1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/DiagnosticInfo.h" 32 #include "llvm/IR/DiagnosticPrinter.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/IntrinsicsRISCV.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/KnownBits.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "riscv-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 49 const RISCVSubtarget &STI) 50 : TargetLowering(TM), Subtarget(STI) { 51 52 if (Subtarget.isRV32E()) 53 report_fatal_error("Codegen not yet implemented for RV32E"); 54 55 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 57 58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 59 !Subtarget.hasStdExtF()) { 60 errs() << "Hard-float 'f' ABI can't be used for a target that " 61 "doesn't support the F instruction set extension (ignoring " 62 "target-abi)\n"; 63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 65 !Subtarget.hasStdExtD()) { 66 errs() << "Hard-float 'd' ABI can't be used for a target that " 67 "doesn't support the D instruction set extension (ignoring " 68 "target-abi)\n"; 69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 70 } 71 72 switch (ABI) { 73 default: 74 report_fatal_error("Don't know how to lower this ABI"); 75 case RISCVABI::ABI_ILP32: 76 case RISCVABI::ABI_ILP32F: 77 case RISCVABI::ABI_ILP32D: 78 case RISCVABI::ABI_LP64: 79 case RISCVABI::ABI_LP64F: 80 case RISCVABI::ABI_LP64D: 81 break; 82 } 83 84 MVT XLenVT = Subtarget.getXLenVT(); 85 86 // Set up the register classes. 87 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 88 89 if (Subtarget.hasStdExtZfh()) 90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 91 if (Subtarget.hasStdExtF()) 92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 93 if (Subtarget.hasStdExtD()) 94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 95 96 static const MVT::SimpleValueType BoolVecVTs[] = { 97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 99 static const MVT::SimpleValueType IntVecVTs[] = { 100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 104 MVT::nxv4i64, MVT::nxv8i64}; 105 static const MVT::SimpleValueType F16VecVTs[] = { 106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 108 static const MVT::SimpleValueType F32VecVTs[] = { 109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 110 static const MVT::SimpleValueType F64VecVTs[] = { 111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 112 113 if (Subtarget.hasVInstructions()) { 114 auto addRegClassForRVV = [this](MVT VT) { 115 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 116 assert(Size <= 512 && isPowerOf2_32(Size)); 117 const TargetRegisterClass *RC; 118 if (Size <= 64) 119 RC = &RISCV::VRRegClass; 120 else if (Size == 128) 121 RC = &RISCV::VRM2RegClass; 122 else if (Size == 256) 123 RC = &RISCV::VRM4RegClass; 124 else 125 RC = &RISCV::VRM8RegClass; 126 127 addRegisterClass(VT, RC); 128 }; 129 130 for (MVT VT : BoolVecVTs) 131 addRegClassForRVV(VT); 132 for (MVT VT : IntVecVTs) { 133 if (VT.getVectorElementType() == MVT::i64 && 134 !Subtarget.hasVInstructionsI64()) 135 continue; 136 addRegClassForRVV(VT); 137 } 138 139 if (Subtarget.hasVInstructionsF16()) 140 for (MVT VT : F16VecVTs) 141 addRegClassForRVV(VT); 142 143 if (Subtarget.hasVInstructionsF32()) 144 for (MVT VT : F32VecVTs) 145 addRegClassForRVV(VT); 146 147 if (Subtarget.hasVInstructionsF64()) 148 for (MVT VT : F64VecVTs) 149 addRegClassForRVV(VT); 150 151 if (Subtarget.useRVVForFixedLengthVectors()) { 152 auto addRegClassForFixedVectors = [this](MVT VT) { 153 MVT ContainerVT = getContainerForFixedLengthVector(VT); 154 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 155 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 156 addRegisterClass(VT, TRI.getRegClass(RCID)); 157 }; 158 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 159 if (useRVVForFixedLengthVectorVT(VT)) 160 addRegClassForFixedVectors(VT); 161 162 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 163 if (useRVVForFixedLengthVectorVT(VT)) 164 addRegClassForFixedVectors(VT); 165 } 166 } 167 168 // Compute derived properties from the register classes. 169 computeRegisterProperties(STI.getRegisterInfo()); 170 171 setStackPointerRegisterToSaveRestore(RISCV::X2); 172 173 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 174 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 175 176 // TODO: add all necessary setOperationAction calls. 177 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 178 179 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 180 setOperationAction(ISD::BR_CC, XLenVT, Expand); 181 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 182 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 183 184 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 185 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 186 187 setOperationAction(ISD::VASTART, MVT::Other, Custom); 188 setOperationAction(ISD::VAARG, MVT::Other, Expand); 189 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 190 setOperationAction(ISD::VAEND, MVT::Other, Expand); 191 192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 193 if (!Subtarget.hasStdExtZbb()) { 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 196 } 197 198 if (Subtarget.is64Bit()) { 199 setOperationAction(ISD::ADD, MVT::i32, Custom); 200 setOperationAction(ISD::SUB, MVT::i32, Custom); 201 setOperationAction(ISD::SHL, MVT::i32, Custom); 202 setOperationAction(ISD::SRA, MVT::i32, Custom); 203 setOperationAction(ISD::SRL, MVT::i32, Custom); 204 205 setOperationAction(ISD::UADDO, MVT::i32, Custom); 206 setOperationAction(ISD::USUBO, MVT::i32, Custom); 207 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 208 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 209 } else { 210 setLibcallName(RTLIB::SHL_I128, nullptr); 211 setLibcallName(RTLIB::SRL_I128, nullptr); 212 setLibcallName(RTLIB::SRA_I128, nullptr); 213 setLibcallName(RTLIB::MUL_I128, nullptr); 214 setLibcallName(RTLIB::MULO_I64, nullptr); 215 } 216 217 if (!Subtarget.hasStdExtM()) { 218 setOperationAction(ISD::MUL, XLenVT, Expand); 219 setOperationAction(ISD::MULHS, XLenVT, Expand); 220 setOperationAction(ISD::MULHU, XLenVT, Expand); 221 setOperationAction(ISD::SDIV, XLenVT, Expand); 222 setOperationAction(ISD::UDIV, XLenVT, Expand); 223 setOperationAction(ISD::SREM, XLenVT, Expand); 224 setOperationAction(ISD::UREM, XLenVT, Expand); 225 } else { 226 if (Subtarget.is64Bit()) { 227 setOperationAction(ISD::MUL, MVT::i32, Custom); 228 setOperationAction(ISD::MUL, MVT::i128, Custom); 229 230 setOperationAction(ISD::SDIV, MVT::i8, Custom); 231 setOperationAction(ISD::UDIV, MVT::i8, Custom); 232 setOperationAction(ISD::UREM, MVT::i8, Custom); 233 setOperationAction(ISD::SDIV, MVT::i16, Custom); 234 setOperationAction(ISD::UDIV, MVT::i16, Custom); 235 setOperationAction(ISD::UREM, MVT::i16, Custom); 236 setOperationAction(ISD::SDIV, MVT::i32, Custom); 237 setOperationAction(ISD::UDIV, MVT::i32, Custom); 238 setOperationAction(ISD::UREM, MVT::i32, Custom); 239 } else { 240 setOperationAction(ISD::MUL, MVT::i64, Custom); 241 } 242 } 243 244 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 245 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 246 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 247 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 248 249 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 250 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 251 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 252 253 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 254 Subtarget.hasStdExtZbkb()) { 255 if (Subtarget.is64Bit()) { 256 setOperationAction(ISD::ROTL, MVT::i32, Custom); 257 setOperationAction(ISD::ROTR, MVT::i32, Custom); 258 } 259 } else { 260 setOperationAction(ISD::ROTL, XLenVT, Expand); 261 setOperationAction(ISD::ROTR, XLenVT, Expand); 262 } 263 264 if (Subtarget.hasStdExtZbp()) { 265 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 266 // more combining. 267 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 268 setOperationAction(ISD::BSWAP, XLenVT, Custom); 269 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); 270 // BSWAP i8 doesn't exist. 271 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); 272 setOperationAction(ISD::BSWAP, MVT::i16, Custom); 273 274 if (Subtarget.is64Bit()) { 275 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 276 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 277 } 278 } else { 279 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 280 // pattern match it directly in isel. 281 setOperationAction(ISD::BSWAP, XLenVT, 282 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) 283 ? Legal 284 : Expand); 285 // Zbkb can use rev8+brev8 to implement bitreverse. 286 setOperationAction(ISD::BITREVERSE, XLenVT, 287 Subtarget.hasStdExtZbkb() ? Custom : Expand); 288 } 289 290 if (Subtarget.hasStdExtZbb()) { 291 setOperationAction(ISD::SMIN, XLenVT, Legal); 292 setOperationAction(ISD::SMAX, XLenVT, Legal); 293 setOperationAction(ISD::UMIN, XLenVT, Legal); 294 setOperationAction(ISD::UMAX, XLenVT, Legal); 295 296 if (Subtarget.is64Bit()) { 297 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 298 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 299 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 300 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 301 } 302 } else { 303 setOperationAction(ISD::CTTZ, XLenVT, Expand); 304 setOperationAction(ISD::CTLZ, XLenVT, Expand); 305 setOperationAction(ISD::CTPOP, XLenVT, Expand); 306 307 if (Subtarget.is64Bit()) 308 setOperationAction(ISD::ABS, MVT::i32, Custom); 309 } 310 311 if (Subtarget.hasStdExtZbt()) { 312 setOperationAction(ISD::FSHL, XLenVT, Custom); 313 setOperationAction(ISD::FSHR, XLenVT, Custom); 314 setOperationAction(ISD::SELECT, XLenVT, Legal); 315 316 if (Subtarget.is64Bit()) { 317 setOperationAction(ISD::FSHL, MVT::i32, Custom); 318 setOperationAction(ISD::FSHR, MVT::i32, Custom); 319 } 320 } else { 321 setOperationAction(ISD::SELECT, XLenVT, Custom); 322 } 323 324 static constexpr ISD::NodeType FPLegalNodeTypes[] = { 325 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, 326 ISD::LLRINT, ISD::LROUND, ISD::LLROUND, 327 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, 328 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, 329 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, 330 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; 331 332 static const ISD::CondCode FPCCToExpand[] = { 333 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 334 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 335 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 336 337 static const ISD::NodeType FPOpToExpand[] = { 338 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, 339 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; 340 341 if (Subtarget.hasStdExtZfh()) 342 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 343 344 if (Subtarget.hasStdExtZfh()) { 345 for (auto NT : FPLegalNodeTypes) 346 setOperationAction(NT, MVT::f16, Legal); 347 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); 348 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 349 for (auto CC : FPCCToExpand) 350 setCondCodeAction(CC, MVT::f16, Expand); 351 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 352 setOperationAction(ISD::SELECT, MVT::f16, Custom); 353 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 354 355 setOperationAction(ISD::FREM, MVT::f16, Promote); 356 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 357 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 358 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 359 setOperationAction(ISD::FRINT, MVT::f16, Promote); 360 setOperationAction(ISD::FROUND, MVT::f16, Promote); 361 setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); 362 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 363 setOperationAction(ISD::FPOW, MVT::f16, Promote); 364 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 365 setOperationAction(ISD::FCOS, MVT::f16, Promote); 366 setOperationAction(ISD::FSIN, MVT::f16, Promote); 367 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 368 setOperationAction(ISD::FEXP, MVT::f16, Promote); 369 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 370 setOperationAction(ISD::FLOG, MVT::f16, Promote); 371 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 372 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 373 374 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have 375 // complete support for all operations in LegalizeDAG. 376 377 // We need to custom promote this. 378 if (Subtarget.is64Bit()) 379 setOperationAction(ISD::FPOWI, MVT::i32, Custom); 380 } 381 382 if (Subtarget.hasStdExtF()) { 383 for (auto NT : FPLegalNodeTypes) 384 setOperationAction(NT, MVT::f32, Legal); 385 for (auto CC : FPCCToExpand) 386 setCondCodeAction(CC, MVT::f32, Expand); 387 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 388 setOperationAction(ISD::SELECT, MVT::f32, Custom); 389 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 390 for (auto Op : FPOpToExpand) 391 setOperationAction(Op, MVT::f32, Expand); 392 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 393 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 394 } 395 396 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 397 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 398 399 if (Subtarget.hasStdExtD()) { 400 for (auto NT : FPLegalNodeTypes) 401 setOperationAction(NT, MVT::f64, Legal); 402 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 403 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 404 for (auto CC : FPCCToExpand) 405 setCondCodeAction(CC, MVT::f64, Expand); 406 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 407 setOperationAction(ISD::SELECT, MVT::f64, Custom); 408 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 409 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 410 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 411 for (auto Op : FPOpToExpand) 412 setOperationAction(Op, MVT::f64, Expand); 413 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 414 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 415 } 416 417 if (Subtarget.is64Bit()) { 418 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 419 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 422 } 423 424 if (Subtarget.hasStdExtF()) { 425 setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); 426 setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); 427 428 setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); 430 setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); 431 setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); 432 433 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 434 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 435 } 436 437 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 438 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 439 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 440 setOperationAction(ISD::JumpTable, XLenVT, Custom); 441 442 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 443 444 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 445 // Unfortunately this can't be determined just from the ISA naming string. 446 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 447 Subtarget.is64Bit() ? Legal : Custom); 448 449 setOperationAction(ISD::TRAP, MVT::Other, Legal); 450 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 if (Subtarget.is64Bit()) 453 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 454 455 if (Subtarget.hasStdExtA()) { 456 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 457 setMinCmpXchgSizeInBits(32); 458 } else { 459 setMaxAtomicSizeInBitsSupported(0); 460 } 461 462 setBooleanContents(ZeroOrOneBooleanContent); 463 464 if (Subtarget.hasVInstructions()) { 465 setBooleanVectorContents(ZeroOrOneBooleanContent); 466 467 setOperationAction(ISD::VSCALE, XLenVT, Custom); 468 469 // RVV intrinsics may have illegal operands. 470 // We also need to custom legalize vmv.x.s. 471 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 472 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 473 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 474 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 475 if (Subtarget.is64Bit()) { 476 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 477 } else { 478 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 479 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 480 } 481 482 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 483 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 484 485 static const unsigned IntegerVPOps[] = { 486 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, 487 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, 488 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, 489 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, 490 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, 491 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, 492 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, 493 ISD::VP_MERGE, ISD::VP_SELECT}; 494 495 static const unsigned FloatingPointVPOps[] = { 496 ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, 497 ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FMA, 498 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, ISD::VP_REDUCE_FMIN, 499 ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, ISD::VP_SELECT}; 500 501 if (!Subtarget.is64Bit()) { 502 // We must custom-lower certain vXi64 operations on RV32 due to the vector 503 // element type being illegal. 504 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 506 507 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 508 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 509 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 510 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 511 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 512 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 513 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 514 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 515 516 setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); 517 setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); 518 setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); 519 setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); 520 setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); 521 setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); 522 setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); 523 setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); 524 } 525 526 for (MVT VT : BoolVecVTs) { 527 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 528 529 // Mask VTs are custom-expanded into a series of standard nodes 530 setOperationAction(ISD::TRUNCATE, VT, Custom); 531 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 532 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 533 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 534 535 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 536 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 537 538 setOperationAction(ISD::SELECT, VT, Custom); 539 setOperationAction(ISD::SELECT_CC, VT, Expand); 540 setOperationAction(ISD::VSELECT, VT, Expand); 541 setOperationAction(ISD::VP_MERGE, VT, Expand); 542 setOperationAction(ISD::VP_SELECT, VT, Expand); 543 544 setOperationAction(ISD::VP_AND, VT, Custom); 545 setOperationAction(ISD::VP_OR, VT, Custom); 546 setOperationAction(ISD::VP_XOR, VT, Custom); 547 548 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 549 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 550 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 551 552 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 553 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 554 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 555 556 // RVV has native int->float & float->int conversions where the 557 // element type sizes are within one power-of-two of each other. Any 558 // wider distances between type sizes have to be lowered as sequences 559 // which progressively narrow the gap in stages. 560 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 561 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 562 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 563 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 564 565 // Expand all extending loads to types larger than this, and truncating 566 // stores from types larger than this. 567 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 568 setTruncStoreAction(OtherVT, VT, Expand); 569 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 570 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 571 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 572 } 573 } 574 575 for (MVT VT : IntVecVTs) { 576 if (VT.getVectorElementType() == MVT::i64 && 577 !Subtarget.hasVInstructionsI64()) 578 continue; 579 580 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 581 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 582 583 // Vectors implement MULHS/MULHU. 584 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 585 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 586 587 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. 588 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { 589 setOperationAction(ISD::MULHU, VT, Expand); 590 setOperationAction(ISD::MULHS, VT, Expand); 591 } 592 593 setOperationAction(ISD::SMIN, VT, Legal); 594 setOperationAction(ISD::SMAX, VT, Legal); 595 setOperationAction(ISD::UMIN, VT, Legal); 596 setOperationAction(ISD::UMAX, VT, Legal); 597 598 setOperationAction(ISD::ROTL, VT, Expand); 599 setOperationAction(ISD::ROTR, VT, Expand); 600 601 setOperationAction(ISD::CTTZ, VT, Expand); 602 setOperationAction(ISD::CTLZ, VT, Expand); 603 setOperationAction(ISD::CTPOP, VT, Expand); 604 605 setOperationAction(ISD::BSWAP, VT, Expand); 606 607 // Custom-lower extensions and truncations from/to mask types. 608 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 609 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 610 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 611 612 // RVV has native int->float & float->int conversions where the 613 // element type sizes are within one power-of-two of each other. Any 614 // wider distances between type sizes have to be lowered as sequences 615 // which progressively narrow the gap in stages. 616 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 617 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 618 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 619 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 620 621 setOperationAction(ISD::SADDSAT, VT, Legal); 622 setOperationAction(ISD::UADDSAT, VT, Legal); 623 setOperationAction(ISD::SSUBSAT, VT, Legal); 624 setOperationAction(ISD::USUBSAT, VT, Legal); 625 626 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 627 // nodes which truncate by one power of two at a time. 628 setOperationAction(ISD::TRUNCATE, VT, Custom); 629 630 // Custom-lower insert/extract operations to simplify patterns. 631 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 633 634 // Custom-lower reduction operations to set up the corresponding custom 635 // nodes' operands. 636 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 637 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 638 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 639 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 640 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 641 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 642 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 643 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 644 645 for (unsigned VPOpc : IntegerVPOps) 646 setOperationAction(VPOpc, VT, Custom); 647 648 setOperationAction(ISD::LOAD, VT, Custom); 649 setOperationAction(ISD::STORE, VT, Custom); 650 651 setOperationAction(ISD::MLOAD, VT, Custom); 652 setOperationAction(ISD::MSTORE, VT, Custom); 653 setOperationAction(ISD::MGATHER, VT, Custom); 654 setOperationAction(ISD::MSCATTER, VT, Custom); 655 656 setOperationAction(ISD::VP_LOAD, VT, Custom); 657 setOperationAction(ISD::VP_STORE, VT, Custom); 658 setOperationAction(ISD::VP_GATHER, VT, Custom); 659 setOperationAction(ISD::VP_SCATTER, VT, Custom); 660 661 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 662 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 663 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 664 665 setOperationAction(ISD::SELECT, VT, Custom); 666 setOperationAction(ISD::SELECT_CC, VT, Expand); 667 668 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 669 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 670 671 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 672 setTruncStoreAction(VT, OtherVT, Expand); 673 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 674 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 675 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 676 } 677 678 // Splice 679 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 680 681 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 682 // type that can represent the value exactly. 683 if (VT.getVectorElementType() != MVT::i64) { 684 MVT FloatEltVT = 685 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 686 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 687 if (isTypeLegal(FloatVT)) { 688 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 689 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 690 } 691 } 692 } 693 694 // Expand various CCs to best match the RVV ISA, which natively supports UNE 695 // but no other unordered comparisons, and supports all ordered comparisons 696 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 697 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 698 // and we pattern-match those back to the "original", swapping operands once 699 // more. This way we catch both operations and both "vf" and "fv" forms with 700 // fewer patterns. 701 static const ISD::CondCode VFPCCToExpand[] = { 702 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 703 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 704 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 705 }; 706 707 // Sets common operation actions on RVV floating-point vector types. 708 const auto SetCommonVFPActions = [&](MVT VT) { 709 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 710 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 711 // sizes are within one power-of-two of each other. Therefore conversions 712 // between vXf16 and vXf64 must be lowered as sequences which convert via 713 // vXf32. 714 setOperationAction(ISD::FP_ROUND, VT, Custom); 715 setOperationAction(ISD::FP_EXTEND, VT, Custom); 716 // Custom-lower insert/extract operations to simplify patterns. 717 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 718 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 719 // Expand various condition codes (explained above). 720 for (auto CC : VFPCCToExpand) 721 setCondCodeAction(CC, VT, Expand); 722 723 setOperationAction(ISD::FMINNUM, VT, Legal); 724 setOperationAction(ISD::FMAXNUM, VT, Legal); 725 726 setOperationAction(ISD::FTRUNC, VT, Custom); 727 setOperationAction(ISD::FCEIL, VT, Custom); 728 setOperationAction(ISD::FFLOOR, VT, Custom); 729 setOperationAction(ISD::FROUND, VT, Custom); 730 731 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 732 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 733 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 734 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 735 736 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 737 738 setOperationAction(ISD::LOAD, VT, Custom); 739 setOperationAction(ISD::STORE, VT, Custom); 740 741 setOperationAction(ISD::MLOAD, VT, Custom); 742 setOperationAction(ISD::MSTORE, VT, Custom); 743 setOperationAction(ISD::MGATHER, VT, Custom); 744 setOperationAction(ISD::MSCATTER, VT, Custom); 745 746 setOperationAction(ISD::VP_LOAD, VT, Custom); 747 setOperationAction(ISD::VP_STORE, VT, Custom); 748 setOperationAction(ISD::VP_GATHER, VT, Custom); 749 setOperationAction(ISD::VP_SCATTER, VT, Custom); 750 751 setOperationAction(ISD::SELECT, VT, Custom); 752 setOperationAction(ISD::SELECT_CC, VT, Expand); 753 754 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 755 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 756 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 757 758 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 759 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); 760 761 for (unsigned VPOpc : FloatingPointVPOps) 762 setOperationAction(VPOpc, VT, Custom); 763 }; 764 765 // Sets common extload/truncstore actions on RVV floating-point vector 766 // types. 767 const auto SetCommonVFPExtLoadTruncStoreActions = 768 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 769 for (auto SmallVT : SmallerVTs) { 770 setTruncStoreAction(VT, SmallVT, Expand); 771 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 772 } 773 }; 774 775 if (Subtarget.hasVInstructionsF16()) 776 for (MVT VT : F16VecVTs) 777 SetCommonVFPActions(VT); 778 779 for (MVT VT : F32VecVTs) { 780 if (Subtarget.hasVInstructionsF32()) 781 SetCommonVFPActions(VT); 782 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 783 } 784 785 for (MVT VT : F64VecVTs) { 786 if (Subtarget.hasVInstructionsF64()) 787 SetCommonVFPActions(VT); 788 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 789 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 790 } 791 792 if (Subtarget.useRVVForFixedLengthVectors()) { 793 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 794 if (!useRVVForFixedLengthVectorVT(VT)) 795 continue; 796 797 // By default everything must be expanded. 798 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 799 setOperationAction(Op, VT, Expand); 800 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 801 setTruncStoreAction(VT, OtherVT, Expand); 802 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 803 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 804 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 805 } 806 807 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 808 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 809 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 810 811 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 812 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 813 814 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 816 817 setOperationAction(ISD::LOAD, VT, Custom); 818 setOperationAction(ISD::STORE, VT, Custom); 819 820 setOperationAction(ISD::SETCC, VT, Custom); 821 822 setOperationAction(ISD::SELECT, VT, Custom); 823 824 setOperationAction(ISD::TRUNCATE, VT, Custom); 825 826 setOperationAction(ISD::BITCAST, VT, Custom); 827 828 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 829 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 830 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 831 832 setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); 833 setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); 834 setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); 835 836 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 837 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 838 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 839 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 840 841 // Operations below are different for between masks and other vectors. 842 if (VT.getVectorElementType() == MVT::i1) { 843 setOperationAction(ISD::VP_AND, VT, Custom); 844 setOperationAction(ISD::VP_OR, VT, Custom); 845 setOperationAction(ISD::VP_XOR, VT, Custom); 846 setOperationAction(ISD::AND, VT, Custom); 847 setOperationAction(ISD::OR, VT, Custom); 848 setOperationAction(ISD::XOR, VT, Custom); 849 continue; 850 } 851 852 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to 853 // it before type legalization for i64 vectors on RV32. It will then be 854 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. 855 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 856 // improvements first. 857 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 858 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 859 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 860 } 861 862 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 863 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 864 865 setOperationAction(ISD::MLOAD, VT, Custom); 866 setOperationAction(ISD::MSTORE, VT, Custom); 867 setOperationAction(ISD::MGATHER, VT, Custom); 868 setOperationAction(ISD::MSCATTER, VT, Custom); 869 870 setOperationAction(ISD::VP_LOAD, VT, Custom); 871 setOperationAction(ISD::VP_STORE, VT, Custom); 872 setOperationAction(ISD::VP_GATHER, VT, Custom); 873 setOperationAction(ISD::VP_SCATTER, VT, Custom); 874 875 setOperationAction(ISD::ADD, VT, Custom); 876 setOperationAction(ISD::MUL, VT, Custom); 877 setOperationAction(ISD::SUB, VT, Custom); 878 setOperationAction(ISD::AND, VT, Custom); 879 setOperationAction(ISD::OR, VT, Custom); 880 setOperationAction(ISD::XOR, VT, Custom); 881 setOperationAction(ISD::SDIV, VT, Custom); 882 setOperationAction(ISD::SREM, VT, Custom); 883 setOperationAction(ISD::UDIV, VT, Custom); 884 setOperationAction(ISD::UREM, VT, Custom); 885 setOperationAction(ISD::SHL, VT, Custom); 886 setOperationAction(ISD::SRA, VT, Custom); 887 setOperationAction(ISD::SRL, VT, Custom); 888 889 setOperationAction(ISD::SMIN, VT, Custom); 890 setOperationAction(ISD::SMAX, VT, Custom); 891 setOperationAction(ISD::UMIN, VT, Custom); 892 setOperationAction(ISD::UMAX, VT, Custom); 893 setOperationAction(ISD::ABS, VT, Custom); 894 895 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. 896 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { 897 setOperationAction(ISD::MULHS, VT, Custom); 898 setOperationAction(ISD::MULHU, VT, Custom); 899 } 900 901 setOperationAction(ISD::SADDSAT, VT, Custom); 902 setOperationAction(ISD::UADDSAT, VT, Custom); 903 setOperationAction(ISD::SSUBSAT, VT, Custom); 904 setOperationAction(ISD::USUBSAT, VT, Custom); 905 906 setOperationAction(ISD::VSELECT, VT, Custom); 907 setOperationAction(ISD::SELECT_CC, VT, Expand); 908 909 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 910 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 911 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 912 913 // Custom-lower reduction operations to set up the corresponding custom 914 // nodes' operands. 915 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 916 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 917 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 918 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 919 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 920 921 for (unsigned VPOpc : IntegerVPOps) 922 setOperationAction(VPOpc, VT, Custom); 923 924 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point 925 // type that can represent the value exactly. 926 if (VT.getVectorElementType() != MVT::i64) { 927 MVT FloatEltVT = 928 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; 929 EVT FloatVT = 930 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 931 if (isTypeLegal(FloatVT)) { 932 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 933 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 934 } 935 } 936 } 937 938 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 939 if (!useRVVForFixedLengthVectorVT(VT)) 940 continue; 941 942 // By default everything must be expanded. 943 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 944 setOperationAction(Op, VT, Expand); 945 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 946 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 947 setTruncStoreAction(VT, OtherVT, Expand); 948 } 949 950 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 951 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 952 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 953 954 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 955 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 956 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 957 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 959 960 setOperationAction(ISD::LOAD, VT, Custom); 961 setOperationAction(ISD::STORE, VT, Custom); 962 setOperationAction(ISD::MLOAD, VT, Custom); 963 setOperationAction(ISD::MSTORE, VT, Custom); 964 setOperationAction(ISD::MGATHER, VT, Custom); 965 setOperationAction(ISD::MSCATTER, VT, Custom); 966 967 setOperationAction(ISD::VP_LOAD, VT, Custom); 968 setOperationAction(ISD::VP_STORE, VT, Custom); 969 setOperationAction(ISD::VP_GATHER, VT, Custom); 970 setOperationAction(ISD::VP_SCATTER, VT, Custom); 971 972 setOperationAction(ISD::FADD, VT, Custom); 973 setOperationAction(ISD::FSUB, VT, Custom); 974 setOperationAction(ISD::FMUL, VT, Custom); 975 setOperationAction(ISD::FDIV, VT, Custom); 976 setOperationAction(ISD::FNEG, VT, Custom); 977 setOperationAction(ISD::FABS, VT, Custom); 978 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 979 setOperationAction(ISD::FSQRT, VT, Custom); 980 setOperationAction(ISD::FMA, VT, Custom); 981 setOperationAction(ISD::FMINNUM, VT, Custom); 982 setOperationAction(ISD::FMAXNUM, VT, Custom); 983 984 setOperationAction(ISD::FP_ROUND, VT, Custom); 985 setOperationAction(ISD::FP_EXTEND, VT, Custom); 986 987 setOperationAction(ISD::FTRUNC, VT, Custom); 988 setOperationAction(ISD::FCEIL, VT, Custom); 989 setOperationAction(ISD::FFLOOR, VT, Custom); 990 setOperationAction(ISD::FROUND, VT, Custom); 991 992 for (auto CC : VFPCCToExpand) 993 setCondCodeAction(CC, VT, Expand); 994 995 setOperationAction(ISD::VSELECT, VT, Custom); 996 setOperationAction(ISD::SELECT, VT, Custom); 997 setOperationAction(ISD::SELECT_CC, VT, Expand); 998 999 setOperationAction(ISD::BITCAST, VT, Custom); 1000 1001 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 1002 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 1003 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 1004 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 1005 1006 for (unsigned VPOpc : FloatingPointVPOps) 1007 setOperationAction(VPOpc, VT, Custom); 1008 } 1009 1010 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 1011 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 1012 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 1013 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 1014 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1015 if (Subtarget.hasStdExtZfh()) 1016 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 1017 if (Subtarget.hasStdExtF()) 1018 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 1019 if (Subtarget.hasStdExtD()) 1020 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 1021 } 1022 } 1023 1024 // Function alignments. 1025 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 1026 setMinFunctionAlignment(FunctionAlignment); 1027 setPrefFunctionAlignment(FunctionAlignment); 1028 1029 setMinimumJumpTableEntries(5); 1030 1031 // Jumps are expensive, compared to logic 1032 setJumpIsExpensive(); 1033 1034 setTargetDAGCombine(ISD::ADD); 1035 setTargetDAGCombine(ISD::SUB); 1036 setTargetDAGCombine(ISD::AND); 1037 setTargetDAGCombine(ISD::OR); 1038 setTargetDAGCombine(ISD::XOR); 1039 if (Subtarget.hasStdExtZbp()) { 1040 setTargetDAGCombine(ISD::ROTL); 1041 setTargetDAGCombine(ISD::ROTR); 1042 } 1043 if (Subtarget.hasStdExtZbkb()) 1044 setTargetDAGCombine(ISD::BITREVERSE); 1045 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1046 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb()) 1047 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 1048 if (Subtarget.hasStdExtF()) { 1049 setTargetDAGCombine(ISD::ZERO_EXTEND); 1050 setTargetDAGCombine(ISD::FP_TO_SINT); 1051 setTargetDAGCombine(ISD::FP_TO_UINT); 1052 setTargetDAGCombine(ISD::FP_TO_SINT_SAT); 1053 setTargetDAGCombine(ISD::FP_TO_UINT_SAT); 1054 } 1055 if (Subtarget.hasVInstructions()) { 1056 setTargetDAGCombine(ISD::FCOPYSIGN); 1057 setTargetDAGCombine(ISD::MGATHER); 1058 setTargetDAGCombine(ISD::MSCATTER); 1059 setTargetDAGCombine(ISD::VP_GATHER); 1060 setTargetDAGCombine(ISD::VP_SCATTER); 1061 setTargetDAGCombine(ISD::SRA); 1062 setTargetDAGCombine(ISD::SRL); 1063 setTargetDAGCombine(ISD::SHL); 1064 setTargetDAGCombine(ISD::STORE); 1065 setTargetDAGCombine(ISD::SPLAT_VECTOR); 1066 } 1067 1068 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 1069 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 1070 } 1071 1072 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 1073 LLVMContext &Context, 1074 EVT VT) const { 1075 if (!VT.isVector()) 1076 return getPointerTy(DL); 1077 if (Subtarget.hasVInstructions() && 1078 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 1079 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 1080 return VT.changeVectorElementTypeToInteger(); 1081 } 1082 1083 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { 1084 return Subtarget.getXLenVT(); 1085 } 1086 1087 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 1088 const CallInst &I, 1089 MachineFunction &MF, 1090 unsigned Intrinsic) const { 1091 auto &DL = I.getModule()->getDataLayout(); 1092 switch (Intrinsic) { 1093 default: 1094 return false; 1095 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 1096 case Intrinsic::riscv_masked_atomicrmw_add_i32: 1097 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 1098 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 1099 case Intrinsic::riscv_masked_atomicrmw_max_i32: 1100 case Intrinsic::riscv_masked_atomicrmw_min_i32: 1101 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 1102 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 1103 case Intrinsic::riscv_masked_cmpxchg_i32: 1104 Info.opc = ISD::INTRINSIC_W_CHAIN; 1105 Info.memVT = MVT::i32; 1106 Info.ptrVal = I.getArgOperand(0); 1107 Info.offset = 0; 1108 Info.align = Align(4); 1109 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 1110 MachineMemOperand::MOVolatile; 1111 return true; 1112 case Intrinsic::riscv_masked_strided_load: 1113 Info.opc = ISD::INTRINSIC_W_CHAIN; 1114 Info.ptrVal = I.getArgOperand(1); 1115 Info.memVT = getValueType(DL, I.getType()->getScalarType()); 1116 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); 1117 Info.size = MemoryLocation::UnknownSize; 1118 Info.flags |= MachineMemOperand::MOLoad; 1119 return true; 1120 case Intrinsic::riscv_masked_strided_store: 1121 Info.opc = ISD::INTRINSIC_VOID; 1122 Info.ptrVal = I.getArgOperand(1); 1123 Info.memVT = 1124 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); 1125 Info.align = Align( 1126 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / 1127 8); 1128 Info.size = MemoryLocation::UnknownSize; 1129 Info.flags |= MachineMemOperand::MOStore; 1130 return true; 1131 case Intrinsic::riscv_seg2_load: 1132 case Intrinsic::riscv_seg3_load: 1133 case Intrinsic::riscv_seg4_load: 1134 case Intrinsic::riscv_seg5_load: 1135 case Intrinsic::riscv_seg6_load: 1136 case Intrinsic::riscv_seg7_load: 1137 case Intrinsic::riscv_seg8_load: 1138 Info.opc = ISD::INTRINSIC_W_CHAIN; 1139 Info.ptrVal = I.getArgOperand(0); 1140 Info.memVT = 1141 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); 1142 Info.align = 1143 Align(DL.getTypeSizeInBits( 1144 I.getType()->getStructElementType(0)->getScalarType()) / 1145 8); 1146 Info.size = MemoryLocation::UnknownSize; 1147 Info.flags |= MachineMemOperand::MOLoad; 1148 return true; 1149 } 1150 } 1151 1152 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1153 const AddrMode &AM, Type *Ty, 1154 unsigned AS, 1155 Instruction *I) const { 1156 // No global is ever allowed as a base. 1157 if (AM.BaseGV) 1158 return false; 1159 1160 // Require a 12-bit signed offset. 1161 if (!isInt<12>(AM.BaseOffs)) 1162 return false; 1163 1164 switch (AM.Scale) { 1165 case 0: // "r+i" or just "i", depending on HasBaseReg. 1166 break; 1167 case 1: 1168 if (!AM.HasBaseReg) // allow "r+i". 1169 break; 1170 return false; // disallow "r+r" or "r+r+i". 1171 default: 1172 return false; 1173 } 1174 1175 return true; 1176 } 1177 1178 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 1179 return isInt<12>(Imm); 1180 } 1181 1182 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 1183 return isInt<12>(Imm); 1184 } 1185 1186 // On RV32, 64-bit integers are split into their high and low parts and held 1187 // in two different registers, so the trunc is free since the low register can 1188 // just be used. 1189 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 1190 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 1191 return false; 1192 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 1193 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 1194 return (SrcBits == 64 && DestBits == 32); 1195 } 1196 1197 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 1198 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 1199 !SrcVT.isInteger() || !DstVT.isInteger()) 1200 return false; 1201 unsigned SrcBits = SrcVT.getSizeInBits(); 1202 unsigned DestBits = DstVT.getSizeInBits(); 1203 return (SrcBits == 64 && DestBits == 32); 1204 } 1205 1206 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1207 // Zexts are free if they can be combined with a load. 1208 // Don't advertise i32->i64 zextload as being free for RV64. It interacts 1209 // poorly with type legalization of compares preferring sext. 1210 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 1211 EVT MemVT = LD->getMemoryVT(); 1212 if ((MemVT == MVT::i8 || MemVT == MVT::i16) && 1213 (LD->getExtensionType() == ISD::NON_EXTLOAD || 1214 LD->getExtensionType() == ISD::ZEXTLOAD)) 1215 return true; 1216 } 1217 1218 return TargetLowering::isZExtFree(Val, VT2); 1219 } 1220 1221 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 1222 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 1223 } 1224 1225 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 1226 return Subtarget.hasStdExtZbb(); 1227 } 1228 1229 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 1230 return Subtarget.hasStdExtZbb(); 1231 } 1232 1233 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { 1234 EVT VT = Y.getValueType(); 1235 1236 // FIXME: Support vectors once we have tests. 1237 if (VT.isVector()) 1238 return false; 1239 1240 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || 1241 Subtarget.hasStdExtZbkb()) && 1242 !isa<ConstantSDNode>(Y); 1243 } 1244 1245 /// Check if sinking \p I's operands to I's basic block is profitable, because 1246 /// the operands can be folded into a target instruction, e.g. 1247 /// splats of scalars can fold into vector instructions. 1248 bool RISCVTargetLowering::shouldSinkOperands( 1249 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 1250 using namespace llvm::PatternMatch; 1251 1252 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) 1253 return false; 1254 1255 auto IsSinker = [&](Instruction *I, int Operand) { 1256 switch (I->getOpcode()) { 1257 case Instruction::Add: 1258 case Instruction::Sub: 1259 case Instruction::Mul: 1260 case Instruction::And: 1261 case Instruction::Or: 1262 case Instruction::Xor: 1263 case Instruction::FAdd: 1264 case Instruction::FSub: 1265 case Instruction::FMul: 1266 case Instruction::FDiv: 1267 case Instruction::ICmp: 1268 case Instruction::FCmp: 1269 return true; 1270 case Instruction::Shl: 1271 case Instruction::LShr: 1272 case Instruction::AShr: 1273 case Instruction::UDiv: 1274 case Instruction::SDiv: 1275 case Instruction::URem: 1276 case Instruction::SRem: 1277 return Operand == 1; 1278 case Instruction::Call: 1279 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1280 switch (II->getIntrinsicID()) { 1281 case Intrinsic::fma: 1282 case Intrinsic::vp_fma: 1283 return Operand == 0 || Operand == 1; 1284 // FIXME: Our patterns can only match vx/vf instructions when the splat 1285 // it on the RHS, because TableGen doesn't recognize our VP operations 1286 // as commutative. 1287 case Intrinsic::vp_add: 1288 case Intrinsic::vp_mul: 1289 case Intrinsic::vp_and: 1290 case Intrinsic::vp_or: 1291 case Intrinsic::vp_xor: 1292 case Intrinsic::vp_fadd: 1293 case Intrinsic::vp_fmul: 1294 case Intrinsic::vp_shl: 1295 case Intrinsic::vp_lshr: 1296 case Intrinsic::vp_ashr: 1297 case Intrinsic::vp_udiv: 1298 case Intrinsic::vp_sdiv: 1299 case Intrinsic::vp_urem: 1300 case Intrinsic::vp_srem: 1301 return Operand == 1; 1302 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have 1303 // explicit patterns for both LHS and RHS (as 'vr' versions). 1304 case Intrinsic::vp_sub: 1305 case Intrinsic::vp_fsub: 1306 case Intrinsic::vp_fdiv: 1307 return Operand == 0 || Operand == 1; 1308 default: 1309 return false; 1310 } 1311 } 1312 return false; 1313 default: 1314 return false; 1315 } 1316 }; 1317 1318 for (auto OpIdx : enumerate(I->operands())) { 1319 if (!IsSinker(I, OpIdx.index())) 1320 continue; 1321 1322 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 1323 // Make sure we are not already sinking this operand 1324 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 1325 continue; 1326 1327 // We are looking for a splat that can be sunk. 1328 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 1329 m_Undef(), m_ZeroMask()))) 1330 continue; 1331 1332 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 1333 // and vector registers 1334 for (Use &U : Op->uses()) { 1335 Instruction *Insn = cast<Instruction>(U.getUser()); 1336 if (!IsSinker(Insn, U.getOperandNo())) 1337 return false; 1338 } 1339 1340 Ops.push_back(&Op->getOperandUse(0)); 1341 Ops.push_back(&OpIdx.value()); 1342 } 1343 return true; 1344 } 1345 1346 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 1347 bool ForCodeSize) const { 1348 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1349 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 1350 return false; 1351 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 1352 return false; 1353 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 1354 return false; 1355 return Imm.isZero(); 1356 } 1357 1358 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 1359 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 1360 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 1361 (VT == MVT::f64 && Subtarget.hasStdExtD()); 1362 } 1363 1364 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 1365 CallingConv::ID CC, 1366 EVT VT) const { 1367 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1368 // We might still end up using a GPR but that will be decided based on ABI. 1369 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1370 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1371 return MVT::f32; 1372 1373 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 1374 } 1375 1376 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 1377 CallingConv::ID CC, 1378 EVT VT) const { 1379 // Use f32 to pass f16 if it is legal and Zfh is not enabled. 1380 // We might still end up using a GPR but that will be decided based on ABI. 1381 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. 1382 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 1383 return 1; 1384 1385 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 1386 } 1387 1388 // Changes the condition code and swaps operands if necessary, so the SetCC 1389 // operation matches one of the comparisons supported directly by branches 1390 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 1391 // with 1/-1. 1392 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 1393 ISD::CondCode &CC, SelectionDAG &DAG) { 1394 // Convert X > -1 to X >= 0. 1395 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 1396 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1397 CC = ISD::SETGE; 1398 return; 1399 } 1400 // Convert X < 1 to 0 >= X. 1401 if (CC == ISD::SETLT && isOneConstant(RHS)) { 1402 RHS = LHS; 1403 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 1404 CC = ISD::SETGE; 1405 return; 1406 } 1407 1408 switch (CC) { 1409 default: 1410 break; 1411 case ISD::SETGT: 1412 case ISD::SETLE: 1413 case ISD::SETUGT: 1414 case ISD::SETULE: 1415 CC = ISD::getSetCCSwappedOperands(CC); 1416 std::swap(LHS, RHS); 1417 break; 1418 } 1419 } 1420 1421 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1422 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1423 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1424 if (VT.getVectorElementType() == MVT::i1) 1425 KnownSize *= 8; 1426 1427 switch (KnownSize) { 1428 default: 1429 llvm_unreachable("Invalid LMUL."); 1430 case 8: 1431 return RISCVII::VLMUL::LMUL_F8; 1432 case 16: 1433 return RISCVII::VLMUL::LMUL_F4; 1434 case 32: 1435 return RISCVII::VLMUL::LMUL_F2; 1436 case 64: 1437 return RISCVII::VLMUL::LMUL_1; 1438 case 128: 1439 return RISCVII::VLMUL::LMUL_2; 1440 case 256: 1441 return RISCVII::VLMUL::LMUL_4; 1442 case 512: 1443 return RISCVII::VLMUL::LMUL_8; 1444 } 1445 } 1446 1447 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1448 switch (LMul) { 1449 default: 1450 llvm_unreachable("Invalid LMUL."); 1451 case RISCVII::VLMUL::LMUL_F8: 1452 case RISCVII::VLMUL::LMUL_F4: 1453 case RISCVII::VLMUL::LMUL_F2: 1454 case RISCVII::VLMUL::LMUL_1: 1455 return RISCV::VRRegClassID; 1456 case RISCVII::VLMUL::LMUL_2: 1457 return RISCV::VRM2RegClassID; 1458 case RISCVII::VLMUL::LMUL_4: 1459 return RISCV::VRM4RegClassID; 1460 case RISCVII::VLMUL::LMUL_8: 1461 return RISCV::VRM8RegClassID; 1462 } 1463 } 1464 1465 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1466 RISCVII::VLMUL LMUL = getLMUL(VT); 1467 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1468 LMUL == RISCVII::VLMUL::LMUL_F4 || 1469 LMUL == RISCVII::VLMUL::LMUL_F2 || 1470 LMUL == RISCVII::VLMUL::LMUL_1) { 1471 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1472 "Unexpected subreg numbering"); 1473 return RISCV::sub_vrm1_0 + Index; 1474 } 1475 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1476 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1477 "Unexpected subreg numbering"); 1478 return RISCV::sub_vrm2_0 + Index; 1479 } 1480 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1481 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1482 "Unexpected subreg numbering"); 1483 return RISCV::sub_vrm4_0 + Index; 1484 } 1485 llvm_unreachable("Invalid vector type."); 1486 } 1487 1488 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1489 if (VT.getVectorElementType() == MVT::i1) 1490 return RISCV::VRRegClassID; 1491 return getRegClassIDForLMUL(getLMUL(VT)); 1492 } 1493 1494 // Attempt to decompose a subvector insert/extract between VecVT and 1495 // SubVecVT via subregister indices. Returns the subregister index that 1496 // can perform the subvector insert/extract with the given element index, as 1497 // well as the index corresponding to any leftover subvectors that must be 1498 // further inserted/extracted within the register class for SubVecVT. 1499 std::pair<unsigned, unsigned> 1500 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1501 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1502 const RISCVRegisterInfo *TRI) { 1503 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1504 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1505 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1506 "Register classes not ordered"); 1507 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1508 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1509 // Try to compose a subregister index that takes us from the incoming 1510 // LMUL>1 register class down to the outgoing one. At each step we half 1511 // the LMUL: 1512 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1513 // Note that this is not guaranteed to find a subregister index, such as 1514 // when we are extracting from one VR type to another. 