSIndexCounts.begin()->getFirst();
2868       V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2869                        DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL);
2870     } else {
2871       SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2872       RHSIndices =
2873           convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2874       V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask,
2875                        VL);
2876     }
2877 
2878     MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2879     SelectMask =
2880         convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2881 
2882     Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2883                          Gather, VL);
2884   }
2885 
2886   return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2887 }
2888 
2889 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2890   // Support splats for any type. These should type legalize well.
2891   if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2892     return true;
2893 
2894   // Only support legal VTs for other shuffles for now.
2895   if (!isTypeLegal(VT))
2896     return false;
2897 
2898   MVT SVT = VT.getSimpleVT();
2899 
2900   bool SwapSources;
2901   int LoSrc, HiSrc;
2902   return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2903          isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2904 }
2905 
2906 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2907                                      SDLoc DL, SelectionDAG &DAG,
2908                                      const RISCVSubtarget &Subtarget) {
2909   if (VT.isScalableVector())
2910     return DAG.getFPExtendOrRound(Op, DL, VT);
2911   assert(VT.isFixedLengthVector() &&
2912          "Unexpected value type for RVV FP extend/round lowering");
2913   SDValue Mask, VL;
2914   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2915   unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2916                         ? RISCVISD::FP_EXTEND_VL
2917                         : RISCVISD::FP_ROUND_VL;
2918   return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2919 }
2920 
2921 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2922 // the exponent.
2923 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2924   MVT VT = Op.getSimpleValueType();
2925   unsigned EltSize = VT.getScalarSizeInBits();
2926   SDValue Src = Op.getOperand(0);
2927   SDLoc DL(Op);
2928 
2929   // We need a FP type that can represent the value.
2930   // TODO: Use f16 for i8 when possible?
2931   MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2932   MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2933 
2934   // Legal types should have been checked in the RISCVTargetLowering
2935   // constructor.
2936   // TODO: Splitting may make sense in some cases.
2937   assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2938          "Expected legal float type!");
2939 
2940   // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2941   // The trailing zero count is equal to log2 of this single bit value.
2942   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2943     SDValue Neg =
2944         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2945     Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2946   }
2947 
2948   // We have a legal FP type, convert to it.
2949   SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2950   // Bitcast to integer and shift the exponent to the LSB.
2951   EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2952   SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2953   unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2954   SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2955                               DAG.getConstant(ShiftAmt, DL, IntVT));
2956   // Truncate back to original type to allow vnsrl.
2957   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2958   // The exponent contains log2 of the value in biased form.
2959   unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2960 
2961   // For trailing zeros, we just need to subtract the bias.
2962   if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2963     return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2964                        DAG.getConstant(ExponentBias, DL, VT));
2965 
2966   // For leading zeros, we need to remove the bias and convert from log2 to
2967   // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
2968   unsigned Adjust = ExponentBias + (EltSize - 1);
2969   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
2970 }
2971 
2972 // While RVV has alignment restrictions, we should always be able to load as a
2973 // legal equivalently-sized byte-typed vector instead. This method is
2974 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2975 // the load is already correctly-aligned, it returns SDValue().
2976 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2977                                                     SelectionDAG &DAG) const {
2978   auto *Load = cast<LoadSDNode>(Op);
2979   assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2980 
2981   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2982                                      Load->getMemoryVT(),
2983                                      *Load->getMemOperand()))
2984     return SDValue();
2985 
2986   SDLoc DL(Op);
2987   MVT VT = Op.getSimpleValueType();
2988   unsigned EltSizeBits = VT.getScalarSizeInBits();
2989   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2990          "Unexpected unaligned RVV load type");
2991   MVT NewVT =
2992       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2993   assert(NewVT.isValid() &&
2994          "Expecting equally-sized RVV vector types to be legal");
2995   SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2996                           Load->getPointerInfo(), Load->getOriginalAlign(),
2997                           Load->getMemOperand()->getFlags());
2998   return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2999 }
3000 
3001 // While RVV has alignment restrictions, we should always be able to store as a
3002 // legal equivalently-sized byte-typed vector instead. This method is
3003 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3004 // returns SDValue() if the store is already correctly aligned.
3005 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3006                                                      SelectionDAG &DAG) const {
3007   auto *Store = cast<StoreSDNode>(Op);
3008   assert(Store && Store->getValue().getValueType().isVector() &&
3009          "Expected vector store");
3010 
3011   if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3012                                      Store->getMemoryVT(),
3013                                      *Store->getMemOperand()))
3014     return SDValue();
3015 
3016   SDLoc DL(Op);
3017   SDValue StoredVal = Store->getValue();
3018   MVT VT = StoredVal.getSimpleValueType();
3019   unsigned EltSizeBits = VT.getScalarSizeInBits();
3020   assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3021          "Unexpected unaligned RVV store type");
3022   MVT NewVT =
3023       MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3024   assert(NewVT.isValid() &&
3025          "Expecting equally-sized RVV vector types to be legal");
3026   StoredVal = DAG.getBitcast(NewVT, StoredVal);
3027   return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3028                       Store->getPointerInfo(), Store->getOriginalAlign(),
3029                       Store->getMemOperand()->getFlags());
3030 }
3031 
3032 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3033                                             SelectionDAG &DAG) const {
3034   switch (Op.getOpcode()) {
3035   default:
3036     report_fatal_error("unimplemented operand");
3037   case ISD::GlobalAddress:
3038     return lowerGlobalAddress(Op, DAG);
3039   case ISD::BlockAddress:
3040     return lowerBlockAddress(Op, DAG);
3041   case ISD::ConstantPool:
3042     return lowerConstantPool(Op, DAG);
3043   case ISD::JumpTable:
3044     return lowerJumpTable(Op, DAG);
3045   case ISD::GlobalTLSAddress:
3046     return lowerGlobalTLSAddress(Op, DAG);
3047   case ISD::SELECT:
3048     return lowerSELECT(Op, DAG);
3049   case ISD::BRCOND:
3050     return lowerBRCOND(Op, DAG);
3051   case ISD::VASTART:
3052     return lowerVASTART(Op, DAG);
3053   case ISD::FRAMEADDR:
3054     return lowerFRAMEADDR(Op, DAG);
3055   case ISD::RETURNADDR:
3056     return lowerRETURNADDR(Op, DAG);
3057   case ISD::SHL_PARTS:
3058     return lowerShiftLeftParts(Op, DAG);
3059   case ISD::SRA_PARTS:
3060     return lowerShiftRightParts(Op, DAG, true);
3061   case ISD::SRL_PARTS:
3062     return lowerShiftRightParts(Op, DAG, false);
3063   case ISD::BITCAST: {
3064     SDLoc DL(Op);
3065     EVT VT = Op.getValueType();
3066     SDValue Op0 = Op.getOperand(0);
3067     EVT Op0VT = Op0.getValueType();
3068     MVT XLenVT = Subtarget.getXLenVT();
3069     if (VT.isFixedLengthVector()) {
3070       // We can handle fixed length vector bitcasts with a simple replacement
3071       // in isel.
3072       if (Op0VT.isFixedLengthVector())
3073         return Op;
3074       // When bitcasting from scalar to fixed-length vector, insert the scalar
3075       // into a one-element vector of the result type, and perform a vector
3076       // bitcast.
3077       if (!Op0VT.isVector()) {
3078         EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3079         if (!isTypeLegal(BVT))
3080           return SDValue();
3081         return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3082                                               DAG.getUNDEF(BVT), Op0,
3083                                               DAG.getConstant(0, DL, XLenVT)));
3084       }
3085       return SDValue();
3086     }
3087     // Custom-legalize bitcasts from fixed-length vector types to scalar types
3088     // thus: bitcast the vector to a one-element vector type whose element type
3089     // is the same as the result type, and extract the first element.
3090     if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3091       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3092       if (!isTypeLegal(BVT))
3093         return SDValue();
3094       SDValue BVec = DAG.getBitcast(BVT, Op0);
3095       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3096                          DAG.getConstant(0, DL, XLenVT));
3097     }
3098     if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3099       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3100       SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3101       return FPConv;
3102     }
3103     if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3104         Subtarget.hasStdExtF()) {
3105       SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3106       SDValue FPConv =
3107           DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3108       return FPConv;
3109     }
3110     return SDValue();
3111   }
3112   case ISD::INTRINSIC_WO_CHAIN:
3113     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3114   case ISD::INTRINSIC_W_CHAIN:
3115     return LowerINTRINSIC_W_CHAIN(Op, DAG);
3116   case ISD::INTRINSIC_VOID:
3117     return LowerINTRINSIC_VOID(Op, DAG);
3118   case ISD::BSWAP:
3119   case ISD::BITREVERSE: {
3120     MVT VT = Op.getSimpleValueType();
3121     SDLoc DL(Op);
3122     if (Subtarget.hasStdExtZbp()) {
3123       // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3124       // Start with the maximum immediate value which is the bitwidth - 1.
3125       unsigned Imm = VT.getSizeInBits() - 1;
3126       // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3127       if (Op.getOpcode() == ISD::BSWAP)
3128         Imm &= ~0x7U;
3129       return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3130                          DAG.getConstant(Imm, DL, VT));
3131     }
3132     assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3133     assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3134     // Expand bitreverse to a bswap(rev8) followed by brev8.
3135     SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3136     // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3137     // as brev8 by an isel pattern.
3138     return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3139                        DAG.getConstant(7, DL, VT));
3140   }
3141   case ISD::FSHL:
3142   case ISD::FSHR: {
3143     MVT VT = Op.getSimpleValueType();
3144     assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3145     SDLoc DL(Op);
3146     // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3147     // use log(XLen) bits. Mask the shift amount accordingly to prevent
3148     // accidentally setting the extra bit.
3149     unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3150     SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3151                                 DAG.getConstant(ShAmtWidth, DL, VT));
3152     // fshl and fshr concatenate their operands in the same order. fsr and fsl
3153     // instruction use different orders. fshl will return its first operand for
3154     // shift of zero, fshr will return its second operand. fsl and fsr both
3155     // return rs1 so the ISD nodes need to have different operand orders.
3156     // Shift amount is in rs2.
3157     SDValue Op0 = Op.getOperand(0);
3158     SDValue Op1 = Op.getOperand(1);
3159     unsigned Opc = RISCVISD::FSL;
3160     if (Op.getOpcode() == ISD::FSHR) {
3161       std::swap(Op0, Op1);
3162       Opc = RISCVISD::FSR;
3163     }
3164     return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3165   }
3166   case ISD::TRUNCATE: {
3167     SDLoc DL(Op);
3168     MVT VT = Op.getSimpleValueType();
3169     // Only custom-lower vector truncates
3170     if (!VT.isVector())
3171       return Op;
3172 
3173     // Truncates to mask types are handled differently
3174     if (VT.getVectorElementType() == MVT::i1)
3175       return lowerVectorMaskTrunc(Op, DAG);
3176 
3177     // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
3178     // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
3179     // truncate by one power of two at a time.
3180     MVT DstEltVT = VT.getVectorElementType();
3181 
3182     SDValue Src = Op.getOperand(0);
3183     MVT SrcVT = Src.getSimpleValueType();
3184     MVT SrcEltVT = SrcVT.getVectorElementType();
3185 
3186     assert(DstEltVT.bitsLT(SrcEltVT) &&
3187            isPowerOf2_64(DstEltVT.getSizeInBits()) &&
3188            isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
3189            "Unexpected vector truncate lowering");
3190 
3191     MVT ContainerVT = SrcVT;
3192     if (SrcVT.isFixedLengthVector()) {
3193       ContainerVT = getContainerForFixedLengthVector(SrcVT);
3194       Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3195     }
3196 
3197     SDValue Result = Src;
3198     SDValue Mask, VL;
3199     std::tie(Mask, VL) =
3200         getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
3201     LLVMContext &Context = *DAG.getContext();
3202     const ElementCount Count = ContainerVT.getVectorElementCount();
3203     do {
3204       SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
3205       EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
3206       Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
3207                            Mask, VL);
3208     } while (SrcEltVT != DstEltVT);
3209 
3210     if (SrcVT.isFixedLengthVector())
3211       Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
3212 
3213     return Result;
3214   }
3215   case ISD::ANY_EXTEND:
3216   case ISD::ZERO_EXTEND:
3217     if (Op.getOperand(0).getValueType().isVector() &&
3218         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3219       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3220     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3221   case ISD::SIGN_EXTEND:
3222     if (Op.getOperand(0).getValueType().isVector() &&
3223         Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3224       return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3225     return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3226   case ISD::SPLAT_VECTOR_PARTS:
3227     return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3228   case ISD::INSERT_VECTOR_ELT:
3229     return lowerINSERT_VECTOR_ELT(Op, DAG);
3230   case ISD::EXTRACT_VECTOR_ELT:
3231     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3232   case ISD::VSCALE: {
3233     MVT VT = Op.getSimpleValueType();
3234     SDLoc DL(Op);
3235     SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3236     // We define our scalable vector types for lmul=1 to use a 64 bit known
3237     // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3238     // vscale as VLENB / 8.
3239     static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3240     if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock)
3241       report_fatal_error("Support for VLEN==32 is incomplete.");
3242     if (isa<ConstantSDNode>(Op.getOperand(0))) {
3243       // We assume VLENB is a multiple of 8. We manually choose the best shift
3244       // here because SimplifyDemandedBits isn't always able to simplify it.
3245       uint64_t Val = Op.getConstantOperandVal(0);
3246       if (isPowerOf2_64(Val)) {
3247         uint64_t Log2 = Log2_64(Val);
3248         if (Log2 < 3)
3249           return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3250                              DAG.getConstant(3 - Log2, DL, VT));
3251         if (Log2 > 3)
3252           return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3253                              DAG.getConstant(Log2 - 3, DL, VT));
3254         return VLENB;
3255       }
3256       // If the multiplier is a multiple of 8, scale it down to avoid needing
3257       // to shift the VLENB value.
3258       if ((Val % 8) == 0)
3259         return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3260                            DAG.getConstant(Val / 8, DL, VT));
3261     }
3262 
3263     SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3264                                  DAG.getConstant(3, DL, VT));
3265     return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3266   }
3267   case ISD::FPOWI: {
3268     // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3269     // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3270     if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3271         Op.getOperand(1).getValueType() == MVT::i32) {
3272       SDLoc DL(Op);
3273       SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3274       SDValue Powi =
3275           DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3276       return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3277                          DAG.getIntPtrConstant(0, DL));
3278     }
3279     return SDValue();
3280   }
3281   case ISD::FP_EXTEND: {
3282     // RVV can only do fp_extend to types double the size as the source. We
3283     // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
3284     // via f32.
3285     SDLoc DL(Op);
3286     MVT VT = Op.getSimpleValueType();
3287     SDValue Src = Op.getOperand(0);
3288     MVT SrcVT = Src.getSimpleValueType();
3289 
3290     // Prepare any fixed-length vector operands.
3291     MVT ContainerVT = VT;
3292     if (SrcVT.isFixedLengthVector()) {
3293       ContainerVT = getContainerForFixedLengthVector(VT);
3294       MVT SrcContainerVT =
3295           ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
3296       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3297     }
3298 
3299     if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
3300         SrcVT.getVectorElementType() != MVT::f16) {
3301       // For scalable vectors, we only need to close the gap between
3302       // vXf16->vXf64.
3303       if (!VT.isFixedLengthVector())
3304         return Op;
3305       // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
3306       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3307       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3308     }
3309 
3310     MVT InterVT = VT.changeVectorElementType(MVT::f32);
3311     MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
3312     SDValue IntermediateExtend = getRVVFPExtendOrRound(
3313         Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
3314 
3315     SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
3316                                            DL, DAG, Subtarget);
3317     if (VT.isFixedLengthVector())
3318       return convertFromScalableVector(VT, Extend, DAG, Subtarget);
3319     return Extend;
3320   }
3321   case ISD::FP_ROUND: {
3322     // RVV can only do fp_round to types half the size as the source. We
3323     // custom-lower f64->f16 rounds via RVV's round-to-odd float
3324     // conversion instruction.
3325     SDLoc DL(Op);
3326     MVT VT = Op.getSimpleValueType();
3327     SDValue Src = Op.getOperand(0);
3328     MVT SrcVT = Src.getSimpleValueType();
3329 
3330     // Prepare any fixed-length vector operands.
3331     MVT ContainerVT = VT;
3332     if (VT.isFixedLengthVector()) {
3333       MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3334       ContainerVT =
3335           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3336       Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3337     }
3338 
3339     if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
3340         SrcVT.getVectorElementType() != MVT::f64) {
3341       // For scalable vectors, we only need to close the gap between
3342       // vXf64<->vXf16.
3343       if (!VT.isFixedLengthVector())
3344         return Op;
3345       // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
3346       Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
3347       return convertFromScalableVector(VT, Src, DAG, Subtarget);
3348     }
3349 
3350     SDValue Mask, VL;
3351     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3352 
3353     MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
3354     SDValue IntermediateRound =
3355         DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
3356     SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
3357                                           DL, DAG, Subtarget);
3358 
3359     if (VT.isFixedLengthVector())
3360       return convertFromScalableVector(VT, Round, DAG, Subtarget);
3361     return Round;
3362   }
3363   case ISD::FP_TO_SINT:
3364   case ISD::FP_TO_UINT:
3365   case ISD::SINT_TO_FP:
3366   case ISD::UINT_TO_FP: {
3367     // RVV can only do fp<->int conversions to types half/double the size as
3368     // the source. We custom-lower any conversions that do two hops into
3369     // sequences.
3370     MVT VT = Op.getSimpleValueType();
3371     if (!VT.isVector())
3372       return Op;
3373     SDLoc DL(Op);
3374     SDValue Src = Op.getOperand(0);
3375     MVT EltVT = VT.getVectorElementType();
3376     MVT SrcVT = Src.getSimpleValueType();
3377     MVT SrcEltVT = SrcVT.getVectorElementType();
3378     unsigned EltSize = EltVT.getSizeInBits();
3379     unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3380     assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3381            "Unexpected vector element types");
3382 
3383     bool IsInt2FP = SrcEltVT.isInteger();
3384     // Widening conversions
3385     if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
3386       if (IsInt2FP) {
3387         // Do a regular integer sign/zero extension then convert to float.
3388         MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
3389                                       VT.getVectorElementCount());
3390         unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3391                                  ? ISD::ZERO_EXTEND
3392                                  : ISD::SIGN_EXTEND;
3393         SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3394         return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3395       }
3396       // FP2Int
3397       assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3398       // Do one doubling fp_extend then complete the operation by converting
3399       // to int.
3400       MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3401       SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3402       return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3403     }
3404 
3405     // Narrowing conversions
3406     if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
3407       if (IsInt2FP) {
3408         // One narrowing int_to_fp, then an fp_round.
3409         assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3410         MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3411         SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3412         return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3413       }
3414       // FP2Int
3415       // One narrowing fp_to_int, then truncate the integer. If the float isn't
3416       // representable by the integer, the result is poison.
3417       MVT IVecVT =
3418           MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
3419                            VT.getVectorElementCount());
3420       SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3421       return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3422     }
3423 
3424     // Scalable vectors can exit here. Patterns will handle equally-sized
3425     // conversions halving/doubling ones.
3426     if (!VT.isFixedLengthVector())
3427       return Op;
3428 
3429     // For fixed-length vectors we lower to a custom "VL" node.
3430     unsigned RVVOpc = 0;
3431     switch (Op.getOpcode()) {
3432     default:
3433       llvm_unreachable("Impossible opcode");
3434     case ISD::FP_TO_SINT:
3435       RVVOpc = RISCVISD::FP_TO_SINT_VL;
3436       break;
3437     case ISD::FP_TO_UINT:
3438       RVVOpc = RISCVISD::FP_TO_UINT_VL;
3439       break;
3440     case ISD::SINT_TO_FP:
3441       RVVOpc = RISCVISD::SINT_TO_FP_VL;
3442       break;
3443     case ISD::UINT_TO_FP:
3444       RVVOpc = RISCVISD::UINT_TO_FP_VL;
3445       break;
3446     }
3447 
3448     MVT ContainerVT, SrcContainerVT;
3449     // Derive the reference container type from the larger vector type.
3450     if (SrcEltSize > EltSize) {
3451       SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3452       ContainerVT =
3453           SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3454     } else {
3455       ContainerVT = getContainerForFixedLengthVector(VT);
3456       SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3457     }
3458 
3459     SDValue Mask, VL;
3460     std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3461 
3462     Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3463     Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3464     return convertFromScalableVector(VT, Src, DAG, Subtarget);
3465   }
3466   case ISD::FP_TO_SINT_SAT:
3467   case ISD::FP_TO_UINT_SAT:
3468     return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3469   case ISD::FTRUNC:
3470   case ISD::FCEIL:
3471   case ISD::FFLOOR:
3472     return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3473   case ISD::FROUND:
3474     return lowerFROUND(Op, DAG);
3475   case ISD::VECREDUCE_ADD:
3476   case ISD::VECREDUCE_UMAX:
3477   case ISD::VECREDUCE_SMAX:
3478   case ISD::VECREDUCE_UMIN:
3479   case ISD::VECREDUCE_SMIN:
3480     return lowerVECREDUCE(Op, DAG);
3481   case ISD::VECREDUCE_AND:
3482   case ISD::VECREDUCE_OR:
3483   case ISD::VECREDUCE_XOR:
3484     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3485       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3486     return lowerVECREDUCE(Op, DAG);
3487   case ISD::VECREDUCE_FADD:
3488   case ISD::VECREDUCE_SEQ_FADD:
3489   case ISD::VECREDUCE_FMIN:
3490   case ISD::VECREDUCE_FMAX:
3491     return lowerFPVECREDUCE(Op, DAG);
3492   case ISD::VP_REDUCE_ADD:
3493   case ISD::VP_REDUCE_UMAX:
3494   case ISD::VP_REDUCE_SMAX:
3495   case ISD::VP_REDUCE_UMIN:
3496   case ISD::VP_REDUCE_SMIN:
3497   case ISD::VP_REDUCE_FADD:
3498   case ISD::VP_REDUCE_SEQ_FADD:
3499   case ISD::VP_REDUCE_FMIN:
3500   case ISD::VP_REDUCE_FMAX:
3501     return lowerVPREDUCE(Op, DAG);
3502   case ISD::VP_REDUCE_AND:
3503   case ISD::VP_REDUCE_OR:
3504   case ISD::VP_REDUCE_XOR:
3505     if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3506       return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3507     return lowerVPREDUCE(Op, DAG);
3508   case ISD::INSERT_SUBVECTOR:
3509     return lowerINSERT_SUBVECTOR(Op, DAG);
3510   case ISD::EXTRACT_SUBVECTOR:
3511     return lowerEXTRACT_SUBVECTOR(Op, DAG);
3512   case ISD::STEP_VECTOR:
3513     return lowerSTEP_VECTOR(Op, DAG);
3514   case ISD::VECTOR_REVERSE:
3515     return lowerVECTOR_REVERSE(Op, DAG);
3516   case ISD::VECTOR_SPLICE:
3517     return lowerVECTOR_SPLICE(Op, DAG);
3518   case ISD::BUILD_VECTOR:
3519     return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3520   case ISD::SPLAT_VECTOR:
3521     if (Op.getValueType().getVectorElementType() == MVT::i1)
3522       return lowerVectorMaskSplat(Op, DAG);
3523     return SDValue();
3524   case ISD::VECTOR_SHUFFLE:
3525     return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3526   case ISD::CONCAT_VECTORS: {
3527     // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3528     // better than going through the stack, as the default expansion does.
3529     SDLoc DL(Op);
3530     MVT VT = Op.getSimpleValueType();
3531     unsigned NumOpElts =
3532         Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3533     SDValue Vec = DAG.getUNDEF(VT);
3534     for (const auto &OpIdx : enumerate(Op->ops())) {
3535       SDValue SubVec = OpIdx.value();
3536       // Don't insert undef subvectors.
3537       if (SubVec.isUndef())
3538         continue;
3539       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3540                         DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3541     }
3542     return Vec;
3543   }
3544   case ISD::LOAD:
3545     if (auto V = expandUnalignedRVVLoad(Op, DAG))
3546       return V;
3547     if (Op.getValueType().isFixedLengthVector())
3548       return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3549     return Op;
3550   case ISD::STORE:
3551     if (auto V = expandUnalignedRVVStore(Op, DAG))
3552       return V;
3553     if (Op.getOperand(1).getValueType().isFixedLengthVector())
3554       return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3555     return Op;
3556   case ISD::MLOAD:
3557   case ISD::VP_LOAD:
3558     return lowerMaskedLoad(Op, DAG);
3559   case ISD::MSTORE:
3560   case ISD::VP_STORE:
3561     return lowerMaskedStore(Op, DAG);
3562   case ISD::SETCC:
3563     return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3564   case ISD::ADD:
3565     return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3566   case ISD::SUB:
3567     return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3568   case ISD::MUL:
3569     return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3570   case ISD::MULHS:
3571     return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3572   case ISD::MULHU:
3573     return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3574   case ISD::AND:
3575     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3576                                               RISCVISD::AND_VL);
3577   case ISD::OR:
3578     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3579                                               RISCVISD::OR_VL);
3580   case ISD::XOR:
3581     return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3582                                               RISCVISD::XOR_VL);
3583   case ISD::SDIV:
3584     return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3585   case ISD::SREM:
3586     return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3587   case ISD::UDIV:
3588     return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3589   case ISD::UREM:
3590     return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3591   case ISD::SHL:
3592   case ISD::SRA:
3593   case ISD::SRL:
3594     if (Op.getSimpleValueType().isFixedLengthVector())
3595       return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3596     // This can be called for an i32 shift amount that needs to be promoted.
3597     assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3598            "Unexpected custom legalisation");
3599     return SDValue();
3600   case ISD::SADDSAT:
3601     return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3602   case ISD::UADDSAT:
3603     return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3604   case ISD::SSUBSAT:
3605     return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3606   case ISD::USUBSAT:
3607     return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3608   case ISD::FADD:
3609     return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3610   case ISD::FSUB:
3611     return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3612   case ISD::FMUL:
3613     return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3614   case ISD::FDIV:
3615     return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3616   case ISD::FNEG:
3617     return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3618   case ISD::FABS:
3619     return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3620   case ISD::FSQRT:
3621     return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3622   case ISD::FMA:
3623     return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
3624   case ISD::SMIN:
3625     return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3626   case ISD::SMAX:
3627     return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3628   case ISD::UMIN:
3629     return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3630   case ISD::UMAX:
3631     return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3632   case ISD::FMINNUM:
3633     return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3634   case ISD::FMAXNUM:
3635     return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3636   case ISD::ABS:
3637     return lowerABS(Op, DAG);
3638   case ISD::CTLZ_ZERO_UNDEF:
3639   case ISD::CTTZ_ZERO_UNDEF:
3640     return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3641   case ISD::VSELECT:
3642     return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3643   case ISD::FCOPYSIGN:
3644     return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3645   case ISD::MGATHER:
3646   case ISD::VP_GATHER:
3647     return lowerMaskedGather(Op, DAG);
3648   case ISD::MSCATTER:
3649   case ISD::VP_SCATTER:
3650     return lowerMaskedScatter(Op, DAG);
3651   case ISD::FLT_ROUNDS_:
3652     return lowerGET_ROUNDING(Op, DAG);
3653   case ISD::SET_ROUNDING:
3654     return lowerSET_ROUNDING(Op, DAG);
3655   case ISD::VP_SELECT:
3656     return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3657   case ISD::VP_MERGE:
3658     return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3659   case ISD::VP_ADD:
3660     return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3661   case ISD::VP_SUB:
3662     return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3663   case ISD::VP_MUL:
3664     return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3665   case ISD::VP_SDIV:
3666     return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3667   case ISD::VP_UDIV:
3668     return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3669   case ISD::VP_SREM:
3670     return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3671   case ISD::VP_UREM:
3672     return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3673   case ISD::VP_AND:
3674     return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3675   case ISD::VP_OR:
3676     return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3677   case ISD::VP_XOR:
3678     return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3679   case ISD::VP_ASHR:
3680     return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3681   case ISD::VP_LSHR:
3682     return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3683   case ISD::VP_SHL:
3684     return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3685   case ISD::VP_FADD:
3686     return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3687   case ISD::VP_FSUB:
3688     return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3689   case ISD::VP_FMUL:
3690     return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3691   case ISD::VP_FDIV:
3692     return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3693   case ISD::VP_FNEG:
3694     return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3695   case ISD::VP_FMA:
3696     return lowerVPOp(Op, DAG, RISCVISD::FMA_VL);
3697   }
3698 }
3699 
3700 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3701                              SelectionDAG &DAG, unsigned Flags) {
3702   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3703 }
3704 
3705 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3706                              SelectionDAG &DAG, unsigned Flags) {
3707   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3708                                    Flags);
3709 }
3710 
3711 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3712                              SelectionDAG &DAG, unsigned Flags) {
3713   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3714                                    N->getOffset(), Flags);
3715 }
3716 
3717 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3718                              SelectionDAG &DAG, unsigned Flags) {
3719   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3720 }
3721 
3722 template <class NodeTy>
3723 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3724                                      bool IsLocal) const {
3725   SDLoc DL(N);
3726   EVT Ty = getPointerTy(DAG.getDataLayout());
3727 
3728   if (isPositionIndependent()) {
3729     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3730     if (IsLocal)
3731       // Use PC-relative addressing to access the symbol. This generates the
3732       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3733       // %pcrel_lo(auipc)).
3734       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3735 
3736     // Use PC-relative addressing to access the GOT for this symbol, then load
3737     // the address from the GOT. This generates the pattern (PseudoLA sym),
3738     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3739     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
3740   }
3741 
3742   switch (getTargetMachine().getCodeModel()) {
3743   default:
3744     report_fatal_error("Unsupported code model for lowering");
3745   case CodeModel::Small: {
3746     // Generate a sequence for accessing addresses within the first 2 GiB of
3747     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3748     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3749     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3750     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3751     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
3752   }
3753   case CodeModel::Medium: {
3754     // Generate a sequence for accessing addresses within any 2GiB range within
3755     // the address space. This generates the pattern (PseudoLLA sym), which
3756     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3757     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3758     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
3759   }
3760   }
3761 }
3762 
3763 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3764                                                 SelectionDAG &DAG) const {
3765   SDLoc DL(Op);
3766   EVT Ty = Op.getValueType();
3767   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3768   int64_t Offset = N->getOffset();
3769   MVT XLenVT = Subtarget.getXLenVT();
3770 
3771   const GlobalValue *GV = N->getGlobal();
3772   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3773   SDValue Addr = getAddr(N, DAG, IsLocal);
3774 
3775   // In order to maximise the opportunity for common subexpression elimination,
3776   // emit a separate ADD node for the global address offset instead of folding
3777   // it in the global address node. Later peephole optimisations may choose to
3778   // fold it back in when profitable.
3779   if (Offset != 0)
3780     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3781                        DAG.getConstant(Offset, DL, XLenVT));
3782   return Addr;
3783 }
3784 
3785 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3786                                                SelectionDAG &DAG) const {
3787   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3788 
3789   return getAddr(N, DAG);
3790 }
3791 
3792 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3793                                                SelectionDAG &DAG) const {
3794   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3795 
3796   return getAddr(N, DAG);
3797 }
3798 
3799 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3800                                             SelectionDAG &DAG) const {
3801   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3802 
3803   return getAddr(N, DAG);
3804 }
3805 
3806 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3807                                               SelectionDAG &DAG,
3808                                               bool UseGOT) const {
3809   SDLoc DL(N);
3810   EVT Ty = getPointerTy(DAG.getDataLayout());
3811   const GlobalValue *GV = N->getGlobal();
3812   MVT XLenVT = Subtarget.getXLenVT();
3813 
3814   if (UseGOT) {
3815     // Use PC-relative addressing to access the GOT for this TLS symbol, then
3816     // load the address from the GOT and add the thread pointer. This generates
3817     // the pattern (PseudoLA_TLS_IE sym), which expands to
3818     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3819     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3820     SDValue Load =
3821         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
3822 
3823     // Add the thread pointer.
3824     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3825     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3826   }
3827 
3828   // Generate a sequence for accessing the address relative to the thread
3829   // pointer, with the appropriate adjustment for the thread pointer offset.
3830   // This generates the pattern
3831   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3832   SDValue AddrHi =
3833       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3834   SDValue AddrAdd =
3835       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3836   SDValue AddrLo =
3837       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3838 
3839   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
3840   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3841   SDValue MNAdd = SDValue(
3842       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
3843       0);
3844   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
3845 }
3846 
3847 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3848                                                SelectionDAG &DAG) const {
3849   SDLoc DL(N);
3850   EVT Ty = getPointerTy(DAG.getDataLayout());
3851   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3852   const GlobalValue *GV = N->getGlobal();
3853 
3854   // Use a PC-relative addressing mode to access the global dynamic GOT address.
3855   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3856   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3857   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3858   SDValue Load =
3859       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
3860 
3861   // Prepare argument list to generate call.
3862   ArgListTy Args;
3863   ArgListEntry Entry;
3864   Entry.Node = Load;
3865   Entry.Ty = CallTy;
3866   Args.push_back(Entry);
3867 
3868   // Setup call to __tls_get_addr.
3869   TargetLowering::CallLoweringInfo CLI(DAG);
3870   CLI.setDebugLoc(DL)
3871       .setChain(DAG.getEntryNode())
3872       .setLibCallee(CallingConv::C, CallTy,
3873                     DAG.getExternalSymbol("__tls_get_addr", Ty),
3874                     std::move(Args));
3875 
3876   return LowerCallTo(CLI).first;
3877 }
3878 
3879 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3880                                                    SelectionDAG &DAG) const {
3881   SDLoc DL(Op);
3882   EVT Ty = Op.getValueType();
3883   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3884   int64_t Offset = N->getOffset();
3885   MVT XLenVT = Subtarget.getXLenVT();
3886 
3887   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3888 
3889   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3890       CallingConv::GHC)
3891     report_fatal_error("In GHC calling convention TLS is not supported");
3892 
3893   SDValue Addr;
3894   switch (Model) {
3895   case TLSModel::LocalExec:
3896     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3897     break;
3898   case TLSModel::InitialExec:
3899     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3900     break;
3901   case TLSModel::LocalDynamic:
3902   case TLSModel::GeneralDynamic:
3903     Addr = getDynamicTLSAddr(N, DAG);
3904     break;
3905   }
3906 
3907   // In order to maximise the opportunity for common subexpression elimination,
3908   // emit a separate ADD node for the global address offset instead of folding
3909   // it in the global address node. Later peephole optimisations may choose to
3910   // fold it back in when profitable.
3911   if (Offset != 0)
3912     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
3913                        DAG.getConstant(Offset, DL, XLenVT));
3914   return Addr;
3915 }
3916 
3917 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3918   SDValue CondV = Op.getOperand(0);
3919   SDValue TrueV = Op.getOperand(1);
3920   SDValue FalseV = Op.getOperand(2);
3921   SDLoc DL(Op);
3922   MVT VT = Op.getSimpleValueType();
3923   MVT XLenVT = Subtarget.getXLenVT();
3924 
3925   // Lower vector SELECTs to VSELECTs by splatting the condition.
3926   if (VT.isVector()) {
3927     MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3928     SDValue CondSplat = VT.isScalableVector()
3929                             ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3930                             : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3931     return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3932   }
3933 
3934   // If the result type is XLenVT and CondV is the output of a SETCC node
3935   // which also operated on XLenVT inputs, then merge the SETCC node into the
3936   // lowered RISCVISD::SELECT_CC to take advantage of the integer
3937   // compare+branch instructions. i.e.:
3938   // (select (setcc lhs, rhs, cc), truev, falsev)
3939   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3940   if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3941       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3942     SDValue LHS = CondV.getOperand(0);
3943     SDValue RHS = CondV.getOperand(1);
3944     const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3945     ISD::CondCode CCVal = CC->get();
3946 
3947     // Special case for a select of 2 constants that have a diffence of 1.
3948     // Normally this is done by DAGCombine, but if the select is introduced by
3949     // type legalization or op legalization, we miss it. Restricting to SETLT
3950     // case for now because that is what signed saturating add/sub need.
