1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 } 144 145 // Compute derived properties from the register classes. 146 computeRegisterProperties(STI.getRegisterInfo()); 147 148 setStackPointerRegisterToSaveRestore(RISCV::X2); 149 150 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 151 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 152 153 // TODO: add all necessary setOperationAction calls. 154 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 155 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 setOperationAction(ISD::BR_CC, XLenVT, Expand); 158 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 159 160 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 161 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 162 163 setOperationAction(ISD::VASTART, MVT::Other, Custom); 164 setOperationAction(ISD::VAARG, MVT::Other, Expand); 165 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 166 setOperationAction(ISD::VAEND, MVT::Other, Expand); 167 168 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 169 if (!Subtarget.hasStdExtZbb()) { 170 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 171 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 172 } 173 174 if (Subtarget.is64Bit()) { 175 setOperationAction(ISD::ADD, MVT::i32, Custom); 176 setOperationAction(ISD::SUB, MVT::i32, Custom); 177 setOperationAction(ISD::SHL, MVT::i32, Custom); 178 setOperationAction(ISD::SRA, MVT::i32, Custom); 179 setOperationAction(ISD::SRL, MVT::i32, Custom); 180 } 181 182 if (!Subtarget.hasStdExtM()) { 183 setOperationAction(ISD::MUL, XLenVT, Expand); 184 setOperationAction(ISD::MULHS, XLenVT, Expand); 185 setOperationAction(ISD::MULHU, XLenVT, Expand); 186 setOperationAction(ISD::SDIV, XLenVT, Expand); 187 setOperationAction(ISD::UDIV, XLenVT, Expand); 188 setOperationAction(ISD::SREM, XLenVT, Expand); 189 setOperationAction(ISD::UREM, XLenVT, Expand); 190 } 191 192 if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) { 193 setOperationAction(ISD::MUL, MVT::i32, Custom); 194 195 setOperationAction(ISD::SDIV, MVT::i8, Custom); 196 setOperationAction(ISD::UDIV, MVT::i8, Custom); 197 setOperationAction(ISD::UREM, MVT::i8, Custom); 198 setOperationAction(ISD::SDIV, MVT::i16, Custom); 199 setOperationAction(ISD::UDIV, MVT::i16, Custom); 200 setOperationAction(ISD::UREM, MVT::i16, Custom); 201 setOperationAction(ISD::SDIV, MVT::i32, Custom); 202 setOperationAction(ISD::UDIV, MVT::i32, Custom); 203 setOperationAction(ISD::UREM, MVT::i32, Custom); 204 } 205 206 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 207 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 208 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 209 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 210 211 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 212 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 213 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 214 215 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 216 if (Subtarget.is64Bit()) { 217 setOperationAction(ISD::ROTL, MVT::i32, Custom); 218 setOperationAction(ISD::ROTR, MVT::i32, Custom); 219 } 220 } else { 221 setOperationAction(ISD::ROTL, XLenVT, Expand); 222 setOperationAction(ISD::ROTR, XLenVT, Expand); 223 } 224 225 if (Subtarget.hasStdExtZbp()) { 226 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 227 // more combining. 228 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 229 setOperationAction(ISD::BSWAP, XLenVT, Custom); 230 231 if (Subtarget.is64Bit()) { 232 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 233 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 234 } 235 } else { 236 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 237 // pattern match it directly in isel. 238 setOperationAction(ISD::BSWAP, XLenVT, 239 Subtarget.hasStdExtZbb() ? Legal : Expand); 240 } 241 242 if (Subtarget.hasStdExtZbb()) { 243 setOperationAction(ISD::SMIN, XLenVT, Legal); 244 setOperationAction(ISD::SMAX, XLenVT, Legal); 245 setOperationAction(ISD::UMIN, XLenVT, Legal); 246 setOperationAction(ISD::UMAX, XLenVT, Legal); 247 } else { 248 setOperationAction(ISD::CTTZ, XLenVT, Expand); 249 setOperationAction(ISD::CTLZ, XLenVT, Expand); 250 setOperationAction(ISD::CTPOP, XLenVT, Expand); 251 } 252 253 if (Subtarget.hasStdExtZbt()) { 254 setOperationAction(ISD::FSHL, XLenVT, Legal); 255 setOperationAction(ISD::FSHR, XLenVT, Legal); 256 setOperationAction(ISD::SELECT, XLenVT, Legal); 257 258 if (Subtarget.is64Bit()) { 259 setOperationAction(ISD::FSHL, MVT::i32, Custom); 260 setOperationAction(ISD::FSHR, MVT::i32, Custom); 261 } 262 } else { 263 setOperationAction(ISD::SELECT, XLenVT, Custom); 264 } 265 266 ISD::CondCode FPCCToExpand[] = { 267 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 268 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 269 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 270 271 ISD::NodeType FPOpToExpand[] = { 272 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 273 ISD::FP_TO_FP16}; 274 275 if (Subtarget.hasStdExtZfh()) 276 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 277 278 if (Subtarget.hasStdExtZfh()) { 279 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 280 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 281 for (auto CC : FPCCToExpand) 282 setCondCodeAction(CC, MVT::f16, Expand); 283 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 284 setOperationAction(ISD::SELECT, MVT::f16, Custom); 285 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 286 for (auto Op : FPOpToExpand) 287 setOperationAction(Op, MVT::f16, Expand); 288 } 289 290 if (Subtarget.hasStdExtF()) { 291 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 292 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 293 for (auto CC : FPCCToExpand) 294 setCondCodeAction(CC, MVT::f32, Expand); 295 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 296 setOperationAction(ISD::SELECT, MVT::f32, Custom); 297 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 298 for (auto Op : FPOpToExpand) 299 setOperationAction(Op, MVT::f32, Expand); 300 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 301 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 302 } 303 304 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 305 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 306 307 if (Subtarget.hasStdExtD()) { 308 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 309 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 310 for (auto CC : FPCCToExpand) 311 setCondCodeAction(CC, MVT::f64, Expand); 312 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 313 setOperationAction(ISD::SELECT, MVT::f64, Custom); 314 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 315 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 316 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 317 for (auto Op : FPOpToExpand) 318 setOperationAction(Op, MVT::f64, Expand); 319 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 320 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 321 } 322 323 if (Subtarget.is64Bit()) { 324 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 325 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 326 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 327 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 328 } 329 330 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 331 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 332 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 333 setOperationAction(ISD::JumpTable, XLenVT, Custom); 334 335 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 336 337 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 338 // Unfortunately this can't be determined just from the ISA naming string. 339 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 340 Subtarget.is64Bit() ? Legal : Custom); 341 342 setOperationAction(ISD::TRAP, MVT::Other, Legal); 343 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 344 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 345 346 if (Subtarget.hasStdExtA()) { 347 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 348 setMinCmpXchgSizeInBits(32); 349 } else { 350 setMaxAtomicSizeInBitsSupported(0); 351 } 352 353 setBooleanContents(ZeroOrOneBooleanContent); 354 355 if (Subtarget.hasStdExtV()) { 356 setBooleanVectorContents(ZeroOrOneBooleanContent); 357 358 setOperationAction(ISD::VSCALE, XLenVT, Custom); 359 360 // RVV intrinsics may have illegal operands. 361 // We also need to custom legalize vmv.x.s. 362 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 363 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 364 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 365 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 366 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 367 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 368 369 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 370 371 if (Subtarget.is64Bit()) { 372 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 373 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 374 } else { 375 // We must custom-lower certain vXi64 operations on RV32 due to the vector 376 // element type being illegal. 377 setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom); 378 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 379 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 380 } 381 382 for (MVT VT : BoolVecVTs) { 383 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 384 385 // Mask VTs are custom-expanded into a series of standard nodes 386 setOperationAction(ISD::TRUNCATE, VT, Custom); 387 } 388 389 for (MVT VT : IntVecVTs) { 390 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 391 392 setOperationAction(ISD::SMIN, VT, Legal); 393 setOperationAction(ISD::SMAX, VT, Legal); 394 setOperationAction(ISD::UMIN, VT, Legal); 395 setOperationAction(ISD::UMAX, VT, Legal); 396 397 setOperationAction(ISD::ROTL, VT, Expand); 398 setOperationAction(ISD::ROTR, VT, Expand); 399 400 // Custom-lower extensions and truncations from/to mask types. 401 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 402 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 403 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 404 405 // RVV has native int->float & float->int conversions where the 406 // element type sizes are within one power-of-two of each other. Any 407 // wider distances between type sizes have to be lowered as sequences 408 // which progressively narrow the gap in stages. 409 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 410 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 411 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 412 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 413 414 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR" 415 // nodes which truncate by one power of two at a time. 416 setOperationAction(ISD::TRUNCATE, VT, Custom); 417 418 // Custom-lower insert/extract operations to simplify patterns. 419 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 420 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 421 } 422 423 // Expand various CCs to best match the RVV ISA, which natively supports UNE 424 // but no other unordered comparisons, and supports all ordered comparisons 425 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 426 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 427 // and we pattern-match those back to the "original", swapping operands once 428 // more. This way we catch both operations and both "vf" and "fv" forms with 429 // fewer patterns. 430 ISD::CondCode VFPCCToExpand[] = { 431 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 432 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 433 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 434 }; 435 436 // Sets common operation actions on RVV floating-point vector types. 437 const auto SetCommonVFPActions = [&](MVT VT) { 438 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 439 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 440 // sizes are within one power-of-two of each other. Therefore conversions 441 // between vXf16 and vXf64 must be lowered as sequences which convert via 442 // vXf32. 443 setOperationAction(ISD::FP_ROUND, VT, Custom); 444 setOperationAction(ISD::FP_EXTEND, VT, Custom); 445 // Custom-lower insert/extract operations to simplify patterns. 446 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 447 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 448 // Expand various condition codes (explained above). 449 for (auto CC : VFPCCToExpand) 450 setCondCodeAction(CC, VT, Expand); 451 }; 452 453 if (Subtarget.hasStdExtZfh()) 454 for (MVT VT : F16VecVTs) 455 SetCommonVFPActions(VT); 456 457 if (Subtarget.hasStdExtF()) 458 for (MVT VT : F32VecVTs) 459 SetCommonVFPActions(VT); 460 461 if (Subtarget.hasStdExtD()) 462 for (MVT VT : F64VecVTs) 463 SetCommonVFPActions(VT); 464 } 465 466 // Function alignments. 467 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 468 setMinFunctionAlignment(FunctionAlignment); 469 setPrefFunctionAlignment(FunctionAlignment); 470 471 setMinimumJumpTableEntries(5); 472 473 // Jumps are expensive, compared to logic 474 setJumpIsExpensive(); 475 476 // We can use any register for comparisons 477 setHasMultipleConditionRegisters(); 478 479 setTargetDAGCombine(ISD::SETCC); 480 if (Subtarget.hasStdExtZbp()) { 481 setTargetDAGCombine(ISD::OR); 482 } 483 } 484 485 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 486 LLVMContext &Context, 487 EVT VT) const { 488 if (!VT.isVector()) 489 return getPointerTy(DL); 490 if (Subtarget.hasStdExtV() && VT.isScalableVector()) 491 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 492 return VT.changeVectorElementTypeToInteger(); 493 } 494 495 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 496 const CallInst &I, 497 MachineFunction &MF, 498 unsigned Intrinsic) const { 499 switch (Intrinsic) { 500 default: 501 return false; 502 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 503 case Intrinsic::riscv_masked_atomicrmw_add_i32: 504 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 505 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 506 case Intrinsic::riscv_masked_atomicrmw_max_i32: 507 case Intrinsic::riscv_masked_atomicrmw_min_i32: 508 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 509 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 510 case Intrinsic::riscv_masked_cmpxchg_i32: 511 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 512 Info.opc = ISD::INTRINSIC_W_CHAIN; 513 Info.memVT = MVT::getVT(PtrTy->getElementType()); 514 Info.ptrVal = I.getArgOperand(0); 515 Info.offset = 0; 516 Info.align = Align(4); 517 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 518 MachineMemOperand::MOVolatile; 519 return true; 520 } 521 } 522 523 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 524 const AddrMode &AM, Type *Ty, 525 unsigned AS, 526 Instruction *I) const { 527 // No global is ever allowed as a base. 528 if (AM.BaseGV) 529 return false; 530 531 // Require a 12-bit signed offset. 532 if (!isInt<12>(AM.BaseOffs)) 533 return false; 534 535 switch (AM.Scale) { 536 case 0: // "r+i" or just "i", depending on HasBaseReg. 537 break; 538 case 1: 539 if (!AM.HasBaseReg) // allow "r+i". 540 break; 541 return false; // disallow "r+r" or "r+r+i". 542 default: 543 return false; 544 } 545 546 return true; 547 } 548 549 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 550 return isInt<12>(Imm); 551 } 552 553 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 554 return isInt<12>(Imm); 555 } 556 557 // On RV32, 64-bit integers are split into their high and low parts and held 558 // in two different registers, so the trunc is free since the low register can 559 // just be used. 560 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 561 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 562 return false; 563 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 564 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 565 return (SrcBits == 64 && DestBits == 32); 566 } 567 568 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 569 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 570 !SrcVT.isInteger() || !DstVT.isInteger()) 571 return false; 572 unsigned SrcBits = SrcVT.getSizeInBits(); 573 unsigned DestBits = DstVT.getSizeInBits(); 574 return (SrcBits == 64 && DestBits == 32); 575 } 576 577 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 578 // Zexts are free if they can be combined with a load. 579 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 580 EVT MemVT = LD->getMemoryVT(); 581 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 582 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 583 (LD->getExtensionType() == ISD::NON_EXTLOAD || 584 LD->getExtensionType() == ISD::ZEXTLOAD)) 585 return true; 586 } 587 588 return TargetLowering::isZExtFree(Val, VT2); 589 } 590 591 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 592 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 593 } 594 595 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 596 return Subtarget.hasStdExtZbb(); 597 } 598 599 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 600 return Subtarget.hasStdExtZbb(); 601 } 602 603 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 604 bool ForCodeSize) const { 605 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 606 return false; 607 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 608 return false; 609 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 610 return false; 611 if (Imm.isNegZero()) 612 return false; 613 return Imm.isZero(); 614 } 615 616 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 617 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 618 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 619 (VT == MVT::f64 && Subtarget.hasStdExtD()); 620 } 621 622 // Changes the condition code and swaps operands if necessary, so the SetCC 623 // operation matches one of the comparisons supported directly in the RISC-V 624 // ISA. 625 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { 626 switch (CC) { 627 default: 628 break; 629 case ISD::SETGT: 630 case ISD::SETLE: 631 case ISD::SETUGT: 632 case ISD::SETULE: 633 CC = ISD::getSetCCSwappedOperands(CC); 634 std::swap(LHS, RHS); 635 break; 636 } 637 } 638 639 // Return the RISC-V branch opcode that matches the given DAG integer 640 // condition code. The CondCode must be one of those supported by the RISC-V 641 // ISA (see normaliseSetCC). 642 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 643 switch (CC) { 644 default: 645 llvm_unreachable("Unsupported CondCode"); 646 case ISD::SETEQ: 647 return RISCV::BEQ; 648 case ISD::SETNE: 649 return RISCV::BNE; 650 case ISD::SETLT: 651 return RISCV::BLT; 652 case ISD::SETGE: 653 return RISCV::BGE; 654 case ISD::SETULT: 655 return RISCV::BLTU; 656 case ISD::SETUGE: 657 return RISCV::BGEU; 658 } 659 } 660 661 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 662 SelectionDAG &DAG) const { 663 switch (Op.getOpcode()) { 664 default: 665 report_fatal_error("unimplemented operand"); 666 case ISD::GlobalAddress: 667 return lowerGlobalAddress(Op, DAG); 668 case ISD::BlockAddress: 669 return lowerBlockAddress(Op, DAG); 670 case ISD::ConstantPool: 671 return lowerConstantPool(Op, DAG); 672 case ISD::JumpTable: 673 return lowerJumpTable(Op, DAG); 674 case ISD::GlobalTLSAddress: 675 return lowerGlobalTLSAddress(Op, DAG); 676 case ISD::SELECT: 677 return lowerSELECT(Op, DAG); 678 case ISD::VASTART: 679 return lowerVASTART(Op, DAG); 680 case ISD::FRAMEADDR: 681 return lowerFRAMEADDR(Op, DAG); 682 case ISD::RETURNADDR: 683 return lowerRETURNADDR(Op, DAG); 684 case ISD::SHL_PARTS: 685 return lowerShiftLeftParts(Op, DAG); 686 case ISD::SRA_PARTS: 687 return lowerShiftRightParts(Op, DAG, true); 688 case ISD::SRL_PARTS: 689 return lowerShiftRightParts(Op, DAG, false); 690 case ISD::BITCAST: { 691 assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) || 692 Subtarget.hasStdExtZfh()) && 693 "Unexpected custom legalisation"); 694 SDLoc DL(Op); 695 SDValue Op0 = Op.getOperand(0); 696 if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) { 697 if (Op0.getValueType() != MVT::i16) 698 return SDValue(); 699 SDValue NewOp0 = 700 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0); 701 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 702 return FPConv; 703 } else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() && 704 Subtarget.hasStdExtF()) { 705 if (Op0.getValueType() != MVT::i32) 706 return SDValue(); 707 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 708 SDValue FPConv = 709 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 710 return FPConv; 711 } 712 return SDValue(); 713 } 714 case ISD::INTRINSIC_WO_CHAIN: 715 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 716 case ISD::INTRINSIC_W_CHAIN: 717 return LowerINTRINSIC_W_CHAIN(Op, DAG); 718 case ISD::BSWAP: 719 case ISD::BITREVERSE: { 720 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 721 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 722 MVT VT = Op.getSimpleValueType(); 723 SDLoc DL(Op); 724 // Start with the maximum immediate value which is the bitwidth - 1. 