1515 unsigned SubRegIdx = RISCV::NoSubRegister; 1516 for (const unsigned RCID : 1517 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1518 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1519 VecVT = VecVT.getHalfNumVectorElementsVT(); 1520 bool IsHi = 1521 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1522 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1523 getSubregIndexByMVT(VecVT, IsHi)); 1524 if (IsHi) 1525 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1526 } 1527 return {SubRegIdx, InsertExtractIdx}; 1528 } 1529 1530 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar 1531 // stores for those types. 1532 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { 1533 return !Subtarget.useRVVForFixedLengthVectors() || 1534 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); 1535 } 1536 1537 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { 1538 if (ScalarTy->isPointerTy()) 1539 return true; 1540 1541 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 1542 ScalarTy->isIntegerTy(32)) 1543 return true; 1544 1545 if (ScalarTy->isIntegerTy(64)) 1546 return Subtarget.hasVInstructionsI64(); 1547 1548 if (ScalarTy->isHalfTy()) 1549 return Subtarget.hasVInstructionsF16(); 1550 if (ScalarTy->isFloatTy()) 1551 return Subtarget.hasVInstructionsF32(); 1552 if (ScalarTy->isDoubleTy()) 1553 return Subtarget.hasVInstructionsF64(); 1554 1555 return false; 1556 } 1557 1558 static SDValue getVLOperand(SDValue Op) { 1559 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1560 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 1561 "Unexpected opcode"); 1562 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 1563 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 1564 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1565 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 1566 if (!II) 1567 return SDValue(); 1568 return Op.getOperand(II->VLOperand + 1 + HasChain); 1569 } 1570 1571 static bool useRVVForFixedLengthVectorVT(MVT VT, 1572 const RISCVSubtarget &Subtarget) { 1573 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1574 if (!Subtarget.useRVVForFixedLengthVectors()) 1575 return false; 1576 1577 // We only support a set of vector types with a consistent maximum fixed size 1578 // across all supported vector element types to avoid legalization issues. 1579 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest 1580 // fixed-length vector type we support is 1024 bytes. 1581 if (VT.getFixedSizeInBits() > 1024 * 8) 1582 return false; 1583 1584 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1585 1586 MVT EltVT = VT.getVectorElementType(); 1587 1588 // Don't use RVV for vectors we cannot scalarize if required. 1589 switch (EltVT.SimpleTy) { 1590 // i1 is supported but has different rules. 1591 default: 1592 return false; 1593 case MVT::i1: 1594 // Masks can only use a single register. 1595 if (VT.getVectorNumElements() > MinVLen) 1596 return false; 1597 MinVLen /= 8; 1598 break; 1599 case MVT::i8: 1600 case MVT::i16: 1601 case MVT::i32: 1602 break; 1603 case MVT::i64: 1604 if (!Subtarget.hasVInstructionsI64()) 1605 return false; 1606 break; 1607 case MVT::f16: 1608 if (!Subtarget.hasVInstructionsF16()) 1609 return false; 1610 break; 1611 case MVT::f32: 1612 if (!Subtarget.hasVInstructionsF32()) 1613 return false; 1614 break; 1615 case MVT::f64: 1616 if (!Subtarget.hasVInstructionsF64()) 1617 return false; 1618 break; 1619 } 1620 1621 // Reject elements larger than ELEN. 1622 if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) 1623 return false; 1624 1625 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1626 // Don't use RVV for types that don't fit. 1627 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1628 return false; 1629 1630 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1631 // the base fixed length RVV support in place. 1632 if (!VT.isPow2VectorType()) 1633 return false; 1634 1635 return true; 1636 } 1637 1638 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1639 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1640 } 1641 1642 // Return the largest legal scalable vector type that matches VT's element type. 1643 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1644 const RISCVSubtarget &Subtarget) { 1645 // This may be called before legal types are setup. 1646 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1647 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1648 "Expected legal fixed length vector!"); 1649 1650 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1651 unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); 1652 1653 MVT EltVT = VT.getVectorElementType(); 1654 switch (EltVT.SimpleTy) { 1655 default: 1656 llvm_unreachable("unexpected element type for RVV container"); 1657 case MVT::i1: 1658 case MVT::i8: 1659 case MVT::i16: 1660 case MVT::i32: 1661 case MVT::i64: 1662 case MVT::f16: 1663 case MVT::f32: 1664 case MVT::f64: { 1665 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1666 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within 1667 // each fractional LMUL we support SEW between 8 and LMUL*ELEN. 1668 unsigned NumElts = 1669 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; 1670 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); 1671 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); 1672 return MVT::getScalableVectorVT(EltVT, NumElts); 1673 } 1674 } 1675 } 1676 1677 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1678 const RISCVSubtarget &Subtarget) { 1679 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1680 Subtarget); 1681 } 1682 1683 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1684 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1685 } 1686 1687 // Grow V to consume an entire RVV register. 1688 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1689 const RISCVSubtarget &Subtarget) { 1690 assert(VT.isScalableVector() && 1691 "Expected to convert into a scalable vector!"); 1692 assert(V.getValueType().isFixedLengthVector() && 1693 "Expected a fixed length vector operand!"); 1694 SDLoc DL(V); 1695 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1696 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1697 } 1698 1699 // Shrink V so it's just big enough to maintain a VT's worth of data. 1700 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1701 const RISCVSubtarget &Subtarget) { 1702 assert(VT.isFixedLengthVector() && 1703 "Expected to convert into a fixed length vector!"); 1704 assert(V.getValueType().isScalableVector() && 1705 "Expected a scalable vector operand!"); 1706 SDLoc DL(V); 1707 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1708 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1709 } 1710 1711 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1712 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1713 // the vector type that it is contained in. 1714 static std::pair<SDValue, SDValue> 1715 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1716 const RISCVSubtarget &Subtarget) { 1717 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1718 MVT XLenVT = Subtarget.getXLenVT(); 1719 SDValue VL = VecVT.isFixedLengthVector() 1720 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1721 : DAG.getRegister(RISCV::X0, XLenVT); 1722 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1723 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1724 return {Mask, VL}; 1725 } 1726 1727 // As above but assuming the given type is a scalable vector type. 1728 static std::pair<SDValue, SDValue> 1729 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1730 const RISCVSubtarget &Subtarget) { 1731 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1732 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1733 } 1734 1735 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1736 // of either is (currently) supported. This can get us into an infinite loop 1737 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1738 // as a ..., etc. 1739 // Until either (or both) of these can reliably lower any node, reporting that 1740 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1741 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1742 // which is not desirable. 1743 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1744 EVT VT, unsigned DefinedValues) const { 1745 return false; 1746 } 1747 1748 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 1749 const RISCVSubtarget &Subtarget) { 1750 // RISCV FP-to-int conversions saturate to the destination register size, but 1751 // don't produce 0 for nan. We can use a conversion instruction and fix the 1752 // nan case with a compare and a select. 1753 SDValue Src = Op.getOperand(0); 1754 1755 EVT DstVT = Op.getValueType(); 1756 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1757 1758 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 1759 unsigned Opc; 1760 if (SatVT == DstVT) 1761 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 1762 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 1763 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 1764 else 1765 return SDValue(); 1766 // FIXME: Support other SatVTs by clamping before or after the conversion. 1767 1768 SDLoc DL(Op); 1769 SDValue FpToInt = DAG.getNode( 1770 Opc, DL, DstVT, Src, 1771 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); 1772 1773 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 1774 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 1775 } 1776 1777 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain 1778 // and back. Taking care to avoid converting values that are nan or already 1779 // correct. 1780 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't 1781 // have FRM dependencies modeled yet. 1782 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { 1783 MVT VT = Op.getSimpleValueType(); 1784 assert(VT.isVector() && "Unexpected type"); 1785 1786 SDLoc DL(Op); 1787 1788 // Freeze the source since we are increasing the number of uses. 1789 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1790 1791 // Truncate to integer and convert back to FP. 1792 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1793 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); 1794 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1795 1796 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1797 1798 if (Op.getOpcode() == ISD::FCEIL) { 1799 // If the truncated value is the greater than or equal to the original 1800 // value, we've computed the ceil. Otherwise, we went the wrong way and 1801 // need to increase by 1. 1802 // FIXME: This should use a masked operation. Handle here or in isel? 1803 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, 1804 DAG.getConstantFP(1.0, DL, VT)); 1805 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); 1806 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1807 } else if (Op.getOpcode() == ISD::FFLOOR) { 1808 // If the truncated value is the less than or equal to the original value, 1809 // we've computed the floor. Otherwise, we went the wrong way and need to 1810 // decrease by 1. 1811 // FIXME: This should use a masked operation. Handle here or in isel? 1812 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, 1813 DAG.getConstantFP(1.0, DL, VT)); 1814 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); 1815 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); 1816 } 1817 1818 // Restore the original sign so that -0.0 is preserved. 1819 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1820 1821 // Determine the largest integer that can be represented exactly. This and 1822 // values larger than it don't have any fractional bits so don't need to 1823 // be converted. 1824 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1825 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1826 APFloat MaxVal = APFloat(FltSem); 1827 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1828 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1829 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1830 1831 // If abs(Src) was larger than MaxVal or nan, keep it. 1832 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1833 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1834 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1835 } 1836 1837 // ISD::FROUND is defined to round to nearest with ties rounding away from 0. 1838 // This mode isn't supported in vector hardware on RISCV. But as long as we 1839 // aren't compiling with trapping math, we can emulate this with 1840 // floor(X + copysign(nextafter(0.5, 0.0), X)). 1841 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM 1842 // dependencies modeled yet. 1843 // FIXME: Use masked operations to avoid final merge. 1844 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) { 1845 MVT VT = Op.getSimpleValueType(); 1846 assert(VT.isVector() && "Unexpected type"); 1847 1848 SDLoc DL(Op); 1849 1850 // Freeze the source since we are increasing the number of uses. 1851 SDValue Src = DAG.getFreeze(Op.getOperand(0)); 1852 1853 // We do the conversion on the absolute value and fix the sign at the end. 1854 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); 1855 1856 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 1857 bool Ignored; 1858 APFloat Point5Pred = APFloat(0.5f); 1859 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored); 1860 Point5Pred.next(/*nextDown*/ true); 1861 1862 // Add the adjustment. 1863 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs, 1864 DAG.getConstantFP(Point5Pred, DL, VT)); 1865 1866 // Truncate to integer and convert back to fp. 1867 MVT IntVT = VT.changeVectorElementTypeToInteger(); 1868 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust); 1869 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); 1870 1871 // Restore the original sign. 1872 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); 1873 1874 // Determine the largest integer that can be represented exactly. This and 1875 // values larger than it don't have any fractional bits so don't need to 1876 // be converted. 1877 unsigned Precision = APFloat::semanticsPrecision(FltSem); 1878 APFloat MaxVal = APFloat(FltSem); 1879 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), 1880 /*IsSigned*/ false, APFloat::rmNearestTiesToEven); 1881 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); 1882 1883 // If abs(Src) was larger than MaxVal or nan, keep it. 1884 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1885 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); 1886 return DAG.getSelect(DL, VT, Setcc, Truncated, Src); 1887 } 1888 1889 struct VIDSequence { 1890 int64_t StepNumerator; 1891 unsigned StepDenominator; 1892 int64_t Addend; 1893 }; 1894 1895 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] 1896 // to the (non-zero) step S and start value X. This can be then lowered as the 1897 // RVV sequence (VID * S) + X, for example. 1898 // The step S is represented as an integer numerator divided by a positive 1899 // denominator. Note that the implementation currently only identifies 1900 // sequences in which either the numerator is +/- 1 or the denominator is 1. It 1901 // cannot detect 2/3, for example. 1902 // Note that this method will also match potentially unappealing index 1903 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to 1904 // determine whether this is worth generating code for. 1905 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { 1906 unsigned NumElts = Op.getNumOperands(); 1907 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); 1908 if (!Op.getValueType().isInteger()) 1909 return None; 1910 1911 Optional<unsigned> SeqStepDenom; 1912 Optional<int64_t> SeqStepNum, SeqAddend; 1913 Optional<std::pair<uint64_t, unsigned>> PrevElt; 1914 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); 1915 for (unsigned Idx = 0; Idx < NumElts; Idx++) { 1916 // Assume undef elements match the sequence; we just have to be careful 1917 // when interpolating across them. 1918 if (Op.getOperand(Idx).isUndef()) 1919 continue; 1920 // The BUILD_VECTOR must be all constants. 1921 if (!isa<ConstantSDNode>(Op.getOperand(Idx))) 1922 return None; 1923 1924 uint64_t Val = Op.getConstantOperandVal(Idx) & 1925 maskTrailingOnes<uint64_t>(EltSizeInBits); 1926 1927 if (PrevElt) { 1928 // Calculate the step since the last non-undef element, and ensure 1929 // it's consistent across the entire sequence. 1930 unsigned IdxDiff = Idx - PrevElt->second; 1931 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); 1932 1933 // A zero-value value difference means that we're somewhere in the middle 1934 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a 1935 // step change before evaluating the sequence. 1936 if (ValDiff != 0) { 1937 int64_t Remainder = ValDiff % IdxDiff; 1938 // Normalize the step if it's greater than 1. 1939 if (Remainder != ValDiff) { 1940 // The difference must cleanly divide the element span. 1941 if (Remainder != 0) 1942 return None; 1943 ValDiff /= IdxDiff; 1944 IdxDiff = 1; 1945 } 1946 1947 if (!SeqStepNum) 1948 SeqStepNum = ValDiff; 1949 else if (ValDiff != SeqStepNum) 1950 return None; 1951 1952 if (!SeqStepDenom) 1953 SeqStepDenom = IdxDiff; 1954 else if (IdxDiff != *SeqStepDenom) 1955 return None; 1956 } 1957 } 1958 1959 // Record and/or check any addend. 1960 if (SeqStepNum && SeqStepDenom) { 1961 uint64_t ExpectedVal = 1962 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; 1963 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); 1964 if (!SeqAddend) 1965 SeqAddend = Addend; 1966 else if (SeqAddend != Addend) 1967 return None; 1968 } 1969 1970 // Record this non-undef element for later. 1971 if (!PrevElt || PrevElt->first != Val) 1972 PrevElt = std::make_pair(Val, Idx); 1973 } 1974 // We need to have logged both a step and an addend for this to count as 1975 // a legal index sequence. 1976 if (!SeqStepNum || !SeqStepDenom || !SeqAddend) 1977 return None; 1978 1979 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; 1980 } 1981 1982 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT 1983 // and lower it as a VRGATHER_VX_VL from the source vector. 1984 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, 1985 SelectionDAG &DAG, 1986 const RISCVSubtarget &Subtarget) { 1987 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1988 return SDValue(); 1989 SDValue Vec = SplatVal.getOperand(0); 1990 // Only perform this optimization on vectors of the same size for simplicity. 1991 if (Vec.getValueType() != VT) 1992 return SDValue(); 1993 SDValue Idx = SplatVal.getOperand(1); 1994 // The index must be a legal type. 1995 if (Idx.getValueType() != Subtarget.getXLenVT()) 1996 return SDValue(); 1997 1998 MVT ContainerVT = VT; 1999 if (VT.isFixedLengthVector()) { 2000 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2001 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 2002 } 2003 2004 SDValue Mask, VL; 2005 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2006 2007 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, 2008 Idx, Mask, VL); 2009 2010 if (!VT.isFixedLengthVector()) 2011 return Gather; 2012 2013 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2014 } 2015 2016 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 2017 const RISCVSubtarget &Subtarget) { 2018 MVT VT = Op.getSimpleValueType(); 2019 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 2020 2021 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2022 2023 SDLoc DL(Op); 2024 SDValue Mask, VL; 2025 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2026 2027 MVT XLenVT = Subtarget.getXLenVT(); 2028 unsigned NumElts = Op.getNumOperands(); 2029 2030 if (VT.getVectorElementType() == MVT::i1) { 2031 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 2032 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 2033 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 2034 } 2035 2036 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 2037 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 2038 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 2039 } 2040 2041 // Lower constant mask BUILD_VECTORs via an integer vector type, in 2042 // scalar integer chunks whose bit-width depends on the number of mask 2043 // bits and XLEN. 2044 // First, determine the most appropriate scalar integer type to use. This 2045 // is at most XLenVT, but may be shrunk to a smaller vector element type 2046 // according to the size of the final vector - use i8 chunks rather than 2047 // XLenVT if we're producing a v8i1. This results in more consistent 2048 // codegen across RV32 and RV64. 2049 unsigned NumViaIntegerBits = 2050 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 2051 NumViaIntegerBits = std::min(NumViaIntegerBits, 2052 Subtarget.getMaxELENForFixedLengthVectors()); 2053 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 2054 // If we have to use more than one INSERT_VECTOR_ELT then this 2055 // optimization is likely to increase code size; avoid peforming it in 2056 // such a case. We can use a load from a constant pool in this case. 2057 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 2058 return SDValue(); 2059 // Now we can create our integer vector type. Note that it may be larger 2060 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 2061 MVT IntegerViaVecVT = 2062 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 2063 divideCeil(NumElts, NumViaIntegerBits)); 2064 2065 uint64_t Bits = 0; 2066 unsigned BitPos = 0, IntegerEltIdx = 0; 2067 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 2068 2069 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 2070 // Once we accumulate enough bits to fill our scalar type, insert into 2071 // our vector and clear our accumulated data. 2072 if (I != 0 && I % NumViaIntegerBits == 0) { 2073 if (NumViaIntegerBits <= 32) 2074 Bits = SignExtend64(Bits, 32); 2075 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2076 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 2077 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2078 Bits = 0; 2079 BitPos = 0; 2080 IntegerEltIdx++; 2081 } 2082 SDValue V = Op.getOperand(I); 2083 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 2084 Bits |= ((uint64_t)BitValue << BitPos); 2085 } 2086 2087 // Insert the (remaining) scalar value into position in our integer 2088 // vector type. 2089 if (NumViaIntegerBits <= 32) 2090 Bits = SignExtend64(Bits, 32); 2091 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 2092 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 2093 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 2094 2095 if (NumElts < NumViaIntegerBits) { 2096 // If we're producing a smaller vector than our minimum legal integer 2097 // type, bitcast to the equivalent (known-legal) mask type, and extract 2098 // our final mask. 2099 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 2100 Vec = DAG.getBitcast(MVT::v8i1, Vec); 2101 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 2102 DAG.getConstant(0, DL, XLenVT)); 2103 } else { 2104 // Else we must have produced an integer type with the same size as the 2105 // mask type; bitcast for the final result. 2106 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 2107 Vec = DAG.getBitcast(VT, Vec); 2108 } 2109 2110 return Vec; 2111 } 2112 2113 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 2114 // vector type, we have a legal equivalently-sized i8 type, so we can use 2115 // that. 2116 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 2117 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 2118 2119 SDValue WideVec; 2120 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2121 // For a splat, perform a scalar truncate before creating the wider 2122 // vector. 2123 assert(Splat.getValueType() == XLenVT && 2124 "Unexpected type for i1 splat value"); 2125 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 2126 DAG.getConstant(1, DL, XLenVT)); 2127 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 2128 } else { 2129 SmallVector<SDValue, 8> Ops(Op->op_values()); 2130 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 2131 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 2132 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 2133 } 2134 2135 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 2136 } 2137 2138 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 2139 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) 2140 return Gather; 2141 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 2142 : RISCVISD::VMV_V_X_VL; 2143 Splat = 2144 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); 2145 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2146 } 2147 2148 // Try and match index sequences, which we can lower to the vid instruction 2149 // with optional modifications. An all-undef vector is matched by 2150 // getSplatValue, above. 2151 if (auto SimpleVID = isSimpleVIDSequence(Op)) { 2152 int64_t StepNumerator = SimpleVID->StepNumerator; 2153 unsigned StepDenominator = SimpleVID->StepDenominator; 2154 int64_t Addend = SimpleVID->Addend; 2155 2156 assert(StepNumerator != 0 && "Invalid step"); 2157 bool Negate = false; 2158 int64_t SplatStepVal = StepNumerator; 2159 unsigned StepOpcode = ISD::MUL; 2160 if (StepNumerator != 1) { 2161 if (isPowerOf2_64(std::abs(StepNumerator))) { 2162 Negate = StepNumerator < 0; 2163 StepOpcode = ISD::SHL; 2164 SplatStepVal = Log2_64(std::abs(StepNumerator)); 2165 } 2166 } 2167 2168 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a 2169 // threshold since it's the immediate value many RVV instructions accept. 2170 // There is no vmul.vi instruction so ensure multiply constant can fit in 2171 // a single addi instruction. 2172 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || 2173 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && 2174 isPowerOf2_32(StepDenominator) && isInt<5>(Addend)) { 2175 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 2176 // Convert right out of the scalable type so we can use standard ISD 2177 // nodes for the rest of the computation. If we used scalable types with 2178 // these, we'd lose the fixed-length vector info and generate worse 2179 // vsetvli code. 2180 VID = convertFromScalableVector(VT, VID, DAG, Subtarget); 2181 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || 2182 (StepOpcode == ISD::SHL && SplatStepVal != 0)) { 2183 SDValue SplatStep = DAG.getSplatVector( 2184 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); 2185 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); 2186 } 2187 if (StepDenominator != 1) { 2188 SDValue SplatStep = DAG.getSplatVector( 2189 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); 2190 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); 2191 } 2192 if (Addend != 0 || Negate) { 2193 SDValue SplatAddend = 2194 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); 2195 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); 2196 } 2197 return VID; 2198 } 2199 } 2200 2201 // Attempt to detect "hidden" splats, which only reveal themselves as splats 2202 // when re-interpreted as a vector with a larger element type. For example, 2203 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 2204 // could be instead splat as 2205 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 2206 // TODO: This optimization could also work on non-constant splats, but it 2207 // would require bit-manipulation instructions to construct the splat value. 2208 SmallVector<SDValue> Sequence; 2209 unsigned EltBitSize = VT.getScalarSizeInBits(); 2210 const auto *BV = cast<BuildVectorSDNode>(Op); 2211 if (VT.isInteger() && EltBitSize < 64 && 2212 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 2213 BV->getRepeatedSequence(Sequence) && 2214 (Sequence.size() * EltBitSize) <= 64) { 2215 unsigned SeqLen = Sequence.size(); 2216 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 2217 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 2218 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 2219 ViaIntVT == MVT::i64) && 2220 "Unexpected sequence type"); 2221 2222 unsigned EltIdx = 0; 2223 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 2224 uint64_t SplatValue = 0; 2225 // Construct the amalgamated value which can be splatted as this larger 2226 // vector type. 2227 for (const auto &SeqV : Sequence) { 2228 if (!SeqV.isUndef()) 2229 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 2230 << (EltIdx * EltBitSize)); 2231 EltIdx++; 2232 } 2233 2234 // On RV64, sign-extend from 32 to 64 bits where possible in order to 2235 // achieve better constant materializion. 2236 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 2237 SplatValue = SignExtend64(SplatValue, 32); 2238 2239 // Since we can't introduce illegal i64 types at this stage, we can only 2240 // perform an i64 splat on RV32 if it is its own sign-extended value. That 2241 // way we can use RVV instructions to splat. 2242 assert((ViaIntVT.bitsLE(XLenVT) || 2243 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 2244 "Unexpected bitcast sequence"); 2245 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 2246 SDValue ViaVL = 2247 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 2248 MVT ViaContainerVT = 2249 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 2250 SDValue Splat = 2251 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 2252 DAG.getUNDEF(ViaContainerVT), 2253 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 2254 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 2255 return DAG.getBitcast(VT, Splat); 2256 } 2257 } 2258 2259 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 2260 // which constitute a large proportion of the elements. In such cases we can 2261 // splat a vector with the dominant element and make up the shortfall with 2262 // INSERT_VECTOR_ELTs. 2263 // Note that this includes vectors of 2 elements by association. The 2264 // upper-most element is the "dominant" one, allowing us to use a splat to 2265 // "insert" the upper element, and an insert of the lower element at position 2266 // 0, which improves codegen. 2267 SDValue DominantValue; 2268 unsigned MostCommonCount = 0; 2269 DenseMap<SDValue, unsigned> ValueCounts; 2270 unsigned NumUndefElts = 2271 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 2272 2273 // Track the number of scalar loads we know we'd be inserting, estimated as 2274 // any non-zero floating-point constant. Other kinds of element are either 2275 // already in registers or are materialized on demand. The threshold at which 2276 // a vector load is more desirable than several scalar materializion and 2277 // vector-insertion instructions is not known. 2278 unsigned NumScalarLoads = 0; 2279 2280 for (SDValue V : Op->op_values()) { 2281 if (V.isUndef()) 2282 continue; 2283 2284 ValueCounts.insert(std::make_pair(V, 0)); 2285 unsigned &Count = ValueCounts[V]; 2286 2287 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) 2288 NumScalarLoads += !CFP->isExactlyValue(+0.0); 2289 2290 // Is this value dominant? In case of a tie, prefer the highest element as 2291 // it's cheaper to insert near the beginning of a vector than it is at the 2292 // end. 2293 if (++Count >= MostCommonCount) { 2294 DominantValue = V; 2295 MostCommonCount = Count; 2296 } 2297 } 2298 2299 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 2300 unsigned NumDefElts = NumElts - NumUndefElts; 2301 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 2302 2303 // Don't perform this optimization when optimizing for size, since 2304 // materializing elements and inserting them tends to cause code bloat. 2305 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && 2306 ((MostCommonCount > DominantValueCountThreshold) || 2307 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 2308 // Start by splatting the most common element. 2309 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 2310 2311 DenseSet<SDValue> Processed{DominantValue}; 2312 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 2313 for (const auto &OpIdx : enumerate(Op->ops())) { 2314 const SDValue &V = OpIdx.value(); 2315 if (V.isUndef() || !Processed.insert(V).second) 2316 continue; 2317 if (ValueCounts[V] == 1) { 2318 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 2319 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 2320 } else { 2321 // Blend in all instances of this value using a VSELECT, using a 2322 // mask where each bit signals whether that element is the one 2323 // we're after. 2324 SmallVector<SDValue> Ops; 2325 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 2326 return DAG.getConstant(V == V1, DL, XLenVT); 2327 }); 2328 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 2329 DAG.getBuildVector(SelMaskTy, DL, Ops), 2330 DAG.getSplatBuildVector(VT, DL, V), Vec); 2331 } 2332 } 2333 2334 return Vec; 2335 } 2336 2337 return SDValue(); 2338 } 2339 2340 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2341 SDValue Lo, SDValue Hi, SDValue VL, 2342 SelectionDAG &DAG) { 2343 bool HasPassthru = Passthru && !Passthru.isUndef(); 2344 if (!HasPassthru && !Passthru) 2345 Passthru = DAG.getUNDEF(VT); 2346 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2347 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2348 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2349 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2350 // node in order to try and match RVV vector/scalar instructions. 2351 if ((LoC >> 31) == HiC) 2352 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); 2353 2354 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use 2355 // vmv.v.x whose EEW = 32 to lower it. 2356 auto *Const = dyn_cast<ConstantSDNode>(VL); 2357 if (LoC == HiC && Const && Const->isAllOnesValue()) { 2358 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 2359 // TODO: if vl <= min(VLMAX), we can also do this. But we could not 2360 // access the subtarget here now. 2361 auto InterVec = DAG.getNode( 2362 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, 2363 DAG.getRegister(RISCV::X0, MVT::i32)); 2364 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); 2365 } 2366 } 2367 2368 // Fall back to a stack store and stride x0 vector load. 2369 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, 2370 Hi, VL); 2371 } 2372 2373 // Called by type legalization to handle splat of i64 on RV32. 2374 // FIXME: We can optimize this when the type has sign or zero bits in one 2375 // of the halves. 2376 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, 2377 SDValue Scalar, SDValue VL, 2378 SelectionDAG &DAG) { 2379 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 2380 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2381 DAG.getConstant(0, DL, MVT::i32)); 2382 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 2383 DAG.getConstant(1, DL, MVT::i32)); 2384 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); 2385 } 2386 2387 // This function lowers a splat of a scalar operand Splat with the vector 2388 // length VL. It ensures the final sequence is type legal, which is useful when 2389 // lowering a splat after type legalization. 2390 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, 2391 MVT VT, SDLoc DL, SelectionDAG &DAG, 2392 const RISCVSubtarget &Subtarget) { 2393 bool HasPassthru = Passthru && !Passthru.isUndef(); 2394 if (!HasPassthru && !Passthru) 2395 Passthru = DAG.getUNDEF(VT); 2396 if (VT.isFloatingPoint()) { 2397 // If VL is 1, we could use vfmv.s.f. 2398 if (isOneConstant(VL)) 2399 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); 2400 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); 2401 } 2402 2403 MVT XLenVT = Subtarget.getXLenVT(); 2404 2405 // Simplest case is that the operand needs to be promoted to XLenVT. 2406 if (Scalar.getValueType().bitsLE(XLenVT)) { 2407 // If the operand is a constant, sign extend to increase our chances 2408 // of being able to use a .vi instruction. ANY_EXTEND would become a 2409 // a zero extend and the simm5 check in isel would fail. 2410 // FIXME: Should we ignore the upper bits in isel instead? 2411 unsigned ExtOpc = 2412 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 2413 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 2414 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); 2415 // If VL is 1 and the scalar value won't benefit from immediate, we could 2416 // use vmv.s.x. 2417 if (isOneConstant(VL) && 2418 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) 2419 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); 2420 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); 2421 } 2422 2423 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 2424 "Unexpected scalar for splat lowering!"); 2425 2426 if (isOneConstant(VL) && isNullConstant(Scalar)) 2427 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, 2428 DAG.getConstant(0, DL, XLenVT), VL); 2429 2430 // Otherwise use the more complicated splatting algorithm. 2431 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); 2432 } 2433 2434 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, 2435 const RISCVSubtarget &Subtarget) { 2436 // We need to be able to widen elements to the next larger integer type. 2437 if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) 2438 return false; 2439 2440 int Size = Mask.size(); 2441 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); 2442 2443 int Srcs[] = {-1, -1}; 2444 for (int i = 0; i != Size; ++i) { 2445 // Ignore undef elements. 2446 if (Mask[i] < 0) 2447 continue; 2448 2449 // Is this an even or odd element. 2450 int Pol = i % 2; 2451 2452 // Ensure we consistently use the same source for this element polarity. 2453 int Src = Mask[i] / Size; 2454 if (Srcs[Pol] < 0) 2455 Srcs[Pol] = Src; 2456 if (Srcs[Pol] != Src) 2457 return false; 2458 2459 // Make sure the element within the source is appropriate for this element 2460 // in the destination. 2461 int Elt = Mask[i] % Size; 2462 if (Elt != i / 2) 2463 return false; 2464 } 2465 2466 // We need to find a source for each polarity and they can't be the same. 2467 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) 2468 return false; 2469 2470 // Swap the sources if the second source was in the even polarity. 2471 SwapSources = Srcs[0] > Srcs[1]; 2472 2473 return true; 2474 } 2475 2476 /// Match shuffles that concatenate two vectors, rotate the concatenation, 2477 /// and then extract the original number of elements from the rotated result. 2478 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The 2479 /// returned rotation amount is for a rotate right, where elements move from 2480 /// higher elements to lower elements. \p LoSrc indicates the first source 2481 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector 2482 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be 2483 /// 0 or 1 if a rotation is found. 2484 /// 2485 /// NOTE: We talk about rotate to the right which matches how bit shift and 2486 /// rotate instructions are described where LSBs are on the right, but LLVM IR 2487 /// and the table below write vectors with the lowest elements on the left. 2488 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { 2489 int Size = Mask.size(); 2490 2491 // We need to detect various ways of spelling a rotation: 2492 // [11, 12, 13, 14, 15, 0, 1, 2] 2493 // [-1, 12, 13, 14, -1, -1, 1, -1] 2494 // [-1, -1, -1, -1, -1, -1, 1, 2] 2495 // [ 3, 4, 5, 6, 7, 8, 9, 10] 2496 // [-1, 4, 5, 6, -1, -1, 9, -1] 2497 // [-1, 4, 5, 6, -1, -1, -1, -1] 2498 int Rotation = 0; 2499 LoSrc = -1; 2500 HiSrc = -1; 2501 for (int i = 0; i != Size; ++i) { 2502 int M = Mask[i]; 2503 if (M < 0) 2504 continue; 2505 2506 // Determine where a rotate vector would have started. 2507 int StartIdx = i - (M % Size); 2508 // The identity rotation isn't interesting, stop. 2509 if (StartIdx == 0) 2510 return -1; 2511 2512 // If we found the tail of a vector the rotation must be the missing 2513 // front. If we found the head of a vector, it must be how much of the 2514 // head. 2515 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; 2516 2517 if (Rotation == 0) 2518 Rotation = CandidateRotation; 2519 else if (Rotation != CandidateRotation) 2520 // The rotations don't match, so we can't match this mask. 2521 return -1; 2522 2523 // Compute which value this mask is pointing at. 2524 int MaskSrc = M < Size ? 0 : 1; 2525 2526 // Compute which of the two target values this index should be assigned to. 2527 // This reflects whether the high elements are remaining or the low elemnts 2528 // are remaining. 2529 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; 2530 2531 // Either set up this value if we've not encountered it before, or check 2532 // that it remains consistent. 2533 if (TargetSrc < 0) 2534 TargetSrc = MaskSrc; 2535 else if (TargetSrc != MaskSrc) 2536 // This may be a rotation, but it pulls from the inputs in some 2537 // unsupported interleaving. 2538 return -1; 2539 } 2540 2541 // Check that we successfully analyzed the mask, and normalize the results. 2542 assert(Rotation != 0 && "Failed to locate a viable rotation!"); 2543 assert((LoSrc >= 0 || HiSrc >= 0) && 2544 "Failed to find a rotated input vector!"); 2545 2546 return Rotation; 2547 } 2548 2549 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 2550 const RISCVSubtarget &Subtarget) { 2551 SDValue V1 = Op.getOperand(0); 2552 SDValue V2 = Op.getOperand(1); 2553 SDLoc DL(Op); 2554 MVT XLenVT = Subtarget.getXLenVT(); 2555 MVT VT = Op.getSimpleValueType(); 2556 unsigned NumElts = VT.getVectorNumElements(); 2557 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 2558 2559 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 2560 2561 SDValue TrueMask, VL; 2562 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2563 2564 if (SVN->isSplat()) { 2565 const int Lane = SVN->getSplatIndex(); 2566 if (Lane >= 0) { 2567 MVT SVT = VT.getVectorElementType(); 2568 2569 // Turn splatted vector load into a strided load with an X0 stride. 2570 SDValue V = V1; 2571 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 2572 // with undef. 2573 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 2574 int Offset = Lane; 2575 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 2576 int OpElements = 2577 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 2578 V = V.getOperand(Offset / OpElements); 2579 Offset %= OpElements; 2580 } 2581 2582 // We need to ensure the load isn't atomic or volatile. 2583 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 2584 auto *Ld = cast<LoadSDNode>(V); 2585 Offset *= SVT.getStoreSize(); 2586 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 2587 TypeSize::Fixed(Offset), DL); 2588 2589 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 2590 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 2591 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 2592 SDValue IntID = 2593 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 2594 SDValue Ops[] = {Ld->getChain(), 2595 IntID, 2596 DAG.getUNDEF(ContainerVT), 2597 NewAddr, 2598 DAG.getRegister(RISCV::X0, XLenVT), 2599 VL}; 2600 SDValue NewLoad = DAG.getMemIntrinsicNode( 2601 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 2602 DAG.getMachineFunction().getMachineMemOperand( 2603 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 2604 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 2605 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 2606 } 2607 2608 // Otherwise use a scalar load and splat. This will give the best 2609 // opportunity to fold a splat into the operation. ISel can turn it into 2610 // the x0 strided load if we aren't able to fold away the select. 2611 if (SVT.isFloatingPoint()) 2612 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 2613 Ld->getPointerInfo().getWithOffset(Offset), 2614 Ld->getOriginalAlign(), 2615 Ld->getMemOperand()->getFlags()); 2616 else 2617 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 2618 Ld->getPointerInfo().getWithOffset(Offset), SVT, 2619 Ld->getOriginalAlign(), 2620 Ld->getMemOperand()->getFlags()); 2621 DAG.makeEquivalentMemoryOrdering(Ld, V); 2622 2623 unsigned Opc = 2624 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 2625 SDValue Splat = 2626 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); 2627 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 2628 } 2629 2630 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2631 assert(Lane < (int)NumElts && "Unexpected lane!"); 2632 SDValue Gather = 2633 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 2634 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 2635 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2636 } 2637 } 2638 2639 ArrayRef<int> Mask = SVN->getMask(); 2640 2641 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may 2642 // be undef which can be handled with a single SLIDEDOWN/UP. 2643 int LoSrc, HiSrc; 2644 int Rotation = isElementRotate(LoSrc, HiSrc, Mask); 2645 if (Rotation > 0) { 2646 SDValue LoV, HiV; 2647 if (LoSrc >= 0) { 2648 LoV = LoSrc == 0 ? V1 : V2; 2649 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); 2650 } 2651 if (HiSrc >= 0) { 2652 HiV = HiSrc == 0 ? V1 : V2; 2653 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); 2654 } 2655 2656 // We found a rotation. We need to slide HiV down by Rotation. Then we need 2657 // to slide LoV up by (NumElts - Rotation). 2658 unsigned InvRotate = NumElts - Rotation; 2659 2660 SDValue Res = DAG.getUNDEF(ContainerVT); 2661 if (HiV) { 2662 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. 2663 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it 2664 // causes multiple vsetvlis in some test cases such as lowering 2665 // reduce.mul 2666 SDValue DownVL = VL; 2667 if (LoV) 2668 DownVL = DAG.getConstant(InvRotate, DL, XLenVT); 2669 Res = 2670 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV, 2671 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL); 2672 } 2673 if (LoV) 2674 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV, 2675 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL); 2676 2677 return convertFromScalableVector(VT, Res, DAG, Subtarget); 2678 } 2679 2680 // Detect an interleave shuffle and lower to 2681 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) 2682 bool SwapSources; 2683 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { 2684 // Swap sources if needed. 2685 if (SwapSources) 2686 std::swap(V1, V2); 2687 2688 // Extract the lower half of the vectors. 2689 MVT HalfVT = VT.getHalfNumVectorElementsVT(); 2690 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, 2691 DAG.getConstant(0, DL, XLenVT)); 2692 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, 2693 DAG.getConstant(0, DL, XLenVT)); 2694 2695 // Double the element width and halve the number of elements in an int type. 2696 unsigned EltBits = VT.getScalarSizeInBits(); 2697 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); 2698 MVT WideIntVT = 2699 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); 2700 // Convert this to a scalable vector. We need to base this on the 2701 // destination size to ensure there's always a type with a smaller LMUL. 2702 MVT WideIntContainerVT = 2703 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); 2704 2705 // Convert sources to scalable vectors with the same element count as the 2706 // larger type. 2707 MVT HalfContainerVT = MVT::getVectorVT( 2708 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); 2709 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); 2710 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); 2711 2712 // Cast sources to integer. 2713 MVT IntEltVT = MVT::getIntegerVT(EltBits); 2714 MVT IntHalfVT = 2715 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); 2716 V1 = DAG.getBitcast(IntHalfVT, V1); 2717 V2 = DAG.getBitcast(IntHalfVT, V2); 2718 2719 // Freeze V2 since we use it twice and we need to be sure that the add and 2720 // multiply see the same value. 2721 V2 = DAG.getFreeze(V2); 2722 2723 // Recreate TrueMask using the widened type's element count. 2724 MVT MaskVT = 2725 MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); 2726 TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 2727 2728 // Widen V1 and V2 with 0s and add one copy of V2 to V1. 2729 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, 2730 V2, TrueMask, VL); 2731 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. 2732 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, 2733 DAG.getUNDEF(IntHalfVT), 2734 DAG.getAllOnesConstant(DL, XLenVT)); 2735 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, 2736 V2, Multiplier, TrueMask, VL); 2737 // Add the new copies to our previous addition giving us 2^eltbits copies of 2738 // V2. This is equivalent to shifting V2 left by eltbits. This should 2739 // combine with the vwmulu.vv above to form vwmaccu.vv. 2740 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, 2741 TrueMask, VL); 2742 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case 2743 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed 2744 // vector VT. 2745 ContainerVT = 2746 MVT::getVectorVT(VT.getVectorElementType(), 2747 WideIntContainerVT.getVectorElementCount() * 2); 2748 Add = DAG.getBitcast(ContainerVT, Add); 2749 return convertFromScalableVector(VT, Add, DAG, Subtarget); 2750 } 2751 2752 // Detect shuffles which can be re-expressed as vector selects; these are 2753 // shuffles in which each element in the destination is taken from an element 2754 // at the corresponding index in either source vectors. 2755 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { 2756 int MaskIndex = MaskIdx.value(); 2757 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 2758 }); 2759 2760 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 2761 2762 SmallVector<SDValue> MaskVals; 2763 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 2764 // merged with a second vrgather. 2765 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 2766 2767 // By default we preserve the original operand order, and use a mask to 2768 // select LHS as true and RHS as false. However, since RVV vector selects may 2769 // feature splats but only on the LHS, we may choose to invert our mask and 2770 // instead select between RHS and LHS. 2771 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 2772 bool InvertMask = IsSelect == SwapOps; 2773 2774 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle 2775 // half. 2776 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; 2777 2778 // Now construct the mask that will be used by the vselect or blended 2779 // vrgather operation. For vrgathers, construct the appropriate indices into 2780 // each vector. 2781 for (int MaskIndex : Mask) { 2782 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 2783 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 2784 if (!IsSelect) { 2785 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; 2786 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 2787 ? DAG.getConstant(MaskIndex, DL, XLenVT) 2788 : DAG.getUNDEF(XLenVT)); 2789 GatherIndicesRHS.push_back( 2790 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) 2791 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); 2792 if (IsLHSOrUndefIndex && MaskIndex >= 0) 2793 ++LHSIndexCounts[MaskIndex]; 2794 if (!IsLHSOrUndefIndex) 2795 ++RHSIndexCounts[MaskIndex - NumElts]; 2796 } 2797 } 2798 2799 if (SwapOps) { 2800 std::swap(V1, V2); 2801 std::swap(GatherIndicesLHS, GatherIndicesRHS); 2802 } 2803 2804 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 2805 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 2806 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 2807 2808 if (IsSelect) 2809 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 2810 2811 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 2812 // On such a large vector we're unable to use i8 as the index type. 2813 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 2814 // may involve vector splitting if we're already at LMUL=8, or our 2815 // user-supplied maximum fixed-length LMUL. 2816 return SDValue(); 2817 } 2818 2819 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; 2820 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; 2821 MVT IndexVT = VT.changeTypeToInteger(); 2822 // Since we can't introduce illegal index types at this stage, use i16 and 2823 // vrgatherei16 if the corresponding index type for plain vrgather is greater 2824 // than XLenVT. 2825 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 2826 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; 2827 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 2828 } 2829 2830 MVT IndexContainerVT = 2831 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 2832 2833 SDValue Gather; 2834 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 2835 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 2836 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 2837 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, 2838 Subtarget); 2839 } else { 2840 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 2841 // If only one index is used, we can use a "splat" vrgather. 2842 // TODO: We can splat the most-common index and fix-up any stragglers, if 2843 // that's beneficial. 2844 if (LHSIndexCounts.size() == 1) { 2845 int SplatIndex = LHSIndexCounts.begin()->getFirst(); 2846 Gather = 2847 DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, 2848 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2849 } else { 2850 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 2851 LHSIndices = 2852 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 2853 2854 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, 2855 TrueMask, VL); 2856 } 2857 } 2858 2859 // If a second vector operand is used by this shuffle, blend it in with an 2860 // additional vrgather. 2861 if (!V2.isUndef()) { 2862 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 2863 // If only one index is used, we can use a "splat" vrgather. 2864 // TODO: We can splat the most-common index and fix-up any stragglers, if 2865 // that's beneficial. 2866 if (RHSIndexCounts.size() == 1) { 2867 int SplatIndex = RHSIndexCounts.begin()->getFirst(); 2868 V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, 2869 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); 2870 } else { 2871 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 2872 RHSIndices = 2873 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 2874 V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, 2875 VL); 2876 } 2877 2878 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 2879 SelectMask = 2880 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 2881 2882 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 2883 Gather, VL); 2884 } 2885 2886 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 2887 } 2888 2889 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 2890 // Support splats for any type. These should type legalize well. 2891 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 2892 return true; 2893 2894 // Only support legal VTs for other shuffles for now. 2895 if (!isTypeLegal(VT)) 2896 return false; 2897 2898 MVT SVT = VT.getSimpleVT(); 2899 2900 bool SwapSources; 2901 int LoSrc, HiSrc; 2902 return (isElementRotate(LoSrc, HiSrc, M) > 0) || 2903 isInterleaveShuffle(M, SVT, SwapSources, Subtarget); 2904 } 2905 2906 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 2907 SDLoc DL, SelectionDAG &DAG, 2908 const RISCVSubtarget &Subtarget) { 2909 if (VT.isScalableVector()) 2910 return DAG.getFPExtendOrRound(Op, DL, VT); 2911 assert(VT.isFixedLengthVector() && 2912 "Unexpected value type for RVV FP extend/round lowering"); 2913 SDValue Mask, VL; 2914 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2915 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 2916 ? RISCVISD::FP_EXTEND_VL 2917 : RISCVISD::FP_ROUND_VL; 2918 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 2919 } 2920 2921 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting 2922 // the exponent. 