3951     // FIXME: We don't need the condition to be SETLT or even a SETCC,
3952     // but we would probably want to swap the true/false values if the condition
3953     // is SETGE/SETLE to avoid an XORI.
3954     if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3955         CCVal == ISD::SETLT) {
3956       const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3957       const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3958       if (TrueVal - 1 == FalseVal)
3959         return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3960       if (TrueVal + 1 == FalseVal)
3961         return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3962     }
3963 
3964     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3965 
3966     SDValue TargetCC = DAG.getCondCode(CCVal);
3967     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3968     return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3969   }
3970 
3971   // Otherwise:
3972   // (select condv, truev, falsev)
3973   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3974   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3975   SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3976 
3977   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3978 
3979   return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3980 }
3981 
3982 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3983   SDValue CondV = Op.getOperand(1);
3984   SDLoc DL(Op);
3985   MVT XLenVT = Subtarget.getXLenVT();
3986 
3987   if (CondV.getOpcode() == ISD::SETCC &&
3988       CondV.getOperand(0).getValueType() == XLenVT) {
3989     SDValue LHS = CondV.getOperand(0);
3990     SDValue RHS = CondV.getOperand(1);
3991     ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3992 
3993     translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3994 
3995     SDValue TargetCC = DAG.getCondCode(CCVal);
3996     return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3997                        LHS, RHS, TargetCC, Op.getOperand(2));
3998   }
3999 
4000   return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
4001                      CondV, DAG.getConstant(0, DL, XLenVT),
4002                      DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
4003 }
4004 
4005 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
4006   MachineFunction &MF = DAG.getMachineFunction();
4007   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
4008 
4009   SDLoc DL(Op);
4010   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
4011                                  getPointerTy(MF.getDataLayout()));
4012 
4013   // vastart just stores the address of the VarArgsFrameIndex slot into the
4014   // memory location argument.
4015   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4016   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
4017                       MachinePointerInfo(SV));
4018 }
4019 
4020 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
4021                                             SelectionDAG &DAG) const {
4022   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4023   MachineFunction &MF = DAG.getMachineFunction();
4024   MachineFrameInfo &MFI = MF.getFrameInfo();
4025   MFI.setFrameAddressIsTaken(true);
4026   Register FrameReg = RI.getFrameRegister(MF);
4027   int XLenInBytes = Subtarget.getXLen() / 8;
4028 
4029   EVT VT = Op.getValueType();
4030   SDLoc DL(Op);
4031   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
4032   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4033   while (Depth--) {
4034     int Offset = -(XLenInBytes * 2);
4035     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4036                               DAG.getIntPtrConstant(Offset, DL));
4037     FrameAddr =
4038         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4039   }
4040   return FrameAddr;
4041 }
4042 
4043 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4044                                              SelectionDAG &DAG) const {
4045   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4046   MachineFunction &MF = DAG.getMachineFunction();
4047   MachineFrameInfo &MFI = MF.getFrameInfo();
4048   MFI.setReturnAddressIsTaken(true);
4049   MVT XLenVT = Subtarget.getXLenVT();
4050   int XLenInBytes = Subtarget.getXLen() / 8;
4051 
4052   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4053     return SDValue();
4054 
4055   EVT VT = Op.getValueType();
4056   SDLoc DL(Op);
4057   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4058   if (Depth) {
4059     int Off = -XLenInBytes;
4060     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4061     SDValue Offset = DAG.getConstant(Off, DL, VT);
4062     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4063                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4064                        MachinePointerInfo());
4065   }
4066 
4067   // Return the value of the return address register, marking it an implicit
4068   // live-in.
4069   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4070   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4071 }
4072 
4073 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4074                                                  SelectionDAG &DAG) const {
4075   SDLoc DL(Op);
4076   SDValue Lo = Op.getOperand(0);
4077   SDValue Hi = Op.getOperand(1);
4078   SDValue Shamt = Op.getOperand(2);
4079   EVT VT = Lo.getValueType();
4080 
4081   // if Shamt-XLEN < 0: // Shamt < XLEN
4082   //   Lo = Lo << Shamt
4083   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4084   // else:
4085   //   Lo = 0
4086   //   Hi = Lo << (Shamt-XLEN)
4087 
4088   SDValue Zero = DAG.getConstant(0, DL, VT);
4089   SDValue One = DAG.getConstant(1, DL, VT);
4090   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4091   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4092   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4093   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4094 
4095   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4096   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4097   SDValue ShiftRightLo =
4098       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4099   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4100   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4101   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4102 
4103   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4104 
4105   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4106   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4107 
4108   SDValue Parts[2] = {Lo, Hi};
4109   return DAG.getMergeValues(Parts, DL);
4110 }
4111 
4112 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4113                                                   bool IsSRA) const {
4114   SDLoc DL(Op);
4115   SDValue Lo = Op.getOperand(0);
4116   SDValue Hi = Op.getOperand(1);
4117   SDValue Shamt = Op.getOperand(2);
4118   EVT VT = Lo.getValueType();
4119 
4120   // SRA expansion:
4121   //   if Shamt-XLEN < 0: // Shamt < XLEN
4122   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4123   //     Hi = Hi >>s Shamt
4124   //   else:
4125   //     Lo = Hi >>s (Shamt-XLEN);
4126   //     Hi = Hi >>s (XLEN-1)
4127   //
4128   // SRL expansion:
4129   //   if Shamt-XLEN < 0: // Shamt < XLEN
4130   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4131   //     Hi = Hi >>u Shamt
4132   //   else:
4133   //     Lo = Hi >>u (Shamt-XLEN);
4134   //     Hi = 0;
4135 
4136   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4137 
4138   SDValue Zero = DAG.getConstant(0, DL, VT);
4139   SDValue One = DAG.getConstant(1, DL, VT);
4140   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4141   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4142   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4143   SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4144 
4145   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4146   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4147   SDValue ShiftLeftHi =
4148       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4149   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4150   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4151   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4152   SDValue HiFalse =
4153       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4154 
4155   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4156 
4157   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4158   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4159 
4160   SDValue Parts[2] = {Lo, Hi};
4161   return DAG.getMergeValues(Parts, DL);
4162 }
4163 
4164 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4165 // legal equivalently-sized i8 type, so we can use that as a go-between.
4166 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4167                                                   SelectionDAG &DAG) const {
4168   SDLoc DL(Op);
4169   MVT VT = Op.getSimpleValueType();
4170   SDValue SplatVal = Op.getOperand(0);
4171   // All-zeros or all-ones splats are handled specially.
4172   if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4173     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4174     return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4175   }
4176   if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4177     SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4178     return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4179   }
4180   MVT XLenVT = Subtarget.getXLenVT();
4181   assert(SplatVal.getValueType() == XLenVT &&
4182          "Unexpected type for i1 splat value");
4183   MVT InterVT = VT.changeVectorElementType(MVT::i8);
4184   SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4185                          DAG.getConstant(1, DL, XLenVT));
4186   SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4187   SDValue Zero = DAG.getConstant(0, DL, InterVT);
4188   return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4189 }
4190 
4191 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4192 // illegal (currently only vXi64 RV32).
4193 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4194 // them to VMV_V_X_VL.
4195 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4196                                                      SelectionDAG &DAG) const {
4197   SDLoc DL(Op);
4198   MVT VecVT = Op.getSimpleValueType();
4199   assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4200          "Unexpected SPLAT_VECTOR_PARTS lowering");
4201 
4202   assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4203   SDValue Lo = Op.getOperand(0);
4204   SDValue Hi = Op.getOperand(1);
4205 
4206   if (VecVT.isFixedLengthVector()) {
4207     MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4208     SDLoc DL(Op);
4209     SDValue Mask, VL;
4210     std::tie(Mask, VL) =
4211         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4212 
4213     SDValue Res =
4214         splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4215     return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4216   }
4217 
4218   if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4219     int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4220     int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4221     // If Hi constant is all the same sign bit as Lo, lower this as a custom
4222     // node in order to try and match RVV vector/scalar instructions.
4223     if ((LoC >> 31) == HiC)
4224       return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4225                          Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4226   }
4227 
4228   // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4229   if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4230       isa<ConstantSDNode>(Hi.getOperand(1)) &&
4231       Hi.getConstantOperandVal(1) == 31)
4232     return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4233                        DAG.getRegister(RISCV::X0, MVT::i32));
4234 
4235   // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4236   return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4237                      DAG.getUNDEF(VecVT), Lo, Hi,
4238                      DAG.getRegister(RISCV::X0, MVT::i32));
4239 }
4240 
4241 // Custom-lower extensions from mask vectors by using a vselect either with 1
4242 // for zero/any-extension or -1 for sign-extension:
4243 //   (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4244 // Note that any-extension is lowered identically to zero-extension.
4245 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4246                                                 int64_t ExtTrueVal) const {
4247   SDLoc DL(Op);
4248   MVT VecVT = Op.getSimpleValueType();
4249   SDValue Src = Op.getOperand(0);
4250   // Only custom-lower extensions from mask types
4251   assert(Src.getValueType().isVector() &&
4252          Src.getValueType().getVectorElementType() == MVT::i1);
4253 
4254   MVT XLenVT = Subtarget.getXLenVT();
4255   SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4256   SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4257 
4258   if (VecVT.isScalableVector()) {
4259     // Be careful not to introduce illegal scalar types at this stage, and be
4260     // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
4261     // illegal and must be expanded. Since we know that the constants are
4262     // sign-extended 32-bit values, we use VMV_V_X_VL directly.
4263     bool IsRV32E64 =
4264         !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
4265 
4266     if (!IsRV32E64) {
4267       SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
4268       SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
4269     } else {
4270       SplatZero =
4271           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4272                       SplatZero, DAG.getRegister(RISCV::X0, XLenVT));
4273       SplatTrueVal =
4274           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4275                       SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT));
4276     }
4277 
4278     return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4279   }
4280 
4281   MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4282   MVT I1ContainerVT =
4283       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4284 
4285   SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4286 
4287   SDValue Mask, VL;
4288   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4289 
4290   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4291                           DAG.getUNDEF(ContainerVT), SplatZero, VL);
4292   SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4293                              DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4294   SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4295                                SplatTrueVal, SplatZero, VL);
4296 
4297   return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4298 }
4299 
4300 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4301     SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4302   MVT ExtVT = Op.getSimpleValueType();
4303   // Only custom-lower extensions from fixed-length vector types.
4304   if (!ExtVT.isFixedLengthVector())
4305     return Op;
4306   MVT VT = Op.getOperand(0).getSimpleValueType();
4307   // Grab the canonical container type for the extended type. Infer the smaller
4308   // type from that to ensure the same number of vector elements, as we know
4309   // the LMUL will be sufficient to hold the smaller type.
4310   MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4311   // Get the extended container type manually to ensure the same number of
4312   // vector elements between source and dest.
4313   MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4314                                      ContainerExtVT.getVectorElementCount());
4315 
4316   SDValue Op1 =
4317       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4318 
4319   SDLoc DL(Op);
4320   SDValue Mask, VL;
4321   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4322 
4323   SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4324 
4325   return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4326 }
4327 
4328 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4329 // setcc operation:
4330 //   (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
4331 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
4332                                                   SelectionDAG &DAG) const {
4333   SDLoc DL(Op);
4334   EVT MaskVT = Op.getValueType();
4335   // Only expect to custom-lower truncations to mask types
4336   assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4337          "Unexpected type for vector mask lowering");
4338   SDValue Src = Op.getOperand(0);
4339   MVT VecVT = Src.getSimpleValueType();
4340 
4341   // If this is a fixed vector, we need to convert it to a scalable vector.
4342   MVT ContainerVT = VecVT;
4343   if (VecVT.isFixedLengthVector()) {
4344     ContainerVT = getContainerForFixedLengthVector(VecVT);
4345     Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4346   }
4347 
4348   SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4349   SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4350 
4351   SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4352                          DAG.getUNDEF(ContainerVT), SplatOne);
4353   SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4354                           DAG.getUNDEF(ContainerVT), SplatZero);
4355 
4356   if (VecVT.isScalableVector()) {
4357     SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
4358     return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
4359   }
4360 
4361   SDValue Mask, VL;
4362   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4363 
4364   MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4365   SDValue Trunc =
4366       DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4367   Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4368                       DAG.getCondCode(ISD::SETNE), Mask, VL);
4369   return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4370 }
4371 
4372 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4373 // first position of a vector, and that vector is slid up to the insert index.
4374 // By limiting the active vector length to index+1 and merging with the
4375 // original vector (with an undisturbed tail policy for elements >= VL), we
4376 // achieve the desired result of leaving all elements untouched except the one
4377 // at VL-1, which is replaced with the desired value.
4378 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4379                                                     SelectionDAG &DAG) const {
4380   SDLoc DL(Op);
4381   MVT VecVT = Op.getSimpleValueType();
4382   SDValue Vec = Op.getOperand(0);
4383   SDValue Val = Op.getOperand(1);
4384   SDValue Idx = Op.getOperand(2);
4385 
4386   if (VecVT.getVectorElementType() == MVT::i1) {
4387     // FIXME: For now we just promote to an i8 vector and insert into that,
4388     // but this is probably not optimal.
4389     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4390     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4391     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4392     return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4393   }
4394 
4395   MVT ContainerVT = VecVT;
4396   // If the operand is a fixed-length vector, convert to a scalable one.
4397   if (VecVT.isFixedLengthVector()) {
4398     ContainerVT = getContainerForFixedLengthVector(VecVT);
4399     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4400   }
4401 
4402   MVT XLenVT = Subtarget.getXLenVT();
4403 
4404   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4405   bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4406   // Even i64-element vectors on RV32 can be lowered without scalar
4407   // legalization if the most-significant 32 bits of the value are not affected
4408   // by the sign-extension of the lower 32 bits.
4409   // TODO: We could also catch sign extensions of a 32-bit value.
4410   if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4411     const auto *CVal = cast<ConstantSDNode>(Val);
4412     if (isInt<32>(CVal->getSExtValue())) {
4413       IsLegalInsert = true;
4414       Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4415     }
4416   }
4417 
4418   SDValue Mask, VL;
4419   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4420 
4421   SDValue ValInVec;
4422 
4423   if (IsLegalInsert) {
4424     unsigned Opc =
4425         VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4426     if (isNullConstant(Idx)) {
4427       Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4428       if (!VecVT.isFixedLengthVector())
4429         return Vec;
4430       return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4431     }
4432     ValInVec =
4433         DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4434   } else {
4435     // On RV32, i64-element vectors must be specially handled to place the
4436     // value at element 0, by using two vslide1up instructions in sequence on
4437     // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4438     // this.
4439     SDValue One = DAG.getConstant(1, DL, XLenVT);
4440     SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4441     SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4442     MVT I32ContainerVT =
4443         MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4444     SDValue I32Mask =
4445         getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4446     // Limit the active VL to two.
4447     SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4448     // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4449     // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4450     ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4451                            DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4452     // First slide in the hi value, then the lo in underneath it.
4453     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4454                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4455                            I32Mask, InsertI64VL);
4456     ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4457                            DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4458                            I32Mask, InsertI64VL);
4459     // Bitcast back to the right container type.
4460     ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4461   }
4462 
4463   // Now that the value is in a vector, slide it into position.
4464   SDValue InsertVL =
4465       DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4466   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4467                                 ValInVec, Idx, Mask, InsertVL);
4468   if (!VecVT.isFixedLengthVector())
4469     return Slideup;
4470   return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4471 }
4472 
4473 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4474 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4475 // types this is done using VMV_X_S to allow us to glean information about the
4476 // sign bits of the result.
4477 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4478                                                      SelectionDAG &DAG) const {
4479   SDLoc DL(Op);
4480   SDValue Idx = Op.getOperand(1);
4481   SDValue Vec = Op.getOperand(0);
4482   EVT EltVT = Op.getValueType();
4483   MVT VecVT = Vec.getSimpleValueType();
4484   MVT XLenVT = Subtarget.getXLenVT();
4485 
4486   if (VecVT.getVectorElementType() == MVT::i1) {
4487     if (VecVT.isFixedLengthVector()) {
4488       unsigned NumElts = VecVT.getVectorNumElements();
4489       if (NumElts >= 8) {
4490         MVT WideEltVT;
4491         unsigned WidenVecLen;
4492         SDValue ExtractElementIdx;
4493         SDValue ExtractBitIdx;
4494         unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors();
4495         MVT LargestEltVT = MVT::getIntegerVT(
4496             std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4497         if (NumElts <= LargestEltVT.getSizeInBits()) {
4498           assert(isPowerOf2_32(NumElts) &&
4499                  "the number of elements should be power of 2");
4500           WideEltVT = MVT::getIntegerVT(NumElts);
4501           WidenVecLen = 1;
4502           ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4503           ExtractBitIdx = Idx;
4504         } else {
4505           WideEltVT = LargestEltVT;
4506           WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4507           // extract element index = index / element width
4508           ExtractElementIdx = DAG.getNode(
4509               ISD::SRL, DL, XLenVT, Idx,
4510               DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4511           // mask bit index = index % element width
4512           ExtractBitIdx = DAG.getNode(
4513               ISD::AND, DL, XLenVT, Idx,
4514               DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4515         }
4516         MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4517         Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4518         SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4519                                          Vec, ExtractElementIdx);
4520         // Extract the bit from GPR.
4521         SDValue ShiftRight =
4522             DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4523         return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4524                            DAG.getConstant(1, DL, XLenVT));
4525       }
4526     }
4527     // Otherwise, promote to an i8 vector and extract from that.
4528     MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4529     Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4530     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4531   }
4532 
4533   // If this is a fixed vector, we need to convert it to a scalable vector.
4534   MVT ContainerVT = VecVT;
4535   if (VecVT.isFixedLengthVector()) {
4536     ContainerVT = getContainerForFixedLengthVector(VecVT);
4537     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4538   }
4539 
4540   // If the index is 0, the vector is already in the right position.
4541   if (!isNullConstant(Idx)) {
4542     // Use a VL of 1 to avoid processing more elements than we need.
4543     SDValue VL = DAG.getConstant(1, DL, XLenVT);
4544     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4545     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4546     Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4547                       DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4548   }
4549 
4550   if (!EltVT.isInteger()) {
4551     // Floating-point extracts are handled in TableGen.
4552     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4553                        DAG.getConstant(0, DL, XLenVT));
4554   }
4555 
4556   SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4557   return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4558 }
4559 
4560 // Some RVV intrinsics may claim that they want an integer operand to be
4561 // promoted or expanded.
4562 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4563                                            const RISCVSubtarget &Subtarget) {
4564   assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4565           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4566          "Unexpected opcode");
4567 
4568   if (!Subtarget.hasVInstructions())
4569     return SDValue();
4570 
4571   bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4572   unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4573   SDLoc DL(Op);
4574 
4575   const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4576       RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4577   if (!II || !II->hasScalarOperand())
4578     return SDValue();
4579 
4580   unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4581   assert(SplatOp < Op.getNumOperands());
4582 
4583   SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4584   SDValue &ScalarOp = Operands[SplatOp];
4585   MVT OpVT = ScalarOp.getSimpleValueType();
4586   MVT XLenVT = Subtarget.getXLenVT();
4587 
4588   // If this isn't a scalar, or its type is XLenVT we're done.
4589   if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4590     return SDValue();
4591 
4592   // Simplest case is that the operand needs to be promoted to XLenVT.
4593   if (OpVT.bitsLT(XLenVT)) {
4594     // If the operand is a constant, sign extend to increase our chances
4595     // of being able to use a .vi instruction. ANY_EXTEND would become a
4596     // a zero extend and the simm5 check in isel would fail.
4597     // FIXME: Should we ignore the upper bits in isel instead?
4598     unsigned ExtOpc =
4599         isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4600     ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4601     return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4602   }
4603 
4604   // Use the previous operand to get the vXi64 VT. The result might be a mask
4605   // VT for compares. Using the previous operand assumes that the previous
4606   // operand will never have a smaller element size than a scalar operand and
4607   // that a widening operation never uses SEW=64.
4608   // NOTE: If this fails the below assert, we can probably just find the
4609   // element count from any operand or result and use it to construct the VT.
4610   assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4611   MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4612 
4613   // The more complex case is when the scalar is larger than XLenVT.
4614   assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4615          VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4616 
4617   // If this is a sign-extended 32-bit constant, we can truncate it and rely
4618   // on the instruction to sign-extend since SEW>XLEN.
4619   if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
4620     if (isInt<32>(CVal->getSExtValue())) {
4621       ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4622       return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4623     }
4624   }
4625 
4626   switch (IntNo) {
4627   case Intrinsic::riscv_vslide1up:
4628   case Intrinsic::riscv_vslide1down:
4629   case Intrinsic::riscv_vslide1up_mask:
4630   case Intrinsic::riscv_vslide1down_mask: {
4631     // We need to special case these when the scalar is larger than XLen.
4632     unsigned NumOps = Op.getNumOperands();
4633     bool IsMasked = NumOps == 7;
4634 
4635     // Convert the vector source to the equivalent nxvXi32 vector.
4636     MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4637     SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4638 
4639     SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4640                                    DAG.getConstant(0, DL, XLenVT));
4641     SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4642                                    DAG.getConstant(1, DL, XLenVT));
4643 
4644     // Double the VL since we halved SEW.
4645     SDValue AVL = getVLOperand(Op);
4646     SDValue I32VL;
4647 
4648     // Optimize for constant AVL
4649     if (isa<ConstantSDNode>(AVL)) {
4650       unsigned EltSize = VT.getScalarSizeInBits();
4651       unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4652 
4653       unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4654       unsigned MaxVLMAX =
4655           RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4656 
4657       unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4658       unsigned MinVLMAX =
4659           RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4660 
4661       uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4662       if (AVLInt <= MinVLMAX) {
4663         I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4664       } else if (AVLInt >= 2 * MaxVLMAX) {
4665         // Just set vl to VLMAX in this situation
4666         RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4667         SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4668         unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4669         SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4670         SDValue SETVLMAX = DAG.getTargetConstant(
4671             Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4672         I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4673                             LMUL);
4674       } else {
4675         // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4676         // is related to the hardware implementation.
4677         // So let the following code handle
4678       }
4679     }
4680     if (!I32VL) {
4681       RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4682       SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4683       unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4684       SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4685       SDValue SETVL =
4686           DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4687       // Using vsetvli instruction to get actually used length which related to
4688       // the hardware implementation
4689       SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4690                                SEW, LMUL);
4691       I32VL =
4692           DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4693     }
4694 
4695     MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
4696     SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL);
4697 
4698     // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4699     // instructions.
4700     SDValue Passthru;
4701     if (IsMasked)
4702       Passthru = DAG.getUNDEF(I32VT);
4703     else
4704       Passthru = DAG.getBitcast(I32VT, Operands[1]);
4705 
4706     if (IntNo == Intrinsic::riscv_vslide1up ||
4707         IntNo == Intrinsic::riscv_vslide1up_mask) {
4708       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4709                         ScalarHi, I32Mask, I32VL);
4710       Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4711                         ScalarLo, I32Mask, I32VL);
4712     } else {
4713       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4714                         ScalarLo, I32Mask, I32VL);
4715       Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4716                         ScalarHi, I32Mask, I32VL);
4717     }
4718 
4719     // Convert back to nxvXi64.
4720     Vec = DAG.getBitcast(VT, Vec);
4721 
4722     if (!IsMasked)
4723       return Vec;
4724     // Apply mask after the operation.
4725     SDValue Mask = Operands[NumOps - 3];
4726     SDValue MaskedOff = Operands[1];
4727     // Assume Policy operand is the last operand.
4728     uint64_t Policy =
4729         cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4730     // We don't need to select maskedoff if it's undef.
4731     if (MaskedOff.isUndef())
4732       return Vec;
4733     // TAMU
4734     if (Policy == RISCVII::TAIL_AGNOSTIC)
4735       return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4736                          AVL);
4737     // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4738     // It's fine because vmerge does not care mask policy.
4739     return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4740                        AVL);
4741   }
4742   }
4743 
4744   // We need to convert the scalar to a splat vector.
4745   // FIXME: Can we implicitly truncate the scalar if it is known to
4746   // be sign extended?
4747   SDValue VL = getVLOperand(Op);
4748   assert(VL.getValueType() == XLenVT);
4749   ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4750   return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4751 }
4752 
4753 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4754                                                      SelectionDAG &DAG) const {
4755   unsigned IntNo = Op.getConstantOperandVal(0);
4756   SDLoc DL(Op);
4757   MVT XLenVT = Subtarget.getXLenVT();
4758 
4759   switch (IntNo) {
4760   default:
4761     break; // Don't custom lower most intrinsics.
4762   case Intrinsic::thread_pointer: {
4763     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4764     return DAG.getRegister(RISCV::X4, PtrVT);
4765   }
4766   case Intrinsic::riscv_orc_b:
4767   case Intrinsic::riscv_brev8: {
4768     // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4769     unsigned Opc =
4770         IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4771     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4772                        DAG.getConstant(7, DL, XLenVT));
4773   }
4774   case Intrinsic::riscv_grev:
4775   case Intrinsic::riscv_gorc: {
4776     unsigned Opc =
4777         IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4778     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4779   }
4780   case Intrinsic::riscv_zip:
4781   case Intrinsic::riscv_unzip: {
4782     // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4783     // For i32 the immediate is 15. For i64 the immediate is 31.
4784     unsigned Opc =
4785         IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4786     unsigned BitWidth = Op.getValueSizeInBits();
4787     assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4788     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4789                        DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4790   }
4791   case Intrinsic::riscv_shfl:
4792   case Intrinsic::riscv_unshfl: {
4793     unsigned Opc =
4794         IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4795     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4796   }
4797   case Intrinsic::riscv_bcompress:
4798   case Intrinsic::riscv_bdecompress: {
4799     unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4800                                                        : RISCVISD::BDECOMPRESS;
4801     return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4802   }
4803   case Intrinsic::riscv_bfp:
4804     return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4805                        Op.getOperand(2));
4806   case Intrinsic::riscv_fsl:
4807     return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4808                        Op.getOperand(2), Op.getOperand(3));
4809   case Intrinsic::riscv_fsr:
4810     return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4811                        Op.getOperand(2), Op.getOperand(3));
4812   case Intrinsic::riscv_vmv_x_s:
4813     assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4814     return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4815                        Op.getOperand(1));
4816   case Intrinsic::riscv_vmv_v_x:
4817     return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4818                             Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4819                             Subtarget);
4820   case Intrinsic::riscv_vfmv_v_f:
4821     return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4822                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4823   case Intrinsic::riscv_vmv_s_x: {
4824     SDValue Scalar = Op.getOperand(2);
4825 
4826     if (Scalar.getValueType().bitsLE(XLenVT)) {
4827       Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4828       return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4829                          Op.getOperand(1), Scalar, Op.getOperand(3));
4830     }
4831 
4832     assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4833 
4834     // This is an i64 value that lives in two scalar registers. We have to
4835     // insert this in a convoluted way. First we build vXi64 splat containing
4836     // the/ two values that we assemble using some bit math. Next we'll use
4837     // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4838     // to merge element 0 from our splat into the source vector.
4839     // FIXME: This is probably not the best way to do this, but it is
4840     // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4841     // point.
4842     //   sw lo, (a0)
4843     //   sw hi, 4(a0)
4844     //   vlse vX, (a0)
4845     //
4846     //   vid.v      vVid
4847     //   vmseq.vx   mMask, vVid, 0
4848     //   vmerge.vvm vDest, vSrc, vVal, mMask
4849     MVT VT = Op.getSimpleValueType();
4850     SDValue Vec = Op.getOperand(1);
4851     SDValue VL = getVLOperand(Op);
4852 
4853     SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4854     if (Op.getOperand(1).isUndef())
4855       return SplattedVal;
4856     SDValue SplattedIdx =
4857         DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4858                     DAG.getConstant(0, DL, MVT::i32), VL);
4859 
4860     MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
4861     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4862     SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4863     SDValue SelectCond =
4864         DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4865                     DAG.getCondCode(ISD::SETEQ), Mask, VL);
4866     return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4867                        Vec, VL);
4868   }
4869   }
4870 
4871   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4872 }
4873 
4874 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4875                                                     SelectionDAG &DAG) const {
4876   unsigned IntNo = Op.getConstantOperandVal(1);
4877   switch (IntNo) {
4878   default:
4879     break;
4880   case Intrinsic::riscv_masked_strided_load: {
4881     SDLoc DL(Op);
4882     MVT XLenVT = Subtarget.getXLenVT();
4883 
4884     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4885     // the selection of the masked intrinsics doesn't do this for us.
4886     SDValue Mask = Op.getOperand(5);
4887     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4888 
4889     MVT VT = Op->getSimpleValueType(0);
4890     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4891 
4892     SDValue PassThru = Op.getOperand(2);
4893     if (!IsUnmasked) {
4894       MVT MaskVT =
4895           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4896       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4897       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4898     }
4899 
4900     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4901 
4902     SDValue IntID = DAG.getTargetConstant(
4903         IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4904         XLenVT);
4905 
4906     auto *Load = cast<MemIntrinsicSDNode>(Op);
4907     SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4908     if (IsUnmasked)
4909       Ops.push_back(DAG.getUNDEF(ContainerVT));
4910     else
4911       Ops.push_back(PassThru);
4912     Ops.push_back(Op.getOperand(3)); // Ptr
4913     Ops.push_back(Op.getOperand(4)); // Stride
4914     if (!IsUnmasked)
4915       Ops.push_back(Mask);
4916     Ops.push_back(VL);
4917     if (!IsUnmasked) {
4918       SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
4919       Ops.push_back(Policy);
4920     }
4921 
4922     SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4923     SDValue Result =
4924         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4925                                 Load->getMemoryVT(), Load->getMemOperand());
4926     SDValue Chain = Result.getValue(1);
4927     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4928     return DAG.getMergeValues({Result, Chain}, DL);
4929   }
4930   case Intrinsic::riscv_seg2_load:
4931   case Intrinsic::riscv_seg3_load:
4932   case Intrinsic::riscv_seg4_load:
4933   case Intrinsic::riscv_seg5_load:
4934   case Intrinsic::riscv_seg6_load:
4935   case Intrinsic::riscv_seg7_load:
4936   case Intrinsic::riscv_seg8_load: {
4937     SDLoc DL(Op);
4938     static const Intrinsic::ID VlsegInts[7] = {
4939         Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
4940         Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
4941         Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
4942         Intrinsic::riscv_vlseg8};
4943     unsigned NF = Op->getNumValues() - 1;
4944     assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
4945     MVT XLenVT = Subtarget.getXLenVT();
4946     MVT VT = Op->getSimpleValueType(0);
4947     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4948 
4949     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4950     SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
4951     auto *Load = cast<MemIntrinsicSDNode>(Op);
4952     SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
4953     ContainerVTs.push_back(MVT::Other);
4954     SDVTList VTs = DAG.getVTList(ContainerVTs);
4955     SDValue Result =
4956         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs,
4957                                 {Load->getChain(), IntID, Op.getOperand(2), VL},
4958                                 Load->getMemoryVT(), Load->getMemOperand());
4959     SmallVector<SDValue, 9> Results;
4960     for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
4961       Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
4962                                                   DAG, Subtarget));
4963     Results.push_back(Result.getValue(NF));
4964     return DAG.getMergeValues(Results, DL);
4965   }
4966   }
4967 
4968   return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4969 }
4970 
4971 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4972                                                  SelectionDAG &DAG) const {
4973   unsigned IntNo = Op.getConstantOperandVal(1);
4974   switch (IntNo) {
4975   default:
4976     break;
4977   case Intrinsic::riscv_masked_strided_store: {
4978     SDLoc DL(Op);
4979     MVT XLenVT = Subtarget.getXLenVT();
4980 
4981     // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4982     // the selection of the masked intrinsics doesn't do this for us.
4983     SDValue Mask = Op.getOperand(5);
4984     bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4985 
4986     SDValue Val = Op.getOperand(2);
4987     MVT VT = Val.getSimpleValueType();
4988     MVT ContainerVT = getContainerForFixedLengthVector(VT);
4989 
4990     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4991     if (!IsUnmasked) {
4992       MVT MaskVT =
4993           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4994       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4995     }
4996 
4997     SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4998 
4999     SDValue IntID = DAG.getTargetConstant(
5000         IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5001         XLenVT);
5002 
5003     auto *Store = cast<MemIntrinsicSDNode>(Op);
5004     SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5005     Ops.push_back(Val);
5006     Ops.push_back(Op.getOperand(3)); // Ptr
5007     Ops.push_back(Op.getOperand(4)); // Stride
5008     if (!IsUnmasked)
5009       Ops.push_back(Mask);
5010     Ops.push_back(VL);
5011 
5012     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5013                                    Ops, Store->getMemoryVT(),
5014                                    Store->getMemOperand());
5015   }
5016   }
5017 
5018   return SDValue();
5019 }
5020 
5021 static MVT getLMUL1VT(MVT VT) {
5022   assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5023          "Unexpected vector MVT");
5024   return MVT::getScalableVectorVT(
5025       VT.getVectorElementType(),
5026       RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5027 }
5028 
5029 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5030   switch (ISDOpcode) {
5031   default:
5032     llvm_unreachable("Unhandled reduction");
5033   case ISD::VECREDUCE_ADD:
5034     return RISCVISD::VECREDUCE_ADD_VL;
5035   case ISD::VECREDUCE_UMAX:
5036     return RISCVISD::VECREDUCE_UMAX_VL;
5037   case ISD::VECREDUCE_SMAX:
5038     return RISCVISD::VECREDUCE_SMAX_VL;
5039   case ISD::VECREDUCE_UMIN:
5040     return RISCVISD::VECREDUCE_UMIN_VL;
5041   case ISD::VECREDUCE_SMIN:
5042     return RISCVISD::VECREDUCE_SMIN_VL;
5043   case ISD::VECREDUCE_AND:
5044     return RISCVISD::VECREDUCE_AND_VL;
5045   case ISD::VECREDUCE_OR:
5046     return RISCVISD::VECREDUCE_OR_VL;
5047   case ISD::VECREDUCE_XOR:
5048     return RISCVISD::VECREDUCE_XOR_VL;
5049   }
5050 }
5051 
5052 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5053                                                          SelectionDAG &DAG,
5054                                                          bool IsVP) const {
5055   SDLoc DL(Op);
5056   SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5057   MVT VecVT = Vec.getSimpleValueType();
5058   assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5059           Op.getOpcode() == ISD::VECREDUCE_OR ||
5060           Op.getOpcode() == ISD::VECREDUCE_XOR ||
5061           Op.getOpcode() == ISD::VP_REDUCE_AND ||
5062           Op.getOpcode() == ISD::VP_REDUCE_OR ||
5063           Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5064          "Unexpected reduction lowering");
5065 
5066   MVT XLenVT = Subtarget.getXLenVT();
5067   assert(Op.getValueType() == XLenVT &&
5068          "Expected reduction output to be legalized to XLenVT");
5069 
5070   MVT ContainerVT = VecVT;
5071   if (VecVT.isFixedLengthVector()) {
5072     ContainerVT = getContainerForFixedLengthVector(VecVT);
5073     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5074   }
5075 
5076   SDValue Mask, VL;
5077   if (IsVP) {
5078     Mask = Op.getOperand(2);
5079     VL = Op.getOperand(3);
5080   } else {
5081     std::tie(Mask, VL) =
5082         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5083   }
5084 
5085   unsigned BaseOpc;
5086   ISD::CondCode CC;
5087   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5088 
5089   switch (Op.getOpcode()) {
5090   default:
5091     llvm_unreachable("Unhandled reduction");
5092   case ISD::VECREDUCE_AND:
5093   case ISD::VP_REDUCE_AND: {
5094     // vcpop ~x == 0
5095     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5096     Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5097     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5098     CC = ISD::SETEQ;
5099     BaseOpc = ISD::AND;
5100     break;
5101   }
5102   case ISD::VECREDUCE_OR:
5103   case ISD::VP_REDUCE_OR:
5104     // vcpop x != 0
5105     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5106     CC = ISD::SETNE;
5107     BaseOpc = ISD::OR;
5108     break;
5109   case ISD::VECREDUCE_XOR:
5110   case ISD::VP_REDUCE_XOR: {
5111     // ((vcpop x) & 1) != 0
5112     SDValue One = DAG.getConstant(1, DL, XLenVT);
5113     Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5114     Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5115     CC = ISD::SETNE;
5116     BaseOpc = ISD::XOR;
5117     break;
5118   }
5119   }
5120 
5121   SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5122 
5123   if (!IsVP)
5124     return SetCC;
5125 
5126   // Now include the start value in the operation.