725 unsigned Imm = VT.getSizeInBits() - 1; 726 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 727 if (Op.getOpcode() == ISD::BSWAP) 728 Imm &= ~0x7U; 729 return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0), 730 DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT())); 731 } 732 case ISD::TRUNCATE: { 733 SDLoc DL(Op); 734 EVT VT = Op.getValueType(); 735 // Only custom-lower vector truncates 736 if (!VT.isVector()) 737 return Op; 738 739 // Truncates to mask types are handled differently 740 if (VT.getVectorElementType() == MVT::i1) 741 return lowerVectorMaskTrunc(Op, DAG); 742 743 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 744 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which 745 // truncate by one power of two at a time. 746 EVT DstEltVT = VT.getVectorElementType(); 747 748 SDValue Src = Op.getOperand(0); 749 EVT SrcVT = Src.getValueType(); 750 EVT SrcEltVT = SrcVT.getVectorElementType(); 751 752 assert(DstEltVT.bitsLT(SrcEltVT) && 753 isPowerOf2_64(DstEltVT.getSizeInBits()) && 754 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 755 "Unexpected vector truncate lowering"); 756 757 SDValue Result = Src; 758 LLVMContext &Context = *DAG.getContext(); 759 const ElementCount Count = SrcVT.getVectorElementCount(); 760 do { 761 SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2); 762 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 763 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result); 764 } while (SrcEltVT != DstEltVT); 765 766 return Result; 767 } 768 case ISD::ANY_EXTEND: 769 case ISD::ZERO_EXTEND: 770 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 771 case ISD::SIGN_EXTEND: 772 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 773 case ISD::SPLAT_VECTOR: 774 return lowerSPLATVECTOR(Op, DAG); 775 case ISD::INSERT_VECTOR_ELT: 776 return lowerINSERT_VECTOR_ELT(Op, DAG); 777 case ISD::EXTRACT_VECTOR_ELT: 778 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 779 case ISD::VSCALE: { 780 MVT VT = Op.getSimpleValueType(); 781 SDLoc DL(Op); 782 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 783 // We define our scalable vector types for lmul=1 to use a 64 bit known 784 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 785 // vscale as VLENB / 8. 786 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 787 DAG.getConstant(3, DL, VT)); 788 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 789 } 790 case ISD::FP_EXTEND: { 791 // RVV can only do fp_extend to types double the size as the source. We 792 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 793 // via f32. 794 MVT VT = Op.getSimpleValueType(); 795 MVT SrcVT = Op.getOperand(0).getSimpleValueType(); 796 // We only need to close the gap between vXf16->vXf64. 797 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 798 SrcVT.getVectorElementType() != MVT::f16) 799 return Op; 800 SDLoc DL(Op); 801 MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 802 SDValue IntermediateRound = 803 DAG.getFPExtendOrRound(Op.getOperand(0), DL, InterVT); 804 return DAG.getFPExtendOrRound(IntermediateRound, DL, VT); 805 } 806 case ISD::FP_ROUND: { 807 // RVV can only do fp_round to types half the size as the source. We 808 // custom-lower f64->f16 rounds via RVV's round-to-odd float 809 // conversion instruction. 810 MVT VT = Op.getSimpleValueType(); 811 MVT SrcVT = Op.getOperand(0).getSimpleValueType(); 812 // We only need to close the gap between vXf64<->vXf16. 813 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 814 SrcVT.getVectorElementType() != MVT::f64) 815 return Op; 816 SDLoc DL(Op); 817 MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 818 SDValue IntermediateRound = 819 DAG.getNode(RISCVISD::VFNCVT_ROD, DL, InterVT, Op.getOperand(0)); 820 return DAG.getFPExtendOrRound(IntermediateRound, DL, VT); 821 } 822 case ISD::FP_TO_SINT: 823 case ISD::FP_TO_UINT: 824 case ISD::SINT_TO_FP: 825 case ISD::UINT_TO_FP: { 826 // RVV can only do fp<->int conversions to types half/double the size as 827 // the source. We custom-lower any conversions that do two hops into 828 // sequences. 829 MVT VT = Op.getSimpleValueType(); 830 if (!VT.isVector()) 831 return Op; 832 SDLoc DL(Op); 833 SDValue Src = Op.getOperand(0); 834 MVT EltVT = VT.getVectorElementType(); 835 MVT SrcEltVT = Src.getSimpleValueType().getVectorElementType(); 836 unsigned EltSize = EltVT.getSizeInBits(); 837 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 838 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 839 "Unexpected vector element types"); 840 bool IsInt2FP = SrcEltVT.isInteger(); 841 // Widening conversions 842 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 843 if (IsInt2FP) { 844 // Do a regular integer sign/zero extension then convert to float. 845 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 846 VT.getVectorElementCount()); 847 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 848 ? ISD::ZERO_EXTEND 849 : ISD::SIGN_EXTEND; 850 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 851 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 852 } 853 // FP2Int 854 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 855 // Do one doubling fp_extend then complete the operation by converting 856 // to int. 857 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 858 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 859 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 860 } 861 862 // Narrowing conversions 863 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 864 if (IsInt2FP) { 865 // One narrowing int_to_fp, then an fp_round. 866 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 867 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 868 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 869 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 870 } 871 // FP2Int 872 // One narrowing fp_to_int, then truncate the integer. If the float isn't 873 // representable by the integer, the result is poison. 874 MVT IVecVT = 875 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 876 VT.getVectorElementCount()); 877 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 878 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 879 } 880 881 return Op; 882 } 883 } 884 } 885 886 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 887 SelectionDAG &DAG, unsigned Flags) { 888 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 889 } 890 891 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 892 SelectionDAG &DAG, unsigned Flags) { 893 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 894 Flags); 895 } 896 897 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 898 SelectionDAG &DAG, unsigned Flags) { 899 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 900 N->getOffset(), Flags); 901 } 902 903 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 904 SelectionDAG &DAG, unsigned Flags) { 905 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 906 } 907 908 template <class NodeTy> 909 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 910 bool IsLocal) const { 911 SDLoc DL(N); 912 EVT Ty = getPointerTy(DAG.getDataLayout()); 913 914 if (isPositionIndependent()) { 915 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 916 if (IsLocal) 917 // Use PC-relative addressing to access the symbol. This generates the 918 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 919 // %pcrel_lo(auipc)). 920 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 921 922 // Use PC-relative addressing to access the GOT for this symbol, then load 923 // the address from the GOT. This generates the pattern (PseudoLA sym), 924 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 925 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 926 } 927 928 switch (getTargetMachine().getCodeModel()) { 929 default: 930 report_fatal_error("Unsupported code model for lowering"); 931 case CodeModel::Small: { 932 // Generate a sequence for accessing addresses within the first 2 GiB of 933 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 934 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 935 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 936 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 937 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 938 } 939 case CodeModel::Medium: { 940 // Generate a sequence for accessing addresses within any 2GiB range within 941 // the address space. This generates the pattern (PseudoLLA sym), which 942 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 943 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 944 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 945 } 946 } 947 } 948 949 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 950 SelectionDAG &DAG) const { 951 SDLoc DL(Op); 952 EVT Ty = Op.getValueType(); 953 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 954 int64_t Offset = N->getOffset(); 955 MVT XLenVT = Subtarget.getXLenVT(); 956 957 const GlobalValue *GV = N->getGlobal(); 958 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 959 SDValue Addr = getAddr(N, DAG, IsLocal); 960 961 // In order to maximise the opportunity for common subexpression elimination, 962 // emit a separate ADD node for the global address offset instead of folding 963 // it in the global address node. Later peephole optimisations may choose to 964 // fold it back in when profitable. 965 if (Offset != 0) 966 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 967 DAG.getConstant(Offset, DL, XLenVT)); 968 return Addr; 969 } 970 971 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 972 SelectionDAG &DAG) const { 973 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 974 975 return getAddr(N, DAG); 976 } 977 978 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 979 SelectionDAG &DAG) const { 980 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 981 982 return getAddr(N, DAG); 983 } 984 985 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 986 SelectionDAG &DAG) const { 987 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 988 989 return getAddr(N, DAG); 990 } 991 992 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 993 SelectionDAG &DAG, 994 bool UseGOT) const { 995 SDLoc DL(N); 996 EVT Ty = getPointerTy(DAG.getDataLayout()); 997 const GlobalValue *GV = N->getGlobal(); 998 MVT XLenVT = Subtarget.getXLenVT(); 999 1000 if (UseGOT) { 1001 // Use PC-relative addressing to access the GOT for this TLS symbol, then 1002 // load the address from the GOT and add the thread pointer. This generates 1003 // the pattern (PseudoLA_TLS_IE sym), which expands to 1004 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 1005 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1006 SDValue Load = 1007 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 1008 1009 // Add the thread pointer. 1010 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1011 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 1012 } 1013 1014 // Generate a sequence for accessing the address relative to the thread 1015 // pointer, with the appropriate adjustment for the thread pointer offset. 1016 // This generates the pattern 1017 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 1018 SDValue AddrHi = 1019 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 1020 SDValue AddrAdd = 1021 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 1022 SDValue AddrLo = 1023 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 1024 1025 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 1026 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 1027 SDValue MNAdd = SDValue( 1028 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 1029 0); 1030 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 1031 } 1032 1033 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 1034 SelectionDAG &DAG) const { 1035 SDLoc DL(N); 1036 EVT Ty = getPointerTy(DAG.getDataLayout()); 1037 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 1038 const GlobalValue *GV = N->getGlobal(); 1039 1040 // Use a PC-relative addressing mode to access the global dynamic GOT address. 1041 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 1042 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 1043 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 1044 SDValue Load = 1045 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 1046 1047 // Prepare argument list to generate call. 1048 ArgListTy Args; 1049 ArgListEntry Entry; 1050 Entry.Node = Load; 1051 Entry.Ty = CallTy; 1052 Args.push_back(Entry); 1053 1054 // Setup call to __tls_get_addr. 1055 TargetLowering::CallLoweringInfo CLI(DAG); 1056 CLI.setDebugLoc(DL) 1057 .setChain(DAG.getEntryNode()) 1058 .setLibCallee(CallingConv::C, CallTy, 1059 DAG.getExternalSymbol("__tls_get_addr", Ty), 1060 std::move(Args)); 1061 1062 return LowerCallTo(CLI).first; 1063 } 1064 1065 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 1066 SelectionDAG &DAG) const { 1067 SDLoc DL(Op); 1068 EVT Ty = Op.getValueType(); 1069 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1070 int64_t Offset = N->getOffset(); 1071 MVT XLenVT = Subtarget.getXLenVT(); 1072 1073 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 1074 1075 if (DAG.getMachineFunction().getFunction().getCallingConv() == 1076 CallingConv::GHC) 1077 report_fatal_error("In GHC calling convention TLS is not supported"); 1078 1079 SDValue Addr; 1080 switch (Model) { 1081 case TLSModel::LocalExec: 1082 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 1083 break; 1084 case TLSModel::InitialExec: 1085 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 1086 break; 1087 case TLSModel::LocalDynamic: 1088 case TLSModel::GeneralDynamic: 1089 Addr = getDynamicTLSAddr(N, DAG); 1090 break; 1091 } 1092 1093 // In order to maximise the opportunity for common subexpression elimination, 1094 // emit a separate ADD node for the global address offset instead of folding 1095 // it in the global address node. Later peephole optimisations may choose to 1096 // fold it back in when profitable. 1097 if (Offset != 0) 1098 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 1099 DAG.getConstant(Offset, DL, XLenVT)); 1100 return Addr; 1101 } 1102 1103 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 1104 SDValue CondV = Op.getOperand(0); 1105 SDValue TrueV = Op.getOperand(1); 1106 SDValue FalseV = Op.getOperand(2); 1107 SDLoc DL(Op); 1108 MVT XLenVT = Subtarget.getXLenVT(); 1109 1110 // If the result type is XLenVT and CondV is the output of a SETCC node 1111 // which also operated on XLenVT inputs, then merge the SETCC node into the 1112 // lowered RISCVISD::SELECT_CC to take advantage of the integer 1113 // compare+branch instructions. i.e.: 1114 // (select (setcc lhs, rhs, cc), truev, falsev) 1115 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 1116 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 1117 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 1118 SDValue LHS = CondV.getOperand(0); 1119 SDValue RHS = CondV.getOperand(1); 1120 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 1121 ISD::CondCode CCVal = CC->get(); 1122 1123 normaliseSetCC(LHS, RHS, CCVal); 1124 1125 SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT); 1126 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 1127 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1128 } 1129 1130 // Otherwise: 1131 // (select condv, truev, falsev) 1132 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 1133 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 1134 SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT); 1135 1136 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 1137 1138 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 1139 } 1140 1141 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1142 MachineFunction &MF = DAG.getMachineFunction(); 1143 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1144 1145 SDLoc DL(Op); 1146 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1147 getPointerTy(MF.getDataLayout())); 1148 1149 // vastart just stores the address of the VarArgsFrameIndex slot into the 1150 // memory location argument. 1151 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1152 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1153 MachinePointerInfo(SV)); 1154 } 1155 1156 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 1157 SelectionDAG &DAG) const { 1158 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1159 MachineFunction &MF = DAG.getMachineFunction(); 1160 MachineFrameInfo &MFI = MF.getFrameInfo(); 1161 MFI.setFrameAddressIsTaken(true); 1162 Register FrameReg = RI.getFrameRegister(MF); 1163 int XLenInBytes = Subtarget.getXLen() / 8; 1164 1165 EVT VT = Op.getValueType(); 1166 SDLoc DL(Op); 1167 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 1168 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1169 while (Depth--) { 1170 int Offset = -(XLenInBytes * 2); 1171 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1172 DAG.getIntPtrConstant(Offset, DL)); 1173 FrameAddr = 1174 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1175 } 1176 return FrameAddr; 1177 } 1178 1179 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 1180 SelectionDAG &DAG) const { 1181 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 1182 MachineFunction &MF = DAG.getMachineFunction(); 1183 MachineFrameInfo &MFI = MF.getFrameInfo(); 1184 MFI.setReturnAddressIsTaken(true); 1185 MVT XLenVT = Subtarget.getXLenVT(); 1186 int XLenInBytes = Subtarget.getXLen() / 8; 1187 1188 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1189 return SDValue(); 1190 1191 EVT VT = Op.getValueType(); 1192 SDLoc DL(Op); 1193 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1194 if (Depth) { 1195 int Off = -XLenInBytes; 1196 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 1197 SDValue Offset = DAG.getConstant(Off, DL, VT); 1198 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1199 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1200 MachinePointerInfo()); 1201 } 1202 1203 // Return the value of the return address register, marking it an implicit 1204 // live-in. 1205 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 1206 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 1207 } 1208 1209 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 1210 SelectionDAG &DAG) const { 1211 SDLoc DL(Op); 1212 SDValue Lo = Op.getOperand(0); 1213 SDValue Hi = Op.getOperand(1); 1214 SDValue Shamt = Op.getOperand(2); 1215 EVT VT = Lo.getValueType(); 1216 1217 // if Shamt-XLEN < 0: // Shamt < XLEN 1218 // Lo = Lo << Shamt 1219 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 1220 // else: 1221 // Lo = 0 1222 // Hi = Lo << (Shamt-XLEN) 1223 1224 SDValue Zero = DAG.getConstant(0, DL, VT); 1225 SDValue One = DAG.getConstant(1, DL, VT); 1226 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1227 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1228 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1229 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1230 1231 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 1232 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 1233 SDValue ShiftRightLo = 1234 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 1235 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 1236 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 1237 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 1238 1239 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1240 1241 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 1242 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1243 1244 SDValue Parts[2] = {Lo, Hi}; 1245 return DAG.getMergeValues(Parts, DL); 1246 } 1247 1248 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 1249 bool IsSRA) const { 1250 SDLoc DL(Op); 1251 SDValue Lo = Op.getOperand(0); 1252 SDValue Hi = Op.getOperand(1); 1253 SDValue Shamt = Op.getOperand(2); 1254 EVT VT = Lo.getValueType(); 1255 1256 // SRA expansion: 1257 // if Shamt-XLEN < 0: // Shamt < XLEN 1258 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1259 // Hi = Hi >>s Shamt 1260 // else: 1261 // Lo = Hi >>s (Shamt-XLEN); 1262 // Hi = Hi >>s (XLEN-1) 1263 // 1264 // SRL expansion: 1265 // if Shamt-XLEN < 0: // Shamt < XLEN 1266 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 1267 // Hi = Hi >>u Shamt 1268 // else: 1269 // Lo = Hi >>u (Shamt-XLEN); 1270 // Hi = 0; 1271 1272 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 1273 1274 SDValue Zero = DAG.getConstant(0, DL, VT); 1275 SDValue One = DAG.getConstant(1, DL, VT); 1276 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 1277 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 1278 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 1279 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 1280 1281 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 1282 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 1283 SDValue ShiftLeftHi = 1284 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 1285 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 1286 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 1287 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 1288 SDValue HiFalse = 1289 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 1290 1291 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 1292 1293 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 1294 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 1295 1296 SDValue Parts[2] = {Lo, Hi}; 1297 return DAG.getMergeValues(Parts, DL); 1298 } 1299 1300 // Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is 1301 // illegal (currently only vXi64 RV32). 