2923 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { 2924 MVT VT = Op.getSimpleValueType(); 2925 unsigned EltSize = VT.getScalarSizeInBits(); 2926 SDValue Src = Op.getOperand(0); 2927 SDLoc DL(Op); 2928 2929 // We need a FP type that can represent the value. 2930 // TODO: Use f16 for i8 when possible? 2931 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; 2932 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); 2933 2934 // Legal types should have been checked in the RISCVTargetLowering 2935 // constructor. 2936 // TODO: Splitting may make sense in some cases. 2937 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && 2938 "Expected legal float type!"); 2939 2940 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. 2941 // The trailing zero count is equal to log2 of this single bit value. 2942 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { 2943 SDValue Neg = 2944 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); 2945 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); 2946 } 2947 2948 // We have a legal FP type, convert to it. 2949 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); 2950 // Bitcast to integer and shift the exponent to the LSB. 2951 EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); 2952 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); 2953 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; 2954 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, 2955 DAG.getConstant(ShiftAmt, DL, IntVT)); 2956 // Truncate back to original type to allow vnsrl. 2957 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); 2958 // The exponent contains log2 of the value in biased form. 2959 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; 2960 2961 // For trailing zeros, we just need to subtract the bias. 2962 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) 2963 return DAG.getNode(ISD::SUB, DL, VT, Trunc, 2964 DAG.getConstant(ExponentBias, DL, VT)); 2965 2966 // For leading zeros, we need to remove the bias and convert from log2 to 2967 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). 2968 unsigned Adjust = ExponentBias + (EltSize - 1); 2969 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); 2970 } 2971 2972 // While RVV has alignment restrictions, we should always be able to load as a 2973 // legal equivalently-sized byte-typed vector instead. This method is 2974 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If 2975 // the load is already correctly-aligned, it returns SDValue(). 2976 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, 2977 SelectionDAG &DAG) const { 2978 auto *Load = cast<LoadSDNode>(Op); 2979 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); 2980 2981 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 2982 Load->getMemoryVT(), 2983 *Load->getMemOperand())) 2984 return SDValue(); 2985 2986 SDLoc DL(Op); 2987 MVT VT = Op.getSimpleValueType(); 2988 unsigned EltSizeBits = VT.getScalarSizeInBits(); 2989 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 2990 "Unexpected unaligned RVV load type"); 2991 MVT NewVT = 2992 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 2993 assert(NewVT.isValid() && 2994 "Expecting equally-sized RVV vector types to be legal"); 2995 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), 2996 Load->getPointerInfo(), Load->getOriginalAlign(), 2997 Load->getMemOperand()->getFlags()); 2998 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); 2999 } 3000 3001 // While RVV has alignment restrictions, we should always be able to store as a 3002 // legal equivalently-sized byte-typed vector instead. This method is 3003 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It 3004 // returns SDValue() if the store is already correctly aligned. 3005 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, 3006 SelectionDAG &DAG) const { 3007 auto *Store = cast<StoreSDNode>(Op); 3008 assert(Store && Store->getValue().getValueType().isVector() && 3009 "Expected vector store"); 3010 3011 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 3012 Store->getMemoryVT(), 3013 *Store->getMemOperand())) 3014 return SDValue(); 3015 3016 SDLoc DL(Op); 3017 SDValue StoredVal = Store->getValue(); 3018 MVT VT = StoredVal.getSimpleValueType(); 3019 unsigned EltSizeBits = VT.getScalarSizeInBits(); 3020 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && 3021 "Unexpected unaligned RVV store type"); 3022 MVT NewVT = 3023 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); 3024 assert(NewVT.isValid() && 3025 "Expecting equally-sized RVV vector types to be legal"); 3026 StoredVal = DAG.getBitcast(NewVT, StoredVal); 3027 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), 3028 Store->getPointerInfo(), Store->getOriginalAlign(), 3029 Store->getMemOperand()->getFlags()); 3030 } 3031 3032 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 3033 SelectionDAG &DAG) const { 3034 switch (Op.getOpcode()) { 3035 default: 3036 report_fatal_error("unimplemented operand"); 3037 case ISD::GlobalAddress: 3038 return lowerGlobalAddress(Op, DAG); 3039 case ISD::BlockAddress: 3040 return lowerBlockAddress(Op, DAG); 3041 case ISD::ConstantPool: 3042 return lowerConstantPool(Op, DAG); 3043 case ISD::JumpTable: 3044 return lowerJumpTable(Op, DAG); 3045 case ISD::GlobalTLSAddress: 3046 return lowerGlobalTLSAddress(Op, DAG); 3047 case ISD::SELECT: 3048 return lowerSELECT(Op, DAG); 3049 case ISD::BRCOND: 3050 return lowerBRCOND(Op, DAG); 3051 case ISD::VASTART: 3052 return lowerVASTART(Op, DAG); 3053 case ISD::FRAMEADDR: 3054 return lowerFRAMEADDR(Op, DAG); 3055 case ISD::RETURNADDR: 3056 return lowerRETURNADDR(Op, DAG); 3057 case ISD::SHL_PARTS: 3058 return lowerShiftLeftParts(Op, DAG); 3059 case ISD::SRA_PARTS: 3060 return lowerShiftRightParts(Op, DAG, true); 3061 case ISD::SRL_PARTS: 3062 return lowerShiftRightParts(Op, DAG, false); 3063 case ISD::BITCAST: { 3064 SDLoc DL(Op); 3065 EVT VT = Op.getValueType(); 3066 SDValue Op0 = Op.getOperand(0); 3067 EVT Op0VT = Op0.getValueType(); 3068 MVT XLenVT = Subtarget.getXLenVT(); 3069 if (VT.isFixedLengthVector()) { 3070 // We can handle fixed length vector bitcasts with a simple replacement 3071 // in isel. 3072 if (Op0VT.isFixedLengthVector()) 3073 return Op; 3074 // When bitcasting from scalar to fixed-length vector, insert the scalar 3075 // into a one-element vector of the result type, and perform a vector 3076 // bitcast. 3077 if (!Op0VT.isVector()) { 3078 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 3079 if (!isTypeLegal(BVT)) 3080 return SDValue(); 3081 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 3082 DAG.getUNDEF(BVT), Op0, 3083 DAG.getConstant(0, DL, XLenVT))); 3084 } 3085 return SDValue(); 3086 } 3087 // Custom-legalize bitcasts from fixed-length vector types to scalar types 3088 // thus: bitcast the vector to a one-element vector type whose element type 3089 // is the same as the result type, and extract the first element. 3090 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 3091 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 3092 if (!isTypeLegal(BVT)) 3093 return SDValue(); 3094 SDValue BVec = DAG.getBitcast(BVT, Op0); 3095 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 3096 DAG.getConstant(0, DL, XLenVT)); 3097 } 3098 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 3099 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 3100 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 3101 return FPConv; 3102 } 3103 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 3104 Subtarget.hasStdExtF()) { 3105 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3106 SDValue FPConv = 3107 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 3108 return FPConv; 3109 } 3110 return SDValue(); 3111 } 3112 case ISD::INTRINSIC_WO_CHAIN: 3113 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3114 case ISD::INTRINSIC_W_CHAIN: 3115 return LowerINTRINSIC_W_CHAIN(Op, DAG); 3116 case ISD::INTRINSIC_VOID: 3117 return LowerINTRINSIC_VOID(Op, DAG); 3118 case ISD::BSWAP: 3119 case ISD::BITREVERSE: { 3120 MVT VT = Op.getSimpleValueType(); 3121 SDLoc DL(Op); 3122 if (Subtarget.hasStdExtZbp()) { 3123 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 3124 // Start with the maximum immediate value which is the bitwidth - 1. 3125 unsigned Imm = VT.getSizeInBits() - 1; 3126 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 3127 if (Op.getOpcode() == ISD::BSWAP) 3128 Imm &= ~0x7U; 3129 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 3130 DAG.getConstant(Imm, DL, VT)); 3131 } 3132 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); 3133 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); 3134 // Expand bitreverse to a bswap(rev8) followed by brev8. 3135 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); 3136 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized 3137 // as brev8 by an isel pattern. 3138 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, 3139 DAG.getConstant(7, DL, VT)); 3140 } 3141 case ISD::FSHL: 3142 case ISD::FSHR: { 3143 MVT VT = Op.getSimpleValueType(); 3144 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 3145 SDLoc DL(Op); 3146 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 3147 // use log(XLen) bits. Mask the shift amount accordingly to prevent 3148 // accidentally setting the extra bit. 3149 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 3150 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 3151 DAG.getConstant(ShAmtWidth, DL, VT)); 3152 // fshl and fshr concatenate their operands in the same order. fsr and fsl 3153 // instruction use different orders. fshl will return its first operand for 3154 // shift of zero, fshr will return its second operand. fsl and fsr both 3155 // return rs1 so the ISD nodes need to have different operand orders. 3156 // Shift amount is in rs2. 3157 SDValue Op0 = Op.getOperand(0); 3158 SDValue Op1 = Op.getOperand(1); 3159 unsigned Opc = RISCVISD::FSL; 3160 if (Op.getOpcode() == ISD::FSHR) { 3161 std::swap(Op0, Op1); 3162 Opc = RISCVISD::FSR; 3163 } 3164 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); 3165 } 3166 case ISD::TRUNCATE: { 3167 SDLoc DL(Op); 3168 MVT VT = Op.getSimpleValueType(); 3169 // Only custom-lower vector truncates 3170 if (!VT.isVector()) 3171 return Op; 3172 3173 // Truncates to mask types are handled differently 3174 if (VT.getVectorElementType() == MVT::i1) 3175 return lowerVectorMaskTrunc(Op, DAG); 3176 3177 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 3178 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 3179 // truncate by one power of two at a time. 3180 MVT DstEltVT = VT.getVectorElementType(); 3181 3182 SDValue Src = Op.getOperand(0); 3183 MVT SrcVT = Src.getSimpleValueType(); 3184 MVT SrcEltVT = SrcVT.getVectorElementType(); 3185 3186 assert(DstEltVT.bitsLT(SrcEltVT) && 3187 isPowerOf2_64(DstEltVT.getSizeInBits()) && 3188 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 3189 "Unexpected vector truncate lowering"); 3190 3191 MVT ContainerVT = SrcVT; 3192 if (SrcVT.isFixedLengthVector()) { 3193 ContainerVT = getContainerForFixedLengthVector(SrcVT); 3194 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3195 } 3196 3197 SDValue Result = Src; 3198 SDValue Mask, VL; 3199 std::tie(Mask, VL) = 3200 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 3201 LLVMContext &Context = *DAG.getContext(); 3202 const ElementCount Count = ContainerVT.getVectorElementCount(); 3203 do { 3204 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 3205 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 3206 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 3207 Mask, VL); 3208 } while (SrcEltVT != DstEltVT); 3209 3210 if (SrcVT.isFixedLengthVector()) 3211 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 3212 3213 return Result; 3214 } 3215 case ISD::ANY_EXTEND: 3216 case ISD::ZERO_EXTEND: 3217 if (Op.getOperand(0).getValueType().isVector() && 3218 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3219 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 3220 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 3221 case ISD::SIGN_EXTEND: 3222 if (Op.getOperand(0).getValueType().isVector() && 3223 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3224 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 3225 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 3226 case ISD::SPLAT_VECTOR_PARTS: 3227 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 3228 case ISD::INSERT_VECTOR_ELT: 3229 return lowerINSERT_VECTOR_ELT(Op, DAG); 3230 case ISD::EXTRACT_VECTOR_ELT: 3231 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 3232 case ISD::VSCALE: { 3233 MVT VT = Op.getSimpleValueType(); 3234 SDLoc DL(Op); 3235 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 3236 // We define our scalable vector types for lmul=1 to use a 64 bit known 3237 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 3238 // vscale as VLENB / 8. 3239 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); 3240 if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) 3241 report_fatal_error("Support for VLEN==32 is incomplete."); 3242 if (isa<ConstantSDNode>(Op.getOperand(0))) { 3243 // We assume VLENB is a multiple of 8. We manually choose the best shift 3244 // here because SimplifyDemandedBits isn't always able to simplify it. 3245 uint64_t Val = Op.getConstantOperandVal(0); 3246 if (isPowerOf2_64(Val)) { 3247 uint64_t Log2 = Log2_64(Val); 3248 if (Log2 < 3) 3249 return DAG.getNode(ISD::SRL, DL, VT, VLENB, 3250 DAG.getConstant(3 - Log2, DL, VT)); 3251 if (Log2 > 3) 3252 return DAG.getNode(ISD::SHL, DL, VT, VLENB, 3253 DAG.getConstant(Log2 - 3, DL, VT)); 3254 return VLENB; 3255 } 3256 // If the multiplier is a multiple of 8, scale it down to avoid needing 3257 // to shift the VLENB value. 3258 if ((Val % 8) == 0) 3259 return DAG.getNode(ISD::MUL, DL, VT, VLENB, 3260 DAG.getConstant(Val / 8, DL, VT)); 3261 } 3262 3263 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 3264 DAG.getConstant(3, DL, VT)); 3265 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 3266 } 3267 case ISD::FPOWI: { 3268 // Custom promote f16 powi with illegal i32 integer type on RV64. Once 3269 // promoted this will be legalized into a libcall by LegalizeIntegerTypes. 3270 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && 3271 Op.getOperand(1).getValueType() == MVT::i32) { 3272 SDLoc DL(Op); 3273 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); 3274 SDValue Powi = 3275 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); 3276 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, 3277 DAG.getIntPtrConstant(0, DL)); 3278 } 3279 return SDValue(); 3280 } 3281 case ISD::FP_EXTEND: { 3282 // RVV can only do fp_extend to types double the size as the source. We 3283 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 3284 // via f32. 3285 SDLoc DL(Op); 3286 MVT VT = Op.getSimpleValueType(); 3287 SDValue Src = Op.getOperand(0); 3288 MVT SrcVT = Src.getSimpleValueType(); 3289 3290 // Prepare any fixed-length vector operands. 3291 MVT ContainerVT = VT; 3292 if (SrcVT.isFixedLengthVector()) { 3293 ContainerVT = getContainerForFixedLengthVector(VT); 3294 MVT SrcContainerVT = 3295 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 3296 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3297 } 3298 3299 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 3300 SrcVT.getVectorElementType() != MVT::f16) { 3301 // For scalable vectors, we only need to close the gap between 3302 // vXf16->vXf64. 3303 if (!VT.isFixedLengthVector()) 3304 return Op; 3305 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 3306 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3307 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3308 } 3309 3310 MVT InterVT = VT.changeVectorElementType(MVT::f32); 3311 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 3312 SDValue IntermediateExtend = getRVVFPExtendOrRound( 3313 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 3314 3315 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 3316 DL, DAG, Subtarget); 3317 if (VT.isFixedLengthVector()) 3318 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 3319 return Extend; 3320 } 3321 case ISD::FP_ROUND: { 3322 // RVV can only do fp_round to types half the size as the source. We 3323 // custom-lower f64->f16 rounds via RVV's round-to-odd float 3324 // conversion instruction. 3325 SDLoc DL(Op); 3326 MVT VT = Op.getSimpleValueType(); 3327 SDValue Src = Op.getOperand(0); 3328 MVT SrcVT = Src.getSimpleValueType(); 3329 3330 // Prepare any fixed-length vector operands. 3331 MVT ContainerVT = VT; 3332 if (VT.isFixedLengthVector()) { 3333 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3334 ContainerVT = 3335 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3336 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3337 } 3338 3339 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 3340 SrcVT.getVectorElementType() != MVT::f64) { 3341 // For scalable vectors, we only need to close the gap between 3342 // vXf64<->vXf16. 3343 if (!VT.isFixedLengthVector()) 3344 return Op; 3345 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 3346 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 3347 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3348 } 3349 3350 SDValue Mask, VL; 3351 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3352 3353 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 3354 SDValue IntermediateRound = 3355 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 3356 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 3357 DL, DAG, Subtarget); 3358 3359 if (VT.isFixedLengthVector()) 3360 return convertFromScalableVector(VT, Round, DAG, Subtarget); 3361 return Round; 3362 } 3363 case ISD::FP_TO_SINT: 3364 case ISD::FP_TO_UINT: 3365 case ISD::SINT_TO_FP: 3366 case ISD::UINT_TO_FP: { 3367 // RVV can only do fp<->int conversions to types half/double the size as 3368 // the source. We custom-lower any conversions that do two hops into 3369 // sequences. 3370 MVT VT = Op.getSimpleValueType(); 3371 if (!VT.isVector()) 3372 return Op; 3373 SDLoc DL(Op); 3374 SDValue Src = Op.getOperand(0); 3375 MVT EltVT = VT.getVectorElementType(); 3376 MVT SrcVT = Src.getSimpleValueType(); 3377 MVT SrcEltVT = SrcVT.getVectorElementType(); 3378 unsigned EltSize = EltVT.getSizeInBits(); 3379 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 3380 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 3381 "Unexpected vector element types"); 3382 3383 bool IsInt2FP = SrcEltVT.isInteger(); 3384 // Widening conversions 3385 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 3386 if (IsInt2FP) { 3387 // Do a regular integer sign/zero extension then convert to float. 3388 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 3389 VT.getVectorElementCount()); 3390 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 3391 ? ISD::ZERO_EXTEND 3392 : ISD::SIGN_EXTEND; 3393 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 3394 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 3395 } 3396 // FP2Int 3397 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 3398 // Do one doubling fp_extend then complete the operation by converting 3399 // to int. 3400 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3401 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 3402 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 3403 } 3404 3405 // Narrowing conversions 3406 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 3407 if (IsInt2FP) { 3408 // One narrowing int_to_fp, then an fp_round. 3409 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 3410 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 3411 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 3412 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 3413 } 3414 // FP2Int 3415 // One narrowing fp_to_int, then truncate the integer. If the float isn't 3416 // representable by the integer, the result is poison. 3417 MVT IVecVT = 3418 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 3419 VT.getVectorElementCount()); 3420 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 3421 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 3422 } 3423 3424 // Scalable vectors can exit here. Patterns will handle equally-sized 3425 // conversions halving/doubling ones. 3426 if (!VT.isFixedLengthVector()) 3427 return Op; 3428 3429 // For fixed-length vectors we lower to a custom "VL" node. 3430 unsigned RVVOpc = 0; 3431 switch (Op.getOpcode()) { 3432 default: 3433 llvm_unreachable("Impossible opcode"); 3434 case ISD::FP_TO_SINT: 3435 RVVOpc = RISCVISD::FP_TO_SINT_VL; 3436 break; 3437 case ISD::FP_TO_UINT: 3438 RVVOpc = RISCVISD::FP_TO_UINT_VL; 3439 break; 3440 case ISD::SINT_TO_FP: 3441 RVVOpc = RISCVISD::SINT_TO_FP_VL; 3442 break; 3443 case ISD::UINT_TO_FP: 3444 RVVOpc = RISCVISD::UINT_TO_FP_VL; 3445 break; 3446 } 3447 3448 MVT ContainerVT, SrcContainerVT; 3449 // Derive the reference container type from the larger vector type. 3450 if (SrcEltSize > EltSize) { 3451 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 3452 ContainerVT = 3453 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 3454 } else { 3455 ContainerVT = getContainerForFixedLengthVector(VT); 3456 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 3457 } 3458 3459 SDValue Mask, VL; 3460 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3461 3462 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 3463 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 3464 return convertFromScalableVector(VT, Src, DAG, Subtarget); 3465 } 3466 case ISD::FP_TO_SINT_SAT: 3467 case ISD::FP_TO_UINT_SAT: 3468 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); 3469 case ISD::FTRUNC: 3470 case ISD::FCEIL: 3471 case ISD::FFLOOR: 3472 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); 3473 case ISD::FROUND: 3474 return lowerFROUND(Op, DAG); 3475 case ISD::VECREDUCE_ADD: 3476 case ISD::VECREDUCE_UMAX: 3477 case ISD::VECREDUCE_SMAX: 3478 case ISD::VECREDUCE_UMIN: 3479 case ISD::VECREDUCE_SMIN: 3480 return lowerVECREDUCE(Op, DAG); 3481 case ISD::VECREDUCE_AND: 3482 case ISD::VECREDUCE_OR: 3483 case ISD::VECREDUCE_XOR: 3484 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 3485 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); 3486 return lowerVECREDUCE(Op, DAG); 3487 case ISD::VECREDUCE_FADD: 3488 case ISD::VECREDUCE_SEQ_FADD: 3489 case ISD::VECREDUCE_FMIN: 3490 case ISD::VECREDUCE_FMAX: 3491 return lowerFPVECREDUCE(Op, DAG); 3492 case ISD::VP_REDUCE_ADD: 3493 case ISD::VP_REDUCE_UMAX: 3494 case ISD::VP_REDUCE_SMAX: 3495 case ISD::VP_REDUCE_UMIN: 3496 case ISD::VP_REDUCE_SMIN: 3497 case ISD::VP_REDUCE_FADD: 3498 case ISD::VP_REDUCE_SEQ_FADD: 3499 case ISD::VP_REDUCE_FMIN: 3500 case ISD::VP_REDUCE_FMAX: 3501 return lowerVPREDUCE(Op, DAG); 3502 case ISD::VP_REDUCE_AND: 3503 case ISD::VP_REDUCE_OR: 3504 case ISD::VP_REDUCE_XOR: 3505 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) 3506 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); 3507 return lowerVPREDUCE(Op, DAG); 3508 case ISD::INSERT_SUBVECTOR: 3509 return lowerINSERT_SUBVECTOR(Op, DAG); 3510 case ISD::EXTRACT_SUBVECTOR: 3511 return lowerEXTRACT_SUBVECTOR(Op, DAG); 3512 case ISD::STEP_VECTOR: 3513 return lowerSTEP_VECTOR(Op, DAG); 3514 case ISD::VECTOR_REVERSE: 3515 return lowerVECTOR_REVERSE(Op, DAG); 3516 case ISD::VECTOR_SPLICE: 3517 return lowerVECTOR_SPLICE(Op, DAG); 3518 case ISD::BUILD_VECTOR: 3519 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 3520 case ISD::SPLAT_VECTOR: 3521 if (Op.getValueType().getVectorElementType() == MVT::i1) 3522 return lowerVectorMaskSplat(Op, DAG); 3523 return SDValue(); 3524 case ISD::VECTOR_SHUFFLE: 3525 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 3526 case ISD::CONCAT_VECTORS: { 3527 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 3528 // better than going through the stack, as the default expansion does. 3529 SDLoc DL(Op); 3530 MVT VT = Op.getSimpleValueType(); 3531 unsigned NumOpElts = 3532 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 3533 SDValue Vec = DAG.getUNDEF(VT); 3534 for (const auto &OpIdx : enumerate(Op->ops())) { 3535 SDValue SubVec = OpIdx.value(); 3536 // Don't insert undef subvectors. 3537 if (SubVec.isUndef()) 3538 continue; 3539 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, 3540 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 3541 } 3542 return Vec; 3543 } 3544 case ISD::LOAD: 3545 if (auto V = expandUnalignedRVVLoad(Op, DAG)) 3546 return V; 3547 if (Op.getValueType().isFixedLengthVector()) 3548 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 3549 return Op; 3550 case ISD::STORE: 3551 if (auto V = expandUnalignedRVVStore(Op, DAG)) 3552 return V; 3553 if (Op.getOperand(1).getValueType().isFixedLengthVector()) 3554 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 3555 return Op; 3556 case ISD::MLOAD: 3557 case ISD::VP_LOAD: 3558 return lowerMaskedLoad(Op, DAG); 3559 case ISD::MSTORE: 3560 case ISD::VP_STORE: 3561 return lowerMaskedStore(Op, DAG); 3562 case ISD::SETCC: 3563 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 3564 case ISD::ADD: 3565 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 3566 case ISD::SUB: 3567 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 3568 case ISD::MUL: 3569 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 3570 case ISD::MULHS: 3571 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 3572 case ISD::MULHU: 3573 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 3574 case ISD::AND: 3575 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 3576 RISCVISD::AND_VL); 3577 case ISD::OR: 3578 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 3579 RISCVISD::OR_VL); 3580 case ISD::XOR: 3581 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 3582 RISCVISD::XOR_VL); 3583 case ISD::SDIV: 3584 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 3585 case ISD::SREM: 3586 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 3587 case ISD::UDIV: 3588 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 3589 case ISD::UREM: 3590 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 3591 case ISD::SHL: 3592 case ISD::SRA: 3593 case ISD::SRL: 3594 if (Op.getSimpleValueType().isFixedLengthVector()) 3595 return lowerFixedLengthVectorShiftToRVV(Op, DAG); 3596 // This can be called for an i32 shift amount that needs to be promoted. 3597 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && 3598 "Unexpected custom legalisation"); 3599 return SDValue(); 3600 case ISD::SADDSAT: 3601 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); 3602 case ISD::UADDSAT: 3603 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); 3604 case ISD::SSUBSAT: 3605 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); 3606 case ISD::USUBSAT: 3607 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); 3608 case ISD::FADD: 3609 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 3610 case ISD::FSUB: 3611 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 3612 case ISD::FMUL: 3613 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 3614 case ISD::FDIV: 3615 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 3616 case ISD::FNEG: 3617 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 3618 case ISD::FABS: 3619 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 3620 case ISD::FSQRT: 3621 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 3622 case ISD::FMA: 3623 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 3624 case ISD::SMIN: 3625 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 3626 case ISD::SMAX: 3627 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 3628 case ISD::UMIN: 3629 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 3630 case ISD::UMAX: 3631 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 3632 case ISD::FMINNUM: 3633 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 3634 case ISD::FMAXNUM: 3635 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 3636 case ISD::ABS: 3637 return lowerABS(Op, DAG); 3638 case ISD::CTLZ_ZERO_UNDEF: 3639 case ISD::CTTZ_ZERO_UNDEF: 3640 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); 3641 case ISD::VSELECT: 3642 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 3643 case ISD::FCOPYSIGN: 3644 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 3645 case ISD::MGATHER: 3646 case ISD::VP_GATHER: 3647 return lowerMaskedGather(Op, DAG); 3648 case ISD::MSCATTER: 3649 case ISD::VP_SCATTER: 3650 return lowerMaskedScatter(Op, DAG); 3651 case ISD::FLT_ROUNDS_: 3652 return lowerGET_ROUNDING(Op, DAG); 3653 case ISD::SET_ROUNDING: 3654 return lowerSET_ROUNDING(Op, DAG); 3655 case ISD::VP_SELECT: 3656 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); 3657 case ISD::VP_MERGE: 3658 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); 3659 case ISD::VP_ADD: 3660 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 3661 case ISD::VP_SUB: 3662 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 3663 case ISD::VP_MUL: 3664 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 3665 case ISD::VP_SDIV: 3666 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 3667 case ISD::VP_UDIV: 3668 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 3669 case ISD::VP_SREM: 3670 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 3671 case ISD::VP_UREM: 3672 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 3673 case ISD::VP_AND: 3674 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); 3675 case ISD::VP_OR: 3676 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); 3677 case ISD::VP_XOR: 3678 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); 3679 case ISD::VP_ASHR: 3680 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 3681 case ISD::VP_LSHR: 3682 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 3683 case ISD::VP_SHL: 3684 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 3685 case ISD::VP_FADD: 3686 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); 3687 case ISD::VP_FSUB: 3688 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); 3689 case ISD::VP_FMUL: 3690 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); 3691 case ISD::VP_FDIV: 3692 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); 3693 case ISD::VP_FNEG: 3694 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); 3695 case ISD::VP_FMA: 3696 return lowerVPOp(Op, DAG, RISCVISD::FMA_VL); 3697 } 3698 } 3699 3700 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 3701 SelectionDAG &DAG, unsigned Flags) { 3702 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 3703 } 3704 3705 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 3706 SelectionDAG &DAG, unsigned Flags) { 3707 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 3708 Flags); 3709 } 3710 3711 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 3712 SelectionDAG &DAG, unsigned Flags) { 3713 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 3714 N->getOffset(), Flags); 3715 } 3716 3717 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 3718 SelectionDAG &DAG, unsigned Flags) { 3719 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 3720 } 3721 3722 template <class NodeTy> 3723 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 3724 bool IsLocal) const { 3725 SDLoc DL(N); 3726 EVT Ty = getPointerTy(DAG.getDataLayout()); 3727 3728 if (isPositionIndependent()) { 3729 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3730 if (IsLocal) 3731 // Use PC-relative addressing to access the symbol. This generates the 3732 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 3733 // %pcrel_lo(auipc)). 3734 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3735 3736 // Use PC-relative addressing to access the GOT for this symbol, then load 3737 // the address from the GOT. This generates the pattern (PseudoLA sym), 3738 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 3739 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 3740 } 3741 3742 switch (getTargetMachine().getCodeModel()) { 3743 default: 3744 report_fatal_error("Unsupported code model for lowering"); 3745 case CodeModel::Small: { 3746 // Generate a sequence for accessing addresses within the first 2 GiB of 3747 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 3748 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 3749 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 3750 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3751 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 3752 } 3753 case CodeModel::Medium: { 3754 // Generate a sequence for accessing addresses within any 2GiB range within 3755 // the address space. This generates the pattern (PseudoLLA sym), which 3756 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 3757 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 3758 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 3759 } 3760 } 3761 } 3762 3763 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 3764 SelectionDAG &DAG) const { 3765 SDLoc DL(Op); 3766 EVT Ty = Op.getValueType(); 3767 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3768 int64_t Offset = N->getOffset(); 3769 MVT XLenVT = Subtarget.getXLenVT(); 3770 3771 const GlobalValue *GV = N->getGlobal(); 3772 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 3773 SDValue Addr = getAddr(N, DAG, IsLocal); 3774 3775 // In order to maximise the opportunity for common subexpression elimination, 3776 // emit a separate ADD node for the global address offset instead of folding 3777 // it in the global address node. Later peephole optimisations may choose to 3778 // fold it back in when profitable. 3779 if (Offset != 0) 3780 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3781 DAG.getConstant(Offset, DL, XLenVT)); 3782 return Addr; 3783 } 3784 3785 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 3786 SelectionDAG &DAG) const { 3787 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 3788 3789 return getAddr(N, DAG); 3790 } 3791 3792 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 3793 SelectionDAG &DAG) const { 3794 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 3795 3796 return getAddr(N, DAG); 3797 } 3798 3799 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 3800 SelectionDAG &DAG) const { 3801 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 3802 3803 return getAddr(N, DAG); 3804 } 3805 3806 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 3807 SelectionDAG &DAG, 3808 bool UseGOT) const { 3809 SDLoc DL(N); 3810 EVT Ty = getPointerTy(DAG.getDataLayout()); 3811 const GlobalValue *GV = N->getGlobal(); 3812 MVT XLenVT = Subtarget.getXLenVT(); 3813 3814 if (UseGOT) { 3815 // Use PC-relative addressing to access the GOT for this TLS symbol, then 3816 // load the address from the GOT and add the thread pointer. This generates 3817 // the pattern (PseudoLA_TLS_IE sym), which expands to 3818 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 3819 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3820 SDValue Load = 3821 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 3822 3823 // Add the thread pointer. 3824 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3825 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 3826 } 3827 3828 // Generate a sequence for accessing the address relative to the thread 3829 // pointer, with the appropriate adjustment for the thread pointer offset. 3830 // This generates the pattern 3831 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 3832 SDValue AddrHi = 3833 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 3834 SDValue AddrAdd = 3835 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 3836 SDValue AddrLo = 3837 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 3838 3839 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 3840 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 3841 SDValue MNAdd = SDValue( 3842 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 3843 0); 3844 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 3845 } 3846 3847 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 3848 SelectionDAG &DAG) const { 3849 SDLoc DL(N); 3850 EVT Ty = getPointerTy(DAG.getDataLayout()); 3851 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 3852 const GlobalValue *GV = N->getGlobal(); 3853 3854 // Use a PC-relative addressing mode to access the global dynamic GOT address. 3855 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 3856 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 3857 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 3858 SDValue Load = 3859 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 3860 3861 // Prepare argument list to generate call. 3862 ArgListTy Args; 3863 ArgListEntry Entry; 3864 Entry.Node = Load; 3865 Entry.Ty = CallTy; 3866 Args.push_back(Entry); 3867 3868 // Setup call to __tls_get_addr. 3869 TargetLowering::CallLoweringInfo CLI(DAG); 3870 CLI.setDebugLoc(DL) 3871 .setChain(DAG.getEntryNode()) 3872 .setLibCallee(CallingConv::C, CallTy, 3873 DAG.getExternalSymbol("__tls_get_addr", Ty), 3874 std::move(Args)); 3875 3876 return LowerCallTo(CLI).first; 3877 } 3878 3879 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 3880 SelectionDAG &DAG) const { 3881 SDLoc DL(Op); 3882 EVT Ty = Op.getValueType(); 3883 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 3884 int64_t Offset = N->getOffset(); 3885 MVT XLenVT = Subtarget.getXLenVT(); 3886 3887 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 3888 3889 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3890 CallingConv::GHC) 3891 report_fatal_error("In GHC calling convention TLS is not supported"); 3892 3893 SDValue Addr; 3894 switch (Model) { 3895 case TLSModel::LocalExec: 3896 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 3897 break; 3898 case TLSModel::InitialExec: 3899 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 3900 break; 3901 case TLSModel::LocalDynamic: 3902 case TLSModel::GeneralDynamic: 3903 Addr = getDynamicTLSAddr(N, DAG); 3904 break; 3905 } 3906 3907 // In order to maximise the opportunity for common subexpression elimination, 3908 // emit a separate ADD node for the global address offset instead of folding 3909 // it in the global address node. Later peephole optimisations may choose to 3910 // fold it back in when profitable. 3911 if (Offset != 0) 3912 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 3913 DAG.getConstant(Offset, DL, XLenVT)); 3914 return Addr; 3915 } 3916 3917 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3918 SDValue CondV = Op.getOperand(0); 3919 SDValue TrueV = Op.getOperand(1); 3920 SDValue FalseV = Op.getOperand(2); 3921 SDLoc DL(Op); 3922 MVT VT = Op.getSimpleValueType(); 3923 MVT XLenVT = Subtarget.getXLenVT(); 3924 3925 // Lower vector SELECTs to VSELECTs by splatting the condition. 3926 if (VT.isVector()) { 3927 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); 3928 SDValue CondSplat = VT.isScalableVector() 3929 ? DAG.getSplatVector(SplatCondVT, DL, CondV) 3930 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); 3931 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); 3932 } 3933 3934 // If the result type is XLenVT and CondV is the output of a SETCC node 3935 // which also operated on XLenVT inputs, then merge the SETCC node into the 3936 // lowered RISCVISD::SELECT_CC to take advantage of the integer 3937 // compare+branch instructions. i.e.: 3938 // (select (setcc lhs, rhs, cc), truev, falsev) 3939 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 3940 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && 3941 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 3942 SDValue LHS = CondV.getOperand(0); 3943 SDValue RHS = CondV.getOperand(1); 3944 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 3945 ISD::CondCode CCVal = CC->get(); 3946 3947 // Special case for a select of 2 constants that have a diffence of 1. 3948 // Normally this is done by DAGCombine, but if the select is introduced by 3949 // type legalization or op legalization, we miss it. Restricting to SETLT 3950 // case for now because that is what signed saturating add/sub need. 3951 // FIXME: We don't need the condition to be SETLT or even a SETCC, 3952 // but we would probably want to swap the true/false values if the condition 3953 // is SETGE/SETLE to avoid an XORI. 3954 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 3955 CCVal == ISD::SETLT) { 3956 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 3957 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 3958 if (TrueVal - 1 == FalseVal) 3959 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 3960 if (TrueVal + 1 == FalseVal) 3961 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 3962 } 3963 3964 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3965 3966 SDValue TargetCC = DAG.getCondCode(CCVal); 3967 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 3968 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3969 } 3970 3971 // Otherwise: 3972 // (select condv, truev, falsev) 3973 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 3974 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3975 SDValue SetNE = DAG.getCondCode(ISD::SETNE); 3976 3977 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 3978 3979 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 3980 } 3981 3982 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 3983 SDValue CondV = Op.getOperand(1); 3984 SDLoc DL(Op); 3985 MVT XLenVT = Subtarget.getXLenVT(); 3986 3987 if (CondV.getOpcode() == ISD::SETCC && 3988 CondV.getOperand(0).getValueType() == XLenVT) { 3989 SDValue LHS = CondV.getOperand(0); 3990 SDValue RHS = CondV.getOperand(1); 3991 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 3992 3993 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 3994 3995 SDValue TargetCC = DAG.getCondCode(CCVal); 3996 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 3997 LHS, RHS, TargetCC, Op.getOperand(2)); 3998 } 3999 4000 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 4001 CondV, DAG.getConstant(0, DL, XLenVT), 4002 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 4003 } 4004 4005 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 4006 MachineFunction &MF = DAG.getMachineFunction(); 4007 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 4008 4009 SDLoc DL(Op); 4010 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 4011 getPointerTy(MF.getDataLayout())); 4012 4013 // vastart just stores the address of the VarArgsFrameIndex slot into the 4014 // memory location argument. 4015 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4016 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 4017 MachinePointerInfo(SV)); 4018 } 4019 4020 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 4021 SelectionDAG &DAG) const { 4022 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4023 MachineFunction &MF = DAG.getMachineFunction(); 4024 MachineFrameInfo &MFI = MF.getFrameInfo(); 4025 MFI.setFrameAddressIsTaken(true); 4026 Register FrameReg = RI.getFrameRegister(MF); 4027 int XLenInBytes = Subtarget.getXLen() / 8; 4028 4029 EVT VT = Op.getValueType(); 4030 SDLoc DL(Op); 4031 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 4032 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4033 while (Depth--) { 4034 int Offset = -(XLenInBytes * 2); 4035 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 4036 DAG.getIntPtrConstant(Offset, DL)); 4037 FrameAddr = 4038 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 4039 } 4040 return FrameAddr; 4041 } 4042 4043 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 4044 SelectionDAG &DAG) const { 4045 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 4046 MachineFunction &MF = DAG.getMachineFunction(); 4047 MachineFrameInfo &MFI = MF.getFrameInfo(); 4048 MFI.setReturnAddressIsTaken(true); 4049 MVT XLenVT = Subtarget.getXLenVT(); 4050 int XLenInBytes = Subtarget.getXLen() / 8; 4051 4052 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4053 return SDValue(); 4054 4055 EVT VT = Op.getValueType(); 4056 SDLoc DL(Op); 4057 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4058 if (Depth) { 4059 int Off = -XLenInBytes; 4060 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 4061 SDValue Offset = DAG.getConstant(Off, DL, VT); 4062 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 4063 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 4064 MachinePointerInfo()); 4065 } 4066 4067 // Return the value of the return address register, marking it an implicit 4068 // live-in. 4069 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 4070 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 4071 } 4072 4073 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 4074 SelectionDAG &DAG) const { 4075 SDLoc DL(Op); 4076 SDValue Lo = Op.getOperand(0); 4077 SDValue Hi = Op.getOperand(1); 4078 SDValue Shamt = Op.getOperand(2); 4079 EVT VT = Lo.getValueType(); 4080 4081 // if Shamt-XLEN < 0: // Shamt < XLEN 4082 // Lo = Lo << Shamt 4083 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) 4084 // else: 4085 // Lo = 0 4086 // Hi = Lo << (Shamt-XLEN) 4087 4088 SDValue Zero = DAG.getConstant(0, DL, VT); 4089 SDValue One = DAG.getConstant(1, DL, VT); 4090 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4091 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4092 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4093 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4094 4095 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 4096 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 4097 SDValue ShiftRightLo = 4098 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 4099 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 4100 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 4101 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 4102 4103 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4104 4105 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 4106 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4107 4108 SDValue Parts[2] = {Lo, Hi}; 4109 return DAG.getMergeValues(Parts, DL); 4110 } 4111 4112 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 4113 bool IsSRA) const { 4114 SDLoc DL(Op); 4115 SDValue Lo = Op.getOperand(0); 4116 SDValue Hi = Op.getOperand(1); 4117 SDValue Shamt = Op.getOperand(2); 4118 EVT VT = Lo.getValueType(); 4119 4120 // SRA expansion: 4121 // if Shamt-XLEN < 0: // Shamt < XLEN 4122 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4123 // Hi = Hi >>s Shamt 4124 // else: 4125 // Lo = Hi >>s (Shamt-XLEN); 4126 // Hi = Hi >>s (XLEN-1) 4127 // 4128 // SRL expansion: 4129 // if Shamt-XLEN < 0: // Shamt < XLEN 4130 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) 4131 // Hi = Hi >>u Shamt 4132 // else: 4133 // Lo = Hi >>u (Shamt-XLEN); 4134 // Hi = 0; 4135 4136 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 4137 4138 SDValue Zero = DAG.getConstant(0, DL, VT); 4139 SDValue One = DAG.getConstant(1, DL, VT); 4140 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 4141 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 4142 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 4143 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1); 4144 4145 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 4146 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 4147 SDValue ShiftLeftHi = 4148 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 4149 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 4150 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 4151 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 4152 SDValue HiFalse = 4153 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 4154 4155 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 4156 4157 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 4158 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 4159 4160 SDValue Parts[2] = {Lo, Hi}; 4161 return DAG.getMergeValues(Parts, DL); 4162 } 4163 4164 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 4165 // legal equivalently-sized i8 type, so we can use that as a go-between. 4166 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 4167 SelectionDAG &DAG) const { 4168 SDLoc DL(Op); 4169 MVT VT = Op.getSimpleValueType(); 4170 SDValue SplatVal = Op.getOperand(0); 4171 // All-zeros or all-ones splats are handled specially. 4172 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 4173 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4174 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 4175 } 4176 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 4177 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 4178 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 4179 } 4180 MVT XLenVT = Subtarget.getXLenVT(); 4181 assert(SplatVal.getValueType() == XLenVT && 4182 "Unexpected type for i1 splat value"); 4183 MVT InterVT = VT.changeVectorElementType(MVT::i8); 4184 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 4185 DAG.getConstant(1, DL, XLenVT)); 4186 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 4187 SDValue Zero = DAG.getConstant(0, DL, InterVT); 4188 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 4189 } 4190 4191 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 4192 // illegal (currently only vXi64 RV32). 4193 // FIXME: We could also catch non-constant sign-extended i32 values and lower 4194 // them to VMV_V_X_VL. 4195 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 4196 SelectionDAG &DAG) const { 4197 SDLoc DL(Op); 4198 MVT VecVT = Op.getSimpleValueType(); 4199 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 4200 "Unexpected SPLAT_VECTOR_PARTS lowering"); 4201 4202 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 4203 SDValue Lo = Op.getOperand(0); 4204 SDValue Hi = Op.getOperand(1); 4205 4206 if (VecVT.isFixedLengthVector()) { 4207 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4208 SDLoc DL(Op); 4209 SDValue Mask, VL; 4210 std::tie(Mask, VL) = 4211 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4212 4213 SDValue Res = 4214 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); 4215 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 4216 } 4217 4218 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 4219 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 4220 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 4221 // If Hi constant is all the same sign bit as Lo, lower this as a custom 4222 // node in order to try and match RVV vector/scalar instructions. 4223 if ((LoC >> 31) == HiC) 4224 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4225 Lo, DAG.getRegister(RISCV::X0, MVT::i32)); 4226 } 4227 4228 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 4229 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 4230 isa<ConstantSDNode>(Hi.getOperand(1)) && 4231 Hi.getConstantOperandVal(1) == 31) 4232 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, 4233 DAG.getRegister(RISCV::X0, MVT::i32)); 4234 4235 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 4236 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, 4237 DAG.getUNDEF(VecVT), Lo, Hi, 4238 DAG.getRegister(RISCV::X0, MVT::i32)); 4239 } 4240 4241 // Custom-lower extensions from mask vectors by using a vselect either with 1 4242 // for zero/any-extension or -1 for sign-extension: 4243 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 4244 // Note that any-extension is lowered identically to zero-extension. 4245 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 4246 int64_t ExtTrueVal) const { 4247 SDLoc DL(Op); 4248 MVT VecVT = Op.getSimpleValueType(); 4249 SDValue Src = Op.getOperand(0); 4250 // Only custom-lower extensions from mask types 4251 assert(Src.getValueType().isVector() && 4252 Src.getValueType().getVectorElementType() == MVT::i1); 4253 4254 MVT XLenVT = Subtarget.getXLenVT(); 4255 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 4256 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 4257 4258 if (VecVT.isScalableVector()) { 4259 // Be careful not to introduce illegal scalar types at this stage, and be 4260 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 4261 // illegal and must be expanded. Since we know that the constants are 4262 // sign-extended 32-bit values, we use VMV_V_X_VL directly. 4263 bool IsRV32E64 = 4264 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 4265 4266 if (!IsRV32E64) { 4267 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 4268 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 4269 } else { 4270 SplatZero = 4271 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4272 SplatZero, DAG.getRegister(RISCV::X0, XLenVT)); 4273 SplatTrueVal = 4274 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 4275 SplatTrueVal, DAG.getRegister(RISCV::X0, XLenVT)); 4276 } 4277 4278 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 4279 } 4280 4281 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 4282 MVT I1ContainerVT = 4283 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4284 4285 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 4286 4287 SDValue Mask, VL; 4288 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4289 4290 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4291 DAG.getUNDEF(ContainerVT), SplatZero, VL); 4292 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4293 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); 4294 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 4295 SplatTrueVal, SplatZero, VL); 4296 4297 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 4298 } 4299 4300 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 4301 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 4302 MVT ExtVT = Op.getSimpleValueType(); 4303 // Only custom-lower extensions from fixed-length vector types. 4304 if (!ExtVT.isFixedLengthVector()) 4305 return Op; 4306 MVT VT = Op.getOperand(0).getSimpleValueType(); 4307 // Grab the canonical container type for the extended type. Infer the smaller 4308 // type from that to ensure the same number of vector elements, as we know 4309 // the LMUL will be sufficient to hold the smaller type. 4310 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 4311 // Get the extended container type manually to ensure the same number of 4312 // vector elements between source and dest. 4313 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4314 ContainerExtVT.getVectorElementCount()); 4315 4316 SDValue Op1 = 4317 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4318 4319 SDLoc DL(Op); 4320 SDValue Mask, VL; 4321 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4322 4323 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 4324 4325 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 4326 } 4327 4328 // Custom-lower truncations from vectors to mask vectors by using a mask and a 4329 // setcc operation: 4330 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 4331 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 4332 SelectionDAG &DAG) const { 4333 SDLoc DL(Op); 4334 EVT MaskVT = Op.getValueType(); 4335 // Only expect to custom-lower truncations to mask types 4336 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 4337 "Unexpected type for vector mask lowering"); 4338 SDValue Src = Op.getOperand(0); 4339 MVT VecVT = Src.getSimpleValueType(); 4340 4341 // If this is a fixed vector, we need to convert it to a scalable vector. 