5127   // Note that we must return the start value when no elements are operated
5128   // upon. The vcpop instructions we've emitted in each case above will return
5129   // 0 for an inactive vector, and so we've already received the neutral value:
5130   // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5131   // can simply include the start value.
5132   return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5133 }
5134 
5135 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5136                                             SelectionDAG &DAG) const {
5137   SDLoc DL(Op);
5138   SDValue Vec = Op.getOperand(0);
5139   EVT VecEVT = Vec.getValueType();
5140 
5141   unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5142 
5143   // Due to ordering in legalize types we may have a vector type that needs to
5144   // be split. Do that manually so we can get down to a legal type.
5145   while (getTypeAction(*DAG.getContext(), VecEVT) ==
5146          TargetLowering::TypeSplitVector) {
5147     SDValue Lo, Hi;
5148     std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5149     VecEVT = Lo.getValueType();
5150     Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5151   }
5152 
5153   // TODO: The type may need to be widened rather than split. Or widened before
5154   // it can be split.
5155   if (!isTypeLegal(VecEVT))
5156     return SDValue();
5157 
5158   MVT VecVT = VecEVT.getSimpleVT();
5159   MVT VecEltVT = VecVT.getVectorElementType();
5160   unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5161 
5162   MVT ContainerVT = VecVT;
5163   if (VecVT.isFixedLengthVector()) {
5164     ContainerVT = getContainerForFixedLengthVector(VecVT);
5165     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5166   }
5167 
5168   MVT M1VT = getLMUL1VT(ContainerVT);
5169   MVT XLenVT = Subtarget.getXLenVT();
5170 
5171   SDValue Mask, VL;
5172   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5173 
5174   SDValue NeutralElem =
5175       DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5176   SDValue IdentitySplat =
5177       lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5178                        M1VT, DL, DAG, Subtarget);
5179   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5180                                   IdentitySplat, Mask, VL);
5181   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5182                              DAG.getConstant(0, DL, XLenVT));
5183   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5184 }
5185 
5186 // Given a reduction op, this function returns the matching reduction opcode,
5187 // the vector SDValue and the scalar SDValue required to lower this to a
5188 // RISCVISD node.
5189 static std::tuple<unsigned, SDValue, SDValue>
5190 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5191   SDLoc DL(Op);
5192   auto Flags = Op->getFlags();
5193   unsigned Opcode = Op.getOpcode();
5194   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5195   switch (Opcode) {
5196   default:
5197     llvm_unreachable("Unhandled reduction");
5198   case ISD::VECREDUCE_FADD: {
5199     // Use positive zero if we can. It is cheaper to materialize.
5200     SDValue Zero =
5201         DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5202     return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5203   }
5204   case ISD::VECREDUCE_SEQ_FADD:
5205     return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5206                            Op.getOperand(0));
5207   case ISD::VECREDUCE_FMIN:
5208     return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5209                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5210   case ISD::VECREDUCE_FMAX:
5211     return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5212                            DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5213   }
5214 }
5215 
5216 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5217                                               SelectionDAG &DAG) const {
5218   SDLoc DL(Op);
5219   MVT VecEltVT = Op.getSimpleValueType();
5220 
5221   unsigned RVVOpcode;
5222   SDValue VectorVal, ScalarVal;
5223   std::tie(RVVOpcode, VectorVal, ScalarVal) =
5224       getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5225   MVT VecVT = VectorVal.getSimpleValueType();
5226 
5227   MVT ContainerVT = VecVT;
5228   if (VecVT.isFixedLengthVector()) {
5229     ContainerVT = getContainerForFixedLengthVector(VecVT);
5230     VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5231   }
5232 
5233   MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5234   MVT XLenVT = Subtarget.getXLenVT();
5235 
5236   SDValue Mask, VL;
5237   std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5238 
5239   SDValue ScalarSplat =
5240       lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5241                        M1VT, DL, DAG, Subtarget);
5242   SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5243                                   VectorVal, ScalarSplat, Mask, VL);
5244   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5245                      DAG.getConstant(0, DL, XLenVT));
5246 }
5247 
5248 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5249   switch (ISDOpcode) {
5250   default:
5251     llvm_unreachable("Unhandled reduction");
5252   case ISD::VP_REDUCE_ADD:
5253     return RISCVISD::VECREDUCE_ADD_VL;
5254   case ISD::VP_REDUCE_UMAX:
5255     return RISCVISD::VECREDUCE_UMAX_VL;
5256   case ISD::VP_REDUCE_SMAX:
5257     return RISCVISD::VECREDUCE_SMAX_VL;
5258   case ISD::VP_REDUCE_UMIN:
5259     return RISCVISD::VECREDUCE_UMIN_VL;
5260   case ISD::VP_REDUCE_SMIN:
5261     return RISCVISD::VECREDUCE_SMIN_VL;
5262   case ISD::VP_REDUCE_AND:
5263     return RISCVISD::VECREDUCE_AND_VL;
5264   case ISD::VP_REDUCE_OR:
5265     return RISCVISD::VECREDUCE_OR_VL;
5266   case ISD::VP_REDUCE_XOR:
5267     return RISCVISD::VECREDUCE_XOR_VL;
5268   case ISD::VP_REDUCE_FADD:
5269     return RISCVISD::VECREDUCE_FADD_VL;
5270   case ISD::VP_REDUCE_SEQ_FADD:
5271     return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5272   case ISD::VP_REDUCE_FMAX:
5273     return RISCVISD::VECREDUCE_FMAX_VL;
5274   case ISD::VP_REDUCE_FMIN:
5275     return RISCVISD::VECREDUCE_FMIN_VL;
5276   }
5277 }
5278 
5279 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5280                                            SelectionDAG &DAG) const {
5281   SDLoc DL(Op);
5282   SDValue Vec = Op.getOperand(1);
5283   EVT VecEVT = Vec.getValueType();
5284 
5285   // TODO: The type may need to be widened rather than split. Or widened before
5286   // it can be split.
5287   if (!isTypeLegal(VecEVT))
5288     return SDValue();
5289 
5290   MVT VecVT = VecEVT.getSimpleVT();
5291   MVT VecEltVT = VecVT.getVectorElementType();
5292   unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5293 
5294   MVT ContainerVT = VecVT;
5295   if (VecVT.isFixedLengthVector()) {
5296     ContainerVT = getContainerForFixedLengthVector(VecVT);
5297     Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5298   }
5299 
5300   SDValue VL = Op.getOperand(3);
5301   SDValue Mask = Op.getOperand(2);
5302 
5303   MVT M1VT = getLMUL1VT(ContainerVT);
5304   MVT XLenVT = Subtarget.getXLenVT();
5305   MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5306 
5307   SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5308                                         DAG.getConstant(1, DL, XLenVT), M1VT,
5309                                         DL, DAG, Subtarget);
5310   SDValue Reduction =
5311       DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5312   SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5313                              DAG.getConstant(0, DL, XLenVT));
5314   if (!VecVT.isInteger())
5315     return Elt0;
5316   return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5317 }
5318 
5319 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5320                                                    SelectionDAG &DAG) const {
5321   SDValue Vec = Op.getOperand(0);
5322   SDValue SubVec = Op.getOperand(1);
5323   MVT VecVT = Vec.getSimpleValueType();
5324   MVT SubVecVT = SubVec.getSimpleValueType();
5325 
5326   SDLoc DL(Op);
5327   MVT XLenVT = Subtarget.getXLenVT();
5328   unsigned OrigIdx = Op.getConstantOperandVal(2);
5329   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5330 
5331   // We don't have the ability to slide mask vectors up indexed by their i1
5332   // elements; the smallest we can do is i8. Often we are able to bitcast to
5333   // equivalent i8 vectors. Note that when inserting a fixed-length vector
5334   // into a scalable one, we might not necessarily have enough scalable
5335   // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5336   if (SubVecVT.getVectorElementType() == MVT::i1 &&
5337       (OrigIdx != 0 || !Vec.isUndef())) {
5338     if (VecVT.getVectorMinNumElements() >= 8 &&
5339         SubVecVT.getVectorMinNumElements() >= 8) {
5340       assert(OrigIdx % 8 == 0 && "Invalid index");
5341       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5342              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5343              "Unexpected mask vector lowering");
5344       OrigIdx /= 8;
5345       SubVecVT =
5346           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5347                            SubVecVT.isScalableVector());
5348       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5349                                VecVT.isScalableVector());
5350       Vec = DAG.getBitcast(VecVT, Vec);
5351       SubVec = DAG.getBitcast(SubVecVT, SubVec);
5352     } else {
5353       // We can't slide this mask vector up indexed by its i1 elements.
5354       // This poses a problem when we wish to insert a scalable vector which
5355       // can't be re-expressed as a larger type. Just choose the slow path and
5356       // extend to a larger type, then truncate back down.
5357       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5358       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5359       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5360       SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5361       Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5362                         Op.getOperand(2));
5363       SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5364       return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5365     }
5366   }
5367 
5368   // If the subvector vector is a fixed-length type, we cannot use subregister
5369   // manipulation to simplify the codegen; we don't know which register of a
5370   // LMUL group contains the specific subvector as we only know the minimum
5371   // register size. Therefore we must slide the vector group up the full
5372   // amount.
5373   if (SubVecVT.isFixedLengthVector()) {
5374     if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5375       return Op;
5376     MVT ContainerVT = VecVT;
5377     if (VecVT.isFixedLengthVector()) {
5378       ContainerVT = getContainerForFixedLengthVector(VecVT);
5379       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5380     }
5381     SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5382                          DAG.getUNDEF(ContainerVT), SubVec,
5383                          DAG.getConstant(0, DL, XLenVT));
5384     if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5385       SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5386       return DAG.getBitcast(Op.getValueType(), SubVec);
5387     }
5388     SDValue Mask =
5389         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5390     // Set the vector length to only the number of elements we care about. Note
5391     // that for slideup this includes the offset.
5392     SDValue VL =
5393         DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5394     SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5395     SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5396                                   SubVec, SlideupAmt, Mask, VL);
5397     if (VecVT.isFixedLengthVector())
5398       Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5399     return DAG.getBitcast(Op.getValueType(), Slideup);
5400   }
5401 
5402   unsigned SubRegIdx, RemIdx;
5403   std::tie(SubRegIdx, RemIdx) =
5404       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5405           VecVT, SubVecVT, OrigIdx, TRI);
5406 
5407   RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5408   bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5409                          SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5410                          SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5411 
5412   // 1. If the Idx has been completely eliminated and this subvector's size is
5413   // a vector register or a multiple thereof, or the surrounding elements are
5414   // undef, then this is a subvector insert which naturally aligns to a vector
5415   // register. These can easily be handled using subregister manipulation.
5416   // 2. If the subvector is smaller than a vector register, then the insertion
5417   // must preserve the undisturbed elements of the register. We do this by
5418   // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5419   // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5420   // subvector within the vector register, and an INSERT_SUBVECTOR of that
5421   // LMUL=1 type back into the larger vector (resolving to another subregister
5422   // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5423   // to avoid allocating a large register group to hold our subvector.
5424   if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5425     return Op;
5426 
5427   // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5428   // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5429   // (in our case undisturbed). This means we can set up a subvector insertion
5430   // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5431   // size of the subvector.
5432   MVT InterSubVT = VecVT;
5433   SDValue AlignedExtract = Vec;
5434   unsigned AlignedIdx = OrigIdx - RemIdx;
5435   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5436     InterSubVT = getLMUL1VT(VecVT);
5437     // Extract a subvector equal to the nearest full vector register type. This
5438     // should resolve to a EXTRACT_SUBREG instruction.
5439     AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5440                                  DAG.getConstant(AlignedIdx, DL, XLenVT));
5441   }
5442 
5443   SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5444   // For scalable vectors this must be further multiplied by vscale.
5445   SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5446 
5447   SDValue Mask, VL;
5448   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5449 
5450   // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5451   VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5452   VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5453   VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5454 
5455   SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5456                        DAG.getUNDEF(InterSubVT), SubVec,
5457                        DAG.getConstant(0, DL, XLenVT));
5458 
5459   SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5460                                 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5461 
5462   // If required, insert this subvector back into the correct vector register.
5463   // This should resolve to an INSERT_SUBREG instruction.
5464   if (VecVT.bitsGT(InterSubVT))
5465     Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5466                           DAG.getConstant(AlignedIdx, DL, XLenVT));
5467 
5468   // We might have bitcast from a mask type: cast back to the original type if
5469   // required.
5470   return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5471 }
5472 
5473 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5474                                                     SelectionDAG &DAG) const {
5475   SDValue Vec = Op.getOperand(0);
5476   MVT SubVecVT = Op.getSimpleValueType();
5477   MVT VecVT = Vec.getSimpleValueType();
5478 
5479   SDLoc DL(Op);
5480   MVT XLenVT = Subtarget.getXLenVT();
5481   unsigned OrigIdx = Op.getConstantOperandVal(1);
5482   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5483 
5484   // We don't have the ability to slide mask vectors down indexed by their i1
5485   // elements; the smallest we can do is i8. Often we are able to bitcast to
5486   // equivalent i8 vectors. Note that when extracting a fixed-length vector
5487   // from a scalable one, we might not necessarily have enough scalable
5488   // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5489   if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5490     if (VecVT.getVectorMinNumElements() >= 8 &&
5491         SubVecVT.getVectorMinNumElements() >= 8) {
5492       assert(OrigIdx % 8 == 0 && "Invalid index");
5493       assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5494              SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5495              "Unexpected mask vector lowering");
5496       OrigIdx /= 8;
5497       SubVecVT =
5498           MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5499                            SubVecVT.isScalableVector());
5500       VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5501                                VecVT.isScalableVector());
5502       Vec = DAG.getBitcast(VecVT, Vec);
5503     } else {
5504       // We can't slide this mask vector down, indexed by its i1 elements.
5505       // This poses a problem when we wish to extract a scalable vector which
5506       // can't be re-expressed as a larger type. Just choose the slow path and
5507       // extend to a larger type, then truncate back down.
5508       // TODO: We could probably improve this when extracting certain fixed
5509       // from fixed, where we can extract as i8 and shift the correct element
5510       // right to reach the desired subvector?
5511       MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5512       MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5513       Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5514       Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5515                         Op.getOperand(1));
5516       SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5517       return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5518     }
5519   }
5520 
5521   // If the subvector vector is a fixed-length type, we cannot use subregister
5522   // manipulation to simplify the codegen; we don't know which register of a
5523   // LMUL group contains the specific subvector as we only know the minimum
5524   // register size. Therefore we must slide the vector group down the full
5525   // amount.
5526   if (SubVecVT.isFixedLengthVector()) {
5527     // With an index of 0 this is a cast-like subvector, which can be performed
5528     // with subregister operations.
5529     if (OrigIdx == 0)
5530       return Op;
5531     MVT ContainerVT = VecVT;
5532     if (VecVT.isFixedLengthVector()) {
5533       ContainerVT = getContainerForFixedLengthVector(VecVT);
5534       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5535     }
5536     SDValue Mask =
5537         getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5538     // Set the vector length to only the number of elements we care about. This
5539     // avoids sliding down elements we're going to discard straight away.
5540     SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5541     SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5542     SDValue Slidedown =
5543         DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5544                     DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5545     // Now we can use a cast-like subvector extract to get the result.
5546     Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5547                             DAG.getConstant(0, DL, XLenVT));
5548     return DAG.getBitcast(Op.getValueType(), Slidedown);
5549   }
5550 
5551   unsigned SubRegIdx, RemIdx;
5552   std::tie(SubRegIdx, RemIdx) =
5553       RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5554           VecVT, SubVecVT, OrigIdx, TRI);
5555 
5556   // If the Idx has been completely eliminated then this is a subvector extract
5557   // which naturally aligns to a vector register. These can easily be handled
5558   // using subregister manipulation.
5559   if (RemIdx == 0)
5560     return Op;
5561 
5562   // Else we must shift our vector register directly to extract the subvector.
5563   // Do this using VSLIDEDOWN.
5564 
5565   // If the vector type is an LMUL-group type, extract a subvector equal to the
5566   // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5567   // instruction.
5568   MVT InterSubVT = VecVT;
5569   if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5570     InterSubVT = getLMUL1VT(VecVT);
5571     Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5572                       DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5573   }
5574 
5575   // Slide this vector register down by the desired number of elements in order
5576   // to place the desired subvector starting at element 0.
5577   SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5578   // For scalable vectors this must be further multiplied by vscale.
5579   SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5580 
5581   SDValue Mask, VL;
5582   std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5583   SDValue Slidedown =
5584       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5585                   DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5586 
5587   // Now the vector is in the right position, extract our final subvector. This
5588   // should resolve to a COPY.
5589   Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5590                           DAG.getConstant(0, DL, XLenVT));
5591 
5592   // We might have bitcast from a mask type: cast back to the original type if
5593   // required.
5594   return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5595 }
5596 
5597 // Lower step_vector to the vid instruction. Any non-identity step value must
5598 // be accounted for my manual expansion.
5599 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5600                                               SelectionDAG &DAG) const {
5601   SDLoc DL(Op);
5602   MVT VT = Op.getSimpleValueType();
5603   MVT XLenVT = Subtarget.getXLenVT();
5604   SDValue Mask, VL;
5605   std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5606   SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5607   uint64_t StepValImm = Op.getConstantOperandVal(0);
5608   if (StepValImm != 1) {
5609     if (isPowerOf2_64(StepValImm)) {
5610       SDValue StepVal =
5611           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5612                       DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5613       StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5614     } else {
5615       SDValue StepVal = lowerScalarSplat(
5616           SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5617           VL, VT, DL, DAG, Subtarget);
5618       StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5619     }
5620   }
5621   return StepVec;
5622 }
5623 
5624 // Implement vector_reverse using vrgather.vv with indices determined by
5625 // subtracting the id of each element from (VLMAX-1). This will convert
5626 // the indices like so:
5627 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5628 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
5629 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5630                                                  SelectionDAG &DAG) const {
5631   SDLoc DL(Op);
5632   MVT VecVT = Op.getSimpleValueType();
5633   unsigned EltSize = VecVT.getScalarSizeInBits();
5634   unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5635 
5636   unsigned MaxVLMAX = 0;
5637   unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
5638   if (VectorBitsMax != 0)
5639     MaxVLMAX =
5640         RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5641 
5642   unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5643   MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5644 
5645   // If this is SEW=8 and VLMAX is unknown or more than 256, we need
5646   // to use vrgatherei16.vv.
5647   // TODO: It's also possible to use vrgatherei16.vv for other types to
5648   // decrease register width for the index calculation.
5649   if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
5650     // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5651     // Reverse each half, then reassemble them in reverse order.
5652     // NOTE: It's also possible that after splitting that VLMAX no longer
5653     // requires vrgatherei16.vv.
5654     if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5655       SDValue Lo, Hi;
5656       std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5657       EVT LoVT, HiVT;
5658       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5659       Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5660       Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5661       // Reassemble the low and high pieces reversed.
5662       // FIXME: This is a CONCAT_VECTORS.
5663       SDValue Res =
5664           DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5665                       DAG.getIntPtrConstant(0, DL));
5666       return DAG.getNode(
5667           ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5668           DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5669     }
5670 
5671     // Just promote the int type to i16 which will double the LMUL.
5672     IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5673     GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5674   }
5675 
5676   MVT XLenVT = Subtarget.getXLenVT();
5677   SDValue Mask, VL;
5678   std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5679 
5680   // Calculate VLMAX-1 for the desired SEW.
5681   unsigned MinElts = VecVT.getVectorMinNumElements();
5682   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5683                               DAG.getConstant(MinElts, DL, XLenVT));
5684   SDValue VLMinus1 =
5685       DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5686 
5687   // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5688   bool IsRV32E64 =
5689       !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5690   SDValue SplatVL;
5691   if (!IsRV32E64)
5692     SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5693   else
5694     SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5695                           VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5696 
5697   SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5698   SDValue Indices =
5699       DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5700 
5701   return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
5702 }
5703 
5704 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5705                                                 SelectionDAG &DAG) const {
5706   SDLoc DL(Op);
5707   SDValue V1 = Op.getOperand(0);
5708   SDValue V2 = Op.getOperand(1);
5709   MVT XLenVT = Subtarget.getXLenVT();
5710   MVT VecVT = Op.getSimpleValueType();
5711 
5712   unsigned MinElts = VecVT.getVectorMinNumElements();
5713   SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5714                               DAG.getConstant(MinElts, DL, XLenVT));
5715 
5716   int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5717   SDValue DownOffset, UpOffset;
5718   if (ImmValue >= 0) {
5719     // The operand is a TargetConstant, we need to rebuild it as a regular
5720     // constant.
5721     DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5722     UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5723   } else {
5724     // The operand is a TargetConstant, we need to rebuild it as a regular
5725     // constant rather than negating the original operand.
5726     UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5727     DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5728   }
5729 
5730   MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5731   SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax);
5732 
5733   SDValue SlideDown =
5734       DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5735                   DownOffset, TrueMask, UpOffset);
5736   return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5737                      TrueMask,
5738                      DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT));
5739 }
5740 
5741 SDValue
5742 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5743                                                      SelectionDAG &DAG) const {
5744   SDLoc DL(Op);
5745   auto *Load = cast<LoadSDNode>(Op);
5746 
5747   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5748                                         Load->getMemoryVT(),
5749                                         *Load->getMemOperand()) &&
5750          "Expecting a correctly-aligned load");
5751 
5752   MVT VT = Op.getSimpleValueType();
5753   MVT XLenVT = Subtarget.getXLenVT();
5754   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5755 
5756   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5757 
5758   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5759   SDValue IntID = DAG.getTargetConstant(
5760       IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5761   SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5762   if (!IsMaskOp)
5763     Ops.push_back(DAG.getUNDEF(ContainerVT));
5764   Ops.push_back(Load->getBasePtr());
5765   Ops.push_back(VL);
5766   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5767   SDValue NewLoad =
5768       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5769                               Load->getMemoryVT(), Load->getMemOperand());
5770 
5771   SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5772   return DAG.getMergeValues({Result, Load->getChain()}, DL);
5773 }
5774 
5775 SDValue
5776 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5777                                                       SelectionDAG &DAG) const {
5778   SDLoc DL(Op);
5779   auto *Store = cast<StoreSDNode>(Op);
5780 
5781   assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5782                                         Store->getMemoryVT(),
5783                                         *Store->getMemOperand()) &&
5784          "Expecting a correctly-aligned store");
5785 
5786   SDValue StoreVal = Store->getValue();
5787   MVT VT = StoreVal.getSimpleValueType();
5788   MVT XLenVT = Subtarget.getXLenVT();
5789 
5790   // If the size less than a byte, we need to pad with zeros to make a byte.
5791   if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5792     VT = MVT::v8i1;
5793     StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5794                            DAG.getConstant(0, DL, VT), StoreVal,
5795                            DAG.getIntPtrConstant(0, DL));
5796   }
5797 
5798   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5799 
5800   SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5801 
5802   SDValue NewValue =
5803       convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5804 
5805   bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5806   SDValue IntID = DAG.getTargetConstant(
5807       IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5808   return DAG.getMemIntrinsicNode(
5809       ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5810       {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5811       Store->getMemoryVT(), Store->getMemOperand());
5812 }
5813 
5814 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5815                                              SelectionDAG &DAG) const {
5816   SDLoc DL(Op);
5817   MVT VT = Op.getSimpleValueType();
5818 
5819   const auto *MemSD = cast<MemSDNode>(Op);
5820   EVT MemVT = MemSD->getMemoryVT();
5821   MachineMemOperand *MMO = MemSD->getMemOperand();
5822   SDValue Chain = MemSD->getChain();
5823   SDValue BasePtr = MemSD->getBasePtr();
5824 
5825   SDValue Mask, PassThru, VL;
5826   if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5827     Mask = VPLoad->getMask();
5828     PassThru = DAG.getUNDEF(VT);
5829     VL = VPLoad->getVectorLength();
5830   } else {
5831     const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5832     Mask = MLoad->getMask();
5833     PassThru = MLoad->getPassThru();
5834   }
5835 
5836   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5837 
5838   MVT XLenVT = Subtarget.getXLenVT();
5839 
5840   MVT ContainerVT = VT;
5841   if (VT.isFixedLengthVector()) {
5842     ContainerVT = getContainerForFixedLengthVector(VT);
5843     PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5844     if (!IsUnmasked) {
5845       MVT MaskVT =
5846           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5847       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5848     }
5849   }
5850 
5851   if (!VL)
5852     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5853 
5854   unsigned IntID =
5855       IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5856   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5857   if (IsUnmasked)
5858     Ops.push_back(DAG.getUNDEF(ContainerVT));
5859   else
5860     Ops.push_back(PassThru);
5861   Ops.push_back(BasePtr);
5862   if (!IsUnmasked)
5863     Ops.push_back(Mask);
5864   Ops.push_back(VL);
5865   if (!IsUnmasked)
5866     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5867 
5868   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5869 
5870   SDValue Result =
5871       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5872   Chain = Result.getValue(1);
5873 
5874   if (VT.isFixedLengthVector())
5875     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5876 
5877   return DAG.getMergeValues({Result, Chain}, DL);
5878 }
5879 
5880 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5881                                               SelectionDAG &DAG) const {
5882   SDLoc DL(Op);
5883 
5884   const auto *MemSD = cast<MemSDNode>(Op);
5885   EVT MemVT = MemSD->getMemoryVT();
5886   MachineMemOperand *MMO = MemSD->getMemOperand();
5887   SDValue Chain = MemSD->getChain();
5888   SDValue BasePtr = MemSD->getBasePtr();
5889   SDValue Val, Mask, VL;
5890 
5891   if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5892     Val = VPStore->getValue();
5893     Mask = VPStore->getMask();
5894     VL = VPStore->getVectorLength();
5895   } else {
5896     const auto *MStore = cast<MaskedStoreSDNode>(Op);
5897     Val = MStore->getValue();
5898     Mask = MStore->getMask();
5899   }
5900 
5901   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5902 
5903   MVT VT = Val.getSimpleValueType();
5904   MVT XLenVT = Subtarget.getXLenVT();
5905 
5906   MVT ContainerVT = VT;
5907   if (VT.isFixedLengthVector()) {
5908     ContainerVT = getContainerForFixedLengthVector(VT);
5909 
5910     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5911     if (!IsUnmasked) {
5912       MVT MaskVT =
5913           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5914       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5915     }
5916   }
5917 
5918   if (!VL)
5919     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5920 
5921   unsigned IntID =
5922       IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
5923   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5924   Ops.push_back(Val);
5925   Ops.push_back(BasePtr);
5926   if (!IsUnmasked)
5927     Ops.push_back(Mask);
5928   Ops.push_back(VL);
5929 
5930   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
5931                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
5932 }
5933 
5934 SDValue
5935 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
5936                                                       SelectionDAG &DAG) const {
5937   MVT InVT = Op.getOperand(0).getSimpleValueType();
5938   MVT ContainerVT = getContainerForFixedLengthVector(InVT);
5939 
5940   MVT VT = Op.getSimpleValueType();
5941 
5942   SDValue Op1 =
5943       convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
5944   SDValue Op2 =
5945       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
5946 
5947   SDLoc DL(Op);
5948   SDValue VL =
5949       DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
5950 
5951   MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
5952   SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5953 
5954   SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
5955                             Op.getOperand(2), Mask, VL);
5956 
5957   return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
5958 }
5959 
5960 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
5961     SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
5962   MVT VT = Op.getSimpleValueType();
5963 
5964   if (VT.getVectorElementType() == MVT::i1)
5965     return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
5966 
5967   return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
5968 }
5969 
5970 SDValue
5971 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
5972                                                       SelectionDAG &DAG) const {
5973   unsigned Opc;
5974   switch (Op.getOpcode()) {
5975   default: llvm_unreachable("Unexpected opcode!");
5976   case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
5977   case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
5978   case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
5979   }
5980 
5981   return lowerToScalableOp(Op, DAG, Opc);
5982 }
5983 
5984 // Lower vector ABS to smax(X, sub(0, X)).
5985 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
5986   SDLoc DL(Op);
5987   MVT VT = Op.getSimpleValueType();
5988   SDValue X = Op.getOperand(0);
5989 
5990   assert(VT.isFixedLengthVector() && "Unexpected type");
5991 
5992   MVT ContainerVT = getContainerForFixedLengthVector(VT);
5993   X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5994 
5995   SDValue Mask, VL;
5996   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5997 
5998   SDValue SplatZero = DAG.getNode(
5999       RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6000       DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6001   SDValue NegX =
6002       DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6003   SDValue Max =
6004       DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6005 
6006   return convertFromScalableVector(VT, Max, DAG, Subtarget);
6007 }
6008 
6009 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6010     SDValue Op, SelectionDAG &DAG) const {
6011   SDLoc DL(Op);
6012   MVT VT = Op.getSimpleValueType();
6013   SDValue Mag = Op.getOperand(0);
6014   SDValue Sign = Op.getOperand(1);
6015   assert(Mag.getValueType() == Sign.getValueType() &&
6016          "Can only handle COPYSIGN with matching types.");
6017 
6018   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6019   Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6020   Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6021 
6022   SDValue Mask, VL;
6023   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6024 
6025   SDValue CopySign =
6026       DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6027 
6028   return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6029 }
6030 
6031 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6032     SDValue Op, SelectionDAG &DAG) const {
6033   MVT VT = Op.getSimpleValueType();
6034   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6035 
6036   MVT I1ContainerVT =
6037       MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6038 
6039   SDValue CC =
6040       convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6041   SDValue Op1 =
6042       convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6043   SDValue Op2 =
6044       convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6045 
6046   SDLoc DL(Op);
6047   SDValue Mask, VL;
6048   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6049 
6050   SDValue Select =
6051       DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6052 
6053   return convertFromScalableVector(VT, Select, DAG, Subtarget);
6054 }
6055 
6056 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6057                                                unsigned NewOpc,
6058                                                bool HasMask) const {
6059   MVT VT = Op.getSimpleValueType();
6060   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6061 
6062   // Create list of operands by converting existing ones to scalable types.
6063   SmallVector<SDValue, 6> Ops;
6064   for (const SDValue &V : Op->op_values()) {
6065     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6066 
6067     // Pass through non-vector operands.
6068     if (!V.getValueType().isVector()) {
6069       Ops.push_back(V);
6070       continue;
6071     }
6072 
6073     // "cast" fixed length vector to a scalable vector.
6074     assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6075            "Only fixed length vectors are supported!");
6076     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6077   }
6078 
6079   SDLoc DL(Op);
6080   SDValue Mask, VL;
6081   std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6082   if (HasMask)
6083     Ops.push_back(Mask);
6084   Ops.push_back(VL);
6085 
6086   SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6087   return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6088 }
6089 
6090 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6091 // * Operands of each node are assumed to be in the same order.
6092 // * The EVL operand is promoted from i32 to i64 on RV64.
6093 // * Fixed-length vectors are converted to their scalable-vector container
6094 //   types.
6095 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6096                                        unsigned RISCVISDOpc) const {
6097   SDLoc DL(Op);
6098   MVT VT = Op.getSimpleValueType();
6099   SmallVector<SDValue, 4> Ops;
6100 
6101   for (const auto &OpIdx : enumerate(Op->ops())) {
6102     SDValue V = OpIdx.value();
6103     assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6104     // Pass through operands which aren't fixed-length vectors.
6105     if (!V.getValueType().isFixedLengthVector()) {
6106       Ops.push_back(V);
6107       continue;
6108     }
6109     // "cast" fixed length vector to a scalable vector.
6110     MVT OpVT = V.getSimpleValueType();
6111     MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6112     assert(useRVVForFixedLengthVectorVT(OpVT) &&
6113            "Only fixed length vectors are supported!");
6114     Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6115   }
6116 
6117   if (!VT.isFixedLengthVector())
6118     return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
6119 
6120   MVT ContainerVT = getContainerForFixedLengthVector(VT);
6121 
6122   SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
6123 
6124   return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6125 }
6126 
6127 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6128                                             unsigned MaskOpc,
6129                                             unsigned VecOpc) const {
6130   MVT VT = Op.getSimpleValueType();
6131   if (VT.getVectorElementType() != MVT::i1)
6132     return lowerVPOp(Op, DAG, VecOpc);
6133 
6134   // It is safe to drop mask parameter as masked-off elements are undef.
6135   SDValue Op1 = Op->getOperand(0);
6136   SDValue Op2 = Op->getOperand(1);
6137   SDValue VL = Op->getOperand(3);
6138 
6139   MVT ContainerVT = VT;
6140   const bool IsFixed = VT.isFixedLengthVector();
6141   if (IsFixed) {
6142     ContainerVT = getContainerForFixedLengthVector(VT);
6143     Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6144     Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6145   }
6146 
6147   SDLoc DL(Op);
6148   SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6149   if (!IsFixed)
6150     return Val;
6151   return convertFromScalableVector(VT, Val, DAG, Subtarget);
6152 }
6153 
6154 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6155 // matched to a RVV indexed load. The RVV indexed load instructions only
6156 // support the "unsigned unscaled" addressing mode; indices are implicitly
6157 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6158 // signed or scaled indexing is extended to the XLEN value type and scaled
6159 // accordingly.
6160 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6161                                                SelectionDAG &DAG) const {
6162   SDLoc DL(Op);
6163   MVT VT = Op.getSimpleValueType();
6164 
6165   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6166   EVT MemVT = MemSD->getMemoryVT();
6167   MachineMemOperand *MMO = MemSD->getMemOperand();
6168   SDValue Chain = MemSD->getChain();
6169   SDValue BasePtr = MemSD->getBasePtr();
6170 
6171   ISD::LoadExtType LoadExtType;
6172   SDValue Index, Mask, PassThru, VL;
6173 
6174   if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6175     Index = VPGN->getIndex();
6176     Mask = VPGN->getMask();
6177     PassThru = DAG.getUNDEF(VT);
6178     VL = VPGN->getVectorLength();
6179     // VP doesn't support extending loads.
6180     LoadExtType = ISD::NON_EXTLOAD;
6181   } else {
6182     // Else it must be a MGATHER.
6183     auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6184     Index = MGN->getIndex();
6185     Mask = MGN->getMask();
6186     PassThru = MGN->getPassThru();
6187     LoadExtType = MGN->getExtensionType();
6188   }
6189 
6190   MVT IndexVT = Index.getSimpleValueType();
6191   MVT XLenVT = Subtarget.getXLenVT();
6192 
6193   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6194          "Unexpected VTs!");
6195   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6196   // Targets have to explicitly opt-in for extending vector loads.
6197   assert(LoadExtType == ISD::NON_EXTLOAD &&
6198          "Unexpected extending MGATHER/VP_GATHER");
6199   (void)LoadExtType;
6200 
6201   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6202   // the selection of the masked intrinsics doesn't do this for us.
6203   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6204 
6205   MVT ContainerVT = VT;
6206   if (VT.isFixedLengthVector()) {
6207     // We need to use the larger of the result and index type to determine the
6208     // scalable type to use so we don't increase LMUL for any operand/result.
6209     if (VT.bitsGE(IndexVT)) {
6210       ContainerVT = getContainerForFixedLengthVector(VT);
6211       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6212                                  ContainerVT.getVectorElementCount());
6213     } else {
6214       IndexVT = getContainerForFixedLengthVector(IndexVT);
6215       ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
6216                                      IndexVT.getVectorElementCount());
6217     }
6218 
6219     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6220 
6221     if (!IsUnmasked) {
6222       MVT MaskVT =
6223           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6224       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6225       PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6226     }
6227   }
6228 
6229   if (!VL)
6230     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6231 
6232   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6233     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6234     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6235                                    VL);
6236     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6237                         TrueMask, VL);
6238   }
6239 
6240   unsigned IntID =
6241       IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6242   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6243   if (IsUnmasked)
6244     Ops.push_back(DAG.getUNDEF(ContainerVT));
6245   else
6246     Ops.push_back(PassThru);
6247   Ops.push_back(BasePtr);
6248   Ops.push_back(Index);
6249   if (!IsUnmasked)
6250     Ops.push_back(Mask);
6251   Ops.push_back(VL);
6252   if (!IsUnmasked)
6253     Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6254 
6255   SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6256   SDValue Result =
6257       DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6258   Chain = Result.getValue(1);
6259 
6260   if (VT.isFixedLengthVector())
6261     Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6262 
6263   return DAG.getMergeValues({Result, Chain}, DL);
6264 }
6265 
6266 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6267 // matched to a RVV indexed store. The RVV indexed store instructions only
6268 // support the "unsigned unscaled" addressing mode; indices are implicitly
6269 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6270 // signed or scaled indexing is extended to the XLEN value type and scaled
6271 // accordingly.