1302 // FIXME: We could also catch non-constant sign-extended i32 values and lower 1303 // them to SPLAT_VECTOR_I64 1304 SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op, 1305 SelectionDAG &DAG) const { 1306 SDLoc DL(Op); 1307 EVT VecVT = Op.getValueType(); 1308 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 1309 "Unexpected SPLAT_VECTOR lowering"); 1310 SDValue SplatVal = Op.getOperand(0); 1311 1312 // If we can prove that the value is a sign-extended 32-bit value, lower this 1313 // as a custom node in order to try and match RVV vector/scalar instructions. 1314 if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) { 1315 if (isInt<32>(CVal->getSExtValue())) 1316 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1317 DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32)); 1318 } 1319 1320 if (SplatVal.getOpcode() == ISD::SIGN_EXTEND && 1321 SplatVal.getOperand(0).getValueType() == MVT::i32) { 1322 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1323 SplatVal.getOperand(0)); 1324 } 1325 1326 // Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not 1327 // to accidentally sign-extend the 32-bit halves to the e64 SEW: 1328 // vmv.v.x vX, hi 1329 // vsll.vx vX, vX, /*32*/ 1330 // vmv.v.x vY, lo 1331 // vsll.vx vY, vY, /*32*/ 1332 // vsrl.vx vY, vY, /*32*/ 1333 // vor.vv vX, vX, vY 1334 SDValue One = DAG.getConstant(1, DL, MVT::i32); 1335 SDValue Zero = DAG.getConstant(0, DL, MVT::i32); 1336 SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT); 1337 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero); 1338 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One); 1339 1340 Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 1341 Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV); 1342 Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV); 1343 1344 if (isNullConstant(Hi)) 1345 return Lo; 1346 1347 Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi); 1348 Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV); 1349 1350 return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi); 1351 } 1352 1353 // Custom-lower extensions from mask vectors by using a vselect either with 1 1354 // for zero/any-extension or -1 for sign-extension: 1355 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 1356 // Note that any-extension is lowered identically to zero-extension. 1357 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 1358 int64_t ExtTrueVal) const { 1359 SDLoc DL(Op); 1360 EVT VecVT = Op.getValueType(); 1361 SDValue Src = Op.getOperand(0); 1362 // Only custom-lower extensions from mask types 1363 if (!Src.getValueType().isVector() || 1364 Src.getValueType().getVectorElementType() != MVT::i1) 1365 return Op; 1366 1367 // Be careful not to introduce illegal scalar types at this stage, and be 1368 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1369 // illegal and must be expanded. Since we know that the constants are 1370 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1371 bool IsRV32E64 = 1372 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1373 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1374 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, Subtarget.getXLenVT()); 1375 1376 if (!IsRV32E64) { 1377 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1378 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 1379 } else { 1380 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1381 SplatTrueVal = 1382 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 1383 } 1384 1385 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 1386 } 1387 1388 // Custom-lower truncations from vectors to mask vectors by using a mask and a 1389 // setcc operation: 1390 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 1391 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 1392 SelectionDAG &DAG) const { 1393 SDLoc DL(Op); 1394 EVT MaskVT = Op.getValueType(); 1395 // Only expect to custom-lower truncations to mask types 1396 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 1397 "Unexpected type for vector mask lowering"); 1398 SDValue Src = Op.getOperand(0); 1399 EVT VecVT = Src.getValueType(); 1400 1401 // Be careful not to introduce illegal scalar types at this stage, and be 1402 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 1403 // illegal and must be expanded. Since we know that the constants are 1404 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 1405 bool IsRV32E64 = 1406 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 1407 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 1408 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1409 1410 if (!IsRV32E64) { 1411 SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne); 1412 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 1413 } else { 1414 SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne); 1415 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 1416 } 1417 1418 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 1419 1420 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 1421 } 1422 1423 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 1424 SelectionDAG &DAG) const { 1425 SDLoc DL(Op); 1426 EVT VecVT = Op.getValueType(); 1427 SDValue Vec = Op.getOperand(0); 1428 SDValue Val = Op.getOperand(1); 1429 SDValue Idx = Op.getOperand(2); 1430 1431 // Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is 1432 // first slid down into position, the value is inserted into the first 1433 // position, and the vector is slid back up. We do this to simplify patterns. 1434 // (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx), 1435 if (Subtarget.is64Bit() || VecVT.getVectorElementType() != MVT::i64) { 1436 if (isNullConstant(Idx)) 1437 return Op; 1438 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1439 DAG.getUNDEF(VecVT), Vec, Idx); 1440 SDValue InsertElt0 = 1441 DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecVT, Slidedown, Val, 1442 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1443 1444 return DAG.getNode(RISCVISD::VSLIDEUP, DL, VecVT, Vec, InsertElt0, Idx); 1445 } 1446 1447 // Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type 1448 // is illegal (currently only vXi64 RV32). 1449 // Since there is no easy way of getting a single element into a vector when 1450 // XLEN<SEW, we lower the operation to the following sequence: 1451 // splat vVal, rVal 1452 // vid.v vVid 1453 // vmseq.vx mMask, vVid, rIdx 1454 // vmerge.vvm vDest, vSrc, vVal, mMask 1455 // This essentially merges the original vector with the inserted element by 1456 // using a mask whose only set bit is that corresponding to the insert 1457 // index. 1458 SDValue SplattedVal = DAG.getSplatVector(VecVT, DL, Val); 1459 SDValue SplattedIdx = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Idx); 1460 1461 SDValue VID = DAG.getNode(RISCVISD::VID, DL, VecVT); 1462 auto SetCCVT = 1463 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VecVT); 1464 SDValue Mask = DAG.getSetCC(DL, SetCCVT, VID, SplattedIdx, ISD::SETEQ); 1465 1466 return DAG.getNode(ISD::VSELECT, DL, VecVT, Mask, SplattedVal, Vec); 1467 } 1468 1469 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 1470 // extract the first element: (extractelt (slidedown vec, idx), 0). This is 1471 // done to maintain partity with the legalization of RV32 vXi64 legalization. 1472 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 1473 SelectionDAG &DAG) const { 1474 SDLoc DL(Op); 1475 SDValue Idx = Op.getOperand(1); 1476 if (isNullConstant(Idx)) 1477 return Op; 1478 1479 SDValue Vec = Op.getOperand(0); 1480 EVT EltVT = Op.getValueType(); 1481 EVT VecVT = Vec.getValueType(); 1482 SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1483 DAG.getUNDEF(VecVT), Vec, Idx); 1484 1485 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Slidedown, 1486 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 1487 } 1488 1489 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 1490 SelectionDAG &DAG) const { 1491 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1492 SDLoc DL(Op); 1493 1494 if (Subtarget.hasStdExtV()) { 1495 // Some RVV intrinsics may claim that they want an integer operand to be 1496 // extended. 1497 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1498 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1499 if (II->ExtendedOperand) { 1500 assert(II->ExtendedOperand < Op.getNumOperands()); 1501 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1502 SDValue &ScalarOp = Operands[II->ExtendedOperand]; 1503 EVT OpVT = ScalarOp.getValueType(); 1504 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1505 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1506 // If the operand is a constant, sign extend to increase our chances 1507 // of being able to use a .vi instruction. ANY_EXTEND would become a 1508 // a zero extend and the simm5 check in isel would fail. 1509 // FIXME: Should we ignore the upper bits in isel instead? 1510 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1511 : ISD::ANY_EXTEND; 1512 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1513 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 1514 Operands); 1515 } 1516 } 1517 } 1518 } 1519 1520 switch (IntNo) { 1521 default: 1522 return SDValue(); // Don't custom lower most intrinsics. 1523 case Intrinsic::thread_pointer: { 1524 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1525 return DAG.getRegister(RISCV::X4, PtrVT); 1526 } 1527 case Intrinsic::riscv_vmv_x_s: 1528 assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!"); 1529 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 1530 Op.getOperand(1)); 1531 } 1532 } 1533 1534 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 1535 SelectionDAG &DAG) const { 1536 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1537 SDLoc DL(Op); 1538 1539 if (Subtarget.hasStdExtV()) { 1540 // Some RVV intrinsics may claim that they want an integer operand to be 1541 // extended. 1542 if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 1543 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) { 1544 if (II->ExtendedOperand) { 1545 // The operands start from the second argument in INTRINSIC_W_CHAIN. 1546 unsigned ExtendOp = II->ExtendedOperand + 1; 1547 assert(ExtendOp < Op.getNumOperands()); 1548 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 1549 SDValue &ScalarOp = Operands[ExtendOp]; 1550 EVT OpVT = ScalarOp.getValueType(); 1551 if (OpVT == MVT::i8 || OpVT == MVT::i16 || 1552 (OpVT == MVT::i32 && Subtarget.is64Bit())) { 1553 // If the operand is a constant, sign extend to increase our chances 1554 // of being able to use a .vi instruction. ANY_EXTEND would become a 1555 // a zero extend and the simm5 check in isel would fail. 1556 // FIXME: Should we ignore the upper bits in isel instead? 1557 unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND 1558 : ISD::ANY_EXTEND; 1559 ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp); 1560 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(), 1561 Operands); 1562 } 1563 } 1564 } 1565 } 1566 1567 switch (IntNo) { 1568 default: 1569 return SDValue(); // Don't custom lower most intrinsics. 1570 case Intrinsic::riscv_vleff: { 1571 SDLoc DL(Op); 1572 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1573 SDValue Load = DAG.getNode(RISCVISD::VLEFF, DL, VTs, Op.getOperand(0), 1574 Op.getOperand(2), Op.getOperand(3)); 1575 SDValue ReadVL = 1576 SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1), 1577 Load.getValue(2)), 1578 0); 1579 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1580 } 1581 case Intrinsic::riscv_vleff_mask: { 1582 SDLoc DL(Op); 1583 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue); 1584 SDValue Load = DAG.getNode(RISCVISD::VLEFF_MASK, DL, VTs, Op.getOperand(0), 1585 Op.getOperand(2), Op.getOperand(3), 1586 Op.getOperand(4), Op.getOperand(5)); 1587 SDValue ReadVL = 1588 SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1), 1589 Load.getValue(2)), 1590 0); 1591 return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL); 1592 } 1593 } 1594 } 1595 1596 // Returns the opcode of the target-specific SDNode that implements the 32-bit 1597 // form of the given Opcode. 1598 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 1599 switch (Opcode) { 1600 default: 1601 llvm_unreachable("Unexpected opcode"); 1602 case ISD::SHL: 1603 return RISCVISD::SLLW; 1604 case ISD::SRA: 1605 return RISCVISD::SRAW; 1606 case ISD::SRL: 1607 return RISCVISD::SRLW; 1608 case ISD::SDIV: 1609 return RISCVISD::DIVW; 1610 case ISD::UDIV: 1611 return RISCVISD::DIVUW; 1612 case ISD::UREM: 1613 return RISCVISD::REMUW; 1614 case ISD::ROTL: 1615 return RISCVISD::ROLW; 1616 case ISD::ROTR: 1617 return RISCVISD::RORW; 1618 case RISCVISD::GREVI: 1619 return RISCVISD::GREVIW; 1620 case RISCVISD::GORCI: 1621 return RISCVISD::GORCIW; 1622 } 1623 } 1624 1625 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 1626 // Because i32 isn't a legal type for RV64, these operations would otherwise 1627 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 1628 // later one because the fact the operation was originally of type i32 is 1629 // lost. 1630 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 1631 unsigned ExtOpc = ISD::ANY_EXTEND) { 1632 SDLoc DL(N); 1633 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1634 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 1635 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 1636 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 1637 // ReplaceNodeResults requires we maintain the same type for the return value. 1638 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 1639 } 1640 1641 // Converts the given 32-bit operation to a i64 operation with signed extension 1642 // semantic to reduce the signed extension instructions. 1643 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 1644 SDLoc DL(N); 1645 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1646 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1647 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 1648 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 1649 DAG.getValueType(MVT::i32)); 1650 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 1651 } 1652 1653 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 1654 SmallVectorImpl<SDValue> &Results, 1655 SelectionDAG &DAG) const { 1656 SDLoc DL(N); 1657 switch (N->getOpcode()) { 1658 default: 1659 llvm_unreachable("Don't know how to custom type legalize this operation!"); 1660 case ISD::STRICT_FP_TO_SINT: 1661 case ISD::STRICT_FP_TO_UINT: 1662 case ISD::FP_TO_SINT: 1663 case ISD::FP_TO_UINT: { 1664 bool IsStrict = N->isStrictFPOpcode(); 1665 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1666 "Unexpected custom legalisation"); 1667 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 1668 // If the FP type needs to be softened, emit a library call using the 'si' 1669 // version. If we left it to default legalization we'd end up with 'di'. If 1670 // the FP type doesn't need to be softened just let generic type 1671 // legalization promote the result type. 1672 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 1673 TargetLowering::TypeSoftenFloat) 1674 return; 1675 RTLIB::Libcall LC; 1676 if (N->getOpcode() == ISD::FP_TO_SINT || 1677 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 1678 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 1679 else 1680 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 1681 MakeLibCallOptions CallOptions; 1682 EVT OpVT = Op0.getValueType(); 1683 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 1684 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 1685 SDValue Result; 1686 std::tie(Result, Chain) = 1687 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 1688 Results.push_back(Result); 1689 if (IsStrict) 1690 Results.push_back(Chain); 1691 break; 1692 } 1693 case ISD::READCYCLECOUNTER: { 1694 assert(!Subtarget.is64Bit() && 1695 "READCYCLECOUNTER only has custom type legalization on riscv32"); 1696 1697 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 1698 SDValue RCW = 1699 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 1700 1701 Results.push_back( 1702 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 1703 Results.push_back(RCW.getValue(2)); 1704 break; 1705 } 1706 case ISD::ADD: 1707 case ISD::SUB: 1708 case ISD::MUL: 1709 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1710 "Unexpected custom legalisation"); 1711 if (N->getOperand(1).getOpcode() == ISD::Constant) 1712 return; 1713 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 1714 break; 1715 case ISD::SHL: 1716 case ISD::SRA: 1717 case ISD::SRL: 1718 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1719 "Unexpected custom legalisation"); 1720 if (N->getOperand(1).getOpcode() == ISD::Constant) 1721 return; 1722 Results.push_back(customLegalizeToWOp(N, DAG)); 1723 break; 1724 case ISD::ROTL: 1725 case ISD::ROTR: 1726 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1727 "Unexpected custom legalisation"); 1728 Results.push_back(customLegalizeToWOp(N, DAG)); 1729 break; 1730 case ISD::SDIV: 1731 case ISD::UDIV: 1732 case ISD::UREM: { 1733 MVT VT = N->getSimpleValueType(0); 1734 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 1735 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 1736 "Unexpected custom legalisation"); 1737 if (N->getOperand(0).getOpcode() == ISD::Constant || 1738 N->getOperand(1).getOpcode() == ISD::Constant) 1739 return; 1740 1741 // If the input is i32, use ANY_EXTEND since the W instructions don't read 1742 // the upper 32 bits. For other types we need to sign or zero extend 1743 // based on the opcode. 1744 unsigned ExtOpc = ISD::ANY_EXTEND; 1745 if (VT != MVT::i32) 1746 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 1747 : ISD::ZERO_EXTEND; 1748 1749 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 1750 break; 1751 } 1752 case ISD::BITCAST: { 1753 assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1754 Subtarget.hasStdExtF()) || 1755 (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) && 1756 "Unexpected custom legalisation"); 1757 SDValue Op0 = N->getOperand(0); 1758 if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) { 1759 if (Op0.getValueType() != MVT::f16) 1760 return; 1761 SDValue FPConv = 1762 DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0); 1763 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 1764 } else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1765 Subtarget.hasStdExtF()) { 1766 if (Op0.getValueType() != MVT::f32) 1767 return; 1768 SDValue FPConv = 1769 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 1770 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 1771 } 1772 break; 1773 } 1774 case RISCVISD::GREVI: 1775 case RISCVISD::GORCI: { 1776 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1777 "Unexpected custom legalisation"); 1778 // This is similar to customLegalizeToWOp, except that we pass the second 1779 // operand (a TargetConstant) straight through: it is already of type 1780 // XLenVT. 1781 SDLoc DL(N); 1782 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 1783 SDValue NewOp0 = 1784 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1785 SDValue NewRes = 1786 DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1)); 1787 // ReplaceNodeResults requires we maintain the same type for the return 1788 // value. 1789 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 1790 break; 1791 } 1792 case ISD::BSWAP: 1793 case ISD::BITREVERSE: { 1794 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1795 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1796 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 1797 N->getOperand(0)); 1798 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 1799 SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0, 1800 DAG.getTargetConstant(Imm, DL, 1801 Subtarget.getXLenVT())); 1802 // ReplaceNodeResults requires we maintain the same type for the return 1803 // value. 