4342 MVT ContainerVT = VecVT; 4343 if (VecVT.isFixedLengthVector()) { 4344 ContainerVT = getContainerForFixedLengthVector(VecVT); 4345 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 4346 } 4347 4348 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 4349 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 4350 4351 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4352 DAG.getUNDEF(ContainerVT), SplatOne); 4353 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4354 DAG.getUNDEF(ContainerVT), SplatZero); 4355 4356 if (VecVT.isScalableVector()) { 4357 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 4358 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 4359 } 4360 4361 SDValue Mask, VL; 4362 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4363 4364 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 4365 SDValue Trunc = 4366 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 4367 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 4368 DAG.getCondCode(ISD::SETNE), Mask, VL); 4369 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 4370 } 4371 4372 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 4373 // first position of a vector, and that vector is slid up to the insert index. 4374 // By limiting the active vector length to index+1 and merging with the 4375 // original vector (with an undisturbed tail policy for elements >= VL), we 4376 // achieve the desired result of leaving all elements untouched except the one 4377 // at VL-1, which is replaced with the desired value. 4378 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4379 SelectionDAG &DAG) const { 4380 SDLoc DL(Op); 4381 MVT VecVT = Op.getSimpleValueType(); 4382 SDValue Vec = Op.getOperand(0); 4383 SDValue Val = Op.getOperand(1); 4384 SDValue Idx = Op.getOperand(2); 4385 4386 if (VecVT.getVectorElementType() == MVT::i1) { 4387 // FIXME: For now we just promote to an i8 vector and insert into that, 4388 // but this is probably not optimal. 4389 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4390 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4391 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 4392 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 4393 } 4394 4395 MVT ContainerVT = VecVT; 4396 // If the operand is a fixed-length vector, convert to a scalable one. 4397 if (VecVT.isFixedLengthVector()) { 4398 ContainerVT = getContainerForFixedLengthVector(VecVT); 4399 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4400 } 4401 4402 MVT XLenVT = Subtarget.getXLenVT(); 4403 4404 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 4405 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 4406 // Even i64-element vectors on RV32 can be lowered without scalar 4407 // legalization if the most-significant 32 bits of the value are not affected 4408 // by the sign-extension of the lower 32 bits. 4409 // TODO: We could also catch sign extensions of a 32-bit value. 4410 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 4411 const auto *CVal = cast<ConstantSDNode>(Val); 4412 if (isInt<32>(CVal->getSExtValue())) { 4413 IsLegalInsert = true; 4414 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4415 } 4416 } 4417 4418 SDValue Mask, VL; 4419 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 4420 4421 SDValue ValInVec; 4422 4423 if (IsLegalInsert) { 4424 unsigned Opc = 4425 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 4426 if (isNullConstant(Idx)) { 4427 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 4428 if (!VecVT.isFixedLengthVector()) 4429 return Vec; 4430 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 4431 } 4432 ValInVec = 4433 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 4434 } else { 4435 // On RV32, i64-element vectors must be specially handled to place the 4436 // value at element 0, by using two vslide1up instructions in sequence on 4437 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 4438 // this. 4439 SDValue One = DAG.getConstant(1, DL, XLenVT); 4440 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 4441 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 4442 MVT I32ContainerVT = 4443 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 4444 SDValue I32Mask = 4445 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 4446 // Limit the active VL to two. 4447 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 4448 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 4449 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 4450 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, 4451 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL); 4452 // First slide in the hi value, then the lo in underneath it. 4453 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4454 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, 4455 I32Mask, InsertI64VL); 4456 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, 4457 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo, 4458 I32Mask, InsertI64VL); 4459 // Bitcast back to the right container type. 4460 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 4461 } 4462 4463 // Now that the value is in a vector, slide it into position. 4464 SDValue InsertVL = 4465 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 4466 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 4467 ValInVec, Idx, Mask, InsertVL); 4468 if (!VecVT.isFixedLengthVector()) 4469 return Slideup; 4470 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 4471 } 4472 4473 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 4474 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 4475 // types this is done using VMV_X_S to allow us to glean information about the 4476 // sign bits of the result. 4477 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4478 SelectionDAG &DAG) const { 4479 SDLoc DL(Op); 4480 SDValue Idx = Op.getOperand(1); 4481 SDValue Vec = Op.getOperand(0); 4482 EVT EltVT = Op.getValueType(); 4483 MVT VecVT = Vec.getSimpleValueType(); 4484 MVT XLenVT = Subtarget.getXLenVT(); 4485 4486 if (VecVT.getVectorElementType() == MVT::i1) { 4487 if (VecVT.isFixedLengthVector()) { 4488 unsigned NumElts = VecVT.getVectorNumElements(); 4489 if (NumElts >= 8) { 4490 MVT WideEltVT; 4491 unsigned WidenVecLen; 4492 SDValue ExtractElementIdx; 4493 SDValue ExtractBitIdx; 4494 unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); 4495 MVT LargestEltVT = MVT::getIntegerVT( 4496 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); 4497 if (NumElts <= LargestEltVT.getSizeInBits()) { 4498 assert(isPowerOf2_32(NumElts) && 4499 "the number of elements should be power of 2"); 4500 WideEltVT = MVT::getIntegerVT(NumElts); 4501 WidenVecLen = 1; 4502 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); 4503 ExtractBitIdx = Idx; 4504 } else { 4505 WideEltVT = LargestEltVT; 4506 WidenVecLen = NumElts / WideEltVT.getSizeInBits(); 4507 // extract element index = index / element width 4508 ExtractElementIdx = DAG.getNode( 4509 ISD::SRL, DL, XLenVT, Idx, 4510 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); 4511 // mask bit index = index % element width 4512 ExtractBitIdx = DAG.getNode( 4513 ISD::AND, DL, XLenVT, Idx, 4514 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); 4515 } 4516 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); 4517 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); 4518 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, 4519 Vec, ExtractElementIdx); 4520 // Extract the bit from GPR. 4521 SDValue ShiftRight = 4522 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); 4523 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, 4524 DAG.getConstant(1, DL, XLenVT)); 4525 } 4526 } 4527 // Otherwise, promote to an i8 vector and extract from that. 4528 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 4529 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 4530 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 4531 } 4532 4533 // If this is a fixed vector, we need to convert it to a scalable vector. 4534 MVT ContainerVT = VecVT; 4535 if (VecVT.isFixedLengthVector()) { 4536 ContainerVT = getContainerForFixedLengthVector(VecVT); 4537 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4538 } 4539 4540 // If the index is 0, the vector is already in the right position. 4541 if (!isNullConstant(Idx)) { 4542 // Use a VL of 1 to avoid processing more elements than we need. 4543 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4544 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4545 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4546 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4547 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4548 } 4549 4550 if (!EltVT.isInteger()) { 4551 // Floating-point extracts are handled in TableGen. 4552 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 4553 DAG.getConstant(0, DL, XLenVT)); 4554 } 4555 4556 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4557 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 4558 } 4559 4560 // Some RVV intrinsics may claim that they want an integer operand to be 4561 // promoted or expanded. 4562 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, 4563 const RISCVSubtarget &Subtarget) { 4564 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 4565 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 4566 "Unexpected opcode"); 4567 4568 if (!Subtarget.hasVInstructions()) 4569 return SDValue(); 4570 4571 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 4572 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 4573 SDLoc DL(Op); 4574 4575 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 4576 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 4577 if (!II || !II->hasScalarOperand()) 4578 return SDValue(); 4579 4580 unsigned SplatOp = II->ScalarOperand + 1 + HasChain; 4581 assert(SplatOp < Op.getNumOperands()); 4582 4583 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 4584 SDValue &ScalarOp = Operands[SplatOp]; 4585 MVT OpVT = ScalarOp.getSimpleValueType(); 4586 MVT XLenVT = Subtarget.getXLenVT(); 4587 4588 // If this isn't a scalar, or its type is XLenVT we're done. 4589 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 4590 return SDValue(); 4591 4592 // Simplest case is that the operand needs to be promoted to XLenVT. 4593 if (OpVT.bitsLT(XLenVT)) { 4594 // If the operand is a constant, sign extend to increase our chances 4595 // of being able to use a .vi instruction. ANY_EXTEND would become a 4596 // a zero extend and the simm5 check in isel would fail. 4597 // FIXME: Should we ignore the upper bits in isel instead? 4598 unsigned ExtOpc = 4599 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 4600 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 4601 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4602 } 4603 4604 // Use the previous operand to get the vXi64 VT. The result might be a mask 4605 // VT for compares. Using the previous operand assumes that the previous 4606 // operand will never have a smaller element size than a scalar operand and 4607 // that a widening operation never uses SEW=64. 4608 // NOTE: If this fails the below assert, we can probably just find the 4609 // element count from any operand or result and use it to construct the VT. 4610 assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); 4611 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 4612 4613 // The more complex case is when the scalar is larger than XLenVT. 4614 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 4615 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 4616 4617 // If this is a sign-extended 32-bit constant, we can truncate it and rely 4618 // on the instruction to sign-extend since SEW>XLEN. 4619 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 4620 if (isInt<32>(CVal->getSExtValue())) { 4621 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 4622 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4623 } 4624 } 4625 4626 switch (IntNo) { 4627 case Intrinsic::riscv_vslide1up: 4628 case Intrinsic::riscv_vslide1down: 4629 case Intrinsic::riscv_vslide1up_mask: 4630 case Intrinsic::riscv_vslide1down_mask: { 4631 // We need to special case these when the scalar is larger than XLen. 4632 unsigned NumOps = Op.getNumOperands(); 4633 bool IsMasked = NumOps == 7; 4634 4635 // Convert the vector source to the equivalent nxvXi32 vector. 4636 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 4637 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); 4638 4639 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4640 DAG.getConstant(0, DL, XLenVT)); 4641 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, 4642 DAG.getConstant(1, DL, XLenVT)); 4643 4644 // Double the VL since we halved SEW. 4645 SDValue AVL = getVLOperand(Op); 4646 SDValue I32VL; 4647 4648 // Optimize for constant AVL 4649 if (isa<ConstantSDNode>(AVL)) { 4650 unsigned EltSize = VT.getScalarSizeInBits(); 4651 unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); 4652 4653 unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); 4654 unsigned MaxVLMAX = 4655 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 4656 4657 unsigned VectorBitsMin = Subtarget.getRealMinVLen(); 4658 unsigned MinVLMAX = 4659 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); 4660 4661 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); 4662 if (AVLInt <= MinVLMAX) { 4663 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); 4664 } else if (AVLInt >= 2 * MaxVLMAX) { 4665 // Just set vl to VLMAX in this situation 4666 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); 4667 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4668 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); 4669 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4670 SDValue SETVLMAX = DAG.getTargetConstant( 4671 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); 4672 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, 4673 LMUL); 4674 } else { 4675 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl 4676 // is related to the hardware implementation. 4677 // So let the following code handle 4678 } 4679 } 4680 if (!I32VL) { 4681 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); 4682 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); 4683 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); 4684 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); 4685 SDValue SETVL = 4686 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); 4687 // Using vsetvli instruction to get actually used length which related to 4688 // the hardware implementation 4689 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, 4690 SEW, LMUL); 4691 I32VL = 4692 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 4693 } 4694 4695 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 4696 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, I32VL); 4697 4698 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 4699 // instructions. 4700 SDValue Passthru; 4701 if (IsMasked) 4702 Passthru = DAG.getUNDEF(I32VT); 4703 else 4704 Passthru = DAG.getBitcast(I32VT, Operands[1]); 4705 4706 if (IntNo == Intrinsic::riscv_vslide1up || 4707 IntNo == Intrinsic::riscv_vslide1up_mask) { 4708 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4709 ScalarHi, I32Mask, I32VL); 4710 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, 4711 ScalarLo, I32Mask, I32VL); 4712 } else { 4713 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4714 ScalarLo, I32Mask, I32VL); 4715 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, 4716 ScalarHi, I32Mask, I32VL); 4717 } 4718 4719 // Convert back to nxvXi64. 4720 Vec = DAG.getBitcast(VT, Vec); 4721 4722 if (!IsMasked) 4723 return Vec; 4724 // Apply mask after the operation. 4725 SDValue Mask = Operands[NumOps - 3]; 4726 SDValue MaskedOff = Operands[1]; 4727 // Assume Policy operand is the last operand. 4728 uint64_t Policy = 4729 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); 4730 // We don't need to select maskedoff if it's undef. 4731 if (MaskedOff.isUndef()) 4732 return Vec; 4733 // TAMU 4734 if (Policy == RISCVII::TAIL_AGNOSTIC) 4735 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, 4736 AVL); 4737 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. 4738 // It's fine because vmerge does not care mask policy. 4739 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, 4740 AVL); 4741 } 4742 } 4743 4744 // We need to convert the scalar to a splat vector. 4745 // FIXME: Can we implicitly truncate the scalar if it is known to 4746 // be sign extended? 4747 SDValue VL = getVLOperand(Op); 4748 assert(VL.getValueType() == XLenVT); 4749 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); 4750 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 4751 } 4752 4753 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4754 SelectionDAG &DAG) const { 4755 unsigned IntNo = Op.getConstantOperandVal(0); 4756 SDLoc DL(Op); 4757 MVT XLenVT = Subtarget.getXLenVT(); 4758 4759 switch (IntNo) { 4760 default: 4761 break; // Don't custom lower most intrinsics. 4762 case Intrinsic::thread_pointer: { 4763 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4764 return DAG.getRegister(RISCV::X4, PtrVT); 4765 } 4766 case Intrinsic::riscv_orc_b: 4767 case Intrinsic::riscv_brev8: { 4768 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. 4769 unsigned Opc = 4770 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; 4771 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4772 DAG.getConstant(7, DL, XLenVT)); 4773 } 4774 case Intrinsic::riscv_grev: 4775 case Intrinsic::riscv_gorc: { 4776 unsigned Opc = 4777 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 4778 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4779 } 4780 case Intrinsic::riscv_zip: 4781 case Intrinsic::riscv_unzip: { 4782 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. 4783 // For i32 the immediate is 15. For i64 the immediate is 31. 4784 unsigned Opc = 4785 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4786 unsigned BitWidth = Op.getValueSizeInBits(); 4787 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); 4788 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), 4789 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); 4790 } 4791 case Intrinsic::riscv_shfl: 4792 case Intrinsic::riscv_unshfl: { 4793 unsigned Opc = 4794 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 4795 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4796 } 4797 case Intrinsic::riscv_bcompress: 4798 case Intrinsic::riscv_bdecompress: { 4799 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 4800 : RISCVISD::BDECOMPRESS; 4801 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 4802 } 4803 case Intrinsic::riscv_bfp: 4804 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), 4805 Op.getOperand(2)); 4806 case Intrinsic::riscv_fsl: 4807 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), 4808 Op.getOperand(2), Op.getOperand(3)); 4809 case Intrinsic::riscv_fsr: 4810 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), 4811 Op.getOperand(2), Op.getOperand(3)); 4812 case Intrinsic::riscv_vmv_x_s: 4813 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 4814 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 4815 Op.getOperand(1)); 4816 case Intrinsic::riscv_vmv_v_x: 4817 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 4818 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, 4819 Subtarget); 4820 case Intrinsic::riscv_vfmv_v_f: 4821 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 4822 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4823 case Intrinsic::riscv_vmv_s_x: { 4824 SDValue Scalar = Op.getOperand(2); 4825 4826 if (Scalar.getValueType().bitsLE(XLenVT)) { 4827 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 4828 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 4829 Op.getOperand(1), Scalar, Op.getOperand(3)); 4830 } 4831 4832 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 4833 4834 // This is an i64 value that lives in two scalar registers. We have to 4835 // insert this in a convoluted way. First we build vXi64 splat containing 4836 // the/ two values that we assemble using some bit math. Next we'll use 4837 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 4838 // to merge element 0 from our splat into the source vector. 4839 // FIXME: This is probably not the best way to do this, but it is 4840 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 4841 // point. 4842 // sw lo, (a0) 4843 // sw hi, 4(a0) 4844 // vlse vX, (a0) 4845 // 4846 // vid.v vVid 4847 // vmseq.vx mMask, vVid, 0 4848 // vmerge.vvm vDest, vSrc, vVal, mMask 4849 MVT VT = Op.getSimpleValueType(); 4850 SDValue Vec = Op.getOperand(1); 4851 SDValue VL = getVLOperand(Op); 4852 4853 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); 4854 if (Op.getOperand(1).isUndef()) 4855 return SplattedVal; 4856 SDValue SplattedIdx = 4857 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 4858 DAG.getConstant(0, DL, MVT::i32), VL); 4859 4860 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 4861 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4862 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 4863 SDValue SelectCond = 4864 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 4865 DAG.getCondCode(ISD::SETEQ), Mask, VL); 4866 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 4867 Vec, VL); 4868 } 4869 } 4870 4871 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4872 } 4873 4874 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 4875 SelectionDAG &DAG) const { 4876 unsigned IntNo = Op.getConstantOperandVal(1); 4877 switch (IntNo) { 4878 default: 4879 break; 4880 case Intrinsic::riscv_masked_strided_load: { 4881 SDLoc DL(Op); 4882 MVT XLenVT = Subtarget.getXLenVT(); 4883 4884 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4885 // the selection of the masked intrinsics doesn't do this for us. 4886 SDValue Mask = Op.getOperand(5); 4887 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4888 4889 MVT VT = Op->getSimpleValueType(0); 4890 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4891 4892 SDValue PassThru = Op.getOperand(2); 4893 if (!IsUnmasked) { 4894 MVT MaskVT = 4895 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4896 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4897 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4898 } 4899 4900 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4901 4902 SDValue IntID = DAG.getTargetConstant( 4903 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, 4904 XLenVT); 4905 4906 auto *Load = cast<MemIntrinsicSDNode>(Op); 4907 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; 4908 if (IsUnmasked) 4909 Ops.push_back(DAG.getUNDEF(ContainerVT)); 4910 else 4911 Ops.push_back(PassThru); 4912 Ops.push_back(Op.getOperand(3)); // Ptr 4913 Ops.push_back(Op.getOperand(4)); // Stride 4914 if (!IsUnmasked) 4915 Ops.push_back(Mask); 4916 Ops.push_back(VL); 4917 if (!IsUnmasked) { 4918 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); 4919 Ops.push_back(Policy); 4920 } 4921 4922 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4923 SDValue Result = 4924 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4925 Load->getMemoryVT(), Load->getMemOperand()); 4926 SDValue Chain = Result.getValue(1); 4927 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4928 return DAG.getMergeValues({Result, Chain}, DL); 4929 } 4930 case Intrinsic::riscv_seg2_load: 4931 case Intrinsic::riscv_seg3_load: 4932 case Intrinsic::riscv_seg4_load: 4933 case Intrinsic::riscv_seg5_load: 4934 case Intrinsic::riscv_seg6_load: 4935 case Intrinsic::riscv_seg7_load: 4936 case Intrinsic::riscv_seg8_load: { 4937 SDLoc DL(Op); 4938 static const Intrinsic::ID VlsegInts[7] = { 4939 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, 4940 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, 4941 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, 4942 Intrinsic::riscv_vlseg8}; 4943 unsigned NF = Op->getNumValues() - 1; 4944 assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); 4945 MVT XLenVT = Subtarget.getXLenVT(); 4946 MVT VT = Op->getSimpleValueType(0); 4947 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4948 4949 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4950 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); 4951 auto *Load = cast<MemIntrinsicSDNode>(Op); 4952 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); 4953 ContainerVTs.push_back(MVT::Other); 4954 SDVTList VTs = DAG.getVTList(ContainerVTs); 4955 SDValue Result = 4956 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, 4957 {Load->getChain(), IntID, Op.getOperand(2), VL}, 4958 Load->getMemoryVT(), Load->getMemOperand()); 4959 SmallVector<SDValue, 9> Results; 4960 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) 4961 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), 4962 DAG, Subtarget)); 4963 Results.push_back(Result.getValue(NF)); 4964 return DAG.getMergeValues(Results, DL); 4965 } 4966 } 4967 4968 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); 4969 } 4970 4971 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 4972 SelectionDAG &DAG) const { 4973 unsigned IntNo = Op.getConstantOperandVal(1); 4974 switch (IntNo) { 4975 default: 4976 break; 4977 case Intrinsic::riscv_masked_strided_store: { 4978 SDLoc DL(Op); 4979 MVT XLenVT = Subtarget.getXLenVT(); 4980 4981 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4982 // the selection of the masked intrinsics doesn't do this for us. 4983 SDValue Mask = Op.getOperand(5); 4984 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4985 4986 SDValue Val = Op.getOperand(2); 4987 MVT VT = Val.getSimpleValueType(); 4988 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4989 4990 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4991 if (!IsUnmasked) { 4992 MVT MaskVT = 4993 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4994 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4995 } 4996 4997 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4998 4999 SDValue IntID = DAG.getTargetConstant( 5000 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, 5001 XLenVT); 5002 5003 auto *Store = cast<MemIntrinsicSDNode>(Op); 5004 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; 5005 Ops.push_back(Val); 5006 Ops.push_back(Op.getOperand(3)); // Ptr 5007 Ops.push_back(Op.getOperand(4)); // Stride 5008 if (!IsUnmasked) 5009 Ops.push_back(Mask); 5010 Ops.push_back(VL); 5011 5012 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), 5013 Ops, Store->getMemoryVT(), 5014 Store->getMemOperand()); 5015 } 5016 } 5017 5018 return SDValue(); 5019 } 5020 5021 static MVT getLMUL1VT(MVT VT) { 5022 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 5023 "Unexpected vector MVT"); 5024 return MVT::getScalableVectorVT( 5025 VT.getVectorElementType(), 5026 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 5027 } 5028 5029 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 5030 switch (ISDOpcode) { 5031 default: 5032 llvm_unreachable("Unhandled reduction"); 5033 case ISD::VECREDUCE_ADD: 5034 return RISCVISD::VECREDUCE_ADD_VL; 5035 case ISD::VECREDUCE_UMAX: 5036 return RISCVISD::VECREDUCE_UMAX_VL; 5037 case ISD::VECREDUCE_SMAX: 5038 return RISCVISD::VECREDUCE_SMAX_VL; 5039 case ISD::VECREDUCE_UMIN: 5040 return RISCVISD::VECREDUCE_UMIN_VL; 5041 case ISD::VECREDUCE_SMIN: 5042 return RISCVISD::VECREDUCE_SMIN_VL; 5043 case ISD::VECREDUCE_AND: 5044 return RISCVISD::VECREDUCE_AND_VL; 5045 case ISD::VECREDUCE_OR: 5046 return RISCVISD::VECREDUCE_OR_VL; 5047 case ISD::VECREDUCE_XOR: 5048 return RISCVISD::VECREDUCE_XOR_VL; 5049 } 5050 } 5051 5052 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, 5053 SelectionDAG &DAG, 5054 bool IsVP) const { 5055 SDLoc DL(Op); 5056 SDValue Vec = Op.getOperand(IsVP ? 1 : 0); 5057 MVT VecVT = Vec.getSimpleValueType(); 5058 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 5059 Op.getOpcode() == ISD::VECREDUCE_OR || 5060 Op.getOpcode() == ISD::VECREDUCE_XOR || 5061 Op.getOpcode() == ISD::VP_REDUCE_AND || 5062 Op.getOpcode() == ISD::VP_REDUCE_OR || 5063 Op.getOpcode() == ISD::VP_REDUCE_XOR) && 5064 "Unexpected reduction lowering"); 5065 5066 MVT XLenVT = Subtarget.getXLenVT(); 5067 assert(Op.getValueType() == XLenVT && 5068 "Expected reduction output to be legalized to XLenVT"); 5069 5070 MVT ContainerVT = VecVT; 5071 if (VecVT.isFixedLengthVector()) { 5072 ContainerVT = getContainerForFixedLengthVector(VecVT); 5073 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5074 } 5075 5076 SDValue Mask, VL; 5077 if (IsVP) { 5078 Mask = Op.getOperand(2); 5079 VL = Op.getOperand(3); 5080 } else { 5081 std::tie(Mask, VL) = 5082 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5083 } 5084 5085 unsigned BaseOpc; 5086 ISD::CondCode CC; 5087 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 5088 5089 switch (Op.getOpcode()) { 5090 default: 5091 llvm_unreachable("Unhandled reduction"); 5092 case ISD::VECREDUCE_AND: 5093 case ISD::VP_REDUCE_AND: { 5094 // vcpop ~x == 0 5095 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 5096 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); 5097 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5098 CC = ISD::SETEQ; 5099 BaseOpc = ISD::AND; 5100 break; 5101 } 5102 case ISD::VECREDUCE_OR: 5103 case ISD::VP_REDUCE_OR: 5104 // vcpop x != 0 5105 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5106 CC = ISD::SETNE; 5107 BaseOpc = ISD::OR; 5108 break; 5109 case ISD::VECREDUCE_XOR: 5110 case ISD::VP_REDUCE_XOR: { 5111 // ((vcpop x) & 1) != 0 5112 SDValue One = DAG.getConstant(1, DL, XLenVT); 5113 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); 5114 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 5115 CC = ISD::SETNE; 5116 BaseOpc = ISD::XOR; 5117 break; 5118 } 5119 } 5120 5121 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); 5122 5123 if (!IsVP) 5124 return SetCC; 5125 5126 // Now include the start value in the operation. 5127 // Note that we must return the start value when no elements are operated 5128 // upon. The vcpop instructions we've emitted in each case above will return 5129 // 0 for an inactive vector, and so we've already received the neutral value: 5130 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we 5131 // can simply include the start value. 5132 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); 5133 } 5134 5135 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 5136 SelectionDAG &DAG) const { 5137 SDLoc DL(Op); 5138 SDValue Vec = Op.getOperand(0); 5139 EVT VecEVT = Vec.getValueType(); 5140 5141 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 5142 5143 // Due to ordering in legalize types we may have a vector type that needs to 5144 // be split. Do that manually so we can get down to a legal type. 5145 while (getTypeAction(*DAG.getContext(), VecEVT) == 5146 TargetLowering::TypeSplitVector) { 5147 SDValue Lo, Hi; 5148 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 5149 VecEVT = Lo.getValueType(); 5150 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 5151 } 5152 5153 // TODO: The type may need to be widened rather than split. Or widened before 5154 // it can be split. 5155 if (!isTypeLegal(VecEVT)) 5156 return SDValue(); 5157 5158 MVT VecVT = VecEVT.getSimpleVT(); 5159 MVT VecEltVT = VecVT.getVectorElementType(); 5160 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 5161 5162 MVT ContainerVT = VecVT; 5163 if (VecVT.isFixedLengthVector()) { 5164 ContainerVT = getContainerForFixedLengthVector(VecVT); 5165 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5166 } 5167 5168 MVT M1VT = getLMUL1VT(ContainerVT); 5169 MVT XLenVT = Subtarget.getXLenVT(); 5170 5171 SDValue Mask, VL; 5172 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5173 5174 SDValue NeutralElem = 5175 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 5176 SDValue IdentitySplat = 5177 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT), 5178 M1VT, DL, DAG, Subtarget); 5179 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, 5180 IdentitySplat, Mask, VL); 5181 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5182 DAG.getConstant(0, DL, XLenVT)); 5183 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5184 } 5185 5186 // Given a reduction op, this function returns the matching reduction opcode, 5187 // the vector SDValue and the scalar SDValue required to lower this to a 5188 // RISCVISD node. 5189 static std::tuple<unsigned, SDValue, SDValue> 5190 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 5191 SDLoc DL(Op); 5192 auto Flags = Op->getFlags(); 5193 unsigned Opcode = Op.getOpcode(); 5194 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 5195 switch (Opcode) { 5196 default: 5197 llvm_unreachable("Unhandled reduction"); 5198 case ISD::VECREDUCE_FADD: { 5199 // Use positive zero if we can. It is cheaper to materialize. 5200 SDValue Zero = 5201 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); 5202 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); 5203 } 5204 case ISD::VECREDUCE_SEQ_FADD: 5205 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 5206 Op.getOperand(0)); 5207 case ISD::VECREDUCE_FMIN: 5208 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 5209 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5210 case ISD::VECREDUCE_FMAX: 5211 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 5212 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 5213 } 5214 } 5215 5216 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 5217 SelectionDAG &DAG) const { 5218 SDLoc DL(Op); 5219 MVT VecEltVT = Op.getSimpleValueType(); 5220 5221 unsigned RVVOpcode; 5222 SDValue VectorVal, ScalarVal; 5223 std::tie(RVVOpcode, VectorVal, ScalarVal) = 5224 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 5225 MVT VecVT = VectorVal.getSimpleValueType(); 5226 5227 MVT ContainerVT = VecVT; 5228 if (VecVT.isFixedLengthVector()) { 5229 ContainerVT = getContainerForFixedLengthVector(VecVT); 5230 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 5231 } 5232 5233 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 5234 MVT XLenVT = Subtarget.getXLenVT(); 5235 5236 SDValue Mask, VL; 5237 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 5238 5239 SDValue ScalarSplat = 5240 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT), 5241 M1VT, DL, DAG, Subtarget); 5242 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), 5243 VectorVal, ScalarSplat, Mask, VL); 5244 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 5245 DAG.getConstant(0, DL, XLenVT)); 5246 } 5247 5248 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { 5249 switch (ISDOpcode) { 5250 default: 5251 llvm_unreachable("Unhandled reduction"); 5252 case ISD::VP_REDUCE_ADD: 5253 return RISCVISD::VECREDUCE_ADD_VL; 5254 case ISD::VP_REDUCE_UMAX: 5255 return RISCVISD::VECREDUCE_UMAX_VL; 5256 case ISD::VP_REDUCE_SMAX: 5257 return RISCVISD::VECREDUCE_SMAX_VL; 5258 case ISD::VP_REDUCE_UMIN: 5259 return RISCVISD::VECREDUCE_UMIN_VL; 5260 case ISD::VP_REDUCE_SMIN: 5261 return RISCVISD::VECREDUCE_SMIN_VL; 5262 case ISD::VP_REDUCE_AND: 5263 return RISCVISD::VECREDUCE_AND_VL; 5264 case ISD::VP_REDUCE_OR: 5265 return RISCVISD::VECREDUCE_OR_VL; 5266 case ISD::VP_REDUCE_XOR: 5267 return RISCVISD::VECREDUCE_XOR_VL; 5268 case ISD::VP_REDUCE_FADD: 5269 return RISCVISD::VECREDUCE_FADD_VL; 5270 case ISD::VP_REDUCE_SEQ_FADD: 5271 return RISCVISD::VECREDUCE_SEQ_FADD_VL; 5272 case ISD::VP_REDUCE_FMAX: 5273 return RISCVISD::VECREDUCE_FMAX_VL; 5274 case ISD::VP_REDUCE_FMIN: 5275 return RISCVISD::VECREDUCE_FMIN_VL; 5276 } 5277 } 5278 5279 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, 5280 SelectionDAG &DAG) const { 5281 SDLoc DL(Op); 5282 SDValue Vec = Op.getOperand(1); 5283 EVT VecEVT = Vec.getValueType(); 5284 5285 // TODO: The type may need to be widened rather than split. Or widened before 5286 // it can be split. 5287 if (!isTypeLegal(VecEVT)) 5288 return SDValue(); 5289 5290 MVT VecVT = VecEVT.getSimpleVT(); 5291 MVT VecEltVT = VecVT.getVectorElementType(); 5292 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); 5293 5294 MVT ContainerVT = VecVT; 5295 if (VecVT.isFixedLengthVector()) { 5296 ContainerVT = getContainerForFixedLengthVector(VecVT); 5297 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5298 } 5299 5300 SDValue VL = Op.getOperand(3); 5301 SDValue Mask = Op.getOperand(2); 5302 5303 MVT M1VT = getLMUL1VT(ContainerVT); 5304 MVT XLenVT = Subtarget.getXLenVT(); 5305 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; 5306 5307 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0), 5308 DAG.getConstant(1, DL, XLenVT), M1VT, 5309 DL, DAG, Subtarget); 5310 SDValue Reduction = 5311 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); 5312 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, 5313 DAG.getConstant(0, DL, XLenVT)); 5314 if (!VecVT.isInteger()) 5315 return Elt0; 5316 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 5317 } 5318 5319 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 5320 SelectionDAG &DAG) const { 5321 SDValue Vec = Op.getOperand(0); 5322 SDValue SubVec = Op.getOperand(1); 5323 MVT VecVT = Vec.getSimpleValueType(); 5324 MVT SubVecVT = SubVec.getSimpleValueType(); 5325 5326 SDLoc DL(Op); 5327 MVT XLenVT = Subtarget.getXLenVT(); 5328 unsigned OrigIdx = Op.getConstantOperandVal(2); 5329 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5330 5331 // We don't have the ability to slide mask vectors up indexed by their i1 5332 // elements; the smallest we can do is i8. Often we are able to bitcast to 5333 // equivalent i8 vectors. Note that when inserting a fixed-length vector 5334 // into a scalable one, we might not necessarily have enough scalable 5335 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 5336 if (SubVecVT.getVectorElementType() == MVT::i1 && 5337 (OrigIdx != 0 || !Vec.isUndef())) { 5338 if (VecVT.getVectorMinNumElements() >= 8 && 5339 SubVecVT.getVectorMinNumElements() >= 8) { 5340 assert(OrigIdx % 8 == 0 && "Invalid index"); 5341 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5342 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5343 "Unexpected mask vector lowering"); 5344 OrigIdx /= 8; 5345 SubVecVT = 5346 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5347 SubVecVT.isScalableVector()); 5348 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5349 VecVT.isScalableVector()); 5350 Vec = DAG.getBitcast(VecVT, Vec); 5351 SubVec = DAG.getBitcast(SubVecVT, SubVec); 5352 } else { 5353 // We can't slide this mask vector up indexed by its i1 elements. 5354 // This poses a problem when we wish to insert a scalable vector which 5355 // can't be re-expressed as a larger type. Just choose the slow path and 5356 // extend to a larger type, then truncate back down. 5357 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5358 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5359 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5360 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 5361 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 5362 Op.getOperand(2)); 5363 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 5364 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 5365 } 5366 } 5367 5368 // If the subvector vector is a fixed-length type, we cannot use subregister 5369 // manipulation to simplify the codegen; we don't know which register of a 5370 // LMUL group contains the specific subvector as we only know the minimum 5371 // register size. Therefore we must slide the vector group up the full 5372 // amount. 5373 if (SubVecVT.isFixedLengthVector()) { 5374 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) 5375 return Op; 5376 MVT ContainerVT = VecVT; 5377 if (VecVT.isFixedLengthVector()) { 5378 ContainerVT = getContainerForFixedLengthVector(VecVT); 5379 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5380 } 5381 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 5382 DAG.getUNDEF(ContainerVT), SubVec, 5383 DAG.getConstant(0, DL, XLenVT)); 5384 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { 5385 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); 5386 return DAG.getBitcast(Op.getValueType(), SubVec); 5387 } 5388 SDValue Mask = 5389 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5390 // Set the vector length to only the number of elements we care about. Note 5391 // that for slideup this includes the offset. 5392 SDValue VL = 5393 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 5394 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5395 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 5396 SubVec, SlideupAmt, Mask, VL); 5397 if (VecVT.isFixedLengthVector()) 5398 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 5399 return DAG.getBitcast(Op.getValueType(), Slideup); 5400 } 5401 5402 unsigned SubRegIdx, RemIdx; 5403 std::tie(SubRegIdx, RemIdx) = 5404 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5405 VecVT, SubVecVT, OrigIdx, TRI); 5406 5407 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 5408 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 5409 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 5410 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 5411 5412 // 1. If the Idx has been completely eliminated and this subvector's size is 5413 // a vector register or a multiple thereof, or the surrounding elements are 5414 // undef, then this is a subvector insert which naturally aligns to a vector 5415 // register. These can easily be handled using subregister manipulation. 5416 // 2. If the subvector is smaller than a vector register, then the insertion 5417 // must preserve the undisturbed elements of the register. We do this by 5418 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 5419 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 5420 // subvector within the vector register, and an INSERT_SUBVECTOR of that 5421 // LMUL=1 type back into the larger vector (resolving to another subregister 5422 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 5423 // to avoid allocating a large register group to hold our subvector. 5424 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 5425 return Op; 5426 5427 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 5428 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 5429 // (in our case undisturbed). This means we can set up a subvector insertion 5430 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 5431 // size of the subvector. 5432 MVT InterSubVT = VecVT; 5433 SDValue AlignedExtract = Vec; 5434 unsigned AlignedIdx = OrigIdx - RemIdx; 5435 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5436 InterSubVT = getLMUL1VT(VecVT); 5437 // Extract a subvector equal to the nearest full vector register type. This 5438 // should resolve to a EXTRACT_SUBREG instruction. 5439 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5440 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5441 } 5442 5443 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5444 // For scalable vectors this must be further multiplied by vscale. 5445 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 5446 5447 SDValue Mask, VL; 5448 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5449 5450 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 5451 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 5452 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 5453 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 5454 5455 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 5456 DAG.getUNDEF(InterSubVT), SubVec, 5457 DAG.getConstant(0, DL, XLenVT)); 5458 5459 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 5460 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 5461 5462 // If required, insert this subvector back into the correct vector register. 5463 // This should resolve to an INSERT_SUBREG instruction. 5464 if (VecVT.bitsGT(InterSubVT)) 5465 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 5466 DAG.getConstant(AlignedIdx, DL, XLenVT)); 5467 5468 // We might have bitcast from a mask type: cast back to the original type if 5469 // required. 5470 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 5471 } 5472 5473 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 5474 SelectionDAG &DAG) const { 5475 SDValue Vec = Op.getOperand(0); 5476 MVT SubVecVT = Op.getSimpleValueType(); 5477 MVT VecVT = Vec.getSimpleValueType(); 5478 5479 SDLoc DL(Op); 5480 MVT XLenVT = Subtarget.getXLenVT(); 5481 unsigned OrigIdx = Op.getConstantOperandVal(1); 5482 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5483 5484 // We don't have the ability to slide mask vectors down indexed by their i1 5485 // elements; the smallest we can do is i8. Often we are able to bitcast to 5486 // equivalent i8 vectors. Note that when extracting a fixed-length vector 5487 // from a scalable one, we might not necessarily have enough scalable 5488 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 5489 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 5490 if (VecVT.getVectorMinNumElements() >= 8 && 5491 SubVecVT.getVectorMinNumElements() >= 8) { 5492 assert(OrigIdx % 8 == 0 && "Invalid index"); 5493 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 5494 SubVecVT.getVectorMinNumElements() % 8 == 0 && 5495 "Unexpected mask vector lowering"); 5496 OrigIdx /= 8; 5497 SubVecVT = 5498 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 5499 SubVecVT.isScalableVector()); 5500 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 5501 VecVT.isScalableVector()); 5502 Vec = DAG.getBitcast(VecVT, Vec); 5503 } else { 5504 // We can't slide this mask vector down, indexed by its i1 elements. 5505 // This poses a problem when we wish to extract a scalable vector which 5506 // can't be re-expressed as a larger type. Just choose the slow path and 5507 // extend to a larger type, then truncate back down. 5508 // TODO: We could probably improve this when extracting certain fixed 5509 // from fixed, where we can extract as i8 and shift the correct element 5510 // right to reach the desired subvector? 5511 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 5512 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 5513 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 5514 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 5515 Op.getOperand(1)); 5516 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 5517 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 5518 } 5519 } 5520 5521 // If the subvector vector is a fixed-length type, we cannot use subregister 5522 // manipulation to simplify the codegen; we don't know which register of a 5523 // LMUL group contains the specific subvector as we only know the minimum 5524 // register size. Therefore we must slide the vector group down the full 5525 // amount. 5526 if (SubVecVT.isFixedLengthVector()) { 5527 // With an index of 0 this is a cast-like subvector, which can be performed 5528 // with subregister operations. 5529 if (OrigIdx == 0) 5530 return Op; 5531 MVT ContainerVT = VecVT; 5532 if (VecVT.isFixedLengthVector()) { 5533 ContainerVT = getContainerForFixedLengthVector(VecVT); 5534 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 5535 } 5536 SDValue Mask = 5537 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 5538 // Set the vector length to only the number of elements we care about. This 5539 // avoids sliding down elements we're going to discard straight away. 5540 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 5541 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 5542 SDValue Slidedown = 5543 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 5544 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 5545 // Now we can use a cast-like subvector extract to get the result. 5546 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5547 DAG.getConstant(0, DL, XLenVT)); 5548 return DAG.getBitcast(Op.getValueType(), Slidedown); 5549 } 5550 5551 unsigned SubRegIdx, RemIdx; 5552 std::tie(SubRegIdx, RemIdx) = 5553 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 5554 VecVT, SubVecVT, OrigIdx, TRI); 5555 5556 // If the Idx has been completely eliminated then this is a subvector extract 5557 // which naturally aligns to a vector register. These can easily be handled 5558 // using subregister manipulation. 5559 if (RemIdx == 0) 5560 return Op; 5561 5562 // Else we must shift our vector register directly to extract the subvector. 5563 // Do this using VSLIDEDOWN. 5564 5565 // If the vector type is an LMUL-group type, extract a subvector equal to the 5566 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 5567 // instruction. 5568 MVT InterSubVT = VecVT; 5569 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 5570 InterSubVT = getLMUL1VT(VecVT); 5571 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 5572 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 5573 } 5574 5575 // Slide this vector register down by the desired number of elements in order 5576 // to place the desired subvector starting at element 0. 5577 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 5578 // For scalable vectors this must be further multiplied by vscale. 5579 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 5580 5581 SDValue Mask, VL; 5582 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 5583 SDValue Slidedown = 5584 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 5585 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 5586 5587 // Now the vector is in the right position, extract our final subvector. This 5588 // should resolve to a COPY. 5589 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 5590 DAG.getConstant(0, DL, XLenVT)); 5591 5592 // We might have bitcast from a mask type: cast back to the original type if 5593 // required. 5594 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 5595 } 5596 5597 // Lower step_vector to the vid instruction. Any non-identity step value must 5598 // be accounted for my manual expansion. 5599 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 5600 SelectionDAG &DAG) const { 5601 SDLoc DL(Op); 5602 MVT VT = Op.getSimpleValueType(); 5603 MVT XLenVT = Subtarget.getXLenVT(); 5604 SDValue Mask, VL; 5605 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 5606 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 5607 uint64_t StepValImm = Op.getConstantOperandVal(0); 5608 if (StepValImm != 1) { 5609 if (isPowerOf2_64(StepValImm)) { 5610 SDValue StepVal = 5611 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 5612 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 5613 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 5614 } else { 5615 SDValue StepVal = lowerScalarSplat( 5616 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), 5617 VL, VT, DL, DAG, Subtarget); 5618 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 5619 } 5620 } 5621 return StepVec; 5622 } 5623 5624 // Implement vector_reverse using vrgather.vv with indices determined by 5625 // subtracting the id of each element from (VLMAX-1). This will convert 5626 // the indices like so: 5627 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 5628 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 5629 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 5630 SelectionDAG &DAG) const { 5631 SDLoc DL(Op); 5632 MVT VecVT = Op.getSimpleValueType(); 5633 unsigned EltSize = VecVT.getScalarSizeInBits(); 5634 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 5635 5636 unsigned MaxVLMAX = 0; 5637 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 5638 if (VectorBitsMax != 0) 5639 MaxVLMAX = 5640 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); 5641 5642 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 5643 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 5644 5645 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 5646 // to use vrgatherei16.vv. 5647 // TODO: It's also possible to use vrgatherei16.vv for other types to 5648 // decrease register width for the index calculation. 5649 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 5650 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 5651 // Reverse each half, then reassemble them in reverse order. 5652 // NOTE: It's also possible that after splitting that VLMAX no longer 5653 // requires vrgatherei16.vv. 5654 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 5655 SDValue Lo, Hi; 5656 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 5657 EVT LoVT, HiVT; 5658 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 5659 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 5660 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 5661 // Reassemble the low and high pieces reversed. 5662 // FIXME: This is a CONCAT_VECTORS. 5663 SDValue Res = 5664 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 5665 DAG.getIntPtrConstant(0, DL)); 5666 return DAG.getNode( 5667 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 5668 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 5669 } 5670 5671 // Just promote the int type to i16 which will double the LMUL. 5672 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 5673 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 5674 } 5675 5676 MVT XLenVT = Subtarget.getXLenVT(); 5677 SDValue Mask, VL; 5678 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 5679 5680 // Calculate VLMAX-1 for the desired SEW. 5681 unsigned MinElts = VecVT.getVectorMinNumElements(); 5682 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5683 DAG.getConstant(MinElts, DL, XLenVT)); 5684 SDValue VLMinus1 = 5685 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 5686 5687 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 5688 bool IsRV32E64 = 5689 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 5690 SDValue SplatVL; 5691 if (!IsRV32E64) 5692 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 5693 else 5694 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), 5695 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); 5696 5697 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 5698 SDValue Indices = 5699 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 5700 5701 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 5702 } 5703 5704 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, 5705 SelectionDAG &DAG) const { 5706 SDLoc DL(Op); 5707 SDValue V1 = Op.getOperand(0); 5708 SDValue V2 = Op.getOperand(1); 5709 MVT XLenVT = Subtarget.getXLenVT(); 5710 MVT VecVT = Op.getSimpleValueType(); 5711 5712 unsigned MinElts = VecVT.getVectorMinNumElements(); 5713 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 5714 DAG.getConstant(MinElts, DL, XLenVT)); 5715 5716 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); 5717 SDValue DownOffset, UpOffset; 5718 if (ImmValue >= 0) { 5719 // The operand is a TargetConstant, we need to rebuild it as a regular 5720 // constant. 