6272 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6273                                                 SelectionDAG &DAG) const {
6274   SDLoc DL(Op);
6275   const auto *MemSD = cast<MemSDNode>(Op.getNode());
6276   EVT MemVT = MemSD->getMemoryVT();
6277   MachineMemOperand *MMO = MemSD->getMemOperand();
6278   SDValue Chain = MemSD->getChain();
6279   SDValue BasePtr = MemSD->getBasePtr();
6280 
6281   bool IsTruncatingStore = false;
6282   SDValue Index, Mask, Val, VL;
6283 
6284   if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6285     Index = VPSN->getIndex();
6286     Mask = VPSN->getMask();
6287     Val = VPSN->getValue();
6288     VL = VPSN->getVectorLength();
6289     // VP doesn't support truncating stores.
6290     IsTruncatingStore = false;
6291   } else {
6292     // Else it must be a MSCATTER.
6293     auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6294     Index = MSN->getIndex();
6295     Mask = MSN->getMask();
6296     Val = MSN->getValue();
6297     IsTruncatingStore = MSN->isTruncatingStore();
6298   }
6299 
6300   MVT VT = Val.getSimpleValueType();
6301   MVT IndexVT = Index.getSimpleValueType();
6302   MVT XLenVT = Subtarget.getXLenVT();
6303 
6304   assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6305          "Unexpected VTs!");
6306   assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6307   // Targets have to explicitly opt-in for extending vector loads and
6308   // truncating vector stores.
6309   assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6310   (void)IsTruncatingStore;
6311 
6312   // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6313   // the selection of the masked intrinsics doesn't do this for us.
6314   bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6315 
6316   MVT ContainerVT = VT;
6317   if (VT.isFixedLengthVector()) {
6318     // We need to use the larger of the value and index type to determine the
6319     // scalable type to use so we don't increase LMUL for any operand/result.
6320     if (VT.bitsGE(IndexVT)) {
6321       ContainerVT = getContainerForFixedLengthVector(VT);
6322       IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6323                                  ContainerVT.getVectorElementCount());
6324     } else {
6325       IndexVT = getContainerForFixedLengthVector(IndexVT);
6326       ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
6327                                      IndexVT.getVectorElementCount());
6328     }
6329 
6330     Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6331     Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6332 
6333     if (!IsUnmasked) {
6334       MVT MaskVT =
6335           MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6336       Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6337     }
6338   }
6339 
6340   if (!VL)
6341     VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6342 
6343   if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6344     IndexVT = IndexVT.changeVectorElementType(XLenVT);
6345     SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6346                                    VL);
6347     Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6348                         TrueMask, VL);
6349   }
6350 
6351   unsigned IntID =
6352       IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6353   SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6354   Ops.push_back(Val);
6355   Ops.push_back(BasePtr);
6356   Ops.push_back(Index);
6357   if (!IsUnmasked)
6358     Ops.push_back(Mask);
6359   Ops.push_back(VL);
6360 
6361   return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6362                                  DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6363 }
6364 
6365 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6366                                                SelectionDAG &DAG) const {
6367   const MVT XLenVT = Subtarget.getXLenVT();
6368   SDLoc DL(Op);
6369   SDValue Chain = Op->getOperand(0);
6370   SDValue SysRegNo = DAG.getTargetConstant(
6371       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6372   SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6373   SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6374 
6375   // Encoding used for rounding mode in RISCV differs from that used in
6376   // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6377   // table, which consists of a sequence of 4-bit fields, each representing
6378   // corresponding FLT_ROUNDS mode.
6379   static const int Table =
6380       (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6381       (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6382       (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6383       (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6384       (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6385 
6386   SDValue Shift =
6387       DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6388   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6389                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6390   SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6391                                DAG.getConstant(7, DL, XLenVT));
6392 
6393   return DAG.getMergeValues({Masked, Chain}, DL);
6394 }
6395 
6396 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6397                                                SelectionDAG &DAG) const {
6398   const MVT XLenVT = Subtarget.getXLenVT();
6399   SDLoc DL(Op);
6400   SDValue Chain = Op->getOperand(0);
6401   SDValue RMValue = Op->getOperand(1);
6402   SDValue SysRegNo = DAG.getTargetConstant(
6403       RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6404 
6405   // Encoding used for rounding mode in RISCV differs from that used in
6406   // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6407   // a table, which consists of a sequence of 4-bit fields, each representing
6408   // corresponding RISCV mode.
6409   static const unsigned Table =
6410       (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6411       (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6412       (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6413       (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6414       (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6415 
6416   SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6417                               DAG.getConstant(2, DL, XLenVT));
6418   SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6419                                 DAG.getConstant(Table, DL, XLenVT), Shift);
6420   RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6421                         DAG.getConstant(0x7, DL, XLenVT));
6422   return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6423                      RMValue);
6424 }
6425 
6426 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6427   switch (IntNo) {
6428   default:
6429     llvm_unreachable("Unexpected Intrinsic");
6430   case Intrinsic::riscv_bcompress:
6431     return RISCVISD::BCOMPRESSW;
6432   case Intrinsic::riscv_bdecompress:
6433     return RISCVISD::BDECOMPRESSW;
6434   case Intrinsic::riscv_bfp:
6435     return RISCVISD::BFPW;
6436   case Intrinsic::riscv_fsl:
6437     return RISCVISD::FSLW;
6438   case Intrinsic::riscv_fsr:
6439     return RISCVISD::FSRW;
6440   }
6441 }
6442 
6443 // Converts the given intrinsic to a i64 operation with any extension.
6444 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6445                                          unsigned IntNo) {
6446   SDLoc DL(N);
6447   RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6448   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6449   SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6450   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2);
6451   // ReplaceNodeResults requires we maintain the same type for the return value.
6452   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6453 }
6454 
6455 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6456 // form of the given Opcode.
6457 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6458   switch (Opcode) {
6459   default:
6460     llvm_unreachable("Unexpected opcode");
6461   case ISD::SHL:
6462     return RISCVISD::SLLW;
6463   case ISD::SRA:
6464     return RISCVISD::SRAW;
6465   case ISD::SRL:
6466     return RISCVISD::SRLW;
6467   case ISD::SDIV:
6468     return RISCVISD::DIVW;
6469   case ISD::UDIV:
6470     return RISCVISD::DIVUW;
6471   case ISD::UREM:
6472     return RISCVISD::REMUW;
6473   case ISD::ROTL:
6474     return RISCVISD::ROLW;
6475   case ISD::ROTR:
6476     return RISCVISD::RORW;
6477   }
6478 }
6479 
6480 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6481 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6482 // otherwise be promoted to i64, making it difficult to select the
6483 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6484 // type i8/i16/i32 is lost.
6485 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6486                                    unsigned ExtOpc = ISD::ANY_EXTEND) {
6487   SDLoc DL(N);
6488   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6489   SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6490   SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6491   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6492   // ReplaceNodeResults requires we maintain the same type for the return value.
6493   return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6494 }
6495 
6496 // Converts the given 32-bit operation to a i64 operation with signed extension
6497 // semantic to reduce the signed extension instructions.
6498 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6499   SDLoc DL(N);
6500   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6501   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6502   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6503   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6504                                DAG.getValueType(MVT::i32));
6505   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6506 }
6507 
6508 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6509                                              SmallVectorImpl<SDValue> &Results,
6510                                              SelectionDAG &DAG) const {
6511   SDLoc DL(N);
6512   switch (N->getOpcode()) {
6513   default:
6514     llvm_unreachable("Don't know how to custom type legalize this operation!");
6515   case ISD::STRICT_FP_TO_SINT:
6516   case ISD::STRICT_FP_TO_UINT:
6517   case ISD::FP_TO_SINT:
6518   case ISD::FP_TO_UINT: {
6519     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6520            "Unexpected custom legalisation");
6521     bool IsStrict = N->isStrictFPOpcode();
6522     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6523                     N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6524     SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6525     if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6526         TargetLowering::TypeSoftenFloat) {
6527       if (!isTypeLegal(Op0.getValueType()))
6528         return;
6529       if (IsStrict) {
6530         unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6531                                 : RISCVISD::STRICT_FCVT_WU_RV64;
6532         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6533         SDValue Res = DAG.getNode(
6534             Opc, DL, VTs, N->getOperand(0), Op0,
6535             DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6536         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6537         Results.push_back(Res.getValue(1));
6538         return;
6539       }
6540       unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6541       SDValue Res =
6542           DAG.getNode(Opc, DL, MVT::i64, Op0,
6543                       DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6544       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6545       return;
6546     }
6547     // If the FP type needs to be softened, emit a library call using the 'si'
6548     // version. If we left it to default legalization we'd end up with 'di'. If
6549     // the FP type doesn't need to be softened just let generic type
6550     // legalization promote the result type.
6551     RTLIB::Libcall LC;
6552     if (IsSigned)
6553       LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6554     else
6555       LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6556     MakeLibCallOptions CallOptions;
6557     EVT OpVT = Op0.getValueType();
6558     CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6559     SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6560     SDValue Result;
6561     std::tie(Result, Chain) =
6562         makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6563     Results.push_back(Result);
6564     if (IsStrict)
6565       Results.push_back(Chain);
6566     break;
6567   }
6568   case ISD::READCYCLECOUNTER: {
6569     assert(!Subtarget.is64Bit() &&
6570            "READCYCLECOUNTER only has custom type legalization on riscv32");
6571 
6572     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6573     SDValue RCW =
6574         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6575 
6576     Results.push_back(
6577         DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6578     Results.push_back(RCW.getValue(2));
6579     break;
6580   }
6581   case ISD::MUL: {
6582     unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6583     unsigned XLen = Subtarget.getXLen();
6584     // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6585     if (Size > XLen) {
6586       assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6587       SDValue LHS = N->getOperand(0);
6588       SDValue RHS = N->getOperand(1);
6589       APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6590 
6591       bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6592       bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6593       // We need exactly one side to be unsigned.
6594       if (LHSIsU == RHSIsU)
6595         return;
6596 
6597       auto MakeMULPair = [&](SDValue S, SDValue U) {
6598         MVT XLenVT = Subtarget.getXLenVT();
6599         S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6600         U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6601         SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6602         SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6603         return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6604       };
6605 
6606       bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6607       bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6608 
6609       // The other operand should be signed, but still prefer MULH when
6610       // possible.
6611       if (RHSIsU && LHSIsS && !RHSIsS)
6612         Results.push_back(MakeMULPair(LHS, RHS));
6613       else if (LHSIsU && RHSIsS && !LHSIsS)
6614         Results.push_back(MakeMULPair(RHS, LHS));
6615 
6616       return;
6617     }
6618     LLVM_FALLTHROUGH;
6619   }
6620   case ISD::ADD:
6621   case ISD::SUB:
6622     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6623            "Unexpected custom legalisation");
6624     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6625     break;
6626   case ISD::SHL:
6627   case ISD::SRA:
6628   case ISD::SRL:
6629     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6630            "Unexpected custom legalisation");
6631     if (N->getOperand(1).getOpcode() != ISD::Constant) {
6632       Results.push_back(customLegalizeToWOp(N, DAG));
6633       break;
6634     }
6635 
6636     // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6637     // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6638     // shift amount.
6639     if (N->getOpcode() == ISD::SHL) {
6640       SDLoc DL(N);
6641       SDValue NewOp0 =
6642           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6643       SDValue NewOp1 =
6644           DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6645       SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6646       SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6647                                    DAG.getValueType(MVT::i32));
6648       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6649     }
6650 
6651     break;
6652   case ISD::ROTL:
6653   case ISD::ROTR:
6654     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6655            "Unexpected custom legalisation");
6656     Results.push_back(customLegalizeToWOp(N, DAG));
6657     break;
6658   case ISD::CTTZ:
6659   case ISD::CTTZ_ZERO_UNDEF:
6660   case ISD::CTLZ:
6661   case ISD::CTLZ_ZERO_UNDEF: {
6662     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6663            "Unexpected custom legalisation");
6664 
6665     SDValue NewOp0 =
6666         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6667     bool IsCTZ =
6668         N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6669     unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
6670     SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
6671     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6672     return;
6673   }
6674   case ISD::SDIV:
6675   case ISD::UDIV:
6676   case ISD::UREM: {
6677     MVT VT = N->getSimpleValueType(0);
6678     assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
6679            Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
6680            "Unexpected custom legalisation");
6681     // Don't promote division/remainder by constant since we should expand those
6682     // to multiply by magic constant.
6683     // FIXME: What if the expansion is disabled for minsize.
6684     if (N->getOperand(1).getOpcode() == ISD::Constant)
6685       return;
6686 
6687     // If the input is i32, use ANY_EXTEND since the W instructions don't read
6688     // the upper 32 bits. For other types we need to sign or zero extend
6689     // based on the opcode.
6690     unsigned ExtOpc = ISD::ANY_EXTEND;
6691     if (VT != MVT::i32)
6692       ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
6693                                            : ISD::ZERO_EXTEND;
6694 
6695     Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
6696     break;
6697   }
6698   case ISD::UADDO:
6699   case ISD::USUBO: {
6700     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6701            "Unexpected custom legalisation");
6702     bool IsAdd = N->getOpcode() == ISD::UADDO;
6703     // Create an ADDW or SUBW.
6704     SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6705     SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6706     SDValue Res =
6707         DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
6708     Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
6709                       DAG.getValueType(MVT::i32));
6710 
6711     // Sign extend the LHS and perform an unsigned compare with the ADDW result.
6712     // Since the inputs are sign extended from i32, this is equivalent to
6713     // comparing the lower 32 bits.
6714     LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6715     SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
6716                                     IsAdd ? ISD::SETULT : ISD::SETUGT);
6717 
6718     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6719     Results.push_back(Overflow);
6720     return;
6721   }
6722   case ISD::UADDSAT:
6723   case ISD::USUBSAT: {
6724     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6725            "Unexpected custom legalisation");
6726     if (Subtarget.hasStdExtZbb()) {
6727       // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
6728       // sign extend allows overflow of the lower 32 bits to be detected on
6729       // the promoted size.
6730       SDValue LHS =
6731           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6732       SDValue RHS =
6733           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
6734       SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
6735       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6736       return;
6737     }
6738 
6739     // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
6740     // promotion for UADDO/USUBO.
6741     Results.push_back(expandAddSubSat(N, DAG));
6742     return;
6743   }
6744   case ISD::ABS: {
6745     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6746            "Unexpected custom legalisation");
6747           DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
6748 
6749     // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
6750 
6751     SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6752 
6753     // Freeze the source so we can increase it's use count.
6754     Src = DAG.getFreeze(Src);
6755 
6756     // Copy sign bit to all bits using the sraiw pattern.
6757     SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
6758                                    DAG.getValueType(MVT::i32));
6759     SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
6760                            DAG.getConstant(31, DL, MVT::i64));
6761 
6762     SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
6763     NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
6764 
6765     // NOTE: The result is only required to be anyextended, but sext is
6766     // consistent with type legalization of sub.
6767     NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
6768                          DAG.getValueType(MVT::i32));
6769     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6770     return;
6771   }
6772   case ISD::BITCAST: {
6773     EVT VT = N->getValueType(0);
6774     assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
6775     SDValue Op0 = N->getOperand(0);
6776     EVT Op0VT = Op0.getValueType();
6777     MVT XLenVT = Subtarget.getXLenVT();
6778     if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
6779       SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
6780       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
6781     } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
6782                Subtarget.hasStdExtF()) {
6783       SDValue FPConv =
6784           DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
6785       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
6786     } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
6787                isTypeLegal(Op0VT)) {
6788       // Custom-legalize bitcasts from fixed-length vector types to illegal
6789       // scalar types in order to improve codegen. Bitcast the vector to a
6790       // one-element vector type whose element type is the same as the result
6791       // type, and extract the first element.
6792       EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6793       if (isTypeLegal(BVT)) {
6794         SDValue BVec = DAG.getBitcast(BVT, Op0);
6795         Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6796                                       DAG.getConstant(0, DL, XLenVT)));
6797       }
6798     }
6799     break;
6800   }
6801   case RISCVISD::GREV:
6802   case RISCVISD::GORC:
6803   case RISCVISD::SHFL: {
6804     MVT VT = N->getSimpleValueType(0);
6805     MVT XLenVT = Subtarget.getXLenVT();
6806     assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
6807            "Unexpected custom legalisation");
6808     assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
6809     assert((Subtarget.hasStdExtZbp() ||
6810             (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
6811              N->getConstantOperandVal(1) == 7)) &&
6812            "Unexpected extension");
6813     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6814     SDValue NewOp1 =
6815         DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
6816     SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
6817     // ReplaceNodeResults requires we maintain the same type for the return
6818     // value.
6819     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
6820     break;
6821   }
6822   case ISD::BSWAP:
6823   case ISD::BITREVERSE: {
6824     MVT VT = N->getSimpleValueType(0);
6825     MVT XLenVT = Subtarget.getXLenVT();
6826     assert((VT == MVT::i8 || VT == MVT::i16 ||
6827             (VT == MVT::i32 && Subtarget.is64Bit())) &&
6828            Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
6829     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
6830     unsigned Imm = VT.getSizeInBits() - 1;
6831     // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
6832     if (N->getOpcode() == ISD::BSWAP)
6833       Imm &= ~0x7U;
6834     SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
6835                                 DAG.getConstant(Imm, DL, XLenVT));
6836     // ReplaceNodeResults requires we maintain the same type for the return
6837     // value.
6838     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
6839     break;
6840   }
6841   case ISD::FSHL:
6842   case ISD::FSHR: {
6843     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6844            Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
6845     SDValue NewOp0 =
6846         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6847     SDValue NewOp1 =
6848         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6849     SDValue NewShAmt =
6850         DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6851     // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
6852     // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
6853     NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
6854                            DAG.getConstant(0x1f, DL, MVT::i64));
6855     // fshl and fshr concatenate their operands in the same order. fsrw and fslw
6856     // instruction use different orders. fshl will return its first operand for
6857     // shift of zero, fshr will return its second operand. fsl and fsr both
6858     // return rs1 so the ISD nodes need to have different operand orders.
6859     // Shift amount is in rs2.
6860     unsigned Opc = RISCVISD::FSLW;
6861     if (N->getOpcode() == ISD::FSHR) {
6862       std::swap(NewOp0, NewOp1);
6863       Opc = RISCVISD::FSRW;
6864     }
6865     SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
6866     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
6867     break;
6868   }
6869   case ISD::EXTRACT_VECTOR_ELT: {
6870     // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
6871     // type is illegal (currently only vXi64 RV32).
6872     // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
6873     // transferred to the destination register. We issue two of these from the
6874     // upper- and lower- halves of the SEW-bit vector element, slid down to the
6875     // first element.
6876     SDValue Vec = N->getOperand(0);
6877     SDValue Idx = N->getOperand(1);
6878 
6879     // The vector type hasn't been legalized yet so we can't issue target
6880     // specific nodes if it needs legalization.
6881     // FIXME: We would manually legalize if it's important.
6882     if (!isTypeLegal(Vec.getValueType()))
6883       return;
6884 
6885     MVT VecVT = Vec.getSimpleValueType();
6886 
6887     assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
6888            VecVT.getVectorElementType() == MVT::i64 &&
6889            "Unexpected EXTRACT_VECTOR_ELT legalization");
6890 
6891     // If this is a fixed vector, we need to convert it to a scalable vector.
6892     MVT ContainerVT = VecVT;
6893     if (VecVT.isFixedLengthVector()) {
6894       ContainerVT = getContainerForFixedLengthVector(VecVT);
6895       Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
6896     }
6897 
6898     MVT XLenVT = Subtarget.getXLenVT();
6899 
6900     // Use a VL of 1 to avoid processing more elements than we need.
6901     MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6902     SDValue VL = DAG.getConstant(1, DL, XLenVT);
6903     SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
6904 
6905     // Unless the index is known to be 0, we must slide the vector down to get
6906     // the desired element into index 0.
6907     if (!isNullConstant(Idx)) {
6908       Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
6909                         DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
6910     }
6911 
6912     // Extract the lower XLEN bits of the correct vector element.
6913     SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
6914 
6915     // To extract the upper XLEN bits of the vector element, shift the first
6916     // element right by 32 bits and re-extract the lower XLEN bits.
6917     SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6918                                      DAG.getUNDEF(ContainerVT),
6919                                      DAG.getConstant(32, DL, XLenVT), VL);
6920     SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
6921                                  ThirtyTwoV, Mask, VL);
6922 
6923     SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
6924 
6925     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
6926     break;
6927   }
6928   case ISD::INTRINSIC_WO_CHAIN: {
6929     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6930     switch (IntNo) {
6931     default:
6932       llvm_unreachable(
6933           "Don't know how to custom type legalize this intrinsic!");
6934     case Intrinsic::riscv_grev:
6935     case Intrinsic::riscv_gorc: {
6936       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6937              "Unexpected custom legalisation");
6938       SDValue NewOp1 =
6939           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6940       SDValue NewOp2 =
6941           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6942       unsigned Opc =
6943           IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
6944       // If the control is a constant, promote the node by clearing any extra
6945       // bits bits in the control. isel will form greviw/gorciw if the result is
6946       // sign extended.
6947       if (isa<ConstantSDNode>(NewOp2)) {
6948         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
6949                              DAG.getConstant(0x1f, DL, MVT::i64));
6950         Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
6951       }
6952       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
6953       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6954       break;
6955     }
6956     case Intrinsic::riscv_bcompress:
6957     case Intrinsic::riscv_bdecompress:
6958     case Intrinsic::riscv_bfp: {
6959       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6960              "Unexpected custom legalisation");
6961       Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
6962       break;
6963     }
6964     case Intrinsic::riscv_fsl:
6965     case Intrinsic::riscv_fsr: {
6966       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6967              "Unexpected custom legalisation");
6968       SDValue NewOp1 =
6969           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6970       SDValue NewOp2 =
6971           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6972       SDValue NewOp3 =
6973           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3));
6974       unsigned Opc = getRISCVWOpcodeByIntr(IntNo);
6975       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3);
6976       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6977       break;
6978     }
6979     case Intrinsic::riscv_orc_b: {
6980       // Lower to the GORCI encoding for orc.b with the operand extended.
6981       SDValue NewOp =
6982           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6983       SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
6984                                 DAG.getConstant(7, DL, MVT::i64));
6985       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6986       return;
6987     }
6988     case Intrinsic::riscv_shfl:
6989     case Intrinsic::riscv_unshfl: {
6990       assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6991              "Unexpected custom legalisation");
6992       SDValue NewOp1 =
6993           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6994       SDValue NewOp2 =
6995           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
6996       unsigned Opc =
6997           IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
6998       // There is no (UN)SHFLIW. If the control word is a constant, we can use
6999       // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7000       // will be shuffled the same way as the lower 32 bit half, but the two
7001       // halves won't cross.
7002       if (isa<ConstantSDNode>(NewOp2)) {
7003         NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7004                              DAG.getConstant(0xf, DL, MVT::i64));
7005         Opc =
7006             IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7007       }
7008       SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7009       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7010       break;
7011     }
7012     case Intrinsic::riscv_vmv_x_s: {
7013       EVT VT = N->getValueType(0);
7014       MVT XLenVT = Subtarget.getXLenVT();
7015       if (VT.bitsLT(XLenVT)) {
7016         // Simple case just extract using vmv.x.s and truncate.
7017         SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7018                                       Subtarget.getXLenVT(), N->getOperand(1));
7019         Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7020         return;
7021       }
7022 
7023       assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7024              "Unexpected custom legalization");
7025 
7026       // We need to do the move in two steps.
7027       SDValue Vec = N->getOperand(1);
7028       MVT VecVT = Vec.getSimpleValueType();
7029 
7030       // First extract the lower XLEN bits of the element.
7031       SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7032 
7033       // To extract the upper XLEN bits of the vector element, shift the first
7034       // element right by 32 bits and re-extract the lower XLEN bits.
7035       SDValue VL = DAG.getConstant(1, DL, XLenVT);
7036       MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
7037       SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
7038       SDValue ThirtyTwoV =
7039           DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7040                       DAG.getConstant(32, DL, XLenVT), VL);
7041       SDValue LShr32 =
7042           DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7043       SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7044 
7045       Results.push_back(
7046           DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7047       break;
7048     }
7049     }
7050     break;
7051   }
7052   case ISD::VECREDUCE_ADD:
7053   case ISD::VECREDUCE_AND:
7054   case ISD::VECREDUCE_OR:
7055   case ISD::VECREDUCE_XOR:
7056   case ISD::VECREDUCE_SMAX:
7057   case ISD::VECREDUCE_UMAX:
7058   case ISD::VECREDUCE_SMIN:
7059   case ISD::VECREDUCE_UMIN:
7060     if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7061       Results.push_back(V);
7062     break;
7063   case ISD::VP_REDUCE_ADD:
7064   case ISD::VP_REDUCE_AND:
7065   case ISD::VP_REDUCE_OR:
7066   case ISD::VP_REDUCE_XOR:
7067   case ISD::VP_REDUCE_SMAX:
7068   case ISD::VP_REDUCE_UMAX:
7069   case ISD::VP_REDUCE_SMIN:
7070   case ISD::VP_REDUCE_UMIN:
7071     if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7072       Results.push_back(V);
7073     break;
7074   case ISD::FLT_ROUNDS_: {
7075     SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7076     SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7077     Results.push_back(Res.getValue(0));
7078     Results.push_back(Res.getValue(1));
7079     break;
7080   }
7081   }
7082 }
7083 
7084 // A structure to hold one of the bit-manipulation patterns below. Together, a
7085 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7086 //   (or (and (shl x, 1), 0xAAAAAAAA),
7087 //       (and (srl x, 1), 0x55555555))
7088 struct RISCVBitmanipPat {
7089   SDValue Op;
7090   unsigned ShAmt;
7091   bool IsSHL;
7092 
7093   bool formsPairWith(const RISCVBitmanipPat &Other) const {
7094     return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7095   }
7096 };
7097 
7098 // Matches patterns of the form
7099 //   (and (shl x, C2), (C1 << C2))
7100 //   (and (srl x, C2), C1)
7101 //   (shl (and x, C1), C2)
7102 //   (srl (and x, (C1 << C2)), C2)
7103 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7104 // The expected masks for each shift amount are specified in BitmanipMasks where
7105 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7106 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7107 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7108 // XLen is 64.
7109 static Optional<RISCVBitmanipPat>
7110 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7111   assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7112          "Unexpected number of masks");
7113   Optional<uint64_t> Mask;
7114   // Optionally consume a mask around the shift operation.
7115   if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7116     Mask = Op.getConstantOperandVal(1);
7117     Op = Op.getOperand(0);
7118   }
7119   if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7120     return None;
7121   bool IsSHL = Op.getOpcode() == ISD::SHL;
7122 
7123   if (!isa<ConstantSDNode>(Op.getOperand(1)))
7124     return None;
7125   uint64_t ShAmt = Op.getConstantOperandVal(1);
7126 
7127   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7128   if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7129     return None;
7130   // If we don't have enough masks for 64 bit, then we must be trying to
7131   // match SHFL so we're only allowed to shift 1/4 of the width.
7132   if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7133     return None;
7134 
7135   SDValue Src = Op.getOperand(0);
7136 
7137   // The expected mask is shifted left when the AND is found around SHL
7138   // patterns.
7139   //   ((x >> 1) & 0x55555555)
7140   //   ((x << 1) & 0xAAAAAAAA)
7141   bool SHLExpMask = IsSHL;
7142 
7143   if (!Mask) {
7144     // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7145     // the mask is all ones: consume that now.
7146     if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7147       Mask = Src.getConstantOperandVal(1);
7148       Src = Src.getOperand(0);
7149       // The expected mask is now in fact shifted left for SRL, so reverse the
7150       // decision.
7151       //   ((x & 0xAAAAAAAA) >> 1)
7152       //   ((x & 0x55555555) << 1)
7153       SHLExpMask = !SHLExpMask;
7154     } else {
7155       // Use a default shifted mask of all-ones if there's no AND, truncated
7156       // down to the expected width. This simplifies the logic later on.
7157       Mask = maskTrailingOnes<uint64_t>(Width);
7158       *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7159     }
7160   }
7161 
7162   unsigned MaskIdx = Log2_32(ShAmt);
7163   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7164 
7165   if (SHLExpMask)
7166     ExpMask <<= ShAmt;
7167 
7168   if (Mask != ExpMask)
7169     return None;
7170 
7171   return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7172 }
7173 
7174 // Matches any of the following bit-manipulation patterns:
7175 //   (and (shl x, 1), (0x55555555 << 1))
7176 //   (and (srl x, 1), 0x55555555)
7177 //   (shl (and x, 0x55555555), 1)
7178 //   (srl (and x, (0x55555555 << 1)), 1)
7179 // where the shift amount and mask may vary thus:
7180 //   [1]  = 0x55555555 / 0xAAAAAAAA
7181 //   [2]  = 0x33333333 / 0xCCCCCCCC
7182 //   [4]  = 0x0F0F0F0F / 0xF0F0F0F0
7183 //   [8]  = 0x00FF00FF / 0xFF00FF00
7184 //   [16] = 0x0000FFFF / 0xFFFFFFFF
7185 //   [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
7186 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7187   // These are the unshifted masks which we use to match bit-manipulation
7188   // patterns. They may be shifted left in certain circumstances.
7189   static const uint64_t BitmanipMasks[] = {
7190       0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7191       0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7192 
7193   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7194 }
7195 
7196 // Match the following pattern as a GREVI(W) operation
7197 //   (or (BITMANIP_SHL x), (BITMANIP_SRL x))
7198 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7199                                const RISCVSubtarget &Subtarget) {
7200   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7201   EVT VT = Op.getValueType();
7202 
7203   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7204     auto LHS = matchGREVIPat(Op.getOperand(0));
7205     auto RHS = matchGREVIPat(Op.getOperand(1));
7206     if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7207       SDLoc DL(Op);
7208       return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7209                          DAG.getConstant(LHS->ShAmt, DL, VT));
7210     }
7211   }
7212   return SDValue();
7213 }
7214 
7215 // Matches any the following pattern as a GORCI(W) operation
7216 // 1.  (or (GREVI x, shamt), x) if shamt is a power of 2
7217 // 2.  (or x, (GREVI x, shamt)) if shamt is a power of 2
7218 // 3.  (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7219 // Note that with the variant of 3.,
7220 //     (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7221 // the inner pattern will first be matched as GREVI and then the outer
7222 // pattern will be matched to GORC via the first rule above.
7223 // 4.  (or (rotl/rotr x, bitwidth/2), x)
7224 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7225                                const RISCVSubtarget &Subtarget) {
7226   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7227   EVT VT = Op.getValueType();
7228 
7229   if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7230     SDLoc DL(Op);
7231     SDValue Op0 = Op.getOperand(0);
7232     SDValue Op1 = Op.getOperand(1);
7233 
7234     auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7235       if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7236           isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7237           isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7238         return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7239       // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7240       if ((Reverse.getOpcode() == ISD::ROTL ||
7241            Reverse.getOpcode() == ISD::ROTR) &&
7242           Reverse.getOperand(0) == X &&
7243           isa<ConstantSDNode>(Reverse.getOperand(1))) {
7244         uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7245         if (RotAmt == (VT.getSizeInBits() / 2))
7246           return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7247                              DAG.getConstant(RotAmt, DL, VT));
7248       }
7249       return SDValue();
7250     };
7251 
7252     // Check for either commutable permutation of (or (GREVI x, shamt), x)
7253     if (SDValue V = MatchOROfReverse(Op0, Op1))
7254       return V;
7255     if (SDValue V = MatchOROfReverse(Op1, Op0))
7256       return V;
7257 
7258     // OR is commutable so canonicalize its OR operand to the left
7259     if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7260       std::swap(Op0, Op1);
7261     if (Op0.getOpcode() != ISD::OR)
7262       return SDValue();
7263     SDValue OrOp0 = Op0.getOperand(0);
7264     SDValue OrOp1 = Op0.getOperand(1);
7265     auto LHS = matchGREVIPat(OrOp0);
7266     // OR is commutable so swap the operands and try again: x might have been
7267     // on the left
7268     if (!LHS) {
7269       std::swap(OrOp0, OrOp1);
7270       LHS = matchGREVIPat(OrOp0);
7271     }
7272     auto RHS = matchGREVIPat(Op1);
7273     if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7274       return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7275                          DAG.getConstant(LHS->ShAmt, DL, VT));
7276     }
7277   }
7278   return SDValue();
7279 }
7280 
7281 // Matches any of the following bit-manipulation patterns:
7282 //   (and (shl x, 1), (0x22222222 << 1))
7283 //   (and (srl x, 1), 0x22222222)
7284 //   (shl (and x, 0x22222222), 1)
7285 //   (srl (and x, (0x22222222 << 1)), 1)
7286 // where the shift amount and mask may vary thus:
7287 //   [1]  = 0x22222222 / 0x44444444
7288 //   [2]  = 0x0C0C0C0C / 0x3C3C3C3C
7289 //   [4]  = 0x00F000F0 / 0x0F000F00
7290 //   [8]  = 0x0000FF00 / 0x00FF0000
7291 //   [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
7292 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7293   // These are the unshifted masks which we use to match bit-manipulation
7294   // patterns. They may be shifted left in certain circumstances.
7295   static const uint64_t BitmanipMasks[] = {
7296       0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7297       0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7298 
7299   return matchRISCVBitmanipPat(Op, BitmanipMasks);
7300 }
7301 
7302 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
7303 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7304                                const RISCVSubtarget &Subtarget) {
7305   assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7306   EVT VT = Op.getValueType();
7307 
7308   if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7309     return SDValue();
7310 
7311   SDValue Op0 = Op.getOperand(0);
7312   SDValue Op1 = Op.getOperand(1);
7313 
7314   // Or is commutable so canonicalize the second OR to the LHS.
7315   if (Op0.getOpcode() != ISD::OR)
7316     std::swap(Op0, Op1);
7317   if (Op0.getOpcode() != ISD::OR)
7318     return SDValue();
7319 
7320   // We found an inner OR, so our operands are the operands of the inner OR
7321   // and the other operand of the outer OR.
7322   SDValue A = Op0.getOperand(0);
7323   SDValue B = Op0.getOperand(1);
7324   SDValue C = Op1;
7325 
7326   auto Match1 = matchSHFLPat(A);
7327   auto Match2 = matchSHFLPat(B);
7328 
7329   // If neither matched, we failed.
7330   if (!Match1 && !Match2)
7331     return SDValue();
7332 
7333   // We had at least one match. if one failed, try the remaining C operand.
7334   if (!Match1) {
7335     std::swap(A, C);
7336     Match1 = matchSHFLPat(A);
7337     if (!Match1)
7338       return SDValue();
7339   } else if (!Match2) {
7340     std::swap(B, C);
7341     Match2 = matchSHFLPat(B);
7342     if (!Match2)
7343       return SDValue();
7344   }
7345   assert(Match1 && Match2);
7346 
7347   // Make sure our matches pair up.
7348   if (!Match1->formsPairWith(*Match2))
7349     return SDValue();
7350 
7351   // All the remains is to make sure C is an AND with the same input, that masks
7352   // out the bits that are being shuffled.
7353   if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7354       C.getOperand(0) != Match1->Op)
7355     return SDValue();
7356 
7357   uint64_t Mask = C.getConstantOperandVal(1);
7358 
7359   static const uint64_t BitmanipMasks[] = {
7360       0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7361       0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7362   };
7363 
7364   unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7365   unsigned MaskIdx = Log2_32(Match1->ShAmt);
7366   uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7367 
7368   if (Mask != ExpMask)
7369     return SDValue();
7370 
7371   SDLoc DL(Op);
7372   return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7373                      DAG.getConstant(Match1->ShAmt, DL, VT));
7374 }
7375 
7376 // Optimize (add (shl x, c0), (shl y, c1)) ->
7377 //          (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
7378 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7379                                   const RISCVSubtarget &Subtarget) {
7380   // Perform this optimization only in the zba extension.