1804 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 1805 break; 1806 } 1807 case ISD::FSHL: 1808 case ISD::FSHR: { 1809 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 1810 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 1811 SDValue NewOp0 = 1812 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 1813 SDValue NewOp1 = 1814 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 1815 SDValue NewOp2 = 1816 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 1817 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 1818 // Mask the shift amount to 5 bits. 1819 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 1820 DAG.getConstant(0x1f, DL, MVT::i64)); 1821 unsigned Opc = 1822 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 1823 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 1824 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 1825 break; 1826 } 1827 case ISD::EXTRACT_VECTOR_ELT: { 1828 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 1829 // type is illegal (currently only vXi64 RV32). 1830 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 1831 // transferred to the destination register. We issue two of these from the 1832 // upper- and lower- halves of the SEW-bit vector element, slid down to the 1833 // first element. 1834 SDLoc DL(N); 1835 SDValue Vec = N->getOperand(0); 1836 SDValue Idx = N->getOperand(1); 1837 EVT VecVT = Vec.getValueType(); 1838 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 1839 VecVT.getVectorElementType() == MVT::i64 && 1840 "Unexpected EXTRACT_VECTOR_ELT legalization"); 1841 1842 SDValue Slidedown = Vec; 1843 // Unless the index is known to be 0, we must slide the vector down to get 1844 // the desired element into index 0. 1845 if (!isNullConstant(Idx)) 1846 Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN, DL, VecVT, 1847 DAG.getUNDEF(VecVT), Vec, Idx); 1848 1849 MVT XLenVT = Subtarget.getXLenVT(); 1850 // Extract the lower XLEN bits of the correct vector element. 1851 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Slidedown, Idx); 1852 1853 // To extract the upper XLEN bits of the vector element, shift the first 1854 // element right by 32 bits and re-extract the lower XLEN bits. 1855 SDValue ThirtyTwoV = 1856 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, 1857 DAG.getConstant(32, DL, Subtarget.getXLenVT())); 1858 SDValue LShr32 = DAG.getNode(ISD::SRL, DL, VecVT, Slidedown, ThirtyTwoV); 1859 1860 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32, Idx); 1861 1862 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 1863 break; 1864 } 1865 case ISD::INTRINSIC_WO_CHAIN: { 1866 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 1867 switch (IntNo) { 1868 default: 1869 llvm_unreachable( 1870 "Don't know how to custom type legalize this intrinsic!"); 1871 case Intrinsic::riscv_vmv_x_s: { 1872 EVT VT = N->getValueType(0); 1873 assert((VT == MVT::i8 || VT == MVT::i16 || 1874 (Subtarget.is64Bit() && VT == MVT::i32)) && 1875 "Unexpected custom legalisation!"); 1876 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 1877 Subtarget.getXLenVT(), N->getOperand(1)); 1878 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 1879 break; 1880 } 1881 } 1882 break; 1883 } 1884 } 1885 } 1886 1887 // A structure to hold one of the bit-manipulation patterns below. Together, a 1888 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 1889 // (or (and (shl x, 1), 0xAAAAAAAA), 1890 // (and (srl x, 1), 0x55555555)) 1891 struct RISCVBitmanipPat { 1892 SDValue Op; 1893 unsigned ShAmt; 1894 bool IsSHL; 1895 1896 bool formsPairWith(const RISCVBitmanipPat &Other) const { 1897 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 1898 } 1899 }; 1900 1901 // Matches any of the following bit-manipulation patterns: 1902 // (and (shl x, 1), (0x55555555 << 1)) 1903 // (and (srl x, 1), 0x55555555) 1904 // (shl (and x, 0x55555555), 1) 1905 // (srl (and x, (0x55555555 << 1)), 1) 1906 // where the shift amount and mask may vary thus: 1907 // [1] = 0x55555555 / 0xAAAAAAAA 1908 // [2] = 0x33333333 / 0xCCCCCCCC 1909 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 1910 // [8] = 0x00FF00FF / 0xFF00FF00 1911 // [16] = 0x0000FFFF / 0xFFFFFFFF 1912 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 1913 static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) { 1914 Optional<uint64_t> Mask; 1915 // Optionally consume a mask around the shift operation. 1916 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 1917 Mask = Op.getConstantOperandVal(1); 1918 Op = Op.getOperand(0); 1919 } 1920 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 1921 return None; 1922 bool IsSHL = Op.getOpcode() == ISD::SHL; 1923 1924 if (!isa<ConstantSDNode>(Op.getOperand(1))) 1925 return None; 1926 auto ShAmt = Op.getConstantOperandVal(1); 1927 1928 if (!isPowerOf2_64(ShAmt)) 1929 return None; 1930 1931 // These are the unshifted masks which we use to match bit-manipulation 1932 // patterns. They may be shifted left in certain circumstances. 1933 static const uint64_t BitmanipMasks[] = { 1934 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 1935 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL, 1936 }; 1937 1938 unsigned MaskIdx = Log2_64(ShAmt); 1939 if (MaskIdx >= array_lengthof(BitmanipMasks)) 1940 return None; 1941 1942 auto Src = Op.getOperand(0); 1943 1944 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 1945 auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 1946 1947 // The expected mask is shifted left when the AND is found around SHL 1948 // patterns. 1949 // ((x >> 1) & 0x55555555) 1950 // ((x << 1) & 0xAAAAAAAA) 1951 bool SHLExpMask = IsSHL; 1952 1953 if (!Mask) { 1954 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 1955 // the mask is all ones: consume that now. 1956 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 1957 Mask = Src.getConstantOperandVal(1); 1958 Src = Src.getOperand(0); 1959 // The expected mask is now in fact shifted left for SRL, so reverse the 1960 // decision. 1961 // ((x & 0xAAAAAAAA) >> 1) 1962 // ((x & 0x55555555) << 1) 1963 SHLExpMask = !SHLExpMask; 1964 } else { 1965 // Use a default shifted mask of all-ones if there's no AND, truncated 1966 // down to the expected width. This simplifies the logic later on. 1967 Mask = maskTrailingOnes<uint64_t>(Width); 1968 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 1969 } 1970 } 1971 1972 if (SHLExpMask) 1973 ExpMask <<= ShAmt; 1974 1975 if (Mask != ExpMask) 1976 return None; 1977 1978 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 1979 } 1980 1981 // Match the following pattern as a GREVI(W) operation 1982 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 1983 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 1984 const RISCVSubtarget &Subtarget) { 1985 EVT VT = Op.getValueType(); 1986 1987 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 1988 auto LHS = matchRISCVBitmanipPat(Op.getOperand(0)); 1989 auto RHS = matchRISCVBitmanipPat(Op.getOperand(1)); 1990 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 1991 SDLoc DL(Op); 1992 return DAG.getNode( 1993 RISCVISD::GREVI, DL, VT, LHS->Op, 1994 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 1995 } 1996 } 1997 return SDValue(); 1998 } 1999 2000 // Matches any the following pattern as a GORCI(W) operation 2001 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 2002 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 2003 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 2004 // Note that with the variant of 3., 2005 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 2006 // the inner pattern will first be matched as GREVI and then the outer 2007 // pattern will be matched to GORC via the first rule above. 2008 // 4. (or (rotl/rotr x, bitwidth/2), x) 2009 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 2010 const RISCVSubtarget &Subtarget) { 2011 EVT VT = Op.getValueType(); 2012 2013 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 2014 SDLoc DL(Op); 2015 SDValue Op0 = Op.getOperand(0); 2016 SDValue Op1 = Op.getOperand(1); 2017 2018 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 2019 if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X && 2020 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 2021 return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1)); 2022 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 2023 if ((Reverse.getOpcode() == ISD::ROTL || 2024 Reverse.getOpcode() == ISD::ROTR) && 2025 Reverse.getOperand(0) == X && 2026 isa<ConstantSDNode>(Reverse.getOperand(1))) { 2027 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 2028 if (RotAmt == (VT.getSizeInBits() / 2)) 2029 return DAG.getNode( 2030 RISCVISD::GORCI, DL, VT, X, 2031 DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT())); 2032 } 2033 return SDValue(); 2034 }; 2035 2036 // Check for either commutable permutation of (or (GREVI x, shamt), x) 2037 if (SDValue V = MatchOROfReverse(Op0, Op1)) 2038 return V; 2039 if (SDValue V = MatchOROfReverse(Op1, Op0)) 2040 return V; 2041 2042 // OR is commutable so canonicalize its OR operand to the left 2043 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 2044 std::swap(Op0, Op1); 2045 if (Op0.getOpcode() != ISD::OR) 2046 return SDValue(); 2047 SDValue OrOp0 = Op0.getOperand(0); 2048 SDValue OrOp1 = Op0.getOperand(1); 2049 auto LHS = matchRISCVBitmanipPat(OrOp0); 2050 // OR is commutable so swap the operands and try again: x might have been 2051 // on the left 2052 if (!LHS) { 2053 std::swap(OrOp0, OrOp1); 2054 LHS = matchRISCVBitmanipPat(OrOp0); 2055 } 2056 auto RHS = matchRISCVBitmanipPat(Op1); 2057 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 2058 return DAG.getNode( 2059 RISCVISD::GORCI, DL, VT, LHS->Op, 2060 DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT())); 2061 } 2062 } 2063 return SDValue(); 2064 } 2065 2066 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 2067 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 2068 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 2069 // not undo itself, but they are redundant. 2070 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 2071 unsigned ShAmt1 = N->getConstantOperandVal(1); 2072 SDValue Src = N->getOperand(0); 2073 2074 if (Src.getOpcode() != N->getOpcode()) 2075 return SDValue(); 2076 2077 unsigned ShAmt2 = Src.getConstantOperandVal(1); 2078 Src = Src.getOperand(0); 2079 2080 unsigned CombinedShAmt; 2081 if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW) 2082 CombinedShAmt = ShAmt1 | ShAmt2; 2083 else 2084 CombinedShAmt = ShAmt1 ^ ShAmt2; 2085 2086 if (CombinedShAmt == 0) 2087 return Src; 2088 2089 SDLoc DL(N); 2090 return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src, 2091 DAG.getTargetConstant(CombinedShAmt, DL, 2092 N->getOperand(1).getValueType())); 2093 } 2094 2095 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 2096 DAGCombinerInfo &DCI) const { 2097 SelectionDAG &DAG = DCI.DAG; 2098 2099 switch (N->getOpcode()) { 2100 default: 2101 break; 2102 case RISCVISD::SplitF64: { 2103 SDValue Op0 = N->getOperand(0); 2104 // If the input to SplitF64 is just BuildPairF64 then the operation is 2105 // redundant. Instead, use BuildPairF64's operands directly. 2106 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 2107 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 2108 2109 SDLoc DL(N); 2110 2111 // It's cheaper to materialise two 32-bit integers than to load a double 2112 // from the constant pool and transfer it to integer registers through the 2113 // stack. 2114 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 2115 APInt V = C->getValueAPF().bitcastToAPInt(); 2116 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 2117 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 2118 return DCI.CombineTo(N, Lo, Hi); 2119 } 2120 2121 // This is a target-specific version of a DAGCombine performed in 2122 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2123 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2124 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2125 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2126 !Op0.getNode()->hasOneUse()) 2127 break; 2128 SDValue NewSplitF64 = 2129 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 2130 Op0.getOperand(0)); 2131 SDValue Lo = NewSplitF64.getValue(0); 2132 SDValue Hi = NewSplitF64.getValue(1); 2133 APInt SignBit = APInt::getSignMask(32); 2134 if (Op0.getOpcode() == ISD::FNEG) { 2135 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 2136 DAG.getConstant(SignBit, DL, MVT::i32)); 2137 return DCI.CombineTo(N, Lo, NewHi); 2138 } 2139 assert(Op0.getOpcode() == ISD::FABS); 2140 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 2141 DAG.getConstant(~SignBit, DL, MVT::i32)); 2142 return DCI.CombineTo(N, Lo, NewHi); 2143 } 2144 case RISCVISD::SLLW: 2145 case RISCVISD::SRAW: 2146 case RISCVISD::SRLW: 2147 case RISCVISD::ROLW: 2148 case RISCVISD::RORW: { 2149 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 2150 SDValue LHS = N->getOperand(0); 2151 SDValue RHS = N->getOperand(1); 2152 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 2153 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 2154 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 2155 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 2156 if (N->getOpcode() != ISD::DELETED_NODE) 2157 DCI.AddToWorklist(N); 2158 return SDValue(N, 0); 2159 } 2160 break; 2161 } 2162 case RISCVISD::FSLW: 2163 case RISCVISD::FSRW: { 2164 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 2165 // read. 2166 SDValue Op0 = N->getOperand(0); 2167 SDValue Op1 = N->getOperand(1); 2168 SDValue ShAmt = N->getOperand(2); 2169 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2170 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 2171 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 2172 SimplifyDemandedBits(Op1, OpMask, DCI) || 2173 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 2174 if (N->getOpcode() != ISD::DELETED_NODE) 2175 DCI.AddToWorklist(N); 2176 return SDValue(N, 0); 2177 } 2178 break; 2179 } 2180 case RISCVISD::GREVIW: 2181 case RISCVISD::GORCIW: { 2182 // Only the lower 32 bits of the first operand are read 2183 SDValue Op0 = N->getOperand(0); 2184 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 2185 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 2186 if (N->getOpcode() != ISD::DELETED_NODE) 2187 DCI.AddToWorklist(N); 2188 return SDValue(N, 0); 2189 } 2190 2191 return combineGREVI_GORCI(N, DCI.DAG); 2192 } 2193 case RISCVISD::FMV_X_ANYEXTW_RV64: { 2194 SDLoc DL(N); 2195 SDValue Op0 = N->getOperand(0); 2196 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 2197 // conversion is unnecessary and can be replaced with an ANY_EXTEND 2198 // of the FMV_W_X_RV64 operand. 2199 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 2200 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 2201 "Unexpected value type!"); 2202 return Op0.getOperand(0); 2203 } 2204 2205 // This is a target-specific version of a DAGCombine performed in 2206 // DAGCombiner::visitBITCAST. It performs the equivalent of: 2207 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 2208 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 2209 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 2210 !Op0.getNode()->hasOneUse()) 2211 break; 2212 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 2213 Op0.getOperand(0)); 2214 APInt SignBit = APInt::getSignMask(32).sext(64); 2215 if (Op0.getOpcode() == ISD::FNEG) 2216 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 2217 DAG.getConstant(SignBit, DL, MVT::i64)); 2218 2219 assert(Op0.getOpcode() == ISD::FABS); 2220 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 2221 DAG.getConstant(~SignBit, DL, MVT::i64)); 2222 } 2223 case RISCVISD::GREVI: 2224 case RISCVISD::GORCI: 2225 return combineGREVI_GORCI(N, DCI.DAG); 2226 case ISD::OR: 2227 if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget)) 2228 return GREV; 2229 if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget)) 2230 return GORC; 2231 break; 2232 case RISCVISD::SELECT_CC: { 2233 // Transform 2234 // (select_cc (xor X, 1), 0, setne, trueV, falseV) -> 2235 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 2236 // This can occur when legalizing some floating point comparisons. 2237 SDValue LHS = N->getOperand(0); 2238 SDValue RHS = N->getOperand(1); 2239 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 2240 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2241 if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) && 2242 LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) && 2243 DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) { 2244 SDLoc DL(N); 2245 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 2246 SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT()); 2247 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), 2248 {LHS.getOperand(0), RHS, TargetCC, N->getOperand(3), 2249 N->getOperand(4)}); 2250 } 2251 break; 2252 } 2253 case ISD::SETCC: { 2254 // (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1. 2255 // Comparing with 0 may allow us to fold into bnez/beqz. 2256 SDValue LHS = N->getOperand(0); 2257 SDValue RHS = N->getOperand(1); 2258 if (LHS.getValueType().isScalableVector()) 2259 break; 2260 auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2261 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 2262 if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) && 2263 DAG.MaskedValueIsZero(LHS, Mask)) { 2264 SDLoc DL(N); 2265 SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType()); 2266 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2267 return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC); 2268 } 2269 break; 2270 } 2271 } 2272 2273 return SDValue(); 2274 } 2275 2276 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 2277 const SDNode *N, CombineLevel Level) const { 2278 // The following folds are only desirable if `(OP _, c1 << c2)` can be 2279 // materialised in fewer instructions than `(OP _, c1)`: 2280 // 2281 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 2282 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 2283 SDValue N0 = N->getOperand(0); 2284 EVT Ty = N0.getValueType(); 2285 if (Ty.isScalarInteger() && 2286 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 2287 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2288 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2289 if (C1 && C2) { 2290 const APInt &C1Int = C1->getAPIntValue(); 2291 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 2292 2293 // We can materialise `c1 << c2` into an add immediate, so it's "free", 2294 // and the combine should happen, to potentially allow further combines 2295 // later. 2296 if (ShiftedC1Int.getMinSignedBits() <= 64 && 2297 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 2298 return true; 2299 2300 // We can materialise `c1` in an add immediate, so it's "free", and the 2301 // combine should be prevented. 2302 if (C1Int.getMinSignedBits() <= 64 && 2303 isLegalAddImmediate(C1Int.getSExtValue())) 2304 return false; 2305 2306 // Neither constant will fit into an immediate, so find materialisation 2307 // costs. 2308 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 2309 Subtarget.is64Bit()); 2310 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 2311 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 2312 2313 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 2314 // combine should be prevented. 2315 if (C1Cost < ShiftedC1Cost) 2316 return false; 2317 } 2318 } 2319 return true; 2320 } 2321 2322 bool RISCVTargetLowering::targetShrinkDemandedConstant( 2323 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2324 TargetLoweringOpt &TLO) const { 2325 // Delay this optimization as late as possible. 2326 if (!TLO.LegalOps) 2327 return false; 2328 2329 EVT VT = Op.getValueType(); 2330 if (VT.isVector()) 2331 return false; 2332 2333 // Only handle AND for now. 2334 if (Op.getOpcode() != ISD::AND) 2335 return false; 2336 2337 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2338 if (!C) 2339 return false; 2340 2341 const APInt &Mask = C->getAPIntValue(); 2342 2343 // Clear all non-demanded bits initially. 2344 APInt ShrunkMask = Mask & DemandedBits; 2345 2346 // If the shrunk mask fits in sign extended 12 bits, let the target 2347 // independent code apply it. 2348 if (ShrunkMask.isSignedIntN(12)) 2349 return false; 2350 2351 // Try to make a smaller immediate by setting undemanded bits. 2352 2353 // We need to be able to make a negative number through a combination of mask 2354 // and undemanded bits. 2355 APInt ExpandedMask = Mask | ~DemandedBits; 2356 if (!ExpandedMask.isNegative()) 2357 return false; 2358 2359 // What is the fewest number of bits we need to represent the negative number. 