5721 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); 5722 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); 5723 } else { 5724 // The operand is a TargetConstant, we need to rebuild it as a regular 5725 // constant rather than negating the original operand. 5726 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); 5727 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); 5728 } 5729 5730 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5731 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VLMax); 5732 5733 SDValue SlideDown = 5734 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1, 5735 DownOffset, TrueMask, UpOffset); 5736 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset, 5737 TrueMask, 5738 DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT)); 5739 } 5740 5741 SDValue 5742 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 5743 SelectionDAG &DAG) const { 5744 SDLoc DL(Op); 5745 auto *Load = cast<LoadSDNode>(Op); 5746 5747 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5748 Load->getMemoryVT(), 5749 *Load->getMemOperand()) && 5750 "Expecting a correctly-aligned load"); 5751 5752 MVT VT = Op.getSimpleValueType(); 5753 MVT XLenVT = Subtarget.getXLenVT(); 5754 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5755 5756 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5757 5758 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5759 SDValue IntID = DAG.getTargetConstant( 5760 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); 5761 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; 5762 if (!IsMaskOp) 5763 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5764 Ops.push_back(Load->getBasePtr()); 5765 Ops.push_back(VL); 5766 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5767 SDValue NewLoad = 5768 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 5769 Load->getMemoryVT(), Load->getMemOperand()); 5770 5771 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 5772 return DAG.getMergeValues({Result, Load->getChain()}, DL); 5773 } 5774 5775 SDValue 5776 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 5777 SelectionDAG &DAG) const { 5778 SDLoc DL(Op); 5779 auto *Store = cast<StoreSDNode>(Op); 5780 5781 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), 5782 Store->getMemoryVT(), 5783 *Store->getMemOperand()) && 5784 "Expecting a correctly-aligned store"); 5785 5786 SDValue StoreVal = Store->getValue(); 5787 MVT VT = StoreVal.getSimpleValueType(); 5788 MVT XLenVT = Subtarget.getXLenVT(); 5789 5790 // If the size less than a byte, we need to pad with zeros to make a byte. 5791 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 5792 VT = MVT::v8i1; 5793 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 5794 DAG.getConstant(0, DL, VT), StoreVal, 5795 DAG.getIntPtrConstant(0, DL)); 5796 } 5797 5798 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5799 5800 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 5801 5802 SDValue NewValue = 5803 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 5804 5805 bool IsMaskOp = VT.getVectorElementType() == MVT::i1; 5806 SDValue IntID = DAG.getTargetConstant( 5807 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); 5808 return DAG.getMemIntrinsicNode( 5809 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 5810 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, 5811 Store->getMemoryVT(), Store->getMemOperand()); 5812 } 5813 5814 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, 5815 SelectionDAG &DAG) const { 5816 SDLoc DL(Op); 5817 MVT VT = Op.getSimpleValueType(); 5818 5819 const auto *MemSD = cast<MemSDNode>(Op); 5820 EVT MemVT = MemSD->getMemoryVT(); 5821 MachineMemOperand *MMO = MemSD->getMemOperand(); 5822 SDValue Chain = MemSD->getChain(); 5823 SDValue BasePtr = MemSD->getBasePtr(); 5824 5825 SDValue Mask, PassThru, VL; 5826 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { 5827 Mask = VPLoad->getMask(); 5828 PassThru = DAG.getUNDEF(VT); 5829 VL = VPLoad->getVectorLength(); 5830 } else { 5831 const auto *MLoad = cast<MaskedLoadSDNode>(Op); 5832 Mask = MLoad->getMask(); 5833 PassThru = MLoad->getPassThru(); 5834 } 5835 5836 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5837 5838 MVT XLenVT = Subtarget.getXLenVT(); 5839 5840 MVT ContainerVT = VT; 5841 if (VT.isFixedLengthVector()) { 5842 ContainerVT = getContainerForFixedLengthVector(VT); 5843 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 5844 if (!IsUnmasked) { 5845 MVT MaskVT = 5846 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5847 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5848 } 5849 } 5850 5851 if (!VL) 5852 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5853 5854 unsigned IntID = 5855 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; 5856 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5857 if (IsUnmasked) 5858 Ops.push_back(DAG.getUNDEF(ContainerVT)); 5859 else 5860 Ops.push_back(PassThru); 5861 Ops.push_back(BasePtr); 5862 if (!IsUnmasked) 5863 Ops.push_back(Mask); 5864 Ops.push_back(VL); 5865 if (!IsUnmasked) 5866 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 5867 5868 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 5869 5870 SDValue Result = 5871 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 5872 Chain = Result.getValue(1); 5873 5874 if (VT.isFixedLengthVector()) 5875 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 5876 5877 return DAG.getMergeValues({Result, Chain}, DL); 5878 } 5879 5880 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, 5881 SelectionDAG &DAG) const { 5882 SDLoc DL(Op); 5883 5884 const auto *MemSD = cast<MemSDNode>(Op); 5885 EVT MemVT = MemSD->getMemoryVT(); 5886 MachineMemOperand *MMO = MemSD->getMemOperand(); 5887 SDValue Chain = MemSD->getChain(); 5888 SDValue BasePtr = MemSD->getBasePtr(); 5889 SDValue Val, Mask, VL; 5890 5891 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { 5892 Val = VPStore->getValue(); 5893 Mask = VPStore->getMask(); 5894 VL = VPStore->getVectorLength(); 5895 } else { 5896 const auto *MStore = cast<MaskedStoreSDNode>(Op); 5897 Val = MStore->getValue(); 5898 Mask = MStore->getMask(); 5899 } 5900 5901 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 5902 5903 MVT VT = Val.getSimpleValueType(); 5904 MVT XLenVT = Subtarget.getXLenVT(); 5905 5906 MVT ContainerVT = VT; 5907 if (VT.isFixedLengthVector()) { 5908 ContainerVT = getContainerForFixedLengthVector(VT); 5909 5910 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 5911 if (!IsUnmasked) { 5912 MVT MaskVT = 5913 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5914 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 5915 } 5916 } 5917 5918 if (!VL) 5919 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 5920 5921 unsigned IntID = 5922 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; 5923 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 5924 Ops.push_back(Val); 5925 Ops.push_back(BasePtr); 5926 if (!IsUnmasked) 5927 Ops.push_back(Mask); 5928 Ops.push_back(VL); 5929 5930 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 5931 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 5932 } 5933 5934 SDValue 5935 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 5936 SelectionDAG &DAG) const { 5937 MVT InVT = Op.getOperand(0).getSimpleValueType(); 5938 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 5939 5940 MVT VT = Op.getSimpleValueType(); 5941 5942 SDValue Op1 = 5943 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 5944 SDValue Op2 = 5945 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 5946 5947 SDLoc DL(Op); 5948 SDValue VL = 5949 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 5950 5951 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 5952 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5953 5954 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 5955 Op.getOperand(2), Mask, VL); 5956 5957 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 5958 } 5959 5960 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 5961 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 5962 MVT VT = Op.getSimpleValueType(); 5963 5964 if (VT.getVectorElementType() == MVT::i1) 5965 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 5966 5967 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 5968 } 5969 5970 SDValue 5971 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, 5972 SelectionDAG &DAG) const { 5973 unsigned Opc; 5974 switch (Op.getOpcode()) { 5975 default: llvm_unreachable("Unexpected opcode!"); 5976 case ISD::SHL: Opc = RISCVISD::SHL_VL; break; 5977 case ISD::SRA: Opc = RISCVISD::SRA_VL; break; 5978 case ISD::SRL: Opc = RISCVISD::SRL_VL; break; 5979 } 5980 5981 return lowerToScalableOp(Op, DAG, Opc); 5982 } 5983 5984 // Lower vector ABS to smax(X, sub(0, X)). 5985 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 5986 SDLoc DL(Op); 5987 MVT VT = Op.getSimpleValueType(); 5988 SDValue X = Op.getOperand(0); 5989 5990 assert(VT.isFixedLengthVector() && "Unexpected type"); 5991 5992 MVT ContainerVT = getContainerForFixedLengthVector(VT); 5993 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 5994 5995 SDValue Mask, VL; 5996 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 5997 5998 SDValue SplatZero = DAG.getNode( 5999 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), 6000 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 6001 SDValue NegX = 6002 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 6003 SDValue Max = 6004 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 6005 6006 return convertFromScalableVector(VT, Max, DAG, Subtarget); 6007 } 6008 6009 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 6010 SDValue Op, SelectionDAG &DAG) const { 6011 SDLoc DL(Op); 6012 MVT VT = Op.getSimpleValueType(); 6013 SDValue Mag = Op.getOperand(0); 6014 SDValue Sign = Op.getOperand(1); 6015 assert(Mag.getValueType() == Sign.getValueType() && 6016 "Can only handle COPYSIGN with matching types."); 6017 6018 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6019 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 6020 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 6021 6022 SDValue Mask, VL; 6023 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6024 6025 SDValue CopySign = 6026 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 6027 6028 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 6029 } 6030 6031 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 6032 SDValue Op, SelectionDAG &DAG) const { 6033 MVT VT = Op.getSimpleValueType(); 6034 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6035 6036 MVT I1ContainerVT = 6037 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6038 6039 SDValue CC = 6040 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 6041 SDValue Op1 = 6042 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 6043 SDValue Op2 = 6044 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 6045 6046 SDLoc DL(Op); 6047 SDValue Mask, VL; 6048 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6049 6050 SDValue Select = 6051 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 6052 6053 return convertFromScalableVector(VT, Select, DAG, Subtarget); 6054 } 6055 6056 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 6057 unsigned NewOpc, 6058 bool HasMask) const { 6059 MVT VT = Op.getSimpleValueType(); 6060 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6061 6062 // Create list of operands by converting existing ones to scalable types. 6063 SmallVector<SDValue, 6> Ops; 6064 for (const SDValue &V : Op->op_values()) { 6065 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6066 6067 // Pass through non-vector operands. 6068 if (!V.getValueType().isVector()) { 6069 Ops.push_back(V); 6070 continue; 6071 } 6072 6073 // "cast" fixed length vector to a scalable vector. 6074 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 6075 "Only fixed length vectors are supported!"); 6076 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6077 } 6078 6079 SDLoc DL(Op); 6080 SDValue Mask, VL; 6081 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 6082 if (HasMask) 6083 Ops.push_back(Mask); 6084 Ops.push_back(VL); 6085 6086 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 6087 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 6088 } 6089 6090 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 6091 // * Operands of each node are assumed to be in the same order. 6092 // * The EVL operand is promoted from i32 to i64 on RV64. 6093 // * Fixed-length vectors are converted to their scalable-vector container 6094 // types. 6095 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 6096 unsigned RISCVISDOpc) const { 6097 SDLoc DL(Op); 6098 MVT VT = Op.getSimpleValueType(); 6099 SmallVector<SDValue, 4> Ops; 6100 6101 for (const auto &OpIdx : enumerate(Op->ops())) { 6102 SDValue V = OpIdx.value(); 6103 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 6104 // Pass through operands which aren't fixed-length vectors. 6105 if (!V.getValueType().isFixedLengthVector()) { 6106 Ops.push_back(V); 6107 continue; 6108 } 6109 // "cast" fixed length vector to a scalable vector. 6110 MVT OpVT = V.getSimpleValueType(); 6111 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 6112 assert(useRVVForFixedLengthVectorVT(OpVT) && 6113 "Only fixed length vectors are supported!"); 6114 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 6115 } 6116 6117 if (!VT.isFixedLengthVector()) 6118 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 6119 6120 MVT ContainerVT = getContainerForFixedLengthVector(VT); 6121 6122 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 6123 6124 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 6125 } 6126 6127 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, 6128 unsigned MaskOpc, 6129 unsigned VecOpc) const { 6130 MVT VT = Op.getSimpleValueType(); 6131 if (VT.getVectorElementType() != MVT::i1) 6132 return lowerVPOp(Op, DAG, VecOpc); 6133 6134 // It is safe to drop mask parameter as masked-off elements are undef. 6135 SDValue Op1 = Op->getOperand(0); 6136 SDValue Op2 = Op->getOperand(1); 6137 SDValue VL = Op->getOperand(3); 6138 6139 MVT ContainerVT = VT; 6140 const bool IsFixed = VT.isFixedLengthVector(); 6141 if (IsFixed) { 6142 ContainerVT = getContainerForFixedLengthVector(VT); 6143 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); 6144 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); 6145 } 6146 6147 SDLoc DL(Op); 6148 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); 6149 if (!IsFixed) 6150 return Val; 6151 return convertFromScalableVector(VT, Val, DAG, Subtarget); 6152 } 6153 6154 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be 6155 // matched to a RVV indexed load. The RVV indexed load instructions only 6156 // support the "unsigned unscaled" addressing mode; indices are implicitly 6157 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6158 // signed or scaled indexing is extended to the XLEN value type and scaled 6159 // accordingly. 6160 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, 6161 SelectionDAG &DAG) const { 6162 SDLoc DL(Op); 6163 MVT VT = Op.getSimpleValueType(); 6164 6165 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6166 EVT MemVT = MemSD->getMemoryVT(); 6167 MachineMemOperand *MMO = MemSD->getMemOperand(); 6168 SDValue Chain = MemSD->getChain(); 6169 SDValue BasePtr = MemSD->getBasePtr(); 6170 6171 ISD::LoadExtType LoadExtType; 6172 SDValue Index, Mask, PassThru, VL; 6173 6174 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { 6175 Index = VPGN->getIndex(); 6176 Mask = VPGN->getMask(); 6177 PassThru = DAG.getUNDEF(VT); 6178 VL = VPGN->getVectorLength(); 6179 // VP doesn't support extending loads. 6180 LoadExtType = ISD::NON_EXTLOAD; 6181 } else { 6182 // Else it must be a MGATHER. 6183 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 6184 Index = MGN->getIndex(); 6185 Mask = MGN->getMask(); 6186 PassThru = MGN->getPassThru(); 6187 LoadExtType = MGN->getExtensionType(); 6188 } 6189 6190 MVT IndexVT = Index.getSimpleValueType(); 6191 MVT XLenVT = Subtarget.getXLenVT(); 6192 6193 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6194 "Unexpected VTs!"); 6195 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6196 // Targets have to explicitly opt-in for extending vector loads. 6197 assert(LoadExtType == ISD::NON_EXTLOAD && 6198 "Unexpected extending MGATHER/VP_GATHER"); 6199 (void)LoadExtType; 6200 6201 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6202 // the selection of the masked intrinsics doesn't do this for us. 6203 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6204 6205 MVT ContainerVT = VT; 6206 if (VT.isFixedLengthVector()) { 6207 // We need to use the larger of the result and index type to determine the 6208 // scalable type to use so we don't increase LMUL for any operand/result. 6209 if (VT.bitsGE(IndexVT)) { 6210 ContainerVT = getContainerForFixedLengthVector(VT); 6211 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6212 ContainerVT.getVectorElementCount()); 6213 } else { 6214 IndexVT = getContainerForFixedLengthVector(IndexVT); 6215 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 6216 IndexVT.getVectorElementCount()); 6217 } 6218 6219 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6220 6221 if (!IsUnmasked) { 6222 MVT MaskVT = 6223 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6224 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6225 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 6226 } 6227 } 6228 6229 if (!VL) 6230 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6231 6232 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6233 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6234 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6235 VL); 6236 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6237 TrueMask, VL); 6238 } 6239 6240 unsigned IntID = 6241 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; 6242 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6243 if (IsUnmasked) 6244 Ops.push_back(DAG.getUNDEF(ContainerVT)); 6245 else 6246 Ops.push_back(PassThru); 6247 Ops.push_back(BasePtr); 6248 Ops.push_back(Index); 6249 if (!IsUnmasked) 6250 Ops.push_back(Mask); 6251 Ops.push_back(VL); 6252 if (!IsUnmasked) 6253 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); 6254 6255 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 6256 SDValue Result = 6257 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); 6258 Chain = Result.getValue(1); 6259 6260 if (VT.isFixedLengthVector()) 6261 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 6262 6263 return DAG.getMergeValues({Result, Chain}, DL); 6264 } 6265 6266 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be 6267 // matched to a RVV indexed store. The RVV indexed store instructions only 6268 // support the "unsigned unscaled" addressing mode; indices are implicitly 6269 // zero-extended or truncated to XLEN and are treated as byte offsets. Any 6270 // signed or scaled indexing is extended to the XLEN value type and scaled 6271 // accordingly. 6272 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, 6273 SelectionDAG &DAG) const { 6274 SDLoc DL(Op); 6275 const auto *MemSD = cast<MemSDNode>(Op.getNode()); 6276 EVT MemVT = MemSD->getMemoryVT(); 6277 MachineMemOperand *MMO = MemSD->getMemOperand(); 6278 SDValue Chain = MemSD->getChain(); 6279 SDValue BasePtr = MemSD->getBasePtr(); 6280 6281 bool IsTruncatingStore = false; 6282 SDValue Index, Mask, Val, VL; 6283 6284 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { 6285 Index = VPSN->getIndex(); 6286 Mask = VPSN->getMask(); 6287 Val = VPSN->getValue(); 6288 VL = VPSN->getVectorLength(); 6289 // VP doesn't support truncating stores. 6290 IsTruncatingStore = false; 6291 } else { 6292 // Else it must be a MSCATTER. 6293 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 6294 Index = MSN->getIndex(); 6295 Mask = MSN->getMask(); 6296 Val = MSN->getValue(); 6297 IsTruncatingStore = MSN->isTruncatingStore(); 6298 } 6299 6300 MVT VT = Val.getSimpleValueType(); 6301 MVT IndexVT = Index.getSimpleValueType(); 6302 MVT XLenVT = Subtarget.getXLenVT(); 6303 6304 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 6305 "Unexpected VTs!"); 6306 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); 6307 // Targets have to explicitly opt-in for extending vector loads and 6308 // truncating vector stores. 6309 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); 6310 (void)IsTruncatingStore; 6311 6312 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 6313 // the selection of the masked intrinsics doesn't do this for us. 6314 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 6315 6316 MVT ContainerVT = VT; 6317 if (VT.isFixedLengthVector()) { 6318 // We need to use the larger of the value and index type to determine the 6319 // scalable type to use so we don't increase LMUL for any operand/result. 6320 if (VT.bitsGE(IndexVT)) { 6321 ContainerVT = getContainerForFixedLengthVector(VT); 6322 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 6323 ContainerVT.getVectorElementCount()); 6324 } else { 6325 IndexVT = getContainerForFixedLengthVector(IndexVT); 6326 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 6327 IndexVT.getVectorElementCount()); 6328 } 6329 6330 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 6331 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 6332 6333 if (!IsUnmasked) { 6334 MVT MaskVT = 6335 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6336 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 6337 } 6338 } 6339 6340 if (!VL) 6341 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; 6342 6343 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { 6344 IndexVT = IndexVT.changeVectorElementType(XLenVT); 6345 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), 6346 VL); 6347 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, 6348 TrueMask, VL); 6349 } 6350 6351 unsigned IntID = 6352 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 6353 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; 6354 Ops.push_back(Val); 6355 Ops.push_back(BasePtr); 6356 Ops.push_back(Index); 6357 if (!IsUnmasked) 6358 Ops.push_back(Mask); 6359 Ops.push_back(VL); 6360 6361 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, 6362 DAG.getVTList(MVT::Other), Ops, MemVT, MMO); 6363 } 6364 6365 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 6366 SelectionDAG &DAG) const { 6367 const MVT XLenVT = Subtarget.getXLenVT(); 6368 SDLoc DL(Op); 6369 SDValue Chain = Op->getOperand(0); 6370 SDValue SysRegNo = DAG.getTargetConstant( 6371 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6372 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 6373 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 6374 6375 // Encoding used for rounding mode in RISCV differs from that used in 6376 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 6377 // table, which consists of a sequence of 4-bit fields, each representing 6378 // corresponding FLT_ROUNDS mode. 6379 static const int Table = 6380 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 6381 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 6382 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 6383 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 6384 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 6385 6386 SDValue Shift = 6387 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 6388 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6389 DAG.getConstant(Table, DL, XLenVT), Shift); 6390 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6391 DAG.getConstant(7, DL, XLenVT)); 6392 6393 return DAG.getMergeValues({Masked, Chain}, DL); 6394 } 6395 6396 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 6397 SelectionDAG &DAG) const { 6398 const MVT XLenVT = Subtarget.getXLenVT(); 6399 SDLoc DL(Op); 6400 SDValue Chain = Op->getOperand(0); 6401 SDValue RMValue = Op->getOperand(1); 6402 SDValue SysRegNo = DAG.getTargetConstant( 6403 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 6404 6405 // Encoding used for rounding mode in RISCV differs from that used in 6406 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 6407 // a table, which consists of a sequence of 4-bit fields, each representing 6408 // corresponding RISCV mode. 6409 static const unsigned Table = 6410 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 6411 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 6412 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 6413 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 6414 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 6415 6416 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 6417 DAG.getConstant(2, DL, XLenVT)); 6418 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 6419 DAG.getConstant(Table, DL, XLenVT), Shift); 6420 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 6421 DAG.getConstant(0x7, DL, XLenVT)); 6422 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 6423 RMValue); 6424 } 6425 6426 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { 6427 switch (IntNo) { 6428 default: 6429 llvm_unreachable("Unexpected Intrinsic"); 6430 case Intrinsic::riscv_bcompress: 6431 return RISCVISD::BCOMPRESSW; 6432 case Intrinsic::riscv_bdecompress: 6433 return RISCVISD::BDECOMPRESSW; 6434 case Intrinsic::riscv_bfp: 6435 return RISCVISD::BFPW; 6436 case Intrinsic::riscv_fsl: 6437 return RISCVISD::FSLW; 6438 case Intrinsic::riscv_fsr: 6439 return RISCVISD::FSRW; 6440 } 6441 } 6442 6443 // Converts the given intrinsic to a i64 operation with any extension. 6444 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, 6445 unsigned IntNo) { 6446 SDLoc DL(N); 6447 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); 6448 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6449 SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6450 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); 6451 // ReplaceNodeResults requires we maintain the same type for the return value. 6452 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6453 } 6454 6455 // Returns the opcode of the target-specific SDNode that implements the 32-bit 6456 // form of the given Opcode. 6457 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 6458 switch (Opcode) { 6459 default: 6460 llvm_unreachable("Unexpected opcode"); 6461 case ISD::SHL: 6462 return RISCVISD::SLLW; 6463 case ISD::SRA: 6464 return RISCVISD::SRAW; 6465 case ISD::SRL: 6466 return RISCVISD::SRLW; 6467 case ISD::SDIV: 6468 return RISCVISD::DIVW; 6469 case ISD::UDIV: 6470 return RISCVISD::DIVUW; 6471 case ISD::UREM: 6472 return RISCVISD::REMUW; 6473 case ISD::ROTL: 6474 return RISCVISD::ROLW; 6475 case ISD::ROTR: 6476 return RISCVISD::RORW; 6477 } 6478 } 6479 6480 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG 6481 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would 6482 // otherwise be promoted to i64, making it difficult to select the 6483 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of 6484 // type i8/i16/i32 is lost. 6485 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 6486 unsigned ExtOpc = ISD::ANY_EXTEND) { 6487 SDLoc DL(N); 6488 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 6489 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 6490 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 6491 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 6492 // ReplaceNodeResults requires we maintain the same type for the return value. 6493 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 6494 } 6495 6496 // Converts the given 32-bit operation to a i64 operation with signed extension 6497 // semantic to reduce the signed extension instructions. 6498 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 6499 SDLoc DL(N); 6500 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6501 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6502 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 6503 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6504 DAG.getValueType(MVT::i32)); 6505 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 6506 } 6507 6508 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 6509 SmallVectorImpl<SDValue> &Results, 6510 SelectionDAG &DAG) const { 6511 SDLoc DL(N); 6512 switch (N->getOpcode()) { 6513 default: 6514 llvm_unreachable("Don't know how to custom type legalize this operation!"); 6515 case ISD::STRICT_FP_TO_SINT: 6516 case ISD::STRICT_FP_TO_UINT: 6517 case ISD::FP_TO_SINT: 6518 case ISD::FP_TO_UINT: { 6519 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6520 "Unexpected custom legalisation"); 6521 bool IsStrict = N->isStrictFPOpcode(); 6522 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 6523 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 6524 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 6525 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 6526 TargetLowering::TypeSoftenFloat) { 6527 if (!isTypeLegal(Op0.getValueType())) 6528 return; 6529 if (IsStrict) { 6530 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 6531 : RISCVISD::STRICT_FCVT_WU_RV64; 6532 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 6533 SDValue Res = DAG.getNode( 6534 Opc, DL, VTs, N->getOperand(0), Op0, 6535 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6536 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6537 Results.push_back(Res.getValue(1)); 6538 return; 6539 } 6540 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 6541 SDValue Res = 6542 DAG.getNode(Opc, DL, MVT::i64, Op0, 6543 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); 6544 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6545 return; 6546 } 6547 // If the FP type needs to be softened, emit a library call using the 'si' 6548 // version. If we left it to default legalization we'd end up with 'di'. If 6549 // the FP type doesn't need to be softened just let generic type 6550 // legalization promote the result type. 6551 RTLIB::Libcall LC; 6552 if (IsSigned) 6553 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 6554 else 6555 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 6556 MakeLibCallOptions CallOptions; 6557 EVT OpVT = Op0.getValueType(); 6558 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 6559 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 6560 SDValue Result; 6561 std::tie(Result, Chain) = 6562 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 6563 Results.push_back(Result); 6564 if (IsStrict) 6565 Results.push_back(Chain); 6566 break; 6567 } 6568 case ISD::READCYCLECOUNTER: { 6569 assert(!Subtarget.is64Bit() && 6570 "READCYCLECOUNTER only has custom type legalization on riscv32"); 6571 6572 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 6573 SDValue RCW = 6574 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 6575 6576 Results.push_back( 6577 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 6578 Results.push_back(RCW.getValue(2)); 6579 break; 6580 } 6581 case ISD::MUL: { 6582 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 6583 unsigned XLen = Subtarget.getXLen(); 6584 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 6585 if (Size > XLen) { 6586 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 6587 SDValue LHS = N->getOperand(0); 6588 SDValue RHS = N->getOperand(1); 6589 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 6590 6591 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 6592 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 6593 // We need exactly one side to be unsigned. 6594 if (LHSIsU == RHSIsU) 6595 return; 6596 6597 auto MakeMULPair = [&](SDValue S, SDValue U) { 6598 MVT XLenVT = Subtarget.getXLenVT(); 6599 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 6600 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 6601 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 6602 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 6603 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 6604 }; 6605 6606 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 6607 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 6608 6609 // The other operand should be signed, but still prefer MULH when 6610 // possible. 6611 if (RHSIsU && LHSIsS && !RHSIsS) 6612 Results.push_back(MakeMULPair(LHS, RHS)); 6613 else if (LHSIsU && RHSIsS && !LHSIsS) 6614 Results.push_back(MakeMULPair(RHS, LHS)); 6615 6616 return; 6617 } 6618 LLVM_FALLTHROUGH; 6619 } 6620 case ISD::ADD: 6621 case ISD::SUB: 6622 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6623 "Unexpected custom legalisation"); 6624 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 6625 break; 6626 case ISD::SHL: 6627 case ISD::SRA: 6628 case ISD::SRL: 6629 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6630 "Unexpected custom legalisation"); 6631 if (N->getOperand(1).getOpcode() != ISD::Constant) { 6632 Results.push_back(customLegalizeToWOp(N, DAG)); 6633 break; 6634 } 6635 6636 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is 6637 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the 6638 // shift amount. 6639 if (N->getOpcode() == ISD::SHL) { 6640 SDLoc DL(N); 6641 SDValue NewOp0 = 6642 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6643 SDValue NewOp1 = 6644 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); 6645 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); 6646 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 6647 DAG.getValueType(MVT::i32)); 6648 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6649 } 6650 6651 break; 6652 case ISD::ROTL: 6653 case ISD::ROTR: 6654 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6655 "Unexpected custom legalisation"); 6656 Results.push_back(customLegalizeToWOp(N, DAG)); 6657 break; 6658 case ISD::CTTZ: 6659 case ISD::CTTZ_ZERO_UNDEF: 6660 case ISD::CTLZ: 6661 case ISD::CTLZ_ZERO_UNDEF: { 6662 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6663 "Unexpected custom legalisation"); 6664 6665 SDValue NewOp0 = 6666 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6667 bool IsCTZ = 6668 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 6669 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 6670 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 6671 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6672 return; 6673 } 6674 case ISD::SDIV: 6675 case ISD::UDIV: 6676 case ISD::UREM: { 6677 MVT VT = N->getSimpleValueType(0); 6678 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 6679 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 6680 "Unexpected custom legalisation"); 6681 // Don't promote division/remainder by constant since we should expand those 6682 // to multiply by magic constant. 6683 // FIXME: What if the expansion is disabled for minsize. 6684 if (N->getOperand(1).getOpcode() == ISD::Constant) 6685 return; 6686 6687 // If the input is i32, use ANY_EXTEND since the W instructions don't read 6688 // the upper 32 bits. For other types we need to sign or zero extend 6689 // based on the opcode. 6690 unsigned ExtOpc = ISD::ANY_EXTEND; 6691 if (VT != MVT::i32) 6692 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 6693 : ISD::ZERO_EXTEND; 6694 6695 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 6696 break; 6697 } 6698 case ISD::UADDO: 6699 case ISD::USUBO: { 6700 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6701 "Unexpected custom legalisation"); 6702 bool IsAdd = N->getOpcode() == ISD::UADDO; 6703 // Create an ADDW or SUBW. 6704 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6705 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6706 SDValue Res = 6707 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 6708 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 6709 DAG.getValueType(MVT::i32)); 6710 6711 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 6712 // Since the inputs are sign extended from i32, this is equivalent to 6713 // comparing the lower 32 bits. 6714 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6715 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 6716 IsAdd ? ISD::SETULT : ISD::SETUGT); 6717 6718 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6719 Results.push_back(Overflow); 6720 return; 6721 } 6722 case ISD::UADDSAT: 6723 case ISD::USUBSAT: { 6724 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6725 "Unexpected custom legalisation"); 6726 if (Subtarget.hasStdExtZbb()) { 6727 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 6728 // sign extend allows overflow of the lower 32 bits to be detected on 6729 // the promoted size. 6730 SDValue LHS = 6731 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6732 SDValue RHS = 6733 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 6734 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 6735 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6736 return; 6737 } 6738 6739 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 6740 // promotion for UADDO/USUBO. 6741 Results.push_back(expandAddSubSat(N, DAG)); 6742 return; 6743 } 6744 case ISD::ABS: { 6745 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6746 "Unexpected custom legalisation"); 6747 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 6748 6749 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) 6750 6751 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6752 6753 // Freeze the source so we can increase it's use count. 6754 Src = DAG.getFreeze(Src); 6755 6756 // Copy sign bit to all bits using the sraiw pattern. 6757 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, 6758 DAG.getValueType(MVT::i32)); 6759 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, 6760 DAG.getConstant(31, DL, MVT::i64)); 6761 6762 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); 6763 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); 6764 6765 // NOTE: The result is only required to be anyextended, but sext is 6766 // consistent with type legalization of sub. 6767 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, 6768 DAG.getValueType(MVT::i32)); 6769 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 6770 return; 6771 } 6772 case ISD::BITCAST: { 6773 EVT VT = N->getValueType(0); 6774 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 6775 SDValue Op0 = N->getOperand(0); 6776 EVT Op0VT = Op0.getValueType(); 6777 MVT XLenVT = Subtarget.getXLenVT(); 6778 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 6779 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 6780 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 6781 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 6782 Subtarget.hasStdExtF()) { 6783 SDValue FPConv = 6784 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 6785 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 6786 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 6787 isTypeLegal(Op0VT)) { 6788 // Custom-legalize bitcasts from fixed-length vector types to illegal 6789 // scalar types in order to improve codegen. Bitcast the vector to a 6790 // one-element vector type whose element type is the same as the result 6791 // type, and extract the first element. 6792 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); 6793 if (isTypeLegal(BVT)) { 6794 SDValue BVec = DAG.getBitcast(BVT, Op0); 6795 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 6796 DAG.getConstant(0, DL, XLenVT))); 6797 } 6798 } 6799 break; 6800 } 6801 case RISCVISD::GREV: 6802 case RISCVISD::GORC: 6803 case RISCVISD::SHFL: { 6804 MVT VT = N->getSimpleValueType(0); 6805 MVT XLenVT = Subtarget.getXLenVT(); 6806 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && 6807 "Unexpected custom legalisation"); 6808 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 6809 assert((Subtarget.hasStdExtZbp() || 6810 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV && 6811 N->getConstantOperandVal(1) == 7)) && 6812 "Unexpected extension"); 6813 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6814 SDValue NewOp1 = 6815 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1)); 6816 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1); 6817 // ReplaceNodeResults requires we maintain the same type for the return 6818 // value. 6819 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); 6820 break; 6821 } 6822 case ISD::BSWAP: 6823 case ISD::BITREVERSE: { 6824 MVT VT = N->getSimpleValueType(0); 6825 MVT XLenVT = Subtarget.getXLenVT(); 6826 assert((VT == MVT::i8 || VT == MVT::i16 || 6827 (VT == MVT::i32 && Subtarget.is64Bit())) && 6828 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 6829 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); 6830 unsigned Imm = VT.getSizeInBits() - 1; 6831 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 6832 if (N->getOpcode() == ISD::BSWAP) 6833 Imm &= ~0x7U; 6834 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0, 6835 DAG.getConstant(Imm, DL, XLenVT)); 6836 // ReplaceNodeResults requires we maintain the same type for the return 6837 // value. 6838 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); 6839 break; 6840 } 6841 case ISD::FSHL: 6842 case ISD::FSHR: { 6843 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6844 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 6845 SDValue NewOp0 = 6846 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 6847 SDValue NewOp1 = 6848 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6849 SDValue NewShAmt = 6850 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6851 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 6852 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. 6853 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, 6854 DAG.getConstant(0x1f, DL, MVT::i64)); 6855 // fshl and fshr concatenate their operands in the same order. fsrw and fslw 6856 // instruction use different orders. fshl will return its first operand for 6857 // shift of zero, fshr will return its second operand. fsl and fsr both 6858 // return rs1 so the ISD nodes need to have different operand orders. 6859 // Shift amount is in rs2. 6860 unsigned Opc = RISCVISD::FSLW; 6861 if (N->getOpcode() == ISD::FSHR) { 6862 std::swap(NewOp0, NewOp1); 6863 Opc = RISCVISD::FSRW; 6864 } 6865 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); 6866 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 6867 break; 6868 } 6869 case ISD::EXTRACT_VECTOR_ELT: { 6870 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 6871 // type is illegal (currently only vXi64 RV32). 6872 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 6873 // transferred to the destination register. We issue two of these from the 6874 // upper- and lower- halves of the SEW-bit vector element, slid down to the 6875 // first element. 6876 SDValue Vec = N->getOperand(0); 6877 SDValue Idx = N->getOperand(1); 6878 6879 // The vector type hasn't been legalized yet so we can't issue target 6880 // specific nodes if it needs legalization. 6881 // FIXME: We would manually legalize if it's important. 6882 if (!isTypeLegal(Vec.getValueType())) 6883 return; 6884 6885 MVT VecVT = Vec.getSimpleValueType(); 6886 6887 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 6888 VecVT.getVectorElementType() == MVT::i64 && 6889 "Unexpected EXTRACT_VECTOR_ELT legalization"); 6890 6891 // If this is a fixed vector, we need to convert it to a scalable vector. 6892 MVT ContainerVT = VecVT; 6893 if (VecVT.isFixedLengthVector()) { 6894 ContainerVT = getContainerForFixedLengthVector(VecVT); 6895 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 6896 } 6897 6898 MVT XLenVT = Subtarget.getXLenVT(); 6899 6900 // Use a VL of 1 to avoid processing more elements than we need. 6901 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 6902 SDValue VL = DAG.getConstant(1, DL, XLenVT); 6903 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 6904 6905 // Unless the index is known to be 0, we must slide the vector down to get 6906 // the desired element into index 0. 6907 if (!isNullConstant(Idx)) { 6908 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 6909 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 6910 } 6911 6912 // Extract the lower XLEN bits of the correct vector element. 6913 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 6914 6915 // To extract the upper XLEN bits of the vector element, shift the first 6916 // element right by 32 bits and re-extract the lower XLEN bits. 6917 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 6918 DAG.getUNDEF(ContainerVT), 6919 DAG.getConstant(32, DL, XLenVT), VL); 6920 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 6921 ThirtyTwoV, Mask, VL); 6922 6923 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 6924 6925 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 6926 break; 6927 } 6928 case ISD::INTRINSIC_WO_CHAIN: { 6929 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6930 switch (IntNo) { 6931 default: 6932 llvm_unreachable( 6933 "Don't know how to custom type legalize this intrinsic!"); 6934 case Intrinsic::riscv_grev: 6935 case Intrinsic::riscv_gorc: { 6936 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6937 "Unexpected custom legalisation"); 6938 SDValue NewOp1 = 6939 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6940 SDValue NewOp2 = 6941 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6942 unsigned Opc = 6943 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 6944 // If the control is a constant, promote the node by clearing any extra 6945 // bits bits in the control. isel will form greviw/gorciw if the result is 6946 // sign extended. 6947 if (isa<ConstantSDNode>(NewOp2)) { 6948 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 6949 DAG.getConstant(0x1f, DL, MVT::i64)); 6950 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 6951 } 6952 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 6953 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6954 break; 6955 } 6956 case Intrinsic::riscv_bcompress: 6957 case Intrinsic::riscv_bdecompress: 6958 case Intrinsic::riscv_bfp: { 6959 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6960 "Unexpected custom legalisation"); 6961 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); 6962 break; 6963 } 6964 case Intrinsic::riscv_fsl: 6965 case Intrinsic::riscv_fsr: { 6966 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6967 "Unexpected custom legalisation"); 6968 SDValue NewOp1 = 6969 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6970 SDValue NewOp2 = 6971 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6972 SDValue NewOp3 = 6973 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); 6974 unsigned Opc = getRISCVWOpcodeByIntr(IntNo); 6975 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); 6976 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6977 break; 6978 } 6979 case Intrinsic::riscv_orc_b: { 6980 // Lower to the GORCI encoding for orc.b with the operand extended. 6981 SDValue NewOp = 6982 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6983 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp, 6984 DAG.getConstant(7, DL, MVT::i64)); 6985 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 6986 return; 6987 } 6988 case Intrinsic::riscv_shfl: 6989 case Intrinsic::riscv_unshfl: { 6990 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 6991 "Unexpected custom legalisation"); 6992 SDValue NewOp1 = 6993 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 6994 SDValue NewOp2 = 6995 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 6996 unsigned Opc = 6997 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 6998 // There is no (UN)SHFLIW. If the control word is a constant, we can use 6999 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half 7000 // will be shuffled the same way as the lower 32 bit half, but the two 7001 // halves won't cross. 7002 if (isa<ConstantSDNode>(NewOp2)) { 7003 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 7004 DAG.getConstant(0xf, DL, MVT::i64)); 7005 Opc = 7006 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 7007 } 7008 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 7009 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 7010 break; 7011 } 7012 case Intrinsic::riscv_vmv_x_s: { 7013 EVT VT = N->getValueType(0); 7014 MVT XLenVT = Subtarget.getXLenVT(); 7015 if (VT.bitsLT(XLenVT)) { 7016 // Simple case just extract using vmv.x.s and truncate. 7017 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 7018 Subtarget.getXLenVT(), N->getOperand(1)); 7019 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 7020 return; 7021 } 7022 7023 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 7024 "Unexpected custom legalization"); 7025 7026 // We need to do the move in two steps. 7027 SDValue Vec = N->getOperand(1); 7028 MVT VecVT = Vec.getSimpleValueType(); 7029 7030 // First extract the lower XLEN bits of the element. 7031 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 7032 7033 // To extract the upper XLEN bits of the vector element, shift the first 7034 // element right by 32 bits and re-extract the lower XLEN bits. 7035 SDValue VL = DAG.getConstant(1, DL, XLenVT); 7036 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 7037 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 7038 SDValue ThirtyTwoV = 7039 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), 7040 DAG.getConstant(32, DL, XLenVT), VL); 7041 SDValue LShr32 = 7042 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 7043 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 7044 7045 Results.push_back( 7046 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 7047 break; 7048 } 7049 } 7050 break; 7051 } 7052 case ISD::VECREDUCE_ADD: 7053 case ISD::VECREDUCE_AND: 7054 case ISD::VECREDUCE_OR: 7055 case ISD::VECREDUCE_XOR: 7056 case ISD::VECREDUCE_SMAX: 7057 case ISD::VECREDUCE_UMAX: 7058 case ISD::VECREDUCE_SMIN: 7059 case ISD::VECREDUCE_UMIN: 7060 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 7061 Results.push_back(V); 7062 break; 7063 case ISD::VP_REDUCE_ADD: 7064 case ISD::VP_REDUCE_AND: 7065 case ISD::VP_REDUCE_OR: 7066 case ISD::VP_REDUCE_XOR: 7067 case ISD::VP_REDUCE_SMAX: 7068 case ISD::VP_REDUCE_UMAX: 7069 case ISD::VP_REDUCE_SMIN: 7070 case ISD::VP_REDUCE_UMIN: 7071 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) 7072 Results.push_back(V); 7073 break; 7074 case ISD::FLT_ROUNDS_: { 7075 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 7076 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 7077 Results.push_back(Res.getValue(0)); 7078 Results.push_back(Res.getValue(1)); 7079 break; 7080 } 7081 } 7082 } 7083 7084 // A structure to hold one of the bit-manipulation patterns below. Together, a 7085 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 7086 // (or (and (shl x, 1), 0xAAAAAAAA), 7087 // (and (srl x, 1), 0x55555555)) 7088 struct RISCVBitmanipPat { 7089 SDValue Op; 7090 unsigned ShAmt; 7091 bool IsSHL; 7092 7093 bool formsPairWith(const RISCVBitmanipPat &Other) const { 7094 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 7095 } 7096 }; 7097 7098 // Matches patterns of the form 7099 // (and (shl x, C2), (C1 << C2)) 7100 // (and (srl x, C2), C1) 7101 // (shl (and x, C1), C2) 7102 // (srl (and x, (C1 << C2)), C2) 7103 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 7104 // The expected masks for each shift amount are specified in BitmanipMasks where 7105 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 7106 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 7107 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 7108 // XLen is 64. 7109 static Optional<RISCVBitmanipPat> 7110 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 7111 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 7112 "Unexpected number of masks"); 7113 Optional<uint64_t> Mask; 7114 // Optionally consume a mask around the shift operation. 7115 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 7116 Mask = Op.getConstantOperandVal(1); 7117 Op = Op.getOperand(0); 7118 } 7119 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 7120 return None; 7121 bool IsSHL = Op.getOpcode() == ISD::SHL; 7122 7123 if (!isa<ConstantSDNode>(Op.getOperand(1))) 7124 return None; 7125 uint64_t ShAmt = Op.getConstantOperandVal(1); 7126 7127 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7128 if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) 7129 return None; 7130 // If we don't have enough masks for 64 bit, then we must be trying to 7131 // match SHFL so we're only allowed to shift 1/4 of the width. 7132 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 7133 return None; 7134 7135 SDValue Src = Op.getOperand(0); 7136 7137 // The expected mask is shifted left when the AND is found around SHL 7138 // patterns. 7139 // ((x >> 1) & 0x55555555) 7140 // ((x << 1) & 0xAAAAAAAA) 7141 bool SHLExpMask = IsSHL; 7142 7143 if (!Mask) { 7144 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 7145 // the mask is all ones: consume that now. 7146 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 7147 Mask = Src.getConstantOperandVal(1); 7148 Src = Src.getOperand(0); 7149 // The expected mask is now in fact shifted left for SRL, so reverse the 7150 // decision. 7151 // ((x & 0xAAAAAAAA) >> 1) 7152 // ((x & 0x55555555) << 1) 7153 SHLExpMask = !SHLExpMask; 7154 } else { 7155 // Use a default shifted mask of all-ones if there's no AND, truncated 7156 // down to the expected width. This simplifies the logic later on. 7157 Mask = maskTrailingOnes<uint64_t>(Width); 7158 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 7159 } 7160 } 7161 7162 unsigned MaskIdx = Log2_32(ShAmt); 7163 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7164 7165 if (SHLExpMask) 7166 ExpMask <<= ShAmt; 7167 7168 if (Mask != ExpMask) 7169 return None; 7170 7171 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 7172 } 7173 7174 // Matches any of the following bit-manipulation patterns: 7175 // (and (shl x, 1), (0x55555555 << 1)) 7176 // (and (srl x, 1), 0x55555555) 7177 // (shl (and x, 0x55555555), 1) 7178 // (srl (and x, (0x55555555 << 1)), 1) 7179 // where the shift amount and mask may vary thus: 7180 // [1] = 0x55555555 / 0xAAAAAAAA 7181 // [2] = 0x33333333 / 0xCCCCCCCC 7182 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 7183 // [8] = 0x00FF00FF / 0xFF00FF00 7184 // [16] = 0x0000FFFF / 0xFFFFFFFF 7185 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 7186 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 7187 // These are the unshifted masks which we use to match bit-manipulation 7188 // patterns. They may be shifted left in certain circumstances. 7189 static const uint64_t BitmanipMasks[] = { 7190 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 7191 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 7192 7193 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7194 } 7195 7196 // Match the following pattern as a GREVI(W) operation 7197 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 7198 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 7199 const RISCVSubtarget &Subtarget) { 7200 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7201 EVT VT = Op.getValueType(); 7202 7203 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7204 auto LHS = matchGREVIPat(Op.getOperand(0)); 7205 auto RHS = matchGREVIPat(Op.getOperand(1)); 7206 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 7207 SDLoc DL(Op); 7208 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 7209 DAG.getConstant(LHS->ShAmt, DL, VT)); 7210 } 7211 } 7212 return SDValue(); 7213 } 7214 7215 // Matches any the following pattern as a GORCI(W) operation 7216 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 7217 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 7218 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 7219 // Note that with the variant of 3., 7220 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 7221 // the inner pattern will first be matched as GREVI and then the outer 7222 // pattern will be matched to GORC via the first rule above. 