7381   if (!Subtarget.hasStdExtZba())
7382     return SDValue();
7383 
7384   // Skip for vector types and larger types.
7385   EVT VT = N->getValueType(0);
7386   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7387     return SDValue();
7388 
7389   // The two operand nodes must be SHL and have no other use.
7390   SDValue N0 = N->getOperand(0);
7391   SDValue N1 = N->getOperand(1);
7392   if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7393       !N0->hasOneUse() || !N1->hasOneUse())
7394     return SDValue();
7395 
7396   // Check c0 and c1.
7397   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7398   auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7399   if (!N0C || !N1C)
7400     return SDValue();
7401   int64_t C0 = N0C->getSExtValue();
7402   int64_t C1 = N1C->getSExtValue();
7403   if (C0 <= 0 || C1 <= 0)
7404     return SDValue();
7405 
7406   // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7407   int64_t Bits = std::min(C0, C1);
7408   int64_t Diff = std::abs(C0 - C1);
7409   if (Diff != 1 && Diff != 2 && Diff != 3)
7410     return SDValue();
7411 
7412   // Build nodes.
7413   SDLoc DL(N);
7414   SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7415   SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7416   SDValue NA0 =
7417       DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7418   SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7419   return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7420 }
7421 
7422 // Combine
7423 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7424 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7425 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7426 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7427 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7428 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7429 // The grev patterns represents BSWAP.
7430 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7431 // off the grev.
7432 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7433                                           const RISCVSubtarget &Subtarget) {
7434   bool IsWInstruction =
7435       N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7436   assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7437           IsWInstruction) &&
7438          "Unexpected opcode!");
7439   SDValue Src = N->getOperand(0);
7440   EVT VT = N->getValueType(0);
7441   SDLoc DL(N);
7442 
7443   if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7444     return SDValue();
7445 
7446   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7447       !isa<ConstantSDNode>(Src.getOperand(1)))
7448     return SDValue();
7449 
7450   unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7451   assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7452 
7453   // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7454   // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7455   unsigned ShAmt1 = N->getConstantOperandVal(1);
7456   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7457   if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7458     return SDValue();
7459 
7460   Src = Src.getOperand(0);
7461 
7462   // Toggle bit the MSB of the shift.
7463   unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7464   if (CombinedShAmt == 0)
7465     return Src;
7466 
7467   SDValue Res = DAG.getNode(
7468       RISCVISD::GREV, DL, VT, Src,
7469       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7470   if (!IsWInstruction)
7471     return Res;
7472 
7473   // Sign extend the result to match the behavior of the rotate. This will be
7474   // selected to GREVIW in isel.
7475   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7476                      DAG.getValueType(MVT::i32));
7477 }
7478 
7479 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7480 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7481 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7482 // not undo itself, but they are redundant.
7483 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7484   bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7485   assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7486   SDValue Src = N->getOperand(0);
7487 
7488   if (Src.getOpcode() != N->getOpcode())
7489     return SDValue();
7490 
7491   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7492       !isa<ConstantSDNode>(Src.getOperand(1)))
7493     return SDValue();
7494 
7495   unsigned ShAmt1 = N->getConstantOperandVal(1);
7496   unsigned ShAmt2 = Src.getConstantOperandVal(1);
7497   Src = Src.getOperand(0);
7498 
7499   unsigned CombinedShAmt;
7500   if (IsGORC)
7501     CombinedShAmt = ShAmt1 | ShAmt2;
7502   else
7503     CombinedShAmt = ShAmt1 ^ ShAmt2;
7504 
7505   if (CombinedShAmt == 0)
7506     return Src;
7507 
7508   SDLoc DL(N);
7509   return DAG.getNode(
7510       N->getOpcode(), DL, N->getValueType(0), Src,
7511       DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7512 }
7513 
7514 // Combine a constant select operand into its use:
7515 //
7516 // (and (select cond, -1, c), x)
7517 //   -> (select cond, x, (and x, c))  [AllOnes=1]
7518 // (or  (select cond, 0, c), x)
7519 //   -> (select cond, x, (or x, c))  [AllOnes=0]
7520 // (xor (select cond, 0, c), x)
7521 //   -> (select cond, x, (xor x, c))  [AllOnes=0]
7522 // (add (select cond, 0, c), x)
7523 //   -> (select cond, x, (add x, c))  [AllOnes=0]
7524 // (sub x, (select cond, 0, c))
7525 //   -> (select cond, x, (sub x, c))  [AllOnes=0]
7526 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7527                                    SelectionDAG &DAG, bool AllOnes) {
7528   EVT VT = N->getValueType(0);
7529 
7530   // Skip vectors.
7531   if (VT.isVector())
7532     return SDValue();
7533 
7534   if ((Slct.getOpcode() != ISD::SELECT &&
7535        Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7536       !Slct.hasOneUse())
7537     return SDValue();
7538 
7539   auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7540     return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7541   };
7542 
7543   bool SwapSelectOps;
7544   unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7545   SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7546   SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7547   SDValue NonConstantVal;
7548   if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7549     SwapSelectOps = false;
7550     NonConstantVal = FalseVal;
7551   } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7552     SwapSelectOps = true;
7553     NonConstantVal = TrueVal;
7554   } else
7555     return SDValue();
7556 
7557   // Slct is now know to be the desired identity constant when CC is true.
7558   TrueVal = OtherOp;
7559   FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7560   // Unless SwapSelectOps says the condition should be false.
7561   if (SwapSelectOps)
7562     std::swap(TrueVal, FalseVal);
7563 
7564   if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7565     return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7566                        {Slct.getOperand(0), Slct.getOperand(1),
7567                         Slct.getOperand(2), TrueVal, FalseVal});
7568 
7569   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7570                      {Slct.getOperand(0), TrueVal, FalseVal});
7571 }
7572 
7573 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7574 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
7575                                               bool AllOnes) {
7576   SDValue N0 = N->getOperand(0);
7577   SDValue N1 = N->getOperand(1);
7578   if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
7579     return Result;
7580   if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
7581     return Result;
7582   return SDValue();
7583 }
7584 
7585 // Transform (add (mul x, c0), c1) ->
7586 //           (add (mul (add x, c1/c0), c0), c1%c0).
7587 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
7588 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
7589 // to an infinite loop in DAGCombine if transformed.
7590 // Or transform (add (mul x, c0), c1) ->
7591 //              (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
7592 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
7593 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
7594 // lead to an infinite loop in DAGCombine if transformed.
7595 // Or transform (add (mul x, c0), c1) ->
7596 //              (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
7597 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
7598 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
7599 // lead to an infinite loop in DAGCombine if transformed.
7600 // Or transform (add (mul x, c0), c1) ->
7601 //              (mul (add x, c1/c0), c0).
7602 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
7603 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
7604                                      const RISCVSubtarget &Subtarget) {
7605   // Skip for vector types and larger types.
7606   EVT VT = N->getValueType(0);
7607   if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7608     return SDValue();
7609   // The first operand node must be a MUL and has no other use.
7610   SDValue N0 = N->getOperand(0);
7611   if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
7612     return SDValue();
7613   // Check if c0 and c1 match above conditions.
7614   auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7615   auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7616   if (!N0C || !N1C)
7617     return SDValue();
7618   // If N0C has multiple uses it's possible one of the cases in
7619   // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
7620   // in an infinite loop.
7621   if (!N0C->hasOneUse())
7622     return SDValue();
7623   int64_t C0 = N0C->getSExtValue();
7624   int64_t C1 = N1C->getSExtValue();
7625   int64_t CA, CB;
7626   if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
7627     return SDValue();
7628   // Search for proper CA (non-zero) and CB that both are simm12.
7629   if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
7630       !isInt<12>(C0 * (C1 / C0))) {
7631     CA = C1 / C0;
7632     CB = C1 % C0;
7633   } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
7634              isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
7635     CA = C1 / C0 + 1;
7636     CB = C1 % C0 - C0;
7637   } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
7638              isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
7639     CA = C1 / C0 - 1;
7640     CB = C1 % C0 + C0;
7641   } else
7642     return SDValue();
7643   // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
7644   SDLoc DL(N);
7645   SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
7646                              DAG.getConstant(CA, DL, VT));
7647   SDValue New1 =
7648       DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
7649   return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
7650 }
7651 
7652 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
7653                                  const RISCVSubtarget &Subtarget) {
7654   if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
7655     return V;
7656   if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
7657     return V;
7658   // fold (add (select lhs, rhs, cc, 0, y), x) ->
7659   //      (select lhs, rhs, cc, x, (add x, y))
7660   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7661 }
7662 
7663 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
7664   // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
7665   //      (select lhs, rhs, cc, x, (sub x, y))
7666   SDValue N0 = N->getOperand(0);
7667   SDValue N1 = N->getOperand(1);
7668   return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
7669 }
7670 
7671 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) {
7672   // fold (and (select lhs, rhs, cc, -1, y), x) ->
7673   //      (select lhs, rhs, cc, x, (and x, y))
7674   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
7675 }
7676 
7677 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
7678                                 const RISCVSubtarget &Subtarget) {
7679   if (Subtarget.hasStdExtZbp()) {
7680     if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
7681       return GREV;
7682     if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
7683       return GORC;
7684     if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
7685       return SHFL;
7686   }
7687 
7688   // fold (or (select cond, 0, y), x) ->
7689   //      (select cond, x, (or x, y))
7690   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7691 }
7692 
7693 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
7694   // fold (xor (select cond, 0, y), x) ->
7695   //      (select cond, x, (xor x, y))
7696   return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
7697 }
7698 
7699 static SDValue
7700 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
7701                                 const RISCVSubtarget &Subtarget) {
7702   SDValue Src = N->getOperand(0);
7703   EVT VT = N->getValueType(0);
7704 
7705   // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
7706   if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
7707       cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
7708     return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
7709                        Src.getOperand(0));
7710 
7711   // Fold (i64 (sext_inreg (abs X), i32)) ->
7712   // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
7713   // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
7714   // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
7715   // of the (i32 (abs X)) is a sext or setcc or something else that causes type
7716   // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
7717   // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
7718   // may get combined into an earlier operation so we need to use
7719   // ComputeNumSignBits.
7720   // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
7721   // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
7722   // we can't assume that X has 33 sign bits. We must check.
7723   if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
7724       Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
7725       cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
7726       DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
7727     SDLoc DL(N);
7728     SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
7729     SDValue Neg =
7730         DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
7731     Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
7732                       DAG.getValueType(MVT::i32));
7733     return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
7734   }
7735 
7736   return SDValue();
7737 }
7738 
7739 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
7740 // vwadd(u).vv/vx or vwsub(u).vv/vx.
7741 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
7742                                              bool Commute = false) {
7743   assert((N->getOpcode() == RISCVISD::ADD_VL ||
7744           N->getOpcode() == RISCVISD::SUB_VL) &&
7745          "Unexpected opcode");
7746   bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
7747   SDValue Op0 = N->getOperand(0);
7748   SDValue Op1 = N->getOperand(1);
7749   if (Commute)
7750     std::swap(Op0, Op1);
7751 
7752   MVT VT = N->getSimpleValueType(0);
7753 
7754   // Determine the narrow size for a widening add/sub.
7755   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7756   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7757                                   VT.getVectorElementCount());
7758 
7759   SDValue Mask = N->getOperand(2);
7760   SDValue VL = N->getOperand(3);
7761 
7762   SDLoc DL(N);
7763 
7764   // If the RHS is a sext or zext, we can form a widening op.
7765   if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
7766        Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
7767       Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
7768     unsigned ExtOpc = Op1.getOpcode();
7769     Op1 = Op1.getOperand(0);
7770     // Re-introduce narrower extends if needed.
7771     if (Op1.getValueType() != NarrowVT)
7772       Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7773 
7774     unsigned WOpc;
7775     if (ExtOpc == RISCVISD::VSEXT_VL)
7776       WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
7777     else
7778       WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
7779 
7780     return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
7781   }
7782 
7783   // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
7784   // sext/zext?
7785 
7786   return SDValue();
7787 }
7788 
7789 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
7790 // vwsub(u).vv/vx.
7791 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
7792   SDValue Op0 = N->getOperand(0);
7793   SDValue Op1 = N->getOperand(1);
7794   SDValue Mask = N->getOperand(2);
7795   SDValue VL = N->getOperand(3);
7796 
7797   MVT VT = N->getSimpleValueType(0);
7798   MVT NarrowVT = Op1.getSimpleValueType();
7799   unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
7800 
7801   unsigned VOpc;
7802   switch (N->getOpcode()) {
7803   default: llvm_unreachable("Unexpected opcode");
7804   case RISCVISD::VWADD_W_VL:  VOpc = RISCVISD::VWADD_VL;  break;
7805   case RISCVISD::VWSUB_W_VL:  VOpc = RISCVISD::VWSUB_VL;  break;
7806   case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
7807   case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
7808   }
7809 
7810   bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7811                   N->getOpcode() == RISCVISD::VWSUB_W_VL;
7812 
7813   SDLoc DL(N);
7814 
7815   // If the LHS is a sext or zext, we can narrow this op to the same size as
7816   // the RHS.
7817   if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
7818        (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
7819       Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
7820     unsigned ExtOpc = Op0.getOpcode();
7821     Op0 = Op0.getOperand(0);
7822     // Re-introduce narrower extends if needed.
7823     if (Op0.getValueType() != NarrowVT)
7824       Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7825     return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
7826   }
7827 
7828   bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
7829                N->getOpcode() == RISCVISD::VWADDU_W_VL;
7830 
7831   // Look for splats on the left hand side of a vwadd(u).wv. We might be able
7832   // to commute and use a vwadd(u).vx instead.
7833   if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
7834       Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
7835     Op0 = Op0.getOperand(1);
7836 
7837     // See if have enough sign bits or zero bits in the scalar to use a
7838     // widening add/sub by splatting to smaller element size.
7839     unsigned EltBits = VT.getScalarSizeInBits();
7840     unsigned ScalarBits = Op0.getValueSizeInBits();
7841     // Make sure we're getting all element bits from the scalar register.
7842     // FIXME: Support implicit sign extension of vmv.v.x?
7843     if (ScalarBits < EltBits)
7844       return SDValue();
7845 
7846     if (IsSigned) {
7847       if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
7848         return SDValue();
7849     } else {
7850       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7851       if (!DAG.MaskedValueIsZero(Op0, Mask))
7852         return SDValue();
7853     }
7854 
7855     Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7856                       DAG.getUNDEF(NarrowVT), Op0, VL);
7857     return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
7858   }
7859 
7860   return SDValue();
7861 }
7862 
7863 // Try to form VWMUL, VWMULU or VWMULSU.
7864 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
7865 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
7866                                        bool Commute) {
7867   assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
7868   SDValue Op0 = N->getOperand(0);
7869   SDValue Op1 = N->getOperand(1);
7870   if (Commute)
7871     std::swap(Op0, Op1);
7872 
7873   bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
7874   bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
7875   bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
7876   if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
7877     return SDValue();
7878 
7879   SDValue Mask = N->getOperand(2);
7880   SDValue VL = N->getOperand(3);
7881 
7882   // Make sure the mask and VL match.
7883   if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
7884     return SDValue();
7885 
7886   MVT VT = N->getSimpleValueType(0);
7887 
7888   // Determine the narrow size for a widening multiply.
7889   unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
7890   MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
7891                                   VT.getVectorElementCount());
7892 
7893   SDLoc DL(N);
7894 
7895   // See if the other operand is the same opcode.
7896   if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
7897     if (!Op1.hasOneUse())
7898       return SDValue();
7899 
7900     // Make sure the mask and VL match.
7901     if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
7902       return SDValue();
7903 
7904     Op1 = Op1.getOperand(0);
7905   } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
7906     // The operand is a splat of a scalar.
7907 
7908     // The pasthru must be undef for tail agnostic
7909     if (!Op1.getOperand(0).isUndef())
7910       return SDValue();
7911     // The VL must be the same.
7912     if (Op1.getOperand(2) != VL)
7913       return SDValue();
7914 
7915     // Get the scalar value.
7916     Op1 = Op1.getOperand(1);
7917 
7918     // See if have enough sign bits or zero bits in the scalar to use a
7919     // widening multiply by splatting to smaller element size.
7920     unsigned EltBits = VT.getScalarSizeInBits();
7921     unsigned ScalarBits = Op1.getValueSizeInBits();
7922     // Make sure we're getting all element bits from the scalar register.
7923     // FIXME: Support implicit sign extension of vmv.v.x?
7924     if (ScalarBits < EltBits)
7925       return SDValue();
7926 
7927     // If the LHS is a sign extend, try to use vwmul.
7928     if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
7929       // Can use vwmul.
7930     } else {
7931       // Otherwise try to use vwmulu or vwmulsu.
7932       APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
7933       if (DAG.MaskedValueIsZero(Op1, Mask))
7934         IsVWMULSU = IsSignExt;
7935       else
7936         return SDValue();
7937     }
7938 
7939     Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
7940                       DAG.getUNDEF(NarrowVT), Op1, VL);
7941   } else
7942     return SDValue();
7943 
7944   Op0 = Op0.getOperand(0);
7945 
7946   // Re-introduce narrower extends if needed.
7947   unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
7948   if (Op0.getValueType() != NarrowVT)
7949     Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
7950   // vwmulsu requires second operand to be zero extended.
7951   ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
7952   if (Op1.getValueType() != NarrowVT)
7953     Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
7954 
7955   unsigned WMulOpc = RISCVISD::VWMULSU_VL;
7956   if (!IsVWMULSU)
7957     WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
7958   return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
7959 }
7960 
7961 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
7962   switch (Op.getOpcode()) {
7963   case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
7964   case ISD::FTRUNC:     return RISCVFPRndMode::RTZ;
7965   case ISD::FFLOOR:     return RISCVFPRndMode::RDN;
7966   case ISD::FCEIL:      return RISCVFPRndMode::RUP;
7967   case ISD::FROUND:     return RISCVFPRndMode::RMM;
7968   }
7969 
7970   return RISCVFPRndMode::Invalid;
7971 }
7972 
7973 // Fold
7974 //   (fp_to_int (froundeven X)) -> fcvt X, rne
7975 //   (fp_to_int (ftrunc X))     -> fcvt X, rtz
7976 //   (fp_to_int (ffloor X))     -> fcvt X, rdn
7977 //   (fp_to_int (fceil X))      -> fcvt X, rup
7978 //   (fp_to_int (fround X))     -> fcvt X, rmm
7979 static SDValue performFP_TO_INTCombine(SDNode *N,
7980                                        TargetLowering::DAGCombinerInfo &DCI,
7981                                        const RISCVSubtarget &Subtarget) {
7982   SelectionDAG &DAG = DCI.DAG;
7983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7984   MVT XLenVT = Subtarget.getXLenVT();
7985 
7986   // Only handle XLen or i32 types. Other types narrower than XLen will
7987   // eventually be legalized to XLenVT.
7988   EVT VT = N->getValueType(0);
7989   if (VT != MVT::i32 && VT != XLenVT)
7990     return SDValue();
7991 
7992   SDValue Src = N->getOperand(0);
7993 
7994   // Ensure the FP type is also legal.
7995   if (!TLI.isTypeLegal(Src.getValueType()))
7996     return SDValue();
7997 
7998   // Don't do this for f16 with Zfhmin and not Zfh.
7999   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8000     return SDValue();
8001 
8002   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8003   if (FRM == RISCVFPRndMode::Invalid)
8004     return SDValue();
8005 
8006   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8007 
8008   unsigned Opc;
8009   if (VT == XLenVT)
8010     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8011   else
8012     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8013 
8014   SDLoc DL(N);
8015   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8016                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8017   return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8018 }
8019 
8020 // Fold
8021 //   (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8022 //   (fp_to_int_sat (ftrunc X))     -> (select X == nan, 0, (fcvt X, rtz))
8023 //   (fp_to_int_sat (ffloor X))     -> (select X == nan, 0, (fcvt X, rdn))
8024 //   (fp_to_int_sat (fceil X))      -> (select X == nan, 0, (fcvt X, rup))
8025 //   (fp_to_int_sat (fround X))     -> (select X == nan, 0, (fcvt X, rmm))
8026 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8027                                        TargetLowering::DAGCombinerInfo &DCI,
8028                                        const RISCVSubtarget &Subtarget) {
8029   SelectionDAG &DAG = DCI.DAG;
8030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8031   MVT XLenVT = Subtarget.getXLenVT();
8032 
8033   // Only handle XLen types. Other types narrower than XLen will eventually be
8034   // legalized to XLenVT.
8035   EVT DstVT = N->getValueType(0);
8036   if (DstVT != XLenVT)
8037     return SDValue();
8038 
8039   SDValue Src = N->getOperand(0);
8040 
8041   // Ensure the FP type is also legal.
8042   if (!TLI.isTypeLegal(Src.getValueType()))
8043     return SDValue();
8044 
8045   // Don't do this for f16 with Zfhmin and not Zfh.
8046   if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8047     return SDValue();
8048 
8049   EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8050 
8051   RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8052   if (FRM == RISCVFPRndMode::Invalid)
8053     return SDValue();
8054 
8055   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8056 
8057   unsigned Opc;
8058   if (SatVT == DstVT)
8059     Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8060   else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8061     Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8062   else
8063     return SDValue();
8064   // FIXME: Support other SatVTs by clamping before or after the conversion.
8065 
8066   Src = Src.getOperand(0);
8067 
8068   SDLoc DL(N);
8069   SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8070                                 DAG.getTargetConstant(FRM, DL, XLenVT));
8071 
8072   // RISCV FP-to-int conversions saturate to the destination register size, but
8073   // don't produce 0 for nan.
8074   SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8075   return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8076 }
8077 
8078 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8079 // smaller than XLenVT.
8080 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8081                                         const RISCVSubtarget &Subtarget) {
8082   assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8083 
8084   SDValue Src = N->getOperand(0);
8085   if (Src.getOpcode() != ISD::BSWAP)
8086     return SDValue();
8087 
8088   EVT VT = N->getValueType(0);
8089   if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8090       !isPowerOf2_32(VT.getSizeInBits()))
8091     return SDValue();
8092 
8093   SDLoc DL(N);
8094   return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8095                      DAG.getConstant(7, DL, VT));
8096 }
8097 
8098 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8099                                                DAGCombinerInfo &DCI) const {
8100   SelectionDAG &DAG = DCI.DAG;
8101 
8102   // Helper to call SimplifyDemandedBits on an operand of N where only some low
8103   // bits are demanded. N will be added to the Worklist if it was not deleted.
8104   // Caller should return SDValue(N, 0) if this returns true.
8105   auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8106     SDValue Op = N->getOperand(OpNo);
8107     APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8108     if (!SimplifyDemandedBits(Op, Mask, DCI))
8109       return false;
8110 
8111     if (N->getOpcode() != ISD::DELETED_NODE)
8112       DCI.AddToWorklist(N);
8113     return true;
8114   };
8115 
8116   switch (N->getOpcode()) {
8117   default:
8118     break;
8119   case RISCVISD::SplitF64: {
8120     SDValue Op0 = N->getOperand(0);
8121     // If the input to SplitF64 is just BuildPairF64 then the operation is
8122     // redundant. Instead, use BuildPairF64's operands directly.
8123     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8124       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8125 
8126     if (Op0->isUndef()) {
8127       SDValue Lo = DAG.getUNDEF(MVT::i32);
8128       SDValue Hi = DAG.getUNDEF(MVT::i32);
8129       return DCI.CombineTo(N, Lo, Hi);
8130     }
8131 
8132     SDLoc DL(N);
8133 
8134     // It's cheaper to materialise two 32-bit integers than to load a double
8135     // from the constant pool and transfer it to integer registers through the
8136     // stack.
8137     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8138       APInt V = C->getValueAPF().bitcastToAPInt();
8139       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8140       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8141       return DCI.CombineTo(N, Lo, Hi);
8142     }
8143 
8144     // This is a target-specific version of a DAGCombine performed in
8145     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8146     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8147     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8148     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8149         !Op0.getNode()->hasOneUse())
8150       break;
8151     SDValue NewSplitF64 =
8152         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8153                     Op0.getOperand(0));
8154     SDValue Lo = NewSplitF64.getValue(0);
8155     SDValue Hi = NewSplitF64.getValue(1);
8156     APInt SignBit = APInt::getSignMask(32);
8157     if (Op0.getOpcode() == ISD::FNEG) {
8158       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8159                                   DAG.getConstant(SignBit, DL, MVT::i32));
8160       return DCI.CombineTo(N, Lo, NewHi);
8161     }
8162     assert(Op0.getOpcode() == ISD::FABS);
8163     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8164                                 DAG.getConstant(~SignBit, DL, MVT::i32));
8165     return DCI.CombineTo(N, Lo, NewHi);
8166   }
8167   case RISCVISD::SLLW:
8168   case RISCVISD::SRAW:
8169   case RISCVISD::SRLW: {
8170     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8171     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8172         SimplifyDemandedLowBitsHelper(1, 5))
8173       return SDValue(N, 0);
8174 
8175     break;
8176   }
8177   case ISD::ROTR:
8178   case ISD::ROTL:
8179   case RISCVISD::RORW:
8180   case RISCVISD::ROLW: {
8181     if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8182       // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8183       if (SimplifyDemandedLowBitsHelper(0, 32) ||
8184           SimplifyDemandedLowBitsHelper(1, 5))
8185         return SDValue(N, 0);
8186     }
8187 
8188     return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8189   }
8190   case RISCVISD::CLZW:
8191   case RISCVISD::CTZW: {
8192     // Only the lower 32 bits of the first operand are read
8193     if (SimplifyDemandedLowBitsHelper(0, 32))
8194       return SDValue(N, 0);
8195     break;
8196   }
8197   case RISCVISD::GREV:
8198   case RISCVISD::GORC: {
8199     // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8200     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8201     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8202     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8203       return SDValue(N, 0);
8204 
8205     return combineGREVI_GORCI(N, DAG);
8206   }
8207   case RISCVISD::GREVW:
8208   case RISCVISD::GORCW: {
8209     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8210     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8211         SimplifyDemandedLowBitsHelper(1, 5))
8212       return SDValue(N, 0);
8213 
8214     break;
8215   }
8216   case RISCVISD::SHFL:
8217   case RISCVISD::UNSHFL: {
8218     // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8219     unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8220     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8221     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8222       return SDValue(N, 0);
8223 
8224     break;
8225   }
8226   case RISCVISD::SHFLW:
8227   case RISCVISD::UNSHFLW: {
8228     // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8229     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8230         SimplifyDemandedLowBitsHelper(1, 4))
8231       return SDValue(N, 0);
8232 
8233     break;
8234   }
8235   case RISCVISD::BCOMPRESSW:
8236   case RISCVISD::BDECOMPRESSW: {
8237     // Only the lower 32 bits of LHS and RHS are read.
8238     if (SimplifyDemandedLowBitsHelper(0, 32) ||
8239         SimplifyDemandedLowBitsHelper(1, 32))
8240       return SDValue(N, 0);
8241 
8242     break;
8243   }
8244   case RISCVISD::FSR:
8245   case RISCVISD::FSL:
8246   case RISCVISD::FSRW:
8247   case RISCVISD::FSLW: {
8248     bool IsWInstruction =
8249         N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8250     unsigned BitWidth =
8251         IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8252     assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8253     // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8254     if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8255       return SDValue(N, 0);
8256 
8257     break;
8258   }
8259   case RISCVISD::FMV_X_ANYEXTH:
8260   case RISCVISD::FMV_X_ANYEXTW_RV64: {
8261     SDLoc DL(N);
8262     SDValue Op0 = N->getOperand(0);
8263     MVT VT = N->getSimpleValueType(0);
8264     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8265     // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8266     // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8267     if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8268          Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8269         (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8270          Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8271       assert(Op0.getOperand(0).getValueType() == VT &&
8272              "Unexpected value type!");
8273       return Op0.getOperand(0);
8274     }
8275 
8276     // This is a target-specific version of a DAGCombine performed in
8277     // DAGCombiner::visitBITCAST. It performs the equivalent of:
8278     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8279     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8280     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8281         !Op0.getNode()->hasOneUse())
8282       break;
8283     SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
8284     unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
8285     APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits());
8286     if (Op0.getOpcode() == ISD::FNEG)
8287       return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
8288                          DAG.getConstant(SignBit, DL, VT));
8289 
8290     assert(Op0.getOpcode() == ISD::FABS);
8291     return DAG.getNode(ISD::AND, DL, VT, NewFMV,
8292                        DAG.getConstant(~SignBit, DL, VT));
8293   }
8294   case ISD::ADD:
8295     return performADDCombine(N, DAG, Subtarget);
8296   case ISD::SUB:
8297     return performSUBCombine(N, DAG);
8298   case ISD::AND:
8299     return performANDCombine(N, DAG);
8300   case ISD::OR:
8301     return performORCombine(N, DAG, Subtarget);
8302   case ISD::XOR:
8303     return performXORCombine(N, DAG);
8304   case ISD::SIGN_EXTEND_INREG:
8305     return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
8306   case ISD::ZERO_EXTEND:
8307     // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
8308     // type legalization. This is safe because fp_to_uint produces poison if
8309     // it overflows.
8310     if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
8311       SDValue Src = N->getOperand(0);
8312       if (Src.getOpcode() == ISD::FP_TO_UINT &&
8313           isTypeLegal(Src.getOperand(0).getValueType()))
8314         return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
8315                            Src.getOperand(0));
8316       if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
8317           isTypeLegal(Src.getOperand(1).getValueType())) {
8318         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
8319         SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
8320                                   Src.getOperand(0), Src.getOperand(1));
8321         DCI.CombineTo(N, Res);
8322         DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
8323         DCI.recursivelyDeleteUnusedNodes(Src.getNode());
8324         return SDValue(N, 0); // Return N so it doesn't get rechecked.
8325       }
8326     }
8327     return SDValue();
8328   case RISCVISD::SELECT_CC: {
8329     // Transform
8330     SDValue LHS = N->getOperand(0);
8331     SDValue RHS = N->getOperand(1);
8332     SDValue TrueV = N->getOperand(3);
8333     SDValue FalseV = N->getOperand(4);
8334 
8335     // If the True and False values are the same, we don't need a select_cc.
8336     if (TrueV == FalseV)
8337       return TrueV;
8338 
8339     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get();
8340     if (!ISD::isIntEqualitySetCC(CCVal))
8341       break;
8342 
8343     // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
8344     //      (select_cc X, Y, lt, trueV, falseV)
8345     // Sometimes the setcc is introduced after select_cc has been formed.
8346     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8347         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8348       // If we're looking for eq 0 instead of ne 0, we need to invert the
8349       // condition.
8350       bool Invert = CCVal == ISD::SETEQ;
8351       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8352       if (Invert)
8353         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8354 
8355       SDLoc DL(N);
8356       RHS = LHS.getOperand(1);
8357       LHS = LHS.getOperand(0);
8358       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8359 
8360       SDValue TargetCC = DAG.getCondCode(CCVal);
8361       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8362                          {LHS, RHS, TargetCC, TrueV, FalseV});
8363     }
8364 
8365     // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
8366     //      (select_cc X, Y, eq/ne, trueV, falseV)
8367     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8368       return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
8369                          {LHS.getOperand(0), LHS.getOperand(1),
8370                           N->getOperand(2), TrueV, FalseV});
8371     // (select_cc X, 1, setne, trueV, falseV) ->
8372     // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
8373     // This can occur when legalizing some floating point comparisons.
8374     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8375     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8376       SDLoc DL(N);
8377       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8378       SDValue TargetCC = DAG.getCondCode(CCVal);
8379       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8380       return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
8381                          {LHS, RHS, TargetCC, TrueV, FalseV});
8382     }
8383 
8384     break;
8385   }
8386   case RISCVISD::BR_CC: {
8387     SDValue LHS = N->getOperand(1);
8388     SDValue RHS = N->getOperand(2);
8389     ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
8390     if (!ISD::isIntEqualitySetCC(CCVal))
8391       break;
8392 
8393     // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
8394     //      (br_cc X, Y, lt, dest)
8395     // Sometimes the setcc is introduced after br_cc has been formed.
8396     if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8397         LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8398       // If we're looking for eq 0 instead of ne 0, we need to invert the
8399       // condition.
8400       bool Invert = CCVal == ISD::SETEQ;
8401       CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8402       if (Invert)
8403         CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8404 
8405       SDLoc DL(N);
8406       RHS = LHS.getOperand(1);
8407       LHS = LHS.getOperand(0);
8408       translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8409 
8410       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8411                          N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
8412                          N->getOperand(4));
8413     }
8414 
8415     // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
8416     //      (br_cc X, Y, eq/ne, trueV, falseV)
8417     if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
8418       return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
8419                          N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
8420                          N->getOperand(3), N->getOperand(4));
8421 
8422     // (br_cc X, 1, setne, br_cc) ->
8423     // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
8424     // This can occur when legalizing some floating point comparisons.
8425     APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8426     if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8427       SDLoc DL(N);
8428       CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8429       SDValue TargetCC = DAG.getCondCode(CCVal);
8430       RHS = DAG.getConstant(0, DL, LHS.getValueType());
8431       return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
8432                          N->getOperand(0), LHS, RHS, TargetCC,
8433                          N->getOperand(4));
8434     }
8435     break;
8436   }
8437   case ISD::BITREVERSE:
8438     return performBITREVERSECombine(N, DAG, Subtarget);
8439   case ISD::FP_TO_SINT:
8440   case ISD::FP_TO_UINT:
8441     return performFP_TO_INTCombine(N, DCI, Subtarget);
8442   case ISD::FP_TO_SINT_SAT:
8443   case ISD::FP_TO_UINT_SAT:
8444     return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
8445   case ISD::FCOPYSIGN: {
8446     EVT VT = N->getValueType(0);
8447     if (!VT.isVector())
8448       break;
8449     // There is a form of VFSGNJ which injects the negated sign of its second
8450     // operand. Try and bubble any FNEG up after the extend/round to produce
8451     // this optimized pattern. Avoid modifying cases where FP_ROUND and
8452     // TRUNC=1.
8453     SDValue In2 = N->getOperand(1);
8454     // Avoid cases where the extend/round has multiple uses, as duplicating
8455     // those is typically more expensive than removing a fneg.
8456     if (!In2.hasOneUse())
8457       break;
8458     if (In2.getOpcode() != ISD::FP_EXTEND &&
8459         (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
8460       break;
8461     In2 = In2.getOperand(0);
8462     if (In2.getOpcode() != ISD::FNEG)
8463       break;
8464     SDLoc DL(N);
8465     SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
8466     return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
8467                        DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
8468   }
8469   case ISD::MGATHER:
8470   case ISD::MSCATTER:
8471   case ISD::VP_GATHER:
8472   case ISD::VP_SCATTER: {
8473     if (!DCI.isBeforeLegalize())
8474       break;
8475     SDValue Index, ScaleOp;
8476     bool IsIndexScaled = false;
8477     bool IsIndexSigned = false;
8478     if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
8479       Index = VPGSN->getIndex();
8480       ScaleOp = VPGSN->getScale();
8481       IsIndexScaled = VPGSN->isIndexScaled();
8482       IsIndexSigned = VPGSN->isIndexSigned();
8483     } else {
8484       const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
8485       Index = MGSN->getIndex();
8486       ScaleOp = MGSN->getScale();
8487       IsIndexScaled = MGSN->isIndexScaled();
8488       IsIndexSigned = MGSN->isIndexSigned();
8489     }
8490     EVT IndexVT = Index.getValueType();
8491     MVT XLenVT = Subtarget.getXLenVT();
8492     // RISCV indexed loads only support the "unsigned unscaled" addressing
8493     // mode, so anything else must be manually legalized.
8494     bool NeedsIdxLegalization =
8495         IsIndexScaled ||
8496         (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
8497     if (!NeedsIdxLegalization)
8498       break;
8499 
8500     SDLoc DL(N);
8501 
8502     // Any index legalization should first promote to XLenVT, so we don't lose
8503     // bits when scaling. This may create an illegal index type so we let
8504     // LLVM's legalization take care of the splitting.