2360 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 2361 2362 // Try to make a 12 bit negative immediate. If that fails try to make a 32 2363 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 2364 APInt NewMask = ShrunkMask; 2365 if (MinSignedBits <= 12) 2366 NewMask.setBitsFrom(11); 2367 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 2368 NewMask.setBitsFrom(31); 2369 else 2370 return false; 2371 2372 // Sanity check that our new mask is a subset of the demanded mask. 2373 assert(NewMask.isSubsetOf(ExpandedMask)); 2374 2375 // If we aren't changing the mask, just return true to keep it and prevent 2376 // the caller from optimizing. 2377 if (NewMask == Mask) 2378 return true; 2379 2380 // Replace the constant with the new mask. 2381 SDLoc DL(Op); 2382 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 2383 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 2384 return TLO.CombineTo(Op, NewOp); 2385 } 2386 2387 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2388 KnownBits &Known, 2389 const APInt &DemandedElts, 2390 const SelectionDAG &DAG, 2391 unsigned Depth) const { 2392 unsigned BitWidth = Known.getBitWidth(); 2393 unsigned Opc = Op.getOpcode(); 2394 assert((Opc >= ISD::BUILTIN_OP_END || 2395 Opc == ISD::INTRINSIC_WO_CHAIN || 2396 Opc == ISD::INTRINSIC_W_CHAIN || 2397 Opc == ISD::INTRINSIC_VOID) && 2398 "Should use MaskedValueIsZero if you don't know whether Op" 2399 " is a target node!"); 2400 2401 Known.resetAll(); 2402 switch (Opc) { 2403 default: break; 2404 case RISCVISD::REMUW: { 2405 KnownBits Known2; 2406 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2407 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2408 // We only care about the lower 32 bits. 2409 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 2410 // Restore the original width by sign extending. 2411 Known = Known.sext(BitWidth); 2412 break; 2413 } 2414 case RISCVISD::DIVUW: { 2415 KnownBits Known2; 2416 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2417 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2418 // We only care about the lower 32 bits. 2419 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 2420 // Restore the original width by sign extending. 2421 Known = Known.sext(BitWidth); 2422 break; 2423 } 2424 case RISCVISD::READ_VLENB: 2425 // We assume VLENB is at least 8 bytes. 2426 // FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits. 2427 Known.Zero.setLowBits(3); 2428 break; 2429 } 2430 } 2431 2432 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 2433 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 2434 unsigned Depth) const { 2435 switch (Op.getOpcode()) { 2436 default: 2437 break; 2438 case RISCVISD::SLLW: 2439 case RISCVISD::SRAW: 2440 case RISCVISD::SRLW: 2441 case RISCVISD::DIVW: 2442 case RISCVISD::DIVUW: 2443 case RISCVISD::REMUW: 2444 case RISCVISD::ROLW: 2445 case RISCVISD::RORW: 2446 case RISCVISD::GREVIW: 2447 case RISCVISD::GORCIW: 2448 case RISCVISD::FSLW: 2449 case RISCVISD::FSRW: 2450 // TODO: As the result is sign-extended, this is conservatively correct. A 2451 // more precise answer could be calculated for SRAW depending on known 2452 // bits in the shift amount. 2453 return 33; 2454 case RISCVISD::VMV_X_S: 2455 // The number of sign bits of the scalar result is computed by obtaining the 2456 // element type of the input vector operand, subtracting its width from the 2457 // XLEN, and then adding one (sign bit within the element type). If the 2458 // element type is wider than XLen, the least-significant XLEN bits are 2459 // taken. 2460 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 2461 return 1; 2462 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 2463 } 2464 2465 return 1; 2466 } 2467 2468 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 2469 MachineBasicBlock *BB) { 2470 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 2471 2472 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 2473 // Should the count have wrapped while it was being read, we need to try 2474 // again. 2475 // ... 2476 // read: 2477 // rdcycleh x3 # load high word of cycle 2478 // rdcycle x2 # load low word of cycle 2479 // rdcycleh x4 # load high word of cycle 2480 // bne x3, x4, read # check if high word reads match, otherwise try again 2481 // ... 2482 2483 MachineFunction &MF = *BB->getParent(); 2484 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2485 MachineFunction::iterator It = ++BB->getIterator(); 2486 2487 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2488 MF.insert(It, LoopMBB); 2489 2490 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 2491 MF.insert(It, DoneMBB); 2492 2493 // Transfer the remainder of BB and its successor edges to DoneMBB. 2494 DoneMBB->splice(DoneMBB->begin(), BB, 2495 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 2496 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 2497 2498 BB->addSuccessor(LoopMBB); 2499 2500 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 2501 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 2502 Register LoReg = MI.getOperand(0).getReg(); 2503 Register HiReg = MI.getOperand(1).getReg(); 2504 DebugLoc DL = MI.getDebugLoc(); 2505 2506 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2507 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 2508 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2509 .addReg(RISCV::X0); 2510 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 2511 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 2512 .addReg(RISCV::X0); 2513 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 2514 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 2515 .addReg(RISCV::X0); 2516 2517 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 2518 .addReg(HiReg) 2519 .addReg(ReadAgainReg) 2520 .addMBB(LoopMBB); 2521 2522 LoopMBB->addSuccessor(LoopMBB); 2523 LoopMBB->addSuccessor(DoneMBB); 2524 2525 MI.eraseFromParent(); 2526 2527 return DoneMBB; 2528 } 2529 2530 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 2531 MachineBasicBlock *BB) { 2532 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 2533 2534 MachineFunction &MF = *BB->getParent(); 2535 DebugLoc DL = MI.getDebugLoc(); 2536 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2537 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2538 Register LoReg = MI.getOperand(0).getReg(); 2539 Register HiReg = MI.getOperand(1).getReg(); 2540 Register SrcReg = MI.getOperand(2).getReg(); 2541 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 2542 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2543 2544 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 2545 RI); 2546 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2547 MachineMemOperand *MMOLo = 2548 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 2549 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2550 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 2551 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 2552 .addFrameIndex(FI) 2553 .addImm(0) 2554 .addMemOperand(MMOLo); 2555 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 2556 .addFrameIndex(FI) 2557 .addImm(4) 2558 .addMemOperand(MMOHi); 2559 MI.eraseFromParent(); // The pseudo instruction is gone now. 2560 return BB; 2561 } 2562 2563 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 2564 MachineBasicBlock *BB) { 2565 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 2566 "Unexpected instruction"); 2567 2568 MachineFunction &MF = *BB->getParent(); 2569 DebugLoc DL = MI.getDebugLoc(); 2570 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2571 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 2572 Register DstReg = MI.getOperand(0).getReg(); 2573 Register LoReg = MI.getOperand(1).getReg(); 2574 Register HiReg = MI.getOperand(2).getReg(); 2575 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 2576 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 2577 2578 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 2579 MachineMemOperand *MMOLo = 2580 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 2581 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 2582 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 2583 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2584 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 2585 .addFrameIndex(FI) 2586 .addImm(0) 2587 .addMemOperand(MMOLo); 2588 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 2589 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 2590 .addFrameIndex(FI) 2591 .addImm(4) 2592 .addMemOperand(MMOHi); 2593 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 2594 MI.eraseFromParent(); // The pseudo instruction is gone now. 2595 return BB; 2596 } 2597 2598 static bool isSelectPseudo(MachineInstr &MI) { 2599 switch (MI.getOpcode()) { 2600 default: 2601 return false; 2602 case RISCV::Select_GPR_Using_CC_GPR: 2603 case RISCV::Select_FPR16_Using_CC_GPR: 2604 case RISCV::Select_FPR32_Using_CC_GPR: 2605 case RISCV::Select_FPR64_Using_CC_GPR: 2606 return true; 2607 } 2608 } 2609 2610 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 2611 MachineBasicBlock *BB) { 2612 // To "insert" Select_* instructions, we actually have to insert the triangle 2613 // control-flow pattern. The incoming instructions know the destination vreg 2614 // to set, the condition code register to branch on, the true/false values to 2615 // select between, and the condcode to use to select the appropriate branch. 2616 // 2617 // We produce the following control flow: 2618 // HeadMBB 2619 // | \ 2620 // | IfFalseMBB 2621 // | / 2622 // TailMBB 2623 // 2624 // When we find a sequence of selects we attempt to optimize their emission 2625 // by sharing the control flow. Currently we only handle cases where we have 2626 // multiple selects with the exact same condition (same LHS, RHS and CC). 2627 // The selects may be interleaved with other instructions if the other 2628 // instructions meet some requirements we deem safe: 2629 // - They are debug instructions. Otherwise, 2630 // - They do not have side-effects, do not access memory and their inputs do 2631 // not depend on the results of the select pseudo-instructions. 2632 // The TrueV/FalseV operands of the selects cannot depend on the result of 2633 // previous selects in the sequence. 2634 // These conditions could be further relaxed. See the X86 target for a 2635 // related approach and more information. 2636 Register LHS = MI.getOperand(1).getReg(); 2637 Register RHS = MI.getOperand(2).getReg(); 2638 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 2639 2640 SmallVector<MachineInstr *, 4> SelectDebugValues; 2641 SmallSet<Register, 4> SelectDests; 2642 SelectDests.insert(MI.getOperand(0).getReg()); 2643 2644 MachineInstr *LastSelectPseudo = &MI; 2645 2646 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 2647 SequenceMBBI != E; ++SequenceMBBI) { 2648 if (SequenceMBBI->isDebugInstr()) 2649 continue; 2650 else if (isSelectPseudo(*SequenceMBBI)) { 2651 if (SequenceMBBI->getOperand(1).getReg() != LHS || 2652 SequenceMBBI->getOperand(2).getReg() != RHS || 2653 SequenceMBBI->getOperand(3).getImm() != CC || 2654 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 2655 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 2656 break; 2657 LastSelectPseudo = &*SequenceMBBI; 2658 SequenceMBBI->collectDebugValues(SelectDebugValues); 2659 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 2660 } else { 2661 if (SequenceMBBI->hasUnmodeledSideEffects() || 2662 SequenceMBBI->mayLoadOrStore()) 2663 break; 2664 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 2665 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 2666 })) 2667 break; 2668 } 2669 } 2670 2671 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 2672 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 2673 DebugLoc DL = MI.getDebugLoc(); 2674 MachineFunction::iterator I = ++BB->getIterator(); 2675 2676 MachineBasicBlock *HeadMBB = BB; 2677 MachineFunction *F = BB->getParent(); 2678 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 2679 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 2680 2681 F->insert(I, IfFalseMBB); 2682 F->insert(I, TailMBB); 2683 2684 // Transfer debug instructions associated with the selects to TailMBB. 2685 for (MachineInstr *DebugInstr : SelectDebugValues) { 2686 TailMBB->push_back(DebugInstr->removeFromParent()); 2687 } 2688 2689 // Move all instructions after the sequence to TailMBB. 2690 TailMBB->splice(TailMBB->end(), HeadMBB, 2691 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 2692 // Update machine-CFG edges by transferring all successors of the current 2693 // block to the new block which will contain the Phi nodes for the selects. 2694 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 2695 // Set the successors for HeadMBB. 2696 HeadMBB->addSuccessor(IfFalseMBB); 2697 HeadMBB->addSuccessor(TailMBB); 2698 2699 // Insert appropriate branch. 2700 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 2701 2702 BuildMI(HeadMBB, DL, TII.get(Opcode)) 2703 .addReg(LHS) 2704 .addReg(RHS) 2705 .addMBB(TailMBB); 2706 2707 // IfFalseMBB just falls through to TailMBB. 2708 IfFalseMBB->addSuccessor(TailMBB); 2709 2710 // Create PHIs for all of the select pseudo-instructions. 2711 auto SelectMBBI = MI.getIterator(); 2712 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 2713 auto InsertionPoint = TailMBB->begin(); 2714 while (SelectMBBI != SelectEnd) { 2715 auto Next = std::next(SelectMBBI); 2716 if (isSelectPseudo(*SelectMBBI)) { 2717 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 2718 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 2719 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 2720 .addReg(SelectMBBI->getOperand(4).getReg()) 2721 .addMBB(HeadMBB) 2722 .addReg(SelectMBBI->getOperand(5).getReg()) 2723 .addMBB(IfFalseMBB); 2724 SelectMBBI->eraseFromParent(); 2725 } 2726 SelectMBBI = Next; 2727 } 2728 2729 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 2730 return TailMBB; 2731 } 2732 2733 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 2734 int VLIndex, unsigned SEWIndex, 2735 RISCVVLMUL VLMul, bool WritesElement0) { 2736 MachineFunction &MF = *BB->getParent(); 2737 DebugLoc DL = MI.getDebugLoc(); 2738 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2739 2740 unsigned SEW = MI.getOperand(SEWIndex).getImm(); 2741 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 2742 RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8)); 2743 2744 MachineRegisterInfo &MRI = MF.getRegInfo(); 2745 2746 // VL and VTYPE are alive here. 2747 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)); 2748 2749 if (VLIndex >= 0) { 2750 // Set VL (rs1 != X0). 2751 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 2752 MIB.addReg(DestReg, RegState::Define | RegState::Dead) 2753 .addReg(MI.getOperand(VLIndex).getReg()); 2754 } else 2755 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 2756 MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead) 2757 .addReg(RISCV::X0, RegState::Kill); 2758 2759 // Default to tail agnostic unless the destination is tied to a source. In 2760 // that case the user would have some control over the tail values. The tail 2761 // policy is also ignored on instructions that only update element 0 like 2762 // vmv.s.x or reductions so use agnostic there to match the common case. 2763 // FIXME: This is conservatively correct, but we might want to detect that 2764 // the input is undefined. 2765 bool TailAgnostic = true; 2766 unsigned UseOpIdx; 2767 if (MI.isRegTiedToUseOperand(0, &UseOpIdx) && !WritesElement0) { 2768 TailAgnostic = false; 2769 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 2770 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 2771 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 2772 if (UseMI && UseMI->isImplicitDef()) 2773 TailAgnostic = true; 2774 } 2775 2776 // For simplicity we reuse the vtype representation here. 2777 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth, 2778 /*TailAgnostic*/ TailAgnostic, 2779 /*MaskAgnostic*/ false)); 2780 2781 // Remove (now) redundant operands from pseudo 2782 MI.getOperand(SEWIndex).setImm(-1); 2783 if (VLIndex >= 0) { 2784 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 2785 MI.getOperand(VLIndex).setIsKill(false); 2786 } 2787 2788 return BB; 2789 } 2790 2791 MachineBasicBlock * 2792 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2793 MachineBasicBlock *BB) const { 2794 uint64_t TSFlags = MI.getDesc().TSFlags; 2795 2796 if (TSFlags & RISCVII::HasSEWOpMask) { 2797 unsigned NumOperands = MI.getNumExplicitOperands(); 2798 int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1; 2799 unsigned SEWIndex = NumOperands - 1; 2800 bool WritesElement0 = TSFlags & RISCVII::WritesElement0Mask; 2801 2802 RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >> 2803 RISCVII::VLMulShift); 2804 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, WritesElement0); 2805 } 2806 2807 switch (MI.getOpcode()) { 2808 default: 2809 llvm_unreachable("Unexpected instr type to insert"); 2810 case RISCV::ReadCycleWide: 2811 assert(!Subtarget.is64Bit() && 2812 "ReadCycleWrite is only to be used on riscv32"); 2813 return emitReadCycleWidePseudo(MI, BB); 2814 case RISCV::Select_GPR_Using_CC_GPR: 2815 case RISCV::Select_FPR16_Using_CC_GPR: 2816 case RISCV::Select_FPR32_Using_CC_GPR: 2817 case RISCV::Select_FPR64_Using_CC_GPR: 2818 return emitSelectPseudo(MI, BB); 2819 case RISCV::BuildPairF64Pseudo: 2820 return emitBuildPairF64Pseudo(MI, BB); 2821 case RISCV::SplitF64Pseudo: 2822 return emitSplitF64Pseudo(MI, BB); 2823 } 2824 } 2825 2826 // Calling Convention Implementation. 2827 // The expectations for frontend ABI lowering vary from target to target. 2828 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 2829 // details, but this is a longer term goal. For now, we simply try to keep the 2830 // role of the frontend as simple and well-defined as possible. The rules can 2831 // be summarised as: 2832 // * Never split up large scalar arguments. We handle them here. 2833 // * If a hardfloat calling convention is being used, and the struct may be 2834 // passed in a pair of registers (fp+fp, int+fp), and both registers are 2835 // available, then pass as two separate arguments. If either the GPRs or FPRs 2836 // are exhausted, then pass according to the rule below. 2837 // * If a struct could never be passed in registers or directly in a stack 2838 // slot (as it is larger than 2*XLEN and the floating point rules don't 2839 // apply), then pass it using a pointer with the byval attribute. 2840 // * If a struct is less than 2*XLEN, then coerce to either a two-element 2841 // word-sized array or a 2*XLEN scalar (depending on alignment). 2842 // * The frontend can determine whether a struct is returned by reference or 2843 // not based on its size and fields. If it will be returned by reference, the 2844 // frontend must modify the prototype so a pointer with the sret annotation is 2845 // passed as the first argument. This is not necessary for large scalar 2846 // returns. 2847 // * Struct return values and varargs should be coerced to structs containing 2848 // register-size fields in the same situations they would be for fixed 2849 // arguments. 2850 2851 static const MCPhysReg ArgGPRs[] = { 2852 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 2853 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 2854 }; 2855 static const MCPhysReg ArgFPR16s[] = { 2856 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 2857 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 2858 }; 2859 static const MCPhysReg ArgFPR32s[] = { 2860 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 2861 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 2862 }; 2863 static const MCPhysReg ArgFPR64s[] = { 2864 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 2865 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 2866 }; 2867 // This is an interim calling convention and it may be changed in the future. 2868 static const MCPhysReg ArgVRs[] = { 2869 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 2870 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 2871 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 2872 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 2873 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 2874 RISCV::V20M2, RISCV::V22M2}; 2875 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 2876 RISCV::V20M4}; 2877 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 2878 2879 // Pass a 2*XLEN argument that has been split into two XLEN values through 2880 // registers or the stack as necessary. 