7223 // 4. (or (rotl/rotr x, bitwidth/2), x) 7224 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 7225 const RISCVSubtarget &Subtarget) { 7226 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7227 EVT VT = Op.getValueType(); 7228 7229 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 7230 SDLoc DL(Op); 7231 SDValue Op0 = Op.getOperand(0); 7232 SDValue Op1 = Op.getOperand(1); 7233 7234 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 7235 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 7236 isa<ConstantSDNode>(Reverse.getOperand(1)) && 7237 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 7238 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 7239 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 7240 if ((Reverse.getOpcode() == ISD::ROTL || 7241 Reverse.getOpcode() == ISD::ROTR) && 7242 Reverse.getOperand(0) == X && 7243 isa<ConstantSDNode>(Reverse.getOperand(1))) { 7244 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 7245 if (RotAmt == (VT.getSizeInBits() / 2)) 7246 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 7247 DAG.getConstant(RotAmt, DL, VT)); 7248 } 7249 return SDValue(); 7250 }; 7251 7252 // Check for either commutable permutation of (or (GREVI x, shamt), x) 7253 if (SDValue V = MatchOROfReverse(Op0, Op1)) 7254 return V; 7255 if (SDValue V = MatchOROfReverse(Op1, Op0)) 7256 return V; 7257 7258 // OR is commutable so canonicalize its OR operand to the left 7259 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 7260 std::swap(Op0, Op1); 7261 if (Op0.getOpcode() != ISD::OR) 7262 return SDValue(); 7263 SDValue OrOp0 = Op0.getOperand(0); 7264 SDValue OrOp1 = Op0.getOperand(1); 7265 auto LHS = matchGREVIPat(OrOp0); 7266 // OR is commutable so swap the operands and try again: x might have been 7267 // on the left 7268 if (!LHS) { 7269 std::swap(OrOp0, OrOp1); 7270 LHS = matchGREVIPat(OrOp0); 7271 } 7272 auto RHS = matchGREVIPat(Op1); 7273 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 7274 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 7275 DAG.getConstant(LHS->ShAmt, DL, VT)); 7276 } 7277 } 7278 return SDValue(); 7279 } 7280 7281 // Matches any of the following bit-manipulation patterns: 7282 // (and (shl x, 1), (0x22222222 << 1)) 7283 // (and (srl x, 1), 0x22222222) 7284 // (shl (and x, 0x22222222), 1) 7285 // (srl (and x, (0x22222222 << 1)), 1) 7286 // where the shift amount and mask may vary thus: 7287 // [1] = 0x22222222 / 0x44444444 7288 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 7289 // [4] = 0x00F000F0 / 0x0F000F00 7290 // [8] = 0x0000FF00 / 0x00FF0000 7291 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 7292 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 7293 // These are the unshifted masks which we use to match bit-manipulation 7294 // patterns. They may be shifted left in certain circumstances. 7295 static const uint64_t BitmanipMasks[] = { 7296 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 7297 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 7298 7299 return matchRISCVBitmanipPat(Op, BitmanipMasks); 7300 } 7301 7302 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 7303 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 7304 const RISCVSubtarget &Subtarget) { 7305 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 7306 EVT VT = Op.getValueType(); 7307 7308 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 7309 return SDValue(); 7310 7311 SDValue Op0 = Op.getOperand(0); 7312 SDValue Op1 = Op.getOperand(1); 7313 7314 // Or is commutable so canonicalize the second OR to the LHS. 7315 if (Op0.getOpcode() != ISD::OR) 7316 std::swap(Op0, Op1); 7317 if (Op0.getOpcode() != ISD::OR) 7318 return SDValue(); 7319 7320 // We found an inner OR, so our operands are the operands of the inner OR 7321 // and the other operand of the outer OR. 7322 SDValue A = Op0.getOperand(0); 7323 SDValue B = Op0.getOperand(1); 7324 SDValue C = Op1; 7325 7326 auto Match1 = matchSHFLPat(A); 7327 auto Match2 = matchSHFLPat(B); 7328 7329 // If neither matched, we failed. 7330 if (!Match1 && !Match2) 7331 return SDValue(); 7332 7333 // We had at least one match. if one failed, try the remaining C operand. 7334 if (!Match1) { 7335 std::swap(A, C); 7336 Match1 = matchSHFLPat(A); 7337 if (!Match1) 7338 return SDValue(); 7339 } else if (!Match2) { 7340 std::swap(B, C); 7341 Match2 = matchSHFLPat(B); 7342 if (!Match2) 7343 return SDValue(); 7344 } 7345 assert(Match1 && Match2); 7346 7347 // Make sure our matches pair up. 7348 if (!Match1->formsPairWith(*Match2)) 7349 return SDValue(); 7350 7351 // All the remains is to make sure C is an AND with the same input, that masks 7352 // out the bits that are being shuffled. 7353 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 7354 C.getOperand(0) != Match1->Op) 7355 return SDValue(); 7356 7357 uint64_t Mask = C.getConstantOperandVal(1); 7358 7359 static const uint64_t BitmanipMasks[] = { 7360 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 7361 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 7362 }; 7363 7364 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 7365 unsigned MaskIdx = Log2_32(Match1->ShAmt); 7366 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 7367 7368 if (Mask != ExpMask) 7369 return SDValue(); 7370 7371 SDLoc DL(Op); 7372 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 7373 DAG.getConstant(Match1->ShAmt, DL, VT)); 7374 } 7375 7376 // Optimize (add (shl x, c0), (shl y, c1)) -> 7377 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. 7378 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, 7379 const RISCVSubtarget &Subtarget) { 7380 // Perform this optimization only in the zba extension. 7381 if (!Subtarget.hasStdExtZba()) 7382 return SDValue(); 7383 7384 // Skip for vector types and larger types. 7385 EVT VT = N->getValueType(0); 7386 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7387 return SDValue(); 7388 7389 // The two operand nodes must be SHL and have no other use. 7390 SDValue N0 = N->getOperand(0); 7391 SDValue N1 = N->getOperand(1); 7392 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || 7393 !N0->hasOneUse() || !N1->hasOneUse()) 7394 return SDValue(); 7395 7396 // Check c0 and c1. 7397 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7398 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); 7399 if (!N0C || !N1C) 7400 return SDValue(); 7401 int64_t C0 = N0C->getSExtValue(); 7402 int64_t C1 = N1C->getSExtValue(); 7403 if (C0 <= 0 || C1 <= 0) 7404 return SDValue(); 7405 7406 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. 7407 int64_t Bits = std::min(C0, C1); 7408 int64_t Diff = std::abs(C0 - C1); 7409 if (Diff != 1 && Diff != 2 && Diff != 3) 7410 return SDValue(); 7411 7412 // Build nodes. 7413 SDLoc DL(N); 7414 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); 7415 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); 7416 SDValue NA0 = 7417 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); 7418 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); 7419 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); 7420 } 7421 7422 // Combine 7423 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7424 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32 7425 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7426 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64 7427 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7428 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64 7429 // The grev patterns represents BSWAP. 7430 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB 7431 // off the grev. 7432 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG, 7433 const RISCVSubtarget &Subtarget) { 7434 bool IsWInstruction = 7435 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW; 7436 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL || 7437 IsWInstruction) && 7438 "Unexpected opcode!"); 7439 SDValue Src = N->getOperand(0); 7440 EVT VT = N->getValueType(0); 7441 SDLoc DL(N); 7442 7443 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV) 7444 return SDValue(); 7445 7446 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7447 !isa<ConstantSDNode>(Src.getOperand(1))) 7448 return SDValue(); 7449 7450 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits(); 7451 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2"); 7452 7453 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for 7454 // RORW/ROLW. And the grev should be the encoding for bswap for this width. 7455 unsigned ShAmt1 = N->getConstantOperandVal(1); 7456 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7457 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8)) 7458 return SDValue(); 7459 7460 Src = Src.getOperand(0); 7461 7462 // Toggle bit the MSB of the shift. 7463 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2; 7464 if (CombinedShAmt == 0) 7465 return Src; 7466 7467 SDValue Res = DAG.getNode( 7468 RISCVISD::GREV, DL, VT, Src, 7469 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7470 if (!IsWInstruction) 7471 return Res; 7472 7473 // Sign extend the result to match the behavior of the rotate. This will be 7474 // selected to GREVIW in isel. 7475 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res, 7476 DAG.getValueType(MVT::i32)); 7477 } 7478 7479 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 7480 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 7481 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 7482 // not undo itself, but they are redundant. 7483 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 7484 bool IsGORC = N->getOpcode() == RISCVISD::GORC; 7485 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode"); 7486 SDValue Src = N->getOperand(0); 7487 7488 if (Src.getOpcode() != N->getOpcode()) 7489 return SDValue(); 7490 7491 if (!isa<ConstantSDNode>(N->getOperand(1)) || 7492 !isa<ConstantSDNode>(Src.getOperand(1))) 7493 return SDValue(); 7494 7495 unsigned ShAmt1 = N->getConstantOperandVal(1); 7496 unsigned ShAmt2 = Src.getConstantOperandVal(1); 7497 Src = Src.getOperand(0); 7498 7499 unsigned CombinedShAmt; 7500 if (IsGORC) 7501 CombinedShAmt = ShAmt1 | ShAmt2; 7502 else 7503 CombinedShAmt = ShAmt1 ^ ShAmt2; 7504 7505 if (CombinedShAmt == 0) 7506 return Src; 7507 7508 SDLoc DL(N); 7509 return DAG.getNode( 7510 N->getOpcode(), DL, N->getValueType(0), Src, 7511 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 7512 } 7513 7514 // Combine a constant select operand into its use: 7515 // 7516 // (and (select cond, -1, c), x) 7517 // -> (select cond, x, (and x, c)) [AllOnes=1] 7518 // (or (select cond, 0, c), x) 7519 // -> (select cond, x, (or x, c)) [AllOnes=0] 7520 // (xor (select cond, 0, c), x) 7521 // -> (select cond, x, (xor x, c)) [AllOnes=0] 7522 // (add (select cond, 0, c), x) 7523 // -> (select cond, x, (add x, c)) [AllOnes=0] 7524 // (sub x, (select cond, 0, c)) 7525 // -> (select cond, x, (sub x, c)) [AllOnes=0] 7526 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7527 SelectionDAG &DAG, bool AllOnes) { 7528 EVT VT = N->getValueType(0); 7529 7530 // Skip vectors. 7531 if (VT.isVector()) 7532 return SDValue(); 7533 7534 if ((Slct.getOpcode() != ISD::SELECT && 7535 Slct.getOpcode() != RISCVISD::SELECT_CC) || 7536 !Slct.hasOneUse()) 7537 return SDValue(); 7538 7539 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 7540 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 7541 }; 7542 7543 bool SwapSelectOps; 7544 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; 7545 SDValue TrueVal = Slct.getOperand(1 + OpOffset); 7546 SDValue FalseVal = Slct.getOperand(2 + OpOffset); 7547 SDValue NonConstantVal; 7548 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 7549 SwapSelectOps = false; 7550 NonConstantVal = FalseVal; 7551 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 7552 SwapSelectOps = true; 7553 NonConstantVal = TrueVal; 7554 } else 7555 return SDValue(); 7556 7557 // Slct is now know to be the desired identity constant when CC is true. 7558 TrueVal = OtherOp; 7559 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 7560 // Unless SwapSelectOps says the condition should be false. 7561 if (SwapSelectOps) 7562 std::swap(TrueVal, FalseVal); 7563 7564 if (Slct.getOpcode() == RISCVISD::SELECT_CC) 7565 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 7566 {Slct.getOperand(0), Slct.getOperand(1), 7567 Slct.getOperand(2), TrueVal, FalseVal}); 7568 7569 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7570 {Slct.getOperand(0), TrueVal, FalseVal}); 7571 } 7572 7573 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7574 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, 7575 bool AllOnes) { 7576 SDValue N0 = N->getOperand(0); 7577 SDValue N1 = N->getOperand(1); 7578 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) 7579 return Result; 7580 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) 7581 return Result; 7582 return SDValue(); 7583 } 7584 7585 // Transform (add (mul x, c0), c1) -> 7586 // (add (mul (add x, c1/c0), c0), c1%c0). 7587 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case 7588 // that should be excluded is when c0*(c1/c0) is simm12, which will lead 7589 // to an infinite loop in DAGCombine if transformed. 7590 // Or transform (add (mul x, c0), c1) -> 7591 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), 7592 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner 7593 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will 7594 // lead to an infinite loop in DAGCombine if transformed. 7595 // Or transform (add (mul x, c0), c1) -> 7596 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), 7597 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner 7598 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will 7599 // lead to an infinite loop in DAGCombine if transformed. 7600 // Or transform (add (mul x, c0), c1) -> 7601 // (mul (add x, c1/c0), c0). 7602 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. 7603 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, 7604 const RISCVSubtarget &Subtarget) { 7605 // Skip for vector types and larger types. 7606 EVT VT = N->getValueType(0); 7607 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) 7608 return SDValue(); 7609 // The first operand node must be a MUL and has no other use. 7610 SDValue N0 = N->getOperand(0); 7611 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) 7612 return SDValue(); 7613 // Check if c0 and c1 match above conditions. 7614 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 7615 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7616 if (!N0C || !N1C) 7617 return SDValue(); 7618 // If N0C has multiple uses it's possible one of the cases in 7619 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result 7620 // in an infinite loop. 7621 if (!N0C->hasOneUse()) 7622 return SDValue(); 7623 int64_t C0 = N0C->getSExtValue(); 7624 int64_t C1 = N1C->getSExtValue(); 7625 int64_t CA, CB; 7626 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) 7627 return SDValue(); 7628 // Search for proper CA (non-zero) and CB that both are simm12. 7629 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && 7630 !isInt<12>(C0 * (C1 / C0))) { 7631 CA = C1 / C0; 7632 CB = C1 % C0; 7633 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && 7634 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { 7635 CA = C1 / C0 + 1; 7636 CB = C1 % C0 - C0; 7637 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && 7638 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { 7639 CA = C1 / C0 - 1; 7640 CB = C1 % C0 + C0; 7641 } else 7642 return SDValue(); 7643 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). 7644 SDLoc DL(N); 7645 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), 7646 DAG.getConstant(CA, DL, VT)); 7647 SDValue New1 = 7648 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); 7649 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); 7650 } 7651 7652 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 7653 const RISCVSubtarget &Subtarget) { 7654 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) 7655 return V; 7656 if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) 7657 return V; 7658 // fold (add (select lhs, rhs, cc, 0, y), x) -> 7659 // (select lhs, rhs, cc, x, (add x, y)) 7660 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7661 } 7662 7663 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { 7664 // fold (sub x, (select lhs, rhs, cc, 0, y)) -> 7665 // (select lhs, rhs, cc, x, (sub x, y)) 7666 SDValue N0 = N->getOperand(0); 7667 SDValue N1 = N->getOperand(1); 7668 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); 7669 } 7670 7671 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { 7672 // fold (and (select lhs, rhs, cc, -1, y), x) -> 7673 // (select lhs, rhs, cc, x, (and x, y)) 7674 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); 7675 } 7676 7677 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 7678 const RISCVSubtarget &Subtarget) { 7679 if (Subtarget.hasStdExtZbp()) { 7680 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 7681 return GREV; 7682 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 7683 return GORC; 7684 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 7685 return SHFL; 7686 } 7687 7688 // fold (or (select cond, 0, y), x) -> 7689 // (select cond, x, (or x, y)) 7690 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7691 } 7692 7693 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { 7694 // fold (xor (select cond, 0, y), x) -> 7695 // (select cond, x, (xor x, y)) 7696 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); 7697 } 7698 7699 static SDValue 7700 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, 7701 const RISCVSubtarget &Subtarget) { 7702 SDValue Src = N->getOperand(0); 7703 EVT VT = N->getValueType(0); 7704 7705 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) 7706 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && 7707 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) 7708 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, 7709 Src.getOperand(0)); 7710 7711 // Fold (i64 (sext_inreg (abs X), i32)) -> 7712 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits. 7713 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This 7714 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user 7715 // of the (i32 (abs X)) is a sext or setcc or something else that causes type 7716 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have 7717 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg 7718 // may get combined into an earlier operation so we need to use 7719 // ComputeNumSignBits. 7720 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for 7721 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so 7722 // we can't assume that X has 33 sign bits. We must check. 7723 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() && 7724 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 && 7725 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 && 7726 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) { 7727 SDLoc DL(N); 7728 SDValue Freeze = DAG.getFreeze(Src.getOperand(0)); 7729 SDValue Neg = 7730 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze); 7731 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg, 7732 DAG.getValueType(MVT::i32)); 7733 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg); 7734 } 7735 7736 return SDValue(); 7737 } 7738 7739 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to 7740 // vwadd(u).vv/vx or vwsub(u).vv/vx. 7741 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG, 7742 bool Commute = false) { 7743 assert((N->getOpcode() == RISCVISD::ADD_VL || 7744 N->getOpcode() == RISCVISD::SUB_VL) && 7745 "Unexpected opcode"); 7746 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL; 7747 SDValue Op0 = N->getOperand(0); 7748 SDValue Op1 = N->getOperand(1); 7749 if (Commute) 7750 std::swap(Op0, Op1); 7751 7752 MVT VT = N->getSimpleValueType(0); 7753 7754 // Determine the narrow size for a widening add/sub. 7755 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7756 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7757 VT.getVectorElementCount()); 7758 7759 SDValue Mask = N->getOperand(2); 7760 SDValue VL = N->getOperand(3); 7761 7762 SDLoc DL(N); 7763 7764 // If the RHS is a sext or zext, we can form a widening op. 7765 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL || 7766 Op1.getOpcode() == RISCVISD::VSEXT_VL) && 7767 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) { 7768 unsigned ExtOpc = Op1.getOpcode(); 7769 Op1 = Op1.getOperand(0); 7770 // Re-introduce narrower extends if needed. 7771 if (Op1.getValueType() != NarrowVT) 7772 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7773 7774 unsigned WOpc; 7775 if (ExtOpc == RISCVISD::VSEXT_VL) 7776 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL; 7777 else 7778 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL; 7779 7780 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL); 7781 } 7782 7783 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar 7784 // sext/zext? 7785 7786 return SDValue(); 7787 } 7788 7789 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or 7790 // vwsub(u).vv/vx. 7791 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) { 7792 SDValue Op0 = N->getOperand(0); 7793 SDValue Op1 = N->getOperand(1); 7794 SDValue Mask = N->getOperand(2); 7795 SDValue VL = N->getOperand(3); 7796 7797 MVT VT = N->getSimpleValueType(0); 7798 MVT NarrowVT = Op1.getSimpleValueType(); 7799 unsigned NarrowSize = NarrowVT.getScalarSizeInBits(); 7800 7801 unsigned VOpc; 7802 switch (N->getOpcode()) { 7803 default: llvm_unreachable("Unexpected opcode"); 7804 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break; 7805 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break; 7806 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break; 7807 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break; 7808 } 7809 7810 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL || 7811 N->getOpcode() == RISCVISD::VWSUB_W_VL; 7812 7813 SDLoc DL(N); 7814 7815 // If the LHS is a sext or zext, we can narrow this op to the same size as 7816 // the RHS. 7817 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) || 7818 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) && 7819 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) { 7820 unsigned ExtOpc = Op0.getOpcode(); 7821 Op0 = Op0.getOperand(0); 7822 // Re-introduce narrower extends if needed. 7823 if (Op0.getValueType() != NarrowVT) 7824 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7825 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL); 7826 } 7827 7828 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL || 7829 N->getOpcode() == RISCVISD::VWADDU_W_VL; 7830 7831 // Look for splats on the left hand side of a vwadd(u).wv. We might be able 7832 // to commute and use a vwadd(u).vx instead. 7833 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL && 7834 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) { 7835 Op0 = Op0.getOperand(1); 7836 7837 // See if have enough sign bits or zero bits in the scalar to use a 7838 // widening add/sub by splatting to smaller element size. 7839 unsigned EltBits = VT.getScalarSizeInBits(); 7840 unsigned ScalarBits = Op0.getValueSizeInBits(); 7841 // Make sure we're getting all element bits from the scalar register. 7842 // FIXME: Support implicit sign extension of vmv.v.x? 7843 if (ScalarBits < EltBits) 7844 return SDValue(); 7845 7846 if (IsSigned) { 7847 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize)) 7848 return SDValue(); 7849 } else { 7850 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7851 if (!DAG.MaskedValueIsZero(Op0, Mask)) 7852 return SDValue(); 7853 } 7854 7855 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7856 DAG.getUNDEF(NarrowVT), Op0, VL); 7857 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL); 7858 } 7859 7860 return SDValue(); 7861 } 7862 7863 // Try to form VWMUL, VWMULU or VWMULSU. 7864 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. 7865 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, 7866 bool Commute) { 7867 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); 7868 SDValue Op0 = N->getOperand(0); 7869 SDValue Op1 = N->getOperand(1); 7870 if (Commute) 7871 std::swap(Op0, Op1); 7872 7873 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; 7874 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; 7875 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; 7876 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) 7877 return SDValue(); 7878 7879 SDValue Mask = N->getOperand(2); 7880 SDValue VL = N->getOperand(3); 7881 7882 // Make sure the mask and VL match. 7883 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) 7884 return SDValue(); 7885 7886 MVT VT = N->getSimpleValueType(0); 7887 7888 // Determine the narrow size for a widening multiply. 7889 unsigned NarrowSize = VT.getScalarSizeInBits() / 2; 7890 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), 7891 VT.getVectorElementCount()); 7892 7893 SDLoc DL(N); 7894 7895 // See if the other operand is the same opcode. 7896 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { 7897 if (!Op1.hasOneUse()) 7898 return SDValue(); 7899 7900 // Make sure the mask and VL match. 7901 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) 7902 return SDValue(); 7903 7904 Op1 = Op1.getOperand(0); 7905 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { 7906 // The operand is a splat of a scalar. 7907 7908 // The pasthru must be undef for tail agnostic 7909 if (!Op1.getOperand(0).isUndef()) 7910 return SDValue(); 7911 // The VL must be the same. 7912 if (Op1.getOperand(2) != VL) 7913 return SDValue(); 7914 7915 // Get the scalar value. 7916 Op1 = Op1.getOperand(1); 7917 7918 // See if have enough sign bits or zero bits in the scalar to use a 7919 // widening multiply by splatting to smaller element size. 7920 unsigned EltBits = VT.getScalarSizeInBits(); 7921 unsigned ScalarBits = Op1.getValueSizeInBits(); 7922 // Make sure we're getting all element bits from the scalar register. 7923 // FIXME: Support implicit sign extension of vmv.v.x? 7924 if (ScalarBits < EltBits) 7925 return SDValue(); 7926 7927 // If the LHS is a sign extend, try to use vwmul. 7928 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) { 7929 // Can use vwmul. 7930 } else { 7931 // Otherwise try to use vwmulu or vwmulsu. 7932 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); 7933 if (DAG.MaskedValueIsZero(Op1, Mask)) 7934 IsVWMULSU = IsSignExt; 7935 else 7936 return SDValue(); 7937 } 7938 7939 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, 7940 DAG.getUNDEF(NarrowVT), Op1, VL); 7941 } else 7942 return SDValue(); 7943 7944 Op0 = Op0.getOperand(0); 7945 7946 // Re-introduce narrower extends if needed. 7947 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; 7948 if (Op0.getValueType() != NarrowVT) 7949 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); 7950 // vwmulsu requires second operand to be zero extended. 7951 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; 7952 if (Op1.getValueType() != NarrowVT) 7953 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); 7954 7955 unsigned WMulOpc = RISCVISD::VWMULSU_VL; 7956 if (!IsVWMULSU) 7957 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; 7958 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); 7959 } 7960 7961 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { 7962 switch (Op.getOpcode()) { 7963 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; 7964 case ISD::FTRUNC: return RISCVFPRndMode::RTZ; 7965 case ISD::FFLOOR: return RISCVFPRndMode::RDN; 7966 case ISD::FCEIL: return RISCVFPRndMode::RUP; 7967 case ISD::FROUND: return RISCVFPRndMode::RMM; 7968 } 7969 7970 return RISCVFPRndMode::Invalid; 7971 } 7972 7973 // Fold 7974 // (fp_to_int (froundeven X)) -> fcvt X, rne 7975 // (fp_to_int (ftrunc X)) -> fcvt X, rtz 7976 // (fp_to_int (ffloor X)) -> fcvt X, rdn 7977 // (fp_to_int (fceil X)) -> fcvt X, rup 7978 // (fp_to_int (fround X)) -> fcvt X, rmm 7979 static SDValue performFP_TO_INTCombine(SDNode *N, 7980 TargetLowering::DAGCombinerInfo &DCI, 7981 const RISCVSubtarget &Subtarget) { 7982 SelectionDAG &DAG = DCI.DAG; 7983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7984 MVT XLenVT = Subtarget.getXLenVT(); 7985 7986 // Only handle XLen or i32 types. Other types narrower than XLen will 7987 // eventually be legalized to XLenVT. 7988 EVT VT = N->getValueType(0); 7989 if (VT != MVT::i32 && VT != XLenVT) 7990 return SDValue(); 7991 7992 SDValue Src = N->getOperand(0); 7993 7994 // Ensure the FP type is also legal. 7995 if (!TLI.isTypeLegal(Src.getValueType())) 7996 return SDValue(); 7997 7998 // Don't do this for f16 with Zfhmin and not Zfh. 7999 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8000 return SDValue(); 8001 8002 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8003 if (FRM == RISCVFPRndMode::Invalid) 8004 return SDValue(); 8005 8006 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 8007 8008 unsigned Opc; 8009 if (VT == XLenVT) 8010 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8011 else 8012 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8013 8014 SDLoc DL(N); 8015 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), 8016 DAG.getTargetConstant(FRM, DL, XLenVT)); 8017 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); 8018 } 8019 8020 // Fold 8021 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) 8022 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) 8023 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) 8024 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) 8025 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) 8026 static SDValue performFP_TO_INT_SATCombine(SDNode *N, 8027 TargetLowering::DAGCombinerInfo &DCI, 8028 const RISCVSubtarget &Subtarget) { 8029 SelectionDAG &DAG = DCI.DAG; 8030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8031 MVT XLenVT = Subtarget.getXLenVT(); 8032 8033 // Only handle XLen types. Other types narrower than XLen will eventually be 8034 // legalized to XLenVT. 8035 EVT DstVT = N->getValueType(0); 8036 if (DstVT != XLenVT) 8037 return SDValue(); 8038 8039 SDValue Src = N->getOperand(0); 8040 8041 // Ensure the FP type is also legal. 8042 if (!TLI.isTypeLegal(Src.getValueType())) 8043 return SDValue(); 8044 8045 // Don't do this for f16 with Zfhmin and not Zfh. 8046 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) 8047 return SDValue(); 8048 8049 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 8050 8051 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); 8052 if (FRM == RISCVFPRndMode::Invalid) 8053 return SDValue(); 8054 8055 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; 8056 8057 unsigned Opc; 8058 if (SatVT == DstVT) 8059 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; 8060 else if (DstVT == MVT::i64 && SatVT == MVT::i32) 8061 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; 8062 else 8063 return SDValue(); 8064 // FIXME: Support other SatVTs by clamping before or after the conversion. 8065 8066 Src = Src.getOperand(0); 8067 8068 SDLoc DL(N); 8069 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, 8070 DAG.getTargetConstant(FRM, DL, XLenVT)); 8071 8072 // RISCV FP-to-int conversions saturate to the destination register size, but 8073 // don't produce 0 for nan. 8074 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); 8075 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); 8076 } 8077 8078 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is 8079 // smaller than XLenVT. 8080 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, 8081 const RISCVSubtarget &Subtarget) { 8082 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); 8083 8084 SDValue Src = N->getOperand(0); 8085 if (Src.getOpcode() != ISD::BSWAP) 8086 return SDValue(); 8087 8088 EVT VT = N->getValueType(0); 8089 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || 8090 !isPowerOf2_32(VT.getSizeInBits())) 8091 return SDValue(); 8092 8093 SDLoc DL(N); 8094 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0), 8095 DAG.getConstant(7, DL, VT)); 8096 } 8097 8098 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 8099 DAGCombinerInfo &DCI) const { 8100 SelectionDAG &DAG = DCI.DAG; 8101 8102 // Helper to call SimplifyDemandedBits on an operand of N where only some low 8103 // bits are demanded. N will be added to the Worklist if it was not deleted. 8104 // Caller should return SDValue(N, 0) if this returns true. 8105 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { 8106 SDValue Op = N->getOperand(OpNo); 8107 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); 8108 if (!SimplifyDemandedBits(Op, Mask, DCI)) 8109 return false; 8110 8111 if (N->getOpcode() != ISD::DELETED_NODE) 8112 DCI.AddToWorklist(N); 8113 return true; 8114 }; 8115 8116 switch (N->getOpcode()) { 8117 default: 8118 break; 8119 case RISCVISD::SplitF64: { 8120 SDValue Op0 = N->getOperand(0); 8121 // If the input to SplitF64 is just BuildPairF64 then the operation is 8122 // redundant. Instead, use BuildPairF64's operands directly. 8123 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 8124 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 8125 8126 if (Op0->isUndef()) { 8127 SDValue Lo = DAG.getUNDEF(MVT::i32); 8128 SDValue Hi = DAG.getUNDEF(MVT::i32); 8129 return DCI.CombineTo(N, Lo, Hi); 8130 } 8131 8132 SDLoc DL(N); 8133 8134 // It's cheaper to materialise two 32-bit integers than to load a double 8135 // from the constant pool and transfer it to integer registers through the 8136 // stack. 8137 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 8138 APInt V = C->getValueAPF().bitcastToAPInt(); 8139 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 8140 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 8141 return DCI.CombineTo(N, Lo, Hi); 8142 } 8143 8144 // This is a target-specific version of a DAGCombine performed in 8145 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8146 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8147 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8148 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8149 !Op0.getNode()->hasOneUse()) 8150 break; 8151 SDValue NewSplitF64 = 8152 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 8153 Op0.getOperand(0)); 8154 SDValue Lo = NewSplitF64.getValue(0); 8155 SDValue Hi = NewSplitF64.getValue(1); 8156 APInt SignBit = APInt::getSignMask(32); 8157 if (Op0.getOpcode() == ISD::FNEG) { 8158 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 8159 DAG.getConstant(SignBit, DL, MVT::i32)); 8160 return DCI.CombineTo(N, Lo, NewHi); 8161 } 8162 assert(Op0.getOpcode() == ISD::FABS); 8163 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 8164 DAG.getConstant(~SignBit, DL, MVT::i32)); 8165 return DCI.CombineTo(N, Lo, NewHi); 8166 } 8167 case RISCVISD::SLLW: 8168 case RISCVISD::SRAW: 8169 case RISCVISD::SRLW: { 8170 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8171 if (SimplifyDemandedLowBitsHelper(0, 32) || 8172 SimplifyDemandedLowBitsHelper(1, 5)) 8173 return SDValue(N, 0); 8174 8175 break; 8176 } 8177 case ISD::ROTR: 8178 case ISD::ROTL: 8179 case RISCVISD::RORW: 8180 case RISCVISD::ROLW: { 8181 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) { 8182 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8183 if (SimplifyDemandedLowBitsHelper(0, 32) || 8184 SimplifyDemandedLowBitsHelper(1, 5)) 8185 return SDValue(N, 0); 8186 } 8187 8188 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget); 8189 } 8190 case RISCVISD::CLZW: 8191 case RISCVISD::CTZW: { 8192 // Only the lower 32 bits of the first operand are read 8193 if (SimplifyDemandedLowBitsHelper(0, 32)) 8194 return SDValue(N, 0); 8195 break; 8196 } 8197 case RISCVISD::GREV: 8198 case RISCVISD::GORC: { 8199 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 8200 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8201 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8202 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) 8203 return SDValue(N, 0); 8204 8205 return combineGREVI_GORCI(N, DAG); 8206 } 8207 case RISCVISD::GREVW: 8208 case RISCVISD::GORCW: { 8209 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 8210 if (SimplifyDemandedLowBitsHelper(0, 32) || 8211 SimplifyDemandedLowBitsHelper(1, 5)) 8212 return SDValue(N, 0); 8213 8214 break; 8215 } 8216 case RISCVISD::SHFL: 8217 case RISCVISD::UNSHFL: { 8218 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. 8219 unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); 8220 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8221 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) 8222 return SDValue(N, 0); 8223 8224 break; 8225 } 8226 case RISCVISD::SHFLW: 8227 case RISCVISD::UNSHFLW: { 8228 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. 8229 if (SimplifyDemandedLowBitsHelper(0, 32) || 8230 SimplifyDemandedLowBitsHelper(1, 4)) 8231 return SDValue(N, 0); 8232 8233 break; 8234 } 8235 case RISCVISD::BCOMPRESSW: 8236 case RISCVISD::BDECOMPRESSW: { 8237 // Only the lower 32 bits of LHS and RHS are read. 8238 if (SimplifyDemandedLowBitsHelper(0, 32) || 8239 SimplifyDemandedLowBitsHelper(1, 32)) 8240 return SDValue(N, 0); 8241 8242 break; 8243 } 8244 case RISCVISD::FSR: 8245 case RISCVISD::FSL: 8246 case RISCVISD::FSRW: 8247 case RISCVISD::FSLW: { 8248 bool IsWInstruction = 8249 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW; 8250 unsigned BitWidth = 8251 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits(); 8252 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 8253 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 8254 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1)) 8255 return SDValue(N, 0); 8256 8257 break; 8258 } 8259 case RISCVISD::FMV_X_ANYEXTH: 8260 case RISCVISD::FMV_X_ANYEXTW_RV64: { 8261 SDLoc DL(N); 8262 SDValue Op0 = N->getOperand(0); 8263 MVT VT = N->getSimpleValueType(0); 8264 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 8265 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 8266 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. 8267 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && 8268 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || 8269 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && 8270 Op0->getOpcode() == RISCVISD::FMV_H_X)) { 8271 assert(Op0.getOperand(0).getValueType() == VT && 8272 "Unexpected value type!"); 8273 return Op0.getOperand(0); 8274 } 8275 8276 // This is a target-specific version of a DAGCombine performed in 8277 // DAGCombiner::visitBITCAST. It performs the equivalent of: 8278 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 8279 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 8280 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 8281 !Op0.getNode()->hasOneUse()) 8282 break; 8283 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); 8284 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; 8285 APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); 8286 if (Op0.getOpcode() == ISD::FNEG) 8287 return DAG.getNode(ISD::XOR, DL, VT, NewFMV, 8288 DAG.getConstant(SignBit, DL, VT)); 8289 8290 assert(Op0.getOpcode() == ISD::FABS); 8291 return DAG.getNode(ISD::AND, DL, VT, NewFMV, 8292 DAG.getConstant(~SignBit, DL, VT)); 8293 } 8294 case ISD::ADD: 8295 return performADDCombine(N, DAG, Subtarget); 8296 case ISD::SUB: 8297 return performSUBCombine(N, DAG); 8298 case ISD::AND: 8299 return performANDCombine(N, DAG); 8300 case ISD::OR: 8301 return performORCombine(N, DAG, Subtarget); 8302 case ISD::XOR: 8303 return performXORCombine(N, DAG); 8304 case ISD::SIGN_EXTEND_INREG: 8305 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); 8306 case ISD::ZERO_EXTEND: 8307 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during 8308 // type legalization. This is safe because fp_to_uint produces poison if 8309 // it overflows. 8310 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { 8311 SDValue Src = N->getOperand(0); 8312 if (Src.getOpcode() == ISD::FP_TO_UINT && 8313 isTypeLegal(Src.getOperand(0).getValueType())) 8314 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, 8315 Src.getOperand(0)); 8316 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && 8317 isTypeLegal(Src.getOperand(1).getValueType())) { 8318 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); 8319 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, 8320 Src.getOperand(0), Src.getOperand(1)); 8321 DCI.CombineTo(N, Res); 8322 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); 8323 DCI.recursivelyDeleteUnusedNodes(Src.getNode()); 8324 return SDValue(N, 0); // Return N so it doesn't get rechecked. 8325 } 8326 } 8327 return SDValue(); 8328 case RISCVISD::SELECT_CC: { 8329 // Transform 8330 SDValue LHS = N->getOperand(0); 8331 SDValue RHS = N->getOperand(1); 8332 SDValue TrueV = N->getOperand(3); 8333 SDValue FalseV = N->getOperand(4); 8334 8335 // If the True and False values are the same, we don't need a select_cc. 8336 if (TrueV == FalseV) 8337 return TrueV; 8338 8339 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); 8340 if (!ISD::isIntEqualitySetCC(CCVal)) 8341 break; 8342 8343 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 8344 // (select_cc X, Y, lt, trueV, falseV) 8345 // Sometimes the setcc is introduced after select_cc has been formed. 8346 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8347 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8348 // If we're looking for eq 0 instead of ne 0, we need to invert the 8349 // condition. 8350 bool Invert = CCVal == ISD::SETEQ; 8351 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8352 if (Invert) 8353 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8354 8355 SDLoc DL(N); 8356 RHS = LHS.getOperand(1); 8357 LHS = LHS.getOperand(0); 8358 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8359 8360 SDValue TargetCC = DAG.getCondCode(CCVal); 8361 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8362 {LHS, RHS, TargetCC, TrueV, FalseV}); 8363 } 8364 8365 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 8366 // (select_cc X, Y, eq/ne, trueV, falseV) 8367 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8368 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 8369 {LHS.getOperand(0), LHS.getOperand(1), 8370 N->getOperand(2), TrueV, FalseV}); 8371 // (select_cc X, 1, setne, trueV, falseV) -> 8372 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 8373 // This can occur when legalizing some floating point comparisons. 8374 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8375 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8376 SDLoc DL(N); 8377 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8378 SDValue TargetCC = DAG.getCondCode(CCVal); 8379 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8380 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 8381 {LHS, RHS, TargetCC, TrueV, FalseV}); 8382 } 8383 8384 break; 8385 } 8386 case RISCVISD::BR_CC: { 8387 SDValue LHS = N->getOperand(1); 8388 SDValue RHS = N->getOperand(2); 8389 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 8390 if (!ISD::isIntEqualitySetCC(CCVal)) 8391 break; 8392 8393 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 8394 // (br_cc X, Y, lt, dest) 8395 // Sometimes the setcc is introduced after br_cc has been formed. 8396 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 8397 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 8398 // If we're looking for eq 0 instead of ne 0, we need to invert the 8399 // condition. 8400 bool Invert = CCVal == ISD::SETEQ; 8401 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 8402 if (Invert) 8403 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8404 8405 SDLoc DL(N); 8406 RHS = LHS.getOperand(1); 8407 LHS = LHS.getOperand(0); 8408 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 8409 8410 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8411 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 8412 N->getOperand(4)); 8413 } 8414 8415 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 8416 // (br_cc X, Y, eq/ne, trueV, falseV) 8417 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 8418 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 8419 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 8420 N->getOperand(3), N->getOperand(4)); 8421 8422 // (br_cc X, 1, setne, br_cc) -> 8423 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 8424 // This can occur when legalizing some floating point comparisons. 8425 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 8426 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 8427 SDLoc DL(N); 8428 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 8429 SDValue TargetCC = DAG.getCondCode(CCVal); 8430 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 8431 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 8432 N->getOperand(0), LHS, RHS, TargetCC, 8433 N->getOperand(4)); 8434 } 8435 break; 8436 } 8437 case ISD::BITREVERSE: 8438 return performBITREVERSECombine(N, DAG, Subtarget); 8439 case ISD::FP_TO_SINT: 8440 case ISD::FP_TO_UINT: 8441 return performFP_TO_INTCombine(N, DCI, Subtarget); 8442 case ISD::FP_TO_SINT_SAT: 8443 case ISD::FP_TO_UINT_SAT: 8444 return performFP_TO_INT_SATCombine(N, DCI, Subtarget); 8445 case ISD::FCOPYSIGN: { 8446 EVT VT = N->getValueType(0); 8447 if (!VT.isVector()) 8448 break; 8449 // There is a form of VFSGNJ which injects the negated sign of its second 8450 // operand. Try and bubble any FNEG up after the extend/round to produce 8451 // this optimized pattern. Avoid modifying cases where FP_ROUND and 8452 // TRUNC=1. 8453 SDValue In2 = N->getOperand(1); 8454 // Avoid cases where the extend/round has multiple uses, as duplicating 8455 // those is typically more expensive than removing a fneg. 8456 if (!In2.hasOneUse()) 8457 break; 8458 if (In2.getOpcode() != ISD::FP_EXTEND && 8459 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 8460 break; 8461 In2 = In2.getOperand(0); 8462 if (In2.getOpcode() != ISD::FNEG) 8463 break; 8464 SDLoc DL(N); 8465 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 8466 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 8467 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 8468 } 8469 case ISD::MGATHER: 8470 case ISD::MSCATTER: 8471 case ISD::VP_GATHER: 8472 case ISD::VP_SCATTER: { 8473 if (!DCI.isBeforeLegalize()) 8474 break; 8475 SDValue Index, ScaleOp; 8476 bool IsIndexScaled = false; 8477 bool IsIndexSigned = false; 8478 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { 8479 Index = VPGSN->getIndex(); 8480 ScaleOp = VPGSN->getScale(); 8481 IsIndexScaled = VPGSN->isIndexScaled(); 8482 IsIndexSigned = VPGSN->isIndexSigned(); 8483 } else { 8484 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); 8485 Index = MGSN->getIndex(); 8486 ScaleOp = MGSN->getScale(); 8487 IsIndexScaled = MGSN->isIndexScaled(); 8488 IsIndexSigned = MGSN->isIndexSigned(); 8489 } 8490 EVT IndexVT = Index.getValueType(); 8491 MVT XLenVT = Subtarget.getXLenVT(); 8492 // RISCV indexed loads only support the "unsigned unscaled" addressing 8493 // mode, so anything else must be manually legalized. 8494 bool NeedsIdxLegalization = 8495 IsIndexScaled || 8496 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); 8497 if (!NeedsIdxLegalization) 8498 break; 8499 8500 SDLoc DL(N); 8501 8502 // Any index legalization should first promote to XLenVT, so we don't lose 8503 // bits when scaling. This may create an illegal index type so we let 8504 // LLVM's legalization take care of the splitting. 8505 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. 8506 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 8507 IndexVT = IndexVT.changeVectorElementType(XLenVT); 8508 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 8509 DL, IndexVT, Index); 8510 } 8511 8512 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 8513 if (IsIndexScaled && Scale != 1) { 8514 // Manually scale the indices by the element size. 8515 // TODO: Sanitize the scale operand here? 8516 // TODO: For VP nodes, should we use VP_SHL here? 8517 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 8518 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 8519 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 8520 } 8521 8522 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 8523 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) 8524 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, 8525 {VPGN->getChain(), VPGN->getBasePtr(), Index, 8526 VPGN->getScale(), VPGN->getMask(), 8527 VPGN->getVectorLength()}, 8528 VPGN->getMemOperand(), NewIndexTy); 8529 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) 8530 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, 8531 {VPSN->getChain(), VPSN->getValue(), 8532 VPSN->getBasePtr(), Index, VPSN->getScale(), 8533 VPSN->getMask(), VPSN->getVectorLength()}, 8534 VPSN->getMemOperand(), NewIndexTy); 8535 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) 8536 return DAG.getMaskedGather( 8537 N->getVTList(), MGN->getMemoryVT(), DL, 8538 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), 8539 MGN->getBasePtr(), Index, MGN->getScale()}, 8540 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 8541 const auto *MSN = cast<MaskedScatterSDNode>(N); 8542 return DAG.getMaskedScatter( 8543 N->getVTList(), MSN->getMemoryVT(), DL, 8544 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), 8545 Index, MSN->getScale()}, 8546 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 8547 } 8548 case RISCVISD::SRA_VL: 8549 case RISCVISD::SRL_VL: 8550 case RISCVISD::SHL_VL: { 8551 SDValue ShAmt = N->getOperand(1); 8552 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8553 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8554 SDLoc DL(N); 8555 SDValue VL = N->getOperand(3); 8556 EVT VT = N->getValueType(0); 8557 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8558 ShAmt.getOperand(1), VL); 8559 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, 8560 N->getOperand(2), N->getOperand(3)); 8561 } 8562 break; 8563 } 8564 case ISD::SRA: 8565 case ISD::SRL: 8566 case ISD::SHL: { 8567 SDValue ShAmt = N->getOperand(1); 8568 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { 8569 // We don't need the upper 32 bits of a 64-bit element for a shift amount. 8570 SDLoc DL(N); 8571 EVT VT = N->getValueType(0); 8572 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), 8573 ShAmt.getOperand(1), 8574 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); 8575 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); 8576 } 8577 break; 8578 } 8579 case RISCVISD::ADD_VL: 8580 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false)) 8581 return V; 8582 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true); 8583 case RISCVISD::SUB_VL: 8584 return combineADDSUB_VLToVWADDSUB_VL(N, DAG); 8585 case RISCVISD::VWADD_W_VL: 8586 case RISCVISD::VWADDU_W_VL: 8587 case RISCVISD::VWSUB_W_VL: 8588 case RISCVISD::VWSUBU_W_VL: 8589 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG); 8590 case RISCVISD::MUL_VL: 8591 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) 8592 return V; 8593 // Mul is commutative. 8594 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); 8595 case ISD::STORE: { 8596 auto *Store = cast<StoreSDNode>(N); 8597 SDValue Val = Store->getValue(); 8598 // Combine store of vmv.x.s to vse with VL of 1. 8599 // FIXME: Support FP. 8600 if (Val.getOpcode() == RISCVISD::VMV_X_S) { 8601 SDValue Src = Val.getOperand(0); 8602 EVT VecVT = Src.getValueType(); 8603 EVT MemVT = Store->getMemoryVT(); 8604 // The memory VT and the element type must match. 8605 if (VecVT.getVectorElementType() == MemVT) { 8606 SDLoc DL(N); 8607 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 8608 return DAG.getStoreVP( 8609 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), 8610 DAG.getConstant(1, DL, MaskVT), 8611 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, 8612 Store->getMemOperand(), Store->getAddressingMode(), 8613 Store->isTruncatingStore(), /*IsCompress*/ false); 8614 } 8615 } 8616 8617 break; 8618 } 8619 case ISD::SPLAT_VECTOR: { 8620 EVT VT = N->getValueType(0); 8621 // Only perform this combine on legal MVT types. 8622 if (!isTypeLegal(VT)) 8623 break; 8624 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, 8625 DAG, Subtarget)) 8626 return Gather; 8627 break; 8628 } 8629 case RISCVISD::VMV_V_X_VL: { 8630 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the 8631 // scalar input. 8632 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); 8633 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); 8634 if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) 8635 if (SimplifyDemandedLowBitsHelper(1, EltWidth)) 8636 return SDValue(N, 0); 8637 8638 break; 8639 } 8640 case ISD::INTRINSIC_WO_CHAIN: { 8641 unsigned IntNo = N->getConstantOperandVal(0); 8642 switch (IntNo) { 8643 // By default we do not combine any intrinsic. 8644 default: 8645 return SDValue(); 8646 case Intrinsic::riscv_vcpop: 8647 case Intrinsic::riscv_vcpop_mask: 8648 case Intrinsic::riscv_vfirst: 8649 case Intrinsic::riscv_vfirst_mask: { 8650 SDValue VL = N->getOperand(2); 8651 if (IntNo == Intrinsic::riscv_vcpop_mask || 8652 IntNo == Intrinsic::riscv_vfirst_mask) 8653 VL = N->getOperand(3); 8654 if (!isNullConstant(VL)) 8655 return SDValue(); 8656 // If VL is 0, vcpop -> li 0, vfirst -> li -1. 8657 SDLoc DL(N); 8658 EVT VT = N->getValueType(0); 8659 if (IntNo == Intrinsic::riscv_vfirst || 8660 IntNo == Intrinsic::riscv_vfirst_mask) 8661 return DAG.getConstant(-1, DL, VT); 8662 return DAG.getConstant(0, DL, VT); 8663 } 8664 } 8665 } 8666 } 8667 8668 return SDValue(); 8669 } 8670 8671 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 8672 const SDNode *N, CombineLevel Level) const { 8673 // The following folds are only desirable if `(OP _, c1 << c2)` can be 8674 // materialised in fewer instructions than `(OP _, c1)`: 8675 // 8676 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 8677 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 8678 SDValue N0 = N->getOperand(0); 8679 EVT Ty = N0.getValueType(); 8680 if (Ty.isScalarInteger() && 8681 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 8682 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 8683 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8684 if (C1 && C2) { 8685 const APInt &C1Int = C1->getAPIntValue(); 8686 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 8687 8688 // We can materialise `c1 << c2` into an add immediate, so it's "free", 8689 // and the combine should happen, to potentially allow further combines 8690 // later. 8691 if (ShiftedC1Int.getMinSignedBits() <= 64 && 8692 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 8693 return true; 8694 8695 // We can materialise `c1` in an add immediate, so it's "free", and the 8696 // combine should be prevented. 8697 if (C1Int.getMinSignedBits() <= 64 && 8698 isLegalAddImmediate(C1Int.getSExtValue())) 8699 return false; 8700 8701 // Neither constant will fit into an immediate, so find materialisation 8702 // costs. 