8505     // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
8506     if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
8507       IndexVT = IndexVT.changeVectorElementType(XLenVT);
8508       Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
8509                           DL, IndexVT, Index);
8510     }
8511 
8512     unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
8513     if (IsIndexScaled && Scale != 1) {
8514       // Manually scale the indices by the element size.
8515       // TODO: Sanitize the scale operand here?
8516       // TODO: For VP nodes, should we use VP_SHL here?
8517       assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
8518       SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
8519       Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
8520     }
8521 
8522     ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
8523     if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
8524       return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
8525                              {VPGN->getChain(), VPGN->getBasePtr(), Index,
8526                               VPGN->getScale(), VPGN->getMask(),
8527                               VPGN->getVectorLength()},
8528                              VPGN->getMemOperand(), NewIndexTy);
8529     if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
8530       return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
8531                               {VPSN->getChain(), VPSN->getValue(),
8532                                VPSN->getBasePtr(), Index, VPSN->getScale(),
8533                                VPSN->getMask(), VPSN->getVectorLength()},
8534                               VPSN->getMemOperand(), NewIndexTy);
8535     if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
8536       return DAG.getMaskedGather(
8537           N->getVTList(), MGN->getMemoryVT(), DL,
8538           {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
8539            MGN->getBasePtr(), Index, MGN->getScale()},
8540           MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
8541     const auto *MSN = cast<MaskedScatterSDNode>(N);
8542     return DAG.getMaskedScatter(
8543         N->getVTList(), MSN->getMemoryVT(), DL,
8544         {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
8545          Index, MSN->getScale()},
8546         MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
8547   }
8548   case RISCVISD::SRA_VL:
8549   case RISCVISD::SRL_VL:
8550   case RISCVISD::SHL_VL: {
8551     SDValue ShAmt = N->getOperand(1);
8552     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8553       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8554       SDLoc DL(N);
8555       SDValue VL = N->getOperand(3);
8556       EVT VT = N->getValueType(0);
8557       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8558                           ShAmt.getOperand(1), VL);
8559       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
8560                          N->getOperand(2), N->getOperand(3));
8561     }
8562     break;
8563   }
8564   case ISD::SRA:
8565   case ISD::SRL:
8566   case ISD::SHL: {
8567     SDValue ShAmt = N->getOperand(1);
8568     if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
8569       // We don't need the upper 32 bits of a 64-bit element for a shift amount.
8570       SDLoc DL(N);
8571       EVT VT = N->getValueType(0);
8572       ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
8573                           ShAmt.getOperand(1),
8574                           DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
8575       return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
8576     }
8577     break;
8578   }
8579   case RISCVISD::ADD_VL:
8580     if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
8581       return V;
8582     return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
8583   case RISCVISD::SUB_VL:
8584     return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
8585   case RISCVISD::VWADD_W_VL:
8586   case RISCVISD::VWADDU_W_VL:
8587   case RISCVISD::VWSUB_W_VL:
8588   case RISCVISD::VWSUBU_W_VL:
8589     return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
8590   case RISCVISD::MUL_VL:
8591     if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
8592       return V;
8593     // Mul is commutative.
8594     return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
8595   case ISD::STORE: {
8596     auto *Store = cast<StoreSDNode>(N);
8597     SDValue Val = Store->getValue();
8598     // Combine store of vmv.x.s to vse with VL of 1.
8599     // FIXME: Support FP.
8600     if (Val.getOpcode() == RISCVISD::VMV_X_S) {
8601       SDValue Src = Val.getOperand(0);
8602       EVT VecVT = Src.getValueType();
8603       EVT MemVT = Store->getMemoryVT();
8604       // The memory VT and the element type must match.
8605       if (VecVT.getVectorElementType() == MemVT) {
8606         SDLoc DL(N);
8607         MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
8608         return DAG.getStoreVP(
8609             Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
8610             DAG.getConstant(1, DL, MaskVT),
8611             DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
8612             Store->getMemOperand(), Store->getAddressingMode(),
8613             Store->isTruncatingStore(), /*IsCompress*/ false);
8614       }
8615     }
8616 
8617     break;
8618   }
8619   case ISD::SPLAT_VECTOR: {
8620     EVT VT = N->getValueType(0);
8621     // Only perform this combine on legal MVT types.
8622     if (!isTypeLegal(VT))
8623       break;
8624     if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
8625                                          DAG, Subtarget))
8626       return Gather;
8627     break;
8628   }
8629   case RISCVISD::VMV_V_X_VL: {
8630     // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
8631     // scalar input.
8632     unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
8633     unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
8634     if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
8635       if (SimplifyDemandedLowBitsHelper(1, EltWidth))
8636         return SDValue(N, 0);
8637 
8638     break;
8639   }
8640   case ISD::INTRINSIC_WO_CHAIN: {
8641     unsigned IntNo = N->getConstantOperandVal(0);
8642     switch (IntNo) {
8643       // By default we do not combine any intrinsic.
8644     default:
8645       return SDValue();
8646     case Intrinsic::riscv_vcpop:
8647     case Intrinsic::riscv_vcpop_mask:
8648     case Intrinsic::riscv_vfirst:
8649     case Intrinsic::riscv_vfirst_mask: {
8650       SDValue VL = N->getOperand(2);
8651       if (IntNo == Intrinsic::riscv_vcpop_mask ||
8652           IntNo == Intrinsic::riscv_vfirst_mask)
8653         VL = N->getOperand(3);
8654       if (!isNullConstant(VL))
8655         return SDValue();
8656       // If VL is 0, vcpop -> li 0, vfirst -> li -1.
8657       SDLoc DL(N);
8658       EVT VT = N->getValueType(0);
8659       if (IntNo == Intrinsic::riscv_vfirst ||
8660           IntNo == Intrinsic::riscv_vfirst_mask)
8661         return DAG.getConstant(-1, DL, VT);
8662       return DAG.getConstant(0, DL, VT);
8663     }
8664     }
8665   }
8666   }
8667 
8668   return SDValue();
8669 }
8670 
8671 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
8672     const SDNode *N, CombineLevel Level) const {
8673   // The following folds are only desirable if `(OP _, c1 << c2)` can be
8674   // materialised in fewer instructions than `(OP _, c1)`:
8675   //
8676   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8677   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8678   SDValue N0 = N->getOperand(0);
8679   EVT Ty = N0.getValueType();
8680   if (Ty.isScalarInteger() &&
8681       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
8682     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8683     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
8684     if (C1 && C2) {
8685       const APInt &C1Int = C1->getAPIntValue();
8686       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
8687 
8688       // We can materialise `c1 << c2` into an add immediate, so it's "free",
8689       // and the combine should happen, to potentially allow further combines
8690       // later.
8691       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
8692           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
8693         return true;
8694 
8695       // We can materialise `c1` in an add immediate, so it's "free", and the
8696       // combine should be prevented.
8697       if (C1Int.getMinSignedBits() <= 64 &&
8698           isLegalAddImmediate(C1Int.getSExtValue()))
8699         return false;
8700 
8701       // Neither constant will fit into an immediate, so find materialisation
8702       // costs.
8703       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
8704                                               Subtarget.getFeatureBits(),
8705                                               /*CompressionCost*/true);
8706       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
8707           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
8708           /*CompressionCost*/true);
8709 
8710       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
8711       // combine should be prevented.
8712       if (C1Cost < ShiftedC1Cost)
8713         return false;
8714     }
8715   }
8716   return true;
8717 }
8718 
8719 bool RISCVTargetLowering::targetShrinkDemandedConstant(
8720     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
8721     TargetLoweringOpt &TLO) const {
8722   // Delay this optimization as late as possible.
8723   if (!TLO.LegalOps)
8724     return false;
8725 
8726   EVT VT = Op.getValueType();
8727   if (VT.isVector())
8728     return false;
8729 
8730   // Only handle AND for now.
8731   if (Op.getOpcode() != ISD::AND)
8732     return false;
8733 
8734   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8735   if (!C)
8736     return false;
8737 
8738   const APInt &Mask = C->getAPIntValue();
8739 
8740   // Clear all non-demanded bits initially.
8741   APInt ShrunkMask = Mask & DemandedBits;
8742 
8743   // Try to make a smaller immediate by setting undemanded bits.
8744 
8745   APInt ExpandedMask = Mask | ~DemandedBits;
8746 
8747   auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
8748     return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
8749   };
8750   auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
8751     if (NewMask == Mask)
8752       return true;
8753     SDLoc DL(Op);
8754     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
8755     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
8756     return TLO.CombineTo(Op, NewOp);
8757   };
8758 
8759   // If the shrunk mask fits in sign extended 12 bits, let the target
8760   // independent code apply it.
8761   if (ShrunkMask.isSignedIntN(12))
8762     return false;
8763 
8764   // Preserve (and X, 0xffff) when zext.h is supported.
8765   if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
8766     APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
8767     if (IsLegalMask(NewMask))
8768       return UseMask(NewMask);
8769   }
8770 
8771   // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
8772   if (VT == MVT::i64) {
8773     APInt NewMask = APInt(64, 0xffffffff);
8774     if (IsLegalMask(NewMask))
8775       return UseMask(NewMask);
8776   }
8777 
8778   // For the remaining optimizations, we need to be able to make a negative
8779   // number through a combination of mask and undemanded bits.
8780   if (!ExpandedMask.isNegative())
8781     return false;
8782 
8783   // What is the fewest number of bits we need to represent the negative number.
8784   unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
8785 
8786   // Try to make a 12 bit negative immediate. If that fails try to make a 32
8787   // bit negative immediate unless the shrunk immediate already fits in 32 bits.
8788   APInt NewMask = ShrunkMask;
8789   if (MinSignedBits <= 12)
8790     NewMask.setBitsFrom(11);
8791   else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
8792     NewMask.setBitsFrom(31);
8793   else
8794     return false;
8795 
8796   // Check that our new mask is a subset of the demanded mask.
8797   assert(IsLegalMask(NewMask));
8798   return UseMask(NewMask);
8799 }
8800 
8801 static void computeGREV(APInt &Src, unsigned ShAmt) {
8802   ShAmt &= Src.getBitWidth() - 1;
8803   uint64_t x = Src.getZExtValue();
8804   if (ShAmt & 1)
8805     x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
8806   if (ShAmt & 2)
8807     x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
8808   if (ShAmt & 4)
8809     x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
8810   if (ShAmt & 8)
8811     x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
8812   if (ShAmt & 16)
8813     x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
8814   if (ShAmt & 32)
8815     x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
8816   Src = x;
8817 }
8818 
8819 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8820                                                         KnownBits &Known,
8821                                                         const APInt &DemandedElts,
8822                                                         const SelectionDAG &DAG,
8823                                                         unsigned Depth) const {
8824   unsigned BitWidth = Known.getBitWidth();
8825   unsigned Opc = Op.getOpcode();
8826   assert((Opc >= ISD::BUILTIN_OP_END ||
8827           Opc == ISD::INTRINSIC_WO_CHAIN ||
8828           Opc == ISD::INTRINSIC_W_CHAIN ||
8829           Opc == ISD::INTRINSIC_VOID) &&
8830          "Should use MaskedValueIsZero if you don't know whether Op"
8831          " is a target node!");
8832 
8833   Known.resetAll();
8834   switch (Opc) {
8835   default: break;
8836   case RISCVISD::SELECT_CC: {
8837     Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
8838     // If we don't know any bits, early out.
8839     if (Known.isUnknown())
8840       break;
8841     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
8842 
8843     // Only known if known in both the LHS and RHS.
8844     Known = KnownBits::commonBits(Known, Known2);
8845     break;
8846   }
8847   case RISCVISD::REMUW: {
8848     KnownBits Known2;
8849     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8850     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8851     // We only care about the lower 32 bits.
8852     Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
8853     // Restore the original width by sign extending.
8854     Known = Known.sext(BitWidth);
8855     break;
8856   }
8857   case RISCVISD::DIVUW: {
8858     KnownBits Known2;
8859     Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
8860     Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
8861     // We only care about the lower 32 bits.
8862     Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
8863     // Restore the original width by sign extending.
8864     Known = Known.sext(BitWidth);
8865     break;
8866   }
8867   case RISCVISD::CTZW: {
8868     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8869     unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
8870     unsigned LowBits = Log2_32(PossibleTZ) + 1;
8871     Known.Zero.setBitsFrom(LowBits);
8872     break;
8873   }
8874   case RISCVISD::CLZW: {
8875     KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8876     unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
8877     unsigned LowBits = Log2_32(PossibleLZ) + 1;
8878     Known.Zero.setBitsFrom(LowBits);
8879     break;
8880   }
8881   case RISCVISD::GREV: {
8882     if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8883       Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
8884       unsigned ShAmt = C->getZExtValue();
8885       computeGREV(Known.Zero, ShAmt);
8886       computeGREV(Known.One, ShAmt);
8887     }
8888     break;
8889   }
8890   case RISCVISD::READ_VLENB: {
8891     // If we know the minimum VLen from Zvl extensions, we can use that to
8892     // determine the trailing zeros of VLENB.
8893     // FIXME: Limit to 128 bit vectors until we have more testing.
8894     unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8;
8895     if (MinVLenB > 0)
8896       Known.Zero.setLowBits(Log2_32(MinVLenB));
8897     // We assume VLENB is no more than 65536 / 8 bytes.
8898     Known.Zero.setBitsFrom(14);
8899     break;
8900   }
8901   case ISD::INTRINSIC_W_CHAIN:
8902   case ISD::INTRINSIC_WO_CHAIN: {
8903     unsigned IntNo =
8904         Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
8905     switch (IntNo) {
8906     default:
8907       // We can't do anything for most intrinsics.
8908       break;
8909     case Intrinsic::riscv_vsetvli:
8910     case Intrinsic::riscv_vsetvlimax:
8911     case Intrinsic::riscv_vsetvli_opt:
8912     case Intrinsic::riscv_vsetvlimax_opt:
8913       // Assume that VL output is positive and would fit in an int32_t.
8914       // TODO: VLEN might be capped at 16 bits in a future V spec update.
8915       if (BitWidth >= 32)
8916         Known.Zero.setBitsFrom(31);
8917       break;
8918     }
8919     break;
8920   }
8921   }
8922 }
8923 
8924 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
8925     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8926     unsigned Depth) const {
8927   switch (Op.getOpcode()) {
8928   default:
8929     break;
8930   case RISCVISD::SELECT_CC: {
8931     unsigned Tmp =
8932         DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
8933     if (Tmp == 1) return 1;  // Early out.
8934     unsigned Tmp2 =
8935         DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
8936     return std::min(Tmp, Tmp2);
8937   }
8938   case RISCVISD::SLLW:
8939   case RISCVISD::SRAW:
8940   case RISCVISD::SRLW:
8941   case RISCVISD::DIVW:
8942   case RISCVISD::DIVUW:
8943   case RISCVISD::REMUW:
8944   case RISCVISD::ROLW:
8945   case RISCVISD::RORW:
8946   case RISCVISD::GREVW:
8947   case RISCVISD::GORCW:
8948   case RISCVISD::FSLW:
8949   case RISCVISD::FSRW:
8950   case RISCVISD::SHFLW:
8951   case RISCVISD::UNSHFLW:
8952   case RISCVISD::BCOMPRESSW:
8953   case RISCVISD::BDECOMPRESSW:
8954   case RISCVISD::BFPW:
8955   case RISCVISD::FCVT_W_RV64:
8956   case RISCVISD::FCVT_WU_RV64:
8957   case RISCVISD::STRICT_FCVT_W_RV64:
8958   case RISCVISD::STRICT_FCVT_WU_RV64:
8959     // TODO: As the result is sign-extended, this is conservatively correct. A
8960     // more precise answer could be calculated for SRAW depending on known
8961     // bits in the shift amount.
8962     return 33;
8963   case RISCVISD::SHFL:
8964   case RISCVISD::UNSHFL: {
8965     // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
8966     // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
8967     // will stay within the upper 32 bits. If there were more than 32 sign bits
8968     // before there will be at least 33 sign bits after.
8969     if (Op.getValueType() == MVT::i64 &&
8970         isa<ConstantSDNode>(Op.getOperand(1)) &&
8971         (Op.getConstantOperandVal(1) & 0x10) == 0) {
8972       unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
8973       if (Tmp > 32)
8974         return 33;
8975     }
8976     break;
8977   }
8978   case RISCVISD::VMV_X_S: {
8979     // The number of sign bits of the scalar result is computed by obtaining the
8980     // element type of the input vector operand, subtracting its width from the
8981     // XLEN, and then adding one (sign bit within the element type). If the
8982     // element type is wider than XLen, the least-significant XLEN bits are
8983     // taken.
8984     unsigned XLen = Subtarget.getXLen();
8985     unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
8986     if (EltBits <= XLen)
8987       return XLen - EltBits + 1;
8988     break;
8989   }
8990   }
8991 
8992   return 1;
8993 }
8994 
8995 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
8996                                                   MachineBasicBlock *BB) {
8997   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
8998 
8999   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9000   // Should the count have wrapped while it was being read, we need to try
9001   // again.
9002   // ...
9003   // read:
9004   // rdcycleh x3 # load high word of cycle
9005   // rdcycle  x2 # load low word of cycle
9006   // rdcycleh x4 # load high word of cycle
9007   // bne x3, x4, read # check if high word reads match, otherwise try again
9008   // ...
9009 
9010   MachineFunction &MF = *BB->getParent();
9011   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9012   MachineFunction::iterator It = ++BB->getIterator();
9013 
9014   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9015   MF.insert(It, LoopMBB);
9016 
9017   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9018   MF.insert(It, DoneMBB);
9019 
9020   // Transfer the remainder of BB and its successor edges to DoneMBB.
9021   DoneMBB->splice(DoneMBB->begin(), BB,
9022                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9023   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9024 
9025   BB->addSuccessor(LoopMBB);
9026 
9027   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9028   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9029   Register LoReg = MI.getOperand(0).getReg();
9030   Register HiReg = MI.getOperand(1).getReg();
9031   DebugLoc DL = MI.getDebugLoc();
9032 
9033   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9034   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9035       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9036       .addReg(RISCV::X0);
9037   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9038       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9039       .addReg(RISCV::X0);
9040   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9041       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9042       .addReg(RISCV::X0);
9043 
9044   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9045       .addReg(HiReg)
9046       .addReg(ReadAgainReg)
9047       .addMBB(LoopMBB);
9048 
9049   LoopMBB->addSuccessor(LoopMBB);
9050   LoopMBB->addSuccessor(DoneMBB);
9051 
9052   MI.eraseFromParent();
9053 
9054   return DoneMBB;
9055 }
9056 
9057 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9058                                              MachineBasicBlock *BB) {
9059   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9060 
9061   MachineFunction &MF = *BB->getParent();
9062   DebugLoc DL = MI.getDebugLoc();
9063   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9064   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9065   Register LoReg = MI.getOperand(0).getReg();
9066   Register HiReg = MI.getOperand(1).getReg();
9067   Register SrcReg = MI.getOperand(2).getReg();
9068   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9069   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9070 
9071   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9072                           RI);
9073   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9074   MachineMemOperand *MMOLo =
9075       MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9076   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9077       MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9078   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9079       .addFrameIndex(FI)
9080       .addImm(0)
9081       .addMemOperand(MMOLo);
9082   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9083       .addFrameIndex(FI)
9084       .addImm(4)
9085       .addMemOperand(MMOHi);
9086   MI.eraseFromParent(); // The pseudo instruction is gone now.
9087   return BB;
9088 }
9089 
9090 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9091                                                  MachineBasicBlock *BB) {
9092   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9093          "Unexpected instruction");
9094 
9095   MachineFunction &MF = *BB->getParent();
9096   DebugLoc DL = MI.getDebugLoc();
9097   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9098   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9099   Register DstReg = MI.getOperand(0).getReg();
9100   Register LoReg = MI.getOperand(1).getReg();
9101   Register HiReg = MI.getOperand(2).getReg();
9102   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9103   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9104 
9105   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9106   MachineMemOperand *MMOLo =
9107       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9108   MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9109       MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9110   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9111       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9112       .addFrameIndex(FI)
9113       .addImm(0)
9114       .addMemOperand(MMOLo);
9115   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9116       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9117       .addFrameIndex(FI)
9118       .addImm(4)
9119       .addMemOperand(MMOHi);
9120   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9121   MI.eraseFromParent(); // The pseudo instruction is gone now.
9122   return BB;
9123 }
9124 
9125 static bool isSelectPseudo(MachineInstr &MI) {
9126   switch (MI.getOpcode()) {
9127   default:
9128     return false;
9129   case RISCV::Select_GPR_Using_CC_GPR:
9130   case RISCV::Select_FPR16_Using_CC_GPR:
9131   case RISCV::Select_FPR32_Using_CC_GPR:
9132   case RISCV::Select_FPR64_Using_CC_GPR:
9133     return true;
9134   }
9135 }
9136 
9137 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9138                                         unsigned RelOpcode, unsigned EqOpcode,
9139                                         const RISCVSubtarget &Subtarget) {
9140   DebugLoc DL = MI.getDebugLoc();
9141   Register DstReg = MI.getOperand(0).getReg();
9142   Register Src1Reg = MI.getOperand(1).getReg();
9143   Register Src2Reg = MI.getOperand(2).getReg();
9144   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9145   Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9146   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9147 
9148   // Save the current FFLAGS.
9149   BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9150 
9151   auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9152                  .addReg(Src1Reg)
9153                  .addReg(Src2Reg);
9154   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9155     MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9156 
9157   // Restore the FFLAGS.
9158   BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9159       .addReg(SavedFFlags, RegState::Kill);
9160 
9161   // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9162   auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9163                   .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9164                   .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9165   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9166     MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9167 
9168   // Erase the pseudoinstruction.
9169   MI.eraseFromParent();
9170   return BB;
9171 }
9172 
9173 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
9174                                            MachineBasicBlock *BB,
9175                                            const RISCVSubtarget &Subtarget) {
9176   // To "insert" Select_* instructions, we actually have to insert the triangle
9177   // control-flow pattern.  The incoming instructions know the destination vreg
9178   // to set, the condition code register to branch on, the true/false values to
9179   // select between, and the condcode to use to select the appropriate branch.
9180   //
9181   // We produce the following control flow:
9182   //     HeadMBB
9183   //     |  \
9184   //     |  IfFalseMBB
9185   //     | /
9186   //    TailMBB
9187   //
9188   // When we find a sequence of selects we attempt to optimize their emission
9189   // by sharing the control flow. Currently we only handle cases where we have
9190   // multiple selects with the exact same condition (same LHS, RHS and CC).
9191   // The selects may be interleaved with other instructions if the other
9192   // instructions meet some requirements we deem safe:
9193   // - They are debug instructions. Otherwise,
9194   // - They do not have side-effects, do not access memory and their inputs do
9195   //   not depend on the results of the select pseudo-instructions.
9196   // The TrueV/FalseV operands of the selects cannot depend on the result of
9197   // previous selects in the sequence.
9198   // These conditions could be further relaxed. See the X86 target for a
9199   // related approach and more information.
9200   Register LHS = MI.getOperand(1).getReg();
9201   Register RHS = MI.getOperand(2).getReg();
9202   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
9203 
9204   SmallVector<MachineInstr *, 4> SelectDebugValues;
9205   SmallSet<Register, 4> SelectDests;
9206   SelectDests.insert(MI.getOperand(0).getReg());
9207 
9208   MachineInstr *LastSelectPseudo = &MI;
9209 
9210   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
9211        SequenceMBBI != E; ++SequenceMBBI) {
9212     if (SequenceMBBI->isDebugInstr())
9213       continue;
9214     else if (isSelectPseudo(*SequenceMBBI)) {
9215       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
9216           SequenceMBBI->getOperand(2).getReg() != RHS ||
9217           SequenceMBBI->getOperand(3).getImm() != CC ||
9218           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
9219           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
9220         break;
9221       LastSelectPseudo = &*SequenceMBBI;
9222       SequenceMBBI->collectDebugValues(SelectDebugValues);
9223       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
9224     } else {
9225       if (SequenceMBBI->hasUnmodeledSideEffects() ||
9226           SequenceMBBI->mayLoadOrStore())
9227         break;
9228       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
9229             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
9230           }))
9231         break;
9232     }
9233   }
9234 
9235   const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9236   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9237   DebugLoc DL = MI.getDebugLoc();
9238   MachineFunction::iterator I = ++BB->getIterator();
9239 
9240   MachineBasicBlock *HeadMBB = BB;
9241   MachineFunction *F = BB->getParent();
9242   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
9243   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
9244 
9245   F->insert(I, IfFalseMBB);
9246   F->insert(I, TailMBB);
9247 
9248   // Transfer debug instructions associated with the selects to TailMBB.
9249   for (MachineInstr *DebugInstr : SelectDebugValues) {
9250     TailMBB->push_back(DebugInstr->removeFromParent());
9251   }
9252 
9253   // Move all instructions after the sequence to TailMBB.
9254   TailMBB->splice(TailMBB->end(), HeadMBB,
9255                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
9256   // Update machine-CFG edges by transferring all successors of the current
9257   // block to the new block which will contain the Phi nodes for the selects.
9258   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
9259   // Set the successors for HeadMBB.
9260   HeadMBB->addSuccessor(IfFalseMBB);
9261   HeadMBB->addSuccessor(TailMBB);
9262 
9263   // Insert appropriate branch.
9264   BuildMI(HeadMBB, DL, TII.getBrCond(CC))
9265     .addReg(LHS)
9266     .addReg(RHS)
9267     .addMBB(TailMBB);
9268 
9269   // IfFalseMBB just falls through to TailMBB.
9270   IfFalseMBB->addSuccessor(TailMBB);
9271 
9272   // Create PHIs for all of the select pseudo-instructions.
9273   auto SelectMBBI = MI.getIterator();
9274   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
9275   auto InsertionPoint = TailMBB->begin();
9276   while (SelectMBBI != SelectEnd) {
9277     auto Next = std::next(SelectMBBI);
9278     if (isSelectPseudo(*SelectMBBI)) {
9279       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
9280       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
9281               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
9282           .addReg(SelectMBBI->getOperand(4).getReg())
9283           .addMBB(HeadMBB)
9284           .addReg(SelectMBBI->getOperand(5).getReg())
9285           .addMBB(IfFalseMBB);
9286       SelectMBBI->eraseFromParent();
9287     }
9288     SelectMBBI = Next;
9289   }
9290 
9291   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9292   return TailMBB;
9293 }
9294 
9295 MachineBasicBlock *
9296 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9297                                                  MachineBasicBlock *BB) const {
9298   switch (MI.getOpcode()) {
9299   default:
9300     llvm_unreachable("Unexpected instr type to insert");
9301   case RISCV::ReadCycleWide:
9302     assert(!Subtarget.is64Bit() &&
9303            "ReadCycleWrite is only to be used on riscv32");
9304     return emitReadCycleWidePseudo(MI, BB);
9305   case RISCV::Select_GPR_Using_CC_GPR:
9306   case RISCV::Select_FPR16_Using_CC_GPR:
9307   case RISCV::Select_FPR32_Using_CC_GPR:
9308   case RISCV::Select_FPR64_Using_CC_GPR:
9309     return emitSelectPseudo(MI, BB, Subtarget);
9310   case RISCV::BuildPairF64Pseudo:
9311     return emitBuildPairF64Pseudo(MI, BB);
9312   case RISCV::SplitF64Pseudo:
9313     return emitSplitF64Pseudo(MI, BB);
9314   case RISCV::PseudoQuietFLE_H:
9315     return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
9316   case RISCV::PseudoQuietFLT_H:
9317     return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
9318   case RISCV::PseudoQuietFLE_S:
9319     return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
9320   case RISCV::PseudoQuietFLT_S:
9321     return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
9322   case RISCV::PseudoQuietFLE_D:
9323     return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
9324   case RISCV::PseudoQuietFLT_D:
9325     return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
9326   }
9327 }
9328 
9329 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9330                                                         SDNode *Node) const {
9331   // Add FRM dependency to any instructions with dynamic rounding mode.
9332   unsigned Opc = MI.getOpcode();
9333   auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
9334   if (Idx < 0)
9335     return;
9336   if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
9337     return;
9338   // If the instruction already reads FRM, don't add another read.
9339   if (MI.readsRegister(RISCV::FRM))
9340     return;
9341   MI.addOperand(
9342       MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
9343 }
9344 
9345 // Calling Convention Implementation.
9346 // The expectations for frontend ABI lowering vary from target to target.
9347 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
9348 // details, but this is a longer term goal. For now, we simply try to keep the
9349 // role of the frontend as simple and well-defined as possible. The rules can
9350 // be summarised as:
9351 // * Never split up large scalar arguments. We handle them here.
9352 // * If a hardfloat calling convention is being used, and the struct may be
9353 // passed in a pair of registers (fp+fp, int+fp), and both registers are
9354 // available, then pass as two separate arguments. If either the GPRs or FPRs
9355 // are exhausted, then pass according to the rule below.
9356 // * If a struct could never be passed in registers or directly in a stack
9357 // slot (as it is larger than 2*XLEN and the floating point rules don't
9358 // apply), then pass it using a pointer with the byval attribute.
9359 // * If a struct is less than 2*XLEN, then coerce to either a two-element
9360 // word-sized array or a 2*XLEN scalar (depending on alignment).
9361 // * The frontend can determine whether a struct is returned by reference or
9362 // not based on its size and fields. If it will be returned by reference, the
9363 // frontend must modify the prototype so a pointer with the sret annotation is
9364 // passed as the first argument. This is not necessary for large scalar
9365 // returns.
9366 // * Struct return values and varargs should be coerced to structs containing
9367 // register-size fields in the same situations they would be for fixed
9368 // arguments.
9369 
9370 static const MCPhysReg ArgGPRs[] = {
9371   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
9372   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
9373 };
9374 static const MCPhysReg ArgFPR16s[] = {
9375   RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
9376   RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
9377 };
9378 static const MCPhysReg ArgFPR32s[] = {
9379   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
9380   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
9381 };
9382 static const MCPhysReg ArgFPR64s[] = {
9383   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
9384   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
9385 };
9386 // This is an interim calling convention and it may be changed in the future.
9387 static const MCPhysReg ArgVRs[] = {
9388     RISCV::V8,  RISCV::V9,  RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
9389     RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
9390     RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
9391 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2,  RISCV::V10M2, RISCV::V12M2,
9392                                      RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
9393                                      RISCV::V20M2, RISCV::V22M2};
9394 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
9395                                      RISCV::V20M4};
9396 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
9397 
9398 // Pass a 2*XLEN argument that has been split into two XLEN values through
9399 // registers or the stack as necessary.
9400 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
9401                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
9402                                 MVT ValVT2, MVT LocVT2,
9403                                 ISD::ArgFlagsTy ArgFlags2) {
9404   unsigned XLenInBytes = XLen / 8;
9405   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9406     // At least one half can be passed via register.
9407     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
9408                                      VA1.getLocVT(), CCValAssign::Full));
9409   } else {
9410     // Both halves must be passed on the stack, with proper alignment.
9411     Align StackAlign =
9412         std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
9413     State.addLoc(
9414         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
9415                             State.AllocateStack(XLenInBytes, StackAlign),
9416                             VA1.getLocVT(), CCValAssign::Full));
9417     State.addLoc(CCValAssign::getMem(
9418         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9419         LocVT2, CCValAssign::Full));
9420     return false;
9421   }
9422 
9423   if (Register Reg = State.AllocateReg(ArgGPRs)) {
9424     // The second half can also be passed via register.
9425     State.addLoc(
9426         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
9427   } else {
9428     // The second half is passed via the stack, without additional alignment.
9429     State.addLoc(CCValAssign::getMem(
9430         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
9431         LocVT2, CCValAssign::Full));
9432   }
9433 
9434   return false;
9435 }
9436 
9437 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
9438                                Optional<unsigned> FirstMaskArgument,
9439                                CCState &State, const RISCVTargetLowering &TLI) {
9440   const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
9441   if (RC == &RISCV::VRRegClass) {
9442     // Assign the first mask argument to V0.
9443     // This is an interim calling convention and it may be changed in the
9444     // future.
9445     if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
9446       return State.AllocateReg(RISCV::V0);
9447     return State.AllocateReg(ArgVRs);
9448   }
9449   if (RC == &RISCV::VRM2RegClass)
9450     return State.AllocateReg(ArgVRM2s);
9451   if (RC == &RISCV::VRM4RegClass)
9452     return State.AllocateReg(ArgVRM4s);
9453   if (RC == &RISCV::VRM8RegClass)
9454     return State.AllocateReg(ArgVRM8s);
9455   llvm_unreachable("Unhandled register class for ValueType");
9456 }
9457 
9458 // Implements the RISC-V calling convention. Returns true upon failure.
9459 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
9460                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
9461                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
9462                      bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
9463                      Optional<unsigned> FirstMaskArgument) {
9464   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
9465   assert(XLen == 32 || XLen == 64);
9466   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
9467 
9468   // Any return value split in to more than two values can't be returned
9469   // directly. Vectors are returned via the available vector registers.
9470   if (!LocVT.isVector() && IsRet && ValNo > 1)
9471     return true;
9472 
9473   // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
9474   // variadic argument, or if no F16/F32 argument registers are available.
9475   bool UseGPRForF16_F32 = true;
9476   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
9477   // variadic argument, or if no F64 argument registers are available.
9478   bool UseGPRForF64 = true;
9479 
9480   switch (ABI) {
9481   default:
9482     llvm_unreachable("Unexpected ABI");
9483   case RISCVABI::ABI_ILP32:
9484   case RISCVABI::ABI_LP64:
9485     break;
9486   case RISCVABI::ABI_ILP32F:
9487   case RISCVABI::ABI_LP64F:
9488     UseGPRForF16_F32 = !IsFixed;
9489     break;
9490   case RISCVABI::ABI_ILP32D:
9491   case RISCVABI::ABI_LP64D:
9492     UseGPRForF16_F32 = !IsFixed;
9493     UseGPRForF64 = !IsFixed;
9494     break;
9495   }
9496 
9497   // FPR16, FPR32, and FPR64 alias each other.
9498   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
9499     UseGPRForF16_F32 = true;
9500     UseGPRForF64 = true;
9501   }
9502 
9503   // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
9504   // similar local variables rather than directly checking against the target
9505   // ABI.
9506 
9507   if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
9508     LocVT = XLenVT;
9509     LocInfo = CCValAssign::BCvt;
9510   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
9511     LocVT = MVT::i64;
9512     LocInfo = CCValAssign::BCvt;
9513   }
9514 
9515   // If this is a variadic argument, the RISC-V calling convention requires
9516   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
9517   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
9518   // be used regardless of whether the original argument was split during
9519   // legalisation or not. The argument will not be passed by registers if the
9520   // original type is larger than 2*XLEN, so the register alignment rule does
9521   // not apply.
9522   unsigned TwoXLenInBytes = (2 * XLen) / 8;
9523   if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
9524       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
9525     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
9526     // Skip 'odd' register if necessary.
9527     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
9528       State.AllocateReg(ArgGPRs);
9529   }
9530 
9531   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
9532   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
9533       State.getPendingArgFlags();
9534 
9535   assert(PendingLocs.size() == PendingArgFlags.size() &&
9536          "PendingLocs and PendingArgFlags out of sync");
9537 
9538   // Handle passing f64 on RV32D with a soft float ABI or when floating point
9539   // registers are exhausted.
9540   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
9541     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
9542            "Can't lower f64 if it is split");
9543     // Depending on available argument GPRS, f64 may be passed in a pair of
9544     // GPRs, split between a GPR and the stack, or passed completely on the
9545     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
9546     // cases.
9547     Register Reg = State.AllocateReg(ArgGPRs);
9548     LocVT = MVT::i32;
9549     if (!Reg) {
9550       unsigned StackOffset = State.AllocateStack(8, Align(8));
9551       State.addLoc(
9552           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9553       return false;
9554     }
9555     if (!State.AllocateReg(ArgGPRs))
9556       State.AllocateStack(4, Align(4));
9557     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9558     return false;
9559   }
9560 
9561   // Fixed-length vectors are located in the corresponding scalable-vector
9562   // container types.
9563   if (ValVT.isFixedLengthVector())
9564     LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9565 
9566   // Split arguments might be passed indirectly, so keep track of the pending
9567   // values. Split vectors are passed via a mix of registers and indirectly, so
9568   // treat them as we would any other argument.