2881 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 2882 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 2883 MVT ValVT2, MVT LocVT2, 2884 ISD::ArgFlagsTy ArgFlags2) { 2885 unsigned XLenInBytes = XLen / 8; 2886 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2887 // At least one half can be passed via register. 2888 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 2889 VA1.getLocVT(), CCValAssign::Full)); 2890 } else { 2891 // Both halves must be passed on the stack, with proper alignment. 2892 Align StackAlign = 2893 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 2894 State.addLoc( 2895 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 2896 State.AllocateStack(XLenInBytes, StackAlign), 2897 VA1.getLocVT(), CCValAssign::Full)); 2898 State.addLoc(CCValAssign::getMem( 2899 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2900 LocVT2, CCValAssign::Full)); 2901 return false; 2902 } 2903 2904 if (Register Reg = State.AllocateReg(ArgGPRs)) { 2905 // The second half can also be passed via register. 2906 State.addLoc( 2907 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 2908 } else { 2909 // The second half is passed via the stack, without additional alignment. 2910 State.addLoc(CCValAssign::getMem( 2911 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 2912 LocVT2, CCValAssign::Full)); 2913 } 2914 2915 return false; 2916 } 2917 2918 // Implements the RISC-V calling convention. Returns true upon failure. 2919 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 2920 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 2921 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 2922 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 2923 Optional<unsigned> FirstMaskArgument) { 2924 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 2925 assert(XLen == 32 || XLen == 64); 2926 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 2927 2928 // Any return value split in to more than two values can't be returned 2929 // directly. 2930 if (IsRet && ValNo > 1) 2931 return true; 2932 2933 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 2934 // variadic argument, or if no F16/F32 argument registers are available. 2935 bool UseGPRForF16_F32 = true; 2936 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 2937 // variadic argument, or if no F64 argument registers are available. 2938 bool UseGPRForF64 = true; 2939 2940 switch (ABI) { 2941 default: 2942 llvm_unreachable("Unexpected ABI"); 2943 case RISCVABI::ABI_ILP32: 2944 case RISCVABI::ABI_LP64: 2945 break; 2946 case RISCVABI::ABI_ILP32F: 2947 case RISCVABI::ABI_LP64F: 2948 UseGPRForF16_F32 = !IsFixed; 2949 break; 2950 case RISCVABI::ABI_ILP32D: 2951 case RISCVABI::ABI_LP64D: 2952 UseGPRForF16_F32 = !IsFixed; 2953 UseGPRForF64 = !IsFixed; 2954 break; 2955 } 2956 2957 // FPR16, FPR32, and FPR64 alias each other. 2958 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 2959 UseGPRForF16_F32 = true; 2960 UseGPRForF64 = true; 2961 } 2962 2963 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 2964 // similar local variables rather than directly checking against the target 2965 // ABI. 2966 2967 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 2968 LocVT = XLenVT; 2969 LocInfo = CCValAssign::BCvt; 2970 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 2971 LocVT = MVT::i64; 2972 LocInfo = CCValAssign::BCvt; 2973 } 2974 2975 // If this is a variadic argument, the RISC-V calling convention requires 2976 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 2977 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 2978 // be used regardless of whether the original argument was split during 2979 // legalisation or not. The argument will not be passed by registers if the 2980 // original type is larger than 2*XLEN, so the register alignment rule does 2981 // not apply. 2982 unsigned TwoXLenInBytes = (2 * XLen) / 8; 2983 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 2984 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 2985 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 2986 // Skip 'odd' register if necessary. 2987 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 2988 State.AllocateReg(ArgGPRs); 2989 } 2990 2991 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 2992 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 2993 State.getPendingArgFlags(); 2994 2995 assert(PendingLocs.size() == PendingArgFlags.size() && 2996 "PendingLocs and PendingArgFlags out of sync"); 2997 2998 // Handle passing f64 on RV32D with a soft float ABI or when floating point 2999 // registers are exhausted. 3000 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 3001 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 3002 "Can't lower f64 if it is split"); 3003 // Depending on available argument GPRS, f64 may be passed in a pair of 3004 // GPRs, split between a GPR and the stack, or passed completely on the 3005 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 3006 // cases. 3007 Register Reg = State.AllocateReg(ArgGPRs); 3008 LocVT = MVT::i32; 3009 if (!Reg) { 3010 unsigned StackOffset = State.AllocateStack(8, Align(8)); 3011 State.addLoc( 3012 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 3013 return false; 3014 } 3015 if (!State.AllocateReg(ArgGPRs)) 3016 State.AllocateStack(4, Align(4)); 3017 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3018 return false; 3019 } 3020 3021 // Split arguments might be passed indirectly, so keep track of the pending 3022 // values. 3023 if (ArgFlags.isSplit() || !PendingLocs.empty()) { 3024 LocVT = XLenVT; 3025 LocInfo = CCValAssign::Indirect; 3026 PendingLocs.push_back( 3027 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 3028 PendingArgFlags.push_back(ArgFlags); 3029 if (!ArgFlags.isSplitEnd()) { 3030 return false; 3031 } 3032 } 3033 3034 // If the split argument only had two elements, it should be passed directly 3035 // in registers or on the stack. 3036 if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 3037 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 3038 // Apply the normal calling convention rules to the first half of the 3039 // split argument. 3040 CCValAssign VA = PendingLocs[0]; 3041 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 3042 PendingLocs.clear(); 3043 PendingArgFlags.clear(); 3044 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 3045 ArgFlags); 3046 } 3047 3048 // Allocate to a register if possible, or else a stack slot. 3049 Register Reg; 3050 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 3051 Reg = State.AllocateReg(ArgFPR16s); 3052 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 3053 Reg = State.AllocateReg(ArgFPR32s); 3054 else if (ValVT == MVT::f64 && !UseGPRForF64) 3055 Reg = State.AllocateReg(ArgFPR64s); 3056 else if (ValVT.isScalableVector()) { 3057 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 3058 if (RC == &RISCV::VRRegClass) { 3059 // Assign the first mask argument to V0. 3060 // This is an interim calling convention and it may be changed in the 3061 // future. 3062 if (FirstMaskArgument.hasValue() && 3063 ValNo == FirstMaskArgument.getValue()) { 3064 Reg = State.AllocateReg(RISCV::V0); 3065 } else { 3066 Reg = State.AllocateReg(ArgVRs); 3067 } 3068 } else if (RC == &RISCV::VRM2RegClass) { 3069 Reg = State.AllocateReg(ArgVRM2s); 3070 } else if (RC == &RISCV::VRM4RegClass) { 3071 Reg = State.AllocateReg(ArgVRM4s); 3072 } else if (RC == &RISCV::VRM8RegClass) { 3073 Reg = State.AllocateReg(ArgVRM8s); 3074 } else { 3075 llvm_unreachable("Unhandled class register for ValueType"); 3076 } 3077 if (!Reg) { 3078 LocInfo = CCValAssign::Indirect; 3079 // Try using a GPR to pass the address 3080 Reg = State.AllocateReg(ArgGPRs); 3081 LocVT = XLenVT; 3082 } 3083 } else 3084 Reg = State.AllocateReg(ArgGPRs); 3085 unsigned StackOffset = 3086 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 3087 3088 // If we reach this point and PendingLocs is non-empty, we must be at the 3089 // end of a split argument that must be passed indirectly. 3090 if (!PendingLocs.empty()) { 3091 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 3092 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 3093 3094 for (auto &It : PendingLocs) { 3095 if (Reg) 3096 It.convertToReg(Reg); 3097 else 3098 It.convertToMem(StackOffset); 3099 State.addLoc(It); 3100 } 3101 PendingLocs.clear(); 3102 PendingArgFlags.clear(); 3103 return false; 3104 } 3105 3106 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 3107 (TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) && 3108 "Expected an XLenVT or scalable vector types at this stage"); 3109 3110 if (Reg) { 3111 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3112 return false; 3113 } 3114 3115 // When a floating-point value is passed on the stack, no bit-conversion is 3116 // needed. 3117 if (ValVT.isFloatingPoint()) { 3118 LocVT = ValVT; 3119 LocInfo = CCValAssign::Full; 3120 } 3121 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 3122 return false; 3123 } 3124 3125 template <typename ArgTy> 3126 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 3127 for (const auto &ArgIdx : enumerate(Args)) { 3128 MVT ArgVT = ArgIdx.value().VT; 3129 if (ArgVT.isScalableVector() && 3130 ArgVT.getVectorElementType().SimpleTy == MVT::i1) 3131 return ArgIdx.index(); 3132 } 3133 return None; 3134 } 3135 3136 void RISCVTargetLowering::analyzeInputArgs( 3137 MachineFunction &MF, CCState &CCInfo, 3138 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 3139 unsigned NumArgs = Ins.size(); 3140 FunctionType *FType = MF.getFunction().getFunctionType(); 3141 3142 Optional<unsigned> FirstMaskArgument; 3143 if (Subtarget.hasStdExtV()) 3144 FirstMaskArgument = preAssignMask(Ins); 3145 3146 for (unsigned i = 0; i != NumArgs; ++i) { 3147 MVT ArgVT = Ins[i].VT; 3148 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 3149 3150 Type *ArgTy = nullptr; 3151 if (IsRet) 3152 ArgTy = FType->getReturnType(); 3153 else if (Ins[i].isOrigArg()) 3154 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 3155 3156 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3157 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3158 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 3159 FirstMaskArgument)) { 3160 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 3161 << EVT(ArgVT).getEVTString() << '\n'); 3162 llvm_unreachable(nullptr); 3163 } 3164 } 3165 } 3166 3167 void RISCVTargetLowering::analyzeOutputArgs( 3168 MachineFunction &MF, CCState &CCInfo, 3169 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 3170 CallLoweringInfo *CLI) const { 3171 unsigned NumArgs = Outs.size(); 3172 3173 Optional<unsigned> FirstMaskArgument; 3174 if (Subtarget.hasStdExtV()) 3175 FirstMaskArgument = preAssignMask(Outs); 3176 3177 for (unsigned i = 0; i != NumArgs; i++) { 3178 MVT ArgVT = Outs[i].VT; 3179 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3180 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 3181 3182 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3183 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 3184 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 3185 FirstMaskArgument)) { 3186 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 3187 << EVT(ArgVT).getEVTString() << "\n"); 3188 llvm_unreachable(nullptr); 3189 } 3190 } 3191 } 3192 3193 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 3194 // values. 3195 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 3196 const CCValAssign &VA, const SDLoc &DL) { 3197 switch (VA.getLocInfo()) { 3198 default: 3199 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3200 case CCValAssign::Full: 3201 break; 3202 case CCValAssign::BCvt: 3203 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3204 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 3205 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3206 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 3207 else 3208 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3209 break; 3210 } 3211 return Val; 3212 } 3213 3214 // The caller is responsible for loading the full value if the argument is 3215 // passed with CCValAssign::Indirect. 3216 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 3217 const CCValAssign &VA, const SDLoc &DL, 3218 const RISCVTargetLowering &TLI) { 3219 MachineFunction &MF = DAG.getMachineFunction(); 3220 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3221 EVT LocVT = VA.getLocVT(); 3222 SDValue Val; 3223 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 3224 Register VReg = RegInfo.createVirtualRegister(RC); 3225 RegInfo.addLiveIn(VA.getLocReg(), VReg); 3226 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 3227 3228 if (VA.getLocInfo() == CCValAssign::Indirect) 3229 return Val; 3230 3231 return convertLocVTToValVT(DAG, Val, VA, DL); 3232 } 3233 3234 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 3235 const CCValAssign &VA, const SDLoc &DL) { 3236 EVT LocVT = VA.getLocVT(); 3237 3238 switch (VA.getLocInfo()) { 3239 default: 3240 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3241 case CCValAssign::Full: 3242 break; 3243 case CCValAssign::BCvt: 3244 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 3245 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 3246 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 3247 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 3248 else 3249 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 3250 break; 3251 } 3252 return Val; 3253 } 3254 3255 // The caller is responsible for loading the full value if the argument is 3256 // passed with CCValAssign::Indirect. 3257 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 3258 const CCValAssign &VA, const SDLoc &DL) { 3259 MachineFunction &MF = DAG.getMachineFunction(); 3260 MachineFrameInfo &MFI = MF.getFrameInfo(); 3261 EVT LocVT = VA.getLocVT(); 3262 EVT ValVT = VA.getValVT(); 3263 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 3264 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 3265 VA.getLocMemOffset(), /*Immutable=*/true); 3266 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3267 SDValue Val; 3268 3269 ISD::LoadExtType ExtType; 3270 switch (VA.getLocInfo()) { 3271 default: 3272 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 3273 case CCValAssign::Full: 3274 case CCValAssign::Indirect: 3275 case CCValAssign::BCvt: 3276 ExtType = ISD::NON_EXTLOAD; 3277 break; 3278 } 3279 Val = DAG.getExtLoad( 3280 ExtType, DL, LocVT, Chain, FIN, 3281 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 3282 return Val; 3283 } 3284 3285 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 3286 const CCValAssign &VA, const SDLoc &DL) { 3287 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 3288 "Unexpected VA"); 3289 MachineFunction &MF = DAG.getMachineFunction(); 3290 MachineFrameInfo &MFI = MF.getFrameInfo(); 3291 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3292 3293 if (VA.isMemLoc()) { 3294 // f64 is passed on the stack. 3295 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 3296 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3297 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 3298 MachinePointerInfo::getFixedStack(MF, FI)); 3299 } 3300 3301 assert(VA.isRegLoc() && "Expected register VA assignment"); 3302 3303 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3304 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 3305 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 3306 SDValue Hi; 3307 if (VA.getLocReg() == RISCV::X17) { 3308 // Second half of f64 is passed on the stack. 3309 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 3310 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 3311 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 3312 MachinePointerInfo::getFixedStack(MF, FI)); 3313 } else { 3314 // Second half of f64 is passed in another GPR. 3315 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 3316 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 3317 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 3318 } 3319 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 3320 } 3321 3322 // FastCC has less than 1% performance improvement for some particular 3323 // benchmark. But theoretically, it may has benenfit for some cases. 3324 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 3325 CCValAssign::LocInfo LocInfo, 3326 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3327 3328 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3329 // X5 and X6 might be used for save-restore libcall. 3330 static const MCPhysReg GPRList[] = { 3331 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 3332 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 3333 RISCV::X29, RISCV::X30, RISCV::X31}; 3334 if (unsigned Reg = State.AllocateReg(GPRList)) { 3335 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3336 return false; 3337 } 3338 } 3339 3340 if (LocVT == MVT::f16) { 3341 static const MCPhysReg FPR16List[] = { 3342 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 3343 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 3344 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 3345 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 3346 if (unsigned Reg = State.AllocateReg(FPR16List)) { 3347 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3348 return false; 3349 } 3350 } 3351 3352 if (LocVT == MVT::f32) { 3353 static const MCPhysReg FPR32List[] = { 3354 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 3355 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 3356 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 3357 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 3358 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3359 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3360 return false; 3361 } 3362 } 3363 3364 if (LocVT == MVT::f64) { 3365 static const MCPhysReg FPR64List[] = { 3366 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 3367 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 3368 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 3369 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 3370 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3371 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3372 return false; 3373 } 3374 } 3375 3376 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 3377 unsigned Offset4 = State.AllocateStack(4, Align(4)); 3378 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 3379 return false; 3380 } 3381 3382 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 3383 unsigned Offset5 = State.AllocateStack(8, Align(8)); 3384 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 3385 return false; 3386 } 3387 3388 return true; // CC didn't match. 3389 } 3390 3391 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 3392 CCValAssign::LocInfo LocInfo, 3393 ISD::ArgFlagsTy ArgFlags, CCState &State) { 3394 3395 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 3396 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 3397 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 3398 static const MCPhysReg GPRList[] = { 3399 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 3400 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 3401 if (unsigned Reg = State.AllocateReg(GPRList)) { 3402 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3403 return false; 3404 } 3405 } 3406 3407 if (LocVT == MVT::f32) { 3408 // Pass in STG registers: F1, ..., F6 3409 // fs0 ... fs5 3410 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 3411 RISCV::F18_F, RISCV::F19_F, 3412 RISCV::F20_F, RISCV::F21_F}; 3413 if (unsigned Reg = State.AllocateReg(FPR32List)) { 3414 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3415 return false; 3416 } 3417 } 3418 3419 if (LocVT == MVT::f64) { 3420 // Pass in STG registers: D1, ..., D6 3421 // fs6 ... fs11 3422 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 3423 RISCV::F24_D, RISCV::F25_D, 3424 RISCV::F26_D, RISCV::F27_D}; 3425 if (unsigned Reg = State.AllocateReg(FPR64List)) { 3426 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 3427 return false; 3428 } 3429 } 3430 3431 report_fatal_error("No registers left in GHC calling convention"); 3432 return true; 3433 } 3434 3435 // Transform physical registers into virtual registers. 