8703 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 8704 Subtarget.getFeatureBits(), 8705 /*CompressionCost*/true); 8706 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 8707 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), 8708 /*CompressionCost*/true); 8709 8710 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 8711 // combine should be prevented. 8712 if (C1Cost < ShiftedC1Cost) 8713 return false; 8714 } 8715 } 8716 return true; 8717 } 8718 8719 bool RISCVTargetLowering::targetShrinkDemandedConstant( 8720 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 8721 TargetLoweringOpt &TLO) const { 8722 // Delay this optimization as late as possible. 8723 if (!TLO.LegalOps) 8724 return false; 8725 8726 EVT VT = Op.getValueType(); 8727 if (VT.isVector()) 8728 return false; 8729 8730 // Only handle AND for now. 8731 if (Op.getOpcode() != ISD::AND) 8732 return false; 8733 8734 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8735 if (!C) 8736 return false; 8737 8738 const APInt &Mask = C->getAPIntValue(); 8739 8740 // Clear all non-demanded bits initially. 8741 APInt ShrunkMask = Mask & DemandedBits; 8742 8743 // Try to make a smaller immediate by setting undemanded bits. 8744 8745 APInt ExpandedMask = Mask | ~DemandedBits; 8746 8747 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 8748 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 8749 }; 8750 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 8751 if (NewMask == Mask) 8752 return true; 8753 SDLoc DL(Op); 8754 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 8755 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 8756 return TLO.CombineTo(Op, NewOp); 8757 }; 8758 8759 // If the shrunk mask fits in sign extended 12 bits, let the target 8760 // independent code apply it. 8761 if (ShrunkMask.isSignedIntN(12)) 8762 return false; 8763 8764 // Preserve (and X, 0xffff) when zext.h is supported. 8765 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 8766 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 8767 if (IsLegalMask(NewMask)) 8768 return UseMask(NewMask); 8769 } 8770 8771 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 8772 if (VT == MVT::i64) { 8773 APInt NewMask = APInt(64, 0xffffffff); 8774 if (IsLegalMask(NewMask)) 8775 return UseMask(NewMask); 8776 } 8777 8778 // For the remaining optimizations, we need to be able to make a negative 8779 // number through a combination of mask and undemanded bits. 8780 if (!ExpandedMask.isNegative()) 8781 return false; 8782 8783 // What is the fewest number of bits we need to represent the negative number. 8784 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 8785 8786 // Try to make a 12 bit negative immediate. If that fails try to make a 32 8787 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 8788 APInt NewMask = ShrunkMask; 8789 if (MinSignedBits <= 12) 8790 NewMask.setBitsFrom(11); 8791 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 8792 NewMask.setBitsFrom(31); 8793 else 8794 return false; 8795 8796 // Check that our new mask is a subset of the demanded mask. 8797 assert(IsLegalMask(NewMask)); 8798 return UseMask(NewMask); 8799 } 8800 8801 static void computeGREV(APInt &Src, unsigned ShAmt) { 8802 ShAmt &= Src.getBitWidth() - 1; 8803 uint64_t x = Src.getZExtValue(); 8804 if (ShAmt & 1) 8805 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); 8806 if (ShAmt & 2) 8807 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); 8808 if (ShAmt & 4) 8809 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); 8810 if (ShAmt & 8) 8811 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); 8812 if (ShAmt & 16) 8813 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); 8814 if (ShAmt & 32) 8815 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); 8816 Src = x; 8817 } 8818 8819 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 8820 KnownBits &Known, 8821 const APInt &DemandedElts, 8822 const SelectionDAG &DAG, 8823 unsigned Depth) const { 8824 unsigned BitWidth = Known.getBitWidth(); 8825 unsigned Opc = Op.getOpcode(); 8826 assert((Opc >= ISD::BUILTIN_OP_END || 8827 Opc == ISD::INTRINSIC_WO_CHAIN || 8828 Opc == ISD::INTRINSIC_W_CHAIN || 8829 Opc == ISD::INTRINSIC_VOID) && 8830 "Should use MaskedValueIsZero if you don't know whether Op" 8831 " is a target node!"); 8832 8833 Known.resetAll(); 8834 switch (Opc) { 8835 default: break; 8836 case RISCVISD::SELECT_CC: { 8837 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 8838 // If we don't know any bits, early out. 8839 if (Known.isUnknown()) 8840 break; 8841 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 8842 8843 // Only known if known in both the LHS and RHS. 8844 Known = KnownBits::commonBits(Known, Known2); 8845 break; 8846 } 8847 case RISCVISD::REMUW: { 8848 KnownBits Known2; 8849 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8850 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8851 // We only care about the lower 32 bits. 8852 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 8853 // Restore the original width by sign extending. 8854 Known = Known.sext(BitWidth); 8855 break; 8856 } 8857 case RISCVISD::DIVUW: { 8858 KnownBits Known2; 8859 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 8860 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 8861 // We only care about the lower 32 bits. 8862 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 8863 // Restore the original width by sign extending. 8864 Known = Known.sext(BitWidth); 8865 break; 8866 } 8867 case RISCVISD::CTZW: { 8868 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8869 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 8870 unsigned LowBits = Log2_32(PossibleTZ) + 1; 8871 Known.Zero.setBitsFrom(LowBits); 8872 break; 8873 } 8874 case RISCVISD::CLZW: { 8875 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8876 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 8877 unsigned LowBits = Log2_32(PossibleLZ) + 1; 8878 Known.Zero.setBitsFrom(LowBits); 8879 break; 8880 } 8881 case RISCVISD::GREV: { 8882 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8883 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 8884 unsigned ShAmt = C->getZExtValue(); 8885 computeGREV(Known.Zero, ShAmt); 8886 computeGREV(Known.One, ShAmt); 8887 } 8888 break; 8889 } 8890 case RISCVISD::READ_VLENB: { 8891 // If we know the minimum VLen from Zvl extensions, we can use that to 8892 // determine the trailing zeros of VLENB. 8893 // FIXME: Limit to 128 bit vectors until we have more testing. 8894 unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; 8895 if (MinVLenB > 0) 8896 Known.Zero.setLowBits(Log2_32(MinVLenB)); 8897 // We assume VLENB is no more than 65536 / 8 bytes. 8898 Known.Zero.setBitsFrom(14); 8899 break; 8900 } 8901 case ISD::INTRINSIC_W_CHAIN: 8902 case ISD::INTRINSIC_WO_CHAIN: { 8903 unsigned IntNo = 8904 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); 8905 switch (IntNo) { 8906 default: 8907 // We can't do anything for most intrinsics. 8908 break; 8909 case Intrinsic::riscv_vsetvli: 8910 case Intrinsic::riscv_vsetvlimax: 8911 case Intrinsic::riscv_vsetvli_opt: 8912 case Intrinsic::riscv_vsetvlimax_opt: 8913 // Assume that VL output is positive and would fit in an int32_t. 8914 // TODO: VLEN might be capped at 16 bits in a future V spec update. 8915 if (BitWidth >= 32) 8916 Known.Zero.setBitsFrom(31); 8917 break; 8918 } 8919 break; 8920 } 8921 } 8922 } 8923 8924 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 8925 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 8926 unsigned Depth) const { 8927 switch (Op.getOpcode()) { 8928 default: 8929 break; 8930 case RISCVISD::SELECT_CC: { 8931 unsigned Tmp = 8932 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); 8933 if (Tmp == 1) return 1; // Early out. 8934 unsigned Tmp2 = 8935 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); 8936 return std::min(Tmp, Tmp2); 8937 } 8938 case RISCVISD::SLLW: 8939 case RISCVISD::SRAW: 8940 case RISCVISD::SRLW: 8941 case RISCVISD::DIVW: 8942 case RISCVISD::DIVUW: 8943 case RISCVISD::REMUW: 8944 case RISCVISD::ROLW: 8945 case RISCVISD::RORW: 8946 case RISCVISD::GREVW: 8947 case RISCVISD::GORCW: 8948 case RISCVISD::FSLW: 8949 case RISCVISD::FSRW: 8950 case RISCVISD::SHFLW: 8951 case RISCVISD::UNSHFLW: 8952 case RISCVISD::BCOMPRESSW: 8953 case RISCVISD::BDECOMPRESSW: 8954 case RISCVISD::BFPW: 8955 case RISCVISD::FCVT_W_RV64: 8956 case RISCVISD::FCVT_WU_RV64: 8957 case RISCVISD::STRICT_FCVT_W_RV64: 8958 case RISCVISD::STRICT_FCVT_WU_RV64: 8959 // TODO: As the result is sign-extended, this is conservatively correct. A 8960 // more precise answer could be calculated for SRAW depending on known 8961 // bits in the shift amount. 8962 return 33; 8963 case RISCVISD::SHFL: 8964 case RISCVISD::UNSHFL: { 8965 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 8966 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 8967 // will stay within the upper 32 bits. If there were more than 32 sign bits 8968 // before there will be at least 33 sign bits after. 8969 if (Op.getValueType() == MVT::i64 && 8970 isa<ConstantSDNode>(Op.getOperand(1)) && 8971 (Op.getConstantOperandVal(1) & 0x10) == 0) { 8972 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 8973 if (Tmp > 32) 8974 return 33; 8975 } 8976 break; 8977 } 8978 case RISCVISD::VMV_X_S: { 8979 // The number of sign bits of the scalar result is computed by obtaining the 8980 // element type of the input vector operand, subtracting its width from the 8981 // XLEN, and then adding one (sign bit within the element type). If the 8982 // element type is wider than XLen, the least-significant XLEN bits are 8983 // taken. 8984 unsigned XLen = Subtarget.getXLen(); 8985 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); 8986 if (EltBits <= XLen) 8987 return XLen - EltBits + 1; 8988 break; 8989 } 8990 } 8991 8992 return 1; 8993 } 8994 8995 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 8996 MachineBasicBlock *BB) { 8997 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 8998 8999 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 9000 // Should the count have wrapped while it was being read, we need to try 9001 // again. 9002 // ... 9003 // read: 9004 // rdcycleh x3 # load high word of cycle 9005 // rdcycle x2 # load low word of cycle 9006 // rdcycleh x4 # load high word of cycle 9007 // bne x3, x4, read # check if high word reads match, otherwise try again 9008 // ... 9009 9010 MachineFunction &MF = *BB->getParent(); 9011 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9012 MachineFunction::iterator It = ++BB->getIterator(); 9013 9014 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9015 MF.insert(It, LoopMBB); 9016 9017 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 9018 MF.insert(It, DoneMBB); 9019 9020 // Transfer the remainder of BB and its successor edges to DoneMBB. 9021 DoneMBB->splice(DoneMBB->begin(), BB, 9022 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9023 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 9024 9025 BB->addSuccessor(LoopMBB); 9026 9027 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9028 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9029 Register LoReg = MI.getOperand(0).getReg(); 9030 Register HiReg = MI.getOperand(1).getReg(); 9031 DebugLoc DL = MI.getDebugLoc(); 9032 9033 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 9034 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 9035 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9036 .addReg(RISCV::X0); 9037 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 9038 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 9039 .addReg(RISCV::X0); 9040 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 9041 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 9042 .addReg(RISCV::X0); 9043 9044 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 9045 .addReg(HiReg) 9046 .addReg(ReadAgainReg) 9047 .addMBB(LoopMBB); 9048 9049 LoopMBB->addSuccessor(LoopMBB); 9050 LoopMBB->addSuccessor(DoneMBB); 9051 9052 MI.eraseFromParent(); 9053 9054 return DoneMBB; 9055 } 9056 9057 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 9058 MachineBasicBlock *BB) { 9059 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 9060 9061 MachineFunction &MF = *BB->getParent(); 9062 DebugLoc DL = MI.getDebugLoc(); 9063 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9064 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9065 Register LoReg = MI.getOperand(0).getReg(); 9066 Register HiReg = MI.getOperand(1).getReg(); 9067 Register SrcReg = MI.getOperand(2).getReg(); 9068 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 9069 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9070 9071 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 9072 RI); 9073 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9074 MachineMemOperand *MMOLo = 9075 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 9076 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9077 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 9078 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 9079 .addFrameIndex(FI) 9080 .addImm(0) 9081 .addMemOperand(MMOLo); 9082 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 9083 .addFrameIndex(FI) 9084 .addImm(4) 9085 .addMemOperand(MMOHi); 9086 MI.eraseFromParent(); // The pseudo instruction is gone now. 9087 return BB; 9088 } 9089 9090 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 9091 MachineBasicBlock *BB) { 9092 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 9093 "Unexpected instruction"); 9094 9095 MachineFunction &MF = *BB->getParent(); 9096 DebugLoc DL = MI.getDebugLoc(); 9097 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 9098 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 9099 Register DstReg = MI.getOperand(0).getReg(); 9100 Register LoReg = MI.getOperand(1).getReg(); 9101 Register HiReg = MI.getOperand(2).getReg(); 9102 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 9103 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 9104 9105 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 9106 MachineMemOperand *MMOLo = 9107 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 9108 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 9109 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 9110 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9111 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 9112 .addFrameIndex(FI) 9113 .addImm(0) 9114 .addMemOperand(MMOLo); 9115 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 9116 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 9117 .addFrameIndex(FI) 9118 .addImm(4) 9119 .addMemOperand(MMOHi); 9120 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 9121 MI.eraseFromParent(); // The pseudo instruction is gone now. 9122 return BB; 9123 } 9124 9125 static bool isSelectPseudo(MachineInstr &MI) { 9126 switch (MI.getOpcode()) { 9127 default: 9128 return false; 9129 case RISCV::Select_GPR_Using_CC_GPR: 9130 case RISCV::Select_FPR16_Using_CC_GPR: 9131 case RISCV::Select_FPR32_Using_CC_GPR: 9132 case RISCV::Select_FPR64_Using_CC_GPR: 9133 return true; 9134 } 9135 } 9136 9137 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, 9138 unsigned RelOpcode, unsigned EqOpcode, 9139 const RISCVSubtarget &Subtarget) { 9140 DebugLoc DL = MI.getDebugLoc(); 9141 Register DstReg = MI.getOperand(0).getReg(); 9142 Register Src1Reg = MI.getOperand(1).getReg(); 9143 Register Src2Reg = MI.getOperand(2).getReg(); 9144 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 9145 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); 9146 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 9147 9148 // Save the current FFLAGS. 9149 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); 9150 9151 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) 9152 .addReg(Src1Reg) 9153 .addReg(Src2Reg); 9154 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9155 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); 9156 9157 // Restore the FFLAGS. 9158 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) 9159 .addReg(SavedFFlags, RegState::Kill); 9160 9161 // Issue a dummy FEQ opcode to raise exception for signaling NaNs. 9162 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) 9163 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) 9164 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); 9165 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 9166 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); 9167 9168 // Erase the pseudoinstruction. 9169 MI.eraseFromParent(); 9170 return BB; 9171 } 9172 9173 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 9174 MachineBasicBlock *BB, 9175 const RISCVSubtarget &Subtarget) { 9176 // To "insert" Select_* instructions, we actually have to insert the triangle 9177 // control-flow pattern. The incoming instructions know the destination vreg 9178 // to set, the condition code register to branch on, the true/false values to 9179 // select between, and the condcode to use to select the appropriate branch. 9180 // 9181 // We produce the following control flow: 9182 // HeadMBB 9183 // | \ 9184 // | IfFalseMBB 9185 // | / 9186 // TailMBB 9187 // 9188 // When we find a sequence of selects we attempt to optimize their emission 9189 // by sharing the control flow. Currently we only handle cases where we have 9190 // multiple selects with the exact same condition (same LHS, RHS and CC). 9191 // The selects may be interleaved with other instructions if the other 9192 // instructions meet some requirements we deem safe: 9193 // - They are debug instructions. Otherwise, 9194 // - They do not have side-effects, do not access memory and their inputs do 9195 // not depend on the results of the select pseudo-instructions. 9196 // The TrueV/FalseV operands of the selects cannot depend on the result of 9197 // previous selects in the sequence. 9198 // These conditions could be further relaxed. See the X86 target for a 9199 // related approach and more information. 9200 Register LHS = MI.getOperand(1).getReg(); 9201 Register RHS = MI.getOperand(2).getReg(); 9202 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); 9203 9204 SmallVector<MachineInstr *, 4> SelectDebugValues; 9205 SmallSet<Register, 4> SelectDests; 9206 SelectDests.insert(MI.getOperand(0).getReg()); 9207 9208 MachineInstr *LastSelectPseudo = &MI; 9209 9210 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 9211 SequenceMBBI != E; ++SequenceMBBI) { 9212 if (SequenceMBBI->isDebugInstr()) 9213 continue; 9214 else if (isSelectPseudo(*SequenceMBBI)) { 9215 if (SequenceMBBI->getOperand(1).getReg() != LHS || 9216 SequenceMBBI->getOperand(2).getReg() != RHS || 9217 SequenceMBBI->getOperand(3).getImm() != CC || 9218 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 9219 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 9220 break; 9221 LastSelectPseudo = &*SequenceMBBI; 9222 SequenceMBBI->collectDebugValues(SelectDebugValues); 9223 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 9224 } else { 9225 if (SequenceMBBI->hasUnmodeledSideEffects() || 9226 SequenceMBBI->mayLoadOrStore()) 9227 break; 9228 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 9229 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 9230 })) 9231 break; 9232 } 9233 } 9234 9235 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); 9236 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9237 DebugLoc DL = MI.getDebugLoc(); 9238 MachineFunction::iterator I = ++BB->getIterator(); 9239 9240 MachineBasicBlock *HeadMBB = BB; 9241 MachineFunction *F = BB->getParent(); 9242 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 9243 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 9244 9245 F->insert(I, IfFalseMBB); 9246 F->insert(I, TailMBB); 9247 9248 // Transfer debug instructions associated with the selects to TailMBB. 9249 for (MachineInstr *DebugInstr : SelectDebugValues) { 9250 TailMBB->push_back(DebugInstr->removeFromParent()); 9251 } 9252 9253 // Move all instructions after the sequence to TailMBB. 9254 TailMBB->splice(TailMBB->end(), HeadMBB, 9255 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 9256 // Update machine-CFG edges by transferring all successors of the current 9257 // block to the new block which will contain the Phi nodes for the selects. 9258 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 9259 // Set the successors for HeadMBB. 9260 HeadMBB->addSuccessor(IfFalseMBB); 9261 HeadMBB->addSuccessor(TailMBB); 9262 9263 // Insert appropriate branch. 9264 BuildMI(HeadMBB, DL, TII.getBrCond(CC)) 9265 .addReg(LHS) 9266 .addReg(RHS) 9267 .addMBB(TailMBB); 9268 9269 // IfFalseMBB just falls through to TailMBB. 9270 IfFalseMBB->addSuccessor(TailMBB); 9271 9272 // Create PHIs for all of the select pseudo-instructions. 9273 auto SelectMBBI = MI.getIterator(); 9274 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 9275 auto InsertionPoint = TailMBB->begin(); 9276 while (SelectMBBI != SelectEnd) { 9277 auto Next = std::next(SelectMBBI); 9278 if (isSelectPseudo(*SelectMBBI)) { 9279 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 9280 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 9281 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 9282 .addReg(SelectMBBI->getOperand(4).getReg()) 9283 .addMBB(HeadMBB) 9284 .addReg(SelectMBBI->getOperand(5).getReg()) 9285 .addMBB(IfFalseMBB); 9286 SelectMBBI->eraseFromParent(); 9287 } 9288 SelectMBBI = Next; 9289 } 9290 9291 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9292 return TailMBB; 9293 } 9294 9295 MachineBasicBlock * 9296 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 9297 MachineBasicBlock *BB) const { 9298 switch (MI.getOpcode()) { 9299 default: 9300 llvm_unreachable("Unexpected instr type to insert"); 9301 case RISCV::ReadCycleWide: 9302 assert(!Subtarget.is64Bit() && 9303 "ReadCycleWrite is only to be used on riscv32"); 9304 return emitReadCycleWidePseudo(MI, BB); 9305 case RISCV::Select_GPR_Using_CC_GPR: 9306 case RISCV::Select_FPR16_Using_CC_GPR: 9307 case RISCV::Select_FPR32_Using_CC_GPR: 9308 case RISCV::Select_FPR64_Using_CC_GPR: 9309 return emitSelectPseudo(MI, BB, Subtarget); 9310 case RISCV::BuildPairF64Pseudo: 9311 return emitBuildPairF64Pseudo(MI, BB); 9312 case RISCV::SplitF64Pseudo: 9313 return emitSplitF64Pseudo(MI, BB); 9314 case RISCV::PseudoQuietFLE_H: 9315 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); 9316 case RISCV::PseudoQuietFLT_H: 9317 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); 9318 case RISCV::PseudoQuietFLE_S: 9319 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); 9320 case RISCV::PseudoQuietFLT_S: 9321 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); 9322 case RISCV::PseudoQuietFLE_D: 9323 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); 9324 case RISCV::PseudoQuietFLT_D: 9325 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); 9326 } 9327 } 9328 9329 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 9330 SDNode *Node) const { 9331 // Add FRM dependency to any instructions with dynamic rounding mode. 9332 unsigned Opc = MI.getOpcode(); 9333 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); 9334 if (Idx < 0) 9335 return; 9336 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) 9337 return; 9338 // If the instruction already reads FRM, don't add another read. 9339 if (MI.readsRegister(RISCV::FRM)) 9340 return; 9341 MI.addOperand( 9342 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); 9343 } 9344 9345 // Calling Convention Implementation. 9346 // The expectations for frontend ABI lowering vary from target to target. 9347 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 9348 // details, but this is a longer term goal. For now, we simply try to keep the 9349 // role of the frontend as simple and well-defined as possible. The rules can 9350 // be summarised as: 9351 // * Never split up large scalar arguments. We handle them here. 9352 // * If a hardfloat calling convention is being used, and the struct may be 9353 // passed in a pair of registers (fp+fp, int+fp), and both registers are 9354 // available, then pass as two separate arguments. If either the GPRs or FPRs 9355 // are exhausted, then pass according to the rule below. 9356 // * If a struct could never be passed in registers or directly in a stack 9357 // slot (as it is larger than 2*XLEN and the floating point rules don't 9358 // apply), then pass it using a pointer with the byval attribute. 9359 // * If a struct is less than 2*XLEN, then coerce to either a two-element 9360 // word-sized array or a 2*XLEN scalar (depending on alignment). 9361 // * The frontend can determine whether a struct is returned by reference or 9362 // not based on its size and fields. If it will be returned by reference, the 9363 // frontend must modify the prototype so a pointer with the sret annotation is 9364 // passed as the first argument. This is not necessary for large scalar 9365 // returns. 9366 // * Struct return values and varargs should be coerced to structs containing 9367 // register-size fields in the same situations they would be for fixed 9368 // arguments. 9369 9370 static const MCPhysReg ArgGPRs[] = { 9371 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 9372 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 9373 }; 9374 static const MCPhysReg ArgFPR16s[] = { 9375 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 9376 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 9377 }; 9378 static const MCPhysReg ArgFPR32s[] = { 9379 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 9380 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 9381 }; 9382 static const MCPhysReg ArgFPR64s[] = { 9383 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 9384 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 9385 }; 9386 // This is an interim calling convention and it may be changed in the future. 9387 static const MCPhysReg ArgVRs[] = { 9388 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 9389 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 9390 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 9391 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 9392 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 9393 RISCV::V20M2, RISCV::V22M2}; 9394 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 9395 RISCV::V20M4}; 9396 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 9397 9398 // Pass a 2*XLEN argument that has been split into two XLEN values through 9399 // registers or the stack as necessary. 9400 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 9401 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 9402 MVT ValVT2, MVT LocVT2, 9403 ISD::ArgFlagsTy ArgFlags2) { 9404 unsigned XLenInBytes = XLen / 8; 9405 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9406 // At least one half can be passed via register. 9407 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 9408 VA1.getLocVT(), CCValAssign::Full)); 9409 } else { 9410 // Both halves must be passed on the stack, with proper alignment. 9411 Align StackAlign = 9412 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 9413 State.addLoc( 9414 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 9415 State.AllocateStack(XLenInBytes, StackAlign), 9416 VA1.getLocVT(), CCValAssign::Full)); 9417 State.addLoc(CCValAssign::getMem( 9418 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9419 LocVT2, CCValAssign::Full)); 9420 return false; 9421 } 9422 9423 if (Register Reg = State.AllocateReg(ArgGPRs)) { 9424 // The second half can also be passed via register. 9425 State.addLoc( 9426 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 9427 } else { 9428 // The second half is passed via the stack, without additional alignment. 9429 State.addLoc(CCValAssign::getMem( 9430 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 9431 LocVT2, CCValAssign::Full)); 9432 } 9433 9434 return false; 9435 } 9436 9437 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, 9438 Optional<unsigned> FirstMaskArgument, 9439 CCState &State, const RISCVTargetLowering &TLI) { 9440 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 9441 if (RC == &RISCV::VRRegClass) { 9442 // Assign the first mask argument to V0. 9443 // This is an interim calling convention and it may be changed in the 9444 // future. 9445 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) 9446 return State.AllocateReg(RISCV::V0); 9447 return State.AllocateReg(ArgVRs); 9448 } 9449 if (RC == &RISCV::VRM2RegClass) 9450 return State.AllocateReg(ArgVRM2s); 9451 if (RC == &RISCV::VRM4RegClass) 9452 return State.AllocateReg(ArgVRM4s); 9453 if (RC == &RISCV::VRM8RegClass) 9454 return State.AllocateReg(ArgVRM8s); 9455 llvm_unreachable("Unhandled register class for ValueType"); 9456 } 9457 9458 // Implements the RISC-V calling convention. Returns true upon failure. 9459 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 9460 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 9461 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 9462 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 9463 Optional<unsigned> FirstMaskArgument) { 9464 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 9465 assert(XLen == 32 || XLen == 64); 9466 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 9467 9468 // Any return value split in to more than two values can't be returned 9469 // directly. Vectors are returned via the available vector registers. 9470 if (!LocVT.isVector() && IsRet && ValNo > 1) 9471 return true; 9472 9473 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 9474 // variadic argument, or if no F16/F32 argument registers are available. 9475 bool UseGPRForF16_F32 = true; 9476 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 9477 // variadic argument, or if no F64 argument registers are available. 9478 bool UseGPRForF64 = true; 9479 9480 switch (ABI) { 9481 default: 9482 llvm_unreachable("Unexpected ABI"); 9483 case RISCVABI::ABI_ILP32: 9484 case RISCVABI::ABI_LP64: 9485 break; 9486 case RISCVABI::ABI_ILP32F: 9487 case RISCVABI::ABI_LP64F: 9488 UseGPRForF16_F32 = !IsFixed; 9489 break; 9490 case RISCVABI::ABI_ILP32D: 9491 case RISCVABI::ABI_LP64D: 9492 UseGPRForF16_F32 = !IsFixed; 9493 UseGPRForF64 = !IsFixed; 9494 break; 9495 } 9496 9497 // FPR16, FPR32, and FPR64 alias each other. 9498 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 9499 UseGPRForF16_F32 = true; 9500 UseGPRForF64 = true; 9501 } 9502 9503 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 9504 // similar local variables rather than directly checking against the target 9505 // ABI. 9506 9507 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 9508 LocVT = XLenVT; 9509 LocInfo = CCValAssign::BCvt; 9510 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 9511 LocVT = MVT::i64; 9512 LocInfo = CCValAssign::BCvt; 9513 } 9514 9515 // If this is a variadic argument, the RISC-V calling convention requires 9516 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 9517 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 9518 // be used regardless of whether the original argument was split during 9519 // legalisation or not. The argument will not be passed by registers if the 9520 // original type is larger than 2*XLEN, so the register alignment rule does 9521 // not apply. 9522 unsigned TwoXLenInBytes = (2 * XLen) / 8; 9523 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 9524 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 9525 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 9526 // Skip 'odd' register if necessary. 9527 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 9528 State.AllocateReg(ArgGPRs); 9529 } 9530 9531 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 9532 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 9533 State.getPendingArgFlags(); 9534 9535 assert(PendingLocs.size() == PendingArgFlags.size() && 9536 "PendingLocs and PendingArgFlags out of sync"); 9537 9538 // Handle passing f64 on RV32D with a soft float ABI or when floating point 9539 // registers are exhausted. 9540 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 9541 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 9542 "Can't lower f64 if it is split"); 9543 // Depending on available argument GPRS, f64 may be passed in a pair of 9544 // GPRs, split between a GPR and the stack, or passed completely on the 9545 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 9546 // cases. 9547 Register Reg = State.AllocateReg(ArgGPRs); 9548 LocVT = MVT::i32; 9549 if (!Reg) { 9550 unsigned StackOffset = State.AllocateStack(8, Align(8)); 9551 State.addLoc( 9552 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9553 return false; 9554 } 9555 if (!State.AllocateReg(ArgGPRs)) 9556 State.AllocateStack(4, Align(4)); 9557 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9558 return false; 9559 } 9560 9561 // Fixed-length vectors are located in the corresponding scalable-vector 9562 // container types. 9563 if (ValVT.isFixedLengthVector()) 9564 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9565 9566 // Split arguments might be passed indirectly, so keep track of the pending 9567 // values. Split vectors are passed via a mix of registers and indirectly, so 9568 // treat them as we would any other argument. 9569 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 9570 LocVT = XLenVT; 9571 LocInfo = CCValAssign::Indirect; 9572 PendingLocs.push_back( 9573 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 9574 PendingArgFlags.push_back(ArgFlags); 9575 if (!ArgFlags.isSplitEnd()) { 9576 return false; 9577 } 9578 } 9579 9580 // If the split argument only had two elements, it should be passed directly 9581 // in registers or on the stack. 9582 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && 9583 PendingLocs.size() <= 2) { 9584 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 9585 // Apply the normal calling convention rules to the first half of the 9586 // split argument. 9587 CCValAssign VA = PendingLocs[0]; 9588 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 9589 PendingLocs.clear(); 9590 PendingArgFlags.clear(); 9591 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 9592 ArgFlags); 9593 } 9594 9595 // Allocate to a register if possible, or else a stack slot. 9596 Register Reg; 9597 unsigned StoreSizeBytes = XLen / 8; 9598 Align StackAlign = Align(XLen / 8); 9599 9600 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 9601 Reg = State.AllocateReg(ArgFPR16s); 9602 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 9603 Reg = State.AllocateReg(ArgFPR32s); 9604 else if (ValVT == MVT::f64 && !UseGPRForF64) 9605 Reg = State.AllocateReg(ArgFPR64s); 9606 else if (ValVT.isVector()) { 9607 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); 9608 if (!Reg) { 9609 // For return values, the vector must be passed fully via registers or 9610 // via the stack. 9611 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 9612 // but we're using all of them. 9613 if (IsRet) 9614 return true; 9615 // Try using a GPR to pass the address 9616 if ((Reg = State.AllocateReg(ArgGPRs))) { 9617 LocVT = XLenVT; 9618 LocInfo = CCValAssign::Indirect; 9619 } else if (ValVT.isScalableVector()) { 9620 LocVT = XLenVT; 9621 LocInfo = CCValAssign::Indirect; 9622 } else { 9623 // Pass fixed-length vectors on the stack. 9624 LocVT = ValVT; 9625 StoreSizeBytes = ValVT.getStoreSize(); 9626 // Align vectors to their element sizes, being careful for vXi1 9627 // vectors. 9628 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9629 } 9630 } 9631 } else { 9632 Reg = State.AllocateReg(ArgGPRs); 9633 } 9634 9635 unsigned StackOffset = 9636 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); 9637 9638 // If we reach this point and PendingLocs is non-empty, we must be at the 9639 // end of a split argument that must be passed indirectly. 9640 if (!PendingLocs.empty()) { 9641 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 9642 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 9643 9644 for (auto &It : PendingLocs) { 9645 if (Reg) 9646 It.convertToReg(Reg); 9647 else 9648 It.convertToMem(StackOffset); 9649 State.addLoc(It); 9650 } 9651 PendingLocs.clear(); 9652 PendingArgFlags.clear(); 9653 return false; 9654 } 9655 9656 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 9657 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && 9658 "Expected an XLenVT or vector types at this stage"); 9659 9660 if (Reg) { 9661 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9662 return false; 9663 } 9664 9665 // When a floating-point value is passed on the stack, no bit-conversion is 9666 // needed. 9667 if (ValVT.isFloatingPoint()) { 9668 LocVT = ValVT; 9669 LocInfo = CCValAssign::Full; 9670 } 9671 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9672 return false; 9673 } 9674 9675 template <typename ArgTy> 9676 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 9677 for (const auto &ArgIdx : enumerate(Args)) { 9678 MVT ArgVT = ArgIdx.value().VT; 9679 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 9680 return ArgIdx.index(); 9681 } 9682 return None; 9683 } 9684 9685 void RISCVTargetLowering::analyzeInputArgs( 9686 MachineFunction &MF, CCState &CCInfo, 9687 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, 9688 RISCVCCAssignFn Fn) const { 9689 unsigned NumArgs = Ins.size(); 9690 FunctionType *FType = MF.getFunction().getFunctionType(); 9691 9692 Optional<unsigned> FirstMaskArgument; 9693 if (Subtarget.hasVInstructions()) 9694 FirstMaskArgument = preAssignMask(Ins); 9695 9696 for (unsigned i = 0; i != NumArgs; ++i) { 9697 MVT ArgVT = Ins[i].VT; 9698 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 9699 9700 Type *ArgTy = nullptr; 9701 if (IsRet) 9702 ArgTy = FType->getReturnType(); 9703 else if (Ins[i].isOrigArg()) 9704 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 9705 9706 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9707 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9708 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 9709 FirstMaskArgument)) { 9710 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 9711 << EVT(ArgVT).getEVTString() << '\n'); 9712 llvm_unreachable(nullptr); 9713 } 9714 } 9715 } 9716 9717 void RISCVTargetLowering::analyzeOutputArgs( 9718 MachineFunction &MF, CCState &CCInfo, 9719 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 9720 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { 9721 unsigned NumArgs = Outs.size(); 9722 9723 Optional<unsigned> FirstMaskArgument; 9724 if (Subtarget.hasVInstructions()) 9725 FirstMaskArgument = preAssignMask(Outs); 9726 9727 for (unsigned i = 0; i != NumArgs; i++) { 9728 MVT ArgVT = Outs[i].VT; 9729 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 9730 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 9731 9732 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 9733 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 9734 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 9735 FirstMaskArgument)) { 9736 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 9737 << EVT(ArgVT).getEVTString() << "\n"); 9738 llvm_unreachable(nullptr); 9739 } 9740 } 9741 } 9742 9743 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 9744 // values. 9745 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 9746 const CCValAssign &VA, const SDLoc &DL, 9747 const RISCVSubtarget &Subtarget) { 9748 switch (VA.getLocInfo()) { 9749 default: 9750 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9751 case CCValAssign::Full: 9752 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 9753 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 9754 break; 9755 case CCValAssign::BCvt: 9756 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9757 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 9758 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9759 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 9760 else 9761 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 9762 break; 9763 } 9764 return Val; 9765 } 9766 9767 // The caller is responsible for loading the full value if the argument is 9768 // passed with CCValAssign::Indirect. 9769 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 9770 const CCValAssign &VA, const SDLoc &DL, 9771 const RISCVTargetLowering &TLI) { 9772 MachineFunction &MF = DAG.getMachineFunction(); 9773 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9774 EVT LocVT = VA.getLocVT(); 9775 SDValue Val; 9776 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 9777 Register VReg = RegInfo.createVirtualRegister(RC); 9778 RegInfo.addLiveIn(VA.getLocReg(), VReg); 9779 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 9780 9781 if (VA.getLocInfo() == CCValAssign::Indirect) 9782 return Val; 9783 9784 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 9785 } 9786 9787 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 9788 const CCValAssign &VA, const SDLoc &DL, 9789 const RISCVSubtarget &Subtarget) { 9790 EVT LocVT = VA.getLocVT(); 9791 9792 switch (VA.getLocInfo()) { 9793 default: 9794 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9795 case CCValAssign::Full: 9796 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 9797 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 9798 break; 9799 case CCValAssign::BCvt: 9800 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 9801 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 9802 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 9803 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 9804 else 9805 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 9806 break; 9807 } 9808 return Val; 9809 } 9810 9811 // The caller is responsible for loading the full value if the argument is 9812 // passed with CCValAssign::Indirect. 9813 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 9814 const CCValAssign &VA, const SDLoc &DL) { 9815 MachineFunction &MF = DAG.getMachineFunction(); 9816 MachineFrameInfo &MFI = MF.getFrameInfo(); 9817 EVT LocVT = VA.getLocVT(); 9818 EVT ValVT = VA.getValVT(); 9819 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 9820 if (ValVT.isScalableVector()) { 9821 // When the value is a scalable vector, we save the pointer which points to 9822 // the scalable vector value in the stack. The ValVT will be the pointer 9823 // type, instead of the scalable vector type. 9824 ValVT = LocVT; 9825 } 9826 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), 9827 /*IsImmutable=*/true); 9828 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 9829 SDValue Val; 9830 9831 ISD::LoadExtType ExtType; 9832 switch (VA.getLocInfo()) { 9833 default: 9834 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 9835 case CCValAssign::Full: 9836 case CCValAssign::Indirect: 9837 case CCValAssign::BCvt: 9838 ExtType = ISD::NON_EXTLOAD; 9839 break; 9840 } 9841 Val = DAG.getExtLoad( 9842 ExtType, DL, LocVT, Chain, FIN, 9843 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 9844 return Val; 9845 } 9846 9847 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 9848 const CCValAssign &VA, const SDLoc &DL) { 9849 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 9850 "Unexpected VA"); 9851 MachineFunction &MF = DAG.getMachineFunction(); 9852 MachineFrameInfo &MFI = MF.getFrameInfo(); 9853 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9854 9855 if (VA.isMemLoc()) { 9856 // f64 is passed on the stack. 9857 int FI = 9858 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); 9859 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9860 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 9861 MachinePointerInfo::getFixedStack(MF, FI)); 9862 } 9863 9864 assert(VA.isRegLoc() && "Expected register VA assignment"); 9865 9866 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9867 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 9868 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 9869 SDValue Hi; 9870 if (VA.getLocReg() == RISCV::X17) { 9871 // Second half of f64 is passed on the stack. 9872 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); 9873 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 9874 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 9875 MachinePointerInfo::getFixedStack(MF, FI)); 9876 } else { 9877 // Second half of f64 is passed in another GPR. 9878 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 9879 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 9880 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 9881 } 9882 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 9883 } 9884 9885 // FastCC has less than 1% performance improvement for some particular 9886 // benchmark. But theoretically, it may has benenfit for some cases. 9887 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, 9888 unsigned ValNo, MVT ValVT, MVT LocVT, 9889 CCValAssign::LocInfo LocInfo, 9890 ISD::ArgFlagsTy ArgFlags, CCState &State, 9891 bool IsFixed, bool IsRet, Type *OrigTy, 9892 const RISCVTargetLowering &TLI, 9893 Optional<unsigned> FirstMaskArgument) { 9894 9895 // X5 and X6 might be used for save-restore libcall. 9896 static const MCPhysReg GPRList[] = { 9897 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 9898 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 9899 RISCV::X29, RISCV::X30, RISCV::X31}; 9900 9901 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9902 if (unsigned Reg = State.AllocateReg(GPRList)) { 9903 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9904 return false; 9905 } 9906 } 9907 9908 if (LocVT == MVT::f16) { 9909 static const MCPhysReg FPR16List[] = { 9910 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 9911 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 9912 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 9913 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 9914 if (unsigned Reg = State.AllocateReg(FPR16List)) { 9915 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9916 return false; 9917 } 9918 } 9919 9920 if (LocVT == MVT::f32) { 9921 static const MCPhysReg FPR32List[] = { 9922 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 9923 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 9924 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 9925 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 9926 if (unsigned Reg = State.AllocateReg(FPR32List)) { 9927 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9928 return false; 9929 } 9930 } 9931 9932 if (LocVT == MVT::f64) { 9933 static const MCPhysReg FPR64List[] = { 9934 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 9935 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 9936 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 9937 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 9938 if (unsigned Reg = State.AllocateReg(FPR64List)) { 9939 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9940 return false; 9941 } 9942 } 9943 9944 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 9945 unsigned Offset4 = State.AllocateStack(4, Align(4)); 9946 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 9947 return false; 9948 } 9949 9950 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 9951 unsigned Offset5 = State.AllocateStack(8, Align(8)); 9952 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 9953 return false; 9954 } 9955 9956 if (LocVT.isVector()) { 9957 if (unsigned Reg = 9958 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { 9959 // Fixed-length vectors are located in the corresponding scalable-vector 9960 // container types. 9961 if (ValVT.isFixedLengthVector()) 9962 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 9963 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 9964 } else { 9965 // Try and pass the address via a "fast" GPR. 9966 if (unsigned GPRReg = State.AllocateReg(GPRList)) { 9967 LocInfo = CCValAssign::Indirect; 9968 LocVT = TLI.getSubtarget().getXLenVT(); 9969 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); 9970 } else if (ValVT.isFixedLengthVector()) { 9971 auto StackAlign = 9972 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); 9973 unsigned StackOffset = 9974 State.AllocateStack(ValVT.getStoreSize(), StackAlign); 9975 State.addLoc( 9976 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 9977 } else { 9978 // Can't pass scalable vectors on the stack. 9979 return true; 9980 } 9981 } 9982 9983 return false; 9984 } 9985 9986 return true; // CC didn't match. 9987 } 9988 9989 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 9990 CCValAssign::LocInfo LocInfo, 9991 ISD::ArgFlagsTy ArgFlags, CCState &State) { 9992 9993 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 9994 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 9995 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 9996 static const MCPhysReg GPRList[] = { 9997 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 9998 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 9999 if (unsigned Reg = State.AllocateReg(GPRList)) { 10000 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10001 return false; 10002 } 10003 } 10004 10005 if (LocVT == MVT::f32) { 10006 // Pass in STG registers: F1, ..., F6 10007 // fs0 ... fs5 10008 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 10009 RISCV::F18_F, RISCV::F19_F, 10010 RISCV::F20_F, RISCV::F21_F}; 10011 if (unsigned Reg = State.AllocateReg(FPR32List)) { 10012 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10013 return false; 10014 } 10015 } 10016 10017 if (LocVT == MVT::f64) { 10018 // Pass in STG registers: D1, ..., D6 10019 // fs6 ... fs11 10020 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 10021 RISCV::F24_D, RISCV::F25_D, 10022 RISCV::F26_D, RISCV::F27_D}; 10023 if (unsigned Reg = State.AllocateReg(FPR64List)) { 10024 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 10025 return false; 10026 } 10027 } 10028 10029 report_fatal_error("No registers left in GHC calling convention"); 10030 return true; 10031 } 10032 10033 // Transform physical registers into virtual registers. 10034 SDValue RISCVTargetLowering::LowerFormalArguments( 10035 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 10036 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 10037 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 10038 10039 MachineFunction &MF = DAG.getMachineFunction(); 10040 10041 switch (CallConv) { 10042 default: 10043 report_fatal_error("Unsupported calling convention"); 10044 case CallingConv::C: 10045 case CallingConv::Fast: 10046 break; 10047 case CallingConv::GHC: 10048 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 10049 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 10050 report_fatal_error( 10051 "GHC calling convention requires the F and D instruction set extensions"); 10052 } 10053 10054 const Function &Func = MF.getFunction(); 10055 if (Func.hasFnAttribute("interrupt")) { 10056 if (!Func.arg_empty()) 10057 report_fatal_error( 10058 "Functions with the interrupt attribute cannot have arguments!"); 10059 10060 StringRef Kind = 10061 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10062 10063 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 10064 report_fatal_error( 10065 "Function interrupt attribute argument not supported!"); 10066 } 10067 10068 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10069 MVT XLenVT = Subtarget.getXLenVT(); 10070 unsigned XLenInBytes = Subtarget.getXLen() / 8; 10071 // Used with vargs to acumulate store chains. 10072 std::vector<SDValue> OutChains; 10073 10074 // Assign locations to all of the incoming arguments. 10075 SmallVector<CCValAssign, 16> ArgLocs; 10076 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10077 10078 if (CallConv == CallingConv::GHC) 10079 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 10080 else 10081 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, 10082 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10083 : CC_RISCV); 10084 10085 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 10086 CCValAssign &VA = ArgLocs[i]; 10087 SDValue ArgValue; 10088 // Passing f64 on RV32D with a soft float ABI must be handled as a special 10089 // case. 10090 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 10091 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 10092 else if (VA.isRegLoc()) 10093 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 10094 else 10095 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 10096 10097 if (VA.getLocInfo() == CCValAssign::Indirect) { 10098 // If the original argument was split and passed by reference (e.g. i128 10099 // on RV32), we need to load all parts of it here (using the same 10100 // address). Vectors may be partly split to registers and partly to the 10101 // stack, in which case the base address is partly offset and subsequent 10102 // stores are relative to that. 10103 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 10104 MachinePointerInfo())); 10105 unsigned ArgIndex = Ins[i].OrigArgIndex; 10106 unsigned ArgPartOffset = Ins[i].PartOffset; 10107 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10108 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 10109 CCValAssign &PartVA = ArgLocs[i + 1]; 10110 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 10111 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10112 if (PartVA.getValVT().isScalableVector()) 10113 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10114 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); 10115 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 10116 MachinePointerInfo())); 10117 ++i; 10118 } 10119 continue; 10120 } 10121 InVals.push_back(ArgValue); 10122 } 10123 10124 if (IsVarArg) { 10125 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 10126 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 10127 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 10128 MachineFrameInfo &MFI = MF.getFrameInfo(); 10129 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10130 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 10131 10132 // Offset of the first variable argument from stack pointer, and size of 10133 // the vararg save area. For now, the varargs save area is either zero or 10134 // large enough to hold a0-a7. 10135 int VaArgOffset, VarArgsSaveSize; 10136 10137 // If all registers are allocated, then all varargs must be passed on the 10138 // stack and we don't need to save any argregs. 10139 if (ArgRegs.size() == Idx) { 10140 VaArgOffset = CCInfo.getNextStackOffset(); 10141 VarArgsSaveSize = 0; 10142 } else { 10143 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 10144 VaArgOffset = -VarArgsSaveSize; 10145 } 10146 10147 // Record the frame index of the first variable argument 10148 // which is a value necessary to VASTART. 10149 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10150 RVFI->setVarArgsFrameIndex(FI); 10151 10152 // If saving an odd number of registers then create an extra stack slot to 10153 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 10154 // offsets to even-numbered registered remain 2*XLEN-aligned. 