9569   if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
9570     LocVT = XLenVT;
9571     LocInfo = CCValAssign::Indirect;
9572     PendingLocs.push_back(
9573         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
9574     PendingArgFlags.push_back(ArgFlags);
9575     if (!ArgFlags.isSplitEnd()) {
9576       return false;
9577     }
9578   }
9579 
9580   // If the split argument only had two elements, it should be passed directly
9581   // in registers or on the stack.
9582   if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
9583       PendingLocs.size() <= 2) {
9584     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
9585     // Apply the normal calling convention rules to the first half of the
9586     // split argument.
9587     CCValAssign VA = PendingLocs[0];
9588     ISD::ArgFlagsTy AF = PendingArgFlags[0];
9589     PendingLocs.clear();
9590     PendingArgFlags.clear();
9591     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
9592                                ArgFlags);
9593   }
9594 
9595   // Allocate to a register if possible, or else a stack slot.
9596   Register Reg;
9597   unsigned StoreSizeBytes = XLen / 8;
9598   Align StackAlign = Align(XLen / 8);
9599 
9600   if (ValVT == MVT::f16 && !UseGPRForF16_F32)
9601     Reg = State.AllocateReg(ArgFPR16s);
9602   else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
9603     Reg = State.AllocateReg(ArgFPR32s);
9604   else if (ValVT == MVT::f64 && !UseGPRForF64)
9605     Reg = State.AllocateReg(ArgFPR64s);
9606   else if (ValVT.isVector()) {
9607     Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
9608     if (!Reg) {
9609       // For return values, the vector must be passed fully via registers or
9610       // via the stack.
9611       // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
9612       // but we're using all of them.
9613       if (IsRet)
9614         return true;
9615       // Try using a GPR to pass the address
9616       if ((Reg = State.AllocateReg(ArgGPRs))) {
9617         LocVT = XLenVT;
9618         LocInfo = CCValAssign::Indirect;
9619       } else if (ValVT.isScalableVector()) {
9620         LocVT = XLenVT;
9621         LocInfo = CCValAssign::Indirect;
9622       } else {
9623         // Pass fixed-length vectors on the stack.
9624         LocVT = ValVT;
9625         StoreSizeBytes = ValVT.getStoreSize();
9626         // Align vectors to their element sizes, being careful for vXi1
9627         // vectors.
9628         StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9629       }
9630     }
9631   } else {
9632     Reg = State.AllocateReg(ArgGPRs);
9633   }
9634 
9635   unsigned StackOffset =
9636       Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
9637 
9638   // If we reach this point and PendingLocs is non-empty, we must be at the
9639   // end of a split argument that must be passed indirectly.
9640   if (!PendingLocs.empty()) {
9641     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
9642     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
9643 
9644     for (auto &It : PendingLocs) {
9645       if (Reg)
9646         It.convertToReg(Reg);
9647       else
9648         It.convertToMem(StackOffset);
9649       State.addLoc(It);
9650     }
9651     PendingLocs.clear();
9652     PendingArgFlags.clear();
9653     return false;
9654   }
9655 
9656   assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
9657           (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
9658          "Expected an XLenVT or vector types at this stage");
9659 
9660   if (Reg) {
9661     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9662     return false;
9663   }
9664 
9665   // When a floating-point value is passed on the stack, no bit-conversion is
9666   // needed.
9667   if (ValVT.isFloatingPoint()) {
9668     LocVT = ValVT;
9669     LocInfo = CCValAssign::Full;
9670   }
9671   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9672   return false;
9673 }
9674 
9675 template <typename ArgTy>
9676 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
9677   for (const auto &ArgIdx : enumerate(Args)) {
9678     MVT ArgVT = ArgIdx.value().VT;
9679     if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
9680       return ArgIdx.index();
9681   }
9682   return None;
9683 }
9684 
9685 void RISCVTargetLowering::analyzeInputArgs(
9686     MachineFunction &MF, CCState &CCInfo,
9687     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
9688     RISCVCCAssignFn Fn) const {
9689   unsigned NumArgs = Ins.size();
9690   FunctionType *FType = MF.getFunction().getFunctionType();
9691 
9692   Optional<unsigned> FirstMaskArgument;
9693   if (Subtarget.hasVInstructions())
9694     FirstMaskArgument = preAssignMask(Ins);
9695 
9696   for (unsigned i = 0; i != NumArgs; ++i) {
9697     MVT ArgVT = Ins[i].VT;
9698     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
9699 
9700     Type *ArgTy = nullptr;
9701     if (IsRet)
9702       ArgTy = FType->getReturnType();
9703     else if (Ins[i].isOrigArg())
9704       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
9705 
9706     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9707     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9708            ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
9709            FirstMaskArgument)) {
9710       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
9711                         << EVT(ArgVT).getEVTString() << '\n');
9712       llvm_unreachable(nullptr);
9713     }
9714   }
9715 }
9716 
9717 void RISCVTargetLowering::analyzeOutputArgs(
9718     MachineFunction &MF, CCState &CCInfo,
9719     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
9720     CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
9721   unsigned NumArgs = Outs.size();
9722 
9723   Optional<unsigned> FirstMaskArgument;
9724   if (Subtarget.hasVInstructions())
9725     FirstMaskArgument = preAssignMask(Outs);
9726 
9727   for (unsigned i = 0; i != NumArgs; i++) {
9728     MVT ArgVT = Outs[i].VT;
9729     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
9730     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
9731 
9732     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
9733     if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
9734            ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
9735            FirstMaskArgument)) {
9736       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
9737                         << EVT(ArgVT).getEVTString() << "\n");
9738       llvm_unreachable(nullptr);
9739     }
9740   }
9741 }
9742 
9743 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
9744 // values.
9745 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
9746                                    const CCValAssign &VA, const SDLoc &DL,
9747                                    const RISCVSubtarget &Subtarget) {
9748   switch (VA.getLocInfo()) {
9749   default:
9750     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9751   case CCValAssign::Full:
9752     if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
9753       Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
9754     break;
9755   case CCValAssign::BCvt:
9756     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9757       Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
9758     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9759       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
9760     else
9761       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
9762     break;
9763   }
9764   return Val;
9765 }
9766 
9767 // The caller is responsible for loading the full value if the argument is
9768 // passed with CCValAssign::Indirect.
9769 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
9770                                 const CCValAssign &VA, const SDLoc &DL,
9771                                 const RISCVTargetLowering &TLI) {
9772   MachineFunction &MF = DAG.getMachineFunction();
9773   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9774   EVT LocVT = VA.getLocVT();
9775   SDValue Val;
9776   const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
9777   Register VReg = RegInfo.createVirtualRegister(RC);
9778   RegInfo.addLiveIn(VA.getLocReg(), VReg);
9779   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
9780 
9781   if (VA.getLocInfo() == CCValAssign::Indirect)
9782     return Val;
9783 
9784   return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
9785 }
9786 
9787 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
9788                                    const CCValAssign &VA, const SDLoc &DL,
9789                                    const RISCVSubtarget &Subtarget) {
9790   EVT LocVT = VA.getLocVT();
9791 
9792   switch (VA.getLocInfo()) {
9793   default:
9794     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9795   case CCValAssign::Full:
9796     if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
9797       Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
9798     break;
9799   case CCValAssign::BCvt:
9800     if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
9801       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
9802     else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
9803       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
9804     else
9805       Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
9806     break;
9807   }
9808   return Val;
9809 }
9810 
9811 // The caller is responsible for loading the full value if the argument is
9812 // passed with CCValAssign::Indirect.
9813 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
9814                                 const CCValAssign &VA, const SDLoc &DL) {
9815   MachineFunction &MF = DAG.getMachineFunction();
9816   MachineFrameInfo &MFI = MF.getFrameInfo();
9817   EVT LocVT = VA.getLocVT();
9818   EVT ValVT = VA.getValVT();
9819   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
9820   if (ValVT.isScalableVector()) {
9821     // When the value is a scalable vector, we save the pointer which points to
9822     // the scalable vector value in the stack. The ValVT will be the pointer
9823     // type, instead of the scalable vector type.
9824     ValVT = LocVT;
9825   }
9826   int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
9827                                  /*IsImmutable=*/true);
9828   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
9829   SDValue Val;
9830 
9831   ISD::LoadExtType ExtType;
9832   switch (VA.getLocInfo()) {
9833   default:
9834     llvm_unreachable("Unexpected CCValAssign::LocInfo");
9835   case CCValAssign::Full:
9836   case CCValAssign::Indirect:
9837   case CCValAssign::BCvt:
9838     ExtType = ISD::NON_EXTLOAD;
9839     break;
9840   }
9841   Val = DAG.getExtLoad(
9842       ExtType, DL, LocVT, Chain, FIN,
9843       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
9844   return Val;
9845 }
9846 
9847 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
9848                                        const CCValAssign &VA, const SDLoc &DL) {
9849   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
9850          "Unexpected VA");
9851   MachineFunction &MF = DAG.getMachineFunction();
9852   MachineFrameInfo &MFI = MF.getFrameInfo();
9853   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9854 
9855   if (VA.isMemLoc()) {
9856     // f64 is passed on the stack.
9857     int FI =
9858         MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
9859     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9860     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
9861                        MachinePointerInfo::getFixedStack(MF, FI));
9862   }
9863 
9864   assert(VA.isRegLoc() && "Expected register VA assignment");
9865 
9866   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9867   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
9868   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
9869   SDValue Hi;
9870   if (VA.getLocReg() == RISCV::X17) {
9871     // Second half of f64 is passed on the stack.
9872     int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
9873     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
9874     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
9875                      MachinePointerInfo::getFixedStack(MF, FI));
9876   } else {
9877     // Second half of f64 is passed in another GPR.
9878     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9879     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
9880     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
9881   }
9882   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
9883 }
9884 
9885 // FastCC has less than 1% performance improvement for some particular
9886 // benchmark. But theoretically, it may has benenfit for some cases.
9887 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
9888                             unsigned ValNo, MVT ValVT, MVT LocVT,
9889                             CCValAssign::LocInfo LocInfo,
9890                             ISD::ArgFlagsTy ArgFlags, CCState &State,
9891                             bool IsFixed, bool IsRet, Type *OrigTy,
9892                             const RISCVTargetLowering &TLI,
9893                             Optional<unsigned> FirstMaskArgument) {
9894 
9895   // X5 and X6 might be used for save-restore libcall.
9896   static const MCPhysReg GPRList[] = {
9897       RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
9898       RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
9899       RISCV::X29, RISCV::X30, RISCV::X31};
9900 
9901   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9902     if (unsigned Reg = State.AllocateReg(GPRList)) {
9903       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9904       return false;
9905     }
9906   }
9907 
9908   if (LocVT == MVT::f16) {
9909     static const MCPhysReg FPR16List[] = {
9910         RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
9911         RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H,  RISCV::F1_H,
9912         RISCV::F2_H,  RISCV::F3_H,  RISCV::F4_H,  RISCV::F5_H,  RISCV::F6_H,
9913         RISCV::F7_H,  RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
9914     if (unsigned Reg = State.AllocateReg(FPR16List)) {
9915       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9916       return false;
9917     }
9918   }
9919 
9920   if (LocVT == MVT::f32) {
9921     static const MCPhysReg FPR32List[] = {
9922         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
9923         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
9924         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
9925         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
9926     if (unsigned Reg = State.AllocateReg(FPR32List)) {
9927       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9928       return false;
9929     }
9930   }
9931 
9932   if (LocVT == MVT::f64) {
9933     static const MCPhysReg FPR64List[] = {
9934         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
9935         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
9936         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
9937         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
9938     if (unsigned Reg = State.AllocateReg(FPR64List)) {
9939       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9940       return false;
9941     }
9942   }
9943 
9944   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
9945     unsigned Offset4 = State.AllocateStack(4, Align(4));
9946     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
9947     return false;
9948   }
9949 
9950   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
9951     unsigned Offset5 = State.AllocateStack(8, Align(8));
9952     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
9953     return false;
9954   }
9955 
9956   if (LocVT.isVector()) {
9957     if (unsigned Reg =
9958             allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
9959       // Fixed-length vectors are located in the corresponding scalable-vector
9960       // container types.
9961       if (ValVT.isFixedLengthVector())
9962         LocVT = TLI.getContainerForFixedLengthVector(LocVT);
9963       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
9964     } else {
9965       // Try and pass the address via a "fast" GPR.
9966       if (unsigned GPRReg = State.AllocateReg(GPRList)) {
9967         LocInfo = CCValAssign::Indirect;
9968         LocVT = TLI.getSubtarget().getXLenVT();
9969         State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
9970       } else if (ValVT.isFixedLengthVector()) {
9971         auto StackAlign =
9972             MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
9973         unsigned StackOffset =
9974             State.AllocateStack(ValVT.getStoreSize(), StackAlign);
9975         State.addLoc(
9976             CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
9977       } else {
9978         // Can't pass scalable vectors on the stack.
9979         return true;
9980       }
9981     }
9982 
9983     return false;
9984   }
9985 
9986   return true; // CC didn't match.
9987 }
9988 
9989 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
9990                          CCValAssign::LocInfo LocInfo,
9991                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
9992 
9993   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
9994     // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
9995     //                        s1    s2  s3  s4  s5  s6  s7  s8  s9  s10 s11
9996     static const MCPhysReg GPRList[] = {
9997         RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
9998         RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
9999     if (unsigned Reg = State.AllocateReg(GPRList)) {
10000       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10001       return false;
10002     }
10003   }
10004 
10005   if (LocVT == MVT::f32) {
10006     // Pass in STG registers: F1, ..., F6
10007     //                        fs0 ... fs5
10008     static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10009                                           RISCV::F18_F, RISCV::F19_F,
10010                                           RISCV::F20_F, RISCV::F21_F};
10011     if (unsigned Reg = State.AllocateReg(FPR32List)) {
10012       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10013       return false;
10014     }
10015   }
10016 
10017   if (LocVT == MVT::f64) {
10018     // Pass in STG registers: D1, ..., D6
10019     //                        fs6 ... fs11
10020     static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10021                                           RISCV::F24_D, RISCV::F25_D,
10022                                           RISCV::F26_D, RISCV::F27_D};
10023     if (unsigned Reg = State.AllocateReg(FPR64List)) {
10024       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10025       return false;
10026     }
10027   }
10028 
10029   report_fatal_error("No registers left in GHC calling convention");
10030   return true;
10031 }
10032 
10033 // Transform physical registers into virtual registers.
10034 SDValue RISCVTargetLowering::LowerFormalArguments(
10035     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10036     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10037     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10038 
10039   MachineFunction &MF = DAG.getMachineFunction();
10040 
10041   switch (CallConv) {
10042   default:
10043     report_fatal_error("Unsupported calling convention");
10044   case CallingConv::C:
10045   case CallingConv::Fast:
10046     break;
10047   case CallingConv::GHC:
10048     if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10049         !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10050       report_fatal_error(
10051         "GHC calling convention requires the F and D instruction set extensions");
10052   }
10053 
10054   const Function &Func = MF.getFunction();
10055   if (Func.hasFnAttribute("interrupt")) {
10056     if (!Func.arg_empty())
10057       report_fatal_error(
10058         "Functions with the interrupt attribute cannot have arguments!");
10059 
10060     StringRef Kind =
10061       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10062 
10063     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10064       report_fatal_error(
10065         "Function interrupt attribute argument not supported!");
10066   }
10067 
10068   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10069   MVT XLenVT = Subtarget.getXLenVT();
10070   unsigned XLenInBytes = Subtarget.getXLen() / 8;
10071   // Used with vargs to acumulate store chains.
10072   std::vector<SDValue> OutChains;
10073 
10074   // Assign locations to all of the incoming arguments.
10075   SmallVector<CCValAssign, 16> ArgLocs;
10076   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10077 
10078   if (CallConv == CallingConv::GHC)
10079     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10080   else
10081     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10082                      CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10083                                                    : CC_RISCV);
10084 
10085   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10086     CCValAssign &VA = ArgLocs[i];
10087     SDValue ArgValue;
10088     // Passing f64 on RV32D with a soft float ABI must be handled as a special
10089     // case.
10090     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10091       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10092     else if (VA.isRegLoc())
10093       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10094     else
10095       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10096 
10097     if (VA.getLocInfo() == CCValAssign::Indirect) {
10098       // If the original argument was split and passed by reference (e.g. i128
10099       // on RV32), we need to load all parts of it here (using the same
10100       // address). Vectors may be partly split to registers and partly to the
10101       // stack, in which case the base address is partly offset and subsequent
10102       // stores are relative to that.
10103       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10104                                    MachinePointerInfo()));
10105       unsigned ArgIndex = Ins[i].OrigArgIndex;
10106       unsigned ArgPartOffset = Ins[i].PartOffset;
10107       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10108       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10109         CCValAssign &PartVA = ArgLocs[i + 1];
10110         unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10111         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10112         if (PartVA.getValVT().isScalableVector())
10113           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10114         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
10115         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
10116                                      MachinePointerInfo()));
10117         ++i;
10118       }
10119       continue;
10120     }
10121     InVals.push_back(ArgValue);
10122   }
10123 
10124   if (IsVarArg) {
10125     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
10126     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
10127     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
10128     MachineFrameInfo &MFI = MF.getFrameInfo();
10129     MachineRegisterInfo &RegInfo = MF.getRegInfo();
10130     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
10131 
10132     // Offset of the first variable argument from stack pointer, and size of
10133     // the vararg save area. For now, the varargs save area is either zero or
10134     // large enough to hold a0-a7.
10135     int VaArgOffset, VarArgsSaveSize;
10136 
10137     // If all registers are allocated, then all varargs must be passed on the
10138     // stack and we don't need to save any argregs.
10139     if (ArgRegs.size() == Idx) {
10140       VaArgOffset = CCInfo.getNextStackOffset();
10141       VarArgsSaveSize = 0;
10142     } else {
10143       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
10144       VaArgOffset = -VarArgsSaveSize;
10145     }
10146 
10147     // Record the frame index of the first variable argument
10148     // which is a value necessary to VASTART.
10149     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10150     RVFI->setVarArgsFrameIndex(FI);
10151 
10152     // If saving an odd number of registers then create an extra stack slot to
10153     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
10154     // offsets to even-numbered registered remain 2*XLEN-aligned.
10155     if (Idx % 2) {
10156       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
10157       VarArgsSaveSize += XLenInBytes;
10158     }
10159 
10160     // Copy the integer registers that may have been used for passing varargs
10161     // to the vararg save area.
10162     for (unsigned I = Idx; I < ArgRegs.size();
10163          ++I, VaArgOffset += XLenInBytes) {
10164       const Register Reg = RegInfo.createVirtualRegister(RC);
10165       RegInfo.addLiveIn(ArgRegs[I], Reg);
10166       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
10167       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
10168       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10169       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
10170                                    MachinePointerInfo::getFixedStack(MF, FI));
10171       cast<StoreSDNode>(Store.getNode())
10172           ->getMemOperand()
10173           ->setValue((Value *)nullptr);
10174       OutChains.push_back(Store);
10175     }
10176     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
10177   }
10178 
10179   // All stores are grouped in one node to allow the matching between
10180   // the size of Ins and InVals. This only happens for vararg functions.
10181   if (!OutChains.empty()) {
10182     OutChains.push_back(Chain);
10183     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
10184   }
10185 
10186   return Chain;
10187 }
10188 
10189 /// isEligibleForTailCallOptimization - Check whether the call is eligible
10190 /// for tail call optimization.
10191 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
10192 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
10193     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
10194     const SmallVector<CCValAssign, 16> &ArgLocs) const {
10195 
10196   auto &Callee = CLI.Callee;
10197   auto CalleeCC = CLI.CallConv;
10198   auto &Outs = CLI.Outs;
10199   auto &Caller = MF.getFunction();
10200   auto CallerCC = Caller.getCallingConv();
10201 
10202   // Exception-handling functions need a special set of instructions to
10203   // indicate a return to the hardware. Tail-calling another function would
10204   // probably break this.
10205   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
10206   // should be expanded as new function attributes are introduced.
10207   if (Caller.hasFnAttribute("interrupt"))
10208     return false;
10209 
10210   // Do not tail call opt if the stack is used to pass parameters.
10211   if (CCInfo.getNextStackOffset() != 0)
10212     return false;
10213 
10214   // Do not tail call opt if any parameters need to be passed indirectly.
10215   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
10216   // passed indirectly. So the address of the value will be passed in a
10217   // register, or if not available, then the address is put on the stack. In
10218   // order to pass indirectly, space on the stack often needs to be allocated
10219   // in order to store the value. In this case the CCInfo.getNextStackOffset()
10220   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
10221   // are passed CCValAssign::Indirect.
10222   for (auto &VA : ArgLocs)
10223     if (VA.getLocInfo() == CCValAssign::Indirect)
10224       return false;
10225 
10226   // Do not tail call opt if either caller or callee uses struct return
10227   // semantics.
10228   auto IsCallerStructRet = Caller.hasStructRetAttr();
10229   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
10230   if (IsCallerStructRet || IsCalleeStructRet)
10231     return false;
10232 
10233   // Externally-defined functions with weak linkage should not be
10234   // tail-called. The behaviour of branch instructions in this situation (as
10235   // used for tail calls) is implementation-defined, so we cannot rely on the
10236   // linker replacing the tail call with a return.
10237   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
10238     const GlobalValue *GV = G->getGlobal();
10239     if (GV->hasExternalWeakLinkage())
10240       return false;
10241   }
10242 
10243   // The callee has to preserve all registers the caller needs to preserve.
10244   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10245   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
10246   if (CalleeCC != CallerCC) {
10247     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
10248     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
10249       return false;
10250   }
10251 
10252   // Byval parameters hand the function a pointer directly into the stack area
10253   // we want to reuse during a tail call. Working around this *is* possible
10254   // but less efficient and uglier in LowerCall.
10255   for (auto &Arg : Outs)
10256     if (Arg.Flags.isByVal())
10257       return false;
10258 
10259   return true;
10260 }
10261 
10262 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
10263   return DAG.getDataLayout().getPrefTypeAlign(
10264       VT.getTypeForEVT(*DAG.getContext()));
10265 }
10266 
10267 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
10268 // and output parameter nodes.
10269 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
10270                                        SmallVectorImpl<SDValue> &InVals) const {
10271   SelectionDAG &DAG = CLI.DAG;
10272   SDLoc &DL = CLI.DL;
10273   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
10274   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
10275   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
10276   SDValue Chain = CLI.Chain;
10277   SDValue Callee = CLI.Callee;
10278   bool &IsTailCall = CLI.IsTailCall;
10279   CallingConv::ID CallConv = CLI.CallConv;
10280   bool IsVarArg = CLI.IsVarArg;
10281   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10282   MVT XLenVT = Subtarget.getXLenVT();
10283 
10284   MachineFunction &MF = DAG.getMachineFunction();
10285 
10286   // Analyze the operands of the call, assigning locations to each operand.
10287   SmallVector<CCValAssign, 16> ArgLocs;
10288   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10289 
10290   if (CallConv == CallingConv::GHC)
10291     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
10292   else
10293     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
10294                       CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10295                                                     : CC_RISCV);
10296 
10297   // Check if it's really possible to do a tail call.
10298   if (IsTailCall)
10299     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
10300 
10301   if (IsTailCall)
10302     ++NumTailCalls;
10303   else if (CLI.CB && CLI.CB->isMustTailCall())
10304     report_fatal_error("failed to perform tail call elimination on a call "
10305                        "site marked musttail");
10306 
10307   // Get a count of how many bytes are to be pushed on the stack.
10308   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
10309 
10310   // Create local copies for byval args
10311   SmallVector<SDValue, 8> ByValArgs;
10312   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10313     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10314     if (!Flags.isByVal())
10315       continue;
10316 
10317     SDValue Arg = OutVals[i];
10318     unsigned Size = Flags.getByValSize();
10319     Align Alignment = Flags.getNonZeroByValAlign();
10320 
10321     int FI =
10322         MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
10323     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
10324     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
10325 
10326     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
10327                           /*IsVolatile=*/false,
10328                           /*AlwaysInline=*/false, IsTailCall,
10329                           MachinePointerInfo(), MachinePointerInfo());
10330     ByValArgs.push_back(FIPtr);
10331   }
10332 
10333   if (!IsTailCall)
10334     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
10335 
10336   // Copy argument values to their designated locations.
10337   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
10338   SmallVector<SDValue, 8> MemOpChains;
10339   SDValue StackPtr;
10340   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
10341     CCValAssign &VA = ArgLocs[i];
10342     SDValue ArgValue = OutVals[i];
10343     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10344 
10345     // Handle passing f64 on RV32D with a soft float ABI as a special case.
10346     bool IsF64OnRV32DSoftABI =
10347         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
10348     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
10349       SDValue SplitF64 = DAG.getNode(
10350           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
10351       SDValue Lo = SplitF64.getValue(0);
10352       SDValue Hi = SplitF64.getValue(1);
10353 
10354       Register RegLo = VA.getLocReg();
10355       RegsToPass.push_back(std::make_pair(RegLo, Lo));
10356 
10357       if (RegLo == RISCV::X17) {
10358         // Second half of f64 is passed on the stack.
10359         // Work out the address of the stack slot.
10360         if (!StackPtr.getNode())
10361           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10362         // Emit the store.
10363         MemOpChains.push_back(
10364             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
10365       } else {
10366         // Second half of f64 is passed in another GPR.
10367         assert(RegLo < RISCV::X31 && "Invalid register pair");
10368         Register RegHigh = RegLo + 1;
10369         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
10370       }
10371       continue;
10372     }
10373 
10374     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
10375     // as any other MemLoc.
10376 
10377     // Promote the value if needed.
10378     // For now, only handle fully promoted and indirect arguments.
10379     if (VA.getLocInfo() == CCValAssign::Indirect) {
10380       // Store the argument in a stack slot and pass its address.
10381       Align StackAlign =
10382           std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
10383                    getPrefTypeAlign(ArgValue.getValueType(), DAG));
10384       TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
10385       // If the original argument was split (e.g. i128), we need
10386       // to store the required parts of it here (and pass just one address).
10387       // Vectors may be partly split to registers and partly to the stack, in
10388       // which case the base address is partly offset and subsequent stores are
10389       // relative to that.
10390       unsigned ArgIndex = Outs[i].OrigArgIndex;
10391       unsigned ArgPartOffset = Outs[i].PartOffset;
10392       assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10393       // Calculate the total size to store. We don't have access to what we're
10394       // actually storing other than performing the loop and collecting the
10395       // info.
10396       SmallVector<std::pair<SDValue, SDValue>> Parts;
10397       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
10398         SDValue PartValue = OutVals[i + 1];
10399         unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
10400         SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10401         EVT PartVT = PartValue.getValueType();
10402         if (PartVT.isScalableVector())
10403           Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
10404         StoredSize += PartVT.getStoreSize();
10405         StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
10406         Parts.push_back(std::make_pair(PartValue, Offset));
10407         ++i;
10408       }
10409       SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
10410       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
10411       MemOpChains.push_back(
10412           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
10413                        MachinePointerInfo::getFixedStack(MF, FI)));
10414       for (const auto &Part : Parts) {
10415         SDValue PartValue = Part.first;
10416         SDValue PartOffset = Part.second;
10417         SDValue Address =
10418             DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
10419         MemOpChains.push_back(
10420             DAG.getStore(Chain, DL, PartValue, Address,
10421                          MachinePointerInfo::getFixedStack(MF, FI)));
10422       }
10423       ArgValue = SpillSlot;
10424     } else {
10425       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
10426     }
10427 
10428     // Use local copy if it is a byval arg.
10429     if (Flags.isByVal())
10430       ArgValue = ByValArgs[j++];
10431 
10432     if (VA.isRegLoc()) {
10433       // Queue up the argument copies and emit them at the end.
10434       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
10435     } else {
10436       assert(VA.isMemLoc() && "Argument not register or memory");
10437       assert(!IsTailCall && "Tail call not allowed if stack is used "
10438                             "for passing parameters");
10439 
10440       // Work out the address of the stack slot.
10441       if (!StackPtr.getNode())
10442         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
10443       SDValue Address =
10444           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
10445                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
10446 
10447       // Emit the store.
10448       MemOpChains.push_back(
10449           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
10450     }
10451   }
10452 
10453   // Join the stores, which are independent of one another.
10454   if (!MemOpChains.empty())
10455     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
10456 
10457   SDValue Glue;
10458 
10459   // Build a sequence of copy-to-reg nodes, chained and glued together.
10460   for (auto &Reg : RegsToPass) {
10461     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
10462     Glue = Chain.getValue(1);
10463   }
10464 
10465   // Validate that none of the argument registers have been marked as
10466   // reserved, if so report an error. Do the same for the return address if this
10467   // is not a tailcall.
10468   validateCCReservedRegs(RegsToPass, MF);
10469   if (!IsTailCall &&
10470       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
10471     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10472         MF.getFunction(),
10473         "Return address register required, but has been reserved."});
10474 
10475   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
10476   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
10477   // split it and then direct call can be matched by PseudoCALL.
10478   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
10479     const GlobalValue *GV = S->getGlobal();
10480 
10481     unsigned OpFlags = RISCVII::MO_CALL;
10482     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
10483       OpFlags = RISCVII::MO_PLT;
10484 
10485     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
10486   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
10487     unsigned OpFlags = RISCVII::MO_CALL;
10488 
10489     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
10490                                                  nullptr))
10491       OpFlags = RISCVII::MO_PLT;
10492 
10493     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
10494   }
10495 
10496   // The first call operand is the chain and the second is the target address.
10497   SmallVector<SDValue, 8> Ops;
10498   Ops.push_back(Chain);
10499   Ops.push_back(Callee);
10500 
10501   // Add argument registers to the end of the list so that they are
10502   // known live into the call.
10503   for (auto &Reg : RegsToPass)
10504     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
10505 
10506   if (!IsTailCall) {
10507     // Add a register mask operand representing the call-preserved registers.
10508     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
10509     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
10510     assert(Mask && "Missing call preserved mask for calling convention");
10511     Ops.push_back(DAG.getRegisterMask(Mask));
10512   }
10513 
10514   // Glue the call to the argument copies, if any.
10515   if (Glue.getNode())
10516     Ops.push_back(Glue);
10517 
10518   // Emit the call.
10519   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10520 
10521   if (IsTailCall) {
10522     MF.getFrameInfo().setHasTailCall();
10523     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
10524   }
10525 
10526   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
10527   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
10528   Glue = Chain.getValue(1);
10529 
10530   // Mark the end of the call, which is glued to the call itself.
10531   Chain = DAG.getCALLSEQ_END(Chain,
10532                              DAG.getConstant(NumBytes, DL, PtrVT, true),
10533                              DAG.getConstant(0, DL, PtrVT, true),
10534                              Glue, DL);
10535   Glue = Chain.getValue(1);
10536 
10537   // Assign locations to each value returned by this call.
10538   SmallVector<CCValAssign, 16> RVLocs;
10539   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
10540   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
10541 
10542   // Copy all of the result registers out of their specified physreg.
10543   for (auto &VA : RVLocs) {
10544     // Copy the value out
10545     SDValue RetValue =
10546         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
10547     // Glue the RetValue to the end of the call sequence
10548     Chain = RetValue.getValue(1);
10549     Glue = RetValue.getValue(2);
10550 
10551     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10552       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
10553       SDValue RetValue2 =
10554           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
10555       Chain = RetValue2.getValue(1);
10556       Glue = RetValue2.getValue(2);
10557       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
10558                              RetValue2);
10559     }
10560 
10561     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
10562 
10563     InVals.push_back(RetValue);
10564   }
10565 
10566   return Chain;
10567 }
10568 
10569 bool RISCVTargetLowering::CanLowerReturn(
10570     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
10571     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
10572   SmallVector<CCValAssign, 16> RVLocs;
10573   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
10574 
10575   Optional<unsigned> FirstMaskArgument;
10576   if (Subtarget.hasVInstructions())
10577     FirstMaskArgument = preAssignMask(Outs);
10578 
10579   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
10580     MVT VT = Outs[i].VT;
10581     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10582     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10583     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
10584                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
10585                  *this, FirstMaskArgument))
10586       return false;
10587   }
10588   return true;
10589 }
10590 
10591 SDValue
10592 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
10593                                  bool IsVarArg,
10594                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
10595                                  const SmallVectorImpl<SDValue> &OutVals,
10596                                  const SDLoc &DL, SelectionDAG &DAG) const {
10597   const MachineFunction &MF = DAG.getMachineFunction();
10598   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10599 
10600   // Stores the assignment of the return value to a location.
10601   SmallVector<CCValAssign, 16> RVLocs;
10602 
10603   // Info about the registers and stack slot.
10604   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
10605                  *DAG.getContext());
10606 
10607   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
10608                     nullptr, CC_RISCV);
10609 
10610   if (CallConv == CallingConv::GHC && !RVLocs.empty())
10611     report_fatal_error("GHC functions return void only");
10612 
10613   SDValue Glue;
10614   SmallVector<SDValue, 4> RetOps(1, Chain);
10615 
10616   // Copy the result values into the output registers.
10617   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
10618     SDValue Val = OutVals[i];
10619     CCValAssign &VA = RVLocs[i];
10620     assert(VA.isRegLoc() && "Can only return in registers!");
10621 
10622     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
10623       // Handle returning f64 on RV32D with a soft float ABI.
10624       assert(VA.isRegLoc() && "Expected return via registers");
10625       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
10626                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
10627       SDValue Lo = SplitF64.getValue(0);
10628       SDValue Hi = SplitF64.getValue(1);
10629       Register RegLo = VA.getLocReg();
10630       assert(RegLo < RISCV::X31 && "Invalid register pair");
10631       Register RegHi = RegLo + 1;
10632 
10633       if (STI.isRegisterReservedByUser(RegLo) ||
10634           STI.isRegisterReservedByUser(RegHi))
10635         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10636             MF.getFunction(),
10637             "Return value register required, but has been reserved."});
10638 
10639       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
10640       Glue = Chain.getValue(1);
10641       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
10642       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
10643       Glue = Chain.getValue(1);
10644       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
10645     } else {
10646       // Handle a 'normal' return.
10647       Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
10648       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
10649 
10650       if (STI.isRegisterReservedByUser(VA.getLocReg()))
10651         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
10652             MF.getFunction(),
10653             "Return value register required, but has been reserved."});
10654 
10655       // Guarantee that all emitted copies are stuck together.
10656       Glue = Chain.getValue(1);
10657       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
10658     }
10659   }
10660 
10661   RetOps[0] = Chain; // Update chain.
10662 
10663   // Add the glue node if we have it.
10664   if (Glue.getNode()) {
10665     RetOps.push_back(Glue);
10666   }
10667 
10668   unsigned RetOpc = RISCVISD::RET_FLAG;
10669   // Interrupt service routines use different return instructions.