3436 SDValue RISCVTargetLowering::LowerFormalArguments( 3437 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 3438 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3439 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3440 3441 MachineFunction &MF = DAG.getMachineFunction(); 3442 3443 switch (CallConv) { 3444 default: 3445 report_fatal_error("Unsupported calling convention"); 3446 case CallingConv::C: 3447 case CallingConv::Fast: 3448 break; 3449 case CallingConv::GHC: 3450 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 3451 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 3452 report_fatal_error( 3453 "GHC calling convention requires the F and D instruction set extensions"); 3454 } 3455 3456 const Function &Func = MF.getFunction(); 3457 if (Func.hasFnAttribute("interrupt")) { 3458 if (!Func.arg_empty()) 3459 report_fatal_error( 3460 "Functions with the interrupt attribute cannot have arguments!"); 3461 3462 StringRef Kind = 3463 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 3464 3465 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 3466 report_fatal_error( 3467 "Function interrupt attribute argument not supported!"); 3468 } 3469 3470 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3471 MVT XLenVT = Subtarget.getXLenVT(); 3472 unsigned XLenInBytes = Subtarget.getXLen() / 8; 3473 // Used with vargs to acumulate store chains. 3474 std::vector<SDValue> OutChains; 3475 3476 // Assign locations to all of the incoming arguments. 3477 SmallVector<CCValAssign, 16> ArgLocs; 3478 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3479 3480 if (CallConv == CallingConv::Fast) 3481 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 3482 else if (CallConv == CallingConv::GHC) 3483 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 3484 else 3485 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 3486 3487 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3488 CCValAssign &VA = ArgLocs[i]; 3489 SDValue ArgValue; 3490 // Passing f64 on RV32D with a soft float ABI must be handled as a special 3491 // case. 3492 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 3493 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 3494 else if (VA.isRegLoc()) 3495 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 3496 else 3497 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 3498 3499 if (VA.getLocInfo() == CCValAssign::Indirect) { 3500 // If the original argument was split and passed by reference (e.g. i128 3501 // on RV32), we need to load all parts of it here (using the same 3502 // address). 3503 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 3504 MachinePointerInfo())); 3505 unsigned ArgIndex = Ins[i].OrigArgIndex; 3506 assert(Ins[i].PartOffset == 0); 3507 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 3508 CCValAssign &PartVA = ArgLocs[i + 1]; 3509 unsigned PartOffset = Ins[i + 1].PartOffset; 3510 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 3511 DAG.getIntPtrConstant(PartOffset, DL)); 3512 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 3513 MachinePointerInfo())); 3514 ++i; 3515 } 3516 continue; 3517 } 3518 InVals.push_back(ArgValue); 3519 } 3520 3521 if (IsVarArg) { 3522 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 3523 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 3524 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 3525 MachineFrameInfo &MFI = MF.getFrameInfo(); 3526 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3527 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 3528 3529 // Offset of the first variable argument from stack pointer, and size of 3530 // the vararg save area. For now, the varargs save area is either zero or 3531 // large enough to hold a0-a7. 3532 int VaArgOffset, VarArgsSaveSize; 3533 3534 // If all registers are allocated, then all varargs must be passed on the 3535 // stack and we don't need to save any argregs. 3536 if (ArgRegs.size() == Idx) { 3537 VaArgOffset = CCInfo.getNextStackOffset(); 3538 VarArgsSaveSize = 0; 3539 } else { 3540 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 3541 VaArgOffset = -VarArgsSaveSize; 3542 } 3543 3544 // Record the frame index of the first variable argument 3545 // which is a value necessary to VASTART. 3546 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3547 RVFI->setVarArgsFrameIndex(FI); 3548 3549 // If saving an odd number of registers then create an extra stack slot to 3550 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 3551 // offsets to even-numbered registered remain 2*XLEN-aligned. 3552 if (Idx % 2) { 3553 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 3554 VarArgsSaveSize += XLenInBytes; 3555 } 3556 3557 // Copy the integer registers that may have been used for passing varargs 3558 // to the vararg save area. 3559 for (unsigned I = Idx; I < ArgRegs.size(); 3560 ++I, VaArgOffset += XLenInBytes) { 3561 const Register Reg = RegInfo.createVirtualRegister(RC); 3562 RegInfo.addLiveIn(ArgRegs[I], Reg); 3563 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 3564 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 3565 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3566 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3567 MachinePointerInfo::getFixedStack(MF, FI)); 3568 cast<StoreSDNode>(Store.getNode()) 3569 ->getMemOperand() 3570 ->setValue((Value *)nullptr); 3571 OutChains.push_back(Store); 3572 } 3573 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 3574 } 3575 3576 // All stores are grouped in one node to allow the matching between 3577 // the size of Ins and InVals. This only happens for vararg functions. 3578 if (!OutChains.empty()) { 3579 OutChains.push_back(Chain); 3580 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3581 } 3582 3583 return Chain; 3584 } 3585 3586 /// isEligibleForTailCallOptimization - Check whether the call is eligible 3587 /// for tail call optimization. 3588 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 3589 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 3590 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 3591 const SmallVector<CCValAssign, 16> &ArgLocs) const { 3592 3593 auto &Callee = CLI.Callee; 3594 auto CalleeCC = CLI.CallConv; 3595 auto &Outs = CLI.Outs; 3596 auto &Caller = MF.getFunction(); 3597 auto CallerCC = Caller.getCallingConv(); 3598 3599 // Exception-handling functions need a special set of instructions to 3600 // indicate a return to the hardware. Tail-calling another function would 3601 // probably break this. 3602 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 3603 // should be expanded as new function attributes are introduced. 3604 if (Caller.hasFnAttribute("interrupt")) 3605 return false; 3606 3607 // Do not tail call opt if the stack is used to pass parameters. 3608 if (CCInfo.getNextStackOffset() != 0) 3609 return false; 3610 3611 // Do not tail call opt if any parameters need to be passed indirectly. 3612 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 3613 // passed indirectly. So the address of the value will be passed in a 3614 // register, or if not available, then the address is put on the stack. In 3615 // order to pass indirectly, space on the stack often needs to be allocated 3616 // in order to store the value. In this case the CCInfo.getNextStackOffset() 3617 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 3618 // are passed CCValAssign::Indirect. 3619 for (auto &VA : ArgLocs) 3620 if (VA.getLocInfo() == CCValAssign::Indirect) 3621 return false; 3622 3623 // Do not tail call opt if either caller or callee uses struct return 3624 // semantics. 3625 auto IsCallerStructRet = Caller.hasStructRetAttr(); 3626 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3627 if (IsCallerStructRet || IsCalleeStructRet) 3628 return false; 3629 3630 // Externally-defined functions with weak linkage should not be 3631 // tail-called. The behaviour of branch instructions in this situation (as 3632 // used for tail calls) is implementation-defined, so we cannot rely on the 3633 // linker replacing the tail call with a return. 3634 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3635 const GlobalValue *GV = G->getGlobal(); 3636 if (GV->hasExternalWeakLinkage()) 3637 return false; 3638 } 3639 3640 // The callee has to preserve all registers the caller needs to preserve. 3641 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3642 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3643 if (CalleeCC != CallerCC) { 3644 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3645 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3646 return false; 3647 } 3648 3649 // Byval parameters hand the function a pointer directly into the stack area 3650 // we want to reuse during a tail call. Working around this *is* possible 3651 // but less efficient and uglier in LowerCall. 3652 for (auto &Arg : Outs) 3653 if (Arg.Flags.isByVal()) 3654 return false; 3655 3656 return true; 3657 } 3658 3659 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 3660 // and output parameter nodes. 3661 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 3662 SmallVectorImpl<SDValue> &InVals) const { 3663 SelectionDAG &DAG = CLI.DAG; 3664 SDLoc &DL = CLI.DL; 3665 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3666 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3667 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3668 SDValue Chain = CLI.Chain; 3669 SDValue Callee = CLI.Callee; 3670 bool &IsTailCall = CLI.IsTailCall; 3671 CallingConv::ID CallConv = CLI.CallConv; 3672 bool IsVarArg = CLI.IsVarArg; 3673 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3674 MVT XLenVT = Subtarget.getXLenVT(); 3675 3676 MachineFunction &MF = DAG.getMachineFunction(); 3677 3678 // Analyze the operands of the call, assigning locations to each operand. 3679 SmallVector<CCValAssign, 16> ArgLocs; 3680 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 3681 3682 if (CallConv == CallingConv::Fast) 3683 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 3684 else if (CallConv == CallingConv::GHC) 3685 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 3686 else 3687 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 3688 3689 // Check if it's really possible to do a tail call. 3690 if (IsTailCall) 3691 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 3692 3693 if (IsTailCall) 3694 ++NumTailCalls; 3695 else if (CLI.CB && CLI.CB->isMustTailCall()) 3696 report_fatal_error("failed to perform tail call elimination on a call " 3697 "site marked musttail"); 3698 3699 // Get a count of how many bytes are to be pushed on the stack. 3700 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 3701 3702 // Create local copies for byval args 3703 SmallVector<SDValue, 8> ByValArgs; 3704 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3705 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3706 if (!Flags.isByVal()) 3707 continue; 3708 3709 SDValue Arg = OutVals[i]; 3710 unsigned Size = Flags.getByValSize(); 3711 Align Alignment = Flags.getNonZeroByValAlign(); 3712 3713 int FI = 3714 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 3715 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3716 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 3717 3718 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 3719 /*IsVolatile=*/false, 3720 /*AlwaysInline=*/false, IsTailCall, 3721 MachinePointerInfo(), MachinePointerInfo()); 3722 ByValArgs.push_back(FIPtr); 3723 } 3724 3725 if (!IsTailCall) 3726 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 3727 3728 // Copy argument values to their designated locations. 3729 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 3730 SmallVector<SDValue, 8> MemOpChains; 3731 SDValue StackPtr; 3732 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 3733 CCValAssign &VA = ArgLocs[i]; 3734 SDValue ArgValue = OutVals[i]; 3735 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3736 3737 // Handle passing f64 on RV32D with a soft float ABI as a special case. 3738 bool IsF64OnRV32DSoftABI = 3739 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 3740 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 3741 SDValue SplitF64 = DAG.getNode( 3742 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 3743 SDValue Lo = SplitF64.getValue(0); 3744 SDValue Hi = SplitF64.getValue(1); 3745 3746 Register RegLo = VA.getLocReg(); 3747 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 3748 3749 if (RegLo == RISCV::X17) { 3750 // Second half of f64 is passed on the stack. 3751 // Work out the address of the stack slot. 3752 if (!StackPtr.getNode()) 3753 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3754 // Emit the store. 3755 MemOpChains.push_back( 3756 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 3757 } else { 3758 // Second half of f64 is passed in another GPR. 3759 assert(RegLo < RISCV::X31 && "Invalid register pair"); 3760 Register RegHigh = RegLo + 1; 3761 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 3762 } 3763 continue; 3764 } 3765 3766 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 3767 // as any other MemLoc. 3768 3769 // Promote the value if needed. 3770 // For now, only handle fully promoted and indirect arguments. 3771 if (VA.getLocInfo() == CCValAssign::Indirect) { 3772 // Store the argument in a stack slot and pass its address. 3773 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT); 3774 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 3775 MemOpChains.push_back( 3776 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 3777 MachinePointerInfo::getFixedStack(MF, FI))); 3778 // If the original argument was split (e.g. i128), we need 3779 // to store all parts of it here (and pass just one address). 3780 unsigned ArgIndex = Outs[i].OrigArgIndex; 3781 assert(Outs[i].PartOffset == 0); 3782 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 3783 SDValue PartValue = OutVals[i + 1]; 3784 unsigned PartOffset = Outs[i + 1].PartOffset; 3785 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 3786 DAG.getIntPtrConstant(PartOffset, DL)); 3787 MemOpChains.push_back( 3788 DAG.getStore(Chain, DL, PartValue, Address, 3789 MachinePointerInfo::getFixedStack(MF, FI))); 3790 ++i; 3791 } 3792 ArgValue = SpillSlot; 3793 } else { 3794 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL); 3795 } 3796 3797 // Use local copy if it is a byval arg. 3798 if (Flags.isByVal()) 3799 ArgValue = ByValArgs[j++]; 3800 3801 if (VA.isRegLoc()) { 3802 // Queue up the argument copies and emit them at the end. 3803 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 3804 } else { 3805 assert(VA.isMemLoc() && "Argument not register or memory"); 3806 assert(!IsTailCall && "Tail call not allowed if stack is used " 3807 "for passing parameters"); 3808 3809 // Work out the address of the stack slot. 3810 if (!StackPtr.getNode()) 3811 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 3812 SDValue Address = 3813 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 3814 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3815 3816 // Emit the store. 3817 MemOpChains.push_back( 3818 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 3819 } 3820 } 3821 3822 // Join the stores, which are independent of one another. 3823 if (!MemOpChains.empty()) 3824 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 3825 3826 SDValue Glue; 3827 3828 // Build a sequence of copy-to-reg nodes, chained and glued together. 3829 for (auto &Reg : RegsToPass) { 3830 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 3831 Glue = Chain.getValue(1); 3832 } 3833 3834 // Validate that none of the argument registers have been marked as 3835 // reserved, if so report an error. Do the same for the return address if this 3836 // is not a tailcall. 3837 validateCCReservedRegs(RegsToPass, MF); 3838 if (!IsTailCall && 3839 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 3840 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 3841 MF.getFunction(), 3842 "Return address register required, but has been reserved."}); 3843 3844 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 3845 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 3846 // split it and then direct call can be matched by PseudoCALL. 3847 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 3848 const GlobalValue *GV = S->getGlobal(); 3849 3850 unsigned OpFlags = RISCVII::MO_CALL; 3851 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 3852 OpFlags = RISCVII::MO_PLT; 3853 3854 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 3855 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 3856 unsigned OpFlags = RISCVII::MO_CALL; 3857 3858 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 3859 nullptr)) 3860 OpFlags = RISCVII::MO_PLT; 3861 3862 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 3863 } 3864 3865 // The first call operand is the chain and the second is the target address. 3866 SmallVector<SDValue, 8> Ops; 3867 Ops.push_back(Chain); 3868 Ops.push_back(Callee); 3869 3870 // Add argument registers to the end of the list so that they are 3871 // known live into the call. 3872 for (auto &Reg : RegsToPass) 3873 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 3874 3875 if (!IsTailCall) { 3876 // Add a register mask operand representing the call-preserved registers. 3877 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3878 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 3879 assert(Mask && "Missing call preserved mask for calling convention"); 3880 Ops.push_back(DAG.getRegisterMask(Mask)); 3881 } 3882 3883 // Glue the call to the argument copies, if any. 3884 if (Glue.getNode()) 3885 Ops.push_back(Glue); 3886 3887 // Emit the call. 3888 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3889 3890 if (IsTailCall) { 3891 MF.getFrameInfo().setHasTailCall(); 3892 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 3893 } 3894 3895 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 3896 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 3897 Glue = Chain.getValue(1); 3898 3899 // Mark the end of the call, which is glued to the call itself. 3900 Chain = DAG.getCALLSEQ_END(Chain, 3901 DAG.getConstant(NumBytes, DL, PtrVT, true), 3902 DAG.getConstant(0, DL, PtrVT, true), 3903 Glue, DL); 3904 Glue = Chain.getValue(1); 3905 3906 // Assign locations to each value returned by this call. 3907 SmallVector<CCValAssign, 16> RVLocs; 3908 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3909 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 3910 3911 // Copy all of the result registers out of their specified physreg. 3912 for (auto &VA : RVLocs) { 3913 // Copy the value out 3914 SDValue RetValue = 3915 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 3916 // Glue the RetValue to the end of the call sequence 3917 Chain = RetValue.getValue(1); 3918 Glue = RetValue.getValue(2); 3919 3920 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3921 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 3922 SDValue RetValue2 = 3923 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 3924 Chain = RetValue2.getValue(1); 3925 Glue = RetValue2.getValue(2); 3926 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 3927 RetValue2); 3928 } 3929 3930 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL); 3931 3932 InVals.push_back(RetValue); 3933 } 3934 3935 return Chain; 3936 } 3937 3938 bool RISCVTargetLowering::CanLowerReturn( 3939 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 3940 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 3941 SmallVector<CCValAssign, 16> RVLocs; 3942 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3943 3944 Optional<unsigned> FirstMaskArgument; 3945 if (Subtarget.hasStdExtV()) 3946 FirstMaskArgument = preAssignMask(Outs); 3947 3948 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 3949 MVT VT = Outs[i].VT; 3950 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3951 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 3952 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 3953 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 3954 *this, FirstMaskArgument)) 3955 return false; 3956 } 3957 return true; 3958 } 3959 3960 SDValue 3961 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3962 bool IsVarArg, 3963 const SmallVectorImpl<ISD::OutputArg> &Outs, 3964 const SmallVectorImpl<SDValue> &OutVals, 3965 const SDLoc &DL, SelectionDAG &DAG) const { 3966 const MachineFunction &MF = DAG.getMachineFunction(); 3967 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 3968 3969 // Stores the assignment of the return value to a location. 3970 SmallVector<CCValAssign, 16> RVLocs; 3971 3972 // Info about the registers and stack slot. 3973 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 3974 *DAG.getContext()); 3975 3976 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 3977 nullptr); 3978 3979 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 3980 report_fatal_error("GHC functions return void only"); 3981 3982 SDValue Glue; 3983 SmallVector<SDValue, 4> RetOps(1, Chain); 3984 3985 // Copy the result values into the output registers. 