10155 if (Idx % 2) { 10156 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 10157 VarArgsSaveSize += XLenInBytes; 10158 } 10159 10160 // Copy the integer registers that may have been used for passing varargs 10161 // to the vararg save area. 10162 for (unsigned I = Idx; I < ArgRegs.size(); 10163 ++I, VaArgOffset += XLenInBytes) { 10164 const Register Reg = RegInfo.createVirtualRegister(RC); 10165 RegInfo.addLiveIn(ArgRegs[I], Reg); 10166 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 10167 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 10168 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10169 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 10170 MachinePointerInfo::getFixedStack(MF, FI)); 10171 cast<StoreSDNode>(Store.getNode()) 10172 ->getMemOperand() 10173 ->setValue((Value *)nullptr); 10174 OutChains.push_back(Store); 10175 } 10176 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 10177 } 10178 10179 // All stores are grouped in one node to allow the matching between 10180 // the size of Ins and InVals. This only happens for vararg functions. 10181 if (!OutChains.empty()) { 10182 OutChains.push_back(Chain); 10183 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 10184 } 10185 10186 return Chain; 10187 } 10188 10189 /// isEligibleForTailCallOptimization - Check whether the call is eligible 10190 /// for tail call optimization. 10191 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 10192 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 10193 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 10194 const SmallVector<CCValAssign, 16> &ArgLocs) const { 10195 10196 auto &Callee = CLI.Callee; 10197 auto CalleeCC = CLI.CallConv; 10198 auto &Outs = CLI.Outs; 10199 auto &Caller = MF.getFunction(); 10200 auto CallerCC = Caller.getCallingConv(); 10201 10202 // Exception-handling functions need a special set of instructions to 10203 // indicate a return to the hardware. Tail-calling another function would 10204 // probably break this. 10205 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 10206 // should be expanded as new function attributes are introduced. 10207 if (Caller.hasFnAttribute("interrupt")) 10208 return false; 10209 10210 // Do not tail call opt if the stack is used to pass parameters. 10211 if (CCInfo.getNextStackOffset() != 0) 10212 return false; 10213 10214 // Do not tail call opt if any parameters need to be passed indirectly. 10215 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 10216 // passed indirectly. So the address of the value will be passed in a 10217 // register, or if not available, then the address is put on the stack. In 10218 // order to pass indirectly, space on the stack often needs to be allocated 10219 // in order to store the value. In this case the CCInfo.getNextStackOffset() 10220 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 10221 // are passed CCValAssign::Indirect. 10222 for (auto &VA : ArgLocs) 10223 if (VA.getLocInfo() == CCValAssign::Indirect) 10224 return false; 10225 10226 // Do not tail call opt if either caller or callee uses struct return 10227 // semantics. 10228 auto IsCallerStructRet = Caller.hasStructRetAttr(); 10229 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 10230 if (IsCallerStructRet || IsCalleeStructRet) 10231 return false; 10232 10233 // Externally-defined functions with weak linkage should not be 10234 // tail-called. The behaviour of branch instructions in this situation (as 10235 // used for tail calls) is implementation-defined, so we cannot rely on the 10236 // linker replacing the tail call with a return. 10237 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 10238 const GlobalValue *GV = G->getGlobal(); 10239 if (GV->hasExternalWeakLinkage()) 10240 return false; 10241 } 10242 10243 // The callee has to preserve all registers the caller needs to preserve. 10244 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10245 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 10246 if (CalleeCC != CallerCC) { 10247 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 10248 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 10249 return false; 10250 } 10251 10252 // Byval parameters hand the function a pointer directly into the stack area 10253 // we want to reuse during a tail call. Working around this *is* possible 10254 // but less efficient and uglier in LowerCall. 10255 for (auto &Arg : Outs) 10256 if (Arg.Flags.isByVal()) 10257 return false; 10258 10259 return true; 10260 } 10261 10262 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 10263 return DAG.getDataLayout().getPrefTypeAlign( 10264 VT.getTypeForEVT(*DAG.getContext())); 10265 } 10266 10267 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 10268 // and output parameter nodes. 10269 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 10270 SmallVectorImpl<SDValue> &InVals) const { 10271 SelectionDAG &DAG = CLI.DAG; 10272 SDLoc &DL = CLI.DL; 10273 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 10274 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 10275 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 10276 SDValue Chain = CLI.Chain; 10277 SDValue Callee = CLI.Callee; 10278 bool &IsTailCall = CLI.IsTailCall; 10279 CallingConv::ID CallConv = CLI.CallConv; 10280 bool IsVarArg = CLI.IsVarArg; 10281 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10282 MVT XLenVT = Subtarget.getXLenVT(); 10283 10284 MachineFunction &MF = DAG.getMachineFunction(); 10285 10286 // Analyze the operands of the call, assigning locations to each operand. 10287 SmallVector<CCValAssign, 16> ArgLocs; 10288 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 10289 10290 if (CallConv == CallingConv::GHC) 10291 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 10292 else 10293 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, 10294 CallConv == CallingConv::Fast ? CC_RISCV_FastCC 10295 : CC_RISCV); 10296 10297 // Check if it's really possible to do a tail call. 10298 if (IsTailCall) 10299 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 10300 10301 if (IsTailCall) 10302 ++NumTailCalls; 10303 else if (CLI.CB && CLI.CB->isMustTailCall()) 10304 report_fatal_error("failed to perform tail call elimination on a call " 10305 "site marked musttail"); 10306 10307 // Get a count of how many bytes are to be pushed on the stack. 10308 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 10309 10310 // Create local copies for byval args 10311 SmallVector<SDValue, 8> ByValArgs; 10312 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10313 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10314 if (!Flags.isByVal()) 10315 continue; 10316 10317 SDValue Arg = OutVals[i]; 10318 unsigned Size = Flags.getByValSize(); 10319 Align Alignment = Flags.getNonZeroByValAlign(); 10320 10321 int FI = 10322 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 10323 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 10324 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 10325 10326 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 10327 /*IsVolatile=*/false, 10328 /*AlwaysInline=*/false, IsTailCall, 10329 MachinePointerInfo(), MachinePointerInfo()); 10330 ByValArgs.push_back(FIPtr); 10331 } 10332 10333 if (!IsTailCall) 10334 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 10335 10336 // Copy argument values to their designated locations. 10337 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 10338 SmallVector<SDValue, 8> MemOpChains; 10339 SDValue StackPtr; 10340 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 10341 CCValAssign &VA = ArgLocs[i]; 10342 SDValue ArgValue = OutVals[i]; 10343 ISD::ArgFlagsTy Flags = Outs[i].Flags; 10344 10345 // Handle passing f64 on RV32D with a soft float ABI as a special case. 10346 bool IsF64OnRV32DSoftABI = 10347 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 10348 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 10349 SDValue SplitF64 = DAG.getNode( 10350 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 10351 SDValue Lo = SplitF64.getValue(0); 10352 SDValue Hi = SplitF64.getValue(1); 10353 10354 Register RegLo = VA.getLocReg(); 10355 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 10356 10357 if (RegLo == RISCV::X17) { 10358 // Second half of f64 is passed on the stack. 10359 // Work out the address of the stack slot. 10360 if (!StackPtr.getNode()) 10361 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10362 // Emit the store. 10363 MemOpChains.push_back( 10364 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 10365 } else { 10366 // Second half of f64 is passed in another GPR. 10367 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10368 Register RegHigh = RegLo + 1; 10369 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 10370 } 10371 continue; 10372 } 10373 10374 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 10375 // as any other MemLoc. 10376 10377 // Promote the value if needed. 10378 // For now, only handle fully promoted and indirect arguments. 10379 if (VA.getLocInfo() == CCValAssign::Indirect) { 10380 // Store the argument in a stack slot and pass its address. 10381 Align StackAlign = 10382 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 10383 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 10384 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 10385 // If the original argument was split (e.g. i128), we need 10386 // to store the required parts of it here (and pass just one address). 10387 // Vectors may be partly split to registers and partly to the stack, in 10388 // which case the base address is partly offset and subsequent stores are 10389 // relative to that. 10390 unsigned ArgIndex = Outs[i].OrigArgIndex; 10391 unsigned ArgPartOffset = Outs[i].PartOffset; 10392 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 10393 // Calculate the total size to store. We don't have access to what we're 10394 // actually storing other than performing the loop and collecting the 10395 // info. 10396 SmallVector<std::pair<SDValue, SDValue>> Parts; 10397 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 10398 SDValue PartValue = OutVals[i + 1]; 10399 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 10400 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); 10401 EVT PartVT = PartValue.getValueType(); 10402 if (PartVT.isScalableVector()) 10403 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); 10404 StoredSize += PartVT.getStoreSize(); 10405 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 10406 Parts.push_back(std::make_pair(PartValue, Offset)); 10407 ++i; 10408 } 10409 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 10410 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 10411 MemOpChains.push_back( 10412 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 10413 MachinePointerInfo::getFixedStack(MF, FI))); 10414 for (const auto &Part : Parts) { 10415 SDValue PartValue = Part.first; 10416 SDValue PartOffset = Part.second; 10417 SDValue Address = 10418 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); 10419 MemOpChains.push_back( 10420 DAG.getStore(Chain, DL, PartValue, Address, 10421 MachinePointerInfo::getFixedStack(MF, FI))); 10422 } 10423 ArgValue = SpillSlot; 10424 } else { 10425 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 10426 } 10427 10428 // Use local copy if it is a byval arg. 10429 if (Flags.isByVal()) 10430 ArgValue = ByValArgs[j++]; 10431 10432 if (VA.isRegLoc()) { 10433 // Queue up the argument copies and emit them at the end. 10434 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 10435 } else { 10436 assert(VA.isMemLoc() && "Argument not register or memory"); 10437 assert(!IsTailCall && "Tail call not allowed if stack is used " 10438 "for passing parameters"); 10439 10440 // Work out the address of the stack slot. 10441 if (!StackPtr.getNode()) 10442 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 10443 SDValue Address = 10444 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 10445 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 10446 10447 // Emit the store. 10448 MemOpChains.push_back( 10449 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 10450 } 10451 } 10452 10453 // Join the stores, which are independent of one another. 10454 if (!MemOpChains.empty()) 10455 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 10456 10457 SDValue Glue; 10458 10459 // Build a sequence of copy-to-reg nodes, chained and glued together. 10460 for (auto &Reg : RegsToPass) { 10461 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 10462 Glue = Chain.getValue(1); 10463 } 10464 10465 // Validate that none of the argument registers have been marked as 10466 // reserved, if so report an error. Do the same for the return address if this 10467 // is not a tailcall. 10468 validateCCReservedRegs(RegsToPass, MF); 10469 if (!IsTailCall && 10470 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 10471 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10472 MF.getFunction(), 10473 "Return address register required, but has been reserved."}); 10474 10475 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 10476 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 10477 // split it and then direct call can be matched by PseudoCALL. 10478 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 10479 const GlobalValue *GV = S->getGlobal(); 10480 10481 unsigned OpFlags = RISCVII::MO_CALL; 10482 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 10483 OpFlags = RISCVII::MO_PLT; 10484 10485 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 10486 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 10487 unsigned OpFlags = RISCVII::MO_CALL; 10488 10489 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 10490 nullptr)) 10491 OpFlags = RISCVII::MO_PLT; 10492 10493 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 10494 } 10495 10496 // The first call operand is the chain and the second is the target address. 10497 SmallVector<SDValue, 8> Ops; 10498 Ops.push_back(Chain); 10499 Ops.push_back(Callee); 10500 10501 // Add argument registers to the end of the list so that they are 10502 // known live into the call. 10503 for (auto &Reg : RegsToPass) 10504 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 10505 10506 if (!IsTailCall) { 10507 // Add a register mask operand representing the call-preserved registers. 10508 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10509 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 10510 assert(Mask && "Missing call preserved mask for calling convention"); 10511 Ops.push_back(DAG.getRegisterMask(Mask)); 10512 } 10513 10514 // Glue the call to the argument copies, if any. 10515 if (Glue.getNode()) 10516 Ops.push_back(Glue); 10517 10518 // Emit the call. 10519 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10520 10521 if (IsTailCall) { 10522 MF.getFrameInfo().setHasTailCall(); 10523 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 10524 } 10525 10526 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 10527 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 10528 Glue = Chain.getValue(1); 10529 10530 // Mark the end of the call, which is glued to the call itself. 10531 Chain = DAG.getCALLSEQ_END(Chain, 10532 DAG.getConstant(NumBytes, DL, PtrVT, true), 10533 DAG.getConstant(0, DL, PtrVT, true), 10534 Glue, DL); 10535 Glue = Chain.getValue(1); 10536 10537 // Assign locations to each value returned by this call. 10538 SmallVector<CCValAssign, 16> RVLocs; 10539 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 10540 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); 10541 10542 // Copy all of the result registers out of their specified physreg. 10543 for (auto &VA : RVLocs) { 10544 // Copy the value out 10545 SDValue RetValue = 10546 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 10547 // Glue the RetValue to the end of the call sequence 10548 Chain = RetValue.getValue(1); 10549 Glue = RetValue.getValue(2); 10550 10551 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10552 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 10553 SDValue RetValue2 = 10554 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 10555 Chain = RetValue2.getValue(1); 10556 Glue = RetValue2.getValue(2); 10557 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 10558 RetValue2); 10559 } 10560 10561 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 10562 10563 InVals.push_back(RetValue); 10564 } 10565 10566 return Chain; 10567 } 10568 10569 bool RISCVTargetLowering::CanLowerReturn( 10570 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 10571 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 10572 SmallVector<CCValAssign, 16> RVLocs; 10573 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 10574 10575 Optional<unsigned> FirstMaskArgument; 10576 if (Subtarget.hasVInstructions()) 10577 FirstMaskArgument = preAssignMask(Outs); 10578 10579 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 10580 MVT VT = Outs[i].VT; 10581 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 10582 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 10583 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 10584 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 10585 *this, FirstMaskArgument)) 10586 return false; 10587 } 10588 return true; 10589 } 10590 10591 SDValue 10592 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 10593 bool IsVarArg, 10594 const SmallVectorImpl<ISD::OutputArg> &Outs, 10595 const SmallVectorImpl<SDValue> &OutVals, 10596 const SDLoc &DL, SelectionDAG &DAG) const { 10597 const MachineFunction &MF = DAG.getMachineFunction(); 10598 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10599 10600 // Stores the assignment of the return value to a location. 10601 SmallVector<CCValAssign, 16> RVLocs; 10602 10603 // Info about the registers and stack slot. 10604 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 10605 *DAG.getContext()); 10606 10607 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 10608 nullptr, CC_RISCV); 10609 10610 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 10611 report_fatal_error("GHC functions return void only"); 10612 10613 SDValue Glue; 10614 SmallVector<SDValue, 4> RetOps(1, Chain); 10615 10616 // Copy the result values into the output registers. 10617 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 10618 SDValue Val = OutVals[i]; 10619 CCValAssign &VA = RVLocs[i]; 10620 assert(VA.isRegLoc() && "Can only return in registers!"); 10621 10622 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 10623 // Handle returning f64 on RV32D with a soft float ABI. 10624 assert(VA.isRegLoc() && "Expected return via registers"); 10625 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 10626 DAG.getVTList(MVT::i32, MVT::i32), Val); 10627 SDValue Lo = SplitF64.getValue(0); 10628 SDValue Hi = SplitF64.getValue(1); 10629 Register RegLo = VA.getLocReg(); 10630 assert(RegLo < RISCV::X31 && "Invalid register pair"); 10631 Register RegHi = RegLo + 1; 10632 10633 if (STI.isRegisterReservedByUser(RegLo) || 10634 STI.isRegisterReservedByUser(RegHi)) 10635 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10636 MF.getFunction(), 10637 "Return value register required, but has been reserved."}); 10638 10639 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 10640 Glue = Chain.getValue(1); 10641 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 10642 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 10643 Glue = Chain.getValue(1); 10644 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 10645 } else { 10646 // Handle a 'normal' return. 10647 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 10648 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 10649 10650 if (STI.isRegisterReservedByUser(VA.getLocReg())) 10651 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 10652 MF.getFunction(), 10653 "Return value register required, but has been reserved."}); 10654 10655 // Guarantee that all emitted copies are stuck together. 10656 Glue = Chain.getValue(1); 10657 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 10658 } 10659 } 10660 10661 RetOps[0] = Chain; // Update chain. 10662 10663 // Add the glue node if we have it. 10664 if (Glue.getNode()) { 10665 RetOps.push_back(Glue); 10666 } 10667 10668 unsigned RetOpc = RISCVISD::RET_FLAG; 10669 // Interrupt service routines use different return instructions. 10670 const Function &Func = DAG.getMachineFunction().getFunction(); 10671 if (Func.hasFnAttribute("interrupt")) { 10672 if (!Func.getReturnType()->isVoidTy()) 10673 report_fatal_error( 10674 "Functions with the interrupt attribute must have void return type!"); 10675 10676 MachineFunction &MF = DAG.getMachineFunction(); 10677 StringRef Kind = 10678 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 10679 10680 if (Kind == "user") 10681 RetOpc = RISCVISD::URET_FLAG; 10682 else if (Kind == "supervisor") 10683 RetOpc = RISCVISD::SRET_FLAG; 10684 else 10685 RetOpc = RISCVISD::MRET_FLAG; 10686 } 10687 10688 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 10689 } 10690 10691 void RISCVTargetLowering::validateCCReservedRegs( 10692 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 10693 MachineFunction &MF) const { 10694 const Function &F = MF.getFunction(); 10695 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 10696 10697 if (llvm::any_of(Regs, [&STI](auto Reg) { 10698 return STI.isRegisterReservedByUser(Reg.first); 10699 })) 10700 F.getContext().diagnose(DiagnosticInfoUnsupported{ 10701 F, "Argument register required, but has been reserved."}); 10702 } 10703 10704 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 10705 return CI->isTailCall(); 10706 } 10707 10708 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 10709 #define NODE_NAME_CASE(NODE) \ 10710 case RISCVISD::NODE: \ 10711 return "RISCVISD::" #NODE; 10712 // clang-format off 10713 switch ((RISCVISD::NodeType)Opcode) { 10714 case RISCVISD::FIRST_NUMBER: 10715 break; 10716 NODE_NAME_CASE(RET_FLAG) 10717 NODE_NAME_CASE(URET_FLAG) 10718 NODE_NAME_CASE(SRET_FLAG) 10719 NODE_NAME_CASE(MRET_FLAG) 10720 NODE_NAME_CASE(CALL) 10721 NODE_NAME_CASE(SELECT_CC) 10722 NODE_NAME_CASE(BR_CC) 10723 NODE_NAME_CASE(BuildPairF64) 10724 NODE_NAME_CASE(SplitF64) 10725 NODE_NAME_CASE(TAIL) 10726 NODE_NAME_CASE(MULHSU) 10727 NODE_NAME_CASE(SLLW) 10728 NODE_NAME_CASE(SRAW) 10729 NODE_NAME_CASE(SRLW) 10730 NODE_NAME_CASE(DIVW) 10731 NODE_NAME_CASE(DIVUW) 10732 NODE_NAME_CASE(REMUW) 10733 NODE_NAME_CASE(ROLW) 10734 NODE_NAME_CASE(RORW) 10735 NODE_NAME_CASE(CLZW) 10736 NODE_NAME_CASE(CTZW) 10737 NODE_NAME_CASE(FSLW) 10738 NODE_NAME_CASE(FSRW) 10739 NODE_NAME_CASE(FSL) 10740 NODE_NAME_CASE(FSR) 10741 NODE_NAME_CASE(FMV_H_X) 10742 NODE_NAME_CASE(FMV_X_ANYEXTH) 10743 NODE_NAME_CASE(FMV_X_SIGNEXTH) 10744 NODE_NAME_CASE(FMV_W_X_RV64) 10745 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 10746 NODE_NAME_CASE(FCVT_X) 10747 NODE_NAME_CASE(FCVT_XU) 10748 NODE_NAME_CASE(FCVT_W_RV64) 10749 NODE_NAME_CASE(FCVT_WU_RV64) 10750 NODE_NAME_CASE(STRICT_FCVT_W_RV64) 10751 NODE_NAME_CASE(STRICT_FCVT_WU_RV64) 10752 NODE_NAME_CASE(READ_CYCLE_WIDE) 10753 NODE_NAME_CASE(GREV) 10754 NODE_NAME_CASE(GREVW) 10755 NODE_NAME_CASE(GORC) 10756 NODE_NAME_CASE(GORCW) 10757 NODE_NAME_CASE(SHFL) 10758 NODE_NAME_CASE(SHFLW) 10759 NODE_NAME_CASE(UNSHFL) 10760 NODE_NAME_CASE(UNSHFLW) 10761 NODE_NAME_CASE(BFP) 10762 NODE_NAME_CASE(BFPW) 10763 NODE_NAME_CASE(BCOMPRESS) 10764 NODE_NAME_CASE(BCOMPRESSW) 10765 NODE_NAME_CASE(BDECOMPRESS) 10766 NODE_NAME_CASE(BDECOMPRESSW) 10767 NODE_NAME_CASE(VMV_V_X_VL) 10768 NODE_NAME_CASE(VFMV_V_F_VL) 10769 NODE_NAME_CASE(VMV_X_S) 10770 NODE_NAME_CASE(VMV_S_X_VL) 10771 NODE_NAME_CASE(VFMV_S_F_VL) 10772 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) 10773 NODE_NAME_CASE(READ_VLENB) 10774 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 10775 NODE_NAME_CASE(VSLIDEUP_VL) 10776 NODE_NAME_CASE(VSLIDE1UP_VL) 10777 NODE_NAME_CASE(VSLIDEDOWN_VL) 10778 NODE_NAME_CASE(VSLIDE1DOWN_VL) 10779 NODE_NAME_CASE(VID_VL) 10780 NODE_NAME_CASE(VFNCVT_ROD_VL) 10781 NODE_NAME_CASE(VECREDUCE_ADD_VL) 10782 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 10783 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 10784 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 10785 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 10786 NODE_NAME_CASE(VECREDUCE_AND_VL) 10787 NODE_NAME_CASE(VECREDUCE_OR_VL) 10788 NODE_NAME_CASE(VECREDUCE_XOR_VL) 10789 NODE_NAME_CASE(VECREDUCE_FADD_VL) 10790 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 10791 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 10792 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 10793 NODE_NAME_CASE(ADD_VL) 10794 NODE_NAME_CASE(AND_VL) 10795 NODE_NAME_CASE(MUL_VL) 10796 NODE_NAME_CASE(OR_VL) 10797 NODE_NAME_CASE(SDIV_VL) 10798 NODE_NAME_CASE(SHL_VL) 10799 NODE_NAME_CASE(SREM_VL) 10800 NODE_NAME_CASE(SRA_VL) 10801 NODE_NAME_CASE(SRL_VL) 10802 NODE_NAME_CASE(SUB_VL) 10803 NODE_NAME_CASE(UDIV_VL) 10804 NODE_NAME_CASE(UREM_VL) 10805 NODE_NAME_CASE(XOR_VL) 10806 NODE_NAME_CASE(SADDSAT_VL) 10807 NODE_NAME_CASE(UADDSAT_VL) 10808 NODE_NAME_CASE(SSUBSAT_VL) 10809 NODE_NAME_CASE(USUBSAT_VL) 10810 NODE_NAME_CASE(FADD_VL) 10811 NODE_NAME_CASE(FSUB_VL) 10812 NODE_NAME_CASE(FMUL_VL) 10813 NODE_NAME_CASE(FDIV_VL) 10814 NODE_NAME_CASE(FNEG_VL) 10815 NODE_NAME_CASE(FABS_VL) 10816 NODE_NAME_CASE(FSQRT_VL) 10817 NODE_NAME_CASE(FMA_VL) 10818 NODE_NAME_CASE(FCOPYSIGN_VL) 10819 NODE_NAME_CASE(SMIN_VL) 10820 NODE_NAME_CASE(SMAX_VL) 10821 NODE_NAME_CASE(UMIN_VL) 10822 NODE_NAME_CASE(UMAX_VL) 10823 NODE_NAME_CASE(FMINNUM_VL) 10824 NODE_NAME_CASE(FMAXNUM_VL) 10825 NODE_NAME_CASE(MULHS_VL) 10826 NODE_NAME_CASE(MULHU_VL) 10827 NODE_NAME_CASE(FP_TO_SINT_VL) 10828 NODE_NAME_CASE(FP_TO_UINT_VL) 10829 NODE_NAME_CASE(SINT_TO_FP_VL) 10830 NODE_NAME_CASE(UINT_TO_FP_VL) 10831 NODE_NAME_CASE(FP_EXTEND_VL) 10832 NODE_NAME_CASE(FP_ROUND_VL) 10833 NODE_NAME_CASE(VWMUL_VL) 10834 NODE_NAME_CASE(VWMULU_VL) 10835 NODE_NAME_CASE(VWMULSU_VL) 10836 NODE_NAME_CASE(VWADD_VL) 10837 NODE_NAME_CASE(VWADDU_VL) 10838 NODE_NAME_CASE(VWSUB_VL) 10839 NODE_NAME_CASE(VWSUBU_VL) 10840 NODE_NAME_CASE(VWADD_W_VL) 10841 NODE_NAME_CASE(VWADDU_W_VL) 10842 NODE_NAME_CASE(VWSUB_W_VL) 10843 NODE_NAME_CASE(VWSUBU_W_VL) 10844 NODE_NAME_CASE(SETCC_VL) 10845 NODE_NAME_CASE(VSELECT_VL) 10846 NODE_NAME_CASE(VP_MERGE_VL) 10847 NODE_NAME_CASE(VMAND_VL) 10848 NODE_NAME_CASE(VMOR_VL) 10849 NODE_NAME_CASE(VMXOR_VL) 10850 NODE_NAME_CASE(VMCLR_VL) 10851 NODE_NAME_CASE(VMSET_VL) 10852 NODE_NAME_CASE(VRGATHER_VX_VL) 10853 NODE_NAME_CASE(VRGATHER_VV_VL) 10854 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 10855 NODE_NAME_CASE(VSEXT_VL) 10856 NODE_NAME_CASE(VZEXT_VL) 10857 NODE_NAME_CASE(VCPOP_VL) 10858 NODE_NAME_CASE(READ_CSR) 10859 NODE_NAME_CASE(WRITE_CSR) 10860 NODE_NAME_CASE(SWAP_CSR) 10861 } 10862 // clang-format on 10863 return nullptr; 10864 #undef NODE_NAME_CASE 10865 } 10866 10867 /// getConstraintType - Given a constraint letter, return the type of 10868 /// constraint it is for this target. 10869 RISCVTargetLowering::ConstraintType 10870 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 10871 if (Constraint.size() == 1) { 10872 switch (Constraint[0]) { 10873 default: 10874 break; 10875 case 'f': 10876 return C_RegisterClass; 10877 case 'I': 10878 case 'J': 10879 case 'K': 10880 return C_Immediate; 10881 case 'A': 10882 return C_Memory; 10883 case 'S': // A symbolic address 10884 return C_Other; 10885 } 10886 } else { 10887 if (Constraint == "vr" || Constraint == "vm") 10888 return C_RegisterClass; 10889 } 10890 return TargetLowering::getConstraintType(Constraint); 10891 } 10892 10893 std::pair<unsigned, const TargetRegisterClass *> 10894 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10895 StringRef Constraint, 10896 MVT VT) const { 10897 // First, see if this is a constraint that directly corresponds to a 10898 // RISCV register class. 10899 if (Constraint.size() == 1) { 10900 switch (Constraint[0]) { 10901 case 'r': 10902 // TODO: Support fixed vectors up to XLen for P extension? 10903 if (VT.isVector()) 10904 break; 10905 return std::make_pair(0U, &RISCV::GPRRegClass); 10906 case 'f': 10907 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 10908 return std::make_pair(0U, &RISCV::FPR16RegClass); 10909 if (Subtarget.hasStdExtF() && VT == MVT::f32) 10910 return std::make_pair(0U, &RISCV::FPR32RegClass); 10911 if (Subtarget.hasStdExtD() && VT == MVT::f64) 10912 return std::make_pair(0U, &RISCV::FPR64RegClass); 10913 break; 10914 default: 10915 break; 10916 } 10917 } else if (Constraint == "vr") { 10918 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, 10919 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 10920 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 10921 return std::make_pair(0U, RC); 10922 } 10923 } else if (Constraint == "vm") { 10924 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) 10925 return std::make_pair(0U, &RISCV::VMV0RegClass); 10926 } 10927 10928 // Clang will correctly decode the usage of register name aliases into their 10929 // official names. However, other frontends like `rustc` do not. This allows 10930 // users of these frontends to use the ABI names for registers in LLVM-style 10931 // register constraints. 10932 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 10933 .Case("{zero}", RISCV::X0) 10934 .Case("{ra}", RISCV::X1) 10935 .Case("{sp}", RISCV::X2) 10936 .Case("{gp}", RISCV::X3) 10937 .Case("{tp}", RISCV::X4) 10938 .Case("{t0}", RISCV::X5) 10939 .Case("{t1}", RISCV::X6) 10940 .Case("{t2}", RISCV::X7) 10941 .Cases("{s0}", "{fp}", RISCV::X8) 10942 .Case("{s1}", RISCV::X9) 10943 .Case("{a0}", RISCV::X10) 10944 .Case("{a1}", RISCV::X11) 10945 .Case("{a2}", RISCV::X12) 10946 .Case("{a3}", RISCV::X13) 10947 .Case("{a4}", RISCV::X14) 10948 .Case("{a5}", RISCV::X15) 10949 .Case("{a6}", RISCV::X16) 10950 .Case("{a7}", RISCV::X17) 10951 .Case("{s2}", RISCV::X18) 10952 .Case("{s3}", RISCV::X19) 10953 .Case("{s4}", RISCV::X20) 10954 .Case("{s5}", RISCV::X21) 10955 .Case("{s6}", RISCV::X22) 10956 .Case("{s7}", RISCV::X23) 10957 .Case("{s8}", RISCV::X24) 10958 .Case("{s9}", RISCV::X25) 10959 .Case("{s10}", RISCV::X26) 10960 .Case("{s11}", RISCV::X27) 10961 .Case("{t3}", RISCV::X28) 10962 .Case("{t4}", RISCV::X29) 10963 .Case("{t5}", RISCV::X30) 10964 .Case("{t6}", RISCV::X31) 10965 .Default(RISCV::NoRegister); 10966 if (XRegFromAlias != RISCV::NoRegister) 10967 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 10968 10969 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 10970 // TableGen record rather than the AsmName to choose registers for InlineAsm 10971 // constraints, plus we want to match those names to the widest floating point 10972 // register type available, manually select floating point registers here. 10973 // 10974 // The second case is the ABI name of the register, so that frontends can also 10975 // use the ABI names in register constraint lists. 10976 if (Subtarget.hasStdExtF()) { 10977 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 10978 .Cases("{f0}", "{ft0}", RISCV::F0_F) 10979 .Cases("{f1}", "{ft1}", RISCV::F1_F) 10980 .Cases("{f2}", "{ft2}", RISCV::F2_F) 10981 .Cases("{f3}", "{ft3}", RISCV::F3_F) 10982 .Cases("{f4}", "{ft4}", RISCV::F4_F) 10983 .Cases("{f5}", "{ft5}", RISCV::F5_F) 10984 .Cases("{f6}", "{ft6}", RISCV::F6_F) 10985 .Cases("{f7}", "{ft7}", RISCV::F7_F) 10986 .Cases("{f8}", "{fs0}", RISCV::F8_F) 10987 .Cases("{f9}", "{fs1}", RISCV::F9_F) 10988 .Cases("{f10}", "{fa0}", RISCV::F10_F) 10989 .Cases("{f11}", "{fa1}", RISCV::F11_F) 10990 .Cases("{f12}", "{fa2}", RISCV::F12_F) 10991 .Cases("{f13}", "{fa3}", RISCV::F13_F) 10992 .Cases("{f14}", "{fa4}", RISCV::F14_F) 10993 .Cases("{f15}", "{fa5}", RISCV::F15_F) 10994 .Cases("{f16}", "{fa6}", RISCV::F16_F) 10995 .Cases("{f17}", "{fa7}", RISCV::F17_F) 10996 .Cases("{f18}", "{fs2}", RISCV::F18_F) 10997 .Cases("{f19}", "{fs3}", RISCV::F19_F) 10998 .Cases("{f20}", "{fs4}", RISCV::F20_F) 10999 .Cases("{f21}", "{fs5}", RISCV::F21_F) 11000 .Cases("{f22}", "{fs6}", RISCV::F22_F) 11001 .Cases("{f23}", "{fs7}", RISCV::F23_F) 11002 .Cases("{f24}", "{fs8}", RISCV::F24_F) 11003 .Cases("{f25}", "{fs9}", RISCV::F25_F) 11004 .Cases("{f26}", "{fs10}", RISCV::F26_F) 11005 .Cases("{f27}", "{fs11}", RISCV::F27_F) 11006 .Cases("{f28}", "{ft8}", RISCV::F28_F) 11007 .Cases("{f29}", "{ft9}", RISCV::F29_F) 11008 .Cases("{f30}", "{ft10}", RISCV::F30_F) 11009 .Cases("{f31}", "{ft11}", RISCV::F31_F) 11010 .Default(RISCV::NoRegister); 11011 if (FReg != RISCV::NoRegister) { 11012 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 11013 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { 11014 unsigned RegNo = FReg - RISCV::F0_F; 11015 unsigned DReg = RISCV::F0_D + RegNo; 11016 return std::make_pair(DReg, &RISCV::FPR64RegClass); 11017 } 11018 if (VT == MVT::f32 || VT == MVT::Other) 11019 return std::make_pair(FReg, &RISCV::FPR32RegClass); 11020 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { 11021 unsigned RegNo = FReg - RISCV::F0_F; 11022 unsigned HReg = RISCV::F0_H + RegNo; 11023 return std::make_pair(HReg, &RISCV::FPR16RegClass); 11024 } 11025 } 11026 } 11027 11028 if (Subtarget.hasVInstructions()) { 11029 Register VReg = StringSwitch<Register>(Constraint.lower()) 11030 .Case("{v0}", RISCV::V0) 11031 .Case("{v1}", RISCV::V1) 11032 .Case("{v2}", RISCV::V2) 11033 .Case("{v3}", RISCV::V3) 11034 .Case("{v4}", RISCV::V4) 11035 .Case("{v5}", RISCV::V5) 11036 .Case("{v6}", RISCV::V6) 11037 .Case("{v7}", RISCV::V7) 11038 .Case("{v8}", RISCV::V8) 11039 .Case("{v9}", RISCV::V9) 11040 .Case("{v10}", RISCV::V10) 11041 .Case("{v11}", RISCV::V11) 11042 .Case("{v12}", RISCV::V12) 11043 .Case("{v13}", RISCV::V13) 11044 .Case("{v14}", RISCV::V14) 11045 .Case("{v15}", RISCV::V15) 11046 .Case("{v16}", RISCV::V16) 11047 .Case("{v17}", RISCV::V17) 11048 .Case("{v18}", RISCV::V18) 11049 .Case("{v19}", RISCV::V19) 11050 .Case("{v20}", RISCV::V20) 11051 .Case("{v21}", RISCV::V21) 11052 .Case("{v22}", RISCV::V22) 11053 .Case("{v23}", RISCV::V23) 11054 .Case("{v24}", RISCV::V24) 11055 .Case("{v25}", RISCV::V25) 11056 .Case("{v26}", RISCV::V26) 11057 .Case("{v27}", RISCV::V27) 11058 .Case("{v28}", RISCV::V28) 11059 .Case("{v29}", RISCV::V29) 11060 .Case("{v30}", RISCV::V30) 11061 .Case("{v31}", RISCV::V31) 11062 .Default(RISCV::NoRegister); 11063 if (VReg != RISCV::NoRegister) { 11064 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 11065 return std::make_pair(VReg, &RISCV::VMRegClass); 11066 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 11067 return std::make_pair(VReg, &RISCV::VRRegClass); 11068 for (const auto *RC : 11069 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 11070 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 11071 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 11072 return std::make_pair(VReg, RC); 11073 } 11074 } 11075 } 11076 } 11077 11078 std::pair<Register, const TargetRegisterClass *> Res = 11079 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11080 11081 // If we picked one of the Zfinx register classes, remap it to the GPR class. 11082 // FIXME: When Zfinx is supported in CodeGen this will need to take the 11083 // Subtarget into account. 11084 if (Res.second == &RISCV::GPRF16RegClass || 11085 Res.second == &RISCV::GPRF32RegClass || 11086 Res.second == &RISCV::GPRF64RegClass) 11087 return std::make_pair(Res.first, &RISCV::GPRRegClass); 11088 11089 return Res; 11090 } 11091 11092 unsigned 11093 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 11094 // Currently only support length 1 constraints. 11095 if (ConstraintCode.size() == 1) { 11096 switch (ConstraintCode[0]) { 11097 case 'A': 11098 return InlineAsm::Constraint_A; 11099 default: 11100 break; 11101 } 11102 } 11103 11104 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 11105 } 11106 11107 void RISCVTargetLowering::LowerAsmOperandForConstraint( 11108 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 11109 SelectionDAG &DAG) const { 11110 // Currently only support length 1 constraints. 11111 if (Constraint.length() == 1) { 11112 switch (Constraint[0]) { 11113 case 'I': 11114 // Validate & create a 12-bit signed immediate operand. 11115 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11116 uint64_t CVal = C->getSExtValue(); 11117 if (isInt<12>(CVal)) 11118 Ops.push_back( 11119 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11120 } 11121 return; 11122 case 'J': 11123 // Validate & create an integer zero operand. 11124 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 11125 if (C->getZExtValue() == 0) 11126 Ops.push_back( 11127 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 11128 return; 11129 case 'K': 11130 // Validate & create a 5-bit unsigned immediate operand. 11131 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 11132 uint64_t CVal = C->getZExtValue(); 11133 if (isUInt<5>(CVal)) 11134 Ops.push_back( 11135 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 11136 } 11137 return; 11138 case 'S': 11139 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 11140 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 11141 GA->getValueType(0))); 11142 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 11143 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), 11144 BA->getValueType(0))); 11145 } 11146 return; 11147 default: 11148 break; 11149 } 11150 } 11151 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11152 } 11153 11154 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11155 Instruction *Inst, 11156 AtomicOrdering Ord) const { 11157 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 11158 return Builder.CreateFence(Ord); 11159 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 11160 return Builder.CreateFence(AtomicOrdering::Release); 11161 return nullptr; 11162 } 11163 11164 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11165 Instruction *Inst, 11166 AtomicOrdering Ord) const { 11167 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 11168 return Builder.CreateFence(AtomicOrdering::Acquire); 11169 return nullptr; 11170 } 11171 11172 TargetLowering::AtomicExpansionKind 11173 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11174 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 11175 // point operations can't be used in an lr/sc sequence without breaking the 11176 // forward-progress guarantee. 11177 if (AI->isFloatingPointOperation()) 11178 return AtomicExpansionKind::CmpXChg; 11179 11180 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11181 if (Size == 8 || Size == 16) 11182 return AtomicExpansionKind::MaskedIntrinsic; 11183 return AtomicExpansionKind::None; 11184 } 11185 11186 static Intrinsic::ID 11187 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 11188 if (XLen == 32) { 11189 switch (BinOp) { 11190 default: 11191 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11192 case AtomicRMWInst::Xchg: 11193 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 11194 case AtomicRMWInst::Add: 11195 return Intrinsic::riscv_masked_atomicrmw_add_i32; 11196 case AtomicRMWInst::Sub: 11197 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 11198 case AtomicRMWInst::Nand: 11199 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 11200 case AtomicRMWInst::Max: 11201 return Intrinsic::riscv_masked_atomicrmw_max_i32; 11202 case AtomicRMWInst::Min: 11203 return Intrinsic::riscv_masked_atomicrmw_min_i32; 11204 case AtomicRMWInst::UMax: 11205 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 11206 case AtomicRMWInst::UMin: 11207 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 11208 } 11209 } 11210 11211 if (XLen == 64) { 11212 switch (BinOp) { 11213 default: 11214 llvm_unreachable("Unexpected AtomicRMW BinOp"); 11215 case AtomicRMWInst::Xchg: 11216 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 11217 case AtomicRMWInst::Add: 11218 return Intrinsic::riscv_masked_atomicrmw_add_i64; 11219 case AtomicRMWInst::Sub: 11220 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 11221 case AtomicRMWInst::Nand: 11222 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 11223 case AtomicRMWInst::Max: 11224 return Intrinsic::riscv_masked_atomicrmw_max_i64; 11225 case AtomicRMWInst::Min: 11226 return Intrinsic::riscv_masked_atomicrmw_min_i64; 11227 case AtomicRMWInst::UMax: 11228 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 11229 case AtomicRMWInst::UMin: 11230 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 11231 } 11232 } 11233 11234 llvm_unreachable("Unexpected XLen\n"); 11235 } 11236 11237 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 11238 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 11239 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 11240 unsigned XLen = Subtarget.getXLen(); 11241 Value *Ordering = 11242 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 11243 Type *Tys[] = {AlignedAddr->getType()}; 11244 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 11245 AI->getModule(), 11246 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 11247 11248 if (XLen == 64) { 11249 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 11250 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11251 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 11252 } 11253 11254 Value *Result; 11255 11256 // Must pass the shift amount needed to sign extend the loaded value prior 11257 // to performing a signed comparison for min/max. ShiftAmt is the number of 11258 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 11259 // is the number of bits to left+right shift the value in order to 11260 // sign-extend. 11261 if (AI->getOperation() == AtomicRMWInst::Min || 11262 AI->getOperation() == AtomicRMWInst::Max) { 11263 const DataLayout &DL = AI->getModule()->getDataLayout(); 11264 unsigned ValWidth = 11265 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 11266 Value *SextShamt = 11267 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 11268 Result = Builder.CreateCall(LrwOpScwLoop, 11269 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 11270 } else { 11271 Result = 11272 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 11273 } 11274 11275 if (XLen == 64) 11276 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11277 return Result; 11278 } 11279 11280 TargetLowering::AtomicExpansionKind 11281 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 11282 AtomicCmpXchgInst *CI) const { 11283 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 11284 if (Size == 8 || Size == 16) 11285 return AtomicExpansionKind::MaskedIntrinsic; 11286 return AtomicExpansionKind::None; 11287 } 11288 11289 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 11290 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 11291 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 11292 unsigned XLen = Subtarget.getXLen(); 11293 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 11294 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 11295 if (XLen == 64) { 11296 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 11297 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 11298 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 11299 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 11300 } 11301 Type *Tys[] = {AlignedAddr->getType()}; 11302 Function *MaskedCmpXchg = 11303 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 11304 Value *Result = Builder.CreateCall( 11305 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 11306 if (XLen == 64) 11307 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 11308 return Result; 11309 } 11310 11311 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 11312 return false; 11313 } 11314 11315 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 11316 EVT VT) const { 11317 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 11318 return false; 11319 11320 switch (FPVT.getSimpleVT().SimpleTy) { 11321 case MVT::f16: 11322 return Subtarget.hasStdExtZfh(); 11323 case MVT::f32: 11324 return Subtarget.hasStdExtF(); 11325 case MVT::f64: 11326 return Subtarget.hasStdExtD(); 11327 default: 11328 return false; 11329 } 11330 } 11331 11332 unsigned RISCVTargetLowering::getJumpTableEncoding() const { 11333 // If we are using the small code model, we can reduce size of jump table 11334 // entry to 4 bytes. 11335 if (Subtarget.is64Bit() && !isPositionIndependent() && 11336 getTargetMachine().getCodeModel() == CodeModel::Small) { 11337 return MachineJumpTableInfo::EK_Custom32; 11338 } 11339 return TargetLowering::getJumpTableEncoding(); 11340 } 11341 11342 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( 11343 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 11344 unsigned uid, MCContext &Ctx) const { 11345 assert(Subtarget.is64Bit() && !isPositionIndependent() && 11346 getTargetMachine().getCodeModel() == CodeModel::Small); 11347 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 11348 } 11349 11350 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 11351 EVT VT) const { 11352 VT = VT.getScalarType(); 11353 11354 if (!VT.isSimple()) 11355 return false; 11356 11357 switch (VT.getSimpleVT().SimpleTy) { 11358 case MVT::f16: 11359 return Subtarget.hasStdExtZfh(); 11360 case MVT::f32: 11361 return Subtarget.hasStdExtF(); 11362 case MVT::f64: 11363 return Subtarget.hasStdExtD(); 11364 default: 11365 break; 11366 } 11367 11368 return false; 11369 } 11370 11371 Register RISCVTargetLowering::getExceptionPointerRegister( 11372 const Constant *PersonalityFn) const { 11373 return RISCV::X10; 11374 } 11375 11376 Register RISCVTargetLowering::getExceptionSelectorRegister( 11377 const Constant *PersonalityFn) const { 11378 return RISCV::X11; 11379 } 11380 11381 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 11382 // Return false to suppress the unnecessary extensions if the LibCall 11383 // arguments or return value is f32 type for LP64 ABI. 11384 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 11385 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 11386 return false; 11387 11388 return true; 11389 } 11390 11391 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 11392 if (Subtarget.is64Bit() && Type == MVT::i32) 11393 return true; 11394 11395 return IsSigned; 11396 } 11397 11398 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 11399 SDValue C) const { 11400 // Check integral scalar types. 11401 if (VT.isScalarInteger()) { 11402 // Omit the optimization if the sub target has the M extension and the data 11403 // size exceeds XLen. 11404 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 11405 return false; 11406 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 11407 // Break the MUL to a SLLI and an ADD/SUB. 11408 const APInt &Imm = ConstNode->getAPIntValue(); 11409 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 11410 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 11411 return true; 11412 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. 11413 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && 11414 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || 11415 (Imm - 8).isPowerOf2())) 11416 return true; 11417 // Omit the following optimization if the sub target has the M extension 11418 // and the data size >= XLen. 11419 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 11420 return false; 11421 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 11422 // a pair of LUI/ADDI. 11423 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 11424 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 11425 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 11426 (1 - ImmS).isPowerOf2()) 11427 return true; 11428 } 11429 } 11430 } 11431 11432 return false; 11433 } 11434 11435 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 11436 SDValue ConstNode) const { 11437 // Let the DAGCombiner decide for vectors. 11438 EVT VT = AddNode.getValueType(); 11439 if (VT.isVector()) 11440 return true; 11441 11442 // Let the DAGCombiner decide for larger types. 11443 if (VT.getScalarSizeInBits() > Subtarget.getXLen()) 11444 return true; 11445 11446 // It is worse if c1 is simm12 while c1*c2 is not. 11447 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 11448 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); 11449 const APInt &C1 = C1Node->getAPIntValue(); 11450 const APInt &C2 = C2Node->getAPIntValue(); 11451 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) 11452 return false; 11453 11454 // Default to true and let the DAGCombiner decide. 11455 return true; 11456 } 11457 11458 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 11459 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 11460 bool *Fast) const { 11461 if (!VT.isVector()) 11462 return false; 11463 11464 EVT ElemVT = VT.getVectorElementType(); 11465 if (Alignment >= ElemVT.getStoreSize()) { 11466 if (Fast) 11467 *Fast = true; 11468 return true; 11469 } 11470 11471 return false; 11472 } 11473 11474 bool RISCVTargetLowering::splitValueIntoRegisterParts( 11475 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 11476 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 11477 bool IsABIRegCopy = CC.hasValue(); 11478 EVT ValueVT = Val.getValueType(); 11479 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11480 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 11481 // and cast to f32. 11482 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 11483 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 11484 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 11485 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 11486 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 11487 Parts[0] = Val; 11488 return true; 11489 } 11490 11491 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11492 LLVMContext &Context = *DAG.getContext(); 11493 EVT ValueEltVT = ValueVT.getVectorElementType(); 11494 EVT PartEltVT = PartVT.getVectorElementType(); 11495 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11496 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11497 if (PartVTBitSize % ValueVTBitSize == 0) { 11498 assert(PartVTBitSize >= ValueVTBitSize); 11499 // If the element types are different, bitcast to the same element type of 11500 // PartVT first. 11501 // Give an example here, we want copy a <vscale x 1 x i8> value to 11502 // <vscale x 4 x i16>. 11503 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert 11504 // subvector, then we can bitcast to <vscale x 4 x i16>. 11505 if (ValueEltVT != PartEltVT) { 11506 if (PartVTBitSize > ValueVTBitSize) { 11507 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11508 assert(Count != 0 && "The number of element should not be zero."); 11509 EVT SameEltTypeVT = 11510 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11511 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, 11512 DAG.getUNDEF(SameEltTypeVT), Val, 11513 DAG.getVectorIdxConstant(0, DL)); 11514 } 11515 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 11516 } else { 11517 Val = 11518 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 11519 Val, DAG.getVectorIdxConstant(0, DL)); 11520 } 11521 Parts[0] = Val; 11522 return true; 11523 } 11524 } 11525 return false; 11526 } 11527 11528 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 11529 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 11530 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 11531 bool IsABIRegCopy = CC.hasValue(); 11532 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 11533 SDValue Val = Parts[0]; 11534 11535 // Cast the f32 to i32, truncate to i16, and cast back to f16. 11536 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 11537 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 11538 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 11539 return Val; 11540 } 11541 11542 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 11543 LLVMContext &Context = *DAG.getContext(); 11544 SDValue Val = Parts[0]; 11545 EVT ValueEltVT = ValueVT.getVectorElementType(); 11546 EVT PartEltVT = PartVT.getVectorElementType(); 11547 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 11548 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 11549 if (PartVTBitSize % ValueVTBitSize == 0) { 11550 assert(PartVTBitSize >= ValueVTBitSize); 11551 EVT SameEltTypeVT = ValueVT; 11552 // If the element types are different, convert it to the same element type 11553 // of PartVT. 11554 // Give an example here, we want copy a <vscale x 1 x i8> value from 11555 // <vscale x 4 x i16>. 11556 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, 11557 // then we can extract <vscale x 1 x i8>. 11558 if (ValueEltVT != PartEltVT) { 11559 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); 11560 assert(Count != 0 && "The number of element should not be zero."); 11561 SameEltTypeVT = 11562 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); 11563 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 11564 } 11565 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 11566 DAG.getVectorIdxConstant(0, DL)); 11567 return Val; 11568 } 11569 } 11570 return SDValue(); 11571 } 11572 11573 SDValue 11574 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11575 SelectionDAG &DAG, 11576 SmallVectorImpl<SDNode *> &Created) const { 11577 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 11578 if (isIntDivCheap(N->getValueType(0), Attr)) 11579 return SDValue(N, 0); // Lower SDIV as SDIV 11580 11581 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && 11582 "Unexpected divisor!"); 11583 11584 // Conditional move is needed, so do the transformation iff Zbt is enabled. 11585 if (!Subtarget.hasStdExtZbt()) 11586 return SDValue(); 11587 11588 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. 11589 // Besides, more critical path instructions will be generated when dividing 11590 // by 2. So we keep using the original DAGs for these cases. 11591 unsigned Lg2 = Divisor.countTrailingZeros(); 11592 if (Lg2 == 1 || Lg2 >= 12) 11593 return SDValue(); 11594 11595 // fold (sdiv X, pow2) 11596 EVT VT = N->getValueType(0); 11597 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) 11598 return SDValue(); 11599 11600 SDLoc DL(N); 11601 SDValue N0 = N->getOperand(0); 11602 SDValue Zero = DAG.getConstant(0, DL, VT); 11603 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 11604 11605 // Add (N0 < 0) ? Pow2 - 1 : 0; 11606 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); 11607 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 11608 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 11609 11610 Created.push_back(Cmp.getNode()); 11611 Created.push_back(Add.getNode()); 11612 Created.push_back(Sel.getNode()); 11613 11614 // Divide by pow2. 11615 SDValue SRA = 11616 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); 11617 11618 // If we're dividing by a positive value, we're done. Otherwise, we must 11619 // negate the result. 11620 if (Divisor.isNonNegative()) 11621 return SRA; 11622 11623 Created.push_back(SRA.getNode()); 11624 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 11625 } 11626 11627 #define GET_REGISTER_MATCHER 11628 #include "RISCVGenAsmMatcher.inc" 11629 11630 Register 11631 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 11632 const MachineFunction &MF) const { 11633 Register Reg = MatchRegisterAltName(RegName); 11634 if (Reg == RISCV::NoRegister) 11635 Reg = MatchRegisterName(RegName); 11636 if (Reg == RISCV::NoRegister) 11637 report_fatal_error( 11638 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 11639 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 11640 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 11641 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 11642 StringRef(RegName) + "\".")); 11643 return Reg; 11644 } 11645 11646 namespace llvm { 11647 namespace RISCVVIntrinsicsTable { 11648 11649 #define GET_RISCVVIntrinsicsTable_IMPL 11650 #include "RISCVGenSearchableTables.inc" 11651 11652 } // namespace RISCVVIntrinsicsTable 11653 11654 } // namespace llvm 11655