10670   const Function &Func = DAG.getMachineFunction().getFunction();
10671   if (Func.hasFnAttribute("interrupt")) {
10672     if (!Func.getReturnType()->isVoidTy())
10673       report_fatal_error(
10674           "Functions with the interrupt attribute must have void return type!");
10675 
10676     MachineFunction &MF = DAG.getMachineFunction();
10677     StringRef Kind =
10678       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10679 
10680     if (Kind == "user")
10681       RetOpc = RISCVISD::URET_FLAG;
10682     else if (Kind == "supervisor")
10683       RetOpc = RISCVISD::SRET_FLAG;
10684     else
10685       RetOpc = RISCVISD::MRET_FLAG;
10686   }
10687 
10688   return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
10689 }
10690 
10691 void RISCVTargetLowering::validateCCReservedRegs(
10692     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
10693     MachineFunction &MF) const {
10694   const Function &F = MF.getFunction();
10695   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
10696 
10697   if (llvm::any_of(Regs, [&STI](auto Reg) {
10698         return STI.isRegisterReservedByUser(Reg.first);
10699       }))
10700     F.getContext().diagnose(DiagnosticInfoUnsupported{
10701         F, "Argument register required, but has been reserved."});
10702 }
10703 
10704 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
10705   return CI->isTailCall();
10706 }
10707 
10708 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
10709 #define NODE_NAME_CASE(NODE)                                                   \
10710   case RISCVISD::NODE:                                                         \
10711     return "RISCVISD::" #NODE;
10712   // clang-format off
10713   switch ((RISCVISD::NodeType)Opcode) {
10714   case RISCVISD::FIRST_NUMBER:
10715     break;
10716   NODE_NAME_CASE(RET_FLAG)
10717   NODE_NAME_CASE(URET_FLAG)
10718   NODE_NAME_CASE(SRET_FLAG)
10719   NODE_NAME_CASE(MRET_FLAG)
10720   NODE_NAME_CASE(CALL)
10721   NODE_NAME_CASE(SELECT_CC)
10722   NODE_NAME_CASE(BR_CC)
10723   NODE_NAME_CASE(BuildPairF64)
10724   NODE_NAME_CASE(SplitF64)
10725   NODE_NAME_CASE(TAIL)
10726   NODE_NAME_CASE(MULHSU)
10727   NODE_NAME_CASE(SLLW)
10728   NODE_NAME_CASE(SRAW)
10729   NODE_NAME_CASE(SRLW)
10730   NODE_NAME_CASE(DIVW)
10731   NODE_NAME_CASE(DIVUW)
10732   NODE_NAME_CASE(REMUW)
10733   NODE_NAME_CASE(ROLW)
10734   NODE_NAME_CASE(RORW)
10735   NODE_NAME_CASE(CLZW)
10736   NODE_NAME_CASE(CTZW)
10737   NODE_NAME_CASE(FSLW)
10738   NODE_NAME_CASE(FSRW)
10739   NODE_NAME_CASE(FSL)
10740   NODE_NAME_CASE(FSR)
10741   NODE_NAME_CASE(FMV_H_X)
10742   NODE_NAME_CASE(FMV_X_ANYEXTH)
10743   NODE_NAME_CASE(FMV_X_SIGNEXTH)
10744   NODE_NAME_CASE(FMV_W_X_RV64)
10745   NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
10746   NODE_NAME_CASE(FCVT_X)
10747   NODE_NAME_CASE(FCVT_XU)
10748   NODE_NAME_CASE(FCVT_W_RV64)
10749   NODE_NAME_CASE(FCVT_WU_RV64)
10750   NODE_NAME_CASE(STRICT_FCVT_W_RV64)
10751   NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
10752   NODE_NAME_CASE(READ_CYCLE_WIDE)
10753   NODE_NAME_CASE(GREV)
10754   NODE_NAME_CASE(GREVW)
10755   NODE_NAME_CASE(GORC)
10756   NODE_NAME_CASE(GORCW)
10757   NODE_NAME_CASE(SHFL)
10758   NODE_NAME_CASE(SHFLW)
10759   NODE_NAME_CASE(UNSHFL)
10760   NODE_NAME_CASE(UNSHFLW)
10761   NODE_NAME_CASE(BFP)
10762   NODE_NAME_CASE(BFPW)
10763   NODE_NAME_CASE(BCOMPRESS)
10764   NODE_NAME_CASE(BCOMPRESSW)
10765   NODE_NAME_CASE(BDECOMPRESS)
10766   NODE_NAME_CASE(BDECOMPRESSW)
10767   NODE_NAME_CASE(VMV_V_X_VL)
10768   NODE_NAME_CASE(VFMV_V_F_VL)
10769   NODE_NAME_CASE(VMV_X_S)
10770   NODE_NAME_CASE(VMV_S_X_VL)
10771   NODE_NAME_CASE(VFMV_S_F_VL)
10772   NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
10773   NODE_NAME_CASE(READ_VLENB)
10774   NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
10775   NODE_NAME_CASE(VSLIDEUP_VL)
10776   NODE_NAME_CASE(VSLIDE1UP_VL)
10777   NODE_NAME_CASE(VSLIDEDOWN_VL)
10778   NODE_NAME_CASE(VSLIDE1DOWN_VL)
10779   NODE_NAME_CASE(VID_VL)
10780   NODE_NAME_CASE(VFNCVT_ROD_VL)
10781   NODE_NAME_CASE(VECREDUCE_ADD_VL)
10782   NODE_NAME_CASE(VECREDUCE_UMAX_VL)
10783   NODE_NAME_CASE(VECREDUCE_SMAX_VL)
10784   NODE_NAME_CASE(VECREDUCE_UMIN_VL)
10785   NODE_NAME_CASE(VECREDUCE_SMIN_VL)
10786   NODE_NAME_CASE(VECREDUCE_AND_VL)
10787   NODE_NAME_CASE(VECREDUCE_OR_VL)
10788   NODE_NAME_CASE(VECREDUCE_XOR_VL)
10789   NODE_NAME_CASE(VECREDUCE_FADD_VL)
10790   NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
10791   NODE_NAME_CASE(VECREDUCE_FMIN_VL)
10792   NODE_NAME_CASE(VECREDUCE_FMAX_VL)
10793   NODE_NAME_CASE(ADD_VL)
10794   NODE_NAME_CASE(AND_VL)
10795   NODE_NAME_CASE(MUL_VL)
10796   NODE_NAME_CASE(OR_VL)
10797   NODE_NAME_CASE(SDIV_VL)
10798   NODE_NAME_CASE(SHL_VL)
10799   NODE_NAME_CASE(SREM_VL)
10800   NODE_NAME_CASE(SRA_VL)
10801   NODE_NAME_CASE(SRL_VL)
10802   NODE_NAME_CASE(SUB_VL)
10803   NODE_NAME_CASE(UDIV_VL)
10804   NODE_NAME_CASE(UREM_VL)
10805   NODE_NAME_CASE(XOR_VL)
10806   NODE_NAME_CASE(SADDSAT_VL)
10807   NODE_NAME_CASE(UADDSAT_VL)
10808   NODE_NAME_CASE(SSUBSAT_VL)
10809   NODE_NAME_CASE(USUBSAT_VL)
10810   NODE_NAME_CASE(FADD_VL)
10811   NODE_NAME_CASE(FSUB_VL)
10812   NODE_NAME_CASE(FMUL_VL)
10813   NODE_NAME_CASE(FDIV_VL)
10814   NODE_NAME_CASE(FNEG_VL)
10815   NODE_NAME_CASE(FABS_VL)
10816   NODE_NAME_CASE(FSQRT_VL)
10817   NODE_NAME_CASE(FMA_VL)
10818   NODE_NAME_CASE(FCOPYSIGN_VL)
10819   NODE_NAME_CASE(SMIN_VL)
10820   NODE_NAME_CASE(SMAX_VL)
10821   NODE_NAME_CASE(UMIN_VL)
10822   NODE_NAME_CASE(UMAX_VL)
10823   NODE_NAME_CASE(FMINNUM_VL)
10824   NODE_NAME_CASE(FMAXNUM_VL)
10825   NODE_NAME_CASE(MULHS_VL)
10826   NODE_NAME_CASE(MULHU_VL)
10827   NODE_NAME_CASE(FP_TO_SINT_VL)
10828   NODE_NAME_CASE(FP_TO_UINT_VL)
10829   NODE_NAME_CASE(SINT_TO_FP_VL)
10830   NODE_NAME_CASE(UINT_TO_FP_VL)
10831   NODE_NAME_CASE(FP_EXTEND_VL)
10832   NODE_NAME_CASE(FP_ROUND_VL)
10833   NODE_NAME_CASE(VWMUL_VL)
10834   NODE_NAME_CASE(VWMULU_VL)
10835   NODE_NAME_CASE(VWMULSU_VL)
10836   NODE_NAME_CASE(VWADD_VL)
10837   NODE_NAME_CASE(VWADDU_VL)
10838   NODE_NAME_CASE(VWSUB_VL)
10839   NODE_NAME_CASE(VWSUBU_VL)
10840   NODE_NAME_CASE(VWADD_W_VL)
10841   NODE_NAME_CASE(VWADDU_W_VL)
10842   NODE_NAME_CASE(VWSUB_W_VL)
10843   NODE_NAME_CASE(VWSUBU_W_VL)
10844   NODE_NAME_CASE(SETCC_VL)
10845   NODE_NAME_CASE(VSELECT_VL)
10846   NODE_NAME_CASE(VP_MERGE_VL)
10847   NODE_NAME_CASE(VMAND_VL)
10848   NODE_NAME_CASE(VMOR_VL)
10849   NODE_NAME_CASE(VMXOR_VL)
10850   NODE_NAME_CASE(VMCLR_VL)
10851   NODE_NAME_CASE(VMSET_VL)
10852   NODE_NAME_CASE(VRGATHER_VX_VL)
10853   NODE_NAME_CASE(VRGATHER_VV_VL)
10854   NODE_NAME_CASE(VRGATHEREI16_VV_VL)
10855   NODE_NAME_CASE(VSEXT_VL)
10856   NODE_NAME_CASE(VZEXT_VL)
10857   NODE_NAME_CASE(VCPOP_VL)
10858   NODE_NAME_CASE(READ_CSR)
10859   NODE_NAME_CASE(WRITE_CSR)
10860   NODE_NAME_CASE(SWAP_CSR)
10861   }
10862   // clang-format on
10863   return nullptr;
10864 #undef NODE_NAME_CASE
10865 }
10866 
10867 /// getConstraintType - Given a constraint letter, return the type of
10868 /// constraint it is for this target.
10869 RISCVTargetLowering::ConstraintType
10870 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
10871   if (Constraint.size() == 1) {
10872     switch (Constraint[0]) {
10873     default:
10874       break;
10875     case 'f':
10876       return C_RegisterClass;
10877     case 'I':
10878     case 'J':
10879     case 'K':
10880       return C_Immediate;
10881     case 'A':
10882       return C_Memory;
10883     case 'S': // A symbolic address
10884       return C_Other;
10885     }
10886   } else {
10887     if (Constraint == "vr" || Constraint == "vm")
10888       return C_RegisterClass;
10889   }
10890   return TargetLowering::getConstraintType(Constraint);
10891 }
10892 
10893 std::pair<unsigned, const TargetRegisterClass *>
10894 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10895                                                   StringRef Constraint,
10896                                                   MVT VT) const {
10897   // First, see if this is a constraint that directly corresponds to a
10898   // RISCV register class.
10899   if (Constraint.size() == 1) {
10900     switch (Constraint[0]) {
10901     case 'r':
10902       // TODO: Support fixed vectors up to XLen for P extension?
10903       if (VT.isVector())
10904         break;
10905       return std::make_pair(0U, &RISCV::GPRRegClass);
10906     case 'f':
10907       if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
10908         return std::make_pair(0U, &RISCV::FPR16RegClass);
10909       if (Subtarget.hasStdExtF() && VT == MVT::f32)
10910         return std::make_pair(0U, &RISCV::FPR32RegClass);
10911       if (Subtarget.hasStdExtD() && VT == MVT::f64)
10912         return std::make_pair(0U, &RISCV::FPR64RegClass);
10913       break;
10914     default:
10915       break;
10916     }
10917   } else if (Constraint == "vr") {
10918     for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
10919                            &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
10920       if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
10921         return std::make_pair(0U, RC);
10922     }
10923   } else if (Constraint == "vm") {
10924     if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
10925       return std::make_pair(0U, &RISCV::VMV0RegClass);
10926   }
10927 
10928   // Clang will correctly decode the usage of register name aliases into their
10929   // official names. However, other frontends like `rustc` do not. This allows
10930   // users of these frontends to use the ABI names for registers in LLVM-style
10931   // register constraints.
10932   unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
10933                                .Case("{zero}", RISCV::X0)
10934                                .Case("{ra}", RISCV::X1)
10935                                .Case("{sp}", RISCV::X2)
10936                                .Case("{gp}", RISCV::X3)
10937                                .Case("{tp}", RISCV::X4)
10938                                .Case("{t0}", RISCV::X5)
10939                                .Case("{t1}", RISCV::X6)
10940                                .Case("{t2}", RISCV::X7)
10941                                .Cases("{s0}", "{fp}", RISCV::X8)
10942                                .Case("{s1}", RISCV::X9)
10943                                .Case("{a0}", RISCV::X10)
10944                                .Case("{a1}", RISCV::X11)
10945                                .Case("{a2}", RISCV::X12)
10946                                .Case("{a3}", RISCV::X13)
10947                                .Case("{a4}", RISCV::X14)
10948                                .Case("{a5}", RISCV::X15)
10949                                .Case("{a6}", RISCV::X16)
10950                                .Case("{a7}", RISCV::X17)
10951                                .Case("{s2}", RISCV::X18)
10952                                .Case("{s3}", RISCV::X19)
10953                                .Case("{s4}", RISCV::X20)
10954                                .Case("{s5}", RISCV::X21)
10955                                .Case("{s6}", RISCV::X22)
10956                                .Case("{s7}", RISCV::X23)
10957                                .Case("{s8}", RISCV::X24)
10958                                .Case("{s9}", RISCV::X25)
10959                                .Case("{s10}", RISCV::X26)
10960                                .Case("{s11}", RISCV::X27)
10961                                .Case("{t3}", RISCV::X28)
10962                                .Case("{t4}", RISCV::X29)
10963                                .Case("{t5}", RISCV::X30)
10964                                .Case("{t6}", RISCV::X31)
10965                                .Default(RISCV::NoRegister);
10966   if (XRegFromAlias != RISCV::NoRegister)
10967     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
10968 
10969   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
10970   // TableGen record rather than the AsmName to choose registers for InlineAsm
10971   // constraints, plus we want to match those names to the widest floating point
10972   // register type available, manually select floating point registers here.
10973   //
10974   // The second case is the ABI name of the register, so that frontends can also
10975   // use the ABI names in register constraint lists.
10976   if (Subtarget.hasStdExtF()) {
10977     unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
10978                         .Cases("{f0}", "{ft0}", RISCV::F0_F)
10979                         .Cases("{f1}", "{ft1}", RISCV::F1_F)
10980                         .Cases("{f2}", "{ft2}", RISCV::F2_F)
10981                         .Cases("{f3}", "{ft3}", RISCV::F3_F)
10982                         .Cases("{f4}", "{ft4}", RISCV::F4_F)
10983                         .Cases("{f5}", "{ft5}", RISCV::F5_F)
10984                         .Cases("{f6}", "{ft6}", RISCV::F6_F)
10985                         .Cases("{f7}", "{ft7}", RISCV::F7_F)
10986                         .Cases("{f8}", "{fs0}", RISCV::F8_F)
10987                         .Cases("{f9}", "{fs1}", RISCV::F9_F)
10988                         .Cases("{f10}", "{fa0}", RISCV::F10_F)
10989                         .Cases("{f11}", "{fa1}", RISCV::F11_F)
10990                         .Cases("{f12}", "{fa2}", RISCV::F12_F)
10991                         .Cases("{f13}", "{fa3}", RISCV::F13_F)
10992                         .Cases("{f14}", "{fa4}", RISCV::F14_F)
10993                         .Cases("{f15}", "{fa5}", RISCV::F15_F)
10994                         .Cases("{f16}", "{fa6}", RISCV::F16_F)
10995                         .Cases("{f17}", "{fa7}", RISCV::F17_F)
10996                         .Cases("{f18}", "{fs2}", RISCV::F18_F)
10997                         .Cases("{f19}", "{fs3}", RISCV::F19_F)
10998                         .Cases("{f20}", "{fs4}", RISCV::F20_F)
10999                         .Cases("{f21}", "{fs5}", RISCV::F21_F)
11000                         .Cases("{f22}", "{fs6}", RISCV::F22_F)
11001                         .Cases("{f23}", "{fs7}", RISCV::F23_F)
11002                         .Cases("{f24}", "{fs8}", RISCV::F24_F)
11003                         .Cases("{f25}", "{fs9}", RISCV::F25_F)
11004                         .Cases("{f26}", "{fs10}", RISCV::F26_F)
11005                         .Cases("{f27}", "{fs11}", RISCV::F27_F)
11006                         .Cases("{f28}", "{ft8}", RISCV::F28_F)
11007                         .Cases("{f29}", "{ft9}", RISCV::F29_F)
11008                         .Cases("{f30}", "{ft10}", RISCV::F30_F)
11009                         .Cases("{f31}", "{ft11}", RISCV::F31_F)
11010                         .Default(RISCV::NoRegister);
11011     if (FReg != RISCV::NoRegister) {
11012       assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11013       if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11014         unsigned RegNo = FReg - RISCV::F0_F;
11015         unsigned DReg = RISCV::F0_D + RegNo;
11016         return std::make_pair(DReg, &RISCV::FPR64RegClass);
11017       }
11018       if (VT == MVT::f32 || VT == MVT::Other)
11019         return std::make_pair(FReg, &RISCV::FPR32RegClass);
11020       if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11021         unsigned RegNo = FReg - RISCV::F0_F;
11022         unsigned HReg = RISCV::F0_H + RegNo;
11023         return std::make_pair(HReg, &RISCV::FPR16RegClass);
11024       }
11025     }
11026   }
11027 
11028   if (Subtarget.hasVInstructions()) {
11029     Register VReg = StringSwitch<Register>(Constraint.lower())
11030                         .Case("{v0}", RISCV::V0)
11031                         .Case("{v1}", RISCV::V1)
11032                         .Case("{v2}", RISCV::V2)
11033                         .Case("{v3}", RISCV::V3)
11034                         .Case("{v4}", RISCV::V4)
11035                         .Case("{v5}", RISCV::V5)
11036                         .Case("{v6}", RISCV::V6)
11037                         .Case("{v7}", RISCV::V7)
11038                         .Case("{v8}", RISCV::V8)
11039                         .Case("{v9}", RISCV::V9)
11040                         .Case("{v10}", RISCV::V10)
11041                         .Case("{v11}", RISCV::V11)
11042                         .Case("{v12}", RISCV::V12)
11043                         .Case("{v13}", RISCV::V13)
11044                         .Case("{v14}", RISCV::V14)
11045                         .Case("{v15}", RISCV::V15)
11046                         .Case("{v16}", RISCV::V16)
11047                         .Case("{v17}", RISCV::V17)
11048                         .Case("{v18}", RISCV::V18)
11049                         .Case("{v19}", RISCV::V19)
11050                         .Case("{v20}", RISCV::V20)
11051                         .Case("{v21}", RISCV::V21)
11052                         .Case("{v22}", RISCV::V22)
11053                         .Case("{v23}", RISCV::V23)
11054                         .Case("{v24}", RISCV::V24)
11055                         .Case("{v25}", RISCV::V25)
11056                         .Case("{v26}", RISCV::V26)
11057                         .Case("{v27}", RISCV::V27)
11058                         .Case("{v28}", RISCV::V28)
11059                         .Case("{v29}", RISCV::V29)
11060                         .Case("{v30}", RISCV::V30)
11061                         .Case("{v31}", RISCV::V31)
11062                         .Default(RISCV::NoRegister);
11063     if (VReg != RISCV::NoRegister) {
11064       if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11065         return std::make_pair(VReg, &RISCV::VMRegClass);
11066       if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11067         return std::make_pair(VReg, &RISCV::VRRegClass);
11068       for (const auto *RC :
11069            {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11070         if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11071           VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11072           return std::make_pair(VReg, RC);
11073         }
11074       }
11075     }
11076   }
11077 
11078   std::pair<Register, const TargetRegisterClass *> Res =
11079       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11080 
11081   // If we picked one of the Zfinx register classes, remap it to the GPR class.
11082   // FIXME: When Zfinx is supported in CodeGen this will need to take the
11083   // Subtarget into account.
11084   if (Res.second == &RISCV::GPRF16RegClass ||
11085       Res.second == &RISCV::GPRF32RegClass ||
11086       Res.second == &RISCV::GPRF64RegClass)
11087     return std::make_pair(Res.first, &RISCV::GPRRegClass);
11088 
11089   return Res;
11090 }
11091 
11092 unsigned
11093 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11094   // Currently only support length 1 constraints.
11095   if (ConstraintCode.size() == 1) {
11096     switch (ConstraintCode[0]) {
11097     case 'A':
11098       return InlineAsm::Constraint_A;
11099     default:
11100       break;
11101     }
11102   }
11103 
11104   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
11105 }
11106 
11107 void RISCVTargetLowering::LowerAsmOperandForConstraint(
11108     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
11109     SelectionDAG &DAG) const {
11110   // Currently only support length 1 constraints.
11111   if (Constraint.length() == 1) {
11112     switch (Constraint[0]) {
11113     case 'I':
11114       // Validate & create a 12-bit signed immediate operand.
11115       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11116         uint64_t CVal = C->getSExtValue();
11117         if (isInt<12>(CVal))
11118           Ops.push_back(
11119               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11120       }
11121       return;
11122     case 'J':
11123       // Validate & create an integer zero operand.
11124       if (auto *C = dyn_cast<ConstantSDNode>(Op))
11125         if (C->getZExtValue() == 0)
11126           Ops.push_back(
11127               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
11128       return;
11129     case 'K':
11130       // Validate & create a 5-bit unsigned immediate operand.
11131       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
11132         uint64_t CVal = C->getZExtValue();
11133         if (isUInt<5>(CVal))
11134           Ops.push_back(
11135               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
11136       }
11137       return;
11138     case 'S':
11139       if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
11140         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
11141                                                  GA->getValueType(0)));
11142       } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
11143         Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
11144                                                 BA->getValueType(0)));
11145       }
11146       return;
11147     default:
11148       break;
11149     }
11150   }
11151   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11152 }
11153 
11154 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11155                                                    Instruction *Inst,
11156                                                    AtomicOrdering Ord) const {
11157   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
11158     return Builder.CreateFence(Ord);
11159   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
11160     return Builder.CreateFence(AtomicOrdering::Release);
11161   return nullptr;
11162 }
11163 
11164 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11165                                                     Instruction *Inst,
11166                                                     AtomicOrdering Ord) const {
11167   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
11168     return Builder.CreateFence(AtomicOrdering::Acquire);
11169   return nullptr;
11170 }
11171 
11172 TargetLowering::AtomicExpansionKind
11173 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11174   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
11175   // point operations can't be used in an lr/sc sequence without breaking the
11176   // forward-progress guarantee.
11177   if (AI->isFloatingPointOperation())
11178     return AtomicExpansionKind::CmpXChg;
11179 
11180   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11181   if (Size == 8 || Size == 16)
11182     return AtomicExpansionKind::MaskedIntrinsic;
11183   return AtomicExpansionKind::None;
11184 }
11185 
11186 static Intrinsic::ID
11187 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
11188   if (XLen == 32) {
11189     switch (BinOp) {
11190     default:
11191       llvm_unreachable("Unexpected AtomicRMW BinOp");
11192     case AtomicRMWInst::Xchg:
11193       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
11194     case AtomicRMWInst::Add:
11195       return Intrinsic::riscv_masked_atomicrmw_add_i32;
11196     case AtomicRMWInst::Sub:
11197       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
11198     case AtomicRMWInst::Nand:
11199       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
11200     case AtomicRMWInst::Max:
11201       return Intrinsic::riscv_masked_atomicrmw_max_i32;
11202     case AtomicRMWInst::Min:
11203       return Intrinsic::riscv_masked_atomicrmw_min_i32;
11204     case AtomicRMWInst::UMax:
11205       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
11206     case AtomicRMWInst::UMin:
11207       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
11208     }
11209   }
11210 
11211   if (XLen == 64) {
11212     switch (BinOp) {
11213     default:
11214       llvm_unreachable("Unexpected AtomicRMW BinOp");
11215     case AtomicRMWInst::Xchg:
11216       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
11217     case AtomicRMWInst::Add:
11218       return Intrinsic::riscv_masked_atomicrmw_add_i64;
11219     case AtomicRMWInst::Sub:
11220       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
11221     case AtomicRMWInst::Nand:
11222       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
11223     case AtomicRMWInst::Max:
11224       return Intrinsic::riscv_masked_atomicrmw_max_i64;
11225     case AtomicRMWInst::Min:
11226       return Intrinsic::riscv_masked_atomicrmw_min_i64;
11227     case AtomicRMWInst::UMax:
11228       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
11229     case AtomicRMWInst::UMin:
11230       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
11231     }
11232   }
11233 
11234   llvm_unreachable("Unexpected XLen\n");
11235 }
11236 
11237 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
11238     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
11239     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
11240   unsigned XLen = Subtarget.getXLen();
11241   Value *Ordering =
11242       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
11243   Type *Tys[] = {AlignedAddr->getType()};
11244   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
11245       AI->getModule(),
11246       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
11247 
11248   if (XLen == 64) {
11249     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
11250     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11251     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
11252   }
11253 
11254   Value *Result;
11255 
11256   // Must pass the shift amount needed to sign extend the loaded value prior
11257   // to performing a signed comparison for min/max. ShiftAmt is the number of
11258   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
11259   // is the number of bits to left+right shift the value in order to
11260   // sign-extend.
11261   if (AI->getOperation() == AtomicRMWInst::Min ||
11262       AI->getOperation() == AtomicRMWInst::Max) {
11263     const DataLayout &DL = AI->getModule()->getDataLayout();
11264     unsigned ValWidth =
11265         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
11266     Value *SextShamt =
11267         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
11268     Result = Builder.CreateCall(LrwOpScwLoop,
11269                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
11270   } else {
11271     Result =
11272         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
11273   }
11274 
11275   if (XLen == 64)
11276     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11277   return Result;
11278 }
11279 
11280 TargetLowering::AtomicExpansionKind
11281 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
11282     AtomicCmpXchgInst *CI) const {
11283   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
11284   if (Size == 8 || Size == 16)
11285     return AtomicExpansionKind::MaskedIntrinsic;
11286   return AtomicExpansionKind::None;
11287 }
11288 
11289 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
11290     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
11291     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
11292   unsigned XLen = Subtarget.getXLen();
11293   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
11294   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
11295   if (XLen == 64) {
11296     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
11297     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
11298     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
11299     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
11300   }
11301   Type *Tys[] = {AlignedAddr->getType()};
11302   Function *MaskedCmpXchg =
11303       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
11304   Value *Result = Builder.CreateCall(
11305       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
11306   if (XLen == 64)
11307     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11308   return Result;
11309 }
11310 
11311 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
11312   return false;
11313 }
11314 
11315 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
11316                                                EVT VT) const {
11317   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
11318     return false;
11319 
11320   switch (FPVT.getSimpleVT().SimpleTy) {
11321   case MVT::f16:
11322     return Subtarget.hasStdExtZfh();
11323   case MVT::f32:
11324     return Subtarget.hasStdExtF();
11325   case MVT::f64:
11326     return Subtarget.hasStdExtD();
11327   default:
11328     return false;
11329   }
11330 }
11331 
11332 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
11333   // If we are using the small code model, we can reduce size of jump table
11334   // entry to 4 bytes.
11335   if (Subtarget.is64Bit() && !isPositionIndependent() &&
11336       getTargetMachine().getCodeModel() == CodeModel::Small) {
11337     return MachineJumpTableInfo::EK_Custom32;
11338   }
11339   return TargetLowering::getJumpTableEncoding();
11340 }
11341 
11342 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
11343     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
11344     unsigned uid, MCContext &Ctx) const {
11345   assert(Subtarget.is64Bit() && !isPositionIndependent() &&
11346          getTargetMachine().getCodeModel() == CodeModel::Small);
11347   return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
11348 }
11349 
11350 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
11351                                                      EVT VT) const {
11352   VT = VT.getScalarType();
11353 
11354   if (!VT.isSimple())
11355     return false;
11356 
11357   switch (VT.getSimpleVT().SimpleTy) {
11358   case MVT::f16:
11359     return Subtarget.hasStdExtZfh();
11360   case MVT::f32:
11361     return Subtarget.hasStdExtF();
11362   case MVT::f64:
11363     return Subtarget.hasStdExtD();
11364   default:
11365     break;
11366   }
11367 
11368   return false;
11369 }
11370 
11371 Register RISCVTargetLowering::getExceptionPointerRegister(
11372     const Constant *PersonalityFn) const {
11373   return RISCV::X10;
11374 }
11375 
11376 Register RISCVTargetLowering::getExceptionSelectorRegister(
11377     const Constant *PersonalityFn) const {
11378   return RISCV::X11;
11379 }
11380 
11381 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
11382   // Return false to suppress the unnecessary extensions if the LibCall
11383   // arguments or return value is f32 type for LP64 ABI.
11384   RISCVABI::ABI ABI = Subtarget.getTargetABI();
11385   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
11386     return false;
11387 
11388   return true;
11389 }
11390 
11391 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
11392   if (Subtarget.is64Bit() && Type == MVT::i32)
11393     return true;
11394 
11395   return IsSigned;
11396 }
11397 
11398 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
11399                                                  SDValue C) const {
11400   // Check integral scalar types.
11401   if (VT.isScalarInteger()) {
11402     // Omit the optimization if the sub target has the M extension and the data
11403     // size exceeds XLen.
11404     if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
11405       return false;
11406     if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
11407       // Break the MUL to a SLLI and an ADD/SUB.
11408       const APInt &Imm = ConstNode->getAPIntValue();
11409       if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
11410           (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
11411         return true;
11412       // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
11413       if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
11414           ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
11415            (Imm - 8).isPowerOf2()))
11416         return true;
11417       // Omit the following optimization if the sub target has the M extension
11418       // and the data size >= XLen.
11419       if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
11420         return false;
11421       // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
11422       // a pair of LUI/ADDI.
11423       if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
11424         APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
11425         if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
11426             (1 - ImmS).isPowerOf2())
11427         return true;
11428       }
11429     }
11430   }
11431 
11432   return false;
11433 }
11434 
11435 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
11436                                                       SDValue ConstNode) const {
11437   // Let the DAGCombiner decide for vectors.
11438   EVT VT = AddNode.getValueType();
11439   if (VT.isVector())
11440     return true;
11441 
11442   // Let the DAGCombiner decide for larger types.
11443   if (VT.getScalarSizeInBits() > Subtarget.getXLen())
11444     return true;
11445 
11446   // It is worse if c1 is simm12 while c1*c2 is not.
11447   ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
11448   ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
11449   const APInt &C1 = C1Node->getAPIntValue();
11450   const APInt &C2 = C2Node->getAPIntValue();
11451   if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
11452     return false;
11453 
11454   // Default to true and let the DAGCombiner decide.
11455   return true;
11456 }
11457 
11458 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
11459     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
11460     bool *Fast) const {
11461   if (!VT.isVector())
11462     return false;
11463 
11464   EVT ElemVT = VT.getVectorElementType();
11465   if (Alignment >= ElemVT.getStoreSize()) {
11466     if (Fast)
11467       *Fast = true;
11468     return true;
11469   }
11470 
11471   return false;
11472 }
11473 
11474 bool RISCVTargetLowering::splitValueIntoRegisterParts(
11475     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
11476     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
11477   bool IsABIRegCopy = CC.hasValue();
11478   EVT ValueVT = Val.getValueType();
11479   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11480     // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
11481     // and cast to f32.
11482     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
11483     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
11484     Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
11485                       DAG.getConstant(0xFFFF0000, DL, MVT::i32));
11486     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
11487     Parts[0] = Val;
11488     return true;
11489   }
11490 
11491   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11492     LLVMContext &Context = *DAG.getContext();
11493     EVT ValueEltVT = ValueVT.getVectorElementType();
11494     EVT PartEltVT = PartVT.getVectorElementType();
11495     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11496     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11497     if (PartVTBitSize % ValueVTBitSize == 0) {
11498       assert(PartVTBitSize >= ValueVTBitSize);
11499       // If the element types are different, bitcast to the same element type of
11500       // PartVT first.
11501       // Give an example here, we want copy a <vscale x 1 x i8> value to
11502       // <vscale x 4 x i16>.
11503       // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
11504       // subvector, then we can bitcast to <vscale x 4 x i16>.
11505       if (ValueEltVT != PartEltVT) {
11506         if (PartVTBitSize > ValueVTBitSize) {
11507           unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11508           assert(Count != 0 && "The number of element should not be zero.");
11509           EVT SameEltTypeVT =
11510               EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11511           Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
11512                             DAG.getUNDEF(SameEltTypeVT), Val,
11513                             DAG.getVectorIdxConstant(0, DL));
11514         }
11515         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
11516       } else {
11517         Val =
11518             DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
11519                         Val, DAG.getVectorIdxConstant(0, DL));
11520       }
11521       Parts[0] = Val;
11522       return true;
11523     }
11524   }
11525   return false;
11526 }
11527 
11528 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
11529     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
11530     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
11531   bool IsABIRegCopy = CC.hasValue();
11532   if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
11533     SDValue Val = Parts[0];
11534 
11535     // Cast the f32 to i32, truncate to i16, and cast back to f16.
11536     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
11537     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
11538     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
11539     return Val;
11540   }
11541 
11542   if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
11543     LLVMContext &Context = *DAG.getContext();
11544     SDValue Val = Parts[0];
11545     EVT ValueEltVT = ValueVT.getVectorElementType();
11546     EVT PartEltVT = PartVT.getVectorElementType();
11547     unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
11548     unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
11549     if (PartVTBitSize % ValueVTBitSize == 0) {
11550       assert(PartVTBitSize >= ValueVTBitSize);
11551       EVT SameEltTypeVT = ValueVT;
11552       // If the element types are different, convert it to the same element type
11553       // of PartVT.
11554       // Give an example here, we want copy a <vscale x 1 x i8> value from
11555       // <vscale x 4 x i16>.
11556       // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
11557       // then we can extract <vscale x 1 x i8>.
11558       if (ValueEltVT != PartEltVT) {
11559         unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
11560         assert(Count != 0 && "The number of element should not be zero.");
11561         SameEltTypeVT =
11562             EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
11563         Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
11564       }
11565       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
11566                         DAG.getVectorIdxConstant(0, DL));
11567       return Val;
11568     }
11569   }
11570   return SDValue();
11571 }
11572 
11573 SDValue
11574 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11575                                    SelectionDAG &DAG,
11576                                    SmallVectorImpl<SDNode *> &Created) const {
11577   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
11578   if (isIntDivCheap(N->getValueType(0), Attr))
11579     return SDValue(N, 0); // Lower SDIV as SDIV
11580 
11581   assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
11582          "Unexpected divisor!");
11583 
11584   // Conditional move is needed, so do the transformation iff Zbt is enabled.
11585   if (!Subtarget.hasStdExtZbt())
11586     return SDValue();
11587 
11588   // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
11589   // Besides, more critical path instructions will be generated when dividing
11590   // by 2. So we keep using the original DAGs for these cases.
11591   unsigned Lg2 = Divisor.countTrailingZeros();
11592   if (Lg2 == 1 || Lg2 >= 12)
11593     return SDValue();
11594 
11595   // fold (sdiv X, pow2)
11596   EVT VT = N->getValueType(0);
11597   if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
11598     return SDValue();
11599 
11600   SDLoc DL(N);
11601   SDValue N0 = N->getOperand(0);
11602   SDValue Zero = DAG.getConstant(0, DL, VT);
11603   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
11604 
11605   // Add (N0 < 0) ? Pow2 - 1 : 0;
11606   SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
11607   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
11608   SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
11609 
11610   Created.push_back(Cmp.getNode());
11611   Created.push_back(Add.getNode());
11612   Created.push_back(Sel.getNode());
11613 
11614   // Divide by pow2.
11615   SDValue SRA =
11616       DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
11617 
11618   // If we're dividing by a positive value, we're done.  Otherwise, we must
11619   // negate the result.
11620   if (Divisor.isNonNegative())
11621     return SRA;
11622 
11623   Created.push_back(SRA.getNode());
11624   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
11625 }
11626 
11627 #define GET_REGISTER_MATCHER
11628 #include "RISCVGenAsmMatcher.inc"
11629 
11630 Register
11631 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
11632                                        const MachineFunction &MF) const {
11633   Register Reg = MatchRegisterAltName(RegName);
11634   if (Reg == RISCV::NoRegister)
11635     Reg = MatchRegisterName(RegName);
11636   if (Reg == RISCV::NoRegister)
11637     report_fatal_error(
11638         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
11639   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
11640   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
11641     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
11642                              StringRef(RegName) + "\"."));
11643   return Reg;
11644 }
11645 
11646 namespace llvm {
11647 namespace RISCVVIntrinsicsTable {
11648 
11649 #define GET_RISCVVIntrinsicsTable_IMPL
11650 #include "RISCVGenSearchableTables.inc"
11651 
11652 } // namespace RISCVVIntrinsicsTable
11653 
11654 } // namespace llvm
11655