3986 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 3987 SDValue Val = OutVals[i]; 3988 CCValAssign &VA = RVLocs[i]; 3989 assert(VA.isRegLoc() && "Can only return in registers!"); 3990 3991 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 3992 // Handle returning f64 on RV32D with a soft float ABI. 3993 assert(VA.isRegLoc() && "Expected return via registers"); 3994 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 3995 DAG.getVTList(MVT::i32, MVT::i32), Val); 3996 SDValue Lo = SplitF64.getValue(0); 3997 SDValue Hi = SplitF64.getValue(1); 3998 Register RegLo = VA.getLocReg(); 3999 assert(RegLo < RISCV::X31 && "Invalid register pair"); 4000 Register RegHi = RegLo + 1; 4001 4002 if (STI.isRegisterReservedByUser(RegLo) || 4003 STI.isRegisterReservedByUser(RegHi)) 4004 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 4005 MF.getFunction(), 4006 "Return value register required, but has been reserved."}); 4007 4008 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 4009 Glue = Chain.getValue(1); 4010 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 4011 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 4012 Glue = Chain.getValue(1); 4013 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 4014 } else { 4015 // Handle a 'normal' return. 4016 Val = convertValVTToLocVT(DAG, Val, VA, DL); 4017 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 4018 4019 if (STI.isRegisterReservedByUser(VA.getLocReg())) 4020 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 4021 MF.getFunction(), 4022 "Return value register required, but has been reserved."}); 4023 4024 // Guarantee that all emitted copies are stuck together. 4025 Glue = Chain.getValue(1); 4026 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 4027 } 4028 } 4029 4030 RetOps[0] = Chain; // Update chain. 4031 4032 // Add the glue node if we have it. 4033 if (Glue.getNode()) { 4034 RetOps.push_back(Glue); 4035 } 4036 4037 // Interrupt service routines use different return instructions. 4038 const Function &Func = DAG.getMachineFunction().getFunction(); 4039 if (Func.hasFnAttribute("interrupt")) { 4040 if (!Func.getReturnType()->isVoidTy()) 4041 report_fatal_error( 4042 "Functions with the interrupt attribute must have void return type!"); 4043 4044 MachineFunction &MF = DAG.getMachineFunction(); 4045 StringRef Kind = 4046 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 4047 4048 unsigned RetOpc; 4049 if (Kind == "user") 4050 RetOpc = RISCVISD::URET_FLAG; 4051 else if (Kind == "supervisor") 4052 RetOpc = RISCVISD::SRET_FLAG; 4053 else 4054 RetOpc = RISCVISD::MRET_FLAG; 4055 4056 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 4057 } 4058 4059 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 4060 } 4061 4062 void RISCVTargetLowering::validateCCReservedRegs( 4063 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 4064 MachineFunction &MF) const { 4065 const Function &F = MF.getFunction(); 4066 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 4067 4068 if (llvm::any_of(Regs, [&STI](auto Reg) { 4069 return STI.isRegisterReservedByUser(Reg.first); 4070 })) 4071 F.getContext().diagnose(DiagnosticInfoUnsupported{ 4072 F, "Argument register required, but has been reserved."}); 4073 } 4074 4075 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 4076 return CI->isTailCall(); 4077 } 4078 4079 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 4080 #define NODE_NAME_CASE(NODE) \ 4081 case RISCVISD::NODE: \ 4082 return "RISCVISD::" #NODE; 4083 // clang-format off 4084 switch ((RISCVISD::NodeType)Opcode) { 4085 case RISCVISD::FIRST_NUMBER: 4086 break; 4087 NODE_NAME_CASE(RET_FLAG) 4088 NODE_NAME_CASE(URET_FLAG) 4089 NODE_NAME_CASE(SRET_FLAG) 4090 NODE_NAME_CASE(MRET_FLAG) 4091 NODE_NAME_CASE(CALL) 4092 NODE_NAME_CASE(SELECT_CC) 4093 NODE_NAME_CASE(BuildPairF64) 4094 NODE_NAME_CASE(SplitF64) 4095 NODE_NAME_CASE(TAIL) 4096 NODE_NAME_CASE(SLLW) 4097 NODE_NAME_CASE(SRAW) 4098 NODE_NAME_CASE(SRLW) 4099 NODE_NAME_CASE(DIVW) 4100 NODE_NAME_CASE(DIVUW) 4101 NODE_NAME_CASE(REMUW) 4102 NODE_NAME_CASE(ROLW) 4103 NODE_NAME_CASE(RORW) 4104 NODE_NAME_CASE(FSLW) 4105 NODE_NAME_CASE(FSRW) 4106 NODE_NAME_CASE(FMV_H_X) 4107 NODE_NAME_CASE(FMV_X_ANYEXTH) 4108 NODE_NAME_CASE(FMV_W_X_RV64) 4109 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 4110 NODE_NAME_CASE(READ_CYCLE_WIDE) 4111 NODE_NAME_CASE(GREVI) 4112 NODE_NAME_CASE(GREVIW) 4113 NODE_NAME_CASE(GORCI) 4114 NODE_NAME_CASE(GORCIW) 4115 NODE_NAME_CASE(VMV_X_S) 4116 NODE_NAME_CASE(SPLAT_VECTOR_I64) 4117 NODE_NAME_CASE(READ_VLENB) 4118 NODE_NAME_CASE(TRUNCATE_VECTOR) 4119 NODE_NAME_CASE(VLEFF) 4120 NODE_NAME_CASE(VLEFF_MASK) 4121 NODE_NAME_CASE(VSLIDEUP) 4122 NODE_NAME_CASE(VSLIDEDOWN) 4123 NODE_NAME_CASE(VID) 4124 NODE_NAME_CASE(VFNCVT_ROD) 4125 } 4126 // clang-format on 4127 return nullptr; 4128 #undef NODE_NAME_CASE 4129 } 4130 4131 /// getConstraintType - Given a constraint letter, return the type of 4132 /// constraint it is for this target. 4133 RISCVTargetLowering::ConstraintType 4134 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 4135 if (Constraint.size() == 1) { 4136 switch (Constraint[0]) { 4137 default: 4138 break; 4139 case 'f': 4140 return C_RegisterClass; 4141 case 'I': 4142 case 'J': 4143 case 'K': 4144 return C_Immediate; 4145 case 'A': 4146 return C_Memory; 4147 } 4148 } 4149 return TargetLowering::getConstraintType(Constraint); 4150 } 4151 4152 std::pair<unsigned, const TargetRegisterClass *> 4153 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 4154 StringRef Constraint, 4155 MVT VT) const { 4156 // First, see if this is a constraint that directly corresponds to a 4157 // RISCV register class. 4158 if (Constraint.size() == 1) { 4159 switch (Constraint[0]) { 4160 case 'r': 4161 return std::make_pair(0U, &RISCV::GPRRegClass); 4162 case 'f': 4163 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 4164 return std::make_pair(0U, &RISCV::FPR16RegClass); 4165 if (Subtarget.hasStdExtF() && VT == MVT::f32) 4166 return std::make_pair(0U, &RISCV::FPR32RegClass); 4167 if (Subtarget.hasStdExtD() && VT == MVT::f64) 4168 return std::make_pair(0U, &RISCV::FPR64RegClass); 4169 break; 4170 default: 4171 break; 4172 } 4173 } 4174 4175 // Clang will correctly decode the usage of register name aliases into their 4176 // official names. However, other frontends like `rustc` do not. This allows 4177 // users of these frontends to use the ABI names for registers in LLVM-style 4178 // register constraints. 4179 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 4180 .Case("{zero}", RISCV::X0) 4181 .Case("{ra}", RISCV::X1) 4182 .Case("{sp}", RISCV::X2) 4183 .Case("{gp}", RISCV::X3) 4184 .Case("{tp}", RISCV::X4) 4185 .Case("{t0}", RISCV::X5) 4186 .Case("{t1}", RISCV::X6) 4187 .Case("{t2}", RISCV::X7) 4188 .Cases("{s0}", "{fp}", RISCV::X8) 4189 .Case("{s1}", RISCV::X9) 4190 .Case("{a0}", RISCV::X10) 4191 .Case("{a1}", RISCV::X11) 4192 .Case("{a2}", RISCV::X12) 4193 .Case("{a3}", RISCV::X13) 4194 .Case("{a4}", RISCV::X14) 4195 .Case("{a5}", RISCV::X15) 4196 .Case("{a6}", RISCV::X16) 4197 .Case("{a7}", RISCV::X17) 4198 .Case("{s2}", RISCV::X18) 4199 .Case("{s3}", RISCV::X19) 4200 .Case("{s4}", RISCV::X20) 4201 .Case("{s5}", RISCV::X21) 4202 .Case("{s6}", RISCV::X22) 4203 .Case("{s7}", RISCV::X23) 4204 .Case("{s8}", RISCV::X24) 4205 .Case("{s9}", RISCV::X25) 4206 .Case("{s10}", RISCV::X26) 4207 .Case("{s11}", RISCV::X27) 4208 .Case("{t3}", RISCV::X28) 4209 .Case("{t4}", RISCV::X29) 4210 .Case("{t5}", RISCV::X30) 4211 .Case("{t6}", RISCV::X31) 4212 .Default(RISCV::NoRegister); 4213 if (XRegFromAlias != RISCV::NoRegister) 4214 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 4215 4216 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 4217 // TableGen record rather than the AsmName to choose registers for InlineAsm 4218 // constraints, plus we want to match those names to the widest floating point 4219 // register type available, manually select floating point registers here. 4220 // 4221 // The second case is the ABI name of the register, so that frontends can also 4222 // use the ABI names in register constraint lists. 4223 if (Subtarget.hasStdExtF()) { 4224 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 4225 .Cases("{f0}", "{ft0}", RISCV::F0_F) 4226 .Cases("{f1}", "{ft1}", RISCV::F1_F) 4227 .Cases("{f2}", "{ft2}", RISCV::F2_F) 4228 .Cases("{f3}", "{ft3}", RISCV::F3_F) 4229 .Cases("{f4}", "{ft4}", RISCV::F4_F) 4230 .Cases("{f5}", "{ft5}", RISCV::F5_F) 4231 .Cases("{f6}", "{ft6}", RISCV::F6_F) 4232 .Cases("{f7}", "{ft7}", RISCV::F7_F) 4233 .Cases("{f8}", "{fs0}", RISCV::F8_F) 4234 .Cases("{f9}", "{fs1}", RISCV::F9_F) 4235 .Cases("{f10}", "{fa0}", RISCV::F10_F) 4236 .Cases("{f11}", "{fa1}", RISCV::F11_F) 4237 .Cases("{f12}", "{fa2}", RISCV::F12_F) 4238 .Cases("{f13}", "{fa3}", RISCV::F13_F) 4239 .Cases("{f14}", "{fa4}", RISCV::F14_F) 4240 .Cases("{f15}", "{fa5}", RISCV::F15_F) 4241 .Cases("{f16}", "{fa6}", RISCV::F16_F) 4242 .Cases("{f17}", "{fa7}", RISCV::F17_F) 4243 .Cases("{f18}", "{fs2}", RISCV::F18_F) 4244 .Cases("{f19}", "{fs3}", RISCV::F19_F) 4245 .Cases("{f20}", "{fs4}", RISCV::F20_F) 4246 .Cases("{f21}", "{fs5}", RISCV::F21_F) 4247 .Cases("{f22}", "{fs6}", RISCV::F22_F) 4248 .Cases("{f23}", "{fs7}", RISCV::F23_F) 4249 .Cases("{f24}", "{fs8}", RISCV::F24_F) 4250 .Cases("{f25}", "{fs9}", RISCV::F25_F) 4251 .Cases("{f26}", "{fs10}", RISCV::F26_F) 4252 .Cases("{f27}", "{fs11}", RISCV::F27_F) 4253 .Cases("{f28}", "{ft8}", RISCV::F28_F) 4254 .Cases("{f29}", "{ft9}", RISCV::F29_F) 4255 .Cases("{f30}", "{ft10}", RISCV::F30_F) 4256 .Cases("{f31}", "{ft11}", RISCV::F31_F) 4257 .Default(RISCV::NoRegister); 4258 if (FReg != RISCV::NoRegister) { 4259 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 4260 if (Subtarget.hasStdExtD()) { 4261 unsigned RegNo = FReg - RISCV::F0_F; 4262 unsigned DReg = RISCV::F0_D + RegNo; 4263 return std::make_pair(DReg, &RISCV::FPR64RegClass); 4264 } 4265 return std::make_pair(FReg, &RISCV::FPR32RegClass); 4266 } 4267 } 4268 4269 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 4270 } 4271 4272 unsigned 4273 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 4274 // Currently only support length 1 constraints. 4275 if (ConstraintCode.size() == 1) { 4276 switch (ConstraintCode[0]) { 4277 case 'A': 4278 return InlineAsm::Constraint_A; 4279 default: 4280 break; 4281 } 4282 } 4283 4284 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 4285 } 4286 4287 void RISCVTargetLowering::LowerAsmOperandForConstraint( 4288 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 4289 SelectionDAG &DAG) const { 4290 // Currently only support length 1 constraints. 4291 if (Constraint.length() == 1) { 4292 switch (Constraint[0]) { 4293 case 'I': 4294 // Validate & create a 12-bit signed immediate operand. 4295 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4296 uint64_t CVal = C->getSExtValue(); 4297 if (isInt<12>(CVal)) 4298 Ops.push_back( 4299 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4300 } 4301 return; 4302 case 'J': 4303 // Validate & create an integer zero operand. 4304 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 4305 if (C->getZExtValue() == 0) 4306 Ops.push_back( 4307 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 4308 return; 4309 case 'K': 4310 // Validate & create a 5-bit unsigned immediate operand. 4311 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4312 uint64_t CVal = C->getZExtValue(); 4313 if (isUInt<5>(CVal)) 4314 Ops.push_back( 4315 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 4316 } 4317 return; 4318 default: 4319 break; 4320 } 4321 } 4322 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 4323 } 4324 4325 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 4326 Instruction *Inst, 4327 AtomicOrdering Ord) const { 4328 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 4329 return Builder.CreateFence(Ord); 4330 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 4331 return Builder.CreateFence(AtomicOrdering::Release); 4332 return nullptr; 4333 } 4334 4335 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 4336 Instruction *Inst, 4337 AtomicOrdering Ord) const { 4338 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 4339 return Builder.CreateFence(AtomicOrdering::Acquire); 4340 return nullptr; 4341 } 4342 4343 TargetLowering::AtomicExpansionKind 4344 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 4345 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 4346 // point operations can't be used in an lr/sc sequence without breaking the 4347 // forward-progress guarantee. 4348 if (AI->isFloatingPointOperation()) 4349 return AtomicExpansionKind::CmpXChg; 4350 4351 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 4352 if (Size == 8 || Size == 16) 4353 return AtomicExpansionKind::MaskedIntrinsic; 4354 return AtomicExpansionKind::None; 4355 } 4356 4357 static Intrinsic::ID 4358 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 4359 if (XLen == 32) { 4360 switch (BinOp) { 4361 default: 4362 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4363 case AtomicRMWInst::Xchg: 4364 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 4365 case AtomicRMWInst::Add: 4366 return Intrinsic::riscv_masked_atomicrmw_add_i32; 4367 case AtomicRMWInst::Sub: 4368 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 4369 case AtomicRMWInst::Nand: 4370 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 4371 case AtomicRMWInst::Max: 4372 return Intrinsic::riscv_masked_atomicrmw_max_i32; 4373 case AtomicRMWInst::Min: 4374 return Intrinsic::riscv_masked_atomicrmw_min_i32; 4375 case AtomicRMWInst::UMax: 4376 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 4377 case AtomicRMWInst::UMin: 4378 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 4379 } 4380 } 4381 4382 if (XLen == 64) { 4383 switch (BinOp) { 4384 default: 4385 llvm_unreachable("Unexpected AtomicRMW BinOp"); 4386 case AtomicRMWInst::Xchg: 4387 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 4388 case AtomicRMWInst::Add: 4389 return Intrinsic::riscv_masked_atomicrmw_add_i64; 4390 case AtomicRMWInst::Sub: 4391 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 4392 case AtomicRMWInst::Nand: 4393 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 4394 case AtomicRMWInst::Max: 4395 return Intrinsic::riscv_masked_atomicrmw_max_i64; 4396 case AtomicRMWInst::Min: 4397 return Intrinsic::riscv_masked_atomicrmw_min_i64; 4398 case AtomicRMWInst::UMax: 4399 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 4400 case AtomicRMWInst::UMin: 4401 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 4402 } 4403 } 4404 4405 llvm_unreachable("Unexpected XLen\n"); 4406 } 4407 4408 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 4409 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 4410 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 4411 unsigned XLen = Subtarget.getXLen(); 4412 Value *Ordering = 4413 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 4414 Type *Tys[] = {AlignedAddr->getType()}; 4415 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 4416 AI->getModule(), 4417 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 4418 4419 if (XLen == 64) { 4420 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 4421 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4422 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 4423 } 4424 4425 Value *Result; 4426 4427 // Must pass the shift amount needed to sign extend the loaded value prior 4428 // to performing a signed comparison for min/max. ShiftAmt is the number of 4429 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 4430 // is the number of bits to left+right shift the value in order to 4431 // sign-extend. 4432 if (AI->getOperation() == AtomicRMWInst::Min || 4433 AI->getOperation() == AtomicRMWInst::Max) { 4434 const DataLayout &DL = AI->getModule()->getDataLayout(); 4435 unsigned ValWidth = 4436 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 4437 Value *SextShamt = 4438 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 4439 Result = Builder.CreateCall(LrwOpScwLoop, 4440 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 4441 } else { 4442 Result = 4443 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 4444 } 4445 4446 if (XLen == 64) 4447 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4448 return Result; 4449 } 4450 4451 TargetLowering::AtomicExpansionKind 4452 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 4453 AtomicCmpXchgInst *CI) const { 4454 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 4455 if (Size == 8 || Size == 16) 4456 return AtomicExpansionKind::MaskedIntrinsic; 4457 return AtomicExpansionKind::None; 4458 } 4459 4460 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 4461 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 4462 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 4463 unsigned XLen = Subtarget.getXLen(); 4464 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 4465 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 4466 if (XLen == 64) { 4467 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 4468 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 4469 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 4470 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 4471 } 4472 Type *Tys[] = {AlignedAddr->getType()}; 4473 Function *MaskedCmpXchg = 4474 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 4475 Value *Result = Builder.CreateCall( 4476 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 4477 if (XLen == 64) 4478 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 4479 return Result; 4480 } 4481 4482 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 4483 EVT VT) const { 4484 VT = VT.getScalarType(); 4485 4486 if (!VT.isSimple()) 4487 return false; 4488 4489 switch (VT.getSimpleVT().SimpleTy) { 4490 case MVT::f16: 4491 return Subtarget.hasStdExtZfh(); 4492 case MVT::f32: 4493 return Subtarget.hasStdExtF(); 4494 case MVT::f64: 4495 return Subtarget.hasStdExtD(); 4496 default: 4497 break; 4498 } 4499 4500 return false; 4501 } 4502 4503 Register RISCVTargetLowering::getExceptionPointerRegister( 4504 const Constant *PersonalityFn) const { 4505 return RISCV::X10; 4506 } 4507 4508 Register RISCVTargetLowering::getExceptionSelectorRegister( 4509 const Constant *PersonalityFn) const { 4510 return RISCV::X11; 4511 } 4512 4513 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 4514 // Return false to suppress the unnecessary extensions if the LibCall 4515 // arguments or return value is f32 type for LP64 ABI. 4516 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 4517 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 4518 return false; 4519 4520 return true; 4521 } 4522 4523 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 4524 if (Subtarget.is64Bit() && Type == MVT::i32) 4525 return true; 4526 4527 return IsSigned; 4528 } 4529 4530 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 4531 SDValue C) const { 4532 // Check integral scalar types. 4533 if (VT.isScalarInteger()) { 4534 // Omit the optimization if the sub target has the M extension and the data 4535 // size exceeds XLen. 4536 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 4537 return false; 4538 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 4539 // Break the MUL to a SLLI and an ADD/SUB. 4540 const APInt &Imm = ConstNode->getAPIntValue(); 4541 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 4542 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 4543 return true; 4544 // Omit the following optimization if the sub target has the M extension 4545 // and the data size >= XLen. 4546 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 4547 return false; 4548 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 4549 // a pair of LUI/ADDI. 4550 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 4551 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 4552 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 4553 (1 - ImmS).isPowerOf2()) 4554 return true; 4555 } 4556 } 4557 } 4558 4559 return false; 4560 } 4561 4562 #define GET_REGISTER_MATCHER 4563 #include "RISCVGenAsmMatcher.inc" 4564 4565 Register 4566 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 4567 const MachineFunction &MF) const { 4568 Register Reg = MatchRegisterAltName(RegName); 4569 if (Reg == RISCV::NoRegister) 4570 Reg = MatchRegisterName(RegName); 4571 if (Reg == RISCV::NoRegister) 4572 report_fatal_error( 4573 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 4574 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 4575 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 4576 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 4577 StringRef(RegName) + "\".")); 4578 return Reg; 4579 } 4580 4581 namespace llvm { 4582 namespace RISCVVIntrinsicsTable { 4583 4584 #define GET_RISCVVIntrinsicsTable_IMPL 4585 #include "RISCVGenSearchableTables.inc" 4586 4587 } // namespace RISCVVIntrinsicsTable 4588 4589 namespace RISCVZvlssegTable { 4590 4591 #define GET_RISCVZvlssegTable_IMPL 4592 #include "RISCVGenSearchableTables.inc" 4593 4594 } // namespace RISCVZvlssegTable